

Delft University of Technology

Data Assimilation in Discrete Event Simulations

Xie, Xu

DOI
10.4233/uuid:d0c47163-3845-430b-a8ce-013c41faa2ea
Publication date
2018
Document Version
Final published version
Citation (APA)
Xie, X. (2018). Data Assimilation in Discrete Event Simulations. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:d0c47163-3845-430b-a8ce-013c41faa2ea

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:d0c47163-3845-430b-a8ce-013c41faa2ea
https://doi.org/10.4233/uuid:d0c47163-3845-430b-a8ce-013c41faa2ea

Data Assimilation in Discrete Event Simulations

Xu Xie
Delft University of Technology

.

Data Assimilation in Discrete Event Simulations

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
dinsdag 27 februari 2018 om 15:00 uur

door

Xu XIE
Master of Engineering in Control Science and Engineering

National University of Defense Technology, China
geboren te Hanzhong, Shaanxi, China

This dissertation has been approved by the promotor:
Prof. dr. ir. A. Verbraeck

Composition of the doctoral committee:

Rector Magnificus Chairman
Prof. dr. ir. A. Verbraeck Delft University of Technology, promotor

Independent members:

Prof. dr. R.R. Negenborn Delft University of Technology
Prof. dr. B.A. Van de Walle Delft University of Technology
Prof. dr. ir. J.H. van Schuppen Delft University of Technology
Prof. dr. H.L.M. Vangheluwe University of Antwerp, Belgium
Dr. X. Hu Georgia State University, United States

Other members:

Prof. dr. ir. J.W.C. van Lint Delft University of Technology

This research was funded by the China Scholarship Council (CSC) under Grant 201306110027.

The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems. SIKS Dissertation Series
No. 2018-09.

Cover design by Stevan Stojic www.24-design.com
Published and distributed by: Xu Xie
E-mail: x.xie@hotmail.com
ISBN 978-94-6186-893-0
Copyright c© 2018 by Xu Xie
All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the author.
Printed in The Netherlands.

www.24-design.com

To my family

Acknowledgment

The four-year studying experience in TU Delft is precious and unforgettable for me. I feel
so lucky to meet so many nice people during this period, who have helped me in different
ways. It is my great pleasure to take this opportunity to express my sincere gratitude for
their time, help, support and friendship. If I forget to mention someone, please accept my
apologies beforehand. My mind is forgetful but my heart is not.

First of all, I would like to express my deepest thanks to my promotor, Prof. Alexander
Verbraeck. Alexander, thank you for offering me the opportunity to conduct this research
under your supervision. Being an extremely busy professor, you still tried your best to
guarantee that as my promotor, you provided me sufficient supervision on research in
general, and as my daily supervisor, you timely gave constructive feedbacks on my every
proposals, patiently answered every tiny and sometimes stupid questions, and quickly
rescued me from any technical difficulties. Without your guidance, this dissertation would
not have been possible. I hope you can work a bit less and have a bit more rest in the future.
I would like to thank Prof. Kedi Huang, my advisor in China, for bringing me to the field
of modeling and simulation, and for supporting me to pursue my PhD degree abroad. I
would like to thank Prof. Hans van Lint for his huge contribution to the urban traffic case
and also to my dissertation. Hans, I learned a lot from you through the joint work, and this
precious experience means a lot to me, since it makes me more enthusiastic on research
and also gives me more confidence on doing good research. I also thank you for accepting
to be in my doctoral committee and for your good comments on my dissertation. I would
like to thank Prof. Rudy Negenborn, Prof. Bartel Van de Walle, Prof. Jan H. van Schuppen,
Prof. Hans Vangheluwe and Dr. Xiaolin Hu for being part of my doctoral committee and
for their insightful and constructive comments that have greatly improved the quality of
this dissertation. Special thanks to Dr. Feng Gu for many useful discussions and good
suggestions on my research.

I would like to thank all my colleagues and friends in both the current section and the
previous section for making the work environment lively and enjoyable. Special thanks to
Yilin for many nice discussions, suggestions and encouragement both scientifically and
personally. Thanks to Mingxin for his kind help since we knew each other, and especially
for introducing me to Delft. Thanks to Shalini! I really enjoyed the interesting chats,
delicious dinners and tasty snacks with you. Thanks to Yan for being such a wonderful
roommate, and for many talks on various interesting topics. Thanks to Shalini and Yan
again for accepting to be my paranymphs and for many other preparation work for my
defense. Thanks to Lotte! It was a lot of fun to cycle along the river to Rotterdam together

vii

in summer. Thanks to Marlies, Monique, Diones and Everdine for their secretarial support
and cheerfulness.

I would like to thank my friends in the Netherlands for making my life more enjoyable.
Thanks to Laobing and Xingxing for their company. We spent almost every holiday
together and had so many nice dinners and talks, and I really enjoyed a lot. Thanks to
Changjie for being such a good friend with whom I can talk everything. I will miss you!
Thanks to Xu, Shanshan, Yu, and Shilong for their friendship. I will always miss the time
we spent together. Thanks to Binod, I really enjoyed the breaks, discussions and dinners
with you and your family! Thanks to all the members of the ChInE peer group! It was very
nice to have so many interesting discussions with all of you. Thanks to all my fellow PhD
students and friends in and outside the faculty, and I wish you all success!

A special thanks to the China Scholarship Council (CSC) for providing me the financial
support for this PhD study.

I would like to thank my parents-in-law. You are so nice and kind, and I especially
thank you for educating such a wonderful wife for me. I am very grateful to my parents
and sister for their unconditional love and support.

Finally, my biggest hug and kiss to my wife Zhangling. I really admire your indepen-
dence, your optimistic attitude towards difficulties, and your kindness and tolerance to
people. You are always a model for me. I wish you happy forever and success in your
study. Our hearts are always together!

viii

Table of Contents

Page

1 Introduction 1
1.1 Research motivation . 1
1.2 Research objectives and questions . 3
1.3 Research philosophy and instruments 4
1.4 Organization of the thesis . 5

2 Background and related work 7
2.1 Modeling and simulation . 7

2.1.1 Framework for modeling and simulation 7
2.1.2 Basic modeling formalisms . 9
2.1.3 Discrete event simulations and world views 10
2.1.4 Discrete Event System Specification (DEVS) 11

2.2 Data assimilation techniques . 14
2.2.1 Variational techniques . 14
2.2.2 Sequential methods . 15
2.2.3 Particle filters . 16

2.3 Data assimilation in discrete event simulations 17
2.3.1 Characteristics of discrete event simulations 17
2.3.2 Data assimilation technique for nonlinear, non-Gaussian applications 18
2.3.3 Comments on data assimilation in DEVS-FIRE 18
2.3.4 Challenges of applying particle filtering in discrete event simulations 20

2.4 Outlook of subsequent chapters . 21

3 A particle filter based data assimilation framework for discrete event simula-
tions 25
3.1 Revisiting the challenges of applying particle filtering in discrete event

simulations . 25
3.2 The particle filter based data assimilation framework for discrete event

simulations . 27
3.2.1 System model . 27
3.2.2 Measurement model . 30
3.2.3 State estimation using particle filters 31
3.2.4 Practical remarks . 33

ix

TABLE OF CONTENTS

3.3 Case study – estimating truck arrivals in a gold mine system 35
3.3.1 Scenario description . 36
3.3.2 Modeling the gold mine system in the DEVS formalism 37
3.3.3 Interpolation operation . 38
3.3.4 Available data and measurement model 40
3.3.5 Estimating truck arrivals using particle filters 42

3.4 Case study in the gold mine system – qualitative analysis 47
3.5 Case study in the gold mine system – quantitative analysis 48

3.5.1 Data processing . 48
3.5.2 Evaluation criteria . 51
3.5.3 Results . 53

3.6 Conclusions . 57

4 Particle filter based data assimilation in discrete event simulations of open
systems 61
4.1 Particle filtering in discrete event simulations of open systems 62

4.1.1 System model . 62
4.1.2 Measurement model . 63
4.1.3 State estimation using particle filters 63

4.2 Case study – reconstructing vehicle trajectories on signalized urban arterials 65
4.2.1 The trajectory reconstruction problem 66
4.2.2 Overview: a generic data assimilation framework for trajectory

reconstruction . 70
4.2.3 Particle filter design for trajectory reconstruction 71
4.2.4 Vehicle count correction method, specification of error models and

weight computation . 77
4.3 Case study in the urban traffic system – experiment and results 83

4.3.1 Experimental setup . 83
4.3.2 Evaluation criteria . 84
4.3.3 Results . 87

4.4 Conclusions . 91

5 The particle filter based data assimilation framework – sensitivity analysis 95
5.1 Case study in the gold mine system . 95

5.1.1 Revisiting the performance indicators 95
5.1.2 Effect of the data quality . 96
5.1.3 Effect of the model errors . 96
5.1.4 Effect of the number of particles 97

5.2 Case study in the urban traffic system 98
5.2.1 Revisiting the performance indicators 98
5.2.2 Effect of the data quality . 98
5.2.3 Effect of the model errors . 102
5.2.4 Effect of the number of particles 104

5.3 Conclusions . 105

x

TABLE OF CONTENTS

6 Conclusions and Future Research 109
6.1 Research findings . 110

6.1.1 Answers to research questions 110
6.1.2 Main contributions . 114

6.2 Future research directions . 115

A Implementation of the particle filter based data assimilation framework 117
A.1 Key components in a particle filter based data assimilation system 117
A.2 The conceptual framework to implement the particle filter based data

assimilation system . 119
A.2.1 General view of the conceptual framework 119
A.2.2 Representation of particles and weights 120
A.2.3 Representation of observations 121
A.2.4 Strategies for sampling, resampling, and weight updating 121
A.2.5 Communication with the simulation model 122
A.2.6 Central control logic . 124
A.2.7 Memory Consumption & Speed 125

A.3 Reference implementation in DSOL . 127
A.3.1 DSOL & its support for discrete event simulations 127
A.3.2 Implement the data assimilation procedure in DSOL 128

A.4 Conclusion . 130

Summary 141

Samenvatting 145

SIKS Dissertation Series 149

Curriculum Vitae 163

xi

List of Tables

TABLE Page

2.1 Comparison of main sequential data assimilation techniques (Yuan, 2013) 18

3.1 State variables of key components in the DEVS gold mine model 37
3.2 The set (denoted as FS) of feasible combinations of initial states of atomic

components . 45
3.3 The data assimilation estimation results (σe = 3.0, σt = 3.0;Np =

2000; ε = 0.05 minute) . 56

4.1 The parameters for the IDM . 84
4.2 The estimation error of the number of vehicle passages and the percentage

of passages that are not accurately reconstructed as defined in equation
4.17 computed over 14 cycles at sensors A and B respectively 88

5.1 Summary of the performance indicators for truck arrival estimation 96
5.2 The influence of data quality, i.e. σe, σt, on the data assimilation results

(states are retrieved through interpolation; Np = 2000). In each table cell
the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles 96

5.3 The influence of model quality on the data assimilation results (states are
retrieved through interpolation; σe = 3.0, σt = 3.0;Np = 2000). In each
table cell the median error over the 10 simulations is shown along with (in
brackets underneath) the 25th and 75th percentiles 97

5.4 The influence of number of particles on the data assimilation results (states
are retrieved through interpolation; σe = 3.0, σt = 3.0). In each table cell
the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles 98

5.5 Summary of the performance indicators for trajectory reconstruction . . . 98
5.6 The influence of p on the data assimilation results (λ = 1/∞ s−1, Np =

1000). In each table cell the median error over the 10 simulations is shown
along with (in brackets underneath) the 25th and 75th percentiles 100

5.7 The influence of λ on the data assimilation results (p = 1.0, Np = 1000).
In each table cell the median error over the 10 simulations is shown along
with (in brackets underneath) the 25th and 75th percentiles 100

xiii

LIST OF TABLES

5.8 The data assimilation results when sampled trajectories are available (p =
0.9, λ = 1/300 s−1, Np = 1000). In each table cell the median error over
the 10 simulations is shown along with (in brackets underneath) the 25th

and 75th percentiles . 101
5.9 Data assimilation results when accurate vehicle accumulations are avail-

able. For all simulations we have p = 0.9, λ = 1/300 s−1, Np = 1000
(i.e. 1000 particles). In each table cell the median error over the 10 sim-
ulations is shown along with (in brackets underneath) the 25th and 75th

percentiles . 102
5.10 The influence of the sampling rate of the travel time observations. For

all simulations we have p = 0.9, λ = 1/300 s−1, Np = 1000 (i.e. 1000
particles). In each table cell the median error over the 10 simulations is
shown along with (in brackets underneath) the 25th and 75th percentiles . 102

5.11 The models used to assimilate the data generated by the IDM (a =
1.0 m/s2, b = 1.5 m/s2, s0 = 2.0 m, T = 1.0 s, v0 = 15.0 m/s) . . . 103

5.12 The influence of model errors on the data assimilation results (p = 0.9, λ =
1/300 s−1, Np = 1000). In each table cell the median error over the 10
simulations is shown along with (in brackets underneath) the 25th and
75th percentiles . 103

5.13 The influence of Np on the data assimilation results (p = 0.9, λ =
1/300 s−1). In each table cell the median error over the 10 simulations is
shown along with (in brackets underneath) the 25th and 75th percentiles . 105

6.1 Comparison of the case studies . 113

xiv

List of Figures

FIGURE Page

1.1 A general dynamic data driven simulation 3
1.2 Brief organization of the thesis . 5

2.1 Basic entities in modeling and simulation and their relationships 8
2.2 System classification according to the representation of time base/state

variables . 10
2.3 The object-oriented implementation of the event scheduling world view

(Jacobs et al., 2002) . 12
2.4 DEVS trajectories . 13
2.5 The modeled state trajectory and the real state trajectory in discrete event

simulations (ta(s) is the time advance of state s; state updates captured in
the discrete event simulation (red circles) can be different from those in the
real state trajectory; since we focus on the effect of ignoring the elapsed
time when retrieving the model state, we do not show the difference in
states explicitly in the figure) . 19

2.6 Time representation in the discrete time state process, the measurement
process, and the discrete event state process (in the state processes, each
black dot indicates a state update, while in the measurement process, each
black dot represents an arrival of a measurement) 20

2.7 Detailed organization of the thesis . 23

3.1 The modeled state trajectory and the real state trajectory in discrete event
simulations (ta(s) is the time advance of state s; state updates captured in
the discrete event simulation (red circles) can be different from those in the
real state trajectory; since we focus on the effect of ignoring the elapsed
time when retrieving the model state, we do not show the difference in
states explicitly in the figure) . 26

3.2 The integer indexed state process (each red circle represents a state point
xk̃ = (sk̃, tk̃)) . 29

3.3 Time representation of the discrete event state process (each black dot
indicates a state update) and the (discrete time) measurement process (each
black dot represents an arrival of a measurement) 30

3.4 The state points generation process . 34

xv

LIST OF FIGURES

3.5 The gold mine system . 36
3.6 The DEVS model of the gold mine system 37
3.7 Triangular distribution with varying mode 38
3.8 The state trajectory of the elevator in terms of position 41
3.9 The phase transition graph . 47
3.10 A general view of the estimation results of truck arrivals at the bottom

of the vertical shaft with and without assimilating noisy data (each red
triangle represents a truck arrival in ground truth) 49

3.11 Histogram of estimated truck arrival times at the bottom of the vertical
shaft during one step [(k − 1)∆T, k∆T], where ∆T = 30 min (each red
triangle represents a truck arrival in ground truth) 50

3.12 The estimated dimension of the state trajectory x0:N+
k

at time step k = 16

(the corresponding ground truth value is 157) 51
3.13 Fitting a kernel probability distribution using the Normal kernel to the

truck arrival times in one cluster (this group of data belongs to the cluster
at the right side in Figure 3.11b; the red triangle represents a truck arrival
in ground truth) . 52

3.14 Format of the ground truth data and estimated data 53
3.15 The estimated dimension of the state trajectory 54
3.16 The match criterion 100%× Pci(ti, ε)/Pci(t∗ci , ε) (each red triangle rep-

resents a truck arrival in ground truth) 55
3.17 The influence of interpolation on the data assimilation results (noisy dataset

(σe = 3.0, σt = 3.0); Np = 2000; 10 independent runs) 57

4.1 The main idea of the data assimilation framework for vehicle trajectory
reconstruction . 70

4.2 Illustration of full vehicle trajectory reconstruction (the duration between
two consecutive time steps is ∆T) . 78

4.3 Vehicle accumulation estimation using the correction mechanism 79
4.4 A road stretch with two signalized intersections 84
4.5 Evaluation of vehicle trajectory reconstruction 86
4.6 The vehicle accumulation estimation results for the roadstretch between

sensors A and B using the correction method (the left plot shows the
estimated vehicle accumulation, while the right plot depicts the histogram
of the estimation errors) . 88

4.7 Number of vehicle passages per cycle 89
4.8 The estimated flow q and density k on roadstretch AB 89
4.9 Vehicle trajectories in the 13-th cycle . 90
4.10 The histogram of translation error Ettr, distortion error Evtr, and overall

error Et,vtr = (Ettr + Evtr)/2 (123 pairs of trajectories in total; the width
of each bin is 1.0%) . 90

4.11 The trajectories whose translation/distortion error is larger than 15% . . . 91

xvi

LIST OF FIGURES

4.12 Time differences and speed differences of a pair of trajectories (the plot
in the left shows the pair of trajectories, the plot in the middle depicts the
time series of 100%× |t(x)− t̂(x)|/TT , and the plot in the right depicts
the time series of 100% × |v(x) − v̂(x)|/v̄; for this pair of trajectories,
Ettr = 5.97%, Evtr = 31.16%) . 92

5.1 The influence of Np on the data assimilation results (states are retrieved
through interpolation; σe = 3.0, σt = 3.0); the performance indicators are
relative to those at Np = 2000 . 99

5.2 The sampled trajectories . 101
5.3 The position and speed time-series of approaching a traffic light (model

parameters are given in Table 5.11). The initial speed and the initial
position are both zero; the position of the traffic light is 500 m, and it
switches to red at time t = 30 s, and then lasts for 60 seconds 104

5.4 The influence of Np on the data assimilation results (p = 0.9, λ =
1/300 s−1); the bottom plot shows error measures relative to those at
Np = 1000 . 106

A.1 The computation steps in a generic particle filter 118
A.2 Key components in a particle filter based data assimilation system (Xue,

2014) . 119
A.3 Key interfaces/classes in the conceptual framework 120
A.4 The particle and its weight . 121
A.5 The Observation class . 121
A.6 The sampling, resampling, and weight updating strategy 122
A.7 The interfaces that the simulation model should implement 123
A.8 Get state from an atomic model component in a discrete event simulation 124
A.9 The AbstractDataAssimilator class 125
A.10 The basic entities in the Modeling & Simulation (M&S) framework imple-

mented in DSOL . 128
A.11 Discrete event simulations in DSOL; the left figure is from Jacobs et al.

(2002) . 129
A.12 The DataAssimilationDEVSSimulator class 129

xvii

1

C
H

A
P

T
E

R

Introduction

In this chapter, the motivation for this research is introduced by presenting the research
gap. To fill the research gap, the research objective and corresponding research ques-
tions are proposed. Subsequently, the research philosophy and research instruments

are selected based on the characteristics of this research. Finally, the organization of this
thesis is presented.

1.1 Research motivation
Modeling & Simulation are a method of choice for studying and predicting dynamic
behavior of complex systems. In the application of simulation, the real system is first
abstracted by a conceptual model, which is then translated into a (computer-executable)
simulation model (Banks, 1998). The simulation model needs to be verified (whether
the computer implementation of the conceptual model is correct) and validated (whether
the conceptual model can replace the real system for the purposes of experimentation)
iteratively until the simulation model can represent the real system accurately, in the sense
that the discrepancy between the simulation output and the relevant system measurements is
within pre-specified acceptance criteria (Banks, 1998; Sargent, 2011). During this iterative
model construction process, data is used off-line, e.g., for model calibration (adjusting
model parameters) (Kesting and Treiber, 2008; Ciuffo et al., 2012), or for automated model
generation (Huang, 2013). Once the simulation model is verified and validated, we can
experiment with the simulation model to predict the behavior of the real system, while the
data itself is not used in the simulation process. However, models inevitably contain errors,
which arise from many sources in the modeling process, such as inadequate sampling of
the real system when constructing the behavior database for the source system (Zeigler
et al., 2000), or conceptual abstraction in the modeling process (Lahoz et al., 2010). Due to
these inevitable errors, even elaborate complex models of systems cannot model the reality

1

CHAPTER 1. INTRODUCTION

perfectly, and consequently, results produced by these imperfect simulation models will
diverge from or fail to predict the real behavior of those systems (Darema, 2004, 2005).

With the advancement of measurement infrastructures, such as sensors, data storage
technologies, and remote data access, the availability of data, whether real-time on-line or
archival, has greatly increased (Darema, 2004, 2005). This allows for a new paradigm –
dynamic data driven simulations, in which the simulation is continuously influenced by
fresh data sampled from the real system (Hu, 2011). Figure 1.1 shows a general dynamic
data driven simulation, which consists of 1) a simulation model, describing the dynamic
behavior of the real system; 2) a data acquisition component, which essentially consists
of sensors that collect data from the real system; and 3) a data assimilation component,
which carries out state estimations based on information from both measurements and the
simulation. The dynamic data driven simulation integrates computational (i.e. behavior
predicted by the simulation model) and measurement (i.e. real-time data from the real
system collected by sensors) aspects of a system. This can lead to more accurate simulation
results (i.e. the estimated model state is closer to the real system state) than using a single
source of information from either the simulation model or the measurements. Integrating
data from the real system also helps the simulation to prune unrealistic states, since actual
system data naturally contains correlation information which is easily lost in the modeling
process (e.g., by falsely assuming that state variables are independently distributed). Such
an integration is achieved by an analysis technique, data assimilation, which incorporates
measured observations into a dynamical system model in order to produce a time sequence
of estimated system states (Bouttier and Courtier, 1999; Nichols, 2003). By assimilating
actual data, the simulation can dynamically update its current state to be closer to the
real system state, which facilitates real-time applications of simulation models, such as
real-time control and analysis, real-time decision making, and understanding the current
state of the real system. Besides, if the model state is extended to include model parameters,
on-line model parameter calibration can be achieved together with the state estimation
(Bai et al., 2011). With more accurate model state and model parameters adjusted by
assimilating real-time data, we can experiment (off-line) on the simulation model with
the adjusted state and parameters, which will lead to more accurate results for follow-on
simulations. In reverse, the information from data assimilation can also be fed back to the
data acquisition component to guide the measurement process, for example, to optimize
the sensor deployment (Heaney et al., 2007; Xue and Hu, 2012; Kouichi et al., 2016).

The data driven idea shown in Figure 1.1 has been applied in many (continuous
systems) applications, such as weather forecasting (Huang et al., 2009), chemical data
assimilation (Constantinescu et al., 2007), and ocean data assimilation (Carton and Giese,
2008). In these applications, the system state is a (high dimensional) vector consisting
of continuous variables (taking values from R), and its evolution is commonly modeled
as a discrete time state space model. However, very little data assimilation research has
been found for discrete event simulations, in which the state is defined as a combination of
continuous/discrete variables, and its updates are triggered by events (happening irregularly
on a continuous time axis). The discrete event approach is a natural modeling method for a
big proportion of systems in reality, such as manufacturing processes, and urban traffic
systems (modeling signal control logic, vehicle arrivals, etc.). With the application of new
sensor technologies and communication solutions (e.g., smart sensors, Internet of Things
(Atzori et al., 2010)), collecting data in these discrete event systems has become a simple

2

1.2. RESEARCH OBJECTIVES AND QUESTIONS

simulation model

data acquisition

data assimilation

modeled

monitored

measurements

state

estimate state, parameters, etc.

 guide

measurement

model

predicted measurements
real system

Figure 1.1: A general dynamic data driven simulation

exercise (Lee et al., 2013), and the data availability has greatly increased as well, such as
data from machines and processes (Lee et al., 2013), or high-resolution event data in traffic
systems (Liu et al., 2009; Wu and Liu, 2014).

The increased data availability for discrete event systems but the lack of related data
assimilation research thus motivates this work on data assimilation in discrete event
simulations. The outcome of this research will make incorporating real-time data into
discrete event simulations possible, which will lead to more accurate state estimation in
these systems for better analysis and control. Examples could be estimating job arrivals
for optimizing the production line in manufacturing processes, estimating queues behind
traffic lights on urban arterials for better traffic management (Marinică et al., 2013), etc.

1.2 Research objectives and questions

To fill the research gap, we conduct this research which aims to develop a data assimilation
framework for discrete event simulations. To achieve this goal, the following two research
questions (RQ) are addressed:

• RQ 1: What existing or adapted data assimilation technique is suitable for discrete
event simulations in order to obtain accurate data assimilation results?

In literature, many data assimilation techniques exist (they will be reviewed in
chapter 2). Can any of them (probably with certain adaptations) be applied in
discrete event simulations in order to obtain accurate data assimilation results? If
not, why not? If yes, what are the challenges to apply these methods in discrete
event simulations, and based on the (adapted) methods, how to design a systematic
approach (i.e., a data assimilation framework) which can address these challenges?
The accuracy of the data assimilation results is evaluated in terms of the error
between the estimated value and the ground-truth value of the variable of interest.

3

CHAPTER 1. INTRODUCTION

• RQ 2: How do the parameters of key components in the data assimilation framework
affect the data assimilation results?

At least three key components are involved in a data assimilation framework, i.e.
the (erroneous) model, the (noisy) data, and the data assimilation technique. The
parameters of these components are those that describe their key features. For
example, in the urban traffic case which is studied in chapter 4, noisy vehicle passage
data containing miss-counts and over-counts is assimilated into a microscopic traffic
simulation model (focusing on car-following behavior (Treiber and Kesting, 2013))
using particle filters (Arulampalam et al., 2002; Djurić et al., 2003; van Leeuwen,
2009). The parameters are the detection accuracy (quantifying miss-counts), the
occurrence rate of over-counts, which characterize the noisy data, the difference
between car-following models (i.e., the car-following model generating the ground-
truth data and the car-following models used in the case study) which characterizes
the model errors, the number of particles which characterizes the data assimilation
technique, etc. This research question aims to analyze the sensitivity of the data
assimilation results to the parameters of these components in the data assimilation
framework.

1.3 Research philosophy and instruments

A research philosophy refers to the set of beliefs concerning the nature of the reality
being investigated (Bryman, 2015). It is fundamental since it determines the selection
of proper approaches and instruments in the research process (Saunders et al., 2009). In
literature, positivism and interpretivism are the two main (and often seen as opposing)
research philosophies (Weber, 2004). Positivism assumes that all knowledge about reality
is objectively given and the observer is capable of studying it without influencing it, while
interpretivism believes that all knowledge about reality is constructed and depends on
human perception and experience. This research aims to develop a data assimilation
framework for discrete event simulations, therefore positivism is the main philosophical
view to follow during the research process.

Based on the positivist philosophical view, we choose a deductive research approach
(Kothari, 2004), in which the general data assimilation technique is adapted to and applied
in (specific) discrete event simulations. In this research, we use computer simulations to
generate data to test and validate the proposed data assimilation framework, therefore our
research is highly quantitative.

Given the chosen research philosophy and research approach, the research instruments
are employed accordingly. First, a systematic knowledge on modeling and simulation
(with a focus on discrete event simulations), and data assimilation needs to be obtained
through literature review. Based on this knowledge, the research gap can be clarified, and
adaptations to the chosen existing data assimilation techniques can be made to fill this gap
by proposing a data assimilation framework for discrete event simulations. Second, case
studies are used to provide concrete cases on which controlled experiments are conducted
to test and validate the proposed data assimilation framework. Finally, when implementing
the data assimilation framework, design science and software engineering techniques are
adopted.

4

1.4. ORGANIZATION OF THE THESIS

1.4 Organization of the thesis
This thesis consists of six chapters. Since the detailed description of these chapters requires
concepts that will be introduced in chapter 2, we only briefly depict the organization of the
thesis (see Figure 1.2). After we elaborate on the main concepts and clarify the research
gap in chapter 2, a more detailed organization of this thesis will be presented. Chapters 3
and 4 present a data assimilation framework for discrete event simulation, which answers
research question 1. Chapter 5 conducts an extensive sensitivity analysis to explore how
the data assimilation results are affected by the parameters of the key components in the
proposed data assimilation framework, which answers research question 2. Finally, the
thesis is concluded in chapter 6, in which the research questions and corresponding answers
are summarized, and future research directions are suggested.

chapter 1

introduction

chapter 2

background and

related work

chapters 3 & 4

answer research

question 1

chapter 5

answer research

question 2

chapter 6

conclusions and

future research

Figure 1.2: Brief organization of the thesis

5

2

C
H

A
P

T
E

R

Background and related work

In chapter 1, the research motivation, research objective, and research questions were
presented. In this chapter, basic background knowledge, such as modeling and sim-
ulation, and data assimilation techniques, are introduced. Based on the characteristics

of discrete event simulation and data assimilation techniques, the potentially applicable
data assimilation technique for discrete event simulations is chosen, and corresponding
challenges are analyzed. Finally, a detailed organization of this thesis is presented.

2.1 Modeling and simulation
As stated by Shannon (1975), modeling and simulation is the process of designing a model
of a real system and conducting experiments with this model for the purpose either of
understanding the behavior of the system or of evaluating various strategies (within the
limits imposed by a criterion or set of criteria) for the operation of the system. This process
thus involves several basic entities: a real system, its model, the execution of the model,
and purposes & conditions of conducting experiments on the model. These entities and
their relationships are defined by the modeling and simulation framework. Understanding
these concepts will help everyone involved in a simulation modeling project—analysts,
programmers, managers, and users—to better carry out their tasks and communicate
with each other. Based on this framework, the basic issues and problems encountered
in performing M&S activities can be better understood and coherent solutions can be
developed (Zeigler et al., 2000).

2.1.1 Framework for modeling and simulation
The modeling and simulation (M&S) framework defines entities and their relationships
that are central to the M&S enterprise (Zeigler et al., 2000). As illustrated in Figure 2.1,

7

CHAPTER 2. BACKGROUND AND RELATED WORK

Model

SimulatorSource

System

Simulation Relation

Experimental Frame

Modeling Relation

Figure 2.1: Basic entities in modeling and simulation and their relationships

the basic entities of the M&S framework are (Zeigler et al., 2000):

• source system, which is the real or virtual environment that we are interested in for
modeling. The source system is viewed as a source of observable data, in the form
of time-indexed trajectories of variables.

• experimental frame, which specifies the conditions under which the system is ob-
served or experimented with.

• model, which is a set of instructions, rules, equations, or constraints for generating
I/O behavior.

• simulator, which is a computation system capable of executing a model to generate
its behavior.

The entities – system, experimental frame, model, simulator – become truly significant
only when properly related to each other (Zeigler et al., 2000). The two most fundamental
are the modeling and simulation relations. The modeling relation is concerned with
how well model generated behavior agrees with the observed system behavior, while the
simulation relation is concerned with ensuring that the simulator carries out the model
instructions correctly.

A system can be formally defined (i.e., modeled) as a 7-tuple (Ören and Zeigler, 2012):

S =< T,X,Ω, Q, δ, Y, λ > (2.1)

where

• T ⊂ R+
0,∞ is the time base, where R+

0,∞ is the positive reals with 0 and∞;

• X is the input set;

• Ω = {ω : T → X} is the input segment set or function;

• Q is the state set;

8

2.1. MODELING AND SIMULATION

• δ : Ω×Q→ Q is the transition function;

• Y is the output set;

• λ : Q→ Y is the output function.

The time base can be continuous, where time evolves continuously (time is represented
by a real number), or discrete, where time evolves by advancing in discrete portions (time
is represented by an integer number). Similarly, values of the state variables can also be
continuous, where the variables take values from a continuous set represented as a real
number, or discrete, where the variables are discrete and can be represented as a finite
set of integer numbers. According to how the state variables and time are represented, a
system can be categorized into four classes (Wainer, 2009), as shown in Figure 2.2:

• continuous variable dynamic systems: both the state variables and time are continu-
ous, as shown in Figure 2.2(a).

• discrete time dynamic systems: the state variables are continuous, but time is discrete,
as shown in Figure 2.2(b).

• discrete event dynamic systems: the state variables are discrete, but time is continu-
ous, as shown in Figure 2.2(c).

• discrete dynamic systems: both the state variables and time are discrete, as shown in
Figure 2.2(d). These kind of systems are a specialization of discrete event dynamic
systems in which events occur at a limited set of times.

According to the same classification criteria, three basic system specification for-
malisms exist that are suitable to model a particular system: Differential Equation System
Specification (DESS), Discrete Time System Specification (DTSS), and Discrete Event Sys-
tem Specification (DEVS). These three basic formalisms are introduced briefly in section
2.1.2. Since this thesis focuses on data assimilation in discrete event simulations, we use
two separate sections, sections 2.1.3 and 2.1.4, to introduce discrete event simulations in
detail.

2.1.2 Basic modeling formalisms
Modeling is not done by writing a dynamic system structure itself, but indirectly, by using
a system specification formalism (Zeigler et al., 2000). A system specification formalism
is a shorthand means of specifying a system, which implicitly sets constraints on the
elements of the dynamic system (Zeigler et al., 2000). A system specification formalism
usually allows for the description of system behavior at two levels, the basic level and the
coupled level. Basic system specification formalisms allow for a local description of the
dynamic behavior of the system, while coupled system specifications emphasize how to
create networks built from components (Zeigler et al., 2000). There are three basic system
specification formalisms:

• Discrete Time System Specification (DTSS). This formalism represents systems over
a discrete time base. It assumes a stepwise mode of execution (Zeigler et al., 2000).

9

CHAPTER 2. BACKGROUND AND RELATED WORK

(d) Discrete Dynamic Systems

state

time

(a) Continuous Variable Dynamic System

state

time
(b) Discrete Time Dynamic System

state

time

(c) Discrete Event Dynamic Systems

state

time
0s

1s

2s

3s

0s

1s

2s

3s

Figure 2.2: System classification according to the representation of time base/state variables

At a particular time instant the model is in a particular state and it defines how this
state changes. If the state at time k is q(k), and the input at time k is x(k), the state
at time k + 1 is q(k + 1) = δ(q(k), x(k)), where δ is the state transition function.
Difference equations are an example of DTSS.

• Differential Equation System Specification (DESS). This formalism represents sys-
tems with continuous state over a continuous time base. It does not specify a next
state directly through a state transition function, but specifies the rate of change of
the state variables qi, i = 1, . . . , n through a derivative function f . This means that
at any particular instant, given a state q and an input value x, we know the rate of
change of the state, i.e., dqidt = f(q1(t), q2(t), . . . , qn(t), x(t)), i = 1, . . . , n, and
can thus compute the state at any instant in the future using integration methods.
Differential equations are an example of DESS.

• Discrete Event System Specification (DEVS). This formalism represents systems
as piecewise constant state trajectories over a continuous time base. The state
trajectories are produced by state transition functions δint and δext that are activated
by internal or external events. This formalism is presented in detail in section 2.1.4.

2.1.3 Discrete event simulations and world views
Discrete event systems are usually man-made dynamic systems, for example, production
or assembly lines, computer/communication networks, or traffic systems. These systems
are not easily described by (partial) differential equations or difference equations, instead

10

2.1. MODELING AND SIMULATION

they are modeled and simulated by the discrete event approach (Ho, 1989). This approach
abstracts the physical time and the state of the physical system as a continuous simulation
time and a collection of state variables, respectively. A point on this continuous time axis at
which at least one state variable changes is called instant (Nance, 1981). State changes are
only captured at discrete, but possibly random, instants (Schriber et al., 2012), where such
a change in state occurring at an instant is called an event (Nance, 1981). Since the discrete
event approach jumps from one event to the next, omitting the behavior in between, it can
be very efficient.

A simulation modeling world view precisely defines the dynamic state transitions that
occur over time (Pegden, 2010). There are three main types of world views employed in
discrete event simulations – event scheduling, activity scanning, and process interaction
(Zeigler et al., 2000), which provides different types of locality (Overstreet and Nance,
2004) that is defined by Weinberg as “that property when all relevant parts of a program
are found in the same place” (Weinberg, 1971). The event scheduling world view provides
locality of time; the focus of the model is on events (Fujimoto, 2000), and each event
processing procedure describes actions that should occur in one instant (Overstreet and
Nance, 2004). The activity scanning world view, which provides locality of state, describes
the actions of objects comprising the model that should occur due to the model assuming a
particular state (i.e., due to a particular condition becoming true) (Nance, 1981; Overstreet
and Nance, 2004). The process interaction world view provides locality of object, in
which each process encapsulates the behavioral description of a particular model object
(Overstreet and Nance, 2004), and each process advances in a somewhat autonomous
fashion through simulation time and interacts with other processes by competing for shared
resources (Fujimoto, 2000).

To develop discrete event simulations in general purpose programming languages, the
event scheduling strategy is favored by many because it is very flexible (Pegden, 2010),
relatively simple to implement (Seck and Verbraeck, 2009), and can be used to efficiently
model a wide range of complex systems (Pegden, 2010). However, simulations based on
the event scheduling world view are difficult to understand, debug, and maintain, because
the behavioral description for a single model object is scattered across the entire program
in the different event procedures (Fujimoto, 2000). An object-oriented implementation
of the event scheduling world view tackles these problems. As shown in Figure 2.3,
object orientation views physical systems as collections of objects that interact in some
fashion (Joines and Roberts, 1999), but the interaction is achieved not by a direct method
invocation, but by scheduling them via constructing a simulation event (Jacobs et al., 2002).
The object-oriented implementation of the event scheduling world view not only makes
running a simulation model very simple by only executing ordered simulation events, but
also greatly improves the modularity and maintainability of the simulation program.

2.1.4 Discrete Event System Specification (DEVS)

There are a variety of discrete event modeling formalisms, such as the Max-Plus Algebra
(De Schutter and Van den Boom, 2008), Petri Nets (DiCesare et al., 1994), and Discrete
Event System Specification (DEVS) (Zeigler et al., 2000). Among these formalisms,
DEVS is the most widely used formalism in the simulation community, and it is also the
common denominator of other discrete event modeling formalisms (Vangheluwe, 2000),

11

CHAPTER 2. BACKGROUND AND RELATED WORK

discrete event model

simulator

future event list

loop

object 1

object 2

object 3

control events

 -start/stop, etc. 1

2

3

1. schedule event

2. retrieve event & remove

 from future event list

3. execute event

experimental

frame

source

system

modeling relation

simulation

relation

Figure 2.3: The object-oriented implementation of the event scheduling world view (Jacobs
et al., 2002)

which means that models in other discrete event modeling formalisms can be mapped to
DEVS models. Given its importance, we introduce the DEVS formalism in more detail in
this section.

Discrete Event System Specification (DEVS) is a formalism that was developed by
Zeigler as a general methodology for describing discrete event systems (Zeigler et al.,
2000). The formalism is based on general system theory, and it allows us to represent
all the systems whose input/output behavior can be described by sequences of events.
DEVS allows for the description of system behavior at two levels: the atomic level and the
coupled level. An atomic DEVS model describes the autonomous behavior of a discrete
event system as a sequence of deterministic transitions between sequential states over time,
as well as how it reacts to external input (events) and how it generates output (events).
Formally, an atomic DEVS model M is defined by the following structure:

M =< X,Y, S, δint, δext, λ, ta >

where

• X and Y are the sets of input and output events

• S is a set of sequential states

• δint : S → S is the internal state transition function

• δext : Q×X → S is the external state transition function, where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set

e is the time elapsed since the last transition

• λ : S → Y is the output function

12

2.1. MODELING AND SIMULATION

• ta : S → R+
0,∞ is the time advance function, where R+

0,∞ is the positive reals with
0 and∞

Functions ta, δint, λ define the autonomous behavior of an atomic DEVS model when
no external events occur (Zeigler et al., 2000). At any time, the system is in some state,
s ∈ S. Each possible state s has an associated time advance calculated by the time advance
function ta(s), which indicates that the system will stay in state s for ta(s) units of time, if
no external event occurs. When the calculated time advance expires, i.e., when the elapsed
time e = ta(s), the system outputs the value, λ(s), and changes to a new state δint(s).

If an external event x ∈ X occurs before this time advance, i.e., when the system is in
total state (s, e) with e ≤ ta(s), the system changes to a new state δext(s, e, x) (Zeigler
et al., 2000). Thus, the internal transition function dictates the system’s new state when
no events occur since the last transition; while the external transition function dictates the
system’s new state when an external event occurs – this state is determined by the input, x,
the current state, s, and how long the system has been in this state, e. In both cases, the
system is then in some new state s′ with some new time advance, ta(s′), and the same
story continues. Figure 2.4 shows how a discrete event model evolves over time.

x

s

y

e
t

tt

t

input event sequence output event sequence

input output

Figure 2.4: DEVS trajectories

Atomic models can be coupled to form a lager model. A coupled DEVS model N is
defined by the structure:

N =< X,Y,D, {Mi}, {Ii}, {Zi,j}, Select >

where

• X and Y are the sets of input and output events of the coupled model

• D is a set of component names, and for each i ∈ D, Mi is an atomic DEVS model
defined as

Mi =< Xi, Yi, Si, δint,i, δext,i, λi, tai >,∀i ∈ D

• for each i ∈ D∪{N}, Ii is the set of components which are influenced by component
i, and Ii ⊆ D ∪ {N}, i /∈ Ii

• for each j ∈ Ii, Zi,j is the output-to-input translation function, where

Zi,j :

X → Xj if i = N and j ∈ D
Yi → Y if i ∈ D and j = N

Yi → Xj if i ∈ D and j ∈ D

13

CHAPTER 2. BACKGROUND AND RELATED WORK

• Select : 2D → D is a tie-breaking function with Select(E) ∈ E to arbitrate the
occurrence of simultaneous events. In other words, when multiple (atomic) models
have to change their state at the same time, Select determines the order in which
the (atomic) models are allowed to update their state one by one.

DEVS models are closed under coupling, i.e., the coupling of DEVS models defines
an equivalent atomic DEVS model (Vangheluwe, 2001).

2.2 Data assimilation techniques
The aim of data assimilation is to incorporate measured (noisy) observations into a dynam-
ical system model in order to produce accurate estimates of all the current (and future)
state variables of the system (Nichols, 2003). Therefore, data assimilation relies on the
following elements to work (Ide et al., 1997; Bouttier and Courtier, 1999):

• system model, describing the evolution of the state over time, which is usually
defined in a discrete time state space form:

sk = fk(sk−1) + νk−1, k = 1, 2, . . . , (2.2)

in which fk is a (possibly nonlinear) function of the state vector sk−1, and νk−1

represents a system noise process.

• measurement model, relating noisy observations to the state, which is also defined
as a discrete time equation:

mk = gk(sk) + εk, k = 1, 2, . . . , (2.3)

in which gk is a (possibly nonlinear) function that maps the state to the measurements,
and εk represents a measurement noise process.

• data assimilation techniques, that carry out state estimation based on information
from both the model and the measurements, and in the process address measurement
and modeling errors.

There are two distinct classes of data assimilation techniques. One is the class of varia-
tional techniques, and the other is the class of sequential methods, which are introduced
in section 2.2.1 and section 2.2.2, respectively. Particle filtering belongs to the category
of sequential data assimilation techniques, but due to its importance, we introduce it in
section 2.2.3 separately.

2.2.1 Variational techniques
3-Dimensional Variational Analysis (3D-VAR) (Wu et al., 2002) and 4-Dimensional
Variational Analysis (4D-VAR) (Lorenc and Rawlins, 2005) are two typical variational
techniques in use. 3D-VAR minimizes the cost function J shown in equation (2.4) which
measures the misfit between sk and the background state sbk (commonly derived from a
short-range forecast), and also between sk and the observation mk. In equation 2.4, Q and

14

2.2. DATA ASSIMILATION TECHNIQUES

R are the covariance matrix of the system noise and the measurement noise, respectively.
The minimization of J is done with respect to sk, and the resultant sk is the estimated
system state (also called analysis).

J(sk) =
1

2
(sk − sbk)TQ−1(sk − sbk) +

1

2
(mk − gk(sk))TR−1(mk − gk(sk)) (2.4)

In 3D-VAR, all observations in the time-window (i.e. measurement interval) are treated
as if they occurred at the same time (Lorenc and Rawlins, 2005). This introduces some
error because real systems are evolving over time. 4D-VAR addresses this problem by
introducing the time dimension into assimilation (Lahoz and Schneider, 2014). In 4D-
VAR, the observation operators are generalized to include a forecast model that will allow
a comparison between the model states and the observations distributed over the time
window (Bouttier and Courtier, 1999).

2.2.2 Sequential methods
In this thesis, we are interested in sequential data assimilation techniques, which assimilate
data sequentially over time and whose main objective is to correct the estimated state at
every time an observation becomes available (Arulampalam et al., 2002; Pelc, 2013). The
sequential data assimilation techniques consist of two steps:

• prediction step
sfk = fk(sak−1) (2.5)

• update step
sak = sfk + Kk(mk − gk(sfk)) (2.6)

where superscript (·)f and superscript (·)a mean forecast (a priori estimate) and analysis
(a posteriori estimate), respectively. Kk is a gain matrix which is chosen to minimize
the analysis error covariance matrix Pak = (stk − sak)(stk − sak)T , where superscript (·)t
represents the true value (i.e. ground truth). If fk and gk are linear, and νk−1 and εk are
stationary zero-mean white noise (Arulampalam et al., 2002), the forecast error covariance
matrix Pfk = (stk − s

f
k)(stk − s

f
k)T and the analysis error covariance matrix Pak can be

accurately calculated. This yields the optimal filter, also known as the Kalman filter (KF).
However, in many situations of interest, the linear assumption does not hold, which poses
great difficulties on the computation of error covariance matrices Pfk and Pak, therefore
many approximation methods are proposed to tackle these difficulties. The extended
Kalman filter (EKF) linearizes the nonlinear system model locally around sfk to ease the
computation of Pfk and Pak (Gillijns et al., 2006). Although EKF is effective in many
practical cases, the method fails to account for the fully nonlinear dynamics in propagating
the error covariance, which, in turn, fails to represent the error probability density (Gillijns
et al., 2006). Another approach that tackles nonlinearity very well is the ensemble Kalman
filter (EnKF) (Evensen, 2003). In EnKF, the error covariance matrices are approximated
by using an ensemble of model states. Theoretically, full error statistics can be exactly
represented by an infinite ensemble of model states (Evensen, 2003). EnKF does not
involve an approximation of the nonlinearity of fk and gk. The computational burden of
evaluating the Jacobians is hence absent (Gillijns et al., 2006).

15

CHAPTER 2. BACKGROUND AND RELATED WORK

Notice that these aforementioned sequential data assimilation techniques require the
errors to be Gaussian. Another powerful sequential data assimilation technique, particle
filters, does not impose any restrictions on the model and the data, and due to its importance,
we explain its principle in section 2.2.3 separately.

2.2.3 Particle filters
Given the system model and the measurement model described in equation 2.2 and
equation 2.3, the objective is to estimate the conditional distribution of all states up
to time k given all available measurements, i.e., p(s0:k|m1:k), where s0:k = {si, i =
0, 1, . . . , k},m1:k = {mi, i = 1, 2, . . . , k}. Since the analytic solution of p(s0:k|m1:k) is
usually intractable, we use a sufficient large set of Monte Carlo samples (particles) from
p(s0:k|m1:k) with their associated weights to approximate this posterior distribution. When
the number of samples becomes very large, this Monte Carlo characterization becomes an
equivalent representation of the usual functional description of the posterior distribution.
That is the basic idea behind the particle filters (Arulampalam et al., 2002; Djurić et al.,
2003; van Leeuwen, 2009). Based on the samples, estimates can be obtained by standard
Monte Carlo integration techniques.

Let χk = {si0:k, w
i
k}
Np
i=1 represent a random measure that characterizes the posterior

distribution p(s0:k|m1:k), where {si0:k}
Np
i=1 is a set of support points, and {wik}

Np
i=1 is the

set of their weights, then p(s0:k|m1:k) can be approximated as

p(s0:k|m1:k) ≈
Np∑
i=1

wikδ(s0:k − si0:k) (2.7)

where δ(·) is the Dirac delta function. The weights are computed using the principle
of importance sampling, i.e., if the samples si0:k are drawn from an importance density
q(s0:k|m1:k), then the weights in equation 2.7 are defined by

wik ∝
p(si0:k|m1:k)

q(si0:k|m1:k)

Based on Bayes’ theorem, p(s0:k|m1:k) can be expressed as

p(s0:k|m1:k) =
p(s0:k)p(m1:k|s0:k)

p(m1:k)

Similarly we have p(s0:k−1|m1:k−1) = p(s0:k−1)p(m1:k−1|s0:k−1)
p(m1:k−1) . Therefore we can obtain

a sequential update equation as

p(s0:k|m1:k) =
p(mk|sk)p(sk|sk−1)p(s0:k−1|m1:k−1)

p(mk|m1:k−1)

∝ p(mk|sk)p(sk|sk−1)p(s0:k−1|m1:k−1)

(2.8)

If the importance density is chosen to factorize such that

q(s0:k|m1:k) = q(sk|s0:k−1,m1:k)q(s0:k−1|m1:k−1),

16

2.3. DATA ASSIMILATION IN DISCRETE EVENT SIMULATIONS

then the random measure χk−1 = {si0:k−1, w
i
k−1}

Np
i=1 can be updated in a sequential

manner when a new measurement mk is available:

• samples si0:k ∼ q(s0:k|m1:k) are obtained by augmenting samples from the previous
time step si0:k−1 ∼ q(s0:k−1|m1:k−1) with the new state sik ∼ q(sk|si0:k−1,m1:k);

• weights are updated by

wik ∝
p(si0:k|m1:k)

q(si0:k|m1:k)
=
p(mk|sik)p(sik|sik−1)p(si0:k−1|m1:k−1)

q(sik|si0:k−1,m1:k)q(si0:k−1|m1:k−1)

=
p(mk|sik)p(sik|sik−1)

q(sik|si0:k−1,m1:k)
wik−1

(2.9)

If we assume that q(sk|s0:k−1,m1:k) = q(sk|sk−1,mk), i.e., the importance density
is only dependent on sk−1 and mk, then we have

wik ∝
p(mk|sik)p(sik|sik−1)

q(sik|sik−1,mk)
wik−1 (2.10)

In practice, the system transition density is often chosen as the importance density, i.e.,
q(sk|sk−1,mk) = p(sk|sk−1). Then equation 2.10 is simplified to

wik ∝ p(mk|sik)wik−1 (2.11)

A major problem of particle filters is that the discrete random measure degenerates
quickly (Arulampalam et al., 2002; Djurić et al., 2003; van Leeuwen, 2009). In other
words, most particles except for a few are assigned negligible weights. The solution is to
resample the particles after they are updated. Different resampling algorithms and methods
exist to determine when resampling is necessary (Arulampalam et al., 2002; Djurić et al.,
2003; van Leeuwen, 2009; Douc et al., 2005). A simple and often adopted resampling
method is to replicate particles in proportion to their weights. It has been shown that a
sufficiently large number of particles are able to converge to the true posterior distribution
even in nonlinear, non-Gaussian dynamic systems (Arulampalam et al., 2002; Djurić et al.,
2003; van Leeuwen, 2009).

2.3 Data assimilation in discrete event simulations

2.3.1 Characteristics of discrete event simulations
As introduced in section 2.1.3 and section 2.1.4, the key characteristics of discrete event
simulations can be summarized as follows:

• The model state is defined as a collection of atomic model states, each of which is
represented by a combination of continuous and discrete variables. Take the case
study in the gold mine system (see chapter 3) as an example. The position of the
elevator is a continuous state variable; the number of trucks that are waiting for
loading is a discrete state variable, and the status of the miner, i.e. busy or idle, is
also a discrete state variable.

17

CHAPTER 2. BACKGROUND AND RELATED WORK

• The behavior of discrete event simulations is highly nonlinear, non-Gaussian. In
a discrete event simulation, the state evolution is usually based on rules, which
define what the next state will be when the time advance expires, how to react
when external events occur, etc. These functions are highly nonlinear step functions,
because state changes in a discrete event simulation happen instantaneously at the
event. The Gaussian error assumption is easily violated, since both state variables
and measurements can be non-numerical.

• The state updates in a discrete event simulation happen locally and asynchronously
within each atomic model component; for each atomic model component, its state is
updated at time instants lying irregularly on a continuous time axis, and the duration
between two consecutive state updates is usually not fixed. The state trajectory in a
discrete event simulation is thus piecewise constant as shown (in blue) in Figure 2.5,
which only captures changes of interest in the real state evolution.

• Many discrete event systems are open systems. In these systems (e.g., urban traffic
systems), entities can flow in and flow out through system boundaries, which leads
to a dynamic number of components in the system.

2.3.2 Data assimilation technique for nonlinear, non-Gaussian appli-
cations

The main sequential data assimilation techniques introduced in section 2.2 are compared
in Table 2.1. Though EKF and EnKF can deal with nonlinear models, they still rely
on Gaussian error assumptions. Since particle filters approximate a probability density
function by a set of particles and their associated importance weights, they put little or no
assumption on the properties of the system model, which thus are in principle applicable
to nonlinear and/or non-Gaussian applications (Bai et al., 2016).

Since discrete event simulations are highly nonlinear, non-Gaussian models, particle
filters are in principle applicable in discrete event simulations. However, applying particle
filtering in discrete event simulations still encounters several theoretical and practical
problems which will be explained in detail in section 2.3.4.

Table 2.1: Comparison of main sequential data assimilation techniques (Yuan, 2013)

Kalman filter (KF) extended Kalman filter (EKF) ensemble Kalman filter (EnKF) particle filter (PF)

system model Gaussian errors Gaussian errors Gaussian errors no restrictionslinear continuously differentiable

measurement model Gaussian errors Gaussian errors Gaussian errors no restrictionslinear continuously differentiable

2.3.3 Comments on data assimilation in DEVS-FIRE

The Systems Integrated Modeling and Simulation (SIMS) Lab1 in Georgia State University
has done extensive work on data assimilation in wildfire spread simulations (Gu and

1More information can be found at https://grid.cs.gsu.edu/~cscxlh/.

18

https://grid.cs.gsu.edu/~cscxlh/

2.3. DATA ASSIMILATION IN DISCRETE EVENT SIMULATIONS

state

time

s

lt ()n lt t ta s
f

transit to another

state at tn

transit to

s at tl

real trajectory (red): not

fully modeled in discrete

event simulations

modeled trajectory (blue):

piecewise constant

t

error in state value

(a direct consequence of

ignoring the elapsed time)

elapsed time

jjjjj()ta s

(a) Continuous state

state

time

s

lt ()n lt t ta s
f

transit to another

state at tn

transit to

s at tl

modeled trajectory (blue):

piecewise constant

t

elapsed time

jjjjj()ta s

real trajectory (red):

piecewise constant

(b) Discrete state

Figure 2.5: The modeled state trajectory and the real state trajectory in discrete event
simulations (ta(s) is the time advance of state s; state updates captured in the discrete
event simulation (red circles) can be different from those in the real state trajectory; since
we focus on the effect of ignoring the elapsed time when retrieving the model state, we do
not show the difference in states explicitly in the figure)

Hu, 2008; Gu et al., 2009; Gu, 2010; Hu, 2011; Xue et al., 2012). In their work, the
simulation model for wildfire spread is a cellular automaton based discrete event simulation
model called DEVS-FIRE (Ntaimo et al., 2008; Hu et al., 2012); the measurements are
temperature values from sensors deployed in the fire field; particle filters are employed to
assimilate these measurements into the DEVS-FIRE model to estimate the spread of the
fire front.

Since the measurement in the wildfire application is the temperature at a time instant,
and it is only related to the system state (fire front) at the same time, their system model
can be formalized as a discrete time state space model which only focuses on the state
evolution at time instants when measurements are available, and the detailed evolution in
between (not of interest in their application) is done with the DEVS-FIRE model. However,

19

CHAPTER 2. BACKGROUND AND RELATED WORK

when retrieving the system state at the time instant when a measurement is available, the
retrieved state is only a combination of sequential states of all atomic components (i.e.
cells), which do not reflect any elapsed time information. As a result, errors exist as
explained in Figure 2.5.

2.3.4 Challenges of applying particle filtering in discrete event simu-
lations

In most applications of particle filtering, the system model is usually formulated as a
standard discrete time state space model, and the system state is updated at the same pace
with the measurement process, as assumed in equation 2.2 and equation 2.3. However, in
discrete event simulations, state updates happen locally and asynchronously within each
(atomic) model component, and the system state takes a new value when one of its (atomic)
components has a state update. Consequently the time between two consecutive (system)
state updates is usually not fixed, i.e., the system state process is asynchronous with the
measurement process, which usually feeds data at fixed times (Bouttier and Courtier,
1999).

time representation of the

discrete event state process

time representation of the

measurement process
1 2 k-1 k

0 0t 1t 2t 1k
t
 k

t

T 2 T (1)k T k T

1 2 k-1 k

time representation of the

discrete time state process
0

integer

integer

continuous

Figure 2.6: Time representation in the discrete time state process, the measurement process,
and the discrete event state process (in the state processes, each black dot indicates a state
update, while in the measurement process, each black dot represents an arrival of a
measurement)

Figure 2.6 illustrates how the time is represented in the discrete time state process,
the measurement process, and the discrete event state process. In a discrete time (state or
measurement) process, the time is represented as a nonnegative integer k (see section 2.2),
while in a discrete event state process, the time is represented as a nonnegative real number.
In a discrete event state process, since the number of state updates during any time interval
is a bounded number (Zeigler et al., 2000), the time when the state updates happen can be
indexed by an integer k̃, i.e., tk̃ indicates the time instant when the model makes the k̃-th
state update.

The mismatch between the (discrete time) measurement process and the discrete event
state process results in two problems that hinder the application of particle filtering in
discrete event simulations.

• The state retrieved from a discrete event simulation model is a combination of
sequential states of atomic components that were updated at past time instants, with

20

2.4. OUTLOOK OF SUBSEQUENT CHAPTERS

which inaccurate estimation results will be obtained. If we directly retrieve the state
of an atomic model, the retrieved state is just a sequential state that does not contain
the elapsed time, as shown in Figure 2.5. In particle filter based data assimilation, the
likelihood of each particle is evaluated largely based on p(mk|sk) (see equation 2.9,
2.10 and 2.11), i.e., evaluating the state at time k based on the measurement at
the same time. Ignoring the elapsed time, p(mk|sk) will be computed wrongly as
p(mk|s) where s is a state updated at the last state transition (see Figure 2.5), and
consequently the particle will be assigned a wrong weight, therefore inaccurate
estimation results will be obtained. This effect is evident for continuous states (see
Figure 2.5(a)); for discrete states, in order to compute p(mk|sk), one probably needs
the elapsed time to define a proper measurement model that relates the discrete
state to the measurement. However, ignoring the elapsed time will also make this
definition and computation inaccurate.

• The dimension of the state trajectory during a fixed time interval is a random variable,
which makes the standard sequential importance sampling algorithm inapplicable.
Since the time between two consecutive state updates (at both the coupled level
and the atomic level) in discrete event simulations is usually a random variable,
the number of state points in a state trajectory during a fixed time interval is also
random.

For discrete event simulations of open systems (e.g., urban traffic systems), where
entities can flow in and flow out through the system boundaries, the variable dimension
problem arises in a different way. Entities flowing in and flowing out lead to a dynamic
(random) number of components in the system, and as a result, the system state has
a variable dimension (and thus the state trajectory has a variable dimension). Other
practical problems that mainly relate to data issues, such as non-numerical data, e.g., event
sequences, also make particle filtering in discrete event simulations highly problematic.

Given the existing research gap, a particle filter based data assimilation framework for
discrete event simulations (of both closed and open systems) needs to be developed, in
which the aforementioned challenges have to be dealt with. Other issues which closely
relate to the proposed framework, such as sensitivity analysis with respect to parameters of
the particle filtering method (e.g., the number of particles), and implementation for discrete
event simulation languages, need to be investigated as well.

2.4 Outlook of subsequent chapters

In this chapter, background knowledge for the research, such as modeling and simulation
(with a focus on discrete event simulations), and data assimilation techniques, were
introduced. Since discrete event simulations are highly nonlinear, non-Gaussian systems,
particle filters are in principle applicable to discrete event simulations. However, applying
particle filtering in discrete event simulations still encounters several theoretical and
practical problems, that thus asks for a particle filter based data assimilation framework for
discrete event simulations (of both closed and open systems), in which these theoretical
and practical problems can be addressed.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

As explained in section 2.3.4, the key challenges of applying particle filtering in
discrete event simulations are twofold. On the one hand, we need to obtain correct state
values when measurements are available; one the other hand, we need to come up with a
way to update the random measure that approximates the posterior distribution of the state
trajectory with a variable dimension, since the standard sequential importance sampling
algorithm cannot be applied due to the variable dimension problem. To deal with these
challenges, we present a particle filter based data assimilation framework in chapters 3 and
4, in which we address the state retrieval problem and the variable dimension problem.
Specifically, in chapter 3, we solve these problems for discrete event simulations of closed
systems (i.e., system entities do not change over time), while in chapter 4, we tackle
these problems for discrete event simulations of open systems. We employ case studies
to demonstrate the working of the proposed data assimilation framework. In chapter 3,
noisy data (event sequences, entity positions) is assimilated into a gold mine simulation
(of a closed goldmine system) in order to estimate the truck arrival times at the bottom of
the vertical shaft, while in chapter 4, noisy data (vehicle passages, traffic signal timings,
travel time observations) is assimilated into a microscopic traffic simulation (of an open
urban traffic system) to reconstruct vehicle trajectories on signalized urban arterials. These
cases also provide concrete data for the sensitivity analysis in chapter 5, in which we
analyze in detail the characteristics of the proposed data assimilation framework and its
sensitivity to a number of parameters in the framework. Finally in chapter 6 we conclude
this thesis by summarizing the research findings and suggesting future research directions.
To conduct controlled experiments in case studies, an implementation of the proposed
data assimilation framework is needed. Therefore, in appendix A, we provide a reference
implementation based on DSOL (Distributed Simulation Object Library) (Jacobs et al.,
2002; Jacobs, 2005) which is the simulation environment chosen for this research.

Based on the explanation above, a detailed organization of this thesis is depicted in
Figure 2.7.

22

2.4. OUTLOOK OF SUBSEQUENT CHAPTERS

D
at

a
A

ss
im

il
at

io
n

 i
n

 D
is

cr
et

e
E

v
en

t
S

im
u

la
ti

o
n

s

re
as

o
n

s:
 t

im
e

b
et

w
ee

n
 t

w
o

 c
o

n
se

cu
ti

v
e

st
at

e
u

p
d

at
es

 i
s

n
o

t
fi

x
ed

;
d

y
n

am
ic

 n
u

m
b

er
 o

f
en

ti
ti

es
 i

n
 o

p
en

 s
y

st
em

s

ch
al

le
n

g
e

1
:

st
at

e
u

p
d

at
es

 a
re

 a
sy

n
ch

ro
n

o
u

s

w
it

h
 t

h
e

m
ea

su
re

m
en

t
p

ro
ce

ss

ch
al

le
n

g
e

2
:

v
ar

ia
b

le
 d

im
en

si
o

n
 p

ro
b

le
m

ch
ap

te
r

1
:

in
tr

o
d

u
ct

io
n

ch
ap

te
r

2
:

b
ac

k
g

ro
u

n
d

 a
n

d
 r

el
at

ed
 w

o
rk

(r
es

ea
rc

h
 g

ap
s)

ch
ap

te
r

3
:

a
p

ar
ti

cl
e

fi
lt

er
 b

as
ed

 d
at

a
as

si
m

il
at

io
n

fr
am

ew
o

rk
 f

o
r

d
is

cr
et

e
ev

en
t

si
m

u
la

ti
o

n
s

(d
ea

l
w

it
h

 c
h

a
ll

en
g

es
 1

&
2

 f
o

r
cl

o
se

d
 s

ys
te

m
s)

ch
ap

te
r

4
:

p
ar

ti
cl

e
fi

lt
er

 b
as

ed
 d

at
a

as
si

m
il

at
io

n
 i

n

d
is

cr
et

e
ev

en
t

si
m

u
la

ti
o

n
s

o
f

o
p

en
 s

y
st

em
s

(d
ea

l
w

it
h

 c
h

a
ll

en
g

e
2

 f
o

r
o

p
en

 s
ys

te
m

s)

ch
ap

te
r

5
:

th
e

p
ar

ti
cl

e
fi

lt
er

 b
as

ed
 d

at
a

as
si

m
il

at
io

n

fr
am

ew
o

rk
:

se
n

si
ti

v
it

y
 a

n
al

y
si

s

re
as

o
n

s:
 s

ta
te

 u
p

d
at

es
 h

ap
p

en
 l

o
ca

ll
y

 a
n

d
 a

sy
n

ch
ro

n
o

u
sl

y

w
it

h
in

 (
at

o
m

ic
)

m
o

d
el

 c
o

m
p

o
n

en
ts

in
 p

ri
n

ci
p

le
 a

p
p

li
ca

b
le

:
p

ar
ti

cl
e

fi
lt

er
s

ch
ap

te
r

6
:

co
n

cl
u

si
o

n
s

an
d

fu
tu

re
 r

es
ea

rc
h

ap
p

en
d

ix

A
:

im
p

le
m

en
ta

ti
o

n

o
f

th
e

p
ar

ti
cl

e
fi

lt
er

b

as
ed

d
at

a
as

si
m

il
at

io
n

 f
ra

m
ew

o
rk

u
se

u
se

u
se

Fi
gu

re
2.

7:
D

et
ai

le
d

or
ga

ni
za

tio
n

of
th

e
th

es
is

23

3

C
H

A
P

T
E

R

A particle filter based data
assimilation framework for
discrete event simulations1

S ince discrete event simulations are typical nonlinear, non-Gaussian systems, particle
filtering is adopted to carry out state estimation by fusing noisy data into discrete
event simulations. However, applying particle filtering in discrete event simulations

still encounters several theoretical and practical problems as explained in chapter 2. In
this chapter, we propose a particle filter based data assimilation framework for discrete
event simulations, in which the aforementioned problems in chapter 2 are addressed. In
this chapter, we focus on discrete event simulations of closed systems, in which the system
components do not change over time. In the rest of this chapter, unless specifically stated,
the discrete event simulations are the simulations of closed systems.

3.1 Revisiting the challenges of applying particle filtering
in discrete event simulations

In applications of particle filtering in standard discrete time state space models, the system
state is updated at the same pace with the measurement process (Wang and Hu, 2015; Wu
et al., 2015). However, in discrete event simulations, state updates happen locally and
asynchronously within each (atomic) model component, and the system state takes a new

1This chapter is a revised version of a paper submitted to Simulation: Transactions of the Society for Modeling
and Simulation International: Xie, X., Verbraeck, A.: A particle filter based data assimilation framework for
discrete event simulations.

25

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

state

time

s

lt ()n lt t ta s
f

transit to another

state at tn

transit to

s at tl

real trajectory (red): not

fully modeled in discrete

event simulations

modeled trajectory (blue):

piecewise constant

t

error in state value

(a direct consequence of

ignoring the elapsed time)

elapsed time

jjjjj()ta s

(a) Continuous state

state

time

s

lt ()n lt t ta s
f

transit to another

state at tn

transit to

s at tl

modeled trajectory (blue):

piecewise constant

t

elapsed time

jjjjj()ta s

real trajectory (red):

piecewise constant

(b) Discrete state

Figure 3.1: The modeled state trajectory and the real state trajectory in discrete event
simulations (ta(s) is the time advance of state s; state updates captured in the discrete
event simulation (red circles) can be different from those in the real state trajectory; since
we focus on the effect of ignoring the elapsed time when retrieving the model state, we do
not show the difference in states explicitly in the figure)

value when one of its components has a state update. Consequently the time between two
consecutive state updates (at both the coupled level and the atomic level) is usually not fixed,
i.e., the system state process is asynchronous with the measurement process, which usually
feeds data at fixed times (Bouttier and Courtier, 1999). The mismatch between the (discrete
time) measurement process and the discrete event state process incurs two problems which
hinder the application of particle filtering in discrete event simulations. The first problem is
that the state retrieved from a discrete event simulation model is a combination of sequential
states of atomic components that were updated at past time instants, with which inaccurate
estimation results will be obtained. Retrieving the state of an atomic model directly will
only get a sequential state that does not contain the elapsed time, as shown in Figure 3.1.
In particle filter based data assimilation, ignoring the elapsed time will make particles

26

3.2. THE PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK FOR
DISCRETE EVENT SIMULATIONS

being wrongly evaluated, since p(mk|sk) (see the weight computation equations 2.9, 2.10
and 2.11) will be computed wrongly as p(mk|s) where s is a state updated at the last state
transition (see Figure 3.1). As a result, inaccurate estimation results will be obtained. This
effect is evident for continuous states (see Figure 3.1(a)); for discrete states, in order to
compute p(mk|sk), one probably needs the elapsed time to define a proper measurement
model that relates the discrete state to the measurement. However, ignoring the elapsed
time will also make this definition and computation inaccurate. The second problem is the
variable dimension problem, i.e., the dimension of the state trajectory during a fixed time
interval is a random variable, which makes the standard sequential importance sampling
algorithm inapplicable. Other practical problems which mainly relate to data issues, such
as non-numerical data, e.g., event sequences, also make particle filtering in discrete event
simulations highly problematic.

In this chapter, we propose a particle filter based data assimilation framework for
discrete event simulations, in which the aforementioned problems will be addressed.
Section 3.2 presents such a framework, which includes the system model (integer indexed
state process), measurement model (based on the interpolated states), and the particle
filtering algorithm for discrete event simulations. A case in a gold mine system is studied
in section 3.3 (tailor the generic data assimilation framework to the specific estimation
problem), section 3.4 (qualitative analysis), and section 3.5 (quantitative analysis) to
demonstrate the working of the proposed data assimilation framework.

3.2 The particle filter based data assimilation framework
for discrete event simulations

In this section, the proposed data assimilation framework for discrete event simulations
is presented. In order to formalize the data assimilation problem, we need to formalize
the state transitions in a discrete event model as an integer indexed state process (i.e., in
the same form with a discrete time model), therefore, in section 3.2.1, we show how to
achieve such formalization. In section 3.2.2, the interpolation operation is introduced in
order to obtain updated state values, and the measurement model is formalized accordingly.
On the basis of the integer indexed state process and the measurement model, the particle
filtering algorithm is formalized in section 3.2.3, in which the variable dimension problem
is solved. Finally some practical remarks which can help simplify the application of the
data assimilation framework are given in section 3.2.4.

3.2.1 System model

In order to describe the discrete event models formally, we use the DEVS formalism (see
section 2.1.4). First we introduce how the state is evolved in a DEVS model. Subsequently,
we show how to formalize the state transitions in a DEVS model as an integer indexed
state process. Though the integer indexed state process has the same form with a discrete
time model, the duration between two consecutive state updates is not fixed.

27

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

3.2.1.1 State evolution in a coupled DEVS model

Consider a coupled DEVS model N =< X,Y,D, {Mi}, {Ii}, {Zi,j}, Select >, where
∀i ∈ D, Mi is an atomic component defined as Mi =< Xi, Yi, Si, δint,i, δext,i, λi, tai >
(please refer to section 2.1.4 for more details). For any atomic component Mi, its state
evolution is achieved by executing (triggered by the simulator) internal state transition
δint,i(si) and external state transition δext,i(si, ei, xi). In this section, we clarify how state
evolution of the coupled DEVS model N is driven by state evolutions of its components.

Since DEVS models are closed under coupling (Vangheluwe, 2001), the coupled DEVS
model N is equivalent to an atomic DEVS model M =< X,Y, S, δint, δext, λ, ta > (the
construction of M can be found in Vangheluwe (2001)). The sequential state of M
(equivalent to the coupled DEVS model N) can be represented as

s = (. . . , (si, ei), . . .) ∈ S = ×i∈DQi (3.1)

where Qi = {(si, ei)|si ∈ Si, 0 ≤ ei ≤ tai(si)}. The state evolution of the coupled
DEVS model is triggered by either an internal state transition of the selected imminent
component i∗ (Vangheluwe, 2001) which transforms the different parts of the total state as
follows:

δint(s) = (. . . , (s′i, e
′
i), . . .)

where (s′i, e
′
i) =

(δint,i(si), 0) if i = i∗

(δext,i(si, ei + ta(s), Zi∗,i(λi∗(si∗))), 0) if i ∈ Ii∗
(si, ei + ta(s)) otherwise

where ta(s) = min{σi = tai(si)− ei|i ∈ D}

or an external state transition which transforms the different parts of the total state as
follows:

δext(s, e, x) = (. . . , (s′i, e
′
i), . . .)

where (s′i, e
′
i) =

{
(δext,i(si, ei + e, ZN,i(x)), 0) if i ∈ IN
(si, ei + e) otherwise

3.2.1.2 Formalize discrete event state evolution as integer indexed state process

In order to formalize the data assimilation problem, we need to formalize the state transi-
tions in a DEVS model as an integer indexed state process:

xk̃ = (sk̃, tk̃)

= ((. . . , (si,k̃i , ei,k̃i), . . .), tk̃), i ∈ D; k̃ = 0, 1, 2, . . . ; k̃i = 0, 1, 2, . . .
(3.2)

where sk̃ ∈ S is a sequential state of a coupled DEVS model as defined in equation 3.1,
and tk̃ ∈ R+

0,∞ is the time instant when the model transfers to state sk̃, and we assign
t0 = 0. si,k̃i ∈ Si is the sequential state of component i ∈ D; ei,k̃i = tk̃ − ti,k̃i is
the time elapsed since component i made a state transition to state si,k̃i ∈ Si at time
ti,k̃i ∈ R+

0,∞. Essentially xi,k̃i = (si,k̃i , ti,k̃i) also defines an integer indexed state process
for atomic DEVS component i ∈ D. Since state evolutions of different components

28

3.2. THE PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK FOR
DISCRETE EVENT SIMULATIONS

are again asynchronous with each other, the state index is different from component to
component at the same time, therefore, the state index k̃ is associated with the component
index i, i.e., k̃i. Obviously, ∀tk̃,∃i ∈ D, s.t. tk̃ = ti,k̃i , which means that a coupled model
takes a new state value when one of its atomic components has a state update. The integer
indexed state process is illustrated in Figure 3.2.

state

time0t 1t 2t 1k
t

 k
t

0s

1s

2s

1k
s

k
s

Figure 3.2: The integer indexed state process (each red circle represents a state point
xk̃ = (sk̃, tk̃))

We denote the input event segment for the coupled DEVS model as w : (tk̃, tk̃ +
ta(sk̃)] → X∅ = X ∪ {∅}, where ta(sk̃) = tai∗(si∗,k̃i∗) − ei∗,k̃i∗ = min{σi,k̃i =
tai(si,k̃i) − ei,k̃i |i ∈ D}, i.e., i∗ is the selected imminent component. Based on xk̃ =
(sk̃, tk̃) and the input segment w, the next state xk̃+1 = (sk̃+1, tk̃+1) is defined as follows:

• if there is no external event during (tk̃, tk̃+ta(sk̃)], i.e., @t ∈ (tk̃, tk̃+ta(sk̃)], s.t. w(t) 6=
∅, xk̃+1 = (sk̃+1, tk̃+1) is determined as

sk̃+1 = δint(sk̃) = (. . . , (si,k̃′i
, ei,k̃′i

), . . .)

tk̃+1 = tk̃ + ta(sk̃)
(3.3)

where (si,k̃′i
, ei,k̃′i

) is defined as

(si,k̃′i
, ei,k̃′i

) =

(δint,i(si,k̃i), 0) = (si,k̃i+1, 0) if i = i∗

(δext,i(si,k̃i , ei,k̃i + ta(sk̃), Zi∗,i(λi∗(si∗,k̃i∗))), 0) = (si,k̃i+1, 0) if i ∈ Ii∗
(si,k̃i , ei,k̃i + ta(sk̃)) otherwise

• if there exists external events during (tk̃, tk̃+ta(sk̃)], i.e., ∃t ∈ (tk̃, tk̃+ta(sk̃)], s.t. w(t) 6=

29

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

∅ ∩ @t′ ∈ (tk̃, t), s.t. w(t′) 6= ∅, xk̃+1 = (sk̃+1, tk̃+1) is determined as

xk̃+1 = δext(sk̃, t− tk̃, w(t)) = (. . . , (si,k̃′i
, ei,k̃′i

), . . .)

tk̃+1 = t
(3.4)

where (si,k̃′i
, ei,k̃′i

) is defined as

(si,k̃′i
, ei,k̃′i

) =

{
(δext,i(si,k̃i , ei,k̃i + t− tk̃, ZN,i(w(t))), 0) = (si,k̃i+1, 0) if i ∈ IN
(si,k̃i , ei,k̃i + t− tk̃) otherwise

Finally, we can formalize the state evolution of a coupled DEVS model as an integer
indexed state process

xk̃+1 = SIM(xk̃, w) + νk̃, k̃ = 0, 1, 2, . . . (3.5)

where w is the input event segment, and SIM is a discrete event simulation model which
transfers state xk̃ to xk̃+1 based on equation 3.3 and equation 3.4; νk̃ is the process noise.
Notice that the time duration between two consecutive state points, i.e., tk̃+1 − tk̃, is not a
constant, but a random variable. In this chapter, we focus on closed systems, therefore,
w = ∅.

3.2.2 Measurement model
The (discrete time) measurement model relates noisy observations to the system state:

mk = gk(sk) + εk, k = 1, 2, . . . (3.6)

where εk is the measurement noise. Notice that the measurement process is assumed to
feed data at fixed times, i.e. every ∆T time units, therefore the time of the measurement
process can be represented as an integer k (the corresponding simulation time is t = k∆T ;
see Figure 3.3). The state points in the discrete event state process can also be indexed
by an integer k̃ (see section 3.2.1.2), but since these state points lie irregularly on the
continuous axis, we need to explicitly represent the time instants (i.e. tk̃ which is a
continuous variable) when the system transfers to these states.

time representation of the

discrete event state process

time representation of the

measurement process
1 2 k-1 k

0t 1t 2t 1k
t
 k

t

T 2 T (1)k T k T

discrete

continuous

Figure 3.3: Time representation of the discrete event state process (each black dot indicates
a state update) and the (discrete time) measurement process (each black dot represents an
arrival of a measurement)

In a discrete event simulation, the state values are only updated when events happen.
As shown in Figure 3.1, if we directly retrieve the model state at a time instant t, the

30

3.2. THE PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK FOR
DISCRETE EVENT SIMULATIONS

retrieved value will be a combination of sequential states of all atomic components, which
were updated at past time instants. To get updated (thus more accurate) state value at
a time instant t, we need to consider the time elapsed since the model transfers to the
current (sequential) state as well. Therefore we introduce an interpolation operation to
obtain updated state value, which infers the state value at a time instant t based on the
states lying around that time (i.e., neighborhood of t). How many states are involved in
the interpolation is determined by the interpolation method we use. In the measurement
model, the time is represented by an integer k, therefore, we define how to obtain the state
value at time k (i.e. k∆T) given the integer indexed state process xk̃. To this end, we first
define a neighborhood of states around time k:

xNk = {xk̃, k̃ ∈ Nk(x0:∞)}

where x0:∞ = {xi, i = 0, 1, 2, . . . } is a sequence of state points defined in equation 3.2;
Nk(x0:∞) defines a set of indexes of states that are required for the interpolation operation
in order to compute the state at time k. For example, in Figure 3.3, if we use the linear
interpolation, Nk(x0:∞) = {k̃ − 1, k̃}. Then we can compute an updated state by inter-
polation: ŝk = interpolate(xNk). Based on ŝk, we can now formalize the measurement
model between ŝk and mk:

mk ∼ p(mk|ŝk) = p(mk|xNk) (3.7)

which is just a reformulation of equation 3.6.
In this research, we want to generalize the measurement model to include situations

where measurements are dependent on the state trajectory, i.e., the history of state tran-
sitions, which means that mk will contain observations that are distributed over the last
measurement interval [(k − 1)∆T, k∆T]. This assumption holds in many applications,
such as vehicle passages (event data) collected at a loop detector during one minute (Wu
and Liu, 2014). In this case, the measurement mk is not only related to a specific state at a
time instant, but also related to a sequence of states over a period of time. Therefore, we
define a generalized form of measurement model

mk ∼ p(mk|xN+
k−1+1:N+

k
) (3.8)

where N+
k = max{i ∈ Nk}, and xN+

k−1+1:N+
k

represents a sequence of states which are

indexed from N+
k−1 + 1 to N+

k .

3.2.3 State estimation using particle filters
Consider a discrete event system with sensors deployed to monitor its operation. The
measurement fed at time k, i.e., mk, contains the partial observations of the system
collected during the last measurement interval [(k − 1)∆T, k∆T]. We are interested
in the conditional distribution of the state trajectory x0:N+

k
given all measurements, i.e.,

p(x0:N+
k
|m1:k). Based on Bayes’ theorem, p(x0:N+

k
|m1:k) can be expressed as

p(x0:N+
k
|m1:k) =

p(x0:N+
k

)p(m1:k|x0:N+
k

)

p(m1:k)
(3.9)

31

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

Similarly, we have p(x0:N+
k−1
|m1:k−1) =

p(x0:N+
k−1

)p(m1:k−1|x0:N+
k−1

)

p(m1:k−1)
. Then we have

p(x0:N+
k
|m1:k)

p(x0:N+
k−1
|m1:k−1)

=
p(mk|xN+

k−1+1:N+
k

)p(xN+
k−1+1:N+

k
|xN+

k−1
)

p(mk|m1:k−1)
. Consequently, we

can obtain a sequential update equation

p(x
0:N+

k
|m1:k) =

p(mk|xN+
k−1

+1:N+
k

)p(xN+
k−1

+1:N+
k
|xN+

k−1
)

p(mk|m1:k−1)
× p(x

0:N+
k−1
|m1:k−1)

∝ p(mk|xN+
k−1

+1:N+
k

)p(xN+
k−1

+1:N+
k
|xN+

k−1
)× p(x

0:N+
k−1
|m1:k−1).

(3.10)

This sequential update equation is similar in form to that in equation 2.8, but an
important difference here is thatN+

k is a random variable, which means that the dimension
of x0:N+

k
is also random. The variable dimension problem will lead to inapplicability of

the standard sequential importance sampling algorithm (see section 2.2.3) (Godsill and
Vermaak, 2005; Godsill et al., 2007).

In Godsill et al. (2007), the authors proposed a solution to solve the variable dimension
problem. Instead of estimating p(x0:N+

k
|m1:k) directly, they estimate p(x0:K |m1:k) where

x0:K consists of two segments: x0:N+
k

(our interest) and xN+
k +1:K (extension). K is a

sufficient large constant integer such that for every k, the neighborhood xNk is complete.
If xNk contains all state points that are required for interpolation at time k, we say that
xNk is complete. Since x0:K has fixed dimension, the standard sequential importance
sampling algorithm can be applied. Once samples from joint distribution p(x0:K |m1:k)
are available, samples from its marginal p(x0:N+

k
|m1:k) can be obtained from the original

joint samples by simply discarding the components (i.e., xN+
k +1:K) that are not of interest,

and retaining the original weights. Finally, the weight is updated by

wk =
p(x0:K |m1:k)

q(x0:K |m1:k)

∝
p(mk|xN+

k−1+1:N+
k

)p(xN+
k−1+1:N+

k
|xN+

k−1
)

q(xN+
k−1+1:N+

k
|x0:N+

k−1
,m1:k)

× wk−1

(3.11)

where q(·) is the importance density. The weight update is independent of states xN+
k +1:K ,

and as a result, the extension xN+
k +1:K is never generated in practice. More detailed proof

can be found in Godsill and Vermaak (2005); Godsill et al. (2007).

Suppose we have a large numberNp of weighted samples χk−1 = {xi
0:N+

k−1

, wik−1}
Np
i=1,

which approximate the posterior distribution p(x0:N+
k−1
|m1:k−1) at previous time step;

when new measurement mk is available, samples χk = {xi
0:N+

k

, wik}
Np
i=1 which approxi-

mate the posterior distribution p(x0:N+
k
|m1:k) at time k can be obtained by Algorithm 1.

32

3.2. THE PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK FOR
DISCRETE EVENT SIMULATIONS

Algorithm 1: A generic particle filter for discrete event simulations

1 % initialization of particles at k = 0
2 for i = 1 : Np do
3 generate the i-th sample xi0 = (si0, t

i
0), where si0 ∼ p(s0) (p(s0) is the

probability distribution of the initial state), and ti0 = 0
4 set weight wi0 = 1/Np
5 end
6 % the sampling step for any time k ≥ 1
7 for i = 1 : Np do
8 sample particles according to the importance density q(·):

• set j = N+
k−1

i

• while Nki is incomplete:

– set j = j + 1

– sample xij ∼ q(xj |xi0:j−1,m1:k)

set N+
k

i
= j, and append the newly generated states to particle:

xi
0:N+

k

= (xi
0:N+

k−1

, xiN+
k−1+1:N+

k

), where N+
0 ≡ 0

update weight:

wik ∝
p(mk|xiN+

k−1+1:N+
k

)p(xiN+
k−1+1:N+

k

|xiN+
k−1

)

q(xiN+
k−1+1:N+

k

|xi
0:N+

k−1

,m1:k)
× wik−1

9 end
10 normalize the weights, such that

∑Np
i=1 w

i
k = 1

11 % the resampling step
12 resample particles {xi

0:N+
k

, wik}
Np
i=1 based on the chosen resampling method, which

can be found in Douc et al. (2005).

3.2.4 Practical remarks

3.2.4.1 The sampling procedure

As shown in Algorithm 1, once N+
k is complete, one can stop generating new state points.

This stopping condition is quite straightforward to check in simple models, e.g., equation
based model. However, in discrete event simulations which involve large number of
interacting components, this stopping condition is not easy to capture since the model is
separated from its simulator. One possible solution is to put a little more effort on modeling
by adding certain attributes which can make the interpolation operation conducted at a time
instant independent of the states beyond that time. This solution is reasonable since the
causal relationship should be obeyed in the modeling process, which means that the current
state should not be influenced by events which will happen in the future. For example in

33

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

the gold mine case which will be studied in subsequent sections, we have a speed attribute
for moving entities; as a consequence when we need to get entity position at a time instant,
we only need the last updated state (contains speed and location) and the elapsed time to
fulfill linear interpolation in order to get updated entity positions.

k-1 k

time

time

(a)

(b)

used for follow-

on iterations

generated from the

interpolated state

generated from the

last blue state point

(1)k T k T

(1)k T k T

Figure 3.4: The state points generation process

The two state generation processes are compared in Figure 3.4, where Figure 3.4(a)
shows the state generation process for Algorithm 1, and Figure 3.4(b) illustrates the state
generation process when the interpolation operation at time k is independent of state points
beyond that time. In Figure 3.4, the state points generated from previous iteration (i.e.,
k − 1) are represented in blue, the newly generated state points in current iteration (i.e.,
k) are depicted in red, and the interpolated states are shown in green. In Figure 3.4(a),
the size of Nk is 2, i.e., we need the two state points lying in the left and right side of k
to interpolate; while in Figure 3.4(b), the size of Nk is 1, since we only need one state
point which lies in the left side of k and the elapsed time to fulfill interpolation. The
benefit of the state generation process in Figure 3.4(b) is that we do not need to check the
stopping condition any more, and we can simply stop state generation (e.g., the simulation
execution) at time k and all information is already sufficient for interpolation. In follow-on
iterations, new states will then be generated from the interpolated state. In such a case, the
sequential update rule in equation 3.10 will be simplified to

p(x0:N+
k
|m1:k) = p(s0:k|m1:k)

∝ p(mk|sk−1:k)p(sk−1:k|ŝk−1)p(s0:k−1|m1:k−1)
(3.12)

where the partial state trajectory sk−1:k and the full state trajectory s0:k are defined as
follows:

sk−1:k = {sk̃|xk̃ = (sk̃, tk̃) ∩ (k − 1)∆T ≤ tk̃ ≤ k∆T} ∪ {ŝk}
s0:k = s0:k−1 ∪ sk−1:k

(3.13)

The weight update in equation 3.11 will thus be modified to

wk =
p(x0:K |m1:k)

q(x0:K |m1:k)
∝ p(mk|sk−1:k)p(sk−1:k|ŝk−1)

q(sk−1:k|s0:k−1,m1:k)
× wk−1 (3.14)

3.2.4.2 Generating initial particles

Generating initial particles boils down to generating initial model states. For a discrete
event simulation model, we cannot generate its initial state arbitrarily (i.e. cannot generate

34

3.3. CASE STUDY – ESTIMATING TRUCK ARRIVALS IN A GOLD MINE SYSTEM

the initial state of each atomic model independently), since an arbitrary combination (of
atomic model states) might be infeasible in reality. For example, in the gold mine case
which will be studied in subsequent sections, if we generate initial states arbitrarily, we
might generate a system state which indicates that the miner is drilling while no trucks are
present. Therefore, initial states should be generated from a set of feasible combinations
of atomic model states. We denote this set as FS ⊆ ×i∈DSi, where D is the set of names
of components of the discrete event model (i.e. a coupled DEVS model), and Si is the
set of sequential states of component i. We denote the combination of initial states of all
atomic components as a random variable S0, and it should take value from FS. Since S0

is a discrete random variable, we formalize its probability distribution as

P (S0 = sj0) = pj , s
j
0 ∈ FS, pj ∈ (0, 1) (3.15)

and
∑|FS|
j=1 pj = 1. Notice that sj0 = (. . . , sj0,i, . . .), i ∈ D, s

j
0,i ∈ Si.

Based on the discrete probability distribution in equation 3.15, generating an initial
model state is done as follows:

• Generate a feasible combination of initial states of all atomic components: sj0 =

(. . . , sj0,i, . . .) ∈ FS, i ∈ D, s
j
0,i ∈ Si, by sampling the discrete probability distri-

bution P (S0).

• Compute time advance for each sequential state sj0,i, and the computed value is
denoted as ta(sj0,i).

• If ta(sj0,i) < +∞, generate an elapsed time ei for each sequential state sj0,i. Since
0 ≤ ei ≤ ta(sj0,i), we can generate the elapsed time by sampling from certain
continuous probability distribution (lying within [0, ta(sj0,i)]) which is deemed
appropriate. For example, we can sample from a Normal distributionN (0, 1) which
lies within [0, ta(sj0,i)], i.e. ei ∼ N (0, 1)

⋂
ei ∈ [0, ta(sj0,i)]. In the initialization,

the next state update (i.e. transfer from sj0,i to another sequential state) is scheduled
at tnow+ ta(sj0,i)−ei = ta(sj0,i)−ei (in the initialization, tnow = 0). If ta(sj0,i) =
+∞, i.e. atomic component i is passive, we set ei = 0.

• Finally, combining the generated sequential state sj0,i, the time advance ta(sj0,i), and
the elapsed time ei for each atomic component i ∈ D, we can initialize the discrete
event simulation model.

3.3 Case study – estimating truck arrivals in a gold mine
system

In this section and subsequent sections, we study a case in a gold mine system, to illustrate
the working of the particle filter based data assimilation framework introduced in sec-
tion 3.2. In this section, we focus on how to tailor the generic data assimilation framework
to the specific estimation problem in the gold mine system.

35

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

3.3.1 Scenario description
A gold mine system is shown in Figure 3.5, and its operation is based on the coordination
among miners, two trucks, and an elevator:

• miners drill at the mine shaft end, and they can only drill when an empty truck is
present. Loading a truck varies very much. Creating a full truckload takes minimally
15 minutes, maximally 30 minutes.

• two trucks are available to transport ore; each truck travels 5 km/h when full
through the mine shaft, and 10 km/h when empty. The current mine shaft is 400
meters long.

• an elevator can take a batch of gold ore up. The depth of the elevator shaft is 100
meters; it takes the elevator 8 minutes to go up with ore, and 3 minutes to go down
empty.

When a truck is full, the miners ask the elevator to come down, so it will be at the bottom
of the vertical shaft when the full truck arrives. When a truck of ore arrives at the bottom
of the vertical shaft, it needs to be unloaded from the truck before the elevator can go up.
Unloading takes between 5 and 10 minutes. After that, the elevator can go up, and the
truck can go back. Unloading at the top of the vertical shaft takes between 2 and 4 minutes
before the load can be put on a 100-meter long conveyor belt that transports the gold ore to
a processing plant. The conveyor belt has a speed of 0.6 km/h.

Mine shaft

Abandoned mine shaft

elevator

conveyor belt to transport ore

current

mining
operation

processing factory

Elevator_Arrived_Top

Elevator_Arrived_Bottom

Ore_Arrived_Plant

Truck_Arrived_ShaftEnd

observations

Figure 3.5: The gold mine system

The gold mine is monitored by multiple sensors, which can provide partial observations
of the gold mine system (the detailed available data will be explained in section 3.3.4). The
problem is that: given these partial observations, can we estimate when the trucks arrive at
the bottom of the vertical shaft? The arrival information is important for efficient operation
of the elevator, which may improve the overall performance of the gold mine system.

36

3.3. CASE STUDY – ESTIMATING TRUCK ARRIVALS IN A GOLD MINE SYSTEM

3.3.2 Modeling the gold mine system in the DEVS formalism
The scenario described in section 3.3.1 is a typical discrete event system, therefore we
model it using the DEVS formalism (Zeigler et al., 2000), as shown in Figure 3.6. Notice
that the gold mine simulation model has no external inputs. We model each component
into different phases (Honig and Seck, 2012), and each phase has a name and a life time,
where the name indicates the activity that the component is undergoing, and the life time
tells how long the entity will stay in that phase. The phases and associated parameters (i.e.
state variables) of several key components (i.e. Miner, Truck, and Elevator) are listed in
Table 3.1, while other components (such as Queue, Conveyor, Observer) are quite simple,
therefore we do not describe them in detail due to space limitations.

5. Elevator_Arrived_Top

4. Elevator_Arrived_Bottom

3. Ore_Arrived_Plant

1. Truck_Arrived_ShaftEnd

2. Truck_Arrived_ElevatorBottom

Observer

Elevator
Miner

TurckQueueElevatorBottom

(FIFO)

arrival request

comedown

Truck_0

load_finsh unload_finsh

request_truck finish_drill

in

TurckQueueShaftEnd

(FIFO)

arrivalrequest

beReady

out2miner out2elevator

request_truck

in

beReady

unload_truckTruck_1

load_finsh unload_finsh

out2miner out2elevator

request_elevator

Conveyorin out

unload_ore

in

3

out

4, 5

out

out

1, 2
1, 2

Figure 3.6: The DEVS model of the gold mine system

Table 3.1: State variables of key components in the DEVS gold mine model

component type phases parameters description

Miner
TRANSIENT_PHASE

serving_truck the truck that is being loadedHAVE_REQUEST
DRILLING

Truck

TRAVEL_TO_MINER
TRAVEL_TO_ELEVATOR pos the position of the truck

TRANSIENT_PHASE v the velocity of the truck
WAITING

Elevator

IDLE_AT_TOP
GO_DOWN_EMPTY
TRANSIENT_PHASE pos the position of the elevator

HAVE_REQUEST v the velocity of the elevator
UNLOAD_TRUCK_AT_BOTTOM serving_truck the truck that is being unloaded

GO_UP_WITH_ORE hasUnprocessedRequest if there is any unprocessed request from miner
UNLOAD_ORE_AT_TOP

As shown in Table 3.1, each component has a transient phase, i.e. TRANSIENT_PHASE,
which has zero length of life time and is used to request resources or jobs. For example,
when Miner finishes drilling and loading, it will first make a transition from DRILLING
to TRANSIENT_PHASE; since TRANSIENT_PHASE has zero length of life time, a
message is immediately sent to TruckQueueShaftEnd to tell that Miner is idle and can drill
& load other trucks if there is any; then Miner transfers to HAVE_REQUEST (i.e, idle)
to wait for new trucks. Truck and Elevator work in a similar way. The movement of the
elevator and the trucks is assumed with constant speed (though not realistic).

37

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

The unloading times at the bottom and the top of the vertical shaft are modeled as
Uniform distribution U(5.0, 10.0) and Uniform distribution U(2.0, 4.0), respectively. The
drilling time of the Miner is modeled as a Triangular distribution with varying mode
(shown in Figure 3.7). The purpose of varying mode is to simulate miners’ tiredness, which
means that miners can become tired, i.e., the longer time they has been working, the longer
time they spend to load a truck. In the beginning (t = ts), the mode c = cts ; while in
the end (t = te), the mode will increase to c = cte ; at any time instants t1, t2 ∈ (ts, te),
if t1 < t2, we have ct1 < ct2 . In our simulation, the run length is 480, therefore, we
set a = 15, b = 30, ts = 0, te = 480, cts = a + 1

4 (b − a), cte = a + 3
4 (b − a); for any

t ∈ (ts, te), we have ct = a+ (1
4 + 1

2 ×
t−ts
te−ts)× (b− a). The unit of time is minute.

t = ts t = tet = t

a cts ct cte b

Figure 3.7: Triangular distribution with varying mode

We denote the set of component names as D = {TruckQueueShaftEnd, TruckQueueEl-
evatorBottom, Miner, Truck_0, Truck_1, Elevator, Conveyor, Observer}. For any com-
ponent i ∈ D, the (sequential) state of component i can be represented as si = {pi, θi},
where pi is the phase (name), and θi is the corresponding state parameters (variables).
Consequently, the sequential state of the gold mine model can be represented as

s = (. . . , (si, ei), . . .) ∈ S = ×i∈DQi (3.16)

where Qi = {(si, ei)|si ∈ Si, 0 ≤ ei ≤ tai(si)}. Based on the derivation shown in
section 3.2.1.2, we can easily formalize the state evolution of the gold mine model as an
integer indexed state process (i.e., the system model of the gold mine system):

xk̃ = ((. . . , (si,k̃i , ei,k̃i), . . .), tk̃), i ∈ D

xk̃+1 = GoldMineSim(xk̃) + νk̃, k̃ = 0, 1, 2, . . .
(3.17)

where GoldMineSim is the (discrete event) gold mine simulation model, νk̃ is the system
noise, such as position uncertainty incurred by small deviations on speed.

3.3.3 Interpolation operation
In this section, we introduce the interpolation method used in our gold mine case, and show
the difference between the simulated state trajectory and the interpolated state trajectory.

38

3.3. CASE STUDY – ESTIMATING TRUCK ARRIVALS IN A GOLD MINE SYSTEM

Considering that discrete state variables cannot be interpolated, we distinguish continuous
states from discrete states as shown in Figure 3.1. The implementation of the interpolation
operation can be found in section A.2.5.1.

3.3.3.1 Continuous state

Continuous states can be interpolated. We take the elevator as an example, whose (sequen-
tial) state is represented as s = (phase, pos, v) (component index is omitted here), where
phase is the phase name, pos and v are its position and velocity, respectively. Though the
state contains a string-type variable (phase name), we still consider it as a continuous state
since our focus is the elevator’s movement.

As introduced in section 3.3.2, the elevator moves with constant speed. Therefore, we
use linear interpolation to update the elevator’s state. Suppose that the last state update was
at time tl due to the occurrence of an internal or external event, and the state was updated
to s(tl) = (phasel, posl, vl); in that event handler, the next state update was scheduled at
time tn, i.e. ta(sl) = tn − tl. Since we have velocity in the state definition, we can obtain
the updated state at time t ∈ (tl, tn) based on the state at tl and the elapsed time e:

ŝ(t) = interpolate(s(tl), e)

where

phaset = phasel

post = posl + vl × e = posl + vl × (t− tl)
vt = vl

(3.18)

which is independent of the states beyond time t.

3.3.3.2 Discrete state

Discrete states cannot be interpolated. For example, the (sequential) state of the miner
is s = (phase, serving_truck), where phase is the phase name, and serving_truck is the
name of the truck which is being loaded. Suppose that the last state update was at time
tl, and the state was updated to s(tl); in that event handler, the next state update was
scheduled at time tn. Since the discrete state cannot be interpolated, the interpolation
operation gives

ŝ(t) = interpolate(s(tl), e) = (s(tl), e) (3.19)

where the elapsed time e = t − tl. We still denote (s(tl), e) as ŝ(t), i.e. (s(tl), e) is
equivalent to those continuous states that can be interpolated (e.g., equation 3.18). Since
s(tl) cannot be interpolated, we need an elapsed time e to reflect the state evolution. If the
measurement is related to the discrete state, one probably needs the elapsed time to define
a measurement model that relates the discrete state to the measurement.

3.3.3.3 Interpolated state

Suppose that the (sequential) state of the coupled model at time instant tl is s(tl) =
(. . . , (si, ei), . . .), i ∈ D, and ta(s(tl)) = min{σi = tai(si) − ei, i ∈ D}. At any time

39

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

t ∈ (tl, tl + ta(s(tl))), the interpolated state can be represented as

ŝ(t) = interpolate(s(tl), e) = (. . . , (s′i, e
′
i), . . .), where

(s′i, e
′
i) =

{
(interpolate(si, ei), 0) if si can be interpolated (see equation 3.18)

(si, ei + t− tl) if si cannot be interpolated (see equation 3.19)

(3.20)

Notice that the time advance of state interpolate(si, ei) will be ta(si)−ei. In section 3.2.2,
when computing ŝk, k = 1, 2, . . . , we essentially compute ŝk = ŝ(k∆T) based on
equation 3.20.

3.3.3.4 Simulated state trajectory versus interpolated state trajectory

In this section, we show the difference between the simulated state trajectory and the
interpolated state trajectory. We take the state of the elevator in terms of position as
an example. As shown in Figure 3.8, the positions of the elevator in the discrete event
simulation is captured in blue, while the interpolated state trajectory is depicted in red.
Since states only change when events occur, the simulated state trajectory of the elevator
in terms of position is a piecewise constant curve; while the interpolated state trajectory is
a piecewise linear curve since the velocity is constant and we adopt the liner interpolation
method.

As explained in the previous section, the elevator moves with constant speed. Therefore,
the true state trajectory of the elevator in terms of position is also a piecewise linear curve,
which overlaps the interpolated state trajectory. Notice that if the elevator has a different
speed profile, for example, accelerate – constant speed – decelerate, the true state trajectory
in terms of position and the interpolated state trajectory will not overlap any more. From
Figure 3.8, we can clearly see that if we retrieve the state of a discrete event simulation
model without interpolation, the retrieved state is only a past state that was updated at a
past time instant, which cannot reflect real-time evolutions of the state, therefore, errors
would be incurred if the outdated states are used for estimation. This will be proven in
section 3.5.

3.3.4 Available data and measurement model
The simulated data is generated by running the gold mine simulation (section 3.3.2) for 480
minutes. During the run, all events are recorded; the states of the elevator and the trucks
are sampled (using interpolation) and recorded very densely (every 0.01 minute) in order to
obtain their detailed evolutions; the data recorded for the elevator and the trucks includes
phase names and their real-time positions. This ground truth data is then processed as
follows:

• we extract the event sequence that only contains following types of events (as shown
in Figure 3.5): trucks arriving at the shaft end (Truck_Arrived_ShaftEnd), the elevator
arriving at the top or the bottom of the vertical shaft (Elevator_Arrived_Top, Eleva-
tor_Arrived_Bottom), and a batch of ore arriving at the plant (Ore_Arrived_Plant).
This event sequence is partial, but accurate (i.e., no missed events, and occurrence
times are accurate).

40

3.3. CASE STUDY – ESTIMATING TRUCK ARRIVALS IN A GOLD MINE SYSTEM

0 30 60 90 120 150 180 210 240

time (minutes)

-100

-50

0

po
si

tio
n

(m
et

er
s)

elevator
 top

elevator
 bottom

simulated position
interpolated position
time of observation

(a) positions between [0 min, 240 min]

240 270 300 330 360 390 420 450 480

time (minutes)

-100

-50

0

po
si

tio
n

(m
et

er
s)

elevator
 top

elevator
 bottom

simulated position
interpolated position
time of observation

(b) positions between [240 min, 480 min]

Figure 3.8: The state trajectory of the elevator in terms of position

• we add Gaussian noise to the positions of the elevator and the trucks, respectively;
specifically, we add noise drawn from N (0, σ2

e) for the elevator, and add noise
drawn from N (0, σ2

t) for the trucks.

The noisy dataset is used for data assimilation, and we set the measurement interval to
∆T = 30 minutes. The measurement at time k is denoted as mo

k, which contains following
noisy data collected during [(k − 1)∆T, k∆T]:

• event sequence Ek = {(t1, e1), (t2, e2), . . . , (tn, en)}, (k − 1)∆T ≤ t1 ≤ t2 ≤
· · · ≤ tn ≤ k∆T ; ei ∈ {Truck_Arrived_ShaftEnd, Elevator_Arrived_Top, Eleva-
tor_Arrived_Bottom, Ore_Arrived_Plant}.

• PXk = {(phasej(tj), posj(tj))|j ∈ {Elevator, Truck_0, T ruck_1}, tj ∈ [(k −
1)∆T, k∆T]}, which represents the phase and position of the elevator and the
trucks, where phasej(tj) indicates the name of the phase of component j at time

41

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

tj , while posj(tj) is the noisy position of component j at time tj . Notice that
during [(k − 1)∆T, k∆T], there is only one observation for each component in
{Elevator, Truck_0, T ruck_1}; the times of observation for different components
are not necessarily the same. As shown in Figure 3.8, the black triangles represent
the time instants when noisy observations from the elevator are available. These
observation times are randomly chosen, but in order to illustrate the effect of inter-
polation, we choose time instants when the component (either the elevator or the
trucks) is moving, since when components are still, their position does not change,
whether interpolate or not has no difference.

To summarize, the measurement available at time k can be represented as

mo
k = {Ek, PXk}, (3.21)

and the measurement model can be formalized as

mo
k ∼ p(mo

k|xN+
k−1+1:N+

k
)

where xk̃ = (sk̃, tk̃), k̃ = 0, 1, 2, . . . is defined in equation 3.17. As introduced in
section 3.3.3, the interpolation operation is independent of states beyond the time instant
when the operation is invoked, therefore, the measurement model can be modified to

mo
k ∼ p(mo

k|sk−1:k) (3.22)

where sk−1:k = {sk̃|xk̃ = (sk̃, tk̃) ∩ (k − 1)∆T ≤ tk̃ ≤ k∆T} ∪ {ŝk}, and ŝk is
computed based on equation 3.20 (ŝk = ŝ(k∆T)).

3.3.5 Estimating truck arrivals using particle filters

Having formalized the system model (section 3.3.2) and the measurement model (sec-
tion 3.3.4), in this section, we implement (on the algorithmic level) the particle filtering
framework (section 3.2) in the (discrete event) gold mine simulation to illustrate the
working of the framework by estimating the truck arrivals at the bottom of the vertical
shaft.

3.3.5.1 Particle filtering for truck arrivals estimation

Algorithm 2 describes in detail how the generic particle filter shown in Algorithm 1 are
applied in the specific gold mine case to fulfill the truck arrival estimation task. Since the
interpolation operation at any time instant t is independent of states beyond that time, the
formalization of Algorithm 2 is focused on system states sk̃, where xk̃ = (sk̃, tk̃). The
main steps of the proposed algorithm are summarized as below.

• Initialization. In the initialization step (line 2 ∼ 5 in Algorithm 2), the i-th sample
xi0 is actually a guess of possible initial states (i.e., si0) of the gold mine model. The
process of generating initial particles is detailed in section 3.3.5.2.

42

3.3. CASE STUDY – ESTIMATING TRUCK ARRIVALS IN A GOLD MINE SYSTEM

• Sampling. In this case, we adopt the system transition density (a reformulation of
GoldMineSim(·) in equation 3.17) as the importance density. Therefore, generat-
ing state points is done by running the gold mine simulation (line 8 in Algorithm 2).
Since the interpolation operation at a time instant t is independent of state points
beyond that time (see the explanation in section 3.3.3), we just stop the simulation at
time t = k∆T , and then update its weight based on newly available data mo

k (line 9
in Algorithm 2); detailed computation of the weight is presented in section 3.3.5.3.

• Resampling. To solve the degeneracy problem, we resample the particles using the
standard resampling scheme which samples particles in proportion to their weights.

• Estimation. We scan the state trajectory sik−1:k, and record the time instants when
event Truck_Arrived_ElevatorBottom occurs. Each particle gives an estimation of
the truck arrival, and estimations from all particles will form a distribution of truck
arrival. These (raw) estimations will be processed to give more informative results
in section 3.5.

3.3.5.2 Generating initial particles

In this case study, initial particles are generated based on the procedure introduced in
section 3.2.4.2. For illustration purpose, we only enumerate two feasible combinations
which are listed in Table 3.2, although there are many more feasible choices. We as-
sume P (s1

0) = P (s2
0) = 0.5, and generate elapsed time using N (0, 1) lying within

[0, ta(sj0,i)], j ∈ {1, 2}, i ∈ {Miner, Truck_0, Truck_1, Elevator}. For other atomic com-
ponents in the gold mine model, i.e. TruckQueueShaftEnd, TruckQueueElevatorBottom,
Conveyor, Observer, we initialize them as passive (i.e. time advance is +∞).

3.3.5.3 Weight computation

In this section, we detail how the weight is computed, i.e., utilize wik = p(mo
k|sik−1:k)×

wik−1. The measurement at time k is mo
k = {Ek, PXk}, where Ek is the observed event

sequence during time interval [(k − 1)∆T, k∆T], PXk = {(phasej(tj), posj(tj))|j ∈
{Elevator, Truck_0, T ruck_1}, tj ∈ [(k− 1)∆T, k∆T]} represents phase and position
observations from the elevator and the trucks. Since the two types of observations are condi-
tionally independent given sik−1:k, we have p(mo

k|sik−1:k) = p(Ek|sik−1:k)p(PXk|sik−1:k).

Event sequences

Given state points sik−1:k, it is very easy to retrieve an event sequence which only
contains the four types of events shown in Figure 3.5 (i.e., types of observed events). We
denote such event sequence retrieved from the i-th particle as Eik, then p(Ek|sik−1:k) =
p(Ek|Eik). Subsequently, we first define a distance measure between two event sequences,
and based on the distance measure, we then define p(Ek|Eik).

An event can be modeled as a two-tuple (t, e), where e is the event type, and t is the
occurrence time. An event sequence S is an ordered sequence of events:

S = {(t1, e1), (t2, e2), . . . , (tn, en)}, t1 ≤ t2 ≤ · · · ≤ tn

43

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

Algorithm 2: The particle filter for truck arrival estimation

1 % initialization of particles at k = 0
2 for i = 1 : Np do
3 generate the i-th sample xi0 = (si0, t

i
0) where ti0 = 0

4 set weight wi0 = 1/Np
5 end
6 % the sampling step for any time k ≥ 1
7 for i = 1 : Np do
8 run the gold mine simulation to time t = k∆T with initial state ŝik−1, where

ŝik−1 is obtained based on equation 3.20 (t = (k − 1)∆T); the newly
generated partial state trajectory is
sik−1:k = {si

k̃
|xi
k̃

= (si
k̃
, ti
k̃
), (k − 1)∆T ≤ ti

k̃
≤ k∆T} ∪ {ŝik}; the full state

trajectory is thus updated to si0:k = (si0:k−1, s
i
k−1:k)

9 compute weight: wik = p(mo
k|sik−1:k)× wik−1

10 end
11 normalize the weights, denote them as {si0:k, w

i
k}
Np
i=1

12 % the resampling step
13 resample {si0:k, w

i
k}
Np
i=1 using the standard resampling method which samples

particles in proportion to their weights; the resampled results are again denoted as
{si0:k, w

i
k}
Np
i=1

14 for i = 1 : Np do
15 wik = 1/Np
16 end
17 % record data for estimation
18 for i = 1 : Np do
19 scan sik−1:k, and record the time instants when event

Truck_Arrived_ElevatorBottom occurs
20 end

We adopt the edit distance (Mannila and Ronkainen, 1997) to define the ‘distance’
between two event sequences. The edit distance satisfies following conditions:

d(S, T) ≥ 0

d(S, T) = 0 if and only if S = T

d(S, T) = d(T, S)

d(S, T) + d(T,U) ≥ d(S,U)

The edit distance defines ‘the amount of work that has to be done to convert one sequence
to another’. To compute the edit distance, a set of transformation operations and their
associated costs are defined:

• insert(t, e) that inserts an event of type e at time t, i.e., insert a two-tuple (t, e) to

44

3.3. CASE STUDY – ESTIMATING TRUCK ARRIVALS IN A GOLD MINE SYSTEM

Table 3.2: The set (denoted as FS) of feasible combinations of initial states of atomic
components

elements in FS component name phase parameters value time advance (min)

s1
0

Miner TRANSIENT_PHASE serving_truck NULL 0

Truck_0 TRANSIENT_PHASE pos 0 m 0
v 0 km/h

Truck_1 TRANSIENT_PHASE pos 0 m 0
v 0 km/h

Elevator IDLE_AT_TOP

pos 0 m

+∞v 0 km/h
serving_truck NULL

hasUnprocessedRequest NULL

s2
0

Miner TRANSIENT_PHASE serving_truck NULL 0

Truck_0 TRANSIENT_PHASE pos 0 m 0
v 0 km/h

Truck_1 TRANSIENT_PHASE pos 0 m 0
v 0 km/h

Elevator GO_DOWN_EMPTY

pos -20 m

2.4v 2 km/h
serving_truck NULL

hasUnprocessedRequest NULL

the sequence. The cost of insert(t, e) is defined as

c(insert(t, e)) = w(e) ∝ 1

occ(e)

where occ(e) is the occurrence rate of a e-type event in a long reference sequence.

• delete(t, e) that deletes a two-tuple (t, e) from the sequence. The cost of delete(t, e)
is defined to be the same as that of an insert-operation, i.e., c(delete(t, e)) = w(e).

• move(t, e, t′) that moves an existing event (t, e) from time t to time t′. The cost of
a move-operation is defined as

c(move(t, e, t′)) = v · |t− t′|

where v is a constant that should satisfy v|t− t′| < 2 · w(e),∀t, t′, e. Otherwise, it
is never useful to move an event e, one can always delete and insert an event instead.

Suppose O = {o1, o2, . . . , on} is an operation sequence that transforms S to T , and
the cost of O is defined as

c(O) =

n∑
i=1

c(oi),

then the edit distance between event sequence S and event sequence T is defined as the
minimum cost that is needed to transform S to T , i.e.,

d(S, T) = min{c(Oj)|Oj}

where Oj is an arbitrary operation sequence that transforms S to T . Given two event se-
quences S = {(t1, e1), (t2, e2), . . . , (tn, en)}, and T = {(u1, f1), (u2, f2), . . . , (um, fm)},
dynamic programming is employed to compute d(S, T). Suppose r(i, j) is the minimum

45

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

cost of operations needed to transform the first i events of S to the first j events of T , then
d(S, T) = r(n,m). The base conditions and the recurrence relation for r(i, j) are

r(0, 0) = 0

r(i, 0) = r(i− 1, 0) + w(ei)

r(0, j) = r(0, j − 1) + w(fi)

r(i, j) = min{r(i− 1, j) + w(ei), r(i, j − 1) + w(fj), r(i− 1, j − 1) + k(i, j)}

where

k(i, j) =

{
v · |ti − uj |, if ei = fj

w(ei) + w(fj), if ei 6= fj .

Once the distance between two event sequences can be computed, we can now define
p(Ek|Eik) as follows:

p(Ek|sik−1:k) = p(Ek|Eik) = exp(−d(Ek, E
i
k)

dm
) (3.23)

where dm = d(Ek, ∅).

Phases and positions

Given state points sik−1:k, we can straightforwardly obtain the phase (name) and
position of any component at any time based on interpolation explained in section 3.3.3.
We denote such phase and position pairs for entities in Dc = {Elevator, Truck_0, Truck_1}
as PXi

k, then p(PXk|sik−1:k) = p(PXk|PXi
k).

For phase and position data, we need to consider them as a whole. For example, we
assume that the observation from the elevator is {GO_DOWN_EMPTY,−10}; in the first
particle, we have {GO_DOWN_EMPTY,−10}, while in the second particle, we have
{GO_UP_WITH_ORE,−10.0}. Obviously, the first particle should be assigned a larger
weight than the second one given the observation. However, if we do not consider the
phase difference, we cannot differentiate the two particles. Therefore we propose a phase
match method to define a distance measure for phases.

The phase match method works as follows. Suppose the phase is represented as {pi, θi},
where pi is the name of the phase, and θi is the corresponding parameters. The distance
between phases is defined based on the phase transition graph shown in Figure 3.9. The
phase transition graph is actually a simplified version of the model of the corresponding
component. For convenience, we assume that the index of one phase in the two phases that
we want to compare is 0, while the index of the other is n, their distance is defined as

d(0, n) = min{
n−1∑
i=0

d(i, i+ 1),

N−1∑
i=n

d(i, i+ 1) + d(N, 0)}

where d(i, j) is the distance between phase i and phase j. The distance function can be
defined in many ways, for example, we can define d(i, i+ 1) as the time that the system
stays in phase i before it makes a transition to phase i+ 1. In our case, we choose a simple
distance function as d(i, i+ 1) = 1.

46

3.4. CASE STUDY IN THE GOLD MINE SYSTEM – QUALITATIVE ANALYSIS

p1 p2

pN

p0

d(0,1)

d(1,2)

d(2,3)

d(N-1,N)d(N,0)

Figure 3.9: The phase transition graph

In our case, the parameter is the position with Gaussian noise, therefore we define
p(PXk|PXi

k) as follows:

p(PXk|sik−1:k) = p(PXk|PXi
k) =

∏
j∈Dc

p({phasej , posj}|{phasei,j , posi,j}) (3.24)

where Dc = {Elevator, Truck_0, Truck_1}; p({phasej , posj}|{phasei,j , posi,j}) is de-
fined as

p({phasej , posj}|{phasei,j , posi,j}) =

max{pmin, 1√

2πσ2
j

e
− (posi,j−posj)2

2σ2
j } if phasei,j = phasej

pmin
d(phasei,j ,phasej)+1

if phasei,j 6= phasej

We argue that the weight of a particle in which the phase is the same with the observed
phase (i.e., phasei,j = phasej) should be absolutely larger than that of a particle which
has different phase with the observed phase (i.e., phasei,j 6= phasej). Therefore, we
define a threshold value pmin to guarantee this.

3.4 Case study in the gold mine system – qualitative anal-
ysis

In this section, a qualitative analysis is conducted to compare the estimation results without
and with assimilating noisy observations; the objective of this comparison is to prove the
necessity to assimilate observations into discrete event simulations in order to get better
estimation results.

If we do not assimilate noisy observations, we can run the simulation multiple times
with different random seeds to generate data for estimation. Therefore, we run the gold
mine simulation 2000 times with different random seeds and record the time instants
when trucks arrive at the bottom of the vertical shaft. The estimation results are shown
in Figure 3.10a. The results show that if there is no real-time data from the real system
assimilated, the discrepancy between the simulation and the real system will become larger
and larger as time advances. Consequently, the simulation without data assimilation will

47

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

gradually lose its prediction ability. Based on our example, from t = 150 minutes onwards,
the gold mine simulation can no longer provide any useful information for truck arrivals at
the bottom of the vertical shaft.

In contrast, we use the same simulation model to assimilate the noisy dataset (σe =
3.0, σt = 3.0) every ∆T = 30 minutes with 2000 particles to estimate the truck arrival
times. The estimation results are depicted in Figure 3.10b. The results show that if we
assimilate noisy observations into the same simulation model using similar effort (i.e.,
2000 particles versus 2000 runs), the simulation can provide reasonable estimations for
truck arrivals during the whole simulation period (480 minutes). Therefore it is necessary
to assimilate data if there are any into the discrete event simulation in order to obtain better
estimation results of the variable of interest.

We present the estimation results of the truck arrival times at the bottom of the ver-
tical shaft in one time step (i.e., [(k − 1)∆T, k∆T]) in Figure 3.11. Since the minimal
drilling time is 15 minutes, there are at most two arrivals during one time step of duration
∆T = 30 minutes. Notice that the estimation results actually gives a distribution of the
truck arrival times. In order to know how accurate the estimation results are and also
explore the influences of factors, such as data errors, model errors, and the number of
particles employed, in section 3.5.2, we define a set of performance indicators, and conduct
quantitative analysis accordingly.

3.5 Case study in the gold mine system – quantitative
analysis

The particle filtering method shown in Algorithm 2 gives us raw estimation results of truck
arrivals, which are depicted in Figure 3.10b. In this section, we show how these raw data
is processed in order to conduct more informative analysis; based on the processed data, a
set of performance indicators are proposed to quantify how accurate the estimation results
are; finally, results computed based on these performance indicators are presented and
analyzed.

3.5.1 Data processing

3.5.1.1 Data preparation for estimating the dimension of the state trajectory

As explained in previous sections, a big difference of discrete event simulations from
discrete time state space models is that in discrete event simulations the dimension of the
state trajectory x0:N+

k
, i.e., N+

k , is a random variable. Since the gold mine simulation

model has no external inputs, we can obtain N+
k by summing in each atomic DEVS

component the number of internal state transitions that happen before time t = k∆T . This
can be done by simply counting the number of corresponding output events (λ(si), i ∈ D),
since output is only possible just before internal state transitions (Zeigler et al., 2000).
In Figure 3.12, we show the histogram of N+

16 (i.e. t = 480 minutes) estimated by
particle filtering (the corresponding ground truth value is 157). The results confirm that
in different particles, the number of state points in x0:N+

k
differs from particle to particle,

48

3.5. CASE STUDY IN THE GOLD MINE SYSTEM – QUANTITATIVE ANALYSIS

0 30 60 90 120 150 180 210 240

estimated time instants when a truck arrives at the bottom of the vertical shaft (minutes)

0

50

100

150

200

250

300

oc
cu

rr
en

ce

240 270 300 330 360 390 420 450 480

estimated time instants when a truck arrives at the bottom of the vertical shaft (minutes)

0

50

100

150

200

250

300

oc
cu

rr
en

ce

(a) The truck arrivals estimated from 2000 independent runs

0 30 60 90 120 150 180 210 240

estimated time instants when a truck arrives at the bottom of the vertical shaft (minutes)

0

500

1000

1500

oc
cu

rr
en

ce

240 270 300 330 360 390 420 450 480

estimated time instants when a truck arrives at the bottom of the vertical shaft (minutes)

0

500

1000

1500

oc
cu

rr
en

ce

(b) The truck arrivals estimated by assimilating the noisy dataset (σe = 3.0, σt = 3.0)
every ∆T = 30 minutes with 2000 particles

Figure 3.10: A general view of the estimation results of truck arrivals at the bottom of the
vertical shaft with and without assimilating noisy data (each red triangle represents a truck
arrival in ground truth)

49

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

(a) Single arrive during [0 min, 30 min] (b) Two arrives during [150 min, 180 min]

Figure 3.11: Histogram of estimated truck arrival times at the bottom of the vertical shaft
during one step [(k − 1)∆T, k∆T], where ∆T = 30 min (each red triangle represents a
truck arrival in ground truth)

and the particle filtering can estimate the distribution (approximated by a histogram) of the
dimension.

3.5.1.2 Data preparation for estimating the truck arrivals

As shown in Figure 3.11b, the estimated truck arrival times obviously belong to two groups,
each of which approximates the distribution of a truck arrival. Therefore, we cluster the
estimated arrival times into groups (for example, using k-means clustering algorithm
(Kanungo et al., 2002)), and each group estimates one truck arrival. Suppose that there are
m such clusters: {Cc|Cc = {tc1, tc2, . . . , tcnc}}

m
c=1; based on the data in each cluster, we

can fit a probability distribution of truck arrival times by whatever means. In our case, we
fit a kernel distribution using the Normal kernel to the data in each cluster, for example, in
Figure 3.13, we show the obtained kernel distribution fitted to the data belonging to the
cluster at the right side in Figure 3.11b.

If we denote the fitted probability distribution from data in cluster Cc as fc(t), and the
cumulative distribution function as Fc(t), the probability that a truck arriving at the bottom
of the vertical shaft during a very small interval [t− ε, t+ ε] can be computed as

Prob(arriving during [t− ε, t+ ε]) = Fc(t+ ε)− Fc(t− ε),

and for convenience, we denote this probability as Pc(t, ε). Pc(t, ε) thus represents the
probability that a truck arriving at the bottom of the vertical shaft during [t − ε, t + ε];
the subscript c indicates that the probability is computed from the probability distribution
fitted to the data in cluster Cc.

50

3.5. CASE STUDY IN THE GOLD MINE SYSTEM – QUANTITATIVE ANALYSIS

Figure 3.12: The estimated dimension of the state trajectory x0:N+
k

at time step k = 16

(the corresponding ground truth value is 157)

3.5.2 Evaluation criteria

3.5.2.1 Dimension of the state trajectory

Given the distribution (histogram) of N+
k , we can estimate N+

k as follows:

N̂+
k =

1

Np

Np∑
i=1

N+
k

i
(3.25)

where Np is the number of particles, and N+
k

i
is the dimension estimated from the i-th

particle. The estimation error of the state trajectory dimension can be defined as

Errk = N+
k − N̂

+
k (3.26)

where N+
k is the ground truth value. The average dimension error can be defined as

Ē =
∆T

span

span/∆T∑
k=1

|Errk| (3.27)

where span is the simulation run length, and ∆T is the measurement interval.

3.5.2.2 Truck arrivals

Assume that the ground truth value of truck arrivals is A = {t1, t2, . . . , tn}. After data
processing, we obtain m clusters {Cc|Cc = {tc1, tc2, . . . , tcnc}}

m
c=1; from each cluster, we

have a fitted probability density function. The format of the ground truth data and the

51

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

168 170 172 174 176 178 180

Data

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
en

si
ty

estimated truck arrival times
kernel distribution fit (Normal kernel)
truck arrival 177.2472

Figure 3.13: Fitting a kernel probability distribution using the Normal kernel to the truck
arrival times in one cluster (this group of data belongs to the cluster at the right side in
Figure 3.11b; the red triangle represents a truck arrival in ground truth)

estimated data can thus be shown in Figure 3.14. The performance indicators are defined
as follows.

For each arrival ti ∈ A, if there exists a cluster Cci such that

Pci(ti, ε)

max{Pci(t, ε)}
> δ, (3.28)

we regard that the arrival ti is successfully estimated by Cci . Pci(t, ε) should get its
maximum value (i.e.,max{Pci(t, ε)}) around the time instant when the probability density
function fci(t) reaches its peak; δ ∈ [0, 1) is a threshold value we can arbitrarily set, i.e., if
the probability Pci(ti, ε) is larger than certain percent (i.e., δ) of the maximum probability,
we regard that the arrival ti is successfully estimated by Cci . For any ti ∈ A, there is at
most one cluster in {Cc|Cc = {tc1, tc2, . . . , tcnc}}

m
c=1 that can successfully estimate ti.

Obviously, the more arrivals in A being successfully estimated, the better performance
of the estimation. Thus, we define a success rate as

SR =
nm
n
× 100% (3.29)

where nm is the number of arrivals in A being successfully estimated. The best value of
SR is 100%, which means that all arrivals are successfully estimated.

If a cluster Cc cannot estimate any ti ∈ A, we regard Cc is wasted. Obviously, the less
number of wasted clusters, the better performance of the estimation. Therefore, we define
a waste rate as

WR =
|m− nm|

m
× 100% (3.30)

The best value of WR is 0%, which means that all clustered groups can be used to estimate
a truck arrival.

52

3.5. CASE STUDY IN THE GOLD MINE SYSTEM – QUANTITATIVE ANALYSIS

time

time

observed truck arrivals

estimated truck arrivals

density

t1 t2 tn

C1 C2 Cm

Figure 3.14: Format of the ground truth data and estimated data

Suppose that ti ∈ A is estimated by the cluster Cci ; as shown in Figure 3.14, we
certainly want ti to be as close as possible to the time instant when the probability
distribution is peaked. Therefore we define two measures to quantify such closeness:

• average distance to the time instant when the probability density function is peaked:

d̄ =
1

nm

inm∑
j=i1

|tj − t∗cj | (3.31)

where t∗cj is the time instant when fcj (t) is peaked.

• average percentage that Pcj (tj , ε) accounts for Pcj (t
∗
cj , ε):

P̄ = 100%× 1

nm

inm∑
j=i1

Pcj (tj , ε)

max{Pcj (t, ε)}
= 100%× 1

nm

inm∑
j=i1

Pcj (tj , ε)

Pcj (t
∗
cj , ε)

(3.32)

3.5.3 Results
In this section, we present the estimation results of assimilating the noisy dataset (σe =
3.0, σt = 3.0) with Np = 2000 particles. The model into which we assimilate the noisy
data is the same with that we used to generate the simulated data, which means that we use
a perfect model of the gold mine system; when retrieving the simulation state at any time t,
we use linear interpolation which is introduced in section 3.3.3 to obtain the updated state
value.

3.5.3.1 The estimated dimension of the state trajectory

The estimated dimension of state trajectory x0:N+
k

is shown in Figure 3.15. The average
absolute estimation error is

Ē =
1

16

16∑
k=1

|N+
k − N̂

+
k | = 0.19.

Considering that the dimension is an integer, this error is negligible.

53

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

time step

0

20

40

60

80

100

120

140

160
es

tim
at

ed
 d

im
en

si
on

 o
f t

he
 s

ta
te

 tr
aj

ec
to

ry
dimension ground truth
dimension estimation

Figure 3.15: The estimated dimension of the state trajectory

3.5.3.2 The estimated truck arrivals

The raw estimation results shown in Figure 3.10b is clustered using the k-means clustering
algorithm (Kanungo et al., 2002), and the results are shown in Table 3.3. The k-means
clustering algorithm outputs 20 clusters, i.e., {Cc}20

c=1, as shown in the first column
of the table; the second column gives the time instant (t∗c) where the fitted probability
distribution is peaked; while the third column computes the probability (Pc(t∗c , ε)) that a
truck arrives at the bottom of the vertical shaft during [t∗c − ε, t∗c + ε]. In this dataset, there
are 20 arrivals during the simulation period, i.e., A = {t1, t2, . . . , t20}. The probability
Pc(ti, ε), c = 1, 2, . . . , 20; i = 1, 2, . . . , 20 is computed and presented from the 4th
column to the 23rd column. The results show that all arrivals lie in certain cluster, i.e,
∀ti ∈ A,∃Cci ∈ {Cc}20

c=1, s.t. ti ∈ [min{Cci},max{Cci}].
We compute the match criterion (see equation 3.28) for each truck arrival in A, and

the results are depicted in Figure 3.16. With threshold value δ = 50%, there are 19
truck arrivals in A = {t1, t2, . . . , t20} being successfully estimated by clusters {Cc}20

c=1.
Therefore, we have

• success rate SR = nm
n × 100% = 19

20 × 100% = 95.00%.

• waste rate WR = m−nm
m × 100% = 20−19

20 × 100% = 5.00%.

• average distance d̄ = 1
nm

∑inm
j=i1
|tj − t∗cj | = 0.53 minute.

• average percentage P̄ = 100%× 1
nm

∑inm
j=i1

Pcj (tj ,ε)

Pcj (t∗cj
,ε) = 92.66%.

In current operation of the gold mine system, the elevator only comes down until it
receives a request from the miner, therefore it will always arrive at the bottom of the

54

3.5. CASE STUDY IN THE GOLD MINE SYSTEM – QUANTITATIVE ANALYSIS

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

truck arrivals ground truth (minutes)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.16: The match criterion 100%×Pci(ti, ε)/Pci(t∗ci , ε) (each red triangle represents
a truck arrival in ground truth)

vertical shaft at least 1.8 minutes (the difference between the time of truck traveling full of
ore and the time of elevator going down empty) later than the trucks do. In other words,
the truck will always wait at least 1.8 minutes until it can be served. However, using data
assimilation, we can estimate 95% of all truck arrivals with an average error of 0.53 minute
(which is much smaller than 1.8 minutes). If these estimation results can be combined
in the operation of the gold mine system (especially in the operation of the elevator), the
overall performance of the gold mine system should be improved.

55

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

Table
3.3:T

he
data

assim
ilation

estim
ation

results
(σ
e

=
3.0,σ

t
=

3.0
;N

p
=

2
0
0
0
;ε

=
0.05

m
inute)

data
processing

results
truck

arrivalsground
truth

cluster
C
c

t ∗c
P
c (t ∗c ,ε)

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
1
0

t
1
1

t
1
2

t
1
3

t
1
4

t
1
5

t
1
6

t
1
7

t
1
8

t
1
9

t
2
0

26.8918
52.0784

71.6300
96.5060

114.2494
136.1225

154.6024
177.2472

198.4608
219.3735

246.4805
273.5331

296.9505
320.6399

346.2515
373.8774

393.4647
421.3536

439.5858
459.0086

C
1

26.9086
0.0819

0.0816
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
2

52.0880
0.0228

–
0.0228

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
3

71.6378
0.0308

–
–

0.0308
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
4

96.2479
0.0324

–
–

–
0.0296

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
5

115.9603
0.0287

–
–

–
–

0.0284
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
6

136.0023
0.0226

–
–

–
–

–
0.0224

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
7

154.6680
0.0283

–
–

–
–

–
–

0.0280
–

–
–

–
–

–
–

–
–

–
–

–
–

C
8

178.2611
0.0239

–
–

–
–

–
–

–
0.0186

–
–

–
–

–
–

–
–

–
–

–
–

C
9

198.7183
0.0214

–
–

–
–

–
–

–
–

0.0207
–

–
–

–
–

–
–

–
–

–
–

C
1
0

221.2574
0.0235

–
–

–
–

–
–

–
–

–
0.0226

–
–

–
–

–
–

–
–

–
–

C
1
1

246.4534
0.0233

–
–

–
–

–
–

–
–

–
–

0.0233
–

–
–

–
–

–
–

–
–

C
1
2

273.3759
0.0289

–
–

–
–

–
–

–
–

–
–

–
0.0280

–
–

–
–

–
–

–
–

C
1
3

297.0031
0.0253

–
–

–
–

–
–

–
–

–
–

–
–

0.0252
–

–
–

–
–

–
–

C
1
4

320.7218
0.0289

–
–

–
–

–
–

–
–

–
–

–
–

–
0.0286

–
–

–
–

–
–

C
1
5

346.1563
0.0384

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0.0375
–

–
–

–
–

C
1
6

372.1869
0.0309

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0.0191

–
–

–
–

C
1
7

393.3903
0.0307

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0.0304
–

–
–

C
1
8

420.1895
0.0733

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0.0120

–
–

C
1
9

441.2210
0.0196

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0.0139
–

C
2
0

459.8954
0.0105

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0.0094

56

3.6. CONCLUSIONS

3.5.3.3 The effect of the interpolation operation

In this section, we explore the influence of interpolation on the estimation results. To this
end, we run the data assimilation experiment 10 times with different random seeds, and
draw box plots of the five error measures (i.e., Ē in equation 3.27, SR in equation 3.29,
WR in equation 3.30, d̄ in equation 3.31, and P̄ in equation 3.32) in Figure 3.17. The
results show that though the estimation results obtained from data assimilation without
interpolation are already accurate, they can be improved significantly (in the statistic sense)
if the interpolation operation is used. Though it is not accurate enough to retrieve the
model state without interpolation, the retrieved state still reflects reality to a certain degree,
therefore, the estimation results are much better than those without data assimilation. With
interpolation, the time elapsed since the last state transition is considered, therefore the
real-time evolution, which is not captured in the discrete event simulation model but does
happen in reality, will be reflected through the measurement model. Consequently, the
estimation results obtained from data assimilation with interpolation are more accurate
than those obtained without interpolation.

yes no

interpolation or not?

0.2

0.22

0.24

0.26

0.28

0.3

0.32

av
er

ag
e

di
m

en
si

on
 e

rr
or

yes no

interpolation or not?

80

85

90

95

100

su
cc

es
s

ra
te

yes no

interpolation or not?

0

5

10

15

20

w
as

te
 r

at
e

yes no

interpolation or not?

0.5

0.6

0.7

0.8

0.9

1

av
er

ag
e

di
st

an
ce

yes no

interpolation or not?

78

80

82

84

86

88

90

92

av
er

ag
e

pe
rc

en
ta

ge

Figure 3.17: The influence of interpolation on the data assimilation results (noisy dataset
(σe = 3.0, σt = 3.0); Np = 2000; 10 independent runs)

3.6 Conclusions
In this chapter, we presented a particle filter based data assimilation framework for discrete
event simulations (of closed systems), in which measurements are distributed over the
measurement interval (i.e. data fed at time step k ∈ {1, 2, . . . } can contain observations
occurring at any time instant during the last measurement interval [(k − 1)∆T, k∆T]),
implying that the measurements are dependent on the state transitions during that mea-
surement interval. In this framework, two key theoretical problems which hinder the
application of particle filtering in discrete event simulations are presented and solved. Both
problems are incurred by the mismatch between the discrete event state process and the
measurement process, which do not occur in standard discrete time state space models (of
closed systems). The problems and corresponding solutions are summarized as follows:

• The first problem is the state retrieval problem, which means that the state retrieved
from a discrete event simulation model is a combination of sequential states of
atomic components that were updated at past time instants, with which inaccurate

57

CHAPTER 3. A PARTICLE FILTER BASED DATA ASSIMILATION FRAMEWORK
FOR DISCRETE EVENT SIMULATIONS

estimation results will be obtained. The solution is to introduce an interpolation
operation which interpolates state values based on the system states updated within a
time interval around the time instant when the operation is invoked in order to obtain
updated state values. The size of the time interval is determined by the interpolation
method employed.

• The second problem is the variable dimension problem, which means that the dimen-
sion of the state trajectory s0:k (see definition in equation 3.13) is a random variable.
This is because the duration between two consecutive state updates in a discrete
event simulation is not a constant, but usually a random variable. The variable
dimension of s0:k will lead to inapplicability of the standard sequential importance
sampling algorithm which updates p(s0:k|m1:k). To address the variable dimension
problem, we borrow the results from Godsill et al. (2007), in which the problem
is solved by extending the state trajectory of interest (with variable dimension)
to a sufficient large dimension to make it a fixed dimension state trajectory. The
standard sequential importance sampling algorithm can thus be applied to update
the joint distribution of the extended state trajectory with fixed dimension. Samples
in which the extended state points are discarded will form the samples from the joint
distribution of the state trajectory of interest. It is proven that the weight update is
independent of these discarded extensions. This result implies that in practice we can
safely apply the sequential importance sampling algorithm to update p(s0:k|m1:k)
where s0:k has a variable dimension.

To illustrate the working of the proposed data assimilation framework, a case in a gold
mine system is studied in which we estimate the truck arrival times at the bottom of the
vertical shaft. The results show that:

• The proposed data assimilation framework is able to provide accurate estimation
results in discrete event simulations of closed systems. In the gold mine case study,
assimilating (with interpolation) the noisy dataset with Gaussian noise N (0, 32)
added on entity positions, the performance indicators of estimating the truck arrivals
are 95.00% (success rate), 5.00% (waste rate), 0.53 minute (average distance),
and 92.66% (average percentage), respectively (see section 3.5). In contrast, the
simulation without data assimilation totally loses its prediction ability from t = 150
minutes onwards (see section 3.4).

• Though the estimation results obtained from data assimilation without interpolation
are already accurate, they can be improved significantly (in the statistic sense) if the
interpolation operation is used. If the model state is retrieved without considering the
elapsed time (i.e. without interpolation), it can still reflect reality to a certain degree,
and the estimation results are much better than those without data assimilation
(see section 3.4). However, with interpolation, the elapsed time since the last
state transition is considered, and as a result, the real-time evolution, which is
not captured in the model but does happen in reality, will be reflected through
the measurement model. Consequently, the estimation results obtained from data
assimilation with interpolation are the most accurate among the three cases (i.e.
estimation without data assimilation, estimation with data assimilation without
interpolation, and estimation with data assimilation with interpolation).

58

3.6. CONCLUSIONS

• The variable dimension state trajectory has no tangible effect on weight updat-
ing, and particle filtering can approximate the dimension of the state trajectory
accurately. In the gold mine case, the average absolute estimation error for the
dimension of the state trajectory is 0.19; considering that the dimension is an integer,
this error is negligible (see section 3.5.3.1). The variable dimension problem does
not always occur in data assimilation in discrete event simulations. This problem
will occur when the measurements are distributed over the measurement interval,
i.e., when the measurements are dependent on the (detailed) state transitions within
the measurement interval. Otherwise, one can always formalize the discrete event
simulation model into a discrete time state space model, similar to the work in Gu
and Hu (2008); Hu (2011); Xue et al. (2012), to conduct data assimilation; if more
accurate estimation results are required, a proper interpolation operation needs to be
developed to get updated state values, as exemplified in section 3.3.3.

In summary, particle filtering is in principle applicable to data assimilation in discrete
event simulations. However, to apply particle filtering in discrete event simulations
effectively, we need to clearly understand the characteristics of discrete event simulations,
which make the state retrieval and the random measure update different from those in
discrete time models. Though the random measure update equations finally adopt their
standard forms, we should know the reason behind. The standard sequential importance
sampling algorithm is used to update the joint distribution of the state trajectory with
a fixed dimension, while the desired joint distribution of the state trajectory of interest
that has a variable dimension is a marginal. Since weight update is independent of the
extensions which extend the variable dimension state trajectory to a fixed dimension, we
can in practice directly update this marginal without generating the extensions. As a result,
the random measure update equations in discrete event simulations have the same forms
with those in discrete time models.

59

4

C
H

A
P

T
E

R

Particle filter based data
assimilation in discrete event
simulations of open systems1

In chapter 3, we presented a particle filter based data assimilation framework for
discrete event simulations of closed systems, in which the model components do not
change over time. However in reality, we often encounter discrete event systems

where entities can continuously flow in and flow out through the system boundaries,
such as urban traffic systems, which will incur another form of the variable dimension
problem. Therefore in this chapter we investigate the data assimilation problem in discrete
event simulations of open systems in which the variable dimension problem arises in
a different way. Since in chapter 3 we have elaborated on the key components in the
particle filter based data assimilation framework for discrete event simulations, such as
the system model, the measurement model (with interpolation), and the particle filtering
algorithm, in this chapter we will present the data assimilation framework for discrete
event simulations of open systems very briefly, because many components (such as state
updates, measurement model, and interpolation) are very similar with those in chapter 3,
and we mainly focus on the differences and why the variable dimension problem occurs
in discrete event open systems and how we address this problem. Since characteristics
summarized in section 2.3.1 are the nature of discrete event systems, they are independent
of the modeling formalisms, which means modeling formalisms do not influence the
working of the proposed data assimilation framework. Therefore, in this chapter, we do

1This chapter is a revised version of a paper submitted to Transportation Research Part C: Emerging
Technologies: Xie, X., van Lint, J. W. C., Verbraeck, A.: A generic data assimilation framework for vehicle
trajectory reconstruction on signalized urban arterials using particle filters.

61

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

not explicitly mention the formalism that is used to model discrete event open systems,
and indeed one can choose any discrete event modeling formalisms which are deemed
appropriate to model these systems.

4.1 Particle filtering in discrete event simulations of open
systems

In this section, we investigate the data assimilation problem in discrete event simulations of
open systems. The system model for discrete event open systems is defined in section 4.1.1,
in which we do not put any emphasize on the detailed state transitions (of individual
components or of the coupled model) that are similar with those in chapter 3. The
measurement model is briefly introduced in section 4.1.2 where we still assume that the
measurements are distributed over the last measurement interval, and the interpolation
operation invoked at a time instant t is independent of the states beyond that time. Finally
the particle filtering algorithm for state estimation in discrete event simulations of open
systems is presented in section 4.1.3, in which the variable dimension problem is explained
and solved.

4.1.1 System model
A discrete event simulation of an open system can be generalized as

Sk = SIM(Sk−1, Ek,∆T) + νk−1, k = 1, 2, . . . (4.1)

where Sk defines the system state, SIM(·) is a discrete event simulation model, and νk−1

represents a system noise process. ∆T is the measurement interval, and Ek,∆T is a list of
events that model entity arrivals at the system boundaries during the k-th measurement
interval [(k − 1)∆T, k∆T]. An entity is an object in the system under study, for example,
in an urban traffic system, vehicles are the main entities in the system. Assume that the
state of an entity in the system is modeled as sik, where i is the entity index, then the system
state can be defined as

Sk = {sik}
Qk
i=1 (4.2)

where Qk is the number of entities that have entered the system until time k, which can be
defined as

Qk = N0 +
∑

j∈Inflow

∫ k∆T

0

qj(s)ds

where N0 is the number of entities in the system in the beginning, Inflow is a set of
system boundaries where entities can enter the system, and qj(s) is the flow at the boundary
j ∈ Inflow.

Since entities enter the system at different time instants which are usually irregularly
distributed on the continuous time axis, the local state updates within each entity are
asynchronous with each other. As a result, the actual system state updates are still
asynchronous with the measurement process, though equation 4.1 has the form of a
discrete time state space model. We can interpret Sk in equation 4.1 as an interpolated
system state at time instant k∆T .

62

4.1. PARTICLE FILTERING IN DISCRETE EVENT SIMULATIONS OF OPEN
SYSTEMS

The system state Sk can be further separated as

Sk = {sik}
Qk
i=1 = {sik}

Qk−Nk
i=1 ∪ {sik}

Qk
i=Qk−Nk+1, where

Nk = N0 +
∑

j∈Inflow

∫ k∆T

0

qj(s)ds−
∑

j∈Outflow

∫ k∆T

0

qj(s)ds
(4.3)

in which Outflow is a set of boundaries where entities leave the system. {sik}
Qk−Nk
i=1

represents the states of entities that have left the system. Once an entity leaves the system,
we stop updating its state in the simulation. Nk is actually the number of (active) entities
in the system at time k. Since the arrivals of entities usually obey certain stochastic process
(e.g., Poisson process), Qk is a random variable.

4.1.2 Measurement model
We assume that the measurements available at time k are dependent on the (detailed) state
transitions during the last measurement interval [(k− 1)∆T, k∆T]; the interpolation oper-
ation invoked at any time instant is independent of the states beyond that time. Therefore,
the measurement model can be formalized as

mk ∼ p(mk|Sk−1:k), k = 1, 2, . . . (4.4)

where Sk−1:k represents the detailed state trajectory during [(k − 1)∆T, k∆T].

4.1.3 State estimation using particle filters
The state estimation using particle filters essentially approximates the conditional dis-
tribution p(S0:k|m1:k) given all measurements until time k, where S0:k = {Si, i =
0, 1, . . . , k},m1:k = {mi, i = 1, 2, . . . , k}. To highlight the dimension of Sk, we
put Qk in its subscript, therefore the objective of particle filtering is to approximate
p(S0,Q0:k,Qk |m1:k). Based on Bayes’ theorem, we have

p(S0,Q0:k,Qk |m1:k) =
p(S0,Q0:k,Qk)p(m1:k|S0,Q0:k,Qk)

p(m1:k)

A recursive update equation can thus be obtained:

p(S0,Q0:k,Qk |m1:k) = p(S0,Q0:k−1,Qk−1 |m1:k−1)×
p(mk|Sk,Qk)p(Sk,Qk |Sk−1,Qk−1)

p(mk|m1:k−1)
(4.5)

Since Qk is a random variable, the dimension of S0,Q0:k,Qk is also random. Therefore,
we cannot use the standard sequential importance sampling algorithm to update the poste-
rior distribution in equation 4.5 due to the variable dimension of S0,Q0:k,Qk . This variable
dimension problem is addressed in a similar way with that in Godsill et al. (2007), i.e., we
first make S0,Q0:k,Qk to have a fixed dimension with certain extensions, and then we prove
that the extensions have no influence on the weight update. To this end, we define a state
with fixed dimension as follows

Sk,K = Sk,Qk ∪ Vk,K−Qk

63

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

where Sk,Qk is defined in equation 4.3; Vk,K−Qk = {sjk}Kj=Qk+1 defines a set of virtual
entities that make Sk,K to have fixed dimensionK, which is a sufficient large constant such
thatK ≥ Qk, k = 0, 1, 2, . . . , span/∆T , where span is the length of the simulation study
period. These virtual entities have no influence on the evolution of Sk,Qk . Since Sk,K has
a fixed dimension, the state trajectory S0,K:k,K will have a fixed dimension, and as a result,
we can use the sequential importance sampling algorithm to update p(S0,K:k,K |m1:k),
which is first factorized as

p(S0,K:k,K |m1:k) = p(S0,Q0:k,Qk |m1:k)π(V0,K−Q0:k,K−Qk |S0,Q0:k,Qk)

where the conditional distribution π complements the state trajectory with variable dimen-
sion to a fixed dimension. π can be chosen arbitrarily.

Suppose we have a set of random samples χk−1 to approximate p(S0,Q0:k−1,Qk−1
|m1:k−1):

χk−1 = {Si0,Q0:k−1,Qk−1
, wik−1}

Np
i=1 (4.6)

We then update the samples based on certain importance density q(·). We can assume that
q(·) can be factorized as

q(S0,Q0:k,Qk |m1:k) = q(Sk,Qk |S0,Q0:k−1,Qk−1
,m1:k)q(S0,Q0:k−1,Qk−1

|m1:k−1)

Then the particles in equation 4.6 are updated in two steps. First, these particles are updated
to time k by sampling according to

q(Sk,Qk |S0,Q0:k−1,Qk−1
,m1:k)

Second, the updated particles are complemented to a fixed dimension by drawing samples
from

q(V0,K−Q0:k,K−Qk |S0,Q0:k,Qk) = π(V0,K−Q0:k,K−Qk |S0,Q0:k,Qk)

The weights in equation 4.6 are updated as follows:

wk =
p(S0,K:k,K |m1:k)

q(S0,K:k,K |m1:k)

=

p(mk|Sk,Qk)p(Sk,Qk |Sk−1,Qk−1
)p(S0,Q0:k−1,Qk−1

|m1:k−1)

p(mk|m1:k−1)q(Sk,Qk |S0,Q0:k−1,Qk−1
,m1:k)q(S0,Q0:k−1,Qk−1

|m1:k−1)

× π(V0,K−Q0:k,K−Qk |S0,Q0:k,Qk)

π(V0,K−Q0:k,K−Qk |S0,Q0:k,Qk)

∝
p(mk|Sk,Qk)p(Sk,Qk |Sk−1,Qk−1

)

q(Sk,Qk |S0,Q0:k−1,Qk−1
,m1:k)

p(S0,Q0:k−1,Qk−1
|m1:k−1)

q(S0,Q0:k−1,Qk−1
|m1:k−1)

=
p(mk|Sk,Qk)p(Sk,Qk |Sk−1,Qk−1

)

q(Sk,Qk |S0,Q0:k−1,Qk−1
,m1:k)

× wk−1

which is again independent of the states of the virtual entities.
Notice that we assume the measurement is dependent on the (detailed) state transitions

during the last measurement interval (see equation 4.4), the weight update equation can
thus be modified to

wk ∝
p(mk|Sk−1,Qk−1:k,Qk)p(Sk−1,Qk−1:k,Qk |Sk−1,Qk−1

)

q(Sk−1,Qk−1:k,Qk |S0,Q0:k−1,Qk−1
,m1:k)

× wk−1

64

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

This formal proof implies that the variable dimension state trajectory has no tangible
effect on weight updating, we therefore can safely apply the sequential importance sampling
algorithm in discrete event simulations of open systems. Since the sequential importance
sampling algorithm has been introduced several times in previous chapters, we do not
repeat it here any more.

4.2 Case study – reconstructing vehicle trajectories on
signalized urban arterials

In most microscopic traffic simulations, the simulation state is updated in a stepwise
fashion, such as FOSIM 2 and MovSim 3. However, urban traffic systems also show clear
discrete event features. First, vehicles can flow in and flow out of the study area at any
time instants on a continuous time axis. Second, traffic flow is usually regulated by traffic
signals. Therefore, we regard urban traffic systems as discrete event open systems. As
a result, the discrete event approach is a good choice to model urban traffic systems, in
which vehicle arrivals/departures and signal control logic can be modeled more realistically
and more conveniently; the stepwise state update mechanism of vehicles can be easily
implemented using a discrete event approach (the duration between two consecutive state
updates is constant), but not in a reverse way. Therefore, in this chapter, we study a case
in urban traffic systems to demonstrate the working of the proposed data assimilation
framework in open systems. In this case study, we aim to reconstruct vehicle trajectories
on signalized urban arterials.

In order not to distract readers from the storyline of trajectory reconstruction in sub-
sequent sections, we introduce the interpolation operation here, and will not mention
this concept in the rest of this chapter. Since vehicles enter the simulation at different
time instants, the times when vehicles update their states are different from vehicle to
vehicle. As a result, an interpolation operation is required when retrieving the system
state. As will be explained in subsequent sections, the state of a vehicle at a time instant
t ∈ R+

0,∞ = {r ∈ R|r ≥ 0} can be defined as

s(t) = {x(t), v(t), a(t)} (4.7)

where x, v, and a are the vehicle’s longitudinal location, speed, and acceleration, respec-
tively. Then the state of the vehicle at any time t can be computed as follows:

x(t) = x(t0) +

∫ t

t0

v(s)ds

v(t) = v(t0) +

∫ t

t0

a(s)ds

where t0 is the time instant when the vehicle enters the system, and x(t0) indicates the
location of the system boundary. In many microscopic traffic simulation model, the state

2FOSIM (Freeway Operation SIMulation), developed at Delft University of Technology, is a microscopic
traffic simulation package which has been extensively calibrated and validated for traffic operations on Dutch
freeways. More information can be found at https://www.fosim.nl/.

3MovSim is a microscopic lane-based traffic simulator, and more information can be found at http:
//www.movsim.org/.

65

https://www.fosim.nl/
http://www.movsim.org/
http://www.movsim.org/

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

of a vehicle is updated every δt time units, and the movement of the vehicle during the
δt length period is usually modeled as a constant speed or constant acceleration process.
Suppose that the last state update was at time tl, at any time t ∈ (tl, tl + δt), the state of
the vehicle can be obtained through interpolation (the implementation details can be found
in section A.2.5.1) as follows:

ŝ(t) = interpolate(s(tl), e)

where

x(t) =

x(tl) + v(tl)× (t− tl) +

1
2
× a(tl)× (t− tl)

2 if v(tl) + a(tl)× (t− tl) ≥ 0

x(tl)− 1
2
× v(tl)×v(tl)

a(tl)
if v(tl) + a(tl)× (t− tl) < 0

v(t) = max{0, v(tl) + a(tl)× (t− tl)}

a(t) =

a(tl) if v(tl) + a(tl)× (t− tl) ≥ 0

0 if v(tl) + a(tl)× (t− tl) < 0

In the rest of this section, the data assimilation framework presented in section 4.1
is tailored to solve the trajectory reconstruction problem, and the solution is a generic
data assimilation framework based on particle filters to reconstruct (plausible) vehicle
trajectories on signalized urban arterials. The solution is generic in the sense that any
(ensemble of) microscopic simulation models (that implement car following, lane changing,
crossing, etc.) can be used. In section 4.2.1, we introduce the trajectory reconstruction
problem, present related work, and overview the main notation used in the data assimilation
framework. Section 4.2.2 then overviews the overall trajectory reconstruction methodology,
after which section 4.2.3 details the particle filter based data assimilation framework and
section 4.2.4 discusses data preprocessing methods and assumptions related to error models
associated with the different data sources used.

4.2.1 The trajectory reconstruction problem
Vehicle trajectory data provide critically important information for many application areas,
ranging from calibration and validation of microscopic traffic flow models (Kesting and
Treiber, 2008; Punzo and Montanino, 2016), traffic state reconstruction (van Lint and
Hoogendoorn, 2010; Wang et al., 2006), travel time estimation (van Lint, 2010; Coifman,
2002), vehicle energy/emissions estimation (Sun et al., 2015; da Rocha et al., 2015), to
name just a few. With trajectory data, a complete picture of traffic flow operations can
be obtained, both microscopically and macroscopically. Trajectory data can be collected
using a wide range of sensing technologies, such as aerial photography, video, and mobile
traffic sensors based on GPS and/or GSM (Montanino and Punzo, 2015; Sun and Ban,
2013). Whereas reconstructing trajectories from microscopic information (e.g., aerial
images, GSM traces) requires considerable methodological effort in itself (Montanino and
Punzo, 2015), there are only a few cases for which comprehensive data that cover 100% of
all vehicle trajectories are available. Collecting such comprehensive trajectory data over

66

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

large distances (routes, networks) and long time periods is expensive. With infrastructure
based sensors or aerial imaging, the collected data can only cover a limited spatiotemporal
region due to the high installation and maintenance costs, and it will take a few years (if
not longer) before 100% of all vehicles/drivers are equipped with location tracking systems
or apps that continuously communicate these data for use in modeling, control or other
applications. The next best alternative is to estimate vehicle trajectories from whatever
data are available.

4.2.1.1 Estimating vehicle trajectories

Many methods for estimating vehicle trajectories from data have been proposed, which in
general terms (should) combine three ingredients: data (from various types of sensors);
assumptions (models, equations) that describe the relation between the data and the under-
lying vehicle trajectories; and data assimilation techniques that combine these ingredients
and in the process address measurement and modeling errors. For example, Coifman
(2002) reconstructs vehicle trajectories in order to estimate travel times on freeways using
traffic data from a single dual loop detector. The proposed method exploits basic traffic
flow theory to extrapolate local traffic conditions to an extended freeway link. However,
this method will fail when a queue covers the link, which is very common in signalized
arterials. An obvious remedy is to reconstruct vehicle trajectories along a route using
multiple loop detectors (van Lint, 2010), so that the trajectory reconstruction process is
based on information from both up- and downstream locations. The resulting vehicle
trajectories are essentially idealized average vehicle trajectories, similar to Lagrangian
solutions of kinematic wave theory. However, the adaptive smoothing method used in
van Lint (2010) is not suitable for urban trajectory reconstruction in the original form
(Treiber and Helbing, 2002; van Lint and Hoogendoorn, 2010), because it would smooth
speeds over intersections. Adjusting the method for use in urban settings seems doable
in principle, but has not been reported yet. Mehran et al. (2012) propose a data fusion
framework to reconstruct vehicle trajectories on urban arterials by incorporating probe and
fixed sensor data and the signal timing parameters. The proposed method is also based on
kinematic wave theory and employs the variational formulation (VF) (Daganzo, 2005a,b)
to solve a dense solution network which is constructed by discretizing the time-space plane.
The key principle of the VF method is that the cumulative number of vehicles at each
node in this solution network can be computed by a shortest path search from nodes where
the cumulative numbers are known (boundary conditions). As a result, any curve which
connects nodes with the same cumulative number in the solution network represents an
individual vehicle trajectory. Sun and Ban (2013) also apply the VF method to estimate
trajectories by fusing probe vehicle trajectories and the signal timing data. However, in
both papers using the VF method, sensor errors such as miss-counting and over-counting
are not considered; whereas these pose common and difficult problems when using loop
detector data (Lu et al., 2008). With these errors, the cumulative numbers at boundaries
will be inaccurate. Worse still, the error resulting from using such erroneous counts in the
estimation of the number of vehicles between these cumulative count stations becomes
unbounded (van Lint and Hoogendoorn, 2015). Another problem is that, due to the use of
first order traffic flow theory, the speeds (trajectory slopes) between nodes are piecewise
constant (no acceleration) yielding piecewise linear vehicle trajectories. As shown by

67

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

Sun et al. (2015) and da Rocha et al. (2015), in case such piecewise linear trajectories
are used to estimate energy consumption or emissions, large errors result, since energy
consumption and emissions are influenced largely by the acceleration/deceleration process.
This point holds for any traffic state estimation method based on first order traffic flow
theory (e.g., Nantes et al. (2016); Yuan et al. (2012); van Hinsbergen et al. (2012)), with
which (indirect) also vehicle trajectories can be estimated.

In general, when the (behavioral) assumptions of these trajectory estimation methods
are insufficient for the application at hand, more elaborate assumptions are required. This
could involve estimation methods using higher order macroscopic models (that include
speed dynamics as in Wang et al. (2006)), or methods using microscopic models for driving
behavior. Goodall et al. (2016) present such a microscopic estimation method for vehicle
trajectories on freeways. The objective here is to use trajectory estimation to artificially
increase the penetration rate (in sample size as well as frequency) of connected vehicles.
The method proposes a strategy about when and where to add or remove simulated vehicles
(called estimated vehicles) in the microscopic simulation in order to make the actual
behavior of the probe vehicles align with their expected behavior predicted by their car-
following models. The results show that the effective penetration rate can be increased by
around 20% ∼ 30% using this method, which turned out beneficial for a ramp metering
application. However, in this approach no principled method to deal with data or modeling
errors is discussed.

4.2.1.2 The proposed solution

In this case study, we propose a generic data assimilation framework based on particle
filters to reconstruct (plausible) vehicle trajectories on signalized urban arterials, that
does systematically address errors both in the measurements and in the model. Like
Goodall et al. (2016), our framework uses microscopic models of driving behavior and
it assimilates noisy data from different sensors using particle filters (Arulampalam et al.,
2002; Djurić et al., 2003). The framework does not impose restrictions on the type of
microscopic models used; however, to illustrate the working, we consider the longitudinal
movements of vehicles only. In terms of data, the method takes in noisy vehicle passages
of individual vehicles (and as a result noisy vehicle counts) from loop detectors; signal
timing parameters, and coarsely available travel time observations. By ‘noisy’, we mean
that the passage data contains miss- and over-counts, resulting in counting errors.

Before elaborating the proposed data assimilation framework for trajectory reconstruc-
tion in subsequent sections, we finish this section by introducing the main notation used in
this proposed framework.

Notation

name unit description
∆T s time between two consecutive data feeds
N(t) veh number of vehicles at time instant t
Nk veh number of vehicles at time step k, Nk ≡ N(k∆T)
Q(t) veh number of vehicles that have entered the simulation till time instant t

68

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

Qk veh
number of vehicles that have entered the simulation till time step k,
Qk ≡ Q(k∆T)

xi(t) m location of the i-th vehicle at time instant t
xik m location of the i-th vehicle at time step k, xik ≡ xi(k∆T)
vi(t) m/s speed of the i-th vehicle at time instant t
vik m/s speed of the i-th vehicle at time step k, vik ≡ vi(k∆T)
si(t) − state of the i-th vehicle at time instant t
sik − state of the i-th vehicle at time step k, sik ≡ si(k∆T)
Sk − system state at time step k

Ek,∆T − vehicle arrivals during the k-th measurement interval [(k −
1)∆T, k∆T]

p − detection accuracy of a sensor
λ s−1 occurrence rate of over-count
mo
k − measurement at time step k

Ns − number of sensors
L − set of road stretches in the system

Ejk − observed vehicle passing times from the j-th (1 ≤ j ≤ Ns) sensor
during [(k − 1)∆T, k∆T]

N l
k veh observed number of vehicles on road stretch l (l ∈ L) at time step k

Sik − system state represented by the i-th particle at time step k

Eik,∆T − reconstructed vehicle arrivals for the i-th particle during the k-th
measurement interval [(k − 1)∆T, k∆T]

wik − weight of the i-th particle at time step k
N i
k veh number of vehicles in the i-th particle at time step k

Np − number of particles
xi,j(t) m location of the j-th vehicle in the i-th particle at time instant t

xi,jk m
location of the j-th vehicle in the i-th particle at time step k, xi,jk ≡
xi,j(k∆T)

vi,j(t) m/s speed of the j-th vehicle in the i-th particle at time instant t

vi,jk m/s
speed of the j-th vehicle in the i-th particle at time step k, vi,jk ≡
vi,j(k∆T)

Ei,jk −
vehicle passing times from the j-th (1 ≤ j ≤ Ns) sensor during the
k-th measurement interval [(k − 1)∆T, k∆T] when generating the
i-th particle

N i,l
k veh

number of vehicles on road stretch l (l ∈ L) at time step k in the
i-th particle

Nm − number (random variable) of miss-counts
No − number (random variable) of over-counts

Qi(t) veh
cumulative counts from the detector at cross-section xi at time
instant t

ti(n) s time instant when the n-th vehicle passes cross-section xi
Tr(n) s travel time estimated from the n-th vehicle
T obsr (t) s travel time observation observed at time instant t
P (X = x) − discrete probability distribution of random variable X
P (X|Y) − conditional probability
X̂ − estimation of variable X

69

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

4.2.2 Overview: a generic data assimilation framework for trajec-
tory reconstruction

In this section we describe the objective and overall ideas of the data assimilation frame-
work. The objective of the framework is to estimate the most probable system state
trajectory (in our case: the most probable set of vehicle trajectories on a roadstretch
[x1, x2] over a time period T), given the available data. The particle filter does this by
estimating the posterior distribution with a sufficient set of support points (particles) span-
ning this distribution, each of which represents one possible set of vehicle trajectories
that is computed by an arbitrary microscopic simulation model. One can interpret this
posterior as a “belief histogram” of the system state trajectory, that describes a sample of
probable sets of vehicle trajectories, given the data. This interpretation, however, is not
very informative in the context of trajectory reconstruction. We do not want many probable
sets of vehicle trajectories, but one set that is most likely given the data. Therefore we
output the set of trajectories with the highest weight, although this is not strictly correct
(since we obtain the estimation of interest not by Monte Carlo integration, but by the
particle with the highest weight). Notice that the objective of particle filtering is to estimate
p(s0:k|m1:k) (see section 2.2.3), therefore, as measurements accumulate, the reconstructed
vehicle trajectories will span the time-space region [x1, x2]× [0, T].

1. traffic signal timing parameters

2. vehicle passages from sensors at x1,

x2 , including miss/over-counts

T

advanced stop

line sensor

k-1 k

x1

x2

location

time

control logic of

traffic light

sensor configuration assumption of traffic flow dynamics

2: propagate from Sk-1 to generate Sk via

any microscopic traffic flow model, then

S0:k = {S0:k-1, Sk}

,k T
E

inflow sensor

t

n

1
()Q t

2
()Q t

0
t

1
t

2
t

0
n

2
ˆ ()
r

T t

2
()

obs

r
T t

*

2
()Q t

*

1
()Q t

option 1 option 2

(time)

(vehicles)

3. observations of

travel time

between x1 and x2

correction mechanism

available data

vehicle accumulation

between x1 and x2

1

1 1 1 1
{ , , ...} kNi i

k k k i
S x v

1
{ , , ...} kNi i

k k k i
S x v

vehicle accumulation at time

k is Nk, and the system state

is:

1: reconstruct the

correct number of

vehicles

vehicle accumulation at time

k-1 is Nk-1, and the system

state is:

Figure 4.1: The main idea of the data assimilation framework for vehicle trajectory
reconstruction

The main idea and ingredients of our approach are depicted in Figure 4.1. Recon-
structing vehicle trajectories with this approach thus implies attempting to reconstruct
the correct number of plausible vehicle locations, speeds (and possibly other dynamic
attributes). The italics indicate that this reconstruction involves two aspects:

1. We need to estimate the correct number of vehicles with the correct departure time
on the basis of observed vehicle passages. The key problem to overcome here is that
vehicle counts contain errors. Counting errors (caused by miss- or over-counting

70

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

passages) have a large effect on reconstructing trajectories. One miss- or over-count
may yield errors in all subsequent trajectories. Our approach to address this problem
is to first make the number of vehicle passages (by extension the flows) between
two detectors consistent. To this end we use the method proposed by van Lint
and Hoogendoorn (2015), which—similarly to the method described in Bhaskar
et al. (2014)— uses coarsely available individual travel times to periodically correct
cumulative curves (at location x1 and x2 respectively) and as a consequence compute
a correct number of vehicles between the detectors.

2. Using these corrected vehicle counts we can now reconstruct plausible vehicle
trajectories—potentially aided by either macroscopic speed data or individual tra-
jectory data. As touched upon in the introduction, this can be done by using
macroscopic (first or higher order) traffic flow theory, or by using microscopic
traffic flow simulation models (or anything in between). We choose the latter. In
fact, our framework allows the analyst to use whatever microscopic model deemed
appropriate (for the application at hand); that is, a model with longitudinal behavior
only, or a full fletched model that includes lane changing, crossing, etc. Clearly,
more degrees of freedom, without associated evidence in the form of microscopic
data, may yield more sophisticated estimations but not necessarily more plausible
vehicle trajectories.

Since many of the underlying steps are interrelated, we discuss these aspects in a
specific order. In section 4.2.3 we first explain the particle filtering rationale (aspect 2).
This involves the basic particle filtering principle (please see section 2.2.3 for more detail),
resampling and the procedure to go from partial vehicle trajectories (reconstructed when-
ever new measurements are available) to full trajectories (over consecutive measurement
time intervals). Thereafter, in section 4.2.4, we discuss the measurements (including the
vehicle accumulation correction method), and the assumptions related to the errors in each
used data source (aspect 1). In section 4.2.4 we then conclude with the computation of
particle weights (part of aspect 2), that depends on these error models.

4.2.3 Particle filter design for trajectory reconstruction

4.2.3.1 The resampling scheme

As explained in section 2.2.3, a major problem of particle filters is that the discrete random
measure degenerates quickly, therefore we need to resample the particles on a regular basis
after they are updated. There exist different resampling algorithms and methods (Douc
et al., 2005), and we propose a hierarchical strategy that is tailored to our specific problem.

Recall that the overall objective of our assimilation framework (Figure 4.1) is to
estimate the most probable number of vehicles; and—given this number of vehicles—
estimate the most probable vehicle trajectories. The rationale of our resampling strategy
is based on these two aspects. We first categorize particles (simulation instances) into
groups with similar vehicle accumulations, and resample within each group. This will
ensure there is a sufficient number of particles selected over a range of possible vehicle
accumulations. It is important to note that the weights of particles within such a group
do not differ as much compared to when all particles are considered as a whole. This

71

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

implies that by sampling within each group, the particles with small weights will have a
higher probability to be selected than in case all particles are resampled together. As a
result, this hierarchical resampling method will ensure that many likely particles are kept
for future iterations, whereas a sufficient number of less likely particles are not discarded.
The consequence is a better coverage of the entire state space. Suppose that the particles
generated from the sampling step are {Si0:k, w

i
k}
Np
i=1, the hierarchical resampling method

now works as follows:

• Sample based on the vehicle accumulations (number of vehicles) at time k. Suppose
that the vehicle accumulation at time k is Nk, and the corresponding value in the i-th
particle is N i

k. We categorize all particles into groups, such that any two particles
within the same group have the same value of vehicle accumulation. Assume that
there are C such groups, and the corresponding value of the vehicle accumulation
in the c-th group is N c, c = 1, 2, . . . , C. We again assign a probability value
pc = P (E = N c − Nk) to the c-th group, where P (E) corresponds to the error
model for vehicle accumulation, which will be discussed in section 4.2.4.2. In simple
terms, we favor those particles with a low error. Finally, pc, c = 1, 2, . . . , C are
normalized and Np samples are drawn from {N1, N2, . . . , NC} with replacement,
and N c has a probability of pc to be chosen. Suppose that N c is selected Nr(N c)

times, then we have
∑C
c=1Nr(N

c) = Np.

• Sample based on the weights. In the c-th group, we draw Nr(N c) particles with
probabilities proportional to their weights (the weights are temporarily normalized
within the group for sampling). In this process, if a particle is selected, its original
weight is also associated with that particle. When all groups are sampled, the
particles selected from each group form the resampled particles {Si0:k}

Np
i=1, and their

associated weights are {wik}
Np
i=1.

To actually compute a quantitative value for each weight, we require a mechanism
that takes into account the errors associated with each observation. We therefore return
to weight computation in section 4.2.4.4 after discussing the data error models. In this
section we further focus on the trajectory reconstruction method.

4.2.3.2 State dynamics: individual vehicle movements

In this section we specify the generic state dynamics in equation 4.1. In principle we
can choose whatever traffic flow model deemed appropriate for the estimation task at
hand, as long as it (endogenously) computes the system state from which measurements
(equation 4.4) can be constructed. Without loss of generality, in this case, we consider
the longitudinal movements of vehicles only, that is, we consider models for free-driving
and car-following (CF) that describe the acceleration behavior of driver-vehicle units as
a function of stimuli such as headway and speed difference with respect to a leading
vehicle, subject to physical considerations, and a wide range of (behavioral) assumptions.
In general terms, (discretized) CF models take on the following form

a(t+ T r) = f(η(t), ζ(t)),

in which T r ≥ 0 represents a reaction time, η(t) is a set of stimuli (headway, speed
difference with leader, etc.), and ζ(t) is a set of parameters specifying above mentioned

72

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

behavioral and physical assumptions. For comprehensive reviews of longitudinal models
for driving behavior see e.g., van Wageningen-Kessels et al. (2015); Saifuzzaman and
Zheng (2014); Brackstone and McDonald (1999). In our case, the precise form of the
CF models (or the models for lane changing, crossing, etc.) does not matter. Clearly,
applying a microscopic simulation model for state estimation, requires such a model to
be well-calibrated. We refer the reader to Punzo and Montanino (2016); da Rocha et al.
(2015); Punzo et al. (2015) for an in-depth treatment of microscopic model calibration,
which is beyond the scope of this case study. For our purposes, it is sufficient to describe
the resulting vehicle trajectory by time series of two variables: longitudinal location xi(t)
and speed vi(t), where i is index of the vehicle, that is

si(t) = {xi(t), vi(t)}, t ∈ R+
0,∞ = {r ∈ R|r ≥ 0}. (4.8)

During the simulation, new vehicles continuously arrive at the system boundary and
enter the simulation. These arrivals during a ∆T length period [(k − 1)∆T, k∆T], k =
1, 2, . . . , are modeled as a list of arrival events, that is,

Ek,∆T = {e1, e2, . . . , en}, (4.9)

where ei = {tei , Aei}(i = 1, 2, . . . , n) represents an arrival event of a new vehicle, where
tei is the relative arrival time to the beginning of the period (i.e. (k − 1)∆T), and Aei is
a set of attributes of the new vehicle, such as speed, destination, route, and vehicle type.
Note that in principle, such additional attributes could be part of the state vector, given
observations are available to estimate these. This is beyond the scope of this case study.

Now, we can define the simulation state at time k as

Sk = {sik}
Qk
i=1, k = 0, 1, 2, . . . , (4.10)

where sik ≡ si(k∆T) (see equation 4.8), and Qk = N0 +
∑

j∈Inflow

∫ k∆T

0

qj(s)ds is

the number of vehicles that have entered the simulation till time k; N0 is the number of
vehicles in the simulation initialization; Inflow is a set of system boundaries that vehicles
can flow in, and qj(s) is the the corresponding flow. Notice that Sk still includes the states
of vehicles that have left the system. However, once a vehicle leaves the system (i.e. the
simulation study area), we stop updating its state in the simulation. The evolution of the
total state of the simulation (and thereby equation 4.1) can now be expressed as

Sk = SIM(Sk−1, Ek,∆T) + νk−1, k = 1, 2, . . . , (4.11)

where SIM is the microscopic urban traffic simulation, that contains models for driv-
ing behavior and traffic control logic, and Sk, Ek,∆T are defined in equation 4.10 and
equation 4.9, respectively.

4.2.3.3 Available data

Suppose in an urban traffic network sensors are deployed at each inflow boundary of a
lane and each stop line at signalized junctions, and these sensors can provide noisy vehicle
passages. Besides, we assume that traffic signal timing parameters and periodic travel time
observations are also available. In summary, the proposed data assimilation framework
assumes the availability of minimally the following data:

73

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

• Vehicle passages. We assume that the data provided by sensors is event-based data,
i.e., a sequence of individual vehicle’s passage times. We assume these event-based
data contain errors such as miss-counts (a vehicle passes by, but the sensor fails to
detect its passage) and over-counts (no vehicles pass by, but the sensor reports a
passage).

• Traffic signal timing parameters. These data are input when running the traffic
simulation model.

• Periodic travel time observations. These data are used in the correction method to
estimate vehicle accumulation.

Notice that we assume sensors are deployed at both the inflow boundary and the
advanced stop line in this case study. However, this assumption might not hold in real-life
applications, e.g., some inflow boundaries are not measured, or some roadstretch does not
have both inflow sensor and the advanced stop line sensor installed. In these cases, we need
to design a novel method in our future studies to estimate vehicle accumulations probably
aided by other types of data. This is certainly possible (i.e. incorporating additional data)
in our framework as will be shown in section 5.2.2.2.

We assume data are available every ∆T time units. The size of the measurement
interval ∆T has large influence on the data assimilation results. If ∆T is too large, the
behavior predicted by the simulation model might diverge too much from the real behavior,
and as a result, large errors will be obtained; however, if ∆T is too small, the computation
burden will increase, but the estimation results will not necessarily be improved (Gu, 2010);
therefore, a proper value of ∆T should be adopted. The effect of the measurement interval
needs to be verified in the future research. In this case study, we choose ∆T as the cycle
time of the traffic signal. The measurements at time k are denoted by

mo
k = {{Ejk}

Ns
j=1, {N

l
k}Ll=1}, k = 1, 2, . . . , (4.12)

where Ns is the number of sensors, and Ejk depicts the passage times obtained from sensor
j during time interval [(k − 1)∆T, k∆T]. Note that vehicle accumulation is not measured
directly but estimated from vehicle counts, which will be explained in section 4.2.4.1. The
symbol L denotes a set of road stretches for which such vehicle accumulation is available,
and N l

k depicts the vehicle accumulation on road stretch l at time k. Traffic signal timing
data and travel time observations are not used in weight computation, therefore we omit
them in equation 4.12.

4.2.3.4 Partial trajectory reconstruction using particle filters

Recall that particle filtering essentially approximates the posterior distribution p(S0:k|mo
1:k),

in which Sk is defined in equation 4.10. However, Qk (see definition in equation 4.10) is
random, and therefore the dimension S0:k is also random. This randomness results in the
so-called variable dimension problem (Godsill et al., 2007), which in principle makes the
sequential importance sampling algorithm introduced in section 2.2.3 not applicable to our
problem. However, it turns out that, in line with Godsill et al. (2007), we formally proved
that the variable dimension sequence has no tangible effect on weight updating in our

74

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

case (see section 4.1.3), and that we therefore can safely apply the sequential importance
sampling algorithm.

Since the measurements (equation 4.12) are not directly related to a system state at one
specific time instant, but are related with a sequence of system states over a period of time,
the measurement model is formalized as

mo
k = gk(Sk−1:k) + εk, k = 1, 2, . . . ,

where Sk−1:k represents a sequence of (intermediate) system states from time k − 1 to
time k (sampled every δt << ∆T time units during [(k − 1)∆T, k∆T]). Note that
Sk−1:k essentially defines a set of (sampled) vehicle trajectories during [(k−1)∆T, k∆T].
Accordingly, this also implies that the particle weights should be updated as

wk ∝ p(mo
k|Sk−1:k)wk−1.

Note that although the state evolution after time k depends on Sk only, the application
at hand requires us to store the system state trajectory for as many time periods as needed
to reconstruct trajectories. Algorithm 3 describes in detail how a particle filter is applied
to fulfill the trajectory reconstruction task. The main steps of the proposed algorithm are
summarized as below.

• Initialization. In the initialization step (line 2 ∼ 5 in Algorithm 3), the i-th
sample Si0 is actually a guess of vehicles’ locations and speeds in the network, i.e.,

Si0 = {xi,j0 , vi,j0 }
Ni0
j=1, where N i

0 is the vehicle accumulation (i.e. the number of
vehicles) in the i-th sample at time k = 0.

• Sampling. After initialization, the microscopic traffic simulation model is run for
one time step ∆T (i.e. until new measurements become available) to obtain a sample
(line 8 in Algorithm 3). This is done for every particle. To run the simulation, inputs
(vehicle arrivals) are reconstructed from the (noisy) passage times observed by
sensors deployed at the inflow boundary. During the run, intermediate states Sik−1:k

are recorded, which represent a set of (sampled) vehicle trajectories that will be used
in weight computation and subsequent trajectory reconstruction. Once a sample is
generated, its weight is updated based on the newly available measurements (line 9
in Algorithm 3).

• Resampling. To solve the degeneracy problem, we resample the particles on a
regular basis (see section 4.2.3.1).

• Estimation. We reconstruct partial trajectories from the particle with the high-
est weight. Note that we elaborate in detail in section 4.2.3.5 how these partial
trajectories are subsequently concatenated to full trajectories.

4.2.3.5 Full trajectory reconstruction

The final step is now to concatenate partial trajectories over multiple measurement intervals
into full trajectories over the desired time-space window. This full trajectory reconstruction
procedure is graphically illustrated in Figure 4.2, in which for illustration purposes, only

75

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

Algorithm 3: The particle filter for vehicle trajectory reconstruction

1 % initialization of particles at k = 0
2 for i = 1 : Np do
3 generate the i-th sample Si0
4 set weight wi0 = 1/Np
5 end
6 % the sampling step for any time k ≥ 1
7 for i = 1 : Np do
8 prediction step: reconstruct a sequence of vehicle arrivals Eik,∆T , and run the

simulation for one time step (∆T) with initial state Sik−1, then Sik is generated.
The i-th particle Si0:k−1 is thus expanded to Si0:k = {Si0:k−1, S

i
k}; meanwhile,

the intermediate states Sik−1:k are also recorded for weight computation and
trajectory reconstruction

9 update step: assign Si0:k a weight: wik = p(mo
k|Sik−1:k)wik−1

10 end
11 normalize the weights, denote them as {Si0:k, w

i
k}
Np
i=1

12 % the resampling step (more details are explained in section 4.2.3.1)
13 {Si0:k, w

i
k}
Np
i=1 = hierarchical_resampling({Si0:k, w

i
k}
Np
i=1)

14 % output latest trajectories
15 find the particle with the maximum weight: wi

∗

k = max{wik|i = 1, . . . , Np}
16 output trajectories recorded in the simulation which generated the i∗-th particle, and

update previous reconstruction results; more details are presented in section 4.2.3.5
17 for i = 1 : Np do
18 wik = 1/Np
19 end

two particles are considered. The evolutions of particle 1 and particle 2 are depicted
respectively at the top and in the middle of Figure 4.2, whereas the reconstructed vehicle
trajectories are placed at the bottom part.

At time k, the first particle has the highest weight. Therefore, {T1,1, T1,2, T1,3, T1,4, T1,5}
from particle 1 now constitute the reconstructed trajectories in time-space region [(k −
1)∆T, k∆T] × [x1, x2], as shown in the bottom-left plot in Figure 4.2. Among these
trajectories, T1,1, T1,2, and T1,3 have passed cross-section x2, and therefore, they are fully
evaluated given all available evidence. This implies that information estimated by particle
1 at boundaries

{distance ∈ [x1, x2] ∩ time = (k − 1)∆T}
{distance = x1 ∩ time ∈ [(k − 1)∆T, t1(T1,3)]}

(4.13)

is already the best estimation of the true boundary information, with t1(T1,3) denoting the
time instant when the last full trajectory T1,3 crosses x1. We temporarily keep T1,4 and
T1,5 in our reconstructed results. In case data assimilation stops at time k, the trajectory
set {T1,1, T1,2, T1,3, T1,4, T1,5} is the best estimation based on the observed evidence;
whereas in case new data (passages) are available in the next iteration, information at

76

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

boundary {distance ∈ [x1, x2] ∩ time = k∆T} will be re-evaluated.
Since information at boundaries defined in equation 4.13 has been determined, we

introduce an intermediate step as shown in the middle column in Figure 4.2. In this step,
we check in each particle (6= 1) whether there is a trajectory meeting the following two
conditions:

• does it cross with boundary {distance ∈ [x1, x2] ∩ time = k∆T}?

• does it originate from boundaries defined in equation 4.13?

If any trajectory meets these conditions, we delete it. As shown in Figure 4.2, we delete T2,2

and T2,3 from particle 2. This step ensures that in future iterations, newly reconstructed
trajectories will not influence trajectories which were reconstructed in past iterations.

Now consider that at time k + 1, the second particle has the highest weight. Therefore,
we now populate time-space region [k∆T, (k+1)∆T]×[x1, x2] with trajectories extracted
from particle 2, i.e., {T2,4, T2,5, T2,6}. Note that we trace back the trajectories at boundary
{distance ∈ [x1, x2]∩ time = k∆T} to boundary {distance = x1∩ time = [t1(T1,3)+
hmin, k∆T]}4; update the reconstruction results in the last iteration by deleting T1,4 and
T1,5, and then concatenate the updated trajectories with the newly reconstructed trajectories
(in this case T2,4), as shown in the plot at the bottom-right of Figure 4.2. In this case one
full trajectory (passing x2) has been reconstructed, and we wait for new evidence in the
next iteration.

4.2.4 Vehicle count correction method, specification of error models
and weight computation

In this section, we discuss the method to estimate vehicle accumulation and we specify our
assumptions related to the error models for the various data sources. On the basis thereof,
we then return to the computation of the particle weights.

4.2.4.1 Estimating vehicle accumulation

Consider two detectors installed at x1 (upstream) and x2 (downstream) on a closed road-
stretch (no entry or exits), both measuring flow qi(t), i = 1, 2. Vehicle accumulation
between x1 and x2 at any time instant t is equal to

N(t) = Q1(t)−Q2(t), (4.14)

where Qi(t) =
∫ t

0
qi(s)ds is the cumulative curve of the detector installed at xi, i = 1, 2.

The travel time from x1 to x2 of the nth vehicle equals Tr(n) = t2(n) − t1(n), where
ti(n) = Q−1

i (n), i = 1, 2. In case of FIFO (first in, first out), Tr is exact, otherwise an
approximation; N(t) is exact in both cases. Unfortunately, if the detectors miss or over-
count vehicle passages, that is qtruei (t) = qdetectori (t) + βqi(t), with βqi(t) an arbitrary
noise term, both N(t) and Tr will contain errors. Since N(t) integrates consecutive flow
counts (equation 4.14) this is an additive error that—regardless of the precise form of
βqi(t)—yields an unbounded estimation bias for N(t). In van Lint and Hoogendoorn

4We add hmin to t1(T1,3) to prevent collisions.

77

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

time

distance

x1

x2

time

distance

x1

x2

time

time

distance

x1

x2

time

distance

x1

x2

k-1 k

k-1 k

k k+1

k k+1

particle 1

reconstructed

trajectory

particle 2

time
k+1

extracted from particle 1

T1,1

T1,2

T1,3

T1,4

T1,5

T2,1

T2,2

T2,3

T2,4

time

distance

x1

x2

k-1 k

T1,1

T1,2

T1,3

T1,4

T1,5

time

distance

x1

x2

k-1 k

T2,1

T2,2

T2,3

T2,4

distance

x1

x2

k-1 k

T1,1

T1,2

T1,3

T1,4

T1,5

T2,4

T1,4

T1,5

distance

x1

x2

k-1 k

T1,1

T1,2

T1,3

T2,4

T2,4

T1,6

T2,5

T2,6

T2,5

T2,6

data assimilation at time k intermediate step data assimilation at time k+1

highest

weight

highest

weight

trajectories extracted from particle

2, and concatenate with previously

reconstructed trajectories

Figure 4.2: Illustration of full vehicle trajectory reconstruction (the duration between two
consecutive time steps is ∆T)

(2015) a method is proposed which uses travel time observations to correct the flows and
thereby the cumulative counts to estimate the vehicle accumulation. This method works
along the same lines as the CUPRITE method proposed in Bhaskar et al. (2014). The basic
idea is shown in Figure 4.3. Suppose the nth2 vehicle passes x2 at time t2, the estimated
travel time given by the cumulative curves is

T̂r(t2) = Tr(n2) = t2 − t∗ = t2 −Q−1
1 (n2)

Assume at t2, we observe a travel time T obsr (t2). The travel time error will be

εT (t2) = T obsr (t2)− T̂r(t2)

We can now use this travel time error to correct the error in the flows (and thus cumulative
curves). We have two equivalent options (one error and two degrees of freedom), as shown
in Figure 4.3. The first is to rotate the cumulative curve Q1(t) such that Q1(t)→ Q∗1(t)
and the second is to rotate the cumulative curve Q2(t) such that Q2(t) → Q∗2(t), in

78

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

t

n

1()Q t

2 ()Q t

0t 1t 2t
* 1

1 2()t Q n
0n

2 2 2()n Q t
2()T t

2
ˆ ()rT t

2()obs

rT t 2()N t

*

2 ()Q t

*

1 ()Q t

*

1 1 1 1() ()Q t Q t

option 1
*

2 2 2 2() ()Q t Q t

option 2

(time)

(vehicles)

Figure 4.3: Vehicle accumulation estimation using the correction mechanism

both cases by an amount εN (t2). Let us assume we correct Q1(t) and that the previous
correction took place for cumulative count Q1(t0) = n0. Some straightforward algebra
leads to

Q∗1(t) = Q1(t) +
t− t0
t1 − t0

εN (t2) (4.15)

with

εN (t2) =
n2 − n0

t∗ − t0
εT (t2)

substituting (4.15) in (4.14) then gives

N̂(t) = Q∗1(t)−Q2(t)

This method yields very good results in terms of estimating vehicle accumulation, even
when limited travel time measurements are available. Note that since q(t) = dQ

dt , this
correction implies that all flow measurements q(t), with t ∈ [t0, t1] are effectively adjusted
by this correction. However, since we have two degrees of freedom (up- and downstream
flows) to adjust for one error, these adjusted flows may not be more accurate than before
the correction. To generate vehicles on the roadstretch we therefore use the estimated
vehicle accumulation N̂(t) only, and not these corrected flows. Further below we detail
how vehicles are generated and how the corrected cumulative counts of vehicles is used in
our framework.

4.2.4.2 Error models for the different data sources

Vehicle accumulation

Although the method proposed above is able to remove the bias due to the additive
errors in consecutive flow measurements, the resulting vehicle accumulations will still
contain errors, which we can now assume to be zero mean (van Lint and Hoogendoorn,

79

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

2015). For the simulation case later on we approximate the discrete probability distribution
of this estimation error by the histogram:

P (E = e) =
Nr(e(t) = e)

N

in which e(t) is the vehicle accumulation estimation error defined as

e(t) = N(t)− N̂(t), t = t0, t1, . . . , tN−1

where N(t) is the ground truth value (obtained in the simulation) of the vehicle accumu-
lation at time instant t, and N̂(t) is its corresponding estimation. Nr(e(t) = e) is the
number of time instants when e(t) = e, and N is the number of time instants when the
vehicle accumulation is estimated. Clearly, when applied in practice we need to assume a
parameterized (discrete) distribution, for example fitted to this histogram.

Vehicle passages

There are two types of errors in vehicle passages, i.e., miss-counts and over-counts,
and we model these two types of errors using two parameters:

• detection accuracy p ∈ [0, 1], depicting the probability that a sensor successfully
detects a vehicle passage. Conversely, the probability that the sensor misses the
passage equals 1− p.

• occurrence rate of over-count λ. The number of over-counts during a time interval
can be regarded as a Poisson distribution, and we define its occurrence rate as λ.
As a result, the time between two consecutive over-count events is an Exponential
distribution, with mean 1

λ .

4.2.4.3 Arrival reconstruction

Assume that at time k, the available (noisy!) passage times from an inflow sensor are
Ejk = {t1, t2, . . . , tm}, where j is the index of the inflow sensor (see equation 4.12). The
problem we are going to solve in this section is to reconstruct a possible passage sequence
based on the observation and the error model. We first apply a few simple rules to ‘clean’
the data from obvious errors. For example, if the time headway between two consecutive
passage times on a single lane is (much) smaller than the minimum time headway, one
of them is likely an over-count. A passage observed at the stop-line of an intersection
during the red phase is over likely an over-count. In both cases, we can clean the data
by deleting these unlikely passage times. After this preprocessing step, we reconstruct a
possible passage sequence Ejk that is probable under the assumed error models for miss-
and over-counts.

To this end, we first define a two-dimensional random variable: X = (Nm, No), where
Nm represents the number of miss-counts, andNo the number of over-counts. We compute
the joint probability distribution p(X) using Algorithm 4. Once p(X) is available, we
draw (nm, no) from p(X) to reconstruct a possible passage sequence. Then we reconstruct
passage times as follows:

80

4.2. CASE STUDY – RECONSTRUCTING VEHICLE TRAJECTORIES ON
SIGNALIZED URBAN ARTERIALS

• randomly delete no elements in Ejk;

• randomly generate nm time instants between [(k − 1)∆T, k∆T], until the time
headways meet some predefined requirements (i.e., resultant time headway is larger
than the minimum time headway); insert them into Ejk.

Algorithm 4: Compute the joint probability distribution of miss-count and over-count

Input: noisy passage times: Ejk; sensor error model parameters: p, λ
Output: joint probability distribution: p(X)

1 % determine the probability distribution of the number of over-count p(No)
2 for no ∈ N ∧ no ≤ |Ejk| do
3 compute pno = (λ∆T)noe−λ∆T

no!

4 if pno ≥ 10−3 then
5 P (No = no) = pno
6 end
7 end
8 normalize p(No) to make it a probability distribution
9 for every possible no do

10 determine the maximum number of miss-counts:
M = floor(∆T/hm)− |Ejk|+ no, where ∆T is the duration of the period
during which Ejk was collected, hm is the minimum time headway, and
floor(x) returns the greatest integer less than or equal to x

11 for nm ∈ N ∧ nm ≤M do
12 compute pnm = C

|Ejk|−no
|Ejk|−no+nm

p|E
j
k|−no(1− p)nm

13 if pnm ≥ 10−3 then
14 P (Nm = nm) = pnm
15 end
16 end
17 normalize p(Nm) to make it a probability distribution
18 for every possible nm do
19 P (X = (nm, no)) = pnm × pno
20 end
21 end
22 normalize p(X) to make it a probability distribution

4.2.4.4 Weight computation: utilizing the error models

We can now return to the computation of the particle filter weights, which depends on the
error models we introduced above. Recall that when a sample is generated, its weight is
updated based on newly available measurement mo

k = {{Ejk}
Ns
j=1, {N l

k}Ll=1}, where Ns is
the number of sensors, and Ejk depicts the passage times obtained from sensor j; L denotes
the set of road stretches, and N l

k is the vehicle accumulation estimated by the correction

81

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

method. Since the two types of data are conditionally independent given Sk−1:k, we have
p(mo

k|Sk−1:k) = p({Ejk}
Ns
j=1|Sk−1:k)p({N l

k}Ll=1|Sk−1:k).
Assume that at time k, the available observation from the j-th sensor is Ejk =

{t1, t2, . . . , tm}; at the same time, the simulated value from the i-th particle is Ei,jk =

{t′1, t′2, . . . , t′mi}. E
i,j
k can be obtained by linear interpolation based on Sik−1:k or by

simply recording passage times in the sampling process. Now we show how to compute
p(Ejk|E

i,j
k).

Before the computation, we first need to figure out which element in Ejk should be
compared with which one in Ei,jk . To solve this, a match procedure is developed, as shown
in Algorithm 5. This match procedure is essentially the same with that in Wang and Hu
(2015), which is used by the authors to match two groups of agents (without identity
information) based on their locations. When applying the match procedure on Ejk and
Ei,jk , the distance function is defined as d(t, t′) = |t − t′|, where t ∈ Ejk, t′ ∈ E

i,j
k , and

the threshold value is chosen as the minimum time headway. After the match, p(Ejk|E
i,j
k)

is calculated as follows:

• initialize p(Ejk|E
i,j
k) = 1.0;

• assume dm = max{d(t, t′)|(t, t′) ∈MS = match(Ejk, E
i,j
k)}, we update p(Ejk|E

i,j
k)

by p(Ejk|E
i,j
k) = p(Ejk|E

i,j
k)× e−dm ;

• if we denote TEi,jk as the set of time instants in Ei,jk that are matched with some time

instants in Ejk, Ei,jk \ TEi,jk will be the set of time instants that fail to be matched.

Any time instant in Ei,jk \ TEi,jk is regarded as a miss-count. Suppose the number of

miss-count is nm, we update p(Ejk|E
i,j
k) by p(Ejk|E

i,j
k) = p(Ejk|E

i,j
k)× p|MS| ×

(1− p)nm . Note that |Ei,jk \ TEi,jk | = nm, |MS| = |TEi,jk |;

• similarly, we denote TEjk as the set of time instants in Ejk that are matched with

some time instants in Ei,jk , then any time instant in Ejk \ TEjk is regarded as an

over-count. Suppose the number of over-count is no, we update p(Ejk|E
i,j
k) by

p(Ejk|E
i,j
k) = p(Ejk|E

i,j
k)× pno , where pno = (λ∆T)noe−λ∆T

no! .

When information from all sensors is computed, we have p({Ejk}
Ns
j=1|Sik−1:k) =

Ns∏
j=1

p(Ejk|E
i,j
k), since measurements from different sensors are conditionally independent

given Sik−1:k.
For vehicle accumulations, we have

p({N l
k}Ll=1|Sik−1:k) =

∏
l∈L

P (El = N i,l
k −N

l
k) (4.16)

where N l
k is the vehicle accumulation on road stretch l at time k estimated by the cor-

rection method, while N i,l
k is the corresponding value in the i-th particle. P (El) is the

82

4.3. CASE STUDY IN THE URBAN TRAFFIC SYSTEM – EXPERIMENT AND
RESULTS

discrete probability distribution of the estimation error of the vehicle accumulation on road
stretch l. Equation 4.16 holds since vehicle accumulations on different road segments are
conditionally independent given Sik−1:k.

Algorithm 5: The match procedure
Input: two sets: X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}, and a threshold

threshold
Output: a matched set: MS = {(x, y)|x ∈ X, y ∈ Y }

1 % initialization
2 MS ← ∅
3 % compute distance between xi and yj
4 foreach xi ∈ X, yj ∈ Y do
5 compute the distance between xi and yj : d(xi, yj)
6 put d(xi, yj) in a list L
7 end
8 sort L in ascending order
9 % select matched pairs

10 while L is not empty do
11 remove the first element in L, denoted by d(xi1 , yj1)
12 if d(xi1 , yj1) ≤ threshold then
13 put (xi1 , yj1) in MS
14 for (xi, yj) ∈ L do
15 if xi = xi1 ∨ yj = yj1 then
16 remove (xi, yj) from L
17 end
18 end
19 end
20 else
21 break
22 end
23 end

4.3 Case study in the urban traffic system – experiment
and results

4.3.1 Experimental setup
To test the framework we consider the area shown in Figure 4.4, which consists of two
signalized intersections and six sensors (represented by green bars) that can detect indi-
vidual vehicle passages. Each traffic light (TLB and TLD) has a fixed cycle time of 60
seconds, and the splits for red and green are 30 seconds each (as shown in the right part of
Figure 4.4). The vehicle arrivals obey a Poisson process, and the mean of inter-arrival time
is 6 seconds (undersaturated condition). When generating a vehicle, the probabilities that

83

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

it goes to Sink 1, Sink 2 and Sink 3 are 60%, 20% and 20%, respectively. The reasons why
we conduct the experiment in undersaturated conditions are as follows. First, the travel
time measurements can be fed with little delay, and then they can be used to correct the
cumulative counts timely before errors (in cumulative counts) accumulate to be very large.
Second, observations from the inflow sensors will less likely to aggregate into groups in a
cycle, and consequently, this incurs less uncertainty in the arrival reconstruction process.

In this chapter, we use the Intelligent Driver Model (IDM) (Treiber et al., 2000) as our
car-following model. The IDM defines a vehicle’s acceleration as

v̇IDM (s, v,∆v) = a

{
1−

(
v

v0

)4

−
(
s∗(v,∆v)

s

)2
}

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

where the parameters are assigned with typical values for city traffic (Treiber and Kesting,
2013), which are listed in Table 4.1.

Table 4.1: The parameters for the IDM

name maximum acceleration comfortable deceleration minimum distance safe time headway desired speed
a (m/s2) b (m/s2) s0 (m) T (s) v0 (m/s)

value 1.0 1.5 2.0 1.0 15.0

The objective is to apply the proposed data assimilation framework to reconstruct the
trajectories of vehicles entering from A and leaving from D. To this end, we run the
simulation for 1800 seconds (30 cycles), and record (ground truth) vehicle trajectories at
1 Hz along with (ground truth) passage times across each sensor. We allow for a warm
up time of 240 seconds, and use 14 cycles (from t = 240 s to t = 1080 s) for study, in
which the passages from each sensor were processed into different datasets with different
detection accuracy (p) and occurrence rate of over-count (λ), in order to imitate different
sensor qualities. We set the measurement interval to ∆T = 60 seconds, i.e. passage times
become available every 60 seconds.

Figure 4.4: A road stretch with two signalized intersections

4.3.2 Evaluation criteria
We assess the data assimilation framework in line with the two aspects shown in Figure 4.1:
correctness of the reconstructed vehicle passages at each sensor; and agreement of the
reconstructed vehicle trajectories with the ground truth.

84

4.3. CASE STUDY IN THE URBAN TRAFFIC SYSTEM – EXPERIMENT AND
RESULTS

4.3.2.1 Vehicle passages and departure times per cycle and over multiple cycles

Let Eji = {t1, t2, . . . , tni} and Êji = {t̂1, t̂2, . . . , t̂n̂i} depict the ground truth and esti-
mated passing times at sensor j during the i-th cycle respectively. We define the estimation
error of the number of vehicle passages as

Ejnumber,i = 100%× (ni − n̂i)/ni,

and the departure time error as

Ejmatch,i = 100%× (ni − n̂mi)/ni,

in which n̂mi is the number of time instants in Eji that are matched with certain time
instants in Êji using the match procedure in Algorithm 5. In this procedure we use a
threshold value for the minimum time headway hmin to determine which ground truth and
estimated departure times most likely coincide. Ejmatch,i essentially defines the percentage
of passages in Eji that are not accurately reconstructed.

Over multiple cycles we take the mean absolute percent error, that is,

Ējnumber =
1

ncycles

ncycles∑
i=1

|Ejnumber,i|, Ē
j
match =

1

ncycles

ncycles∑
i=1

|Ejmatch,i| (4.17)

4.3.2.2 Generalized flow and density

To assess the quality of vehicle trajectory reconstruction at the macroscopic level, we
compare the generalized flow q and density k for a time-space region using Edie’s well
known definitions (Edie, 1963):

q =

∑
i di

XT
, k =

∑
i ri

XT
,

which, using the variables in Figure 4.5a, can be computed as

q =
nvX −

∑mb
i=1 xai +

∑me
i=1 xvi

XT

k =
meT −

∑na
i=1 tai +

∑nv
i=1 tvi

XT
,

(4.18)

where na is the number of arrivals at cross-section X0, nv is the number of departures at
cross-sectionX1,mb is the vehicle accumulation at T0, andme is the vehicle accumulation
at T1. The corresponding estimation errors for flow and density in the i-th cycle are defined
as percent errors:

Eflow,i = 100%× (qi − q̂i)/qi
Edensity,i = 100%× (ki − k̂i)/ki

where qi, ki are the ground truth values of flow and density in the i-th cycle, respectively,
and q̂i, k̂i are their corresponding estimated values. Finally, again over multiple cycles we
take the mean absolute percent error, that is,

Ēflow =
1

ncycles

ncycles∑
i=1

|Eflow,i|, Ēdensity =
1

ncycles

ncycles∑
i=1

|Edensity,i| (4.19)

85

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

(a) Macroscopic agreement (b) Translation error only (c) Translation and distortion error

Figure 4.5: Evaluation of vehicle trajectory reconstruction

4.3.2.3 Agreement between estimated and ground-truth trajectories

To assess how well a single reconstructed vehicle trajectory T̂ raj fits to the ground truth
Traj, we consider two error measures that capture the error in location and the error in
(local) speed, that we term translation and distortion error respectively. The so called
translation error quantifies how much effort is needed to shift Traj along the time axis to
obtain T̂ raj. The less effort, the better the estimation. We define it as

Ettr(Traj, T̂ raj) =
1

Nδx

Nδx∑
i=1

|t(xi)− t̂(xi)|
TT (Traj)

× 100% (4.20)

where t(x), t̂(x) are the time instants when trajectory Traj and its estimation T̂ raj cross
location x, respectively; Nδx is the number of discretized locations that Traj and T̂ raj
crosses; TT (Traj) is the total travel time from the upstream to the downstream, measured
from the ground truth trajectory Traj.

The so-called distortion error quantifies how much effort is needed to distort Traj to
obtain T̂ raj. The less effort, the better the estimation. This distortion is the result of errors
in speed along the trajectory. We define it as

Evtr(Traj, T̂ raj) =
1

Nδx

Nδx∑
i=1

|v(xi)− v̂(xi)|
v̄(Traj)

× 100% (4.21)

where v(x), v̂(x) are the speeds when trajectory Traj and its estimation T̂ raj cross
location x, respectively; v̄(Traj) is the mean speed measured from the ground truth
trajectory Traj (i.e., total traveled distance divided by total travel time within the time-
space region).

Figure 4.5b illustrates a case where a trajectory is perfectly estimated safe for a
translation error. Figure 4.5c shows a case in which there is a distortion error (and by
implication also a translation error). We finally also consider an overall error which
combines the two effects (we arbitrarily give both error components equal weight):

Et,vtr (Traj, T̂ raj) =
Ettr(Traj, T̂ raj) + Evtr(Traj, T̂ raj)

2
(4.22)

86

4.3. CASE STUDY IN THE URBAN TRAFFIC SYSTEM – EXPERIMENT AND
RESULTS

Finally, we define error measures for two sets of trajectories. Prior to definition, we
need to figure out which trajectory in the set of ground truth trajectories TS = {Traji}
is estimated by which trajectory in the set of reconstructed trajectories T̂ S = {T̂ rajj}.
To this end, we denote the start point of trajectory Traji ∈ TS as (t0,i, x0,i), and for a
trajectory T̂ rajj ∈ T̂ S, as (t̂0,j , x̂0,j). If the two start points are close enough, T̂ rajj is
regarded as the estimation of Traji. By ‘close enough’, we mean that one of the following
conditions is met:

• x0,i = x̂0,j = X0 ∩ |t0,i − t̂0,j | < hmin or

• t0,i = t̂0,j ∩ |x0,i − x̂0,j | < smin,

where hmin and smin are the minimum time headway and the minimum space headway,
respectively. As a result we now define the following three error measures for set TS =

{Traji} being estimated by set T̂ S = {T̂ rajj}:

Ēttr(TS, T̂S) =
1

n

∑
Ettr(Traji, T̂ rajji)

Ēvtr(TS, T̂S) =
1

n

∑
Evtr(Traji, T̂ rajji)

Ēt,vtr (TS, T̂S) =
1

n

∑
Et,vtr (Traji, T̂ rajji)

(4.23)

where T̂ rajji ∈ T̂ S is the estimation of Traji ∈ TS, and n is the number of vehicle
trajectories in TS which have corresponding estimations in T̂ S.

4.3.3 Results

In this section, we use a fixed detection accuracy of p = 0.9; an occurrence rate of over-
counts λ = 1/300 s−1; and we assume that travel time observations are available every 3
minutes. Due to space limitations, we restrict the presentation to road stretch AB in Figure
4.4.

4.3.3.1 Reconstructed vehicle passages per cycle

The vehicle accumulation estimation results for the roadstretch between sensors A and B are
shown in Figure 4.6, where the left plot shows the estimated vehicle accumulation, while
the right plot depicts the associated histogram of—indeed approximately zero-mean!—
estimation errors. Figure 4.7 shows the ground-truth, observed, estimated and matched
numbers of vehicle passages at upstream sensor (A) and downstream sensor (B) for a
sequence of 14 cycles, in blue, red, green, and yellow, respectively.

Table 4.2 lists the average errors (equation 4.17) over 14 cycles, which are 7.43% and
5.60% for sensor A; and 2.70% and 5.63% for sensor B, respectively. This implies that our
method is able to reconstruct ca. 95% of the vehicle passages, which is a promising result,
considering our dataset contains around 10% miss-counts and over-counts (p = 0.9, λ =
1/300 s−1).

87

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840

time (seconds)

0

1

2

3

4

5

6

7

8

ve
hi

cl
e

ac
cu

m
ul

at
io

n
(v

eh
)

ground truth
estimation

-3 -2 -1 0 1 2

error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ili

ty

Figure 4.6: The vehicle accumulation estimation results for the roadstretch between sensors
A and B using the correction method (the left plot shows the estimated vehicle accumulation,
while the right plot depicts the histogram of the estimation errors)

Table 4.2: The estimation error of the number of vehicle passages and the percentage of
passages that are not accurately reconstructed as defined in equation 4.17 computed over
14 cycles at sensors A and B respectively

ĒAnumber ĒAmatch ĒBnumber ĒBmatch

performance 7.43% 5.60% 2.70% 5.63%

4.3.3.2 Generalized flow and density

The estimation results for flow q and density k on roadstretch AB are shown in Figure 4.8a
and Figure 4.8b, respectively. The average estimation error over 14 cycles (computed with
equation 4.19) for flow q and density k are 5.26% and 5.23%, respectively.

It is insightful to analyze a few results in detail. For example, flow q and density k are
overestimated in the 6-th cycle (300 s ∼ 360 s) while underestimated in the 13-th cycle
(720 s ∼ 780 s). The (large) error in the 6-th cycle is mainly a result of the errors in the
vehicle accumulation. As shown in the left plot in Figure 4.6, vehicle accumulation is
overestimated in the end of the cycle (t = 360 s). Based on the definitions of q and k in
equation 4.18, these errors will lead to overestimations of q and k. In the 13-th cycle, the
(large) error is probably due to the miss-counts of sensor A, as shown in Figure 4.9. The
vehicles missed at sensor A are also not fully observed at downstream sensors. In this case,
the chance to successfully reconstruct their trajectories is very low. Consequently, the flow
q and the density k will be underestimated because the missed vehicles do not show up at
sensor B (nv thus has a smaller value in the computation of q) and their travel times are
not included in the computation of k as shown in equation 4.18.

In the 7-th cycle (360 s ∼ 420 s), the flow q is largely underestimated, which is mainly
due to the overestimation of vehicle accumulation at t = 360 s. This overestimation in
vehicle accumulation leads to a smaller number of vehicle arrivals upstream (sensor A) in
order for the simulated passages to match the observed passages downstream (sensor B).
As a consequence, q is assigned a smaller value (see the definition in equation 4.18).

88

4.3. CASE STUDY IN THE URBAN TRAFFIC SYSTEM – EXPERIMENT AND
RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14

cycle

0

2

4

6

8

10

12

14
nu

m
be

r
of

 p
as

sa
ge

s
at

 A
ground truth
observation
estimation
matched

(a) Vehicle passages at A

1 2 3 4 5 6 7 8 9 10 11 12 13 14

cycle

0

2

4

6

8

10

12

14

nu
m

be
r

of
 p

as
sa

ge
s

at
 B

ground truth
observation
estimation
matched

(b) Vehicle passages at B

Figure 4.7: Number of vehicle passages per cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14

cycle

350

400

450

500

550

600

650

700

750

in
te

ns
ity

 q
 (

ve
h/

h)

ground truth
estimation

(a) The estimated flow q

1 2 3 4 5 6 7 8 9 10 11 12 13 14

cycle

5

10

15

20

25

30

35

40

45
de

ns
ity

 k
 (

ve
h/

km
)

ground truth
estimation

(b) The estimated density k

Figure 4.8: The estimated flow q and density k on roadstretch AB

4.3.3.3 Translation error and distortion error

In the time-space region on roadstretch AB, i.e., [0 s, 840 s]× [0 m, 100 m], there are 131
vehicle trajectories in the ground truth dataset; our method reconstructs 128 trajectories
in the same region, and 123 of them can be matched with trajectories in the ground truth
dataset. The translation error Ettr (equation 4.20), distortion error Evtr (equation 4.21), and
overall error Et,vtr (equation 4.22) for each pair of trajectories (123 pairs) are computed,
and the histograms of these errors are depicted in Figure 4.10(a), Figure 4.10(b), and
Figure 4.10(c), respectively. The average values for the translation error, the distortion error,
and the overall error are Ēttr = 2.56%, Ēvtr = 6.98%, and Ēt,vtr = 4.77%, respectively.
Again these averages of about 5% are promising given the degree of sensor errors we
imposed. Since the overall error Et,vtr is a linear combination of Ettr and Evtr, its histogram
follows the shape of the histogram of Evtr.

We make two general observations based on the results. First, the histograms in
Figure 4.10 do illustrate that some pairs of trajectories have large errors (15% and more).

89

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

Figure 4.9: Vehicle trajectories in the 13-th cycle

0 5 10 15 20 25
0

10

20

30

40

50

60

oc
cu

rr
en

ce

0 10 20 30 40
0

5

10

15

20

oc
cu

rr
en

ce

0 5 10 15 20 25
0

5

10

15

20

25

oc
cu

rr
en

ce

Figure 4.10: The histogram of translation error Ettr, distortion error Evtr, and overall error
Et,vtr = (Ettr + Evtr)/2 (123 pairs of trajectories in total; the width of each bin is 1.0%)

These pairs of trajectories mainly lie in the 6-th cycle (300 s ∼ 360 s) and the 7-th cycle
(360 s ∼ 420 s), which are depicted in Figure 4.11. As shown in the left plot in Figure 4.6,
the corresponding vehicle accumulation is overestimated in the end of the 6-th cycle
(t = 360 s). This results in the (false) reconstruction of two trajectories (originating
from t ≈ 330 s and t ≈ 340 s) in order to match the vehicle accumulation at t = 360 s.
Essentially the method falsely reconstructs a queue, yielding strongly sloped trajectories
after t ≈ 350 s until that queue is resolved. This discrepancy in trajectory shape leads to a
large translation and distortion error.

Second, and related to this point, the results indicate that the distortion errors are in
general larger than the translation errors. This makes intuitively sense: the data (passages
and accumulation) gives direct information on how much vehicles we expect where
and when. This information, however, can be reconstructed with an—in principle—
infinite number of individual speed profiles. The simulation models applied constrain
this large solution space to those trajectories that are plausible. We take the last pair of
trajectories (originating from t ≈ 405 s) in Figure 4.11d as an example. We redraw this
pair of trajectories in the left plot of Figure 4.12, and we show their time differences (see

90

4.4. CONCLUSIONS

(a) General view of trajectories whose Ettr > 15%

300 310 320 330 340 350 360 370 380 390

time (seconds)

A

B

ground truth
reconstruction

(b) Enlarged view of trajectories whose Ettr > 15%

(c) General view of trajectories whose Evtr > 15%

300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

time (seconds)

A

B

ground truth
reconstruction

(d) Enlarged view of trajectories whose Evtr > 15%

Figure 4.11: The trajectories whose translation/distortion error is larger than 15%

equation 4.20) in the middle of Figure 4.12, and we depict their speed differences (see
equation 4.21) in the right plot of Figure 4.12. The translation error and distortion error for
this pair are Ettr = 5.97% and Evtr = 31.16%, respectively. From Figure 4.12, we can see
that |v(x)− v̂(x)|/v̄ is less robust to a small trajectory discrepancy than |t(x)− t̂(x)|/TT .
For example, at x ∈ [0, 50] where the estimated trajectory is very close to the ground
truth trajectory, the speed difference |v(x) − v̂(x)|/v̄ can reach above 20%, while time
difference |t(x) − t̂(x)|/TT is only around 1%. Therefore, the distortion errors are in
general larger than the translation errors. This also explains why the translation errors are
not as large as the distortion errors for the last three pairs of trajectories in Figure 4.11d.

4.4 Conclusions

In an open system, since entities can flow in and flow out through the system boundaries,
the number of entities in the system is a random variable, thus the dimension of the system
state is random, so is the dimension of the state trajectory. This incurs the so-called variable
dimension problem in particle filtering, which leads to inapplicability of the sequential
importance sampling algorithm in discrete event simulations of open systems. In this

91

CHAPTER 4. PARTICLE FILTER BASED DATA ASSIMILATION IN DISCRETE
EVENT SIMULATIONS OF OPEN SYSTEMS

390 400 410 420 430 440 450

time (seconds)

0

20

40

60

80

100

A

B

ground truth
reconstruction

0 10 20 30 40 50 60 70 80 90 100

location x (meters)

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

location x (meters)

0

20

40

60

80

100

Figure 4.12: Time differences and speed differences of a pair of trajectories (the plot in
the left shows the pair of trajectories, the plot in the middle depicts the time series of
100% × |t(x) − t̂(x)|/TT , and the plot in the right depicts the time series of 100% ×
|v(x)− v̂(x)|/v̄; for this pair of trajectories, Ettr = 5.97%, Evtr = 31.16%)

chapter, we investigated the data assimilation problem in discrete event simulations of open
systems, and solved the variable dimension problem as follows. The variable dimension
system state is complemented with certain number of virtual entities in order to make it
a fixed dimension state, and as a result, the state trajectory will have a fixed dimension.
The standard sequential importance sampling algorithm can thus be applied to update the
joint distribution of the state trajectory with fixed dimension. Samples in which the states
of virtual entities are discarded will form the samples from the joint distribution of the
state trajectory of interest that has a variable dimension. We proved that the weight update
is again independent of these discarded states of virtual entities. Notice that the proof
implicitly assumes that every entity has identical dimension of state, but it does not matter
too much, since we can always augment each entity’s state to the same dimension, and then
apply the proof similarly. Though the proof finally implies that we can safely apply the
sequential importance sampling algorithm in discrete event simulations of open systems,
we should have a clear understanding of the problem and why it does not influence the
application. The solution of the variable dimension problem proposed in this chapter is
essentially applicable to simulations of general open systems with few modifications, since
the proof in section 4.1.3 did not utilize any properties of discrete event systems.

To illustrate the working of the proposed data assimilation framework, a case in an
urban traffic system is studied in which we reconstruct plausible vehicle trajectories on
signalized urban arterials. The solution contributes to a generic (in the sense that any
(ensemble of) microscopic simulation models (that implement car following, lane changing,
crossing, etc.) can be used) particle filter based data assimilation framework for trajectory
reconstruction on signalized urban arterials, in which relevant macroscopic variables (flow,
density) can also be inferred. The experiment results show that the proposed data assim-
ilation framework is indeed able to provide accurate estimation results in discrete event
simulations of open systems. In the urban traffic case, the framework is able to reconstruct
plausible vehicle trajectories under realistic error assumptions (detection accuracy p = 0.9,
occurrence rate of over-count λ = 1/300 s−1) yielding good performance on both macro-
and microscopic error measures (see section 4.3 for more details). The overall absolute
percent errors on reconstructing passage counts are around 7%; whereas reconstructing
the departure sequences over stop lines has an error around 5%. Given the error assump-

92

4.4. CONCLUSIONS

tions this is a very promising result—recall that without assimilation, these errors are
unbounded! The errors in density and flow (using Edie’s definitions (Edie, 1963)) are
around 5% as well. Also the quality of the reconstructed trajectories in terms of matching
locations and speeds is satisfactory, although here we observe a (small) subset of large(r)
errors.

The solution proposed in this chapter finally completes the data assimilation framework
for discrete event simulations, which means that the data assimilation framework proposed
in chapter 3 can be applied to both closed and open systems. However, to effectively
conduct data assimilation in open systems, two extra steps (compared with the data
assimilation procedure in closed systems) are required. First, we need to estimate (directly
from data or indirectly using an estimation method) the number of entities in the system,
otherwise we will have an underdetermined problem, since the number of entities in an
open system is unknown in advance. Second, we need to reconstruct entity arrivals at
system boundaries based on (noisy) observations. One can also randomly generate a
sequence of arrivals, but this would require a much larger number of particles to achieve
similar performance.

93

5

C
H

A
P

T
E

R

The particle filter based data
assimilation framework –

sensitivity analysis

In chapter 3 and chapter 4, we presented a particle filter based data assimilation
framework for discrete event simulations of both closed and open systems. In this
chapter, we use the data generated from the two cases studied in chapter 3 and

chapter 4 to analyze the characteristics of the proposed data assimilation framework and its
sensitivity to a number of important parameters that relate to the errors in the data and in
the simulation model used, as well as to the number of particles employed. For each set of
parameters, we run the data assimilation experiment 10 times with different random seeds.

5.1 Case study in the gold mine system1

5.1.1 Revisiting the performance indicators

As explained in section 3.5.2 in chapter 3, a set of performance indicators are defined to
quantify the quality of the estimated truck arrival times. These performance indicators are
summarized in Table 5.1.

1This section is part of a paper submitted to Simulation: Transactions of the Society for Modeling and
Simulation International: Xie, X., Verbraeck, A.: A particle filter based data assimilation framework for discrete
event simulations.

95

CHAPTER 5. THE PARTICLE FILTER BASED DATA ASSIMILATION
FRAMEWORK – SENSITIVITY ANALYSIS

Table 5.1: Summary of the performance indicators for truck arrival estimation

symbol unit description

Ē – average estimation error of the dimension of the state trajectory; see equation 3.27

SR % success rate, i.e., the percentage of truck arrivals been successfully estimated; see equation 3.29

WR % waste rate, i.e., percentage of clusters that fails to estimate an arrival; see equation 3.30

d̄ min average distance to the time instant when the probability density function is peaked; see equation 3.31

P̄ % average percentage that Pcj (tj , ε) accounts for Pcj (t
∗
cj , ε); see equation 3.32

5.1.2 Effect of the data quality
In the gold mine case, only position data of entities (Elevator and Truck) is noisy, and the
quality of the noisy position data is characterized by the standard deviation of the zero
mean Gaussian noise, i.e. σe (for Elevator) and σt (for Truck). We vary σe and σt from 3.0
to 20.0; when retrieving the model state, we retrieve states through interpolation; for all
experiments, we set Np = 2000. The results are shown in Table 5.2. The results are in line
with our expectations that the performance improves as the data becomes more accurate.
We can conclude that the proposed method is quite robust to data errors. Even with a
20-meter standard deviation on entity positions, the performance does not degenerate too
much. Specifically, the error of estimating the dimension of the state trajectory is 0.24,
and the performance indicators of estimating the truck arrivals are 85.00% (success rate),
15.00% (waste rate), 0.83 minute (average distance), and 85.82% (average percentage),
respectively.

Table 5.2: The influence of data quality, i.e. σe, σt, on the data assimilation results (states
are retrieved through interpolation; Np = 2000). In each table cell the median error
over the 10 simulations is shown along with (in brackets underneath) the 25th and 75th

percentiles

σe, σt
average dimension error success rate waste rate average distance average percentage

Ē (−) SR (%) WR (%) d̄ (min) P̄ (%)

σe = 3.0, σt = 3.0
0.24 90.00 10.00 0.54 89.00

(0.20, 0.26) (90.00, 95.00) (5.00, 10.00) (0.52, 0.61) (87.56, 91.77)

σe = 5.0, σt = 5.0
0.22 90.00 10.00 0.62 88.53

(0.21, 0.32) (90.00, 90.00) (10.00, 10.00) (0.59, 0.75) (86.91, 90.48)

σe = 10.0, σt = 10.0
0.22 90.00 10.00 0.73 86.40

(0.21, 0.23) (90.00, 95.00) (5.00, 10.00) (0.70, 0.85) (85.31, 88.60)

σe = 15.0, σt = 15.0
0.24 85.00 15.00 0.79 86.50

(0.24, 0.26) (85.00, 90.00) (10.00, 15.00) (0.77, 0.93) (83.77, 87.98)

σe = 20.0, σt = 20.0
0.24 85.00 15.00 0.83 85.82

(0.22, 0.26) (85.00, 90.00) (10.00, 15.00) (0.76, 0.93) (83.61, 87.04)

5.1.3 Effect of the model errors
In the experiment in section 3.5, the model we used to carry out data assimilation is the
same with that we used to generate the ground truth data, which implies that we have a
perfect model of the reality. This is a very strong assumption. In this section, we investigate
the data assimilation results in case that the model has errors. We build an imperfect model

96

5.1. CASE STUDY IN THE GOLD MINE SYSTEM

by simply changing the distribution of the drilling time of the miner from Triangular
distribution with varying mode (i.e. perfect model) to a standard Triangular distribution
with lower bound 15 minutes, upper bound 30 minutes, and mode 20 minutes (acting as
the imperfect model). For all experiments, we set σe = 3.0, σt = 3.0, and Np = 2000;
states are retrieved through interpolation. The results are shown in Table 5.3.

Table 5.3: The influence of model quality on the data assimilation results (states are
retrieved through interpolation; σe = 3.0, σt = 3.0;Np = 2000). In each table cell the
median error over the 10 simulations is shown along with (in brackets underneath) the
25th and 75th percentiles

model average dimension error success rate waste rate average distance average percentage
Ē (−) SR (%) WR (%) d̄ (min) P̄ (%)

perfect model (drilling time: 0.24 90.00 10.00 0.54 89.00
Triangular distribution with varying mode) (0.20, 0.26) (90.00, 95.00) (5.00, 10.00) (0.52, 0.61) (87.56, 91.77)

imperfect model (drilling time: 0.28 90.00 12.14 0.63 88.83
standard Triangular distribution) (0.25, 0.33) (85.00, 90.00) (10.00, 15.00) (0.57, 0.69) (86.65, 90.95)

The results in Table 5.3 reveal that the proposed method is robust with respect to model
errors, although with the case involved, we cannot claim to have tested this exhaustively.
In the case that we model one component incorrectly (i.e. with a different distribution),
the overall performance is not significantly different with that we use a perfect model.
Clearly, the accuracy of the data assimilation results largely depends on the validity of the
simulation models used. In our case, this validity is evident, since the ground-truth data is
produced by a similar model.

5.1.4 Effect of the number of particles

The influence of the number of particles (Np) used on the data assimilation results is
summarized in Table 5.4. As expected, the overall performance has an upward tendency
as the number of particles increases. With more particles, components can explore more
possibilities on their time advance values, and thus result in different event sequences and
entity positions/phases, which will lead to a better coverage of the system state space.

Figure 5.1 depicts the error measures relative to those at Np = 2000 (the ensemble size
chosen in the gold mine case). The plot shows that the upward tendency in performance by
increasing the number of particles is not proportional. A reduction in ensemble size from
Np = 2000 to Np = 100 (i.e. 2000%) leads to an increase in error metrics ranging from
around 7% (average percentage P̄) to around 200% (waste rate WR); it seems that we
could have safely decreased the number of particles in the gold mine case from Np = 2000
to Np = 1000 without a significant loss of accuracy in terms of all error measures.

97

CHAPTER 5. THE PARTICLE FILTER BASED DATA ASSIMILATION
FRAMEWORK – SENSITIVITY ANALYSIS

Table 5.4: The influence of number of particles on the data assimilation results (states are
retrieved through interpolation; σe = 3.0, σt = 3.0). In each table cell the median error
over the 10 simulations is shown along with (in brackets underneath) the 25th and 75th

percentiles

Np
average dimension error success rate waste rate average distance average percentage

Ē (−) SR (%) WR (%) d̄ (min) P̄ (%)

100 0.31 70.00 30.00 0.81 82.29
(0.28, 0.38) (60.00, 70.00) (30.00, 40.00) (0.75, 1.08) (80.76, 83.64)

400 0.28 80.00 20.00 0.58 85.96
(0.19, 0.33) (75.00, 80.00) (20.00, 25.00) (0.50, 0.74) (82.52, 89.62)

700 0.26 82.50 17.50 0.62 87.62
(0.22, 0.29) (80.00, 90.00) (10.00, 20.00) (0.47, 0.76) (86.82, 88.65)

1000 0.23 87.50 12.50 0.67 88.33
(0.18, 0.28) (85.00, 90.00) (10.00, 15.00) (0.58, 0.80) (87.99, 89.38)

1500 0.25 87.50 12.50 0.64 88.17
(0.20, 0.27) (85.00, 90.00) (10.00, 15.00) (0.56, 0.75) (87.36, 89.93)

2000 0.24 90.00 10.00 0.54 89.00
(0.20, 0.26) (90.00, 95.00) (5.00, 10.00) (0.52, 0.61) (87.56, 91.77)

5.2 Case study in the urban traffic system2

5.2.1 Revisiting the performance indicators
As explained in section 4.3.2 in chapter 4, a set of performance indicators are defined to
quantify the quality of the reconstructed trajectories. These performance indicators are
summarized in Table 5.5.

Table 5.5: Summary of the performance indicators for trajectory reconstruction

symbol unit description

Ējnumber % average estimation error of the number of vehicle passages at sensor j ∈ {A,B}; see equation 4.17

Ējmatch % average percentage of passages that are not accurately reconstructed at sensor j ∈ {A,B}; see equation 4.17

Ēflow % average estimation error of the generalized flow; see equation 4.19

Ēdensity % average estimation error of the generalized density; see equation 4.19

Ēttr % average translation error; defined between two sets of trajectories; see equation 4.23

Ēvtr % average distortion error; defined between two sets of trajectories; see equation 4.23

Ēt,vtr % average overall error; defined between two sets of trajectories; see equation 4.23

5.2.2 Effect of the data quality
In this section, we explore how the data affects the data assimilation results. Specifically,
in section 5.2.2.1 we test the effect of data accuracy on the data assimilation results; while
in section 5.2.2.2, we focus the effect of data quantity on the data assimilation results.

2This section is part of a paper submitted to Transportation Research Part C: Emerging Technologies: Xie,
X., van Lint, J. W. C., Verbraeck, A.: A generic data assimilation framework for vehicle trajectory reconstruction
on signalized urban arterials using particle filters.

98

5.2. CASE STUDY IN THE URBAN TRAFFIC SYSTEM

100 400 700 1000 1500 2000

ensemble size

-50

0

50

100

150

200

Figure 5.1: The influence ofNp on the data assimilation results (states are retrieved through
interpolation; σe = 3.0, σt = 3.0); the performance indicators are relative to those at
Np = 2000

As explained in chapter 4, vehicle accumulations are key in the trajectory reconstruction
method, but they are obtained indirectly via the correction method (van Lint and Hoogen-
doorn, 2015), therefore in section 5.2.2.3, we look into the effect of vehicle accumulations
on the data assimilation results by assuming that we have error-free vehicle accumulations.
Finally in section 5.2.2.4, we explore how the sampling rate of the travel time observations
affect the data assimilation results.

5.2.2.1 Effect of the sensor quality

In the traffic case study, the sensor quality is characterized by two parameters: the detection
accuracy p and the occurrence rate of over-count λ. When varying one of the two, the other
is assigned a perfect value, i.e. when varying p, we set λ to 1/∞ s−1 (no over-counts);
when varying λ, we set p = 1 (no miss-counts). For all experiments we set Np = 1000.
The results are shown in Table 5.6 and Table 5.7, respectively. The results are in line with
our expectations that the performance improves as the sensors become more accurate. We
can conclude that the proposed data assimilation framework is quite robust to data errors.
Even with 40% miss-counts or one over-count every two minutes, all estimation errors are
(well) within a 20% range.

5.2.2.2 Incorporating probe vehicle data into the framework

The proposed data assimilation framework relies on the vehicle accumulation and vehicle
passages to reconstruct vehicle trajectories, but it is also open to other types of data if
they are available. In this section, we briefly sketch how, for example, we can assimilate
probe vehicle data (sampled vehicle trajectories) in the framework. To demonstrate this we
consider the case where one such a sampled vehicle trajectory in each cycle is available,

99

CHAPTER 5. THE PARTICLE FILTER BASED DATA ASSIMILATION
FRAMEWORK – SENSITIVITY ANALYSIS

Table 5.6: The influence of p on the data assimilation results (λ = 1/∞ s−1, Np = 1000).
In each table cell the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles

p
reconstructed vehicle passages generalized flow and density translation/distortion errors

ĒAnumber (%) ĒAmatch (%) ĒBnumber (%) ĒBmatch (%) Ēflow (%) Ēdensity (%) Ēttr (%) Ēvtr (%) Ēt,vtr (%)

0.6 14.15 17.67 6.65 18.32 11.96 19.77 7.49 16.05 11.94
(12.85, 15.01) (16.89, 18.49) (6.51, 7.69) (16.34, 19.39) (10.49, 13.31) (17.88, 21.43) (6.79, 8.75) (15.52, 17.64) (11.33, 12.97)

0.7 10.64 12.12 7.93 13.21 8.00 12.22 5.80 16.10 11.15
(8.94, 12.11) (10.48, 15.49) (5.25, 10.86) (10.60, 14.54) (7.39, 8.70) (10.96, 16.42) (5.37, 6.91) (14.01, 17.64) (9.59, 11.89)

0.8 7.99 7.99 5.55 7.85 7.10 12.54 4.72 13.19 8.72
(6.45, 9.45) (7.71, 9.09) (4.19, 7.36) (7.37, 9.37) (5.60, 7.53) (10.00, 15.30) (4.27, 5.06) (11.97, 14.49) (8.36, 9.78)

0.9 5.71 2.96 6.87 3.73 6.29 12.11 3.20 12.18 7.67
(4.42, 7.64) (2.10, 3.35) (6.44, 7.20) (2.28, 4.12) (4.88, 7.09) (11.09, 14.32) (2.37, 3.97) (10.99, 12.86) (6.68, 8.68)

1.0 0.00 0.00 0.00 0.79 0.30 1.38 1.24 4.95 3.09
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.79) (0.13, 0.68) (1.31, 1.43) (1.21, 1.27) (4.84, 5.28) (3.02, 3.28)

Table 5.7: The influence of λ on the data assimilation results (p = 1.0, Np = 1000). In
each table cell the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles

λ(s−1)
reconstructed vehicle passages generalized flow and density translation/distortion errors

ĒAnumber (%) ĒAmatch (%) ĒBnumber (%) ĒBmatch (%) Ēflow (%) Ēdensity (%) Ēttr (%) Ēvtr (%) Ēt,vtr (%)

1/120
10.33 12.17 10.08 12.60 10.64 17.83 3.78 13.25 8.42

(9.21, 13.14) (11.05, 14.34) (8.93, 12.61) (10.76, 14.26) (8.89, 12.44) (16.59, 19.78) (3.52, 4.00) (12.73, 15.28) (8.25, 9.79)

1/180
7.94 8.57 6.81 8.24 7.49 13.25 3.45 12.08 7.81

(6.39, 9.33) (7.17, 11.14) (5.58, 8.66) (6.90, 9.99) (5.85, 9.09) (11.18, 17.10) (2.97, 3.80) (9.67, 13.37) (6.32, 8.51)

1/240
6.79 6.79 6.19 6.83 6.91 14.92 3.11 11.99 7.56

(5.88, 7.31) (5.88, 7.31) (5.73, 6.92) (6.23, 7.44) (6.36, 7.78) (14.38, 18.16) (2.94, 3.24) (10.85, 12.76) (6.89, 8.15)

1/300
4.59 4.19 5.05 6.01 5.03 8.11 2.35 9.21 5.83

(4.37, 6.58) (3.67, 6.00) (4.52, 5.91) (4.79, 6.90) (4.56, 6.09) (6.29, 10.21) (2.05, 2.52) (7.51, 9.98) (4.82, 6.22)

1/∞ 0.00 0.00 0.00 0.79 0.30 1.38 1.24 4.95 3.09
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.79) (0.13, 0.68) (1.31, 1.43) (1.21, 1.27) (4.84, 5.28) (3.02, 3.28)

see Figure 5.2. For each sampled trajectory, we assume we have available its position every
second. Accordingly, we need to adjust the weight computation presented in section 4.2.4.4
by adding a process in which we consider three facts: 1) is there a trajectory in the particle
which has a similar entering time (i.e. passing time at sensor A) with that of the sampled
trajectory? By ‘similar’, we mean that the difference between the two entering times
is smaller than the minimum time headway; 2) if the first condition is met, we check if
the corresponding trajectory in the particle passes the same sequence of sensors as the
sampled trajectory does; 3) if the first two conditions are both met, we finally look at
their average position difference over all sampled time instants. Combining the three facts
(differences), we assign a reasonable weight for each particle; since the vehicle passages
and the probe vehicle data are independent with each other, the final weight is updated by
simply multiplying the weight computed in section 4.2.4.4 by the weight obtained from
the probe vehicle data.

The results are shown in Table 5.8. Clearly, probe vehicle data improves the perfor-
mance in terms of most metrics, and expectedly, the most significant improvements relate
to the translation & distortion errors, and number of reconstructed vehicle passages. Sam-
pled trajectories are direct samples of what happens between two locations, the accuracy
of individual vehicle trajectory reconstruction can thus be improved; furthermore, sampled
trajectories contain information of passing times by any locations, which can help to detect

100

5.2. CASE STUDY IN THE URBAN TRAFFIC SYSTEM

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420

time (seconds)

po
si

tio
n

A

B

C

D

observed passages

420 450 480 510 540 570 600 630 660 690 720 750 780 810 840

time (seconds)

po
si

tio
n

A

B

C

D

observed passages

Figure 5.2: The sampled trajectories

miss-counts and remove over-counts, therefore we can reconstruct more accurate number
of vehicle passages.

Table 5.8: The data assimilation results when sampled trajectories are available (p =
0.9, λ = 1/300 s−1, Np = 1000). In each table cell the median error over the 10 simula-
tions is shown along with (in brackets underneath) the 25th and 75th percentiles

Assimilate sampled trajectories?
reconstructed vehicle passages generalized flow and density translation/distortion errors

ĒAnumber (%) ĒAmatch (%) ĒBnumber (%) ĒBmatch (%) Ēflow (%) Ēdensity (%) Ēttr (%) Ēvtr (%) Ēt,vtr (%)

no 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14, 3.73) (10.16, 11.05) (6.77, 7.37)

yes 7.33 8.43 4.45 7.18 6.90 8.25 2.79 9.11 6.08
(7.12, 8.91) (8.03, 8.94) (3.17, 5.83) (6.92, 8.36) (5.88, 8.48) (6.73, 9.56) (2.49, 2.91) (8.39, 10.02) (5.44, 6.42)

5.2.2.3 The difference between estimated and error-free vehicle accumulations

Vehicle accumulations are key in the trajectory reconstruction method, but difficult to come
by. In the traffic study case, we used a correction method to estimate vehicle accumulations
through cumulative counts and coarsely available travel time observations. Although this
method yields good results, the estimates are certainly not error free. Table 5.9 summarizes
the results when error-free vehicle accumulations are assimilated. Although the original
results (top row in Table 5.9) are acceptable and around 10% or less, these results confirm
that indeed all error measures (number of passages, departure times, flow, density and
the three trajectory errors, respectively) decrease significantly, also in the statistical sense.
By investing in vehicle counting (better loops, or via radar or other sensing devices),
around 40% more accurate cumulative counts (Ējnumber, Ē

j
match, j ∈ {A,B}); around

25-30% more accurate macroscopic estimates (Ēflow, Ēdensity); and also more accurate
microscopic vehicle dynamics (trajectories) can be estimated, particularly when it comes to
the correct location of the trajectories (38% improvement in Ēttr versus 10% improvement
in Ēvtr respectively).

101

CHAPTER 5. THE PARTICLE FILTER BASED DATA ASSIMILATION
FRAMEWORK – SENSITIVITY ANALYSIS

Table 5.9: Data assimilation results when accurate vehicle accumulations are available.
For all simulations we have p = 0.9, λ = 1/300 s−1, Np = 1000 (i.e. 1000 particles). In
each table cell the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles

Estimated accumulations
reconstructed vehicle passages generalized flow and density translation/distortion errors

ĒAnumber (%) ĒAmatch (%) ĒBnumber (%) ĒBmatch (%) Ēflow (%) Ēdensity (%) Ēttr (%) Ēvtr (%) Ēt,vtr (%)

inaccurate accumulations 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14, 3.73) (10.16, 11.05) (6.77, 7.37)

error-free accumulations 5.84 7.71 5.09 6.62 6.65 7.36 2.19 9.39 5.76
(5.20, 6.86) (6.56, 8.45) (4.43, 6.41) (5.74, 7.14) (6.22, 7.23) (6.95, 8.10) (2.01, 2.27) (8.75, 9.84) (5.48, 6.20)

5.2.2.4 Effect of sampling rate of travel time observations

The experiment in chapter 4 assumes that the travel time observations are available every 3
minutes. In this section, we explore how the sampling rate of the travel time observations
affect the data assimilation results. This effect is essentially predictable. On the one
hand, van Lint and Hoogendoorn (2015) shows that more frequent travel time observations
leads to more accurate vehicle accumulation estimations. On the other hand, the results in
Table 5.9 reveal that with more accurate vehicle accumulations, we can reconstruct more
accurate vehicle trajectories. Therefore, we can predict that with more frequent travel time
observations, the data assimilation results will be improved. This prediction is confirmed
by the experiment results shown in Table 5.10, which tell that the trajectory reconstruction
results become more accurate as the travel time observations are fed more frequently, but
this trend is below proportional.

Table 5.10: The influence of the sampling rate of the travel time observations. For all
simulations we have p = 0.9, λ = 1/300 s−1, Np = 1000 (i.e. 1000 particles). In
each table cell the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles

sampling rate (minutes) reconstructed vehicle passages generalized flow and density translation/distortion errors
ĒAnumber (%) ĒAmatch (%) ĒBnumber (%) ĒBmatch (%) Ēflow (%) Ēdensity (%) Ēttr (%) Ēvtr (%) Ēt,vtr (%)

9 11.21 11.48 7.43 11.06 10.40 14.11 4.49 14.37 9.52
(10.35, 11.94) (10.31, 13.98) (6.16, 8.13) (9.87, 11.86) (9.65, 10.88) (11.21, 17.03) (3.81, 4.82) (12.25, 15.50) (8.00, 10.16)

6 10.00 11.50 7.91 10.51 9.50 15.19 3.92 12.45 8.22
(9.27, 11.62) (10.75, 11.92) (6.14, 9.20) (9.81, 12.58) (8.22, 10.33) (10.85, 18.44) (3.56, 4.20) (11.90, 12.91) (7.60, 8.56)

3 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14, 3.73) (10.16, 11.05) (6.77, 7.37)

5.2.3 Effect of the model errors

In the experiment in chapter 4, the model we used to carry out data assimilation is the same
with that we used to generate the ground truth data, which implies that we have a perfect
model of the reality. This is a very strong assumption. In this section, we investigate the
data assimilation results in case the model has errors. Specifically, we test two cases: 1)
assimilating data generated by the IDM using the IDM with 5% calibration errors on the
minimum spacing s0 and the desired time headway T ; 2) assimilating data generated by
the IDM using a different car-following model, the Improved Full Velocity Difference

102

5.2. CASE STUDY IN THE URBAN TRAFFIC SYSTEM

Model (IFVDM) (Treiber and Kesting, 2013), which defines a vehicle’s acceleration as

vopt(s) = max{0, v0

tanh(s
∆s − β) + tanhβ

1 + tanhβ
}

v̇IFV DM =
vopt(s)− v

τ
− γ∆v

max{1, s/(v0T)}

where ∆s is the transition width, β is the form factor, v0 is the desired speed, τ is the
adaption time, T is the time gap, and γ is the speed difference sensitivity. These parameters
are assigned with the typical values of city traffic (Treiber and Kesting, 2013) as shown in
the last row in Table 5.11. The parameters of the IDM which generates the ground truth
data are a = 1.0 m/s2, b = 1.5 m/s2, s0 = 2.0 m, T = 1.0 s, v0 = 15.0 m/s. The
results are summarized in Table 5.12.

Table 5.11: The models used to assimilate the data generated by the IDM (a =
1.0 m/s2, b = 1.5 m/s2, s0 = 2.0 m, T = 1.0 s, v0 = 15.0 m/s)

model parameters

IDM (benchmark) a = 1.0 m/s2, b = 1.5 m/s2, s0 = 2.0 m, T = 1.0 s, v0 = 15.0 m/s
IDM (s0 − 5%) a = 1.0 m/s2, b = 1.5 m/s2, s0 = 1.9 m, T = 1.0 s, v0 = 15.0 m/s
IDM (s0 + 5%) a = 1.0 m/s2, b = 1.5 m/s2, s0 = 2.1 m, T = 1.0 s, v0 = 15.0 m/s
IDM (T − 5%) a = 1.0 m/s2, b = 1.5 m/s2, s0 = 2.0 m, T = 0.95 s, v0 = 15.0 m/s
IDM (T + 5%) a = 1.0 m/s2, b = 1.5 m/s2, s0 = 2.0 m, T = 1.05 s, v0 = 15.0 m/s

IFVDM ∆s = 8.0 m, β = 1.5, v0 = 15.0 m/s, τ = 5.0 s, T = 1.2 s, γ = 0.6 s−1

Table 5.12: The influence of model errors on the data assimilation results (p = 0.9, λ =
1/300 s−1, Np = 1000). In each table cell the median error over the 10 simulations is
shown along with (in brackets underneath) the 25th and 75th percentiles

model type
reconstructed vehicle passages generalized flow and density translation/distortion errors

ĒAnumber (%) ĒAmatch (%) ĒBnumber (%) ĒBmatch (%) Ēflow (%) Ēdensity (%) Ēttr (%) Ēvtr (%) Ēt,vtr (%)

IDM (benchmark) 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14, 3.73) (10.16, 11.05) (6.77, 7.37)

IDM (s0 − 5%) 8.86 10.06 6.20 9.52 7.65 10.67 3.69 11.29 7.51
(8.57, 10.24) (9.50, 11.05) (5.41, 6.41) (8.02, 10.92) (6.96, 8.86) (9.22, 12.08) (3.27, 3.84) (10.53, 12.34) (6.98, 7.81)

IDM (s0 + 5%)
9.31 9.49 5.67 8.94 8.42 8.67 2.93 10.40 6.77

(8.74, 10.45) (7.38, 10.41) (4.94, 6.42) (7.66, 9.63) (7.14, 8.91) (7.67, 9.85) (2.51, 3.65) (9.54, 11.45) (6.09, 7.37)

IDM (T − 5%)
9.45 10.31 5.69 9.29 8.01 9.83 3.41 10.93 7.27

(8.69, 10.05) (8.35, 10.60) (5.36, 7.41) (8.10, 9.47) (7.48, 9.29) (8.23, 10.90) (2.95, 3.63) (9.34, 12.57) (6.24, 8.10)

IDM (T + 5%)
9.64 9.98 6.82 9.69 8.32 10.77 3.60 11.14 7.46

(8.53, 11.38) (9.56, 11.73) (5.65, 7.61) (8.88, 11.11) (7.90, 9.48) (10.20, 13.09) (3.38, 4.09) (10.70, 11.77) (7.33, 7.74)

IFVDM 13.04 11.79 9.46 12.49 10.42 14.06 5.72 30.66 18.14
(10.53, 13.57) (9.89, 13.24) (8.99, 12.06) (9.98, 13.65) (9.00, 11.86) (12.57, 15.62) (5.59, 5.82) (28.57, 31.20) (17.12, 18.54)

The results in Table 5.12 reveal that the proposed method is robust with respect to
model errors, although with the two cases involved, we cannot claim to have tested this
exhaustively. In the case that the model has 5% calibration errors, the overall performance is
not significantly different with a perfect model; in the case that a different model is applied,
the performance does not degenerate except for the distortion error Ēvtr, which is likely a
result of different acceleration processes between the two models (see Figure 5.3). Clearly,
this will result in larger differences in individual speed dynamics and thus larger distortion

103

CHAPTER 5. THE PARTICLE FILTER BASED DATA ASSIMILATION
FRAMEWORK – SENSITIVITY ANALYSIS

errors. Since the overall error Et,vtr is a linear combination of Ettr and Evtr, we also
observe large error in the last column (Ēt,vtr) of the last row in Table 5.12. This result does
emphasize an important underlying point. Clearly, unless we have actual evidence (data),
either macroscopically in the form of queue dynamics, or (even better) microscopically
in the form of sample trajectories, the quality of the reconstruction completely depends
on the validity of the microscopic models used in the framework for the specific case.
As demonstrated in section 5.2.2.2, such evidence (probe vehicle data) can be naturally
incorporated in the framework as well, and that it indeed improves the results.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125130135

time (seconds)

0

200

400

600

800

1000

1200

po
si

tio
n

(m
)

IDM
IFVDM

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125130135

time (seconds)

0

5

10

15

sp
ee

d
(m

/s
)

IDM
IFVDM

Figure 5.3: The position and speed time-series of approaching a traffic light (model
parameters are given in Table 5.11). The initial speed and the initial position are both zero;
the position of the traffic light is 500 m, and it switches to red at time t = 30 s, and then
lasts for 60 seconds

5.2.4 Effect of the number of particles

The influence of the number of particles (Np) used on the data assimilation results is
summarized in Table 5.13. As expected, the overall performance has an upward tendency
as the number of particles increases. With more particles, the proposed method can
explore more possibilities on the entering times & speeds of individual vehicles and vehicle
dispersion in the network, which leads to a better coverage of the system state space.

The good news, however, is that the trend is not proportional, which becomes apparent
when looking at results in a graph, as presented in Figure 5.4(a) by means of absolute
numbers (similar to those in Table 5.13) and in Figure 5.4(b) by dividing all the error
measures by the corresponding performance at Np = 1000 (the ensemble size chosen

104

5.3. CONCLUSIONS

Table 5.13: The influence of Np on the data assimilation results (p = 0.9, λ = 1/300 s−1).
In each table cell the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles

Np

reconstructed vehicle passages generalized flow and density translation/distortion errors
ĒAnumber (%) ĒAmatch (%) ĒBnumber (%) ĒBmatch (%) Ēflow (%) Ēdensity (%) Ēttr (%) Ēvtr (%) Ēt,vtr (%)

100 12.03 11.78 7.83 10.87 10.60 14.54 4.17 13.46 8.78
(11.18, 12.64) (10.58, 12.37) (7.42, 9.28) (10.51, 11.60) (10.45, 10.71) (12.79, 15.10) (4.02, 4.37) (12.83, 13.84) (8.47, 9.12)

400 10.41 10.35 6.67 9.61 9.06 11.73 3.65 11.99 7.85
(10.13, 10.74) (9.76, 11.21) (6.32, 6.90) (9.31, 10.12) (8.79, 9.69) (10.09, 13.49) (3.44, 3.93) (11.31, 12.19) (7.26, 7.99)

700 9.52 9.23 5.79 8.57 7.81 10.36 3.38 10.82 6.94
(8.23, 10.42) (8.47, 9.82) (5.13, 6.41) (7.47, 8.99) (7.35, 8.67) (9.37, 11.41) (3.15, 3.51) (10.34, 11.60) (6.70, 7.44)

1000 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14, 3.73) (10.16, 11.05) (6.77, 7.37)

2000 7.87 7.24 4.84 6.70 7.09 7.64 3.03 9.89 6.57
(6.61, 9.10) (6.52, 8.70) (3.47, 5.88) (6.21, 7.72) (6.14, 7.55) (6.25, 9.17) (2.72, 3.24) (9.52, 10.24) (6.36, 6.73)

in the urban traffic case). What Figure 5.4(b) shows, is that a reduction in ensemble
size from Np = 1000 to Np = 100 (i.e. 1000%) leads to an increase in error metrics
ranging from less than 10% (cumulative count at location B) to slightly over 50% (error in
density); whereas doubling the ensemble size (to Np = 2000) improves the performance
no more than between 5 and 25%. Although relatively such gains may seem worthwhile,
Figure 5.4(a) shows the actual gains are small. In our view, the increased error measures in
the case of Np = 100 (Table 5.13 top row) are well within acceptable bounds; it seems that
we could have safely decreased the number of particles in our experiment from Np = 1000
to Np = 700 without a significant loss of accuracy in terms of all error measures.

5.3 Conclusions

In this chapter, we tested the particle filter based data assimilation framework on the studied
cases that allowed us to analyze the characteristics of the framework and its sensitivity to a
number of important parameters that relate to the errors in the data and in the simulation
model used, as well as to the number of particles employed.

Sensitivity analysis with respect to data quality shows that the framework is quite
robust to error assumptions since particle filters are assumption-free. In the gold mine
case, even with a 20-meter standard deviation on entity positions, the performance does
not degenerate too much. Specifically, the error of estimating the dimension of the state
trajectory is 0.24, and the performance indicators of estimating the truck arrivals are 85.00%
(success rate), 15.00% (waste rate), 0.83 minute (average distance), and 85.82% (average
percentage), respectively (see Table 5.2). In the urban traffic case, the (macroscopic)
estimation errors are consistently about half the percentages of miss- and over-counts; even
with 40% miss-counts or one over-count every two minutes, all estimation errors are (well)
within a 20% range (see Table 5.6 and Table 5.7). Similarly, the framework is robust to
model errors (i.e. differences between the models generating the ground-truth data and the
models used in the case studies), although we cannot claim to have tested this exhaustively.
The result shows that using models with errors does not significantly affect the estimation
results (see Table 5.3 and Table 5.12). This result does, however, emphasize an important
underlying point. Clearly, unless we have actual evidence (data), the accuracy of the
estimation results depends on the validity of the simulation models used in the framework

105

CHAPTER 5. THE PARTICLE FILTER BASED DATA ASSIMILATION
FRAMEWORK – SENSITIVITY ANALYSIS

100 400 700 1000 2000
0

2

4

6

8

10

12

14

100 400 700 1000 2000

ensemble size

-20

0

20

40

60

Figure 5.4: The influence of Np on the data assimilation results (p = 0.9, λ = 1/300 s−1);
the bottom plot shows error measures relative to those at Np = 1000

for the specific case at hand. In our case, this validity is evident, since the ground-truth data
is produced by a similar model. In real life, when the predictions given by the simulation
model diverge too much from the real behavior of the system, it stands to reason that the
estimation results will be farther away from the ground truth. In such a situation, we need
to develop a more effective importance density, which can combine model predictions and
real-time measurements together to propose new samples (remember that the importance
density is defined as q(sk|s0:k−1,m1:k)). As demonstrated by Xue and Hu (2013), a new
fire ignited during the simulation cannot be estimated if the system transition density is
chosen as the importance density ((i.e. sk ∼ q(sk|s0:k−1,m1:k) = p(sk|sk−1))), since the
wildfire spread simulation does not model igniting new fires during the simulation process;
however, after real-time measurements are properly incorporated to propose samples (i.e.
sk ∼ q(sk|s0:k−1,m1:k)), the newly ignited fire can be successfully estimated.

Sensitivity analysis in terms of the number of particles employed reveals that with fixed
data/model quality, the estimation errors decrease when the number of particles increases
(see Figure 5.1 and Figure 5.4). With more particles, we can have a better coverage of the
system state space, leading to more accurate estimation results. However, the trend is not
proportional, which means that it is impossible to achieve error-free estimation results by
continuously increasing the number of particles, since the quality of the estimation results
is restricted by the quality of the data and the model involved in the data assimilation
process. Increasing the number of particles also increases the computational complexity,
therefore a balance between computational complexity and estimation accuracy should be

106

5.3. CONCLUSIONS

achieved.
In summary, the quality of the data assimilation results is affected by the validity of

the system model, the data quality, and the number of particles used. The more valid
the simulation models, and the more accurate the sensors, and the higher the number of
the particles, the better the estimation results. This implies several important research
lines, i.e., developing simulation models that can make more valid predictions of the real
system behavior, and developing more advanced sensor technologies that can provide more
accurate measurement data of the real systems, and developing a parallel and distributed
version of the proposed data assimilation framework to effectively deal with more complex
scenarios.

107

6

C
H

A
P

T
E

R

Conclusions and Future
Research

Enabled by the increased availability of data, the data assimilation technique (Bouttier
and Courtier, 1999; Nichols, 2003), which incorporates measured observations into
a dynamical system model to produce a time sequence of estimated system states,

gains popularity. The main reason is that it can produce more accurate estimation results
than using either a simulation model or the measurements. Due to this benefit, the data
assimilation technique has been applied in many continuous systems applications, but
very little data assimilation research has been found for discrete event simulations. With
the application of new sensor technologies and communication solutions, such as smart
sensors, or Internet of Things (Atzori et al., 2010), the availability of data for discrete
event systems has increased as well, such as data from machines and processes (Lee et al.,
2013), or high-resolution event data in traffic (Wu and Liu, 2014). The increased data
availability for discrete event systems but the lack of related data assimilation techniques
thus motivated this work on data assimilation in discrete event simulations.

Since discrete event simulations are highly nonlinear, non-Gaussian systems, particle
filters are used to conduct data assimilation in discrete event simulations. However,
applying particle filtering in discrete event simulations still encounters several theoretical
and practical problems, such as the state retrieval problem (discrete event simulation
models have a piecewise constant state trajectory, so the retrieved state was updated at a
past time instant, with which inaccurate estimation results will be obtained), the variable
dimension problem (the dimension of the state trajectory during a fixed time interval is a
random variable, leading to inapplicability of the standard sequential importance sampling
algorithm), and the processing of non-numerical data. In this research, we presented a
particle filter based data assimilation framework for discrete event simulations, in which
the aforementioned problems are addressed. Besides, we analyzed the characteristics of

109

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

the proposed data assimilation framework and its sensitivity to a number of important
parameters in the framework, such as model errors, data quality, and the number of particles
employed.

6.1 Research findings

6.1.1 Answers to research questions
In this section, we summarize the main research findings to answer the two research
questions proposed in chapter 1.

RQ 1: What existing or adapted data assimilation technique is suitable for discrete event
simulations?

Since particle filters are able to approximate arbitrary probability densities and have no
assumption about the properties of the system model, they are in principle applicable to
discrete event simulations, which show highly nonlinear, non-Gaussian behavior. However,
applying particle filtering in discrete event simulations still encounters several problems,
such as the state retrieval problem, and the variable dimension problem, as explained in
chapter 2. In this research, we proposed a particle filter based data assimilation frame-
work for discrete event simulations, in which these problems can be solved. In this data
assimilation framework, we assume that the measurements available at (discrete) time
k are distributed over the last measurement interval (i.e. data fed at time k can contain
observations occurring at any time instant during [(k − 1)∆T, k∆T], where ∆T is the
measurement interval), implying that the measurements are dependent on the state tran-
sitions during that measurement interval. The problems and corresponding solutions are
summarized below:

• The first problem is the state retrieval problem, which means that the model state
retrieved from a discrete event simulation model is a combination of sequential
states of atomic components that were updated at past time instants. This problem is
a result of the mismatch between the discrete event state transition process and the
measurement process. In a discrete event simulation, state updates happen locally
and asynchronously within each atomic model component; the system state takes a
new value when one of its components has a state update. Therefore the duration
between two consecutive state updates (at both the coupled level and the atomic
level) is usually not fixed, which is thus asynchronous with the measurement process
that usually feeds data at fixed times (although random arrivals of data are also
possible). With outdated states, inaccurate estimation results will be obtained. Our
solution is to introduce an interpolation operation which interpolates state values
based on the system states updated within a time interval around the time instant
when the operation is invoked in order to obtain updated state values (see sections
3.2.2 and 3.3.3, and also the beginning of section 4.2). The size of the time interval
is determined by the interpolation method employed.

• The second problem is the variable dimension problem, which means that the
dimension of the state trajectory s0:k (see definition in equation 3.13) is a random

110

6.1. RESEARCH FINDINGS

variable. This problem arises due to two reasons. The first reason is that the
duration between two consecutive (system) state updates is not fixed, therefore the
number of state points during a fixed time interval [0, k∆T] is random; the second
reason is that in open systems, where entities can flow in and flow out through
the system boundaries, the number of entities in the system is random, and as a
result, the dimension of the system state is random, so is the state trajectory. The
variable dimension of s0:k will lead to inapplicability of the standard sequential
importance sampling algorithm which updates p(s0:k|m1:k). In this research, we
solved this problem in the following way. We first make the variable dimension
state trajectory to have a fixed dimension with certain extensions. The standard
sequential importance sampling algorithm can thus be applied to update the joint
distribution of the extended state trajectory with fixed dimension. Samples in which
the extensions are discarded will form the samples from the joint distribution of
the state trajectory of interest that has a variable dimension. In section 3.2.3 and
section 4.1.3, we proved that the discarded extensions have no tangible effect on the
weight update. This result implies that in practice we can safely apply the sequential
importance sampling algorithm to update p(s0:k|m1:k) where s0:k has a variable
dimension (no matter the discrete event system is open or closed). The proposed
data assimilation framework can therefore be applied to discrete event simulations
of both closed and open systems.

We use two case studies to demonstrate the working of the proposed data assimilation
framework. The first case studied a gold mine system (closed system), in which noisy data
(event sequences, entity positions) was assimilated into a gold mine simulation to estimate
the truck arrival times at the bottom of the vertical shaft; the second case studied an urban
traffic system (open system), in which noisy data (vehicle passages, traffic signal timings,
travel time observations) was assimilated into a microscopic traffic simulation model to
reconstruct vehicle trajectories on signalized urban arterials. The characteristics of the
two case studies are compared in Table 6.1. The second case also contributes to a generic
(in the sense that any (ensemble of) microscopic simulation models can be used) data
assimilation framework for vehicle trajectory reconstruction on signalized urban arterials.
The results from the case studies imply that:

• The proposed data assimilation framework is indeed able to provide accurate es-
timation results in both closed and open discrete event systems. As shown in
section 3.5, after we assimilate (with interpolation) the noisy dataset with Gaussian
noise N (0, 32) added on entity positions, the performance indicators of estimating
the truck arrivals are 95.00% (success rate), 5.00% (waste rate), 0.53 minute (average
distance), and 92.66% (average percentage), respectively (see section 3.5.3.2); in
contrast, the simulation without data assimilation totally loses its prediction ability
after 150 minutes (see section 3.4). In the urban traffic case, the framework is
able to reconstruct plausible vehicle trajectories under realistic error assumptions
(detection accuracy p = 0.9, occurrence rate of over-count λ = 1/300 s−1) yielding
good performance on both macro- and microscopic error measures (see section 4.3
for more details). The overall absolute percent errors on reconstructing passage
counts are around 7%; whereas reconstructing the departure sequences over stop
lines has an error around 5%. Given the error assumptions this is a very promising

111

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

result—recall that without assimilation, these errors are unbounded! The errors
in density and flow (using Edie’s definitions (Edie, 1963)) are around 5% as well.
Also the quality of the reconstructed trajectories in terms of matching locations and
speeds is satisfactory, although here we observe a (small) subset of large(r) errors.

• Though the estimation results obtained from data assimilation without interpolation
are already accurate, they can be improved significantly (in the statistic sense) if
a proper interpolation operation is used. If the model state is retrieved without
considering the elapsed time (i.e. without interpolation), it can still reflect reality
to a certain degree, and the estimation results are much better than those without
data assimilation (see section 3.4). However, with interpolation, the time elapsed
since the last state transition is considered, and as a result, the real-time evolution,
which is not captured in the model but does happen in reality, will be reflected
through the measurement model. Consequently, the estimation results obtained from
data assimilation with interpolation are more accurate than those obtained without
interpolation, which is proven in section 3.5.3.3.

• The variable dimension state trajectory has no tangible effect on weight updating,
and particle filtering can approximate the dimension of the state trajectory accurately.
In the gold mine case, the average absolute estimation error for the dimension of
the state trajectory is 0.19, which is negligible since the dimension is an integer (see
section 3.5.3.1). In the urban traffic case, the dimension of the state trajectory is
directly related to the passage counts at the system boundaries (see equation 4.3).
We can reconstruct these counts with an overall absolute percent error ranging from
5% to 7% depending on sensor locations (see section 4.3.3.1).

To conclude, particle filtering is in principle applicable to data assimilation in discrete
event simulations. However, to apply particle filtering in discrete event simulations
effectively, one needs to realize the characteristics of discrete event simulations, and
understand their influence on the data assimilation procedure. First, a proper interpolation
operation should be defined to obtain updated state values, since the discrete event state
process is asynchronous with the measurement process. The interpolation operation can
capture the real-time evolution that is not depicted in the model but does happen in reality.
Second, though in practice the standard sequential importance sampling algorithm can be
safely applied to update the random measure which approximates the posterior distribution
of a state trajectory with variable dimension, we should realize the theoretical reason behind.
To effectively conduct data assimilation in open systems, two extra steps (compared with
the data assimilation procedure in closed systems) are required. First, we need to estimate
(directly from data or indirectly using an estimation method) the number of entities in the
system, otherwise we will have an underdetermined problem, since the number of entities
in an open system is unknown in advance. Second, we need to reconstruct entity arrivals
at system boundaries based on (noisy) observations. One can also randomly generate a
sequence of arrivals, but this would require a much larger number of particles to achieve
similar performance.

RQ 2: How do the parameters of key components in the data assimilation framework affect
the data assimilation results?

112

6.1. RESEARCH FINDINGS

Table 6.1: Comparison of the case studies

the gold mine case the urban traffic case

system properties

consist of miners, trucks, ele-
vator, etc.; drilling time of the
miners and unloading time of
the elevator are random; closed
discrete event system

consist of roads, traffic signals,
vehicles, etc.; vehicles can enter
and leave the system at any time
through the system boundaries;
open discrete event systems

model coupled DEVS model
microscopic traffic flow model
(focus on car-following behav-
ior; based on event scheduling)

data partial event sequences, entity
positions (with Gaussian errors)

vehicle passages (with miss-
and over-counts), traffic signal
timings, travel time observa-
tions

variable of interest truck arrival times at the bottom
of the vertical shaft

vehicle trajectories over a time-
space region

state retrieval problem

time advance of atomic compo-
nents is random, therefore the
duration between two consecu-
tive system state updates is not
fixed; use linear interpolation to
obtain entity positions

vehicles enter the system at
different times (irregularly dis-
tributed), and consequently sys-
tem state updates happen ran-
domly on a continuous time
base; the interpolation opera-
tion boils down to integrating
acceleration and speed over the
elapsed time to obtain updated
vehicle state (location, speed,
acceleration, etc.)

variable dimension problem
the number of state points dur-
ing a fixed time interval is ran-
dom

vehicles entering and leaving
the system lead to a dynamic
(random) number of vehicles in
the system

notes for the data
assimilation procedure –

need to estimate the number of
vehicles to avoid an underdeter-
mined problem; need to recon-
struct vehicle arrivals at system
boundaries in order to run the
simulation model of the open
system

The key components in the proposed particle filter based data assimilation framework
are the system model, the noisy data, and the particle filtering algorithm. Based on the data
generated from the two case studies, we analyzed the characteristics of the proposed data
assimilation framework and its sensitivity to a number of important parameters that relate
to the errors in the data and in the simulation model, as well as to the number of particles
employed.

Sensitivity analysis with respect to data quality shows that the framework is quite

113

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

robust to error assumptions since particle filters are assumption-free. In the gold mine
case, even with a 20-meter standard deviation on entity positions, the performance does
not degenerate too much. Specifically, the error of estimating the dimension of the state
trajectory is 0.24, and the performance indicators of estimating the truck arrivals are 85.00%
(success rate), 15.00% (waste rate), 0.83 minute (average distance), and 85.82% (average
percentage), respectively (see Table 5.2). In the urban traffic case, the (macroscopic)
estimation errors are consistently about half the percentages of miss- and over-counts;
even with 40% miss-counts or one over-count every two minutes, all estimation errors
are (well) within a 20% range (see Table 5.6 and Table 5.7). Similarly, the framework is
robust to model errors (i.e. differences between the models generating the ground-truth
data and the models used in the case studies), although we cannot claim to have tested
this exhaustively. The result shows that using models with errors does not significantly
affect the estimation results (see Table 5.3 and Table 5.12). This result does, however,
emphasize an important underlying point. Clearly, unless we have actual evidence (data),
the accuracy of the estimation results depends on the validity of the simulation models used
in the framework for the specific case at hand. In our case, this validity is evident, since
the ground-truth data is produced by a similar model. In real life, when the predictions
given by the simulation model diverge too much from the real behavior of the system,
it stands to reason that the estimation results will be farther away from the ground truth.
In such a situation, we need to develop a more effective importance density, which can
combine model predictions and real-time measurements together to propose new samples
(remember that the importance density is defined as q(sk|s0:k−1,m1:k)).

Sensitivity analysis in terms of the number of particles employed reveals that with fixed
data/model quality, the estimation errors decrease when the number of particles increases
(see Figure 5.1 and Figure 5.4). With more particles, we can have a better coverage of the
system state space, leading to more accurate estimation results. However, the trend is not
proportional, which means that it is impossible to achieve error-free estimation results by
continuously increasing the number of particles, since the quality of the estimation results
is restricted by the quality of the data and the model involved in the data assimilation
process. Increasing the number of particles also increases the computational complexity,
therefore a balance between computational complexity and estimation accuracy should be
achieved.

To conclude, the quality of the data assimilation results is affected by the validity of
the system model, the data quality, and the number of particles used. The more valid the
simulation models, and the more accurate the sensors, and the higher the number of the
particles, the better the estimation results. The sensitivity analysis also implies several
future research directions, which will be detailed in section 6.2.

6.1.2 Main contributions

To summarize, the main contributions of this thesis are listed below:

• We formally propose a particle filter based data assimilation framework for discrete
event simulations of both closed and open systems (see chapters 3 and 4). In this
framework, characteristics of discrete event simulations are given full considera-
tion in order to effectively apply the particle filtering algorithm in discrete event

114

6.2. FUTURE RESEARCH DIRECTIONS

simulations. Additionally, the results for discrete event open systems can be easily
extended to general open systems.

• We conduct extensive simulation studies to analyze the characteristics of the particle
filter based data assimilation framework (see chapter 5).

• We study two case studies that are representative in discrete event simulations of
both closed and open systems (see chapters 3 and 4). In these case studies, we
exemplify several effective solutions for computing weight with discrete type of
observations, e.g., event sequences, phases, and vehicle passages. The urban traffic
case also contributes to a generic (in the sense that any (ensemble of) microscopic
simulation models can be used) data assimilation framework for vehicle trajectory
reconstruction on urban arterials.

• We present a conceptual framework for implementing the particle filter based data
assimilation framework (see Appendix A). This conceptual framework is fully
object-oriented, therefore it is very easy to tailor, extend and maintain. For il-
lustration purpose, a reference implementation in DSOL (Distributed Simulation
Object Library, which is the simulation environment chosen for this research) is also
provided.

6.2 Future research directions
There are many directions for further research. Some possible options are listed below:

• It needs to be investigated how the size of the measurement interval affects the data
assimilation results, and the existence of an optimal measurement interval should
be explored. If an optimal measurement interval does exist, a balance between
estimation accuracy and frequency of sensor data would be achieved.

• In the gold mine case, it was assumed that the partial event sequence is accurate.
This assumption needs to be relaxed by considering event sequence (containing
multiple types of events) with errors, such as missing events, and false detection.
The sensitivity of the data assimilation results to the types of observations needs to
be explored; the results can be utilized to optimize the measurement process.

• If the simulation model is not very accurate, samples drawn from the system transi-
tion density (as the importance density) will fail to effectively represent the true state
space. Therefore, another research direction is to develop more effective importance
density, which can combine model predictions and real-time measurements together
to propose new samples.

• With increased complexity of the simulation model, the number of particles required
will likely increase exponentially. Therefore, a parallel and distributed version of
our framework could be developed to effectively deal with more complex scenarios.

• The sensitivity analysis tells that the more valid the simulation models, and the more
accurate the sensors, the better the estimation results. This implies a general research

115

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

direction for all research communities, that is developing simulation models that
can make more valid predictions of the real system behavior, and developing more
advanced sensor technologies that can provide more accurate measurement data of
the real systems.

• Future work will also be oriented to looking for more discrete event real world
applications to apply the proposed data assimilation framework to solve real world
problems.

116

A

A
P

P
E

N
D

I
X

Implementation of the particle
filter based data assimilation

framework

S ince very little research has reported implementation issues of particle filters in
complex discrete event simulations, and implementing particle filtering in complex
discrete event simulations is not trivial, in this chapter, we address the implemen-

tation issues of the proposed particle filter based data assimilation framework in discrete
event simulations. This chapter contributes to an object-oriented software conceptual
framework, based on which a concrete data assimilation library can be implemented to
support the working of the proposed data assimilation framework.

A.1 Key components in a particle filter based data assim-
ilation system

As explained in previous chapters, a generic particle filter mainly consists of three compu-
tational steps (as shown in Figure A.1) (Saha et al., 2010):

• sampling: in this step samples (particles) of the unknown state are generated based
on the given sampling function. These samples provide an estimate of the current
state of the system and also propagate the particles from previous time instant to the
current time instant.

• weight calculation: based on the observations an importance weight is assigned to
each particle.

117

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

• resampling: this step involves the act of redrawing particles from the same probability
density based on some function of the particle weights such that the weight of each
new particle is approximately equal. Resampling is a very important step in a particle
filter and without this step a particle filter is highly likely to degenerate, i.e., after a
few iterations all the weights will go to zero except the weight of one particle.

weight calculation
particle generation

(sampling)
normalization resampling

output

external observation

Figure A.1: The computation steps in a generic particle filter

To support the computation steps shown in Figure A.1, following components are
required to be implemented as shown in Figure A.2:

• representation of particles and weights. A particle is essentially a specific model
state (represented by the data structure ModelState), and its weight is a numerical
value which reflects the likelihood that the system is in that state. ModelState
should be capable of replicating itself, since some particles will be replicated in the
resampling step.

• representation of observations. The representation should indicate the period during
which the observation is collected, and the corresponding observed value.

• strategies for sampling, resampling, and weight updating. The SamplingStrategy
implements a sampling action which generates samples based on the importance
density. One of the most frequently used importance density is the system transition
density (i.e. the prior), which generates a sample by simply running the simulation
model for one time step. The ResamplingStrategy implements a resampling
action which selects particles for the next iteration on a regular basis. The selec-
tion is based on a particle-dependent weighting function vk, with vik = wik we
have standard resampling according to the particle weights. Different weighting
function yields different resampling strategy, and possible candidates can be found
in Douc et al. (2005). The WeightUpdatingStrategy implements a weight
computation function which updates a particle’s weight based on the newly available
observation. A particle’s weight can be updated by the likelihood if the system
transition density is chosen as the importance density, or by other methods based on
the chosen importance density, for example, the kernel method presented in Xue and
Hu (2013).

• communication with the simulation model, which aims to get/set simulation model
state, perturb model state, and generate predicted measurements, etc.

118

A.2. THE CONCEPTUAL FRAMEWORK TO IMPLEMENT THE PARTICLE FILTER
BASED DATA ASSIMILATION SYSTEM

• the central control logic, which organizes these key components to conduct particle
filtering properly. By ‘properly’, we mean that every method invocation should be
at the right time and in the right order. Notice that the sampling action is usually
asynchronous, i.e., we cannot obtain the expected sample just after we invoke the
sampling method. Therefore, we must have a control logic to make sure that the
main computation steps are executed in the correct way.

SimulationModelAdapter

ModelState Weight

P1 Pi PNp

SamplingStrategy

ResamplingStrategy

WeightUpdatingStrategy

PriorSampling

StandardResampling

LikelihoodWeight

communication with simulation model

Particles

Particle Filtering

(central control logic)

Simulator

execute on

Observation

feed data

Figure A.2: Key components in a particle filter based data assimilation system (Xue, 2014)

A.2 The conceptual framework to implement the particle
filter based data assimilation system

In this section, we present an object-oriented software conceptual framework, based on
which a concrete data assimilation library can be implemented to support the working of
the proposed data assimilation framework. Firstly, we give a general view of the structure
of the conceptual framework, and explain the relations between the interfaces/classes in the
conceptual framework and the key components in section A.1. Subsequently, we elaborate
how these interfaces/classes are designed to support particle filtering. Notice that the
conceptual framework uses concepts in Java, however we argue that this framework can
be easily transferred to other object-oriented programming languages by replacing these
concepts in Java with equivalent ones in target programming languages.

A.2.1 General view of the conceptual framework

The bottom part of Figure A.3 shows the key interfaces/classes in the conceptual frame-
work:

119

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

communication with the simulation model

representation of

particle & weight

representation

of observations

central control logic

strategies for sampling, resampling, and weight updating

conceptual framework of the

data assimilation library

user implementation

(application related)

Figure A.3: Key interfaces/classes in the conceptual framework

• WeightedParticle, which represents a particle (i.e. a specific system state rep-
resented by ModelState) and its associated weight. The definition of Weighted
Particle will be introduced in detail in section A.2.2.

• Observation, which encapsulates observed data collected during a specified time
interval, and will be explained in section A.2.3.

• SamplingStrategy, ResamplingStrategy, and WeightUpdatingStr
ategy, which defines a set of functions (name, arguments, and return value) that
should be implemented in order to fulfill the computation steps in Figure A.1. Their
definition will be given in section A.2.4. The most commonly used sampling strat-
egy and resampling strategy are to sample based on system transition density (i.e.
PriorSamplingStrategy), and to resample particles in proportion to their
weights (i.e. StandardResamplingStrategy). Notice that weight computa-
tion is closely related to simulation applications (more specifically, to assumptions
on error models of the simulation model and the data), therefore it should be imple-
mented by users based on their applications.

• AbstractDataAssimilator, which implements the central control logic of
the particle filtering by properly organizing the execution of functions, and will be
explained in section A.2.6.

• DataAssimilationModelInterface, which is an adapter between the cen-
tral control logic (AbstractDataAssimilator) and the simulation model in
order for the data assimilation process to communicate with the simulation model
easily. More details will be presented in section A.2.5.

A.2.2 Representation of particles and weights
A particle is essentially a specific model state, and its weight is a numerical value
which reflects the likelihood that the system is in that state. Therefore, we design the
WeightedParticle class (shown in Figure A.4) to represent a particle and its weight.

120

A.2. THE CONCEPTUAL FRAMEWORK TO IMPLEMENT THE PARTICLE FILTER
BASED DATA ASSIMILATION SYSTEM

Figure A.4: The particle and its weight

The model state is defined by the ModelState class, where the time attribute in-
dicates when the state is retrieved, and the state value is represented as the product of
states of all its atomic components. Essentially, the state of an atomic component can be
represented as a collection of name-value pairs where each pair consists of a String type
representing the name of a state variable and an Object type representing corresponding
value of the state variable. As shown in Figure A.4, AtomicModelState defines the
state of an atomic model component, where attribute modelName indicates the name of the
model component, and attribute stateVariables records name-value pairs for each of its
state variable.

The clone method produces a deep copy of the model state itself. Since this operation
is closely dependent on applications, it is declared as an abstract method which should be
implemented by users based on specific applications.

A.2.3 Representation of observations
Measurements reflect real-time information from the real system, which are defined by
the Observation class, as shown in Figure A.5. The interval field indicates the period
during which the observation is collected; while the observation data is represented by a
set of tuples where each tuple consists of the name of the data source and the observed
data from that source.

Figure A.5: The Observation class

A.2.4 Strategies for sampling, resampling, and weight updating
The particle filtering works relying on strategies of sampling, resampling, and weight
updating, which are defined in Figure A.6. The arguments and return values are explained
as follows:

121

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

• The arguments of the samplemethod include a weighted particle (WeightedPart
icle), observation (Observation), and the simulation model (DataAssimila
tionModelInterface). The definition of arguments is an one-by-one transla-
tion of the formal sampling function sik ∼ q(sk|sik−1,mk). The time information
(i.e., k − 1 and k) can be obtained from the observation (i.e., the interval attribute in
Observation). Since sampling action is usually asynchronous, we cannot obtain
the new sample sik directly, therefore the return value is defined as void. To obtain
sik, it is required to implement the scheduleExecutionOfonSampleGenerat
edmethod, which tells the central control logic (implemented in AbstractDataAs
similator which will be introduced in section A.2.6) when to retrieve the gener-
ated sample based on the sampling strategy.

• The argument of the resample method is a list of weighted particles, and its return
value indicates which particles are selected, and further how many times each of the
selected particles is selected.

• The two arguments of the evaluateWeightmethod are the predicted observation
(generated from the measurement model) and the real observation, respectively; the
return value is a collection of weights, each of which is associated with a specified
data source. The combineWeight method is defined in order to combine the
weights from different data sources into one. This definition makes it easy to
incorporate multiple sources of data.

Figure A.6: The sampling, resampling, and weight updating strategy

A.2.5 Communication with the simulation model
During the data assimilation process, frequent communication with the simulation model
is required. The purposes of these communications are mainly:

• getting/setting simulation model state. When generating a sample, we need to
initialize the simulation model with a given initial model state (i.e., setting model
state); once the running is finished, we need to retrieve the model state (i.e., getting
model state) to obtain the generated sample.

• perturbing model state. In some cases, it is required to add noise to the generated
model state to imitate a stochastic setting (i.e., perturbation of model state), for
example, adding graph noise to the fire front in Xue et al. (2012).

• generating predicted measurements, which implements the measurement model.

To this end, we require the simulation model to implement the DataAssimilatio
nModelInterface shown in Figure A.7(a). The meaning of the specified methods is
explained as follows:

122

A.2. THE CONCEPTUAL FRAMEWORK TO IMPLEMENT THE PARTICLE FILTER
BASED DATA ASSIMILATION SYSTEM

• The getModelState method and the setModelState method implement
state getting and setting.

• The perturbModelState method implements the state perturbation. The two
arguments are the original model state (ModelState) and required parameters
(Object[]) for perturbation. The method returns a perturbed version of the
original model state.

• The generatePredictedObservation method implements the measure-
ment model by returning a predicted measurement (Observation).

• The clear method deletes all transient atomic components in the simulation model.
This method is used for discrete event simulations of open systems.

• The prepareForSampling method gets the simulation model prepared for
sampling, and its use will be explained in detail in section A.2.6.

(a) DataAssimilationModelInterface (b) AtomicDataAssimilationModelInterface

Figure A.7: The interfaces that the simulation model should implement

These methods are defined at the coupled model level, and we require its atomic com-
ponents to implement the AtomicDataAssimilationModelInterface shown in
Figure A.7(b) which defines methods with similar functionalities but at the atomic model
level. As a result, a method defined in DataAssimilationModelInterface can
be implemented by invoking corresponding method of all its atomic components. Among
these methods defined in AtomicDataAssimilationModelInterface, we par-
ticularly explain how to get and set state of an atomic model component in a discrete event
simulation.

A.2.5.1 Getting atomic model state by interpolation

As introduced in chapter 3, the state of an atomic component in a discrete event simulation
should be obtained through interpolation. This process is illustrated in Figure A.8, which
consists of three steps. First, the atomic component needs to request time information
related to itself, i.e., the time of the last event, tl, the time of the next event, tn, and the
current time, t, because only the simulator manages the time advance in a discrete event
simulation. Second, the interpolation operation is conducted to obtain an interpolated
state at time t. As explained in section 3.3.3, we need to distinguish continuous states
(can be interpolated) from discrete states (cannot be interpolated). If state s can be
interpolated, the interpolated state will be ŝ(t) = interpolate(s, t − tl); otherwise, the

123

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

interpolated state will be ŝ(t) = (s, t− tl). Finally, both the interpolated state ŝ(t) and its
related time information are encapsulated in data structure AtomicModelState which
is introduced in section A.2.2. If s can be interpolated, we record the time advance of
ŝ(t) = interpolate(s, t − tl) as ta(ŝ(t)) = tn − t; otherwise, we record the remaining
time of ŝ(t) = (s, e) as σ = tn − t.

simulator

t, tl, tn

atomic model component

state: s

time advance: ta(s)

get model state (i.e. getModelState()) via

interpolation (i.e. interpolate(e)) as follows:

ü request time information from the

simulator;

ü conduct interpolation;

ü record the interpolated state and

related time information.

request time information

t, tl, tn

Figure A.8: Get state from an atomic model component in a discrete event simulation

A.2.5.2 Setting an interpolated state to an atomic model

In discrete event simulations of closed systems, setting an interpolated state (encapsu-
lated in AtomicModelState) to an atomic model is quite simple. If the state can be
interpolated, i.e. ŝ(t) = interpolate(s, e), we assign each state variable in the model
with corresponding value stored in the data structure AtomicModelState, and then
schedule an internal state transition on the simulator at tn = t+ ta(ŝ(t)); otherwise, i.e.
ŝ(t) = (s, e), after assigning value for each state variable, we schedule an internal state
transition at tn = t+ σ.

For discrete event simulations of open systems, if the target atomic model is deleted
from the simulation model, we need to instantiate this atomic model with the interpolated
state (encapsulated in AtomicModelState) first, and then schedule an internal state
transition for the new component similarly.

A.2.6 Central control logic
Given all those functionalities designed in section A.2.2 ∼ A.2.5, the next task is to
organize them in a right order to conduct particle filtering. To this end, we propose one
feasible control logic, which is implemented in AbstractDataAssimilator (see
Figure A.9).

When new measurements are available, the assimilate method is triggered, in
which the data assimilation procedure shown in Algorithm 6 is implemented. The first
step is to generate samples based on the sampling strategy, in which we must guarantee
that weights normalization and resampling can only be executed after all particles are
updated. Since sampling usually involves running a complex simulation model, a callback
function (onSampleGenerated) is designed to process the particle as soon as it is
generated. The two arguments of the callback function indicate the index of the particle

124

A.2. THE CONCEPTUAL FRAMEWORK TO IMPLEMENT THE PARTICLE FILTER
BASED DATA ASSIMILATION SYSTEM

Figure A.9: The AbstractDataAssimilator class

and the current observation. When to trigger the callback function is determined by the
sampling strategy (see the scheduleExecutionOfonSampleGenerated method
in the SamplingStrategy interface). In the callback function (line 11∼46 in Algo-
rithm 6), one needs to process the generated sample, update the weight, and if there are any
particles not updated, we continue sampling; otherwise, we move to the next step of weights
normalization, resampling, and estimation, etc. Since data recording and state estimation
are closely related to the applications, the corresponding methods (i.e. recordData and
conductEstimation) are designed as abstract. Users can implement a data assimi-
lator tailored to their specific application by inheriting AbstractDataAssimilator
and overriding certain methods if needed.

Notice that in the data assimilation procedure presented in this research, only one
simulation model instance is employed, so is the corresponding discrete event simulator.
Therefore, when generating a new sample, it should be guaranteed that the model instance
is prepared for sampling, see the prepareForSamplingmethod in line 6 and line 33 in
Algorithm 6. In the prepareForSamplingmethod, one should clean the discrete event
simulator by deleting events scheduled in the last run; if the simulation model describes an
open system, one needs to delete all transient model components (by invoking the clear
method) as well. The prepareForSampling method will get the simulation model
(also the discrete event simulator) prepared to be assigned a new model state for sampling.
The implementation of the prepareForSampling method is closely related to the
discrete event simulation environment, and we will exemplify its implementation in DSOL
in section A.3.2.

A.2.7 Memory Consumption & Speed
Notice that in the data assimilation procedure presented in section A.2.6, only one simula-
tion model instance is employed, so is the corresponding discrete event simulator; samples
are generated by recursively assigning an initial state to the model instance, and then
running the model based on the sampling strategy to generate a sample. In this section, we
briefly analyze the memory consumption and speed of the proposed implementation com-
pared with the implementation (for convenience, we refer it as standard implementation)

125

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

Algorithm 6: The data assimilation procedure (assimilate(Observation
obs))

Input: current observation: obs
1 % generate samples
2 index← 0 % Java uses zero-based indexing
3 particle← getParticles().get(index) % i.e. sik−1

4 model← getSimulationModel()

5 % prepare the simulation model for sampling
6 model.prepareForSampling(particle.getModelState().getT ime())

7 % generate sample sik ∼ p(sk|sik−1,mk)

8 samplingStrategy.sample(particle, obs,model)

9 % schedule execution of the callback function (onSampleGenerated) based on the sampling strategy
with arguments: the data assimilator (this), index and obs

10 samplingStrategy.scheduleExecutionOfonSampleGenerated(this, index, obs)

11 % callback function: onSampleGenerated(int index, Observation obs)
12 % retrieve the generated state
13 state← getSimulationModel.getModelState()

14 % perturb the state if needed
15 state← getSimulationModel.perturbModelState(state)

16 % generate predicted observation
17 predictedObs← getSimulationModel().generatePredictedObservation()
18 % compute weights in terms of data sources, where s indicates the name of data source, w is the

corresponding weight
19 {(s, w)} ← weightUpdatingStrategy.evaluateWeight(predictedObs, obs)
20 % combine weights from different data sources together
21 weight← weightUpdatingStrategy.combineWeight({(s, w)})× particle.getWeight()
22 % update state of the particle
23 getParticles.get(index).setModelState(state)

24 % update weight of the particle
25 getParticles.get(index).setWeight(weight)

26 % record data that is associated with this particle for estimation
27 recordData(index)
28 index← index+ 1

29 if index < getParticles().size() then
30 particle← getParticles().get(index)
31 model← getSimulationModel()

32 % generate the next particle
33 model.prepareForSampling(particle.getModelState().getT ime())

34 samplingStrategy.sample(particle, obs,model)

35 samplingStrategy.scheduleExecutionOfonSampleGenerated(this, index, obs)

36 end
37 else
38 % all particles have been updated
39 % normalize weights
40 normalizeWeights()

41 % resampling, i represent the index of the selected particles, while ni indicates how many times the
i-th particle is selected

42 {(i, ni)} ← resamplingStrategy.resample(getParticles())

43 % state estimation based on the weighted particles
44 conductEstimation({(i, ni)})
45 based on {(i, ni)}, replicate the i-th particle ni times, while discard those that are not selected; set

the weight of each particle as 1/Np, where Np is the number of particles
46 end

126

A.3. REFERENCE IMPLEMENTATION IN DSOL

in which samples are generated by running multiple model instances. The analysis shows
that the proposed implementation consumes much less memory, but is almost as fast as the
standard implementation.

A.2.7.1 Memory Consumption

Assume that the memory consumption of a discrete event model is Mm, while the propor-
tion of the memory consumption of the state in the whole memory consumption of the
model is p(0 < p ≤ 1). The memory consumption of a discrete event simulator with an
empty event list is Ms. During the simulation, we assume that there are on average Ne
events stored in the event list, and the average memory consumption of an event is Me. In
the standard implementation with Np particles, the memory consumption at time t is

MCstandard = Np(Mm +Ms +NeMe)

, while in the proposed implementation with the same number of particles, the memory
consumption is

MCproposed = Mm +Ms +NeMe + (Np − 1)Mmp

Obviously, MCproposed � MCstandard, i.e., the proposed implementation consumes
much less memory compared with the standard implementation.

A.2.7.2 Speed

In order to accelerate the execution of the particle filters, parallel/distributed implemen-
tation are commonly applied. If there is only one processing unit (PU) available, Np
particles in the standard implementation can only be executed sequentially, therefore,
in the single-PU case, the proposed implementation is almost as fast as the standard
implementation.

If there are multiple PUs available (assume the number of PUs is Npu, usually we have
Npu < Np), the proposed implementation can be parallelized or distributed as follows:
deploy one simulation and ni particles on the processing unit PUi(i = 1, . . . , Npu), such
that

∑Npu
i=1 ni = Np; on PUi, particles will be generated as described in section A.2.6;

when all particles are generated, resampling will be done in a centralized way. Therefore,
in the multiple-PU case, there is no obvious speed drop in the proposed implementation
compared with the standard implementation if proper parallelizing/distributing schemes
are employed.

A.3 Reference implementation in DSOL

A.3.1 DSOL & its support for discrete event simulations
DSOL, which stands for Distributed Simulation Object Library, is a Java-based, open-
source, object-oriented, distributed and extendible research test-bed for simulation (Jacobs,
2005). The basic entities in Modeling & Simulation (M&S) are implemented in DSOL as
shown in Figure A.10. The experiment frame (ExperimentalFrame) mainly defines a

127

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

list of experiments that will be conducted in order to fulfill certain objectives. Each exper-
iment (Experiment) consists of a simulation model (ModelInterface) on which
experiments will be conducted, a simulator (SimulatorInterface) which executes
the model, a list of replications (Replication) which mainly specify random number
streams in each run, and a treatment (Treatment) which defines a set of parameters
to conduct the experiment, such as warm-up period, run length, start time, and end time.
DSOL represents the simulation time in a flexible way. In DSOL, the simulation time can
be represented in various types of data format, such as double, integer, and calendar, and
with various types of time units, such as seconds, minutes, or days. This is implemented by
parameterizing interfaces/classes with A, R and T , which stands for absolute time type,
relative time type, and simulation time type, respectively.

Figure A.10: The basic entities in the Modeling & Simulation (M&S) framework imple-
mented in DSOL

DSOL supports multi-formalism simulations, but since the focus of this thesis is on
discrete event simulations, here we only introduce how discrete event simulations are
supported in DSOL. Interested readers can refer to Jacobs et al. (2002); Jacobs (2005);
Lang et al. (2003); Seck and Verbraeck (2009) for more details on other formalisms. In
DSOL, discrete event simulations are implemented based on the event scheduling world
view as shown in Figure A.11 (Jacobs et al., 2002). The discrete event model is built as a
collection of objects that interact in some fashion, but the interaction is achieved not by
a direct method invocation, but by scheduling them via constructing a simulation event.
To execute discrete event models, DSOL provides a future event list based discrete event
simulator (DEVSSimulator in Figure A.11).

DSOL also provides full support for Zeigler’s DEVS formalism, but the hierarchical
DEVS model is simulated using a flattened simulator (DEVSSimulator) (Seck and
Verbraeck, 2009). More information on DSOL can be found in Jacobs et al. (2002); Jacobs
(2005); Lang et al. (2003), and also at http://www.simulation.tudelft.nl.

A.3.2 Implement the data assimilation procedure in DSOL
As explained in section A.2.6, since only one simulation model instance (thus one discrete
event simulator) is involved in the data assimilation procedure, we need to guarantee that

128

http://www.simulation.tudelft.nl

A.3. REFERENCE IMPLEMENTATION IN DSOL

discrete event model

simulator

future event list

loop

object 1

object 2

object 3

control events

 -start/stop, etc. 1

2

3

1. schedule event

2. retrieve event & remove

 from future event list

3. execute event

experimental

frame

source

system

modeling relation

simulation

relation

(a) The object-oriented implementation of the event scheduling world view (b) The future event list based discrete event simulator in DSOL

Figure A.11: Discrete event simulations in DSOL; the left figure is from Jacobs et al.
(2002)

the model instance is prepared for sampling when we start to generate a new sample. This is
done by implementing the prepareForSampling method, in which one should clean
the discrete event simulator by deleting events scheduled in the last run; if the simulation
model describes an open system, one needs to delete all transient model components (by
invoking the clear method) as well. To this end, we modify the discrete event simulator
to make it have flexible time management, as shown in Figure A.12 and Algorithm 7.
Then the prepareForSampling method can be implemented in DSOL as shown in
Algorithm 8.

full name of the inner class is

DEVSSimulator.TimeDouble

Figure A.12: The DataAssimilationDEVSSimulator class

After the model instance is prepared for sampling, we can then set the (interpolated)
model state (i.e. sik−1) to the model instance (see section A.2.5.2), and start to generate
samples based on the sampling strategy.

As an example, Algorithm 9 and 10 illustrate the implementation of PriorSampling
Strategy in DSOL. Notice that PriorSamplingStrategy generates samples
based on the system transition density, therefore the observation is not considered in

129

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

Algorithm 7: setSimulatorT imeBackTo(t)
Input: a past time instant: t

1 if t ≤ simulator.currentT ime then
2 foreach event ∈ simulator.eventList do
3 if event is an internal event then
4 % an internal event is scheduled by the model components for state

updating
5 delete event from simulator.eventList

6 end
7 end
8 simulator.time← t

9 end

Algorithm 8: prepareForSampling(t)

Input: a past time instant: t
1 % get the simulator which executes the model
2 simulator ← model.getSimulator()
3 % clean the future event list
4 simulator.setSimulatorT imeBackTo(t)
5 % if the model describes an open system, delete all transient model components
6 model.clear()

the sample method.

Algorithm 9: Implementing the samplemethod of PriorSamplingStrategy
in DSOL

Input: particle, obs, model % parameters are from the sample method
1 % set initial state to the simulation model
2 model.setModelState(particle.getModelState())
3 % for open systems, schedule arrivals of entities
4 for event ∈ model.getInputEvents() do
5 simulator.scheduleEvent(event)
6 end

A.4 Conclusion
The work of particle filtering relies on a sequence of computation steps, i.e., sampling,
weight computation, resampling, etc. To support these computation steps, at least follow-
ing components need to be implemented: 1) representation of particles and weights; 2)
representation of observations; 3) strategies for sampling, resampling, and weight updating;
4) communication with the simulation model to access the model state; and 5) central

130

A.4. CONCLUSION

Algorithm 10: Implementing the scheduleExecutionOfonSampleGenerated
method of PriorSamplingStrategy in DSOL
1 % parameters are from the scheduleExecutionOfonSampleGenerated

method
Input: assimilator, index, observation

2 % the time instant when the new sample is due
3 t← observation.getT ime().getIntervalEnd
4 schedule the execution of the onSampleGenerated method belonging to

assimilator at time t, with arguments index and observation

control logic, which organizes these components to conduct particle filtering properly. By
‘properly’, we mean that every method invocation should be at the right time and in the
right order.

In this chapter, we proposed an object-oriented software conceptual framework,
based on which a concrete data assimilation library can be implemented. In the pro-
posed conceptual framework, a particle together with its weight are represented by the
WeightedParticle class, in which the model state is defined by the ModelState
class and its weight is indicated by a numerical field. The ModelState class contains a
collection of atomic model states, each of which is represented by the AtomicModelState
class (defining name-value pairs for each state variable). The ModelState class is ab-
stract, and it requires users to implement a clone method which enables model state to
replicate itself. Observations are represented by the Observation class, in which data
from different sources can be easily incorporated. Strategies for sampling, resampling, and
weight updating are defined by three interfaces respectively, i.e. SamplingStrategy,
ResamplingStrategy, and WeightUpdatingStrategy, which allow users to
implement different strategies that best fit their applications. The DataAssimilationM
odelInterface defines methods that the simulation model should implement in or-
der to facilitate communications with the simulation model during the data assimila-
tion process, such as setting/getting model state, perturbing model state, and generat-
ing predicted observation (implementing the measurement model). The implementa-
tion of DataAssimilationModelInterface requires each atomic model compo-
nent to implement the AtomicDataAssimilationModelInterface, which de-
fines methods with similar functionalities but at the atomic model level. As a result, a
method defined in DataAssimilationModelInterface can be implemented by
invoking corresponding method of all its atomic components. Finally, the abstract class
AbstractDataAssimilator properly organizes these components to fulfill the data
assimilation task. In AbstractDataAssimilator, only one simulation model in-
stance is employed, so is the corresponding discrete event simulator. Samples are generated
by recursively assigning an initial state to the model instance, and then running the model
based on the sampling strategy to generate a sample. Therefore, this requires the model
instance gets prepared (implementing the prepareForSampling method) when gen-
erating a new sample, which means that before assigning a state to the model instance, one
should clean the discrete event simulator by deleting events scheduled in the last run; if
the simulation model describes an open system, one needs to delete all transient atomic

131

APPENDIX A. IMPLEMENTATION OF THE PARTICLE FILTER BASED DATA
ASSIMILATION FRAMEWORK

model components (by invoking the clear method) as well. In this chapter, a reference
implementation in DSOL (Distributed Simulation Object Library) is provided to exemplify
the use of the proposed conceptual framework.

The proposed conceptual framework is fully object-oriented, therefore it is very easy to
tailor, extend and maintain. Notice that the proposed conceptual framework is definitely not
optimal in terms of performance, ease of implementation, etc. The key focus is to organize
the computation steps in particle filtering in a correct way to obtain correct estimation
results. But future work will be oriented to address the performance issues.

132

Bibliography

Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T., 2002. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing 50 (2), 174–188.

Atzori, L., Iera, A., Morabito, G., 2010. The internet of things: A survey. Computer
Networks 54 (15), 2787–2805.

Bai, F., Gu, F., Hu, X., Guo, S., 2016. Particle routing in distributed particle filters for
large-scale spatial temporal systems. IEEE Transactions on Parallel and Distributed
Systems 27 (2), 481–493.

Bai, F., Guo, S., Hu, X., 2011. Towards parameter estimation in wildfire spread simula-
tion based on sequential Monte Carlo methods. In: Proceedings of the 44th Annual
Simulation Symposium. Boston, MA, USA, pp. 159–166.

Banks, J., 1998. Handbook of Simulation - Principles, Methodology, Advances, Applica-
tions, and Practice. John Wiley & Sons.

Bhaskar, A., Tsubota, T., Kieu, L. M., Chung, E., 2014. Urban traffic state estimation: fus-
ing point and zone based data. Transportation Research Part C: Emerging Technologies
48, 120–142.

Bouttier, F., Courtier, P., 1999. Data assimilation concepts and methods. Meteorological
Training Course Lecture Series, ECMWF (European Centre for Medium-Range Weather
Forecasts).

Brackstone, M., McDonald, M., 1999. Car-following: a historical review. Transportation
Research Part F: Traffic Psychology and Behaviour 2 (4), 181–196.

Bryman, A., 2015. Social Research Methods, 5th Edition. Oxford University Press.

Carton, J. A., Giese, B. S., 2008. A reanalysis of ocean climate using simple ocean data
assimilation (SODA). Monthly Weather Review 136 (8), 2999–3017.

Ciuffo, B., Punzo, V., Montanino, M., 2012. The Calibration of Traffic Simulation Mod-
els. Report on the Assessment of Different Goodness of Fit Measures and Optimiza-
tion Algorithms. MULTITUDE Project-COST Action TU0903. Tech. rep., European
Commission-Joint Research Centre.

133

BIBLIOGRAPHY

Coifman, B., 2002. Estimating travel times and vehicle trajectories on freeways using dual
loop detectors. Transportation Research Part A: Policy and Practice 36 (4), 351–364.

Constantinescu, E. M., Sandu, A., Chai, T., Carmichael, G. R., 2007. Ensemble-based
chemical data assimilation. I: General approach. Quarterly Journal of the Royal Meteo-
rological Society 133 (626), 1229–1243.

da Rocha, T. V., Leclercq, L., Montanino, M., Parzani, C., Punzo, V., Ciuffo, B., Villegas,
D., 2015. Does traffic-related calibration of car-following models provide accurate
estimations of vehicle emissions? Transportation Research Part D: Transport and
Environment 34, 267–280.

Daganzo, C. F., 2005a. A variational formulation of kinematic waves: basic theory and
complex boundary conditions. Transportation Research Part B: Methodological 39 (2),
187–196.

Daganzo, C. F., 2005b. A variational formulation of kinematic waves: solution methods.
Transportation Research Part B: Methodological 39 (10), 934–950.

Darema, F., 2004. Dynamic data driven applications systems: A new paradigm for applica-
tion simulations and measurements. In: Bubak, M., van Albada, G. D., Sloot, P. M. A.,
Dongarra, J. (Eds.), Computational Science - ICCS 2004. Springer Berlin Heidelberg,
pp. 662–669.

Darema, F., 2005. Dynamic data driven applications systems: New capabilities for appli-
cation simulations and measurements. In: Sunderam, V. S., van Albada, G. D., Sloot,
P. M. A., Dongarra, J. J. (Eds.), Computational Science - ICCS 2005. Springer Berlin
Heidelberg, pp. 610–615.

De Schutter, B., Van den Boom, T., 2008. Max-plus algebra and max-plus linear discrete
event systems: An introduction. In: Proceedings of the 9th International Workshop on
Discrete Event Systems. Göteborg, Sweden, pp. 36–42.

DiCesare, F., Kulp, P. T., Gile, M., List, G., 1994. The application of Petri nets to the
modeling, analysis and control of intelligent urban traffic networks. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 2–15.

Djurić, P. M., Kotecha, J. H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M. F., Miguez, J.,
2003. Particle filtering. IEEE Signal Processing Magazine 20 (5), 19–38.

Douc, R., Cappé, O., Moulines, E., 2005. Comparison of resampling schemes for particle
filtering. In: Proceedings of the 4th International Symposium on Image and Signal
Processing and Analysis. Zagreb, Croatia, pp. 64–69.

Edie, L. C., 1963. Discussion of traffic stream measurements and definitions. In: Proceed-
ings of the 2nd International Symposium on the Theory of Traffic Flow. Paris, France,
pp. 139–154.

Evensen, G., 2003. The ensemble Kalman filter: theoretical formulation and practical
implementation. Ocean Dynamics 53 (4), 343–367.

134

BIBLIOGRAPHY

Fujimoto, R. M., 2000. Parallel and Distributed Simulation Systems. Wiley New York.

Gillijns, S., Mendoza, O., Chandrasekar, J., De Moor, B. L. R., Bernstein, D., Ridley, A.,
2006. What is the ensemble Kalman filter and how well does it work? In: Proceedings
of the 2006 American Control Conference. Minneapolis, MN, USA, pp. 4448–4453.

Godsill, S., Vermaak, J., 2005. Variable rate particle filters for tracking applications.
In: IEEE/SP 13th Workshop on Statistical Signal Processing. Bordeaux, France, pp.
1280–1285.

Godsill, S., Vermaak, J., Ng, W., Li, J., 2007. Models and algorithms for tracking of
maneuvering objects using variable rate particle filters. Proceedings of the IEEE 95 (5),
925–952.

Goodall, N. J., Smith, B. L., Park, B. B., 2016. Microscopic estimation of freeway vehicle
positions from the behavior of connected vehicles. Journal of Intelligent Transportation
Systems 20 (1), 45–54.

Gu, F., 2010. Dynamic data driven application system for wildfire spread simulation. Ph.D.
thesis, Georgia State University.

Gu, F., Hu, X., 2008. Towards applications of particle filters in wildfire spread simulation.
In: Proceedings of the 2008 Winter Simulation Conference. Miami, FL, USA, pp.
2852–2860.

Gu, F., Yan, X., Hu, X., 2009. State estimation using particle filters in wildfire spread
simulation. In: Proceedings of the 2009 Spring Simulation Multiconference. San Diego,
CA, USA, pp. 34:1–34:8.

Heaney, K., Gawarkiewicz, G., Duda, T., Lermusiaux, P., 2007. Nonlinear optimization of
autonomous undersea vehicle sampling strategies for oceanographic data-assimilation.
Journal of Field Robotics 24 (6), 437–448.

Ho, Y.-C., 1989. Introduction to special issue on dynamics of discrete event systems.
Proceedings of the IEEE 77 (1), 3–6.

Honig, H. J., Seck, M. D., 2012. φDEVS: Phase based discrete event modeling. In:
Proceedings of the 2012 Symposium on Theory of Modeling and Simulation. Orlando,
FL, USA, pp. 39:1–39:8.

Hu, X., 2011. Dynamic Data Driven Simulation. SCS M&S Magazine II (1), 16–22.

Hu, X., Sun, Y., Ntaimo, L., 2012. DEVS-FIRE: design and application of formal discrete
event wildfire spread and suppression models. SIMULATION: Transactions of The
Society for Modeling and Simulation International 88 (3), 259–279.

Huang, X.-Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J., Huang, W., Henderson,
T., Bray, J., Chen, Y., Ma, Z., Dudhia, J., Guo, Y., Zhang, X., Won, D.-J., Lin, H.-C.,
Kuo, Y.-H., 2009. Four-dimensional variational data assimilation for WRF: Formulation
and preliminary results. Monthly Weather Review 137 (1), 299–314.

135

BIBLIOGRAPHY

Huang, Y., 2013. Automated simulation model generation. Ph.D. thesis, Delft University
of Technology.

Ide, K., Courtier, P., Ghil, M., Lorenc, A. C., 1997. Unified notation for data assimilation :
Operational, sequential and variational. Journal of the Meteorological Society of Japan,
Special Issue on “Data Assimilation in Meteology and Oceanography: Theory and
Practice” 75 (1B), 181–189.

Jacobs, P., 2005. The DSOL simulation suite. Ph.D. thesis, Delft University of Technology.

Jacobs, P., Lang, N., Verbraeck, A., 2002. D-SOL; a distributed Java based discrete event
simulation architecture. In: Proceedings of the 2002 Winter Simulation Conference. San
Diego, CA, USA, pp. 793–800.

Joines, J. A., Roberts, S. D., 1999. Simulation in an object-oriented world. In: Proceedings
of the 1999 Winter Simulation Conference. Phoenix, AZ, USA, pp. 132–140.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., Wu, A. Y.,
2002. An efficient k-means clustering algorithm: analysis and implementation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24 (7), 881–892.

Kesting, A., Treiber, M., 2008. Calibrating car-following models by using trajectory data:
methodological study. Transportation Research Record: Journal of the Transportation
Research Board 2088, 148–156.

Kothari, C. R., 2004. Research Methodology: Methods and Techniques, 2nd Edition. New
Delhi: New Age International Publishers.

Kouichi, H., Turbelin, G., Ngae, P., Feiz, A. A., Barbosa, E., Chpoun, A., 2016. Opti-
mization of sensor networks for the estimation of atmospheric pollutants sources. WIT
Transactions on Ecology and the Environment 207, 11–21.

Lahoz, W. A., Khattatov, B., Menard, R., 2010. Data Assimilation: Making Sense of
Observations, 1st Edition. Springer-Verlag Berlin Heidelberg.

Lahoz, W. A., Schneider, P., 2014. Data assimilation: Making sense of earth observation.
Frontiers in Environmental Science 2 (16), 1–28.

Lang, N., Jacobs, P., Verbraeck, A., 2003. Distributed, open simulation model development
with DSOL services. In: Proceedings 15th European Simulation Symposium. Delft, the
Netherlands, pp. 210–218.

Lee, J., Lapira, E., Bagheri, B., Kao, H., 2013. Recent advances and trends in predictive
manufacturing systems in big data environment. Manufacturing Letters 1 (1), 38–41.

Liu, H. X., Wu, X., Ma, W., Hu, H., 2009. Real-time queue length estimation for congested
signalized intersections. Transportation Research Part C: Emerging Technologies 17 (4),
412–427.

Lorenc, A. C., Rawlins, F., 2005. Why does 4D-Var beat 3D-Var? Quarterly Journal of the
Royal Meteorological Society 131 (613), 3247–3257.

136

BIBLIOGRAPHY

Lu, X., Varaiya, P., Horowitz, R., Palen, J., November 2008. Faulty loop data analy-
sis/correction and loop fault detection. In: 15th World Congress on Intelligent Transport
Systems and ITS America’s 2008 Annual Meeting. New York, NY, USA, pp. 1–12.

Mannila, H., Ronkainen, P., 1997. Similarity of event sequences. In: Fourth International
Workshop on Temporal Representation and Reasoning. Daytona Beach, FL, USA, pp.
136–139.

Marinică, N. E., Sarlette, A., Boel, R. K., 2013. Distributed particle filter for urban traffic
networks using a platoon-based model. IEEE Transactions on Intelligent Transportation
Systems 14 (4), 1918–1929.

Mehran, B., Kuwahara, M., Naznin, F., 2012. Implementing kinematic wave theory
to reconstruct vehicle trajectories from fixed and probe sensor data. Transportation
Research Part C: Emerging Technologies 20 (1), 144–163.

Montanino, M., Punzo, V., 2015. Trajectory data reconstruction and simulation-based
validation against macroscopic traffic patterns. Transportation Research Part B: Method-
ological 80, 82–106.

Nance, R. E., 1981. The time and state relationships in simulation modeling. Communi-
cations of the ACM - Special issue on simulation modeling and statistical computing
24 (4), 173–179.

Nantes, A., Ngoduy, D., Bhaskar, A., Miska, M., Chung, E., 2016. Real-time traffic state
estimation in urban corridors from heterogeneous data. Transportation Research Part C:
Emerging Technologies 66, 99–118.

Nichols, N. K., 2003. Data assimilation: Aims and basic concepts. In: Swinbank, R.,
Shutyaev, V., Lahoz, W. A. (Eds.), Data Assimilation for the Earth System. Springer
Netherlands, pp. 9–20.

Ntaimo, L., Hu, X., Sun, Y., 2008. DEVS-FIRE: Towards an integrated simulation environ-
ment for surface wildfire spread and containment. SIMULATION: Transactions of The
Society for Modeling and Simulation International 84 (4), 137–155.

Ören, T. I., Zeigler, B. P., 2012. System theoretic foundations of modeling and simulation:
a historic perspective and the legacy of A Wayne Wymore. SIMULATION: Transactions
of The Society for Modeling and Simulation International 88 (9), 1033–1046.

Overstreet, C. M., Nance, R. E., 2004. Characterizations and relationships of world views.
In: Proceedings of the 2004 Winter Simulation Conference. Washington, D.C., USA, pp.
279–287.

Pegden, C. D., 2010. Advanced tutorial: Overview of simulation world views. In: Proceed-
ings of the 2010 Winter Simulation Conference. Baltimore, MD, USA, pp. 210–215.

Pelc, J. S., 2013. Data assimilation for marine ecosystem models. Ph.D. thesis, Delft
University of Technology.

137

BIBLIOGRAPHY

Punzo, V., Montanino, M., 2016. Speed or spacing? Cumulative variables, and convolution
of model errors and time in traffic flow models validation and calibration. Transportation
Research Part B: Methodological 91, 21–33.

Punzo, V., Montanino, M., Ciuffo, B., 2015. Do we really need to calibrate all the parame-
ters? Variance-based sensitivity analysis to simplify microscopic traffic flow models.
IEEE Transactions on Intelligent Transportation Systems 16 (1), 184–193.

Saha, S., Bambha, N. K., Bhattacharyya, S. S., 2010. Design and implementation of
embedded computer vision systems based on particle filters. Computer Vision and
Image Understanding 114 (11), 1203–1214.

Saifuzzaman, M., Zheng, Z., 2014. Incorporating human-factors in car-following models:
a review of recent developments and research needs. Transportation Research Part C:
Emerging Technologies 48, 379–403.

Sargent, R. G., 2011. Verification and validation of simulation models. In: Proceedings of
the 2011 Winter Simulation Conference. Phoenix, AZ, USA, pp. 183–198.

Saunders, M., Lewis, P., Thornhill, A., 2009. Research Methods for Business Students, 5th
Edition. London: Prentice Hall.

Schriber, T. J., Brunner, D. T., Smith, J. S., 2012. How discrete-event simulation software
works and why it matters. In: Proceedings of the 2012 Winter Simulation Conference.
Berlin, Germany, pp. 1–15.

Seck, M., Verbraeck, A., 2009. DEVS in DSOL: Adding DEVS operational semantics to a
generic event-scheduling simulation environment. In: Proceedings of the 2009 Summer
Computer Simulation Conference. Istanbul, Turkey, pp. 261–266.

Shannon, R. E., 1975. Systems Simulation: The art and science. New Jersey: Prentice
Hall.

Sun, Z., Ban, X. J., 2013. Vehicle trajectory reconstruction for signalized intersections
using mobile traffic sensors. Transportation Research Part C: Emerging Technologies
36, 268–283.

Sun, Z., Hao, P., Ban, X. J., Yang, D., 2015. Trajectory-based vehicle energy/emissions
estimation for signalized arterials using mobile sensing data. Transportation Research
Part D: Transport and Environment 34, 27–40.

Treiber, M., Helbing, D., 2002. Reconstructing the spatio-temporal traffic dynamics from
stationary detector data. Cooperative Transportation Dynamics 1, 3.1–3.24.

Treiber, M., Hennecke, A., Helbing, D., 2000. Congested traffic states in empirical obser-
vations and microscopic simulations. Physical Review E 62 (2), 1805–1824.

Treiber, M., Kesting, A., 2013. Traffic Flow Dynamics: Data, Models and Simulation.
Springer Berlin Heidelberg.

138

BIBLIOGRAPHY

van Hinsbergen, C. P. I. J., Schreiter, T., Zuurbier, F. S., van Lint, J. W. C., van Zuylen, H. J.,
2012. Localized extended Kalman filter for scalable real-time traffic state estimation.
IEEE Transactions on Intelligent Transportation Systems 13 (1), 385–394.

van Leeuwen, P. J., 2009. Particle filtering in geophysical systems. Monthly Weather
Review 137 (12), 4089–4114.

van Lint, J. W. C., 2010. Empirical evaluation of new robust travel time estimation
algorithms. Transportation Research Record 2160, 50–59.

van Lint, J. W. C., Hoogendoorn, S. P., 2010. A robust and efficient method for fus-
ing heterogeneous data from traffic sensors on freeways. Computer-Aided Civil and
Infrastructure Engineering 25 (8), 596–612.

van Lint, J. W. C., Hoogendoorn, S. P., 2015. A generic methodology to estimate ve-
hicle accumulation on urban arterials by fusing vehicle counts and travel times. In:
Transportation Research Board 94th Annual Meeting. No. 15-5134. Washington, D.C.,
USA.

van Wageningen-Kessels, F., van Lint, J. W. C., Vuik, K., Hoogendoorn, S. P., 2015.
Genealogy of traffic flow models. EURO Journal on Transportation and Logistics 4 (4),
445–473.

Vangheluwe, H. L., 2000. DEVS as a common denominator for multi-formalism hybrid
systems modelling. In: Proceedings of the 2000 IEEE International Symposium on
Computer-Aided Control System Design. Anchorage, AK, USA, pp. 129–134.

Vangheluwe, H. L., 2001. The Discrete EVent System specification (DEVS) formalism.
Tech. rep., McGill University, School of Computer Science, Montreal, Quebec, Canada.
URL http://www.cs.mcgill.ca/~hv/classes/MS/DEVS.pdf

Wainer, G. A., 2009. Discrete-Event Modeling and Simulation: A Practitioner’s Approach.
CRC Press.

Wang, M., Hu, X., 2015. Data assimilation in agent based simulation of smart environments
using particle filters. Simulation Modelling Practice and Theory 56, 36–54.

Wang, Y., Papageorgiou, M., Messmer, A., 2006. RENAISSANCE - A unified macroscopic
model-based approach to real-time freeway network traffic surveillance. Transportation
Research Part C: Emerging Technologies 14 (3), 190–212.

Weber, R., 2004. Editor’s comments: The rhetoric of positivism versus interpretivism: a
personal view. MIS Quarterly 28 (1), iii–xii.

Weinberg, G. M., 1971. The Psychology of Computer Programming. Van Nostrand Rein-
hold, New York.

Wu, P., Xue, H., Hu, X., 2015. Particle filter based traffic data assimilation with sen-
sor informed proposal distribution. In: Proceedings of the 48th Annual Simulation
Symposium. Alexandria, VA, USA, pp. 173–180.

139

http://www.cs.mcgill.ca/~hv/classes/MS/DEVS.pdf

BIBLIOGRAPHY

Wu, W., Purser, R. J., Parrish, D. F., 2002. Three-dimensional variational analysis with
spatially inhomogeneous covariances. Monthly Weather Review 130 (12), 2905–2916.

Wu, X., Liu, H. X., 2014. Using high-resolution event-based data for traffic modeling
and control: An overview. Transportation Research Part C: Emerging Technologies 42,
28–43.

Xue, H., 2014. Data assimilation based on sequential Monte Carlo methods for dynamic
data driven simulation. Ph.D. thesis, Georgia State University.

Xue, H., Gu, F., Hu, X., 2012. Data assimilation using sequential Monte Carlo methods in
wildfire spread simulation. ACM Transactions on Modeling and Computer Simulation
22 (4), 23:1–23:25.

Xue, H., Hu, X., 2012. Exploiting sensor spatial correlation for dynamic data driven
simulation of wildfire. In: Proceedings of the 2012 ACM/IEEE/SCS 26th Workshop
on Principles of Advanced and Distributed Simulation. Washington, D.C., USA, pp.
243–249.

Xue, H., Hu, X., 2013. An effective proposal distribution for sequential Monte Carlo
methods-based wildfire data assimilation. In: Proceedings of the 2013 Winter Simulation
Conference. Washington, D.C., USA, pp. 1938–1949.

Yuan, Y., 2013. Lagrangian multi-class traffic state estimation. Ph.D. thesis, Delft Univer-
sity of Technology.

Yuan, Y., van Lint, J. W. C., Wilson, R. E., van Wageningen-Kessels, F., Hoogendoorn,
S. P., 2012. Real-time Lagrangian traffic state estimator for freeways. IEEE Transactions
on Intelligent Transportation Systems 13 (1), 59–70.

Zeigler, B. P., Praehofer, H., Kim, T. G., 2000. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems, 2nd Edition.
Academic Press.

140

Summary

Enabled by the increased availability of data, the data assimilation technique, which
incorporates measured observations into a dynamical system model to produce a time
sequence of estimated system states, gains popularity. The main reason is that it can
produce more accurate estimation results than using either a simulation model or the
measurements. Due to this benefit, the data assimilation technique has been applied in
many continuous systems applications, but very little data assimilation research has been
found for discrete event simulations. With the application of new sensor technologies and
communication solutions, the availability of data for discrete event systems has increased
as well. The increased data availability for discrete event systems but the lack of related
data assimilation techniques thus motivated this work on data assimilation for discrete
event simulations.

Since discrete event simulations are highly nonlinear, non-Gaussian systems, particle
filters are used to conduct data assimilation in discrete event simulations. However,
applying particle filtering in discrete event simulations still encounters several theoretical
and practical problems, such as the state retrieval problem (discrete event simulation
models have a piecewise constant state trajectory, so the retrieved state was updated at a
past time instant, with which inaccurate estimation results will be obtained), the variable
dimension problem (the dimension of the state trajectory during a fixed time interval
is random, leading to inapplicability of the standard sequential importance sampling
algorithm), and the processing of non-numerical data. Therefore, this research aims to
develop a particle filter based data assimilation framework for discrete event simulations,
in which the aforementioned problems can be addressed.

In this research, we propose a particle filter based data assimilation framework for
discrete event simulations, in which we assume that the measurements available at a time
instant t are distributed over the last measurement interval (i.e. data fed at time t can contain
observations occurring at any time instant during the last measurement interval), implying
that the measurements are dependent on the state transitions during that measurement
interval. The proposed data assimilation framework solves the aforementioned problems
in two ways. First, an interpolation operation is introduced, which takes the elapsed time
(i.e. the time elapsed since the last state transition) into account when retrieving the state
of a discrete event simulation model. With interpolation, the real-time state evolution,
which is not described in the discrete event simulation model but does happen in reality,
can be captured. Second, to solve the variable dimension problem, the state trajectory
with variable dimension is extended to a fixed dimension with certain extensions, e.g.,

141

by adding virtual entities. The standard sequential importance sampling algorithm can
thus be applied to update the random measure (i.e. a set of particles and their importance
weights) which approximates the joint distribution of the extended state trajectory with
fixed dimension. Samples in which the extensions are discarded will form the samples from
the joint distribution of the state trajectory of interest that has a variable dimension. We
prove that the discarded extensions have no tangible effect on the weight update. Therefore
in practice we can safely apply the sequential importance sampling algorithm to update
the random measure that approximates the posterior distribution of a state trajectory with
variable dimension. The proposed data assimilation framework can therefore be applied to
discrete event simulations of both closed and open systems.

Two case studies, one in a (closed) gold mine system and the other in an (open) urban
traffic system, are used to test and validate the proposed data assimilation framework.
The results show that the proposed data assimilation framework is indeed able to provide
accurate estimation results. A proper interpolation operation can significantly improve
the estimation results in the statistic sense. The variable dimension state trajectory has no
tangible effect on weight updating, and particle filtering can approximate the dimension
accurately. The case study in the urban traffic system also contributes to a generic (in the
sense that any (ensemble of) microscopic simulation models can be used) data assimilation
framework for vehicle trajectory reconstruction on signalized urban arterials. The case
studied for the urban traffic system implies that in order to effectively conduct data assimi-
lation in open systems, two extra steps (compared with the data assimilation procedure in
closed systems) are required. First, we need to estimate (directly from data or indirectly
using an estimation method) the number of entities in the system, otherwise we will have
an underdetermined problem, since the number of entities in an open system is unknown
in advance. Second, we need to reconstruct entity arrivals at system boundaries based
on (noisy) observations. One can also randomly generate a sequence of arrivals, but this
would require a much larger number of particles to achieve similar performance.

Using data generated from the case studies, we analyze the characteristics of the pro-
posed data assimilation framework and its sensitivity to a number of important parameters
that relate to the errors in the data and in the simulation model, as well as to the number
of particles employed. Sensitivity analysis with respect to data quality and model errors
shows that the framework is quite robust to both errors in the data and the model errors (i.e.
differences between the models generating the ground-truth data and the models used in
the case studies), although we cannot claim to have tested this exhaustively. Sensitivity
analysis for the number of particles employed reveals that with fixed data/model quality, the
estimation errors decrease when the number of particles increases. However, the trend is
not proportional, which means that it is impossible to achieve error-free estimation results
by continuously increasing the number of particles, since the quality of the estimation
results is most fundamentally determined by the data quality and the validity of the system
model involved in the data assimilation process. The results of the sensitivity analysis
also imply several general future research directions in order to improve the quality of the
estimation results, such as building simulation models that can make more valid predictions
of the real system behavior, and developing more advanced sensor technologies that can
provide more accurate measurement data of the real systems.

To conduct controlled experiments in case studies, an implementation of the proposed
data assimilation framework is needed. In this thesis, a conceptual software implementa-

142

tion is provided. Based on this, a concrete data assimilation library can be implemented
for a specific simulation environment. The conceptual framework is fully object-oriented,
therefore it is very easy to tailor, extend and maintain. We have to mention that this
conceptual framework is definitely not optimal in terms of performance or ease of imple-
mentation. Future research will be oriented toward addressing the performance issues,
e.g., by developing a parallel and distributed version of the proposed data assimilation
framework in order to deal with more complex scenarios.

143

Samenvatting

De toegenomen beschikbaarheid van data maakt het mogelijk om data-assimilatietechnieken
te gebruiken, die gemeten waarnemingen verwerken in een dynamisch systeemmodel,
met als doel om een tijdreeks van geschatte systeemtoestanden te produceren. Data-
assimilatie levert nauwkeuriger schattingsresultaten dan het gebruik van alleen het sim-
ulatiemodel of alleen de metingen. Vanwege dit voordeel wordt data-assimilatie al
veel toegepast in continue systeemtoepassingen, maar data-assimilatieonderzoek bin-
nen discrete-eventsimulaties is schaars. Met de toegenomen populariteit van nieuwe
sensortechnologieën en communicatieoplossingen is ook de beschikbaarheid van gegevens
voor discrete-eventsystemen toegenomen. De toegenomen beschikbaarheid van gegevens
in discrete-eventsystemen, maar het gebrek aan gerelateerde data-assimilatietechnieken,
motiveerde dit onderzoek naar data-assimilatie voor discrete-eventsimulaties.

Omdat discrete-eventsimulaties niet-lineaire, niet-Gaussiaanse systemen zijn, wor-
den zogenaamde particle filters gebruikt om data-assimilatie uit te voeren voor discrete-
eventsimulaties. Het toepassen van particle filters in discrete-eventsimulaties stuit echter
nog steeds op diverse theoretische en praktische problemen, zoals het probleem van het
bepalen van de toestand van het model wanneer een observatie binnenkomt (aangezien
de toestand van een discrete-event simulatiemodel stuksgewijs constant is, zal de laatst
bekende toestand van het model een toestand zijn die is bijgewerkt op een tijdstip in
het verleden, zodat onnauwkeurige schattingsresultaten worden verkregen), het variabele-
dimensieprobleem (de dimensie van de toestandsfunctie gedurende een vast tijdsinterval
[0, t] is willekeurig, wat leidt tot niet-toepasbaarheid van het standaard toegepaste sequen-
tieel steekproefalgoritme), de verwerking van niet-numerieke gegevens, enz.. Daarom is
de focus van dit onderzoek het ontwikkelen van een op particle filters gebaseerde data-
assimilatiemethode voor discrete-eventsimulaties, waarbij de bovengenoemde problemen
kunnen worden ondervangen.

In dit onderzoek ontwikkelen we een op particle filters gebaseerde data-assimilatiemethode
voor discrete-eventsimulaties, waarbij we veronderstellen dat de observaties die beschik-
baar zijn op tijdstip t, waarnemingen bevat die op elk willekeurig tijdstip tijdens het
meetinterval kunnen hebben plaatsgevonden. De metingen zijn daarmee afhankelijk van
de toestandsovergangen gedurende het meetinterval.

De voorgestelde methode voor data-assimilatie lost de bovengenoemde problemen op
twee manieren op. Ten eerste wordt een interpolatiemethode geïntroduceerd, die rekening
houdt met de verstreken tijd (dat wil zeggen de tijd sinds de laatste toestandsovergang),
bij het bepalen van de toestand van een discrete-eventsimulatiemodel. Met interpolatie

145

kan het real-time verloop van de toestand, die niet wordt beschreven in het discrete event-
simulatiemodel, maar wel in werkelijkheid plaatsvindt, worden vastgelegd. Ten tweede
wordt, om het probleem van de variabele dimensie op te lossen, de toestandsfunctie met
variabele dimensie uitgebreid tot een vaste dimensie met aanvullingen, bijvoorbeeld door
virtuele entiteiten toe te voegen. Het standaard sequentiële algoritme om de gewichten
van de particles te bepalen kan daarmee worden toegepast om een willekeurige meting te
verwerken (dat wil zeggen een reeks particles en het bepalen van hun gewichten), die de
gezamenlijke verdeling van de toestandsfunctie met vaste dimensie benadert. De gezamen-
lijke verdeling van de betreffende toestandsfunctie met variabele dimensie wordt gebaseerd
op steekproeven waarin deze aanvullingen worden weggelaten. In het proefschrift wordt
bewezen dat het weglaten van de aanvullingen voor de dimensie een verwaarloosbaar
effect heeft op de update van de gewichten. Daarmee kan in de praktijk het sequentiële
algoritme voor het bepalen van de gewichten van de particles toegepast worden om de
willekeurige meetwaarde te verwerken die de posterior verdeling van een toestandstraject
met variabele dimensie benadert. De voorgestelde data-assimilatiemethode kan daarmee
worden toegepast op discrete-eventsimulaties van zowel gesloten als open systemen.

Twee case studies, één in een (gesloten) systeem van een goudmijn en de andere in
een (open) stedelijk verkeerssysteem, worden gebruikt om de voorgestelde methode voor
data-assimilatie te testen en te valideren. De resultaten tonen aan dat de voorgestelde
data-assimilatiemethode inderdaad in staat is om nauwkeurige schattingsresultaten voor
de toestand van het systeem te verschaffen. De genoemde interpolatiebewerking kan de
schattingsresultaten in statistische zin aanzienlijk verbeteren. Zoals verondersteld, heeft
het variabele aantal dimensies nauwelijks effect op het bijwerken van de gewichten, en
de methode van particle filtering kan de dimensie nauwkeurig benaderen. De casestudie
voor het stedelijk verkeerssysteem draagt tevens bij tot een generieke (in de zin dat elk
(geheel van) microscopische simulatiemodellen kan worden gebruikt) data-assimilatie-
methode voor reconstructie van voertuigtrajecten binnen een stedelijk verkeerssysteem
met verkeerslichten. De casestudie in het stedelijk verkeerssysteem laat zien dat om
data-assimilatie in open systemen effectief uit te voeren, twee extra stappen nodig zijn
(in vergelijking met de procedure voor data-assimilatie in gesloten systemen). Ten eerste
moeten we (direct uit de gegevens of indirect via een schattingsmethode) het aantal
entiteiten in het systeem schatten, anders hebben we een ondergedimensioneerd probleem
omdat het aantal entiteiten in een open systeem van tevoren onbekend is. Ten tweede
moeten we de aankomst van entiteiten bij de systeemgrenzen reconstrueren op basis van
(fouten bevattende) waarnemingen. Men kan dit ook oplossen door een willekeurige
reeks aankomsten te genereren, maar dit zou een veel groter aantal particles vereisen om
vergelijkbare prestaties te bereiken.

Aan de hand van gegevens uit de casestudies analyseren we de kenmerken van de
voorgestelde data-assimilatiemethode en de gevoeligheid voor een aantal belangrijke pa-
rameters die betrekking hebben op fouten in de data en in het simulatiemodel, evenals het
aantal particles dat gebruikt wordt. Gevoeligheidsanalyse met betrekking tot de gegeven-
skwaliteit en modelfouten toont aan dat het raamwerk vrij robuust is voor zowel fouten
in de meetgegevens als modelfouten (verschillen tussen het model dat de ground truth
data genereert en de modellen die in de casestudies zijn gebruikt), hoewel we niet kunnen
beweren dat we dit uitputtend hebben getest. Gevoeligheidsanalyse met betrekking tot
het aantal gebruikte particles laat zien dat met bij gelijkblijvende observaties en modelk-

146

waliteit de schattingsfouten verminderen als het aantal particles toeneemt. De trend is
echter niet proportioneel, wat betekent dat het onmogelijk is om foutloze schattingsre-
sultaten te verkrijgen door het aantal particles te blijven verhogen, omdat de kwaliteit
van de schattingsresultaten voornamelijk wordt bepaald door de gegevenskwaliteit en de
validiteit van het model dat gebruikt wordt voor het data-assimilatieproces. De resultaten
van de gevoeligheidsanalyse geven ook toekomstige onderzoeksrichtingen aan om de
kwaliteit van de schattingsresultaten te verbeteren, zoals het bouwen van simulatiemod-
ellen die het echte systeemgedrag meer valide kunnen voorspellen, en het ontwikkelen van
sensortechnologieën die de meetgegevens van de echte systemen nauwkeuriger kunnen
bepalen.

Om gecontroleerde experimenten uit te voeren in casestudies, is een implementatie van
het voorgestelde data-assimilatiekader nodig. In dit proefschrift wordt een conceptueel
software-raamwerk gepresenteerd, op basis waarvan een concrete data-assimilatiebibliotheek
kan worden geïmplementeerd in een specifieke simulatieomgeving. Het conceptuele
raamwerk is volledig object georiënteerd. Daarmee is het zeer eenvoudig aan te passen, uit
te breiden en te onderhouden. Dit conceptuele kader is nog niet optimaal is qua prestaties
en implementatiegemak. Toekomstig onderzoek zal gericht zijn op het aanpakken van
de prestatieproblemen, bijvoorbeeld door een parallelle en gedistribueerde versie van de
voorgestelde data-assimilatiemethode te ontwikkelen om met complexere scenario’s om te
kunnen gaan.

(The English summary has been translated into Dutch by Prof. dr. ir. A. Verbraeck)

147

SIKS Dissertation Series

The following list contains the most recent dissertations since 2011 in the SIKS Dissertation
Series. For a complete overview, please see the SIKS website: http://www.siks.
nl/dissertations.php.

201101 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent
Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Opera-
tional Semantics of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of
Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis
and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing
the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural
Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human
Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dia-
logues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning

10 Bart Bogaert (UvT), Cloud Content Contention

11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI
Perspective

12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining

13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Airport
Ground Handling

14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets

15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence
for Information Retrieval

16 Maarten Schadd (UM), Selective Search in Games of Different Complexity

149

http://www.siks.nl/dissertations.php
http://www.siks.nl/dissertations.php

17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Related-
ness

18 Mark Ponsen (UM), Strategic Decision-Making in complex games

19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles

20 Qing Gu (VU), Guiding service-oriented software engineering - A view-based
approach

21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented
Systems

22 Junte Zhang (UVA), System Evaluation of Archival Description and Access

23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social Media

24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordina-
tion with Virtual Humans On Specifying, Scheduling and Realizing Multimodal
Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models for
Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication - Emo-
tion Regulation and Involvement-Distance Trade-Offs in Embodied Conversa-
tional Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous man-
agement of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query Con-
text and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification

30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the
mystery of emotions

31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for
Modeling Bounded Rationality

32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Mapping
of Science

33 Tom van der Weide (UU), Arguing to Motivate Decisions

34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and
Game-theoretical Investigations

35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training

36 Erik van der Spek (UU), Experiments in serious game design: a cognitive
approach

37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications
for Preference Learning and Supervised Network Inference

38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization

39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games

40 Viktor Clerc (VU), Architectural Knowledge Management in Global Software
Development

150

41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access Con-
trol

42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution

43 Henk van der Schuur (UU), Process Improvement through Software Operation
Knowledge

44 Boris Reuderink (UT), Robust Brain-Computer Interfaces

45 Herman Stehouwer (UvT), Statistical Language Models for Alternative Se-
quence Selection

46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-
based Architecture for the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent
Support of Persons with Depression

48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive
Artificial Listening Agent

49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken
dialogues: design aspects influencing interaction quality

201201 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda

02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human and
Ambient Agent Models

03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software
Repositories

04 Jurriaan Souer (UU), Development of Content Management System-based Web
Applications

05 Marijn Plomp (UU), Maturing Interorganisational Information Systems

06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in
Research Networks

07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-
based Models of Human Performance under Demanding Conditions

08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories

09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-
Aware Service Platforms

10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia
Environment

11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocessing,
Discovery, and Diagnostics

12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in
Semantic Web Information Systems

13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of
emotion during playful interactions

14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adaptive
Web-based Systems

151

15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integrated
Internal and Social Dynamics of Cognitive and Affective Processes.

16 Fiemke Both (VU), Helping people by understanding them - Ambient Agents
supporting task execution and depression treatment

17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business
Process Compliance

18 Eltjo Poort (VU), Improving Solution Architecting Practices

19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business
Process Execution

20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm
for Brain-Computer Interfacing

21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Re-
trieval

22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare groothe-
den?

23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Exploring
the Neurophysiology of Affect during Human Media Interaction

24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken
Document Retrieval

25 Silja Eckartz (UT), Managing the Business Case Development in Inter-
Organizational IT Projects: A Methodology and its Application

26 Emile de Maat (UVA), Making Sense of Legal Text

27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation &
Brain-Computer Interface Games

28 Nancy Pascall (UvT), Engendering Technology Empowering Women

29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval

30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective
Decision Making

31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher
Order Cognitive Skills Improvement, Building Capacity and Infrastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference representation and
reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)

34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications

35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Con-
trollers in Swarm- and Modular Robotics

36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Modeling
Processes

37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture
Creation

38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary
Algorithms

152

39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks

40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia

41 Sebastian Kelle (OU), Game Design Patterns for Learning

42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learning

43 Withdrawn

44 Anna Tordai (VU), On Combining Alignment Techniques

45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transactions

46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data for
Statistical Machine Translation

47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Predict-
ing Behavior

48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data

49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of
reinforcement learning algorithms in strategic interactions

50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Systems
Engineering

51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical framework
with a case study in elevator dispatching

201301 Viorel Milea (EUR), News Analytics for Financial Decision Support

02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store
Database Technology for Efficient and Scalable Stream Processing

03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics

04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling

05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns

06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries for
a Data Warehouse Audience

07 Giel van Lankveld (UvT), Quantifying Individual Player Differences

08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for opponent
agents in fighter pilot simulators

09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and
Applications

10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework for
Service Design.

11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization in
Overlay Services

12 Marian Razavian (VU), Knowledge-driven Migration to Services

13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of integrated
IT-based homecare services to support independent living of elderly

153

14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning Learn-
ing

15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applications

16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-agent
deliberation

17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart Elec-
tricity Grid

18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification

19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Scheduling

20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Infor-
mation Retrieval

21 Sander Wubben (UvT), Text-to-text generation by monolingual machine trans-
lation

22 Tom Claassen (RUN), Causal Discovery and Logic

23 Patricio de Alencar Silva (UvT), Value Activity Monitoring

24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Support.
A new way of representing and implementing clinical guidelines in a Decision
Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service
Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data Prove-
nance

28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry
into the Information eXperience

29 Iwan de Kok (UT), Listening Heads

30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management:
Analysis and Support

31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering
Cloud Applications

32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Network-
ing in a Lifelong Learner’s Professional Development

33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging
Sphere

34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search

35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction

36 Than Lam Hoang (TUe), Pattern Mining in Data Streams

37 Dirk Börner (OUN), Ambient Learning Displays

38 Eelco den Heijer (VU), Autonomous Evolutionary Art

154

39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of
Enterprise Information Systems

40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games

41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic Sys-
tems: A Knowledge Engineering Perspective on Qualitative Reasoning

42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning

43 Marc Bron (UVA), Exploration and Contextualization through Interaction and
Concepts

201401 Nicola Barile (UU), Studies in Learning Monotone Models from Data

02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Modeling
Method

03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search
Behavior and Solutions

04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies and
interface design - Three studies on children’s search performance and evaluation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic
Capability

06 Damian Tamburri (VU), Supporting Networked Software Development

07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior

08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous
Data Endpoints

09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Represen-
tation and Computation of Meaning in Natural Language

10 Ivan Salvador Razo Zapata (VU), Service Value Networks

11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social Support

12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous
Vehicle Control

13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change: Models
and Applications in Health and Safety Domains

14 Yangyang Shi (TUD), Language Models With Meta-information

15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Func-
tioning in Complex Socio-Technical Systems: Applications in Safety and
Healthcare

16 Krystyna Milian (VU), Supporting trial recruitment and design by automatically
interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators automatically:
Secondary Use of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of
Dynamic Agent Organizations

19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and Quan-
titative Evaluation and Tool Support

155

20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Informal
Text: The Missing Link

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments

22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-
supported scenario-based training

23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big Data
Era

24 Davide Ceolin (VU), Trusting Semi-structured Web Data

25 Martijn Lappenschaar (RUN), New network models for the analysis of disease
interaction

26 Tim Baarslag (TUD), What to Bid and When to Stop

27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy and
Probabilistic Representations of Uncertainty

28 Anna Chmielowiec (VU), Decentralized k-Clique Matching

29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software

30 Peter de Cock (UvT), Anticipating Criminal Behaviour

31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manufac-
turing and Product Support

32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data

33 Tesfa Tegegne (RUN), Service Discovery in eHealth

34 Christina Manteli (VU), The Effect of Governance in Global Software Devel-
opment: Analyzing Transactive Memory Systems.

35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware
Design Approach

36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured
Process Models

37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying

38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: im-
proving usability through post-processing.

39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital

40 Walter Omona (RUN), A Framework for Knowledge Management Using ICT
in Higher Education

41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in
News Text

42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance Models

43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method In-
crements

44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-
gestuurde politiezorg in gebiedsgebonden eenheden.

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Approach

156

46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diversity

47 Shangsong Liang (UVA), Fusion and Diversification in Information Retrieval

201501 Niels Netten (UvA), Machine Learning for Relevance of Information in Crisis
Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in
Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data

04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments

05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding

06 Farideh Heidari (TUD), Business Process Quality Computation - Computing
Non-Functional Requirements to Improve Business Processes

07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis

08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for de-
signing and evaluating organizational interactions

09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Systems

10 Henry Hermans (OUN), OpenU: design of an integrated system to support
lifelong learning

11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A study
of computing bisimulation and joins

12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The
Effect of Context on Scientific Collaboration Networks

13 Giuseppe Procaccianti (VU), Energy-Efficient Software

14 Bart van Straalen (UT), A cognitive approach to modeling bad news conversa-
tions

15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Docu-
mentation

16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot
Teamwork

17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Properties,
Combinations and Trade-offs

18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in
Asymmetric Memories

19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners

20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordination

21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online
Learning

22 Zhemin Zhu (UT), Co-occurrence Rate Networks

23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage

24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical Search
Algorithms and Evaluation

157

25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection

26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Seman-
tics and Structure

27 Sándor Héman (CWI), Updating compressed colomn stores

28 Janet Bagorogoza (TiU), Knowledge Management and High Performance; The
Uganda Financial Institutions Model for HPO

29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player
and Two-Player Domains

30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-
Learning

31 Yakup Koç (TUD), On the robustness of Power Grids

32 Jerome Gard (UL), Corporate Venture Management in SMEs

33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources

34 Victor de Graaf (UT), Gesocial Recommender Systems

35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Percep-
tion and Effects in Human Robot Interaction

201601 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through
decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge
Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data

05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an
Application in Explaining Missing Answers

06 Michel Wilson (TUD), Robust scheduling in an uncertain environment

07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual
training

08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social
Networks from Unstructured Data

09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural
Artefacts

10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms

11 Anne Schuth (UVA), Search Engines that Learn from Their Users

12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-
Agent Systems

13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development
in West Africa - An ICT4D Approach

14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization

158

15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,
Algorithms and Experiments

16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn
from Human Reward

17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms

18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web

19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data

20 Daan Odijk (UVA), Context & Semantics in News & Web Search

21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:
Automatic Analysis of Player Behavior in the Interactive Tag Playground

22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Sys-
tems

23 Fei Cai (UVA), Query Auto Completion in Information Retrieval

24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An
Iterative and data model independent approach

25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching
and Browsing Behavior

26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational
Models to Study the Role of Human Awareness and Control in Behavioural
Choices, with Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study
on epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -
Markets and prices for flexible planning

30 Ruud Mattheij (UvT), The Eyes Have It

31 Mohammad Khelghati (UT), Deep web content monitoring

32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability
Risks for Crisis Organisations

33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just
one example

34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis,
and Enactment

35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classifica-
tion and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction
behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computa-
tional inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art &
Interaction Design

159

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal
Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design

41 Thomas King (TUD), Governing Governance: A Formal Framework for
Analysing Institutional Design and Enactment Governance

42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilin-
gual Aligned Corpora

43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management:
From Theory to Practice

44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration

45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control

46 Jorge Gallego Perez (UT), Robots to Make you Happy

47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innova-
tion networks

48 Tanja Buttler (TUD), Collecting Lessons Learned

49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-
Theoretic Analysis

50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational
Performance Alignment in IT-enabled Service Supply Chains

201701 Jan-Jaap Oerlemans (UL), Investigating Cybercrime

02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Net-
works using Argumentation

03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach
with Autonomous Products and Reconfigurable Manufacturing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store

05 Mahdieh Shadi (UVA), Collaboration Behavior

06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search

07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly

08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health
Insurance Data using Outlier Detection and Subgroup Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational
Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior

11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter
#anticipointment

12 Sander Leemans (TUE), Robust Process Mining with Guarantees

13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social
touch through haptic technology

160

14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling
Player Traits from Video Game Behavior

15 Peter Berck (RUN), Memory-Based Text Correction

16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern
Search Engines

17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution

18 Ridho Reinanda (UVA), Entity Associations for Search

19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in
Information Retrieval

20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Shar-
ing: The Role of Perceived Benefits, Costs and Visibility

21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious
Gaming (A Play on Worlds)

22 Sara Magliacane (VU), Logics for causal inference under uncertainty

23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces

24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning

25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines,
with applications to Multimorbidity Analysis and Literature Search

26 Merel Jung (UT), Socially intelligent robots that understand and respond to
human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social
Robots: People’s Preferences, Perceptions and Behaviors

28 John Klein (VU), Architecture Practices for Complex Contexts

29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance:
A Moderated Mediation Model of Social Innovation, and Enterprise Gover-
nance of IT"

30 Wilma Latuny (UvT), The Power of Facial Expressions

31 Ben Ruijl (UL), Advances in computational methods for QFT calculations

32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives

33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documen-
tation: A Model of Computer-Mediated Activity

34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics

35 Martine de Vos (VU), Interpreting natural science spreadsheets

36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-
throughput Imaging

37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Frame-
work that Enables Control over Privacy

38 Alex Kayal (TUD), Normative Social Applications

161

39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and
compressive sensing methods to increase noise robustness in ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration
of Human Control in Relation to Emotions, Desires and Social Support For
applications in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of
Mental Processes and a Smart Environment to Provide Support for a Healthy
Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with
applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval

44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics
in Agile Requirements Engineering

45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement

46 Jan Schneider (OU), Sensor-based Learning Support

47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration

48 Angel Suarez (OU), Collaborative inquiry-based learning

201801 Han van der Aa (VUA), Comparing and Aligning Process Representations

02 Felix Mannhardt (TUE), Multi-perspective Process Mining

03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,
Model-Driven Development of Context-Aware Applications, and Behavior
Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in
Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Informa-
tion Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of
Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

162

Curriculum Vitae

Xu Xie was born in Hanzhong, Shaanxi, China on 17 October, 1988. He completed his
bachelor in Simulation Engineering at College of Mechatronic Engineering and Automa-
tion, National University of Defense Technology (NUDT) in June 2010. Then, he was
recommended to continue his master study in Control Science and Engineering in the same
college at NUDT without sitting the entrance examination, and graduated in December
2012 as Excellent Graduate Student (top 2%). In September 2013, Xu was awarded a
four-year scholarship from the China Scholarship Council (CSC) and started his PhD
project on data assimilation in discrete event simulations at Delft University of Technology,
under the supervision of Prof. Alexander Verbraeck. His main research interests include
modeling and simulation, distributed simulation, discrete event simulation, dynamic data
driven simulation, data assimilation, and transportation.

163

	Introduction
	Research motivation
	Research objectives and questions
	Research philosophy and instruments
	Organization of the thesis

	Background and related work
	Modeling and simulation
	Framework for modeling and simulation
	Basic modeling formalisms
	Discrete event simulations and world views
	Discrete Event System Specification (DEVS)

	Data assimilation techniques
	Variational techniques
	Sequential methods
	Particle filters

	Data assimilation in discrete event simulations
	Characteristics of discrete event simulations
	Data assimilation technique for nonlinear, non-Gaussian applications
	Comments on data assimilation in DEVS-FIRE
	Challenges of applying particle filtering in discrete event simulations

	Outlook of subsequent chapters

	A particle filter based data assimilation framework for discrete event simulations
	Revisiting the challenges of applying particle filtering in discrete event simulations
	The particle filter based data assimilation framework for discrete event simulations
	System model
	Measurement model
	State estimation using particle filters
	Practical remarks

	Case study – estimating truck arrivals in a gold mine system
	Scenario description
	Modeling the gold mine system in the DEVS formalism
	Interpolation operation
	Available data and measurement model
	Estimating truck arrivals using particle filters

	Case study in the gold mine system – qualitative analysis
	Case study in the gold mine system – quantitative analysis
	Data processing
	Evaluation criteria
	Results

	Conclusions

	Particle filter based data assimilation in discrete event simulations of open systems
	Particle filtering in discrete event simulations of open systems
	System model
	Measurement model
	State estimation using particle filters

	Case study – reconstructing vehicle trajectories on signalized urban arterials
	The trajectory reconstruction problem
	Overview: a generic data assimilation framework for trajectory reconstruction
	Particle filter design for trajectory reconstruction
	Vehicle count correction method, specification of error models and weight computation

	Case study in the urban traffic system – experiment and results
	Experimental setup
	Evaluation criteria
	Results

	Conclusions

	The particle filter based data assimilation framework – sensitivity analysis
	Case study in the gold mine system
	Revisiting the performance indicators
	Effect of the data quality
	Effect of the model errors
	Effect of the number of particles

	Case study in the urban traffic system
	Revisiting the performance indicators
	Effect of the data quality
	Effect of the model errors
	Effect of the number of particles

	Conclusions

	Conclusions and Future Research
	Research findings
	Answers to research questions
	Main contributions

	Future research directions

	Implementation of the particle filter based data assimilation framework
	Key components in a particle filter based data assimilation system
	The conceptual framework to implement the particle filter based data assimilation system
	General view of the conceptual framework
	Representation of particles and weights
	Representation of observations
	Strategies for sampling, resampling, and weight updating
	Communication with the simulation model
	Central control logic
	Memory Consumption & Speed

	Reference implementation in DSOL
	DSOL & its support for discrete event simulations
	Implement the data assimilation procedure in DSOL

	Conclusion

	Summary
	Samenvatting
	SIKS Dissertation Series
	Curriculum Vitae

