

Delft University of Technology

Distributed heterogeneous systems for large-scale graph processing

Guo, Yong

DOI
10.4233/uuid:d0fc67da-3074-4188-b335-1b69cfae3f95
Publication date
2016
Document Version
Final published version
Citation (APA)
Guo, Y. (2016). Distributed heterogeneous systems for large-scale graph processing. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:d0fc67da-3074-4188-b335-1b69cfae3f95

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:d0fc67da-3074-4188-b335-1b69cfae3f95
https://doi.org/10.4233/uuid:d0fc67da-3074-4188-b335-1b69cfae3f95

Distributed Heterogeneous Systems

for Large-Scale Graph Processing

Yong Guo

Distributed Heterogeneous Systems

for Large-Scale Graph Processing

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
vrijdag 13 mei 2016 om 15:00 uur

door

Yong GUO

Bachelor of Engineering in Computer Science and Technology,
National University of Defense Technology, China

geboren te Jingzhou, China

Dit proefschrift is goedgekeurd door de:

Promotor: Prof.dr.ir. D.H.J. Epema
Copromotor: Dr.ir. A. Iosup

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. D.H.J. Epema Technische Universiteit Delft, promotor
Dr.ir. A. Iosup Technische Universiteit Delft, copromotor

Onafhankelijke leden:
Prof.dr. E. Visser Technische Universiteit Delft
Prof.dr. P.A. Boncz Vrije Universiteit Amsterdam and CWI
Prof.dr. H . Corporaal Technische Universiteit Eindhoven
Prof.dr. A.J.H. Hidders Vrije Universiteit Brussel
Prof.dr. J.L. Larriba-Pey Universitat Politècnica de Catalunya
Prof.dr. K.G. Langendoen Technische Universiteit Delft, reservelid

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school. ASCI dis-
sertation series number 351.

This work was supported by the China Scholarship Council (CSC).

Part of this work has been done in collaboration with Oracle Labs,
CA, USA.

Published and distributed by: Yong Guo
E-mail: guoyongnudt@gmail.com

ISBN: 978-94-6328-042-6

Keywords: Distributed Heterogeneous Systems, Graph Processing, Game Trace Archive, Perfor-
mance Evaluation, Graph Partitioning.

Copyright © 2016 by Yong Guo.
All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage and retrieval system, without written permission of the author.

Cover design: Lu Ding and Yong Guo. Some of the cover images are from http://www.58pic.com/.

Printed in the Netherlands by: CPI-Koninklijke Wöhrmann-Zutphen.

To my dear parents

Acknowledgements

I have collected more than twenty PhD dissertations during my PhD study. To be honest, I
haven’t read the contents of any of them, but I have taken a look at the acknowledgements
for all of them because they are quite interesting. I have also dreamed one day I can write
my own acknowledgements. Now, this dream has come true. It is my turn to thank the
people I have met and to share my sweetest memories with you.

Alex, you are definitely the most important person for my PhD study. Without you, I
cannot imagine how I could have conquered so many difficulties and challenges. I cannot
forget how you inspired me why online match-based games were important in the coffee
room, how you drew the format on the write board when I was stuck with designing the
Game Trace Archive, how you spent the entire night to help me meet the deadline, how
you tolerated me to conduct the research on my own opinion, how you were pleased when
you heard I had a good idea on graph partitioning, and how you abstracted the critical
concept of three families of distributed heterogeneous systems for me. You also taught
me how to design attractive posters, to make nice slides, to give good presentations, and
to sell our ideas. I also miss the days that we played basketball, badminton, and beach
volleyball. It is my honour and pleasure to be your PhD student.

Dick, thank you very much for your guidance and supervision. Thanks for your sug-
gestions about my thesis structure and research plans. Thanks for your patience on cor-
recting and polishing my draft manuscripts. Your kind advices and words warmed me
up when I did not progress well in my research. I also appreciate your great help on
managing the process of my PhD defense.

Ana, I would say you are my third supervisor. Your name appears five times out of
nine in my publication list. From our collaboration, I have learnt how to think thoroughly,
how to design comprehensive experiments, and how to write good research papers. I am
so lucky and pleased to work with you.

Henk, thank you for considering my PhD application and for accepting me as a mem-
ber of the PDS group. You are a great professor to talk with. I wish you a happy life after
your retirement.

I appreciate the supervision and advice from Prof. Xiangke Liao, Prof. Liquan Xiao,
and Dr. Shanshan Li in China. You guided me to the research field and taught me basic

i

ii

research skills. After I came to the Netherlands, you were also concerned about my
progress and always encouraged me.

I would like to thank my committee members for reviewing my thesis and for giving
me valuable comments. I want to thank the China Scholarship Council for the four-year
scholarships. I am thankful to my mentor in the Graduate School, Prof. Kofi Makinwa.

Many collaborators helped me during my PhD study. Hassan and Sungpack, thank you
for accepting my application and for hosting me for a three-month internship at Oracle
Labs. Based on our collaboration, I accomplished the first journal article of my research.
I also like the way how you supervise and manage the team. Marcin, thank you for
evaluating different graph-processing systems. Claudio, thank you for your support on
Giraph and for your ideas on modeling the performance of graph-processing systems.
Theodore, thank you for discussing with me many topics on graph processing.

Siqi, your help started before I came to the Netherlands. You told me about the PDS
group and gave me important tips before my travel. You shared with me your ideas about
how to do good research. You taught me how to use different tools to process massive
data. You improved my debating skills because you have so many amazing opinions that
I cannot agree with. You encouraged me when I was upset. Your support never ends even
though you graduated. You are telling me how to prepare for the PhD defense. I am very
glad to hear that you are married and I wish you a happy new life.

Bogdan, my friend and brother, there are so many great moments we have experi-
enced. We took several PhD courses together. We exchanged information about our
progress towards graduation. We shared with each other our experience on paper submis-
sion. We played tennis together. I appreciate this very much also because you helped me
a lot. You gave me advices and encouraged me when I lost myself. You helped me under-
stand Hadoop and its configuration. You read my articles, provided valuable comments,
and even polished some parts of my writings. I believe you will finish your PhD with a
big success and my best wishes to you and Elena.

Jianbin, you set a good example for me on doing research. You are also kind-hearted
to give a helping hand when I have problems. Thanks a lot. It’s great to hear that you are
a father of a little boy.

Boxun and Adele, the “first and second senior fellows”, I cannot forget our wonderful
new year parties, so much fun and so much wine. Although the PhD study is hard, you
can always take it easy. I have learnt a lot from your attitudes on life and study.

Otto, thanks for helping me write my first research paper, answering my questions,
maintaining the SVN, and allowing me to change my password so many times.

Nezih, Kefeng, Yunhua, Alex, Lipu, Wing, Sietse, and Stijn, you are very nice and
friendly officemates. It is great to talk with you, no matter the scientific problems or other
random topics. Stijn, thank you very much for translating the summary of my thesis into
Dutch.

iii

I am very thankful to my colleagues, Rahim, Mihai, Riccardo, Niels, Elric, Alexey,
Boudewijn, Tamás, Arno, Nitin, Tim, Lucia, and Dimitra. You made the PDS group such
a nice and interesting place to do research and study. I enjoy our monthly dinners, parties,
movie nights, and sports.

Paulo, Munire, Stephen, Ilse, Shemara, Rina, Franca, and Monique, thank you for
solving technical problems and administrative issues. Your support was so important and
helped me concentrate on my research.

Mingxin, we took the same flight to the Netherlands to pursue our PhD degrees. Now,
we are about to finish our PhD study almost at the same time. You are a great friend that
I can always share my ideas and emotions with during the entire period of my PhD. Your
fearlessness always encourages me. I wish you will have an excellent PhD defense.

Xiaoqin, I appreciate your patience and kindness when we complained about our life
and study. You are so warm to listen and to cheer us up. I would also like to thank the
spiciest dinner I have had in the Netherlands. I hope you can keep enjoying your PhD
study and life.

Yichen, Lu, Shiqian, Ya, Zhiyu, Ye, Yikun, and Siqi, playing tennis with you is one
of the best experience in the last year of my PhD. Thank you for beating me so hard in
our matches, for teaching me how to improve my skills, and for so many dinners and
activities. You are a group of people full of energy and enthusiasm. I believe you will
succeed in your study, work, and business. Lu, you helped me design the cover of this
thesis and I am very grateful for that.

I am so lucky to have many friends in the Netherlands. They are: Hao, Chao, Xian,
Yao, Yongchang, Yanqing, Shuai, Wei, Tiantian, Xinchao, Shanshan, Yue, Jian, Xiang,
Yibin, and Ye. I have so many wonderful memories with you, for dinners, trips, parties,
games, and sports.

I also want to thank my friends in China. Yi and Peixin, thanks for dealing with my
administrative issues at NUDT. Dan, Xinye, Haidong, Chengye, and Hao, I really enjoy
our chats. Jian, Yilun, Xiaowei, and Cong, thanks for adding me in the “new daddy”
chatting group and for sharing your happiness, although I am not a dad. I wish you all
have a better life.

My special thanks to Jie, thank you for sharing success and happiness, and for over-
coming challenges and difficulties with me. The future will be colorful and beautiful for
both of us.

Finally, I would like to give my deepest thanks to my beloved parents. Thank you so
much for your tolerance, patience, and support. The young boy in your mind has grown
up. I love you.

Yong Guo
Delft, April 2016

iv

Contents

1 Introduction 1
1.1 Graph Processing Applications . 4
1.2 Graph Processing Systems . 5
1.3 Graph Partitioning Policies . 7
1.4 Problem Statement . 8
1.5 Main Contributions and Thesis Outline 9

2 Designing the Game Trace Archive: More Graph Datasets 13
2.1 Overview . 13
2.2 Requirements for a Game Trace Archive 15
2.3 The Game Trace Archive . 16

2.3.1 The Design of the Game Trace Archive 16
2.3.2 The Design of the Game Trace Format 18

2.4 Analysis of Traces from the Game Trace Archive 21
2.4.1 Analysis of Workload Characteristics 22
2.4.2 Analysis of Win Ratio . 27
2.4.3 Analysis of Player Behavior and Evolution 31
2.4.4 Analysis of Gaming Graphs . 34

2.5 Related Work . 35
2.6 Summary . 35

3 Evaluating the Performance of CPU-Based Graph Processing Systems 37
3.1 Overview . 37
3.2 Our Vision for Benchmarking . 40

3.2.1 Methodological Challenges . 40
3.2.2 Practical Challenges . 41

3.3 Benchmarking Graph Processing Systems 42
3.3.1 Performance Aspects, Metrics, Process 42
3.3.2 Selection of Graphs and Algorithms 43

3.4 Experimental Setup . 46

v

vi

3.4.1 Platform Selection . 46
3.4.2 Platform and Experimental Configuration 49

3.5 Experimental Results . 49
3.5.1 Basic Performance: Job Execution Time 50
3.5.2 Evaluation of Resource Utilization 54
3.5.3 Evaluation of Scalability . 56
3.5.4 Evaluation of Overhead . 58

3.6 Discussion . 59
3.7 Related Work . 61
3.8 Summary . 62

4 Evaluating the Performance of GPU-Enabled Graph Processing Systems 63
4.1 Overview . 63
4.2 Extended Method for GPU-Enabled Systems 65

4.2.1 Performance Aspects, Metrics, Process 65
4.2.2 Selection of Graphs and Algorithms 67

4.3 Experimental Setup . 69
4.3.1 System Selection . 69
4.3.2 System and Experiment Configuration 71

4.4 Experimental Results . 72
4.4.1 Raw Processing Power: Algorithm Run Time 72
4.4.2 Performance Breakdown . 75
4.4.3 Evaluation of Scalability . 76
4.4.4 Evaluation of System-Specific Optimization Techniques 78
4.4.5 Evaluation of the Impact of the GPU Generation 80

4.5 Qualitative Analysis of User Experience 82
4.6 Related Work . 83
4.7 Summary . 83

5 Designing Streaming Graph Partitioning Policies 85
5.1 Overview . 85
5.2 A Model of Graph Processing Systems 87
5.3 Design of Graph Partitioning Policies 90

5.3.1 Identifying the Run-Time-Influencing Characteristics 91
5.3.2 Empirical Results Validating the Method 93
5.3.3 Four New Graph Partitioning Policies 96

5.4 Experimental Results . 99
5.4.1 Experimental Setup . 99
5.4.2 The Impact of Worker and Copier Threads 101

vii

5.4.3 Workload Distribution . 102
5.4.4 The Impact of the Partitioning Policies on Performance 105
5.4.5 The Impact of Network and the Selective Ghost Node 106
5.4.6 The Time Spent on Partitioning Graphs 106

5.5 Discussion . 108
5.5.1 How to Use Our Results . 110
5.5.2 The Coverage of Our Model and Method 110

5.6 Related Work . 111
5.6.1 Graph Processing Systems . 111
5.6.2 Graph Partitioning Policies . 112

5.7 Summary . 116

6 Designing Distributed Heterogeneous Graph Processing Systems 117
6.1 Overview . 117
6.2 Extended BSP-Based Programming Model 119
6.3 The Design of Distributed Heterogeneous Systems 121

6.3.1 Three Families of Distributed Heterogeneous Systems 121
6.3.2 Classification of Partitioning Policies 122
6.3.3 Selection of Partitioning Policies 124
6.3.4 The Design of a Profiling-Based Greedy Policy 125
6.3.5 Implementation Details . 126

6.4 Experimental Results . 128
6.4.1 Experimental Setup . 128
6.4.2 Calculating the Computation Workload Fraction 130
6.4.3 Overview of the Performance of Three Families of Systems . . . 132
6.4.4 Breakdown of Algorithm Run Time 132
6.4.5 Scalability . 133
6.4.6 Partitioning Time . 134
6.4.7 Comparison with Other Graph Processing Systems 135

6.5 Related Work . 136
6.6 Summary . 137

7 Conclusion and Future Work 139
7.1 Conclusion . 139
7.2 Future Work . 141

7.2.1 Using the Game Trace Archive 141
7.2.2 Benchmarking Graph Processing Systems 142
7.2.3 Designing Graph Processing Systems 143

Bibliography 145

Summary 159

Samenvatting 163

Biography 167

Chapter 1

Introduction

Graph processing is of increasing interest for many business applications and scientific
areas, such as online social networks [84], bioinformatics [64], and online gaming [54].
To answer to the growing diversity of graph datasets and graph-processing algorithms, de-
velopers and system integrators have created a large variety of graph-processing systems
(platforms)—which we define as the combined hardware, software, and programming
system that is being used to complete a graph processing task. Many system challenges
need to be addressed before graph processing can be made available to the masses. Emerg-
ing fields of application for graph processing, such as online gaming, have new data char-
acteristics. The diversity of graph-processing systems makes it difficult for users to select
a system for their own applications, because the performance of such systems has not
been evaluated and compared thoroughly. Although great benefits in performance could
be achieved by using both CPUs and GPUs on multiple machines, currently there is no
publicly available graph-processing system with such capability. Addressing these chal-
lenges is further complicated by the need to combine new models and other fundamental
research methods with system implementation and other applied research methods. In
this thesis we address important challenges of graph processing by conducting funda-
mental and applied research, from collecting and sharing graph datasets, though gaining
knowledge about the performance of previous graph-processing systems, to designing, im-
plementing, and evaluating new methods, and even entire systems for graph-processing.

Extracting and understanding information from large-scale graphs is essential to the
operation of both public and private organizations, and by now follows the typical graph-
processing workflow depicted in Figure 1.1. By applying algorithms to input datasets,
analysts are able to predict the behavior of the customer, and tune and develop new ap-
plications and services. For example, in the area of online social networks, better and
more accurate content recommendation can be made based on identifying and using the
friendship between users [54]. In the area of online gaming, understanding the relation-
ships and interactions among players can help gaming operators improve match-making

1

2

Figure 1.1: A typical graph-processing workflow.

systems [37] and build reputation systems [69], which are crucial to the Quality of Experi-
ence for players. The scale and other characteristics of graphs vary for different domains.
In general, graphs grow over time because more entities are included and more relation-
ships are created. This makes graph processing too large for single-machine infrastruc-
tures and leads to the development of distributed systems, such as Apache Giraph [43]
in Figure 1.1. Due to the scale of typical input datasets, distributed graph-processing
systems involve a crucial data partitioning step.

Many graph-processing systems already exist, and more are newly developed. As
the graph size and structure become larger and more complex, and also as the graph-
processing analysis aims to obtain more useful and complex information, it is increas-
ingly more difficult to handle and analyze modern graphs. Generic distributed data-
processing systems, such as Hadoop, have been used to process large-scale graphs.
However, the performance of Hadoop on processing graphs is poor (quantified for the
first time during the course of this thesis)—this has become common knowledge for
the graph-processing community. In recent years, many graph-processing systems have
been designed and developed. For example, Apache Giraph [43], the open source ver-
sion of Google Pregel [92], is one of the most popular distributed graph-processing sys-
tems that can handle large-scale graphs by using multiple machines. Other distributed
graph-processing systems, such as GraphLab [87], GraphX [46], and PGX.D [61], are
also becoming popular because of their high performance and expressive programming
models. To further improve performance, another branch of graph-processing systems
is emerging: systems using accelerators such as GPUs. GPU-enabled systems, such
as TOTEM [41], Medusa [152], and Gunrock [137], can under specific circumstances

3

achieve much higher performance than CPU-only graph-processing systems [59].

Understanding the new data characteristics in the emerging field of graph process-
ing is non-trivial. Among the many business applications and scientific fields of graph
processing, we envision that graph analytics in for example online gaming can deliver
business-critical information (e.g., predicting the number of online players and identi-
fying key social players) for companies such as Blizzard (World of Warcraft [82]) and
Zynga (CityVille [155]), and for other leaders in this multi-billion industry. In work lead-
ing to this thesis, we found that in many game traces the relationships (e.g., play with,
send message to, member of) between many kinds of game entities (e.g., player, group,
etc) are common and significant for the operation of these games. Online gaming data
covers millions of players and various relationships between them, and is usually large-
scale and rich with information. Online gaming data is a very interesting area for big data
analysis and it is also an important data source for graph processing. However, the com-
plexity of data from diverse games makes it difficult to share gaming graphs. A unified
format for gaming graphs and other challenges, such as fast format converting and data
anonymizing, should also be addressed.

The diversity of graph-processing systems provides more choices for users, but it also
increases the challenge of system selection. It is difficult for users to make a selection
of graph-processing systems, according to their specific graph-processing applications.
Performance evaluation on graph-processing systems can address this problem. How-
ever, conducting a thorough and fair performance evaluation has many methodological
and practical challenges, such as defining a fair evaluation process, selecting and design-
ing performance metrics, selecting representative graph-processing applications (datasets
and algorithms), ensuring the scalability and portability of the evaluation, and reporting
results.

Related to the challenge of designing new methods and even entire systems for graph-
processing, for distributed CPU-based systems, graph partitioning is a mandatory process
that represents new methods for distributing workload to multiple working machines.
The quality of graph partitioning can significantly influence the performance of graph-
processing systems. With GPUs becoming increasingly more powerful and affordable,
even Small and Medium Enterprises (SMEs) who could previously invest only in CPU-
based commodity clusters, can now afford to buy a heterogeneous environment. However,
current graph-processing systems cannot operate on both distributed and heterogeneous
settings. Designing distributed heterogeneous graph-processing systems can not only help
SMEs fully use the hardware resources they invested in, but can also help them improve
the performance of graph processing in their specific context. To achieve high perfor-
mance in such systems, the heterogeneity of CPUs and GPUs should be considered and
addressed, and the workload partitioned between CPUs and GPUs should be carefully
balanced. Thus, graph partitioning becomes very important.

4

Graph processing includes a wide range of research directions, such as graph represen-
tation and pre-processing, graph partitioning, algorithm tuning, graph-processing system
design, software engineering and prototyping of graph-processing systems, performance
evaluation of graph-processing systems, etc. In this thesis, we identify at least three cat-
egories of research in graph-processing systems: understanding graph applications (ap-
plication), gaining knowledge about the performance of previous graph-processing sys-
tems (knowledge), and designing methods and systems for graph-processing (design). We
conduct fundamental and applied research on each of these three directions. For appli-
cation research, we aim to understand the characteristics of gaming graphs and to design
a unified format for data sharing (fundamental), and also we use this format to store and
share multiple game traces (applied). For knowledge research, we design an empirical
method to define which performance aspects we should measure and to understand possi-
ble bottlenecks of existing graph-processing systems (fundamental), and also we use this
method to evaluate the performance of multiple systems (applied). For design research,
we identify different types of graph-partitioning policies and different families of graph-
processing systems (fundamental), and also we design and implement new partitioning
policies and distributed heterogeneous graph-processing systems (applied). Our study
combines application-knowledge-design research into a virtuous research cycle.

In the remainder of this chapter, we discuss the diversity of graph-processing appli-
cations in Section 1.1. We show examples of popular graph-processing systems, describe
their programming models and features, and introduce the status of understanding their
performance in Section 1.2. We discuss various graph-partitioning policies for graph-
processing system in Section 1.3. We formulate the five main research questions of this
thesis in Section 1.4. We summarize our contributions and introduce the outline of this
thesis in Section 1.5.

1.1 Graph Processing Applications

To extract useful information from graphs, many graph-processing applications are ex-
ecuted in various fields and areas. A graph-processing application includes two core
components, the dataset that is the input graph for processing and the graph-processing
algorithm that expresses the analytical operations on the dataset. The former component
is of particular interest for this thesis, as datasets are emerging in many fields that involve
millions of participants, and can generate revenue both after being processed and raw.

We are experiencing a data deluge of large-scale graphs that are generated from hun-
dreds of areas, from genomics to consumer profiles, from social networks to business
decision support, with periodic updates and different data structures. For example, in
the area of online gaming, there are thousands of successful games in the world, some
of which involve tens of millions of active players [82, 99]. A huge amount of online

5

gaming data is rapidly generated by players and recorded by gaming operators. Among
these data, relationships between gaming entities, such as players and items, are a major
part. These relationships can be presented as graphs, which consist of millions of vertices
(gaming entities) and billions of edges (in-game relationship). The graphs contain impor-
tant information for gaming operators to provide better service and create more revenue.
Processing such graphs can also be important to other third-parties (non-game operators),
with many different goals.

Due to the many different goals of processing graphs, a variety of graph algorithms
have been developed. From the perspective of functionality, the algorithms can be catego-
rized into several groups such as for calculating basic graph metrics [139], for traversing
graphs [3, 144], for detecting communities [31, 85, 105], for searching for important ver-
tices [104, 106], for sampling graphs [83], for predicting graph evolution [9, 84], etc.
From the perspective of the behavior of graph-processing algorithms, most of the al-
gorithms consist of a number of iterations, while only a few of the algorithms can be
completed within a single step. The iterative algorithms can be further categorized into
stationary and non-stationary by the size and variation of the sets of active vertices at
each iteration [75]. In every iteration of stationary algorithms, all or a rather static set
of vertices are active and they receive and generate about the same amount of messages.
Typical stationary algorithms are PageRank [104], Connected Components [144], and
Semi-clustering [92]. In contrast, only a (frequently changing) part of vertices are active
in any given iteration of a non-stationary algorithm, and the number of messages varies
across different iterations. This is true, for example, for Breadth First Search [18], Single
Source Shortest Path [92], and Random Walk [125],

1.2 Graph Processing Systems

Tens of graph processing systems have been developed in the past decade, each one de-
signed with specific requirements in mind. Among these requirements, support for using a
single machine or multiple machines, and for using CPUs and/or GPUs, are often the most
important. For example, Pregel [92], Giraph [43], and PGX.D [61] are distributed CPU-
based systems that offer a simple, high-level programming model and focus on processing
very large graphs with reasonable performance and very good scalability. Single-machine
CPU-based systems, such as GraphChi [80] and GridGraph [153], load and process only
a part of a large-scale graph at a time, and repeat this until the entire graph has been
processed, to break the memory constraints of a single machine. However, for complex
graph applications, they may have poor performance, due to slow disk access, but also due
to the lack of computation capability. Graph databases, such as OrientDB [103], Spark-
see [124], and Neo4j [101], have also been designed and developed to process graphs, but
their ability to handle large-scale graphs is limited. Other systems, such as TOTEM [41],

6

Medusa [152], Gunrock [137], focus on offering users efficient ways to accelerate their
graph processing using GPUs on a single machine. MapGraph [39] can use only GPUs,
but from multiple machines. Despite their ability to achieve high performance, these
systems cannot handle large-scale graphs efficiently; for example, they cannot simultane-
ously use multiple CPU+GPU machines.

Graph-processing systems can also be distinguished by their programming mod-
els. Many graph-processing systems adopt the vertex-centric paradigm, in which graph-
processing algorithms are implemented from the perspective of the operations conducted
by each individual vertex. The Bulk Synchronous Parallel (BSP) computing model has
been used by many graph-processing systems, such as Pregel [92] and Hama [114],
mainly because the BSP model simplifies the design and implementation of iterative
graph-processing algorithms. A BSP computation of a graph-processing algorithm con-
sists of a series of global iterations (or supersteps). In each iteration, active vertices ex-
ecute the same user-defined function, generate messages, and transfer them to neighbors
that are not located in the same machine. Synchronization is needed between consec-
utive iterations to ensure that all vertices have been processed and all messages have
been delivered. The synchronization in BSP systems may lead to significantly degraded
performance, especially when the workload is not balanced across all the working ma-
chines. To improve performance, graph-processing systems such as GraphLab [87] and
GraphHP [17] have used asynchronous models to avoid using barriers for synchronization
and to reduce the performance degradation caused by imbalanced workload. The use of
asynchronous models increases the complexity of graph-processing systems and, in some
cases, creates redundant messages [151] when executing graph algorithms.

Graph-processing systems can also be categorized according to their use of com-
putation phases, such as the gather phase of combining all relevant data [95]: one-
phase [43, 92], two-phase [61, 109, 128], and three-phase [39, 45]. Four or more phase
systems are theoretically possible, but we have not encountered them among the tens of
graph-processing systems we have studied. In each of the three kinds of systems, the
main computation tasks (processing incoming messages, applying vertex updates, and
preparing outgoing messages) are placed and executed in different computation phases.
For example, in Scatter-Gather systems, the scatter phase prepares outgoing messages,
and the gather phase collects incoming messages and applies updates to vertex values.
We will further analyze and discuss these three systems in Chapter 5.

Thoroughly understanding the performance of various graph-processing systems can
help users select appropriate graph-processing systems for their applications, and can
help developers design systems with better performance. However, few studies have been
conducted on comprehensively evaluating the performance of graph-processing systems.
Most performance studies were proposed by the system designers themselves to prove
the superiority of their own systems, and may lack the method for performance study.

7

Previous performance studies lack representative workloads, performance metrics, and
comparative systems [41, 70, 76, 112, 136].

1.3 Graph Partitioning Policies

Graph partitioning is essential to the performance of distributed graph-processing sys-
tems. Graph partitioning has been explored and studied for a long time in many research
areas [73, 95], from scientific workflow scheduling [44] to recent work on large-scale
graph processing [46]. Traditional heuristics, such as METIS [72] and its family of par-
titioning policies [32], aim to minimize the communication between partitions while bal-
ancing the number of vertices in each partition. METIS and its family are commonly used
by the community because of their high-quality partitions. However, traditional heuristics
are difficult to be applied to distributed graph-processing systems and time consuming for
partitioning large-scale graphs.

Streaming graph-partitioning policies, which treat vertices as a stream and assign them
one-by-one, have been proposed for distributed graph-processing systems. Hash parti-
tioning is a typical type of streaming graph partitioning. Hash partitioning determines
the partition of each vertex by using a hash of the vertex ID. Due to its simplicity and
short partitioning time, hash partitioning is used by many graph-processing systems, such
as Pregel-like systems [43, 92]. Hash partitioning has obvious drawbacks on partitioning
large-scale graphs. For example, hash partitioning does not consider any locality of ver-
tices and edges, which may incur a massive number of messages and intensive network
traffic. Many complex streaming graph-partitioning policies have been designed to im-
prove the performance of graph processing. For example, Stanton and Kliot [126] design
more than ten streaming policies by considering many factors, such as the relationship
between the vertex to be assigned and the current vertices in the partition and streaming
orders.

Many traditional heuristics and streaming partitioning policies are edge-cut partition-
ing policies, by which vertices are assigned to different partitions. Thus, the edge of
each pair of vertices in two different partitions is cut. In contrast, vertex-cut partitioning
policies place edges, instead of vertices, in different partitions. Vertex-cut partitioning
policies have been used in some graph-processing systems [45, 46]. By using vertex-
cut partitioning, the intensive workload of high-degree vertices can be split to multiple
working machines and balance the communication among partitions. However, vertex-
cut partitioning cannot always achieve good performance, for example, too many pieces
of vertex replicas can still generate high communication. Also, vertex-cut partitioning in-
creases the complexity of graph-processing systems, which need to allow a single vertex’s
computation to span multiple machines.

8

1.4 Problem Statement

In this thesis, we address each of the three categories of research in graph-processing sys-
tems: application, knowledge, and design. Specifically, we address the following research
questions.

RQ-1 (application): How to build a virtual meeting space for sharing, exchang-
ing, and analyzing graphs? Currently, few graph repositories can be accessed publicly.
Although tens of graph datasets from diverse sources are provided by repositories, they
originate from relatively few application domains. One of the important emerging appli-
cation domains for graph data is online gaming. Designing and building a data repository
for sharing graphs collected from online games can provide an important data source of
large-scale graphs, and can facilitate the comparability of studies.

RQ-2 (knowledge): How well do CPU-based graph-processing systems perform?
Graph-processing systems are increasingly used in a variety of domains (Section 1.1).
Although both industry and academia are developing and tuning graph-processing algo-
rithms and systems, the performance of graph-processing systems has never been ex-
plored or compared in-depth. Currently, tens of graph-processing systems of different
kinds have been designed and developed (Section 1.2). Thus, users face the daunting
challenge of selecting an appropriate system for their specific applications. Most of the
existing graph-processing systems are CPU-based, they can only use CPU(s) as the com-
putation resource. Understanding the performance of CPU-based graph-processing sys-
tems can help developers design and tune graph-processing systems, and can help users
make their selections.

RQ-3 (knowledge): How well do GPU-enabled graph-processing systems per-
form? Using the capability of GPUs to process graph applications is a new promis-
ing branch of graph-processing research (Section 1.2). Previous performance evaluation
studies have been conducted for CPU-based graph processing systems. Unlike them, the
performance of GPU-enabled systems is still not thoroughly evaluated and compared.
The different programming models and various optimization strategies designed in GPU-
enabled graph-processing systems raise the challenging question of understanding their
performance. Evaluating the performance of GPU-enabled systems complements the per-
formance study of CPU-based graph-processing systems (RQ-2) and can further help the
design of graph-processing systems for system developers and the selection for system
users.

RQ-4 (design): How to design low-overhead graph-partitioning policies for dis-
tributed graph-processing systems? Many distributed graph-processing systems have
been designed and developed to analyze large-scale graphs (Section 1.2). For all dis-
tributed graph-processing systems, partitioning graphs is a key part of processing and
an important aspect to achieve good processing performance (Section 1.3). To improve

9

the performance of partitioning graphs, even when processing the ever-increasing mod-
ern graphs, many previous studies use lightweight streaming graph-partitioning policies.
Although many such policies exist, currently there is no comprehensive study of their im-
pact on load balancing and communication overheads, and on the overall performance of
graph-processing systems. This relative lack of understanding hampers the development
and tuning of new streaming policies, and could limit the entire research community to
the existing classes of policies. A method to design graph-partitioning policies for real
graph-processing systems is crucial.

RQ-5 (design): How to design a distributed and heterogeneous graph-processing
system? To process graphs efficiently, GPU-enabled graph-processing systems such as
TOTEM and Medusa exploit the GPU or the combined CPU+GPU capabilities of a single
machine. Unlike scalable distributed CPU-based systems such as Pregel and GraphX,
existing GPU-enabled systems are restricted to the resources of a single machine and
to the limited amount of GPU memory, and thus cannot analyze the increasingly large-
scale graphs we see in practice. A distributed and heterogeneous graph-processing system
is needed to bridge the gap between existing distributed CPU-based systems and GPU-
enabled systems for large-scale graph processing.

1.5 Main Contributions and Thesis Outline

This thesis consists of 7 chapters. The 5 research questions introduced in the previous
section are addressed in Chapters 2 through 6, respectively. The structure of the thesis is
depicted in Figure 1.2. The contributions of this thesis are listed as follows:

Figure 1.2: Structure of the thesis.

The Game Trace Archive (Chapter 2) To address research question RQ-1 about how
to share graphs in the online gaming area, we build and maintain the Game Trace Archive

10

(GTA), which is a virtual meeting space for gaming-graph exchange and analysis. This
chapter is based on the following work:

• Yong Guo and Alexandru Iosup, “The Game Trace Archive”, Annual Workshop on
Network and Systems Support for Games (NetGames), 2012.

• Yong Guo, Siqi Shen, Otto Visser, and Alexandru Iosup, “An Analysis of Online
Match-Based Games”, International Workshop on Massively Multiuser Virtual En-
vironments (MMVE), 2012.

Evaluating the Performance of CPU-Based Graph-Processing Systems (Chap-
ter 3) To address research question RQ-2 about how well CPU-based graph-processing
systems perform, we propose an empirical method to address the challenges of bench-
marking graph-processing systems, and we use this method to evaluate six CPU-based
graph-processing systems. This work has been extended to Graphalytics, which is a de-
veloping project for benchmarking graph-processing systems in which researchers from
both academia (TU Delft, VU Amsterdam, UvA Amsterdam, UPC Barcelona, and Geor-
gia Tech) and industry (Oracle Labs, Intel Labs, IBM, and Neo4j) are involved. This
chapter is based on the following work:

• Yong Guo, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella, and
Theodore L. Willke, “Benchmarking Graph-Processing Platforms: A Vision”,
ACM/SPEC international conference on Performance engineering (ICPE), 2014.

• Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup, Claudio
Martella, and Theodore L. Willke, “How Well do Graph-Processing Platforms Per-
form? An Empirical Performance Evaluation and Analysis”, IEEE International
Parallel & Distributed Processing Symposium (IPDPS), 2014.

Evaluating the Performance of GPU-Enabled Graph-Processing Systems (Chap-
ter 4) To address research question RQ-3 about how well GPU-enabled graph-processing
systems perform, we adapt and extend our empirical method of Chapter 3, and we con-
duct a comparative performance study of three GPU-enabled graph-processing systems.
This chapter is based on the following work:

• Yong Guo, Ana Lucia Varbanescu, Alexandru Iosup, and Dick Epema, “An
Empirical Performance Evaluation of GPU-Enabled Graph-Processing Systems”,
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2015.

11

Designing Streaming Graph-Partitioning Policies (Chapter 5) To address research
question RQ-4 about how to design low-overhead graph-partitioning policies for dis-
tributed graph-processing systems, we model the run time of different types of graph-
processing systems, propose a method to identify the run-time-influencing graph charac-
teristics, and design new streaming partitioning policies to minimize the run time of real
world graph-processing systems. This chapter is based on the following work:

• Yong Guo, Sungpack Hong, Hassan Chafi, Alexandru Iosup, and Dick Epema,
“Modeling, Analysis, and Experimental Comparison of Streaming Graph-
Partitioning Policies”, Journal of Parallel and Distributed Computing (JPDC),
http://dx.doi.org/10.1016/j.jpdc.2016.02.003, 2016.

Designing Distributed Heterogeneous Graph-Processing Systems (Chapter 6) To
address research question RQ-5 about how to design a distributed and heterogeneous
graph processing system, we explore the design space of distributed heterogeneous graph-
processing systems and implement three families of such systems that can use both the
CPUs and GPUs of multiple machines. This chapter is based on the following work:

• Yong Guo, Ana Lucia Varbanescu, Dick Epema, and Alexandru Iosup “Design
and Experimental Evaluation of Distributed Heterogeneous Graph-Processing Sys-
tems”, IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2016.

In Chapter 7, we summarize the key findings of this thesis and discuss future research
directions.

12

Chapter 2

Designing the Game Trace Archive:
More Graph Datasets

In this chapter, we design the Game Trace Archive. We propose the Game Trace Format
to facilitate the exchange and ease the usage of game traces. It is a unified format to
cover many different types of game traces and to include complex and detailed gaming
information in each trace. We observe that the relationships between game entities (such
as player, group, item, etc.) are a major part of the online-gaming data. We model the
relationships and game entities as the edges and vertices of graphs, respectively. In the
Game Trace Format, we design a specific part to store different types of relationships in
various online-games. GTA currently offers about 10 traces in a unified format and is
much used by the gaming community and graph analysts. By using traces from GTA, we
have also conducted an analysis of online match-based games in several aspects, including
the influence of the friendship of players in gaming experience.

2.1 Overview

Over the last decade, video and computer gaming have become increasingly popular
branches of the entertainment industry. Understanding the characteristics of games and
OMGNs such as player behavior [129], [26], traffic analysis [16], [77], resource manage-
ment [13], [23], etc., is essential for the design, operation, and tuning of game systems.
However, only a small number of game traces exist; even fewer can be accessed publicly.
As a consequence, previous studies used at most a few traces and no comprehensive com-
parative analysis exists. Moreover, the few available game traces have diverse formats,
which makes it difficult to exchange and use these game traces among game researchers.
To address this situation, in this chapter we propose the Game Trace Archive.

13

14

There are thousands of successful games in the world, which attract a large number of
players. For example, World of Warcraft, one of the most popular Massively Multiplayer
Online Games (MMOGs), and CityVille, a widely spread Facebook game, have each tens
of millions of players. A number of online communities have been constructed by game
operators and third-parties around single games or even entire collections of games. These
communities through the relationships between entities such as players and games, form
Online Meta-Gaming Networks [119]. Tens of millions of players currently participate
in OMGNs, such as Valve’s Steam, XFire, and Sony’s PlayStation Network, to obtain
game-related information (game tutorials, statistic information, etc.) and use non-gaming
functionalities (voice chat, user product sharing, etc.).

We design in this chapter the GTA as a virtual meeting space for the game community,
in particular to exchange and use game traces. Game traces, which can be collected at one
timepoint, several or series of timepoints, or through a continuous period of observation,
contain many types of game-related data about both games and OMGNs. With the GTA,
we propose a unified Game Trace Format (GTF) to store game traces, and provide a
number of tools to analyze and process game traces in GTF format. Our goal is to make
both the game traces and the tools in the GTA publicly available. Mainly because of the
diversity and big size of game traces, there are three main challenges in building the GTA.
Firstly, game traces can be collected from many sources. They can focus on any of the
multiple levels of the operation of gaming systems, from OMGNs to single game traces,
from players to player relationships, and to packets transferred between the players and
the game servers. The trace content at different levels is significantly different; moreover,
even at the same level the traces may be very different. Secondly, the content of each
trace can be complex. Traces may include many kinds of relationships between the game
entities (players, guilds, etc.) and detailed information of entities (player name, player
date of birth, in-game and meta-game information, etc.). Thirdly, it is difficult to process
the large-scale and complex game traces, and to choose from tens of or hundreds of game
traces depending on specific scenarios.

This chapter is further motivated by our ongoing project @larGe, which aims at de-
signing new systems that support gaming at large-scale. Trace archives support several
other computing areas including the Parallel Workloads Archive (PWA) [132] for the par-
allel systems, the Grid Workloads Archive (GWA) [67] for the grid systems, etc. How-
ever, non of these previous archives can include the complex game traces we target with
the GTA. Our research is the first work in establishing a comprehensive Game Trace
Archive to benefit gaming researchers and practitioners. The main content of this
chapter is structured as follows:

1. We synthesize the requirements for building an archive in the gaming domain (Sec-
tion 2.2).

15

2. We design the Game Trace Archive, including a unified format and a toolbox to
collect and share game and OMGN traces (Section 2.3).

3. We conduct a comparative analysis using many real game traces (Section 2.4).

2.2 Requirements for a Game Trace Archive

Starting from the three main challenges we mentioned in the introduction, in this section
we identify five main requirements to build an archive for game traces. Although these
requirements are similar to those of archives in other areas, our ambitious goal of building
a single format for all game data makes it challenging to achieve these requirements.

Requirement 1: Trace collecting. To improve game trace readability and facilitate
game trace exchange, a unified game trace format should be provided to collect game
traces from diverse sources. Firstly, the game trace format must be able to include many
types of game information. Secondly, formats already exist for specific game information;
for example, packets sent between game servers and clients. The unified game trace
format needs to use these other formats. Finally, due to the rapid evolution of the gaming
industry, many new games and game traces may emerge. The format should be extensible
to collect traces of future games, while not affecting the usage of old game traces that
have already been stored in the archive.

Requirement 2: Trace converting and anonymizing. The raw content of game
traces is complex. However, a small part of the content may not be game-related, because
of where the game traces are collected. For example, when crawling OMGN traces from
their websites, advertisement information in each website may also be collected into the
trace. Thus, during the procedure of converting game traces to the unified game trace
format, this useless content should be filtered out. Another important issue in converting
traces is to provide a privacy guarantee. Many studies [100], [111] have shown that just
anonymizing user names is not sufficient to ensure privacy.

Requirement 3: Trace processing. The archive should provide a toolbox to process
the converted game traces and generate reports including commonly used characteristics
of game traces (e.g., trace size, the number of information items). Furthermore, the tool-
box could also be used by archive users to build comprehensive analysis tools.

Requirement 4: Trace sharing. The game traces and the trace processing toolbox
must be shared publicly. The archive users may face the problem of selecting proper traces
according to their own requirements, especially when the archive expands to store tens of
or hundreds of traces. A trace-selection mechanism is needed to address this problem.
Allowing archive users to rank and comment on the traces would be a good component in
the selection mechanism.

Requirement 5: Community building. The main goal of building a game trace

16

Figure 2.1: The design of the Game Trace Archive.

archive is to establish a virtual meeting space for game researchers. Besides the exchange
of game traces, a list of research, projects, people, and applications of the archive should
be maintained to facilitate further communication of game community.

2.3 The Game Trace Archive

In this section, we introduce the Game Trace Archive. We first discuss the design of the
GTA and then describe the design of the Game Trace Format (GTF).

2.3.1 The Design of the Game Trace Archive

Figure 2.1 illustrates the overall design of the Game Trace Archive, including the GTA
members and how the game traces been processed in the GTA. The circles in Figure 2.1
represent the five requirements we formulated in Section 2.2.

We envision three main roles for the GTA members. The contributor, who is the
legal owner of game traces, offers their traces to the GTA and allows public access to
the traces. The GTA Admin helps contributors to add and convert game traces to the
GTA, and manage traces processing and sharing. Our game research team may act as the
GTA Admin. The user accesses the archived game traces, uses the processing toolbox,
and obtains the relevant research information through the GTA. Most users may be game
researchers and practitioners, but we believe that people in other areas (e.g., biologists,
economists, social network researchers) can also benefit from the GTA.

In the design of the GTA, the Data Collecting module is for collecting game traces
from multiple sources: contributors, publicly shared game data repositories, game web-
sites, etc. These game traces have their own formats and some of them may include
sensitive information. Firstly, we store these traces in a raw information dataset without
additional processing. Then, we map the raw content to the unified GTF (for requirement

17

Figure 2.2: The structure of the Game Trace Format.

1).
The Data Converting and Anonymizing module is responsible for converting the game

traces from their own formats to the unified GTF, while anonymizing the sensitive infor-
mation (for requirement 2). The anonymization process, which is a topic of research in
itself [100], [111], is outside the scope of this work. The map from the original informa-
tion and the anonymized information will not be distributed, only the corresponding trace
contributor has the authority to read it.

In the Data Processing module, a toolbox is provided for comprehensive trace analy-
sis: overview information, such as trace size, period, the number of relationships, and the
number of players; in-game characteristics, such as active playing time, average session
duration, and the number of played games; relationship graph metrics, such as diameter,
link diversity, clustering coefficient. The basic tools in the toolbox can be used to build
other processing tools and can also be used to process large scale graphs in other areas,
such as social network and viral marketing (for requirement 3).

Two modules are designed for trace sharing (for requirement 4). The Game Trace
Reporting module receives the trace analysis results from Data Processing module and
formulate them into more visible reports. The Game Trace Ranking module considers
both the overview information from Data Processing module and feedback from trace
users to rank the game traces. The Game Trace Reporting and Ranking modules help the
GTA users to select a game trace based on a quick knowledge of the basic game trace
characteristics.

The Feedback Interface is for supporting trace sharing and community building (for
requirements 4 and 5). It is the interface for users to submit their feedback after using
game traces in the archive. There are four types of feedback: rank of traces, comment on
traces, updated or newly designed tools for traces, and research information (e.g., research
direction, project, applications for traces). For each game trace in the GTA, we maintain
a list of research information derived from feedback. Through these lists, users can know
the game community better and users in similar research directions may establish further
communication.

18

Table 2.1: Format for basic edge information.

ID Column Description

1 RowID Int. A count field. The lines in this file should be sorted by ascending RowID.

2 SrcType Int. The type of source node, including player, community, team, faction,
guild, etc. Each node type has a unique integer number assigned to it, the
correspondence of type and number can be found in meta-information Format
for node type. Source node: the starting node of directed edge. For undirected
edge, it is the node appearing first in the raw data of the edge.

3 SrcID Int. ID of source node. To protect the source node privacy, their names are
anonymized by assigning each unique source node a unique ID.

4 DstType Int. The type of destination node, including player, community, team, fac-
tion, guild, etc. Each node type has a unique integer number assigned to it,
the correspondence of type and number can be found in meta-information
Format for node type. Destination node: the ending node of directed edge.
For undirected edge, it is the node appearing last in the raw data of the edge.

5 DstID Int. ID of destionation node. To protect the destination node privacy, their
names are anonymized by assigning each unique destination node a unique
ID.

6 EdgeType Int. The type of edge between source node and destination node, indicating
the relationship between source node and destination node. Each type is rep-
resented by a unique integer number, the correspondence of type and number
can be found in meta-information Format for edge type.

2.3.2 The Design of the Game Trace Format

We propose the Game Trace Format to facilitate the exchange and ease the usage of game
traces. It is a unified format to cover many different types of game traces and to include
complex and detailed gaming information in each trace. In this subsection, we introduce
the main elements of the design of the GTF.

Figure 2.2 shows the structure of the Game Trace Format. Briefly, the GTF consists of
three datasets: the Relationship Graph Dataset, the Node Dataset, and the Other Game-
related Dataset. These datasets are responsible for storing different kinds of content in
game traces respectively.

Relationship Graph Dataset

From our observation, in many game traces the relationships (e.g., play with, send mes-
sage to, member of) between many kinds of game entities (e.g., player, group, game in
OMGN, genre in OMGN) are significant for the operation of these games and OMGNs.
Thus, we model these relationships as edges in a graph where nodes are game entities. We
include in the GTF the Relationship Graph Dataset to include the relationships presented
in game traces. The Relationship Graph Dataset has three sub-datasets: with basic edge

19

Table 2.2: Format for the fixed part in detailed edge information.

ID Column Description

1 RowID Int. Same to RowID in the basic edge information.

2 TimeStamp UnixTimeStamp, in millisecond. The beginning time of the recorded event.
Can be Null.

3 EdgeLifetime Float, in millisecond. Duration of the edge exsiting. Can be Null.

4 SrcScore String. Source node payoff. The meaning of SrcScore can be found in meta-
information Format for edge type. Can be Null.

5 DstScore String. Destination node payoff. The meaning of DstScore can be found in
meta-information Format for edge type. Can be Null.

6 ExtEdgePath String. The path set to access the extended part of detailed edge information.

Table 2.3: Format for edge type in meta-information.

ID Column Description

1 EdgeType Int. The integer number assigned to edge type. The lines in this file should be
sorted by ascending EdgeType.

2 EdgeDirectivity String. Directed or Undirected edge.

3 EdgeTypeTerm String. A short term describing edge type.

4 EdgeTypeDef String. A detailed definition or description of edge type.

5 SrcScoreDef String. The meaning of SrcScore.

6 DstScoreDef String. The meaning of DstScore.

information, with detailed edge information, and with meta-information.

The basic edge information (Table 2.1) includes the essential or must-have elements
for relationships (e.g., edge/node type, edge/node identifier). By using different edge
types and node types, various relationships in game traces can be presented in our format.

To store other diverse edge-related information, we use the detailed edge information
sub-dataset, which includes two parts, the fixed part and the extended part. The fixed part
(Table 2.2) stores typical attributes of edges (e.g., timestamp, edgelifetime). The extended
part stores extended edge attributes that are not common for all relationships. Since these
extended edge attributes differ per trace, there is no exact format for the extended part.
For each attribute, we use one column to store its value. The design of extended part
makes it possible to cover new types of edge-related information.

The meta-information includes the overview of the Relationship Graph Dataset and
the definitions of all the edge (Table 2.3) and node types (Table 2.4).

20

Table 2.4: Format for node type in meta-information.

ID Column Description

1 NodeType Int. The integer number assigned to node type. The lines in this file should be
sorted by ascending NodeType.

2 NodeTypeTerm String. A short term describing node type.

3 NodeTypeDef String. A detailed definition or description of node type.

Table 2.5: Format for the fixed static part in Node Dataset.

ID Column Description

1 RowID Int. A count field. The lines in this file should be sorted by ascending RowID.

2 NodeID Int. The integer number assigned to node.

3 TypStatic1 String. Typical static attribute of node.

4 TypStatic2 String. Another typical static attribute of node.

... ... String. Another typical static attribute of node.

N+2 TypStaticN String. The Nth typical static attribute of node.

N+3 ExtStaPath String. The path set to access the extended static part.

N+4 TypDynPath String. The path set to access the fixed dynamic part.

N+5 ExtDynPath String. The path set to access the extended dynamic part.

Node Dataset

The Node Dataset is designed to include detailed node information. Since the information
of different types of nodes can be diverse, to store this information in a unified format, we
categorize the information first.

We divide the complex node information into static (keep constant with time, e.g.,
player gender, date of birth) and dynamic information (change with time, e.g., player
rank, level).Each type of node has its own node sub-dataset. For each type of node, we
further divide their static and dynamic information into typical static information, typical
dynamic information, extended static information, and extended dynamic information.

These four kinds of information are stored in fixed static part (Table 2.5), fixed dy-
namic part (Table 2.6), extended static part, and extended dynamic part, respectively in
the node sub-dataset. We use the same method (as we do for the extended part in detailed
edge information, Section 2.3.2) to store extended static and dynamic attributes. Through
its design, specifically through its extended static and extended dynamic parts, our Node
Dataset is the first to store the information of many kinds of nodes in a unified format.

21

Table 2.6: Format for the fixed dynamic part in Node Dataset.

ID Column Description

1 RowID Int. A count field. The lines in this file should be sorted by ascending RowID.

2 NodeID Int. The integer number assigned to node.

3 TimeStamp UnixTimeStamp, in millisecond. The timestamp for dynamic attribute value.

4 TypDyn1 String. Typical dynamic attribute of node.

5 TypDyn2 String. Another typical dynamic attribute of node.

... ... String. Another typical dynamic attribute of node.

N+3 TypDynN String. The Nth typical dynamic attribute of node.

Other Game-Related Dataset

For more traditional gaming data, such as packets between game clients and servers,
match replays, player click streams, etc., we use when possible the de-facto standard
formats and store the data in the Other Game-related Dataset. For example, for match
replays, we keep their own formats derived from games. The formatted replays, such as
StarCraft replays, are used by Weber et al. [140] and Hsieh et al. [63] to study player
in-game behavior.

Moreover, we provide detailed introduction files to guide the archive users how to pro-
cess the formats. Meta-information is also provided, to link the game-related information
to its corresponding nodes; for example, the links between players and the packets they
have sent.

2.4 Analysis of Traces from the Game Trace Archive

In this section, we present and analyze the game traces collected by the GTA. Using our
GTA toolbox, we conduct an analysis that focus on four main aspects.

Table 2.7 summarizes the nine game traces currently formatted in the GTF. These
traces have been collected from five types of games or OMGNs, including board games,
card games, RTS games, MMORPG games, and OMGNs. Our GTA can cover game
traces collected by ourselves. The KGS and FICS traces include a large number of
matches in two popular board games, Go, and chess. The BBO trace is collected from

1http://www.gokgs.com/
2http://www.freechess.org/
3http://www.bridgebase.com/
4http://beta.xfire.com/
5http://www.dota-league.com/
6http://www.dotalicious-gaming.com/
7http://replay.garena.com

22

Table 2.7: Summary of game traces in the GTA.

Trace Period
Size
(GB)

Nodes
(K)

Links
(M)

Genre

KGS1 2000/02-2009/03 2 832 27.4 board

FICS2 1997/11-2011/09 62 362 142.6 board

BBO3 2009/11-2009/12 2 206 13.9 card

XFire4 2008/05-2011/12 58 7,734 34.7 OMGN

Dota-League5 2006/07-2011/03 23 61 3.7 RTS

DotAlicious6 2010/04-2012/02 1 64 0.6 RTS

Dota Garena7 2009/09-2010/05 5.2 310 0.1 RTS

WoWAH [82] 2006/01-2009/10 1 91 N/A MMORPG

RS [99] 2007/08-2008/02 1 0.1 N/A MMORPG

one of the largest bridge sites in the world, where people can play bridge online for free.
The dataset of the OMGN XFire contains the information of thousands of games and
millions of players, as well as complex relationships between those games and players.
Defense of the Ancients (DotA) is mod build on the RTS game Warcraft III. A match of
DotA is played by two competing teams, allowing at most 5 players in one team. The
main content in the Dota-League, DotAlicious, and DotA Garena traces is plenty of DotA
matches played on three different DotA playing platforms. We are also able to include
in the GTA existing game traces. WoWAH is a public dataset consists of online session
records and attributes of World of Warcraft avatars collected from game servers in Tai-
wan. RS collects the online player counts of more than 100 servers of the MMORPG
game RuneScape. The size in Table 2.7 is the raw data size of each trace. The node may
be player, avatar, or game server, corresponding to each trace. In XFire, we use the link as
friendship. For the other traces, we define the link as playing in a same match. With these
game traces, we can conduct a comparative analysis of games, inter- and intra-genre.

2.4.1 Analysis of Workload Characteristics

Provisioning resources is an essential task for online gaming operators. Using the least
possible resources to support the workloads generated by players brings maximum profits.
However, inadequate provisioning may result in idle resources or the departure of players.
In this subsection, we discuss five characteristics of the workloads of online games.

23

Sun Mon Tue Wed Thu Fri Sat Sun
0

0.5

1

1.5

2

2.5

Week

N
o
rm

a
liz

e
d
 p

la
y
e
r

c
o
u
n
t

XFire Dota−League DotAlicious WoWAH

Sun Mon Tue Wed Thu Fri Sat Sun
0

0.5

1

1.5

2

2.5

Week

N
o

rm
a

liz
e

d
 p

la
y
e

r
c
o

u
n

t

KGS FICS BBO RS

Figure 2.3: Weekly pattern of normalized online player count.

Weekly Pattern of Online Player Count

The online player count is an important metric of the usage and workload of game severs.
In this subsection, we study how the online player count fluctuates during the week.

We define the normalized online player count at any moment of time, as the ratio
between the player count at that moment and the trace-long average player count. Figure
2.3 illustrates the normalized online player count for eight game traces. The ninth trace
(Dota Garena) currently included in the GTA does not have player count information
over time. The figure shows that, for each game trace, the online player counts have
obvious diurnal patterns; the peak and bottom counts occur at nearly the same time for
each day. However, the occurring time of both peak and bottom differ per game. For
example, for chess the peak occurs during the day, whereas midnight is the busiest period
for all DotA platforms. Un-expectedly and unlike the workloads of web servers, for our
traces the player counts do not differ significantly between week days and week ends.
Moreover, for DotAlicious the player presence is even lower during week ends. Due to
the scheduled weekly maintenance, there is an outage period on Thursday morning in
WoWAH; the normalized player count drop to 0, see Figure 2.3 (left).

Lee et al. [82] investigate the daily, weekly, and monthly patterns of avatar counts
in World of Warcraft. Chambers et al. [13] study the online player count over a 4-week
period in FPS, casual, and MMORPG games. Both of their results show a similar weekly
pattern as our result, but for fewer games.

Daily Active Users

Daily Active Users (DAU) is another important metric of the workloads of online games.
On understanding the evolution of DAU, game operators can deploy game resources better
in long term.

Figure 2.4 shows the evolution of DAU for four game traces: DotAlicious, KGS,

24

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

Day

D
a

ily
 A

c
ti
v
e

 U
s
e

rs

(a) DotAlicious

0 500 1000 1500 2000 2500 3000 3500
0

2000

4000

6000

8000

10000

Day

D
a
ily

 A
c
ti
v
e
 U

s
e
rs

(b) KGS

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

Day

D
a
ily

 A
c
ti
v
e
 U

s
e
rs

(c) WoWAH

0 200 400 600 800
0

1000

2000

3000

4000

5000

6000

7000

8000

Day

D
a
ily

 A
c
ti
v
e
 U

s
e
rs

(d) Dota-League

Figure 2.4: Daily Active Users.

WoWAH, and Dota-League. We collected the datasets of DotAlicious and KGS from
their launch, but the WoWAH and Dota-League datasets start at the date later than their
setup. Both DotAlicious and KGS attracted more and more player significantly from their
establishment. By contrast, the DAU of Dota-League dropped gradually until the end of
the trace, which might be one of the reasons why the Dota-League platform shut down in
November, 2011. In WoWAH, the release of new game contents or expansions can result
in surges of the DAU. For example, on the day of around 450, the beginning of April,
2007, when an important expansion of WoW - The Burning Crusade was released(in
Taiwan). However, the previous study [33] on another MMORPG EVE Online shows
that updates slightly impact player growth.

Match Count per Player

Figure 2.5 depicts the match count (total number of matches played) per player of Dota-
League, KGS, and FICS. The Cumulative Distribution Function (CDF) is depicted against

25

10
0

10
1

10
2

10
3

10
4

0

25

50

75

100
C

D
F

[%
]

Match count

Dota-League

10
0

10
1

10
2

10
3

10
4
10

0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

p
la

y
e

rs
(P

D
F

)

CDF

PDF

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

Match count

C
D

F
 [

%
]

Dota−League

KGS

FICS

Figure 2.5: Match count per player for Dota-League, KGS, and FICS.

the left vertical axis. The Probability Distribution Function (PDF) is depicted against the
right axis and only for the Dota-League dataset in Figure 2.5 (left). The right vertical axis
and the horizontal axis are log-scale. Since there is a number of computer players (bots)
existing in KGS and FICS servers, we filter out the top 0.5% “players” in terms of their
match count, assuming these are all bots.

Although the number of board game players is larger, a significant portion of them
play only a few matches: about 25% of KGS players and about 15% of FICS players
participated in only one match. However, this value is much lower for Dota-League (3%).
The match count per player of match-based games is heterogeneous. The median values
of the match count in Dota-League, KGS, and FICS are 91, 4, and 15, while the 99.5%
quartiles are 1,945, 1,908, and 23,396, respectively. Nearly half of the online board game
players participate in less than 15 matches.

The match count per player follows a long tail distribution, where the maximum value
can be over a hundred times larger than the median value. We fit the match count per
player against the power-law, log-normal, weibull, exponential, normal, and gamma dis-
tributions using the maximum likelihood estimation technique. The best-fitting distribu-
tion has the smallest Akaike information criterion with correction (AICc) [8]. The match
count per player can be best fitted, for KGS and FICS, using the power-law distribution.
For Dota-League, the log-normal distribution is the best fit.

Inter-Arrival Time Distribution

We define the (match) inter-arrival time as the duration between the start times of two
consecutive matches of a player. The inter-arrival times of a player represent his frequency
of playing matches. Figure 2.6 shows the CDF of inter-arrival times across all the players
of DotAlicious, KGS, and FICS. Over 80% of the inter-arrival times are less than one
day and over 95% of the inter-arrival times are less than one week in these datasets. This

26

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

20

40

60

80

100

Inter−arrival time [minutes]

C
D

F
 [

%
]

DotAlicious

KGS

FICS

1 week

2 hours

1 day

Figure 2.6: CDF of inter-arrival time.

DE RS RO SE FR PL BG RU US GR
0

5

10

15

20

25

30

P
e
rc

e
n
ta

g
e
 o

f
c
o
n
n
e
c
ti
o
n
s
 [
%

]

(a) DotAlicious

US DE FR RU GB CA NL IT SE JP
0

5

10

15

20

25

P
e
rc

e
n
ta

g
e
 o

f
p
la

y
e
rs

 [
%

]

(b) DGS

Figure 2.7: Geographic distribution of connections and players.

indicates that a large percentage of players comes back to play shortly after their last
match; this is similar to MMORPG EVE Online [13]. The distribution of the inter-arrival
times peaks at 47 minutes. Given the average duration of DotA matches (41 minutes), it
means players tend to play two consecutive DotA matches. The inter-arrival time of DotA
matches is longer than for World of Warcraft (median 20 minutes) [154]. As players are
very likely to be continuously playing in successive matches, it could be beneficial to
build a highly-efficient P2P-based MMVE using the DotA players’ own computers as
servers.

Geographic Distribution of Connections and Players

International use can be a metric to measure the success of online games. Many of the
popular games, such as World of Warcraft, Starcraft, etc., are catering to subscribers from
all over the world. One of the problems in serving players from different countries is how

27

to deploy geographically distributed game servers while keeping a reasonable quality of
experience for all players (see [99] and references within). Investigating the geographic
distribution of game workloads can support addressing this problem.

For each match in DotAlicious, the countries where the players connect from are
recorded. We count connections from each country, over all matches. Figure 2.7 shows
the geographic distribution of connections in DotAlicious and that of the players of DGS1.
The workloads of games are not equally distributed, since the top 10 countries account for
a majority of the connections or the players. For DotAlicious, probably because nearly
half of the European game servers are located in Germany, there are significantly more
connections from Germany than from other countries. For both of these games, the top
10 countries are located in North America and Europe, which should therefore be key
areas in resource deployment. For comparison, Feng et al. [34] analyzed the distribution
of online FPS players, and also found that most players are located in North America,
Europe, and Asia.

2.4.2 Analysis of Win Ratio

A big skill gap between players in a match can result in a disappointing experience. The
more skillful players may lack challenge; the less skillful players may give up. Most of
the match-based games have implemented a rating system to help players recognize their
skill level and find proper opponents. The quality of rating system affects an elementary
metric for match-based game players, the win ratio, defined as the percentage of wins of
the total of wins and losses. In this subsection, we study the distribution of win ratios and
the correlations between winning and several other characteristics, including the amount
of played matches, friendship, and current rating systems.

The Distribution of Win Ratios

First of all, we investigate the overview of win ratios of players. Figure 2.8 depicts the
distributions of the win ratios for two board game traces and three DotA traces. To im-
prove the accuracy of the analysis, players who play less than 10 matches are filtered
out. The win ratio distributions of KGS, DotAlicious, and Dota-League almost follow
the Gaussian distribution, with the average win ratios shift around 0.5. There are more
players whose win ratios are less than 0.5 in FICS, which indicates chess beginners may
find proper opponents easier. For Dota Garena, larger fraction of players own higher win
ratios (more than 0.5) compared with that of the other two DotA platforms. The reason
might be that matches collected from Dota Garena are uploaded by players, who may tend
to show their victories.

1Data from http://www.dragongoserver.net/statistics.php?stats=1, 2012-06-27

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Win ratio

P
e

rc
e

n
ta

g
e

 o
f

p
la

y
e

rs

(a) KGS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Win ratio

P
e

rc
e

n
ta

g
e

 o
f

p
la

y
e

rs

(b) FICS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Win ratio

P
e

rc
e

n
ta

g
e

 o
f

p
la

y
e

rs

(c) Dota-League

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

Win ratio

P
e

rc
e

n
ta

g
e

 o
f

p
la

y
e

rs

(d) DotAlicious

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Win ratio

P
e

rc
e

n
ta

g
e

 o
f

p
la

y
e

rs

(e) DotA Garena

Figure 2.8: The distribution of player win ratios.

Win Ratio vs. Match Count

Intuitively, playing more matches should lead to better gaming skills and thus higher win
ratios. Figure 2.9 shows the average win ratio versus the match count for Dota-League,
KGS, and FICS. We normalize the match count based on the maximum values observed
for each game. We then slice the normalized match count range into 100 bins and calculate
the average win ratio for each bin.

For beginning players (range [0.0-0.1] in the horizontal axis), the evolution trends of
the win ratios of KGS and FICS are opposite. The reason may be that, when registering in
these games, players are suggested to fill in their skill levels. However, the default value
of KGS is low, while that of FICS is a median value. Thus, beginners in KGS whose
actual skill level may be higher, will play with less skillful players and gain a higher win
ratio, and vice-versa for FICS. Beyond this starting zone, the win ratio fluctuates around
0.5. Thus, there is no direct correlation between win ratio and match count (with the
coefficient of determination R2 = 0.1108, p-value P = 0.3342). For advanced players
(range [0.7-1.0]), the fluctuation is larger, which might be caused by the different types
of players. People with longer player lifetime may be professional players or hardcore
players with varying skill levels.

29

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.40

0.45

0.50

0.55

0.60

Fraction of matches played

A
v
e

ra
g

e
 w

in
 r

a
ti
o

Dota−League KGS FICS

Figure 2.9: Average win ratio over fraction of matches played.

[0.2−0.4] [0.4−0.6] [0.6−0.8]
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

WRa ranges

F
ra

ct
io

n
o

r
w

in
ra

tio

Benefiting players Average WRa Average WRf Friend matches

Dota-League

[0.2−0.4] [0.4−0.6] [0.6−0.8]
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

WRa ranges

F
ra

c
ti

o
n

o
r

w
in

ra
ti

o

DotAlicious

Figure 2.10: Performance of players for different win ratio ranges.

Win Ratio vs. Friendship

In many types of competitions, team-spirit and cooperation with friends have great effect
on the success. In the gaming field, we can also find friendship and cooperation between
players in many different types of games, for example in online bridge [5]. In this sub-
section, we analyze the impact of friendship on win ratios in DotA.

We find two kinds of relationships between players in Dota-League and DotAlicious.
In Dota-League, players have a friend list called “buddy link”, whereas in DotAlicious
players can be a member of a clan with maximum 8 members. We consider both the
buddy link and the clan membership as friendship. Figure 2.10 illustrates the performance
of players, for 3 equally sized win ratio ranges. In this figure, friend matches refer to the
matches players play with their friends in the same team. WRa is the win ratio of all
matches; WRf is the win ratio of matches played with a friend. Benefiting players are
players whose WRf is higher than their WRa. Since the fraction of players whose WRa
is less than 0.2 or more than 0.8 is very small, we eliminate these players as outliers and

30

focus on the WRa range from 0.2 to 0.8. The vertical axis is used to represent the fraction
of friend matches, the fraction of benefiting players, average WRa and average WRf.

According to the “Friend matches” bars, more than half of the players play individ-
ually; also, players in Dota-League play less games with friends than players in DotA-
licious. The reason is probably that the Dota-League matchmaking assigns players ran-
domly, without guarantee to be in the same team with a friend. With the increase of
win ratio, more players perform better in matches with their friends and improve their
win ratios (“Benefiting players” bars). On average (bars “Average WRa” and “Average
WRf”), the players with higher WRa (ranges [0.4-0.6] and [0.6-0.8]) win more matches
when they play with friends in a team. However, the increase of the average win ratio
is small (under 0.05). Surprisingly, the players with lower WRa (range [0.2-0.4]) lose
more matches when they cooperate with friends. To some extent, it implies that DotA is
not a beginner-friendly game: beginners can’t help each other to higher win ratios. For
comparison, Ducheneaut et al. [27] found that cooperation helps players to level up in
World of Warcraft; Mason and Clauset [94] found that in Halo: Reach, teams composed
of friends, on average, win more games than teams composed of strangers.

Winning Prediction of Current Rating Systems

As we mentioned at the beginning of this section, game operators may design or imple-
ment their own rating systems. In this subsection, we discuss the existing rating systems
in DGS and FICS, and analyze the winning probability (WP) of a player in a match
according to the skill level given by the rating systems. The DGS and FICS servers im-
plement the EGF1 and Glicko2 systems, which are both based on the Elo3 rating system,
to measure the skill of players, respectively.

We define the winning probability for a specific skill gap as the fraction, from the
matches between players whose skill rating differs by the gap, of the matches where the
winner is the player with higher skill rating, based on the rating before the match. In
general, if the skill gap is less than 100 in DGS or less than 200 in FICS, the skill levels
of the two players are very similar. We logarithmically assign the skill gap value into 10
bins based on the maximum skill gaps of DGS and FICS (3,299 and 2,487, respectively).
Table 2.8 presents the change of winning probability from the lowest to the highest skill
gap. After filtering out abnormal matches (such as draws, matches with handicap4 in
DGS, etc.), we obtain 40,369 cleaned DGS matches and 136,104,236 FICS matches.

When the skill gap is small (under 100), the winning probability of the higher skill
player is around the expected value of 0.5. As the skill gap increases, the higher skill

1http://senseis.xmp.net/?FIDETitlesAndEGFGoRatings
2http://senseis.xmp.net/?GlickoRating
3http://senseis.xmp.net/?EloRating
4http://senseis.xmp.net/?Handicap

31

Table 2.8: The winning probability by skill gaps.

DGS FICS
Gap # Matches % WP Gap # Matches % WP

2 389 1.0 0.499 2 1,675,560 1.2 0.502

5 588 1.5 0.524 4 1,821,258 1.3 0.505

11 1,300 3.2 0.518 10 5,094,868 3.7 0.509

25 2,970 7.4 0.484 22 10,019,375 7.4 0.521

57 6,283 15.6 0.534 49 20,980,110 15.4 0.545

129 11,950 29.6 0.550 108 35,523,732 26.1 0.597

290 9,130 22.6 0.617 238 38,386,954 28.2 0.696

652 5,349 13.3 0.710 520 19,009,291 14.0 0.838

1,467 1,962 4.9 0.787 1,137 3,365,828 2.5 0.932

3,299 448 1.1 0.821 2,487 227,260 0.2 0.994

Total 40,369 100.0 0.591 Total 136,104,236 100.0 0.648

players have higher probability to win matches. When the skill gap is high enough, there
is still a probability for the lower skill player to win the match, especially in DGS. The
reason may be that a number of players play casually in online board games, and the
amount of DGS matches is not as large as that of FICS. The percentage of matches with
large skill gaps (over 500) is over 16%, which indicates that players in those matches may
not have a good gaming experience and that the board game operators should improve the
quality of their matchmaking systems.

2.4.3 Analysis of Player Behavior and Evolution

Due to the large variety of available games, players have many choices. The selection
can be influenced by both the content of games and the quality of the offered service.
Retaining players with longer player lifetime (from the first time till the last time a player
has been seen) can yield more revenue for game companies. In this subsection, we study
how many matches played by departure players over their player lifetimes and analyze
how the player lifetime interacts with the number of in-game friends, and in-game play
strategy.

Normalized Match Count of Departure Players

In this subsection, we analyze the player departure behavior in Go, chess, and DotA.
We assume that a departure player is a people who did not play any match in the last
month of the game trace. We count the number of played matches every week for each

32

0 20 40 60 80 100
0

0.5

1

1.5

2

Percentage of player lifetime [%]

N
o

rm
a

liz
e

d
 m

a
tc

h
 c

o
u

n
t

KGS FICS Dota−League DotAlicious

Figure 2.11: Normalized match count over player lifetime.

departure player. After that, we map the weekly match count into the percentage of player
lifetime. Next, we calculate the average match count of all players at the same percentage
of their lifetime. Finally, as shown in Figure 2.11, we plot the normalized match count as
the ratio between the match count at one percentage and the average match count of the
whole player lifetime. We can find that departure players play mostly at the beginning,
and then, they play less matches gradually towards the ends, regardless of the type of
games and platforms.

Similarly, Feng et al. [33] shows the EVE Online players spend less time on the game
before quitting, with shorter session time and longer intersession time. Tarng et al. [131]
try to predict ShenZhou Online gamer’s departure on their average daily playtime and
playing density.

Player Lifetime and Match Count vs. Number of Friends

We have discussed the influence of friendship on the performance of players in matches
(Section 2.4.2). We now study how the friendship affects player lifetime in DotA-League.

Figure 2.12 illustrates that players with more friends generally stick to the game longer
(left vertical axis) and play more matches (right vertical axis). The friendship does have
a strong correlation with player lifetime (R2 = 0.8412, P < 0.01). Thus, it would be
a good idea for the game operators to maintain players by reminding players to make
more friends and by providing convenient services to support social interaction. Unlike
Facebook, where users have on average of about 130 friends, most players here have at
most 60 friends.

Player Lifetime vs. Play Strategy

Predicting player lifetime is an important task for a game company, because if a company
can predict how long the player’s game lifetime will be, it can both leverage some methods

33

0 10 20 30 40 50 60
0

40

80

120

160

Friends

P
la

y
e
r

lif
e
ti
m

e
 [
w

e
e
k
s
]

0 10 20 30 40 50 60
0

1500

3000

4500

6000

M
a
tc

h
 c

o
u
n
t

Player lifetime Match count

Figure 2.12: Number of friends with player lifetime and match count.

0 20 40 60 80
20

25

30

35

40

Player lifetime [weeks]

%
 o

f
m

a
tc

h
e
s
 u

s
in

g
 t
h
e
 t
o
p
 n

 s
tr

a
te

g
ie

s

0 20 40 60 80
0

20

40

60

80

#
 o

f
s
tr

a
te

g
ie

s
 u

s
e
d

The top n stragegies

Strategies used

(a) DotAlicious

0 100 200 300 400 500 600 700
75

80

85

90

95

Player lifetime [weeks]

%
 o

f
m

a
tc

h
e
s
 u

s
in

g
 t
h
e
 t
o
p
 n

 s
tr

a
te

g
ie

s

0 100 200 300 400 500 600 700
2

4

6

8

10

#
 o

f
s
tr

a
te

g
ie

s
 u

s
e
d

The top n stragegies

Strategies used

(b) FICS

Figure 2.13: The evolution of play strategy with player lifetime.

to prolong player lifetime and better market in-game or side products. Although lifetime
prediction has been researched for the past 5 years, only a small fraction of these studies
have taken into account the players’ in-game behavior.

We study the number of strategies players use in DotAlicious and FICS. In DotAli-
cious, the in-game characters of players are called “heroes”. Different heroes represent
different types of strategies. In FICS, for simplicity, the first move of a player in a match
represents a strategy. There are over 100 available strategies in our DotAlicious dataset
and 20 available strategies in FICS.

Figure 2.13 shows the average number of strategies used by players with different
lifetimes. The horizontal axis shows the lifetime of players, and the percentage of matches
using the top n strategies--by match count--is depicted against the left vertical axis, while
the right vertical axis shows the number of strategies used. The value of n is 3 and 1 in
DotAlicious and FICS, respectively. In general, there is a positive correlation between
player lifetime and the number of used strategies (R2 = 0.8789, P < 0.01): the longer
the player lifetime is, the more strategies he will have used. The top n strategies account

34

Table 2.9: Graph metrics of the largest connected component.

Trace # Comps # Nodes # Edges d (×10−4) D̄

KGS 6,099 819,249 17,884,783 0.53 44

BBO 11 206,333 13,654,906 6.41 132

FICS 2,574 356,244 50,460,185 7.95 283

XFire 198 7,733,276 29,257,283 0.01 8

Dota-League 1 61,171 50,870,316 272 1663

DotAlicious 1 64,083 20,006,143 97.4 624

Dota Garena 1,544 291,706 2,767,594 0.65 19
Comps is the number of connected components in the graph.
Nodes, # Edges, d, and D̄ are the number of nodes, the number of edges, the link
density, and the average degree of the largest connected component, respectively.

for a large majority of matches, which indicates that players are conservative. According
to Figure 2.13, if the amount of available strategies is larger, players may spend more
time in exploring all the strategies. As for the game operators, they may need to provide
(better) awards to encourage players to try new strategies.

2.4.4 Analysis of Gaming Graphs

The relationships between entities in game traces can form gaming graphs. The structure
and evolution of gaming graphs may become essential for game operation. The formatted
Relationship Graph Dataset in the GTA makes it easier to investigate the graph character-
istics of various games. In this subsection, we analyze the gaming graph for seven traces,
except WoWAH and RS, which do not have the graph information. We form the graphs as
follow: for all traces, each node represents a player. Then, for XFire each edge expresses
a player-to-player friendship; for all the other traces, each edge represents a played game
match.

Table 2.9 shows, for each trace, typical graph metrics of the largest connected com-
ponent of the gaming graph. A connected component is a sub-graph in which all pairs of
nodes are reachable. The largest connected component contains almost all the nodes of
the whole graph in each game trace, which means that nearly every player can reach any
other player in the trace. From the link density, all these largest connected components
are not dense. For XFire, the average friend count per user (D̄ in Table 2.9) is much lower
than for Facebook: 8 vs. 130. For the other traces, the relationship counts range from
19 to 1663; we leave for future work a study of the strength and meaning of such game
relationships.

35

2.5 Related Work

In the game community, many researchers have published their work by analyzing their
own game traces. However, the type and number of game traces used in the previous work
are few, and comprehensive comparative experiments are seldom. Most of those research
are based on individual game trace [129], [26], [16], [77]. In [13], the authors study
the characteristics of online games by four game traces in three different game genres.
However, the traces used in this work only cover a small part of the online games and the
analysis of game traces from same game genre is not sufficient.

A number of archives have been build in the other computer science areas. The Inter-
net Traffic Archive (ITA) [20] archives internet network traffic traces for the research of
network characteristics. The Parallel Workloads Archive (PWA) [132] collects workloads
from parallel environments. The Grid Workloads Archive (GWA) [67] is a grid trace
repository and a community center for the grid area. For the peer-to-peer community and
wireless network community, the Peer-to-Peer Trace Archive (P2PTA) [149] and CRAW-
DAD [148] are designed, respectively. These archives are limited to their specific areas,
they can not cover the game traces.

Social network and large-scale graph analysis are popular research topic in recent
years. Large-scale graphs also exist in the gaming area, forming by the game entities
and their relationships. We already store more complex information, such as more types
of nodes and relationships, in our gaming graphs. Many formats have been designed to
enable the exchange of social networks and graphs, but none of them is able to cover the
gaming graphs. The SNAP [121] project is a high efficient library to analyze large scale
networks and graph, however, the format in this project can not be extended to express
multi relationships. The DyNetML [134] is an XML-based format which is extensible to
express abundant social network data. The disadvantage of this format is that plenty of
markups and delimiter tags are needed to store each data item, which consumes more stor-
age space and require more memory in data processing. This disadvantage will become
truly visible when this format is used to store large-scale gaming graphs.

2.6 Summary

We have designed the Game Trace Archive to address the lack of game traces for the game
community. We have proposed a unified Game Trace Format that underlies a generic
game and OMGN data repository. Our format includes the Relationship Graph Dataset,
the Node Dataset, and the Other Game-related Dataset. We have also provided a toolbox
and mechanisms to facilitate trace sharing and community building.

The currently archived traces have shown that the GTA can already store different
types of game traces, including board game, card game, RTS, MMORPG, and OMGN.

36

Our example trace analysis has revealed that the GTA can support comparative analysis of
gaming traces on the workloads of online games, winning of match-based games, player
behavior and evolution, and gaming graph.

Chapter 3

Evaluating the Performance of
CPU-Based Graph Processing Systems

In this chapter, we envision seven challenges and propose an empirical method for eval-
uating graph-processing systems. We define a comprehensive process, and a selection of
representative metrics, datasets, and algorithmic classes. We implement a benchmarking
suite of five classes of algorithms and seven diverse graphs. Our suite reports on basic
(user-lever) performance, resource utilization, scalability, and various overhead. We use
our benchmarking suite to analyze and compare six systems. We gain valuable insights
for each system and present the first comprehensive comparison of graph-processing sys-
tems.

3.1 Overview

Large-scale graphs are increasingly used in a variety of business applications, such as
social applications, online gaming, business intelligence and logistics, and bioinformat-
ics [55, 84]. By analyzing the graph structure and characteristics, analysts are able to
predict the behavior of the customer, and tune and develop new applications and ser-
vices. However, the diversity of the available graphs, of the processing algorithms, and
of the graph-processing platforms currently available to analysts makes the selection of a
platform an important challenge. Although performance studies of individual platforms
exist [25, 92], they have been so far restricted in scope and size. In this chapter, we pro-
pose a step forward: a comprehensive experimental method for analyzing and comparing
graph-processing platforms. We further implement this method as a benchmarking suite
and we apply it on six popular platforms. Our initial target is to provide benchmarking
functionality for Small and Medium Enterprises (SMEs), who have access to clusters of

37

38

a few tens of machines.
For both system developers and graph analysts (system users), a thorough understand-

ing of the performance of these platforms (which we define as the combined hardware,
software, and programming system that is being used to complete a graph processing
task), under different input graphs and for different algorithms, is important—it enables
informed choices, system and application tuning, and best-practices sharing. However,
the execution time, the resource consumption, and other performance and non-functional
characteristics of graph-processing systems depend to a large extent on the dataset, the
algorithm, and the graph-processing platform. Thus, gaining a thorough understanding of
graph-processing performance is impeded by three dimensions of diversity.

Dataset diversity: We are witnessing a significant increase in the availability and col-
lectability of datasets represented as graphs, from road to social networks, and from bioin-
formatics material to citation databases.

Algorithm diversity: A large number of graph algorithms have been implemented to
mine graphs for calculating basic graph metrics [89], for partitioning graphs [11, 24], for
traversing graphs [96, 122, 144], for detecting communities [85, 107], for searching for
important vertices [12, 106], for sampling graphs [22, 78], for predicting graph evolu-
tion [84], etc.

Platform diversity: Many types of platforms are being used for different communities
of developers and analysts. Addressing a variety of functional and non-functional re-
quirements, a large number of processing platforms are becoming available. Neo4j [101],
HyperGraphDB [66], and GraphChi [80] are examples of efficient single-node platforms
with limited scalability. To scale-up, distributed systems with more computing and mem-
ory resources are used to process large-scale graphs, but they can even be less effi-
cient than single-node platforms. For example, generic data processing systems such
as Hadoop [141], YARN [147], Dryad [68], Stratosphere [138], and HaLoop [7] can
scale out on multiple nodes, but may exhibit low performance due to distribution and
overheads. Graph-specific platforms such as Pregel [92], Giraph [43], PEGASUS [71],
GraphLab [87], and Trinity [116] are designed to provide feasible alternatives, but are not
yet thoroughly evaluated for non-trivial algorithms and large datasets.

New performance evaluation and benchmarking suites are needed to respond to the
three sources of diversity, that is, to provide comparative information about different per-
formance metrics of different platforms, through the use of empirical methods and pro-
cesses. However, the state-of-the-art in comparative graph-processing platform evaluation
relies nowadays on Graph500 [48], the de-facto standard for comparing the performance
of the hardware infrastructure related to graph processing. By choosing BFS as the single
representative application and a single class of synthetic datasets, Graph500 has triggered
a race in which winners use heavily optimized, low-level, hardware-specific code [130],
which is rarely found or reproduced by common graph processing deployments and thus

39

rarely reaches SMEs. Moreover, even the few existing platform-centric comparative stud-
ies are usually performed to prove the superiority of a given system over its direct com-
petitors, so they only address a limited set of metrics and do not provide sufficient detail
regarding the causes that lead to performance gaps.

Addressing the lack of a comprehensive evaluation method and set of results for
graph processing platforms, this chapter addresses a key research question: How well
do graph processing platforms perform? To answer this question, we propose an empir-
ical performance-evaluation method for (large-scale) graph-processing platforms. Our
method relies on defining a comprehensive evaluation process, and on selecting rep-
resentative datasets, algorithms, and metrics for evaluating important aspects of graph-
processing platforms—execution time, resource utilization, vertical and horizontal scal-
ability, and overhead. Using this method, we create the equivalent of a benchmarking
suite by selecting and implementing five algorithms and seven datasets from different
application domains.

We implement this benchmarking suite on six popular platforms currently used for
graph processing—Hadoop, YARN, Stratosphere, Giraph, GraphLab, and Neo4j—and
conduct a comprehensive performance study. This demonstrates that our benchmarking
suite can be applied for many existing platforms, and also provides a first and detailed
performance comparison of the six selected platforms. Our approach exceeds previous
performance evaluation and benchmarking studies in both breadth and depth: we im-
plement and measure multiple algorithms, use different types of datasets, and provide a
detailed analysis of the results. Scale-wise, our study aligns well with SMEs cluster sizes
and matches state-of-the-art studies (Section 3.7). Our work also aligns with the goals and
ongoing activity of the SPEC Research Group and its Cloud Working Group1, of which
the author is a member.

Our main contributions are:

1. We propose a method for the comprehensive evaluation of graph processing plat-
forms (Section 3.3), which defines an evaluation process, and addresses multiple
performance aspects such as raw performance, scalability, and resource utilization.
When selecting the algorithms and datasets, the proposed method is equivalent to
a benchmarking suite for graph-processing platforms; we select in this chapter five
algorithms and seven datasets. We discuss the limitations of the coverage and rep-
resentativeness of our comprehensive evaluation (Section 3.6).

2. We demonstrate how our benchmarking suite can be implemented for six different
graph processing platforms (Section 3.4).

1http://research.spec.org/working-groups/rg-cloud-working-group.
html

http://research.spec.org/working-groups/rg-cloud-working-group.html
http://research.spec.org/working-groups/rg-cloud-working-group.html

40

3. We provide a first performance comparison of six graph-processing platforms,
quantifying their strong points and identifying their limitations (Sections 3.5).

3.2 Our Vision for Benchmarking

Benchmarking is a traditional approach to evaluate the performance of systems, with
many well-known challenges: simplicity, cost- and time-effectiveness, verifiability, etc.
However, benchmarking systems under different application can lead to specific chal-
lenges. In this section, we discuss seven challenges in benchmarking graph-processing
platforms. Although there are more challenges to resolve, we argue that these would lead
to a good benchmarking process, similar to what has been achieved by the TPC and SPEC
communities for benchmarking databases, CPU power and energy, etc.

3.2.1 Methodological Challenges

Challenge 1. Evaluation process: Traditionally, it is a challenge to define an evalua-
tion process that would define an equivalent benchmarking process for each platform (for
example, not controlling the amount of tuning can lead to a war-of-wizards). For graph-
processing platforms, the evaluation process needs to fairly define at least the data format,
realistic processing workflows, and the multi-tenancy rules—although these concepts
have been considered in the past, they need revisiting for graph processing. Although
the mathematical notion of a graph allows for only a few varieties, in graph-processing
applications we have seen various data structures, input formats, and number of dimen-
sions for the dataset. Similarly to the idea that a single query may expand in several data
operations, in graph-processing it is likely that processing workflows comprised of sev-
eral atomic operations (single algorithms) is representative of the typical analysis task; the
evaluation process should also include such workflows. Because graph-processing plat-
forms are typically serving multiple users, much like modern databases and distributed
batch-processing systems, the evaluation process should also consider how the workloads
of multiple system tenants influence each other.

Challenge 2. Selection and design of performance metrics: To serve more users,
one important issue for benchmarking graph-processing platforms is to provide perfor-
mance metrics for a variety of platform characteristics. Typical performance metrics such
as execution time, resource utilization, scalability, system overhead, power consumption,
cost, etc., may be included. To compare platforms on top of various types and amounts
of hardware resources (e.g. number of cores or size of memory), new normalized met-
rics may need to be defined and adopted. For example, Graph500 introduces the graph-
specific metric traversed edges per second (TEPS). We argue that there is much room for
metric definition. As another example, as the field spans database, parallel, and distributed

41

systems, normalized metrics for weak and strong scaling of possibly heterogeneous plat-
forms need to be devised. Moreover, there is a need to adapt traditional metrics to an
elastic infrastructure, for example because the local infrastructure may be complemented
with nodes leased temporarily from Infrastructure-as-a-Service clouds [42].

Challenge 3. Dataset selection: Selecting a representative dataset is a traditional
problem in benchmarking, which requires revisiting for each new domain. As we present
in section 3.1, graphs may differ significantly in size, structure, directivity, connectivity,
etc. The main goal of the dataset selection is to choose relevant graphs with different
characteristics; to make the benchmark time- and cost-effective, they should also be few,
easy to generate at different scales (see Challenge 5), and stored in a similar format (see
Challenge 1). Additionally, this challenge also requires that the selected graphs should be
able to stress bottlenecks of graph-processing platforms.

Challenge 4. Algorithm coverage: Similar to Challenge 3, we find challenging the
selection of a representative, reduced set of graph-processing algorithms, which may
stress diverse components of the graph-processing platform. To reduce the number of
algorithms, it should be possible to divide them into classes, based on their functionality
and to select representative algorithms from each class. This solution also has some limi-
tations: how to define the classes? how to select a representative algorithm from a class?
how to allow future algorithms to participate in the benchmark? etc.

3.2.2 Practical Challenges

Challenge 5. Scalability of evaluation and selection processes: It is challenging to
allow the users of a benchmark—developers and integrators of platforms, graph analysts,
etc.—to cope with the scale of either the evaluation or the selection processes.

For the evaluation process, we aim at benchmarking platforms deployed on both
large-scale infrastructure (e.g., wide-area multicluster systems, large data centers, super-
computers, etc.) and small-business infrastructure (e.g., clusters of only a few nodes, a
single albeit powerful machine). Thus, the benchmarking suite, and in particular the in-
put datasets, should match various operational scales—for datasets, from megabytes to
petabytes. Currently, few real-world graphs of petabyte scale are available for bechmark-
ing activities, and even datasets of hundreds of gigabytes are rare. Graph generators could
produce graphs for testing of the required scale, for example the Kronecker generator used
in Graph500, but pose important parallel/distributed computing challenges and may not
have the characteristics of real-world graphs.

For the selection process, a community-oriented benchmarking process should also be
able to match the possibly hundreds of metrics with the interests of the users. For graph
analysts, a specific application may need to be matched against an entire database of
benchmarking results, and a few most-promising systems should be selected. For system

42

integrators, it would be helpful to identify which algorithms and graphs can stress the
system for each selected metric. We believe that designing a community database of open
results would be beneficial in addressing this challenge, but its design should be able to
accommodate a wide variety of settings and thus remains an open challenge.

Challenge 6. Portability: As we discussed in the methodological challenges,
the benchmarking suite includes a number of performance metrics, algorithms, and
graphs. When benchmarking a platform, the graph-processing algorithms need to be re-
implemented based on the platform’s programming language and model and, possibly,
also based on infrastructure characteristics. Re-implementing algorithms correctly and
re-configuring reasonably of a platform need a solid experience of programming and a
detailed understanding of the platform. The challenge is, thus, to design a benchmarking
suite that balances the portability requirements with all the desired features.

Challenge 7. Result reporting: Another non-trivial practical aspect is to report
benchmarking results, which should be done according to a precisely defined format.
Comprehensive and standardized reports traditionally facilitate the understanding and
the comparison of the performance of platforms. When users consider several perfor-
mance metrics when comparing graph-processing platforms, a mechanism to combine
the results from different performance metrics and report a single result may not be
straightforward—in our experience [51], none of the distributed graph-processing plat-
forms can deliver the best performance across all datasets and algorithms, even for the
same metric. Other communities have faced this challenge in the past and were able to
solve it. For example, SPEC benchmark results can include a full disclosure of the sys-
tem configuration parameters; SPEC users can report both baseline (not tuned) and peak
(tuned) performance results of systems. However, it took years of development and effort
to achieve this by SPEC benchmarks.

3.3 Benchmarking Graph Processing Systems

To address the challenges introduced in Section 3.2, in this section we present an empir-
ical method for evaluating the performance of graph-processing platforms. Our method
includes four stages: identifying the performance aspects and metrics of interest; defin-
ing and selecting representative datasets and algorithms; implementing, configuring, and
executing the tests; and analyzing the results.

3.3.1 Performance Aspects, Metrics, Process

To be able to reason about performance behavior, we first need to identify the performance
requirements of graph-processing platforms, the system parameters to be monitored, the

43

metrics that can be used to characterize platform performance, and an overall process how
performance is evaluated.

In this study, we focus on four performance aspects:

1. Raw processing power: the ability of a platform to (quickly) process large-scale
graphs. Ideally, platforms should combine deep analysis and short job runtimes.
For SMEs, the latter could mean several minutes.

2. Resource utilization: the ability of a platform to efficiently utilize the resources
it has. SMEs, who cannot afford inefficient use of their scarce resources, want
platforms to waste as little compute and memory resources as possible.

3. Scalability: the ability of a platform to maintain its performance behavior when re-
sources are added to its infrastructure. In our method, we test the strong scalability
of platforms in both horizontal scale (by adding computing nodes distributedly) and
vertical scale (by adding computing cores per node, thus ignoring network effects).
Ideally, we want platforms to be able to automatically improve their performance
linearly with the amount of added resources, but in practice this gain (or loss) de-
pends both on the number and type of these resources, and on the algorithm and
dataset.

4. Overhead: the part of wall-clock time the platform does not spend on true data
processing. The overhead includes reading and partitioning the data, setting up the
processing nodes, and eventually cleaning up after the results have been obtained.
Ideally, the overhead should be constant and small relative to the overall processing
time, but in practice the overhead may be related to algorithms and datasets.

Although we already use a more comprehensive set of workloads and metrics than the
state-of-the-art (Section 3.7), there are still numerous limitations to our method, which
we discuss in Section 3.6.

The performance aspects can be observed by monitoring traditional system parameters
(e.g., the important moments in the lifetime of each processing job, the CPU and network
load, the OS memory consumption, and the disk I/O) and be quantified through various
performance metrics. We summarize in Table 4.1 the performance metrics used in this
chapter; our technical report [51] defines them more thoroughly.

3.3.2 Selection of Graphs and Algorithms

This section presents a selection of graphs and algorithms, which is akin to identifying
some of the main functional requirements of graph-processing systems. We further dis-
cuss the representativeness of our selection in Section 3.6.

44

Table 3.1: Summary of performance metrics.

Metric How measured? Derived Relevant aspect (use)
job execution Time the full - Raw processing power

time (T) execution (Figure 3.1, 3.3, 3.4)

Edges per - #E/T Raw processing power

second (EPS) (Figure 3.2)

Vertices per - #V/T Raw processing power

second (VPS) (Figure 3.2)

CPU, memory, Monitoring - Resource utilization

network sampled each second (Figure 3.5, 3.6, 3.7)

Horizontal T of different - Scalability

scalability cluster size (N) (Figure 3.8)

Vertical T of different - Scalability

scalability cores per node (Figure 3.9)

Normalized edges - #E/T/N Scalability

per second (NEPS) (Figure 3.8, 3.9)

Computation Time actual - Raw processing power

time (Tc) for calculating (Figure 3.10)

Overhead - T − Tc Overhead

time (To) (Figure 3.10)

#V and #E are the number of vertices and the number of edges of graphs, respec-
tively.

Graph Selection

The main goal of the graph selection step is to select graphs with different characteristics
but with comparable representation. We use the classic graph formalism [143]: a graph is
a collection of vertices V (also called nodes) and edgesE (also called arcs or links) which
connect the vertices. A single edge is described by the two vertices it connects: e = (u, v).
A graph is represented by G = (V,E). We consider both directed and undirected graphs.
We do not use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a variety of values for the
number of nodes and edges, and with different structures (see Table 4.2). We store the
graphs in plain text with a processing-friendly format but without indexes. In our format,
vertices have integers as identifiers. Each vertex is stored in an individual line, which
for undirected graphs, includes the identifier of the vertex and a comma-separated list
of neighbors; for directed graphs, each vertex line includes the vertex identifier and two
comma-separated lists of neighbors, corresponding to the incoming and to the outgoing
edges. Thus, we do not consider other data models proposed for exchanging and using
graphs such as complex plain-text representations, universal data formats (e.g. XML),
relational databases, relationship formalisms (e.g., RDF), etc.

45

Table 3.2: Summary of datasets.

Graphs #V #E d D̄ Directivity
G1 Amazon 262,111 1,234,877 1.8 5 directed

G2 WikiTalk 2,388,953 5,018,445 0.1 2 directed

G3 KGS 293,290 16,558,839 38.5 113 undirected

G4 Citation 3,764,117 16,511,742 0.1 4 directed

G5 DotaLeague 61,171 50,870,316 2,719.0 1,663 undirected

G6 Synth 2,394,536 64,152,015 2.2 54 undirected

G7 Friendster 65,608,366 1,806,067,135 0.1 55 undirected
d is the link density of the graphs (×10−5). D̄ is the average vertex degree of undirected graphs
and the average vertex in-degree (or average vertex out-degree) of directed graphs.

Table 3.3: Summary of algorithms.

Algorithm Main features Use
A1 STATS single step, low processing decision-making

A2 BFS iterative, low processing building block

A3 CONN iterative, medium processing building block

A4 CD iterative, medium or high processing social network

A5 EVO iterative (multi-level), high processing prediction

Why these datasets? We select seven graphs which could match, in scale and diver-
sity, the datasets used by SMEs. Table 4.2 shows the characteristics of the selected graph
datasets. The graphs have diverse sources (e-business, social network, online gaming,
citation links, and synthetic graph), and a wide range of different sizes and graph metrics
(e.g., high vs. low degree, 1,663 vs. 2, respectively, directed and undirected graphs, etc.).
The largest dataset (Friendster) in this chapter is larger but of the same order of magnitude
in size as the median per-job dataset sizes observed in the workloads of Microsoft, Yahoo,
and Facebook [108]. The synthetic graph (“Synth” in Table 4.2) is produced by the gen-
erator described in Graph500 [48]. The other graphs have been extracted from real-world
use, and have been shared through the Stanford Network Analysis Project (SNAP) [121])
and the Game Trace Archive (GTA) [54].

Algorithm Selection

Why these algorithms? We have conducted a comprehensive survey of graph-processing
articles published in 10 representative conferences, in recent years; in total, over 100
articles (see technical report [51]). We found that a large variety of graph processing
algorithms exist in practice and are likely used by SMEs. The algorithms can be cate-
gorized into several groups by functionality, consumption of resources, etc. We focus on
algorithm functionality and select one exemplar of each of the following five algorith-
mic classes, which are common in our survey: general statistics, graph traversal (used in

46

Graph500), connected components, community detection, and graph evolution. We de-
scribe in the following the five selected algorithms and summarize their characteristics in
Table 4.3.

The General statistics (STATS) algorithm computes the number of vertices and edges,
and the average of the local clustering coefficient of all vertices. The results obtained with
STATS can provide the graph analyst with an overview of the structure of the graph.

Breadth-first search (BFS) is a widely used algorithm in graph processing, which is
often a building block for more complex algorithms, such as item search, distance calcu-
lation, diameter calculation, shortest path, longest path, etc. BFS allows us to understand
how the tested platforms cope with lightweight iterative jobs.

Connected component (CONN) is an algorithm for extracting groups of vertices that
can reach each other via graph edges. This algorithm produces a large amount of output,
as in many graphs the largest connected component includes a majority of the vertices.

Community detection (CD) is important for social network applications, as users of
these networks tends to form communities, that is, groups whose constituent nodes form
more relationships within the group than with nodes outside the group. Communities are
also important in the gaming industry, as the market has an increasingly larger share of
social games or of games for which the social component is important.

Graph evolution (EVO): an accurate EVO algorithm not only can predict how a graph
structure will evolve over time, but can also help to prepare for these changes (for example
data size increase). Thus, graph evolution is an important topic in the field of large-scale
graph processing.

STATS and BFS are textbook algorithms. For CONN, CD and EVO, there are a num-
ber of variations. Considering the reported performance and accuracy of these algorithms,
we select a cloud-based connected component algorithm created by Wu and Du [144], the
real-time community detection algorithm proposed by Leung et al. [85], and the the Forest
Fire Model for graph evolution designed by Leskovec et al. [84].

3.4 Experimental Setup

The method introduced in Section 3.3 defines a benchmarking skeleton. In this section we
create a full benchmarking suite (bar the issues explained in Section 3.6) by implementing
the graph-processing algorithms of a selected set of test platforms, and by configuring and
tuning these platforms.

3.4.1 Platform Selection

We use a simple taxonomy of platforms for graph processing. By their use of computing
machines, we identify two main classes of platforms: non-distributed platforms and dis-

47

Table 3.4: Selected platforms.

Platform Version Type Release date
Hadoop hadoop-0.20.203.0 Generic, Distributed 2011-05

YARN hadoop-2.0.3-alpha Generic, Distributed 2013-02

Stratosphere Stratosphere-0.2 Generic, Distributed 2012-08

Giraph Giraph 0.2 (revision 1336743) Graph, Distributed 2012-05

GraphLab GraphLab version 2.1.4434 Graph, Distributed 2012-10

Neo4j Neo4j version 1.5 Graph, Non-distributed 2011-10

tributed platforms; distributed platforms use multiple computers when processing graphs.
Orthogonally to the issue of distributed machine use, we divide platforms into graph-
specific platforms and generic platforms; graph specific platforms are designed and tuned
only for processing graph data. Importantly, we omit in our taxonomy parallel platforms;
for the scale in our real-world experiments, we see the performance of distributed systems
as being a conservative estimate of what a similarly sized but parallel system can achieve.

Why these platforms? We select for this study a graph-specific non-distributed plat-
form, and both graph-specific and generic distributed platforms. Because of what we see
that relatively little interest in the community, we do not select for this study any generic
and non-distributed platform. Table 4.4 summarizes our selected platforms: Hadoop,
YARN, Stratosphere, Giraph, GraphLab, and Neo4j. These six selected platforms are
popular and may be used for graph processing. We introduce each platform in the follow-
ing, in turn.

Hadoop [141] is an open-source, generic platform for big data analytics. It is based
on the MapReduce programming model. Hadoop has been widely used in many areas and
applications, such as log analysis, search engine optimization, user interests prediction,
advertisement, etc. Hadoop is becoming the de-facto platform for batch data processing.
Hadoop’s programming model may have low performance and high resource consumption
for iterative graph algorithms, as a consequence of the structure of its map-reduce cycle.
For example, for iterative graph traversal algorithms Hadoop would often need to store
and load the entire graph structure during each iteration, to transfer data between the
map and reduce processes through the disk-intensive HDFS, and to run an convergence-
checking iteration as an additional job. However, comprehensive results regarding graph-
processing using Hadoop have not yet been reported.

YARN [147] is the next generation of Hadoop. YARN can seamlessly support old
MapReduce jobs, but was designed to facilitate multiple programming models, rather than
just MapReduce. A major contribution of YARN is to separate functionally resource man-
agement and job management; the latter is done in YARN by a per-application manager.
For example, the original Apache Hadoop MapReduce framework has been modified to
run MapReduce jobs as an YARN application manager. YARN is still under development.
We select YARN because our hypothesis is that even for the same programming model

48

(YARN and Hadoop), the architecture of the execution engine matters.
Stratosphere [138] is an open-source platform for large-scale data processing. Strato-

sphere consists of two key components: Nephele and PACT. Nephele is the scalable par-
allel engine for the execution of data flows. In Nephele, jobs are represented as directed
acyclic graphs (DAG), a job model similar for example to that of the generic distributed
platform Dryad [68]. For each edge (from task to task) of the DAG, Nephele offers three
different types of channels for transporting data, through the network, in-memory, and
through files. PACT is a data-intensive programming model that extends the MapReduce
model with three more second-order functions (Match, Cross, and CogGroup, in addition
to Map and Reduce). PACT supports several user code annotations, which can inform
the PACT compiler of the expected behavior of the second-order functions. By analyzing
this information, the PACT compiler can produce execution plans that avoid high cost
operations such as data shipping and sorting, and data spilling to the disk. Compiled
PACT programs are converted into Nephele DAGs and executed by the Nephele data flow
engine. HDFS is used for Stratosphere as the storage engine.

Giraph [43] is an open-source, graph-specific distributed platform. Giraph uses
the Pregel programming model, which is a vertex-centric programming abstraction that
adapts the Bulk Synchronous Parallel (BSP) model. An BSP computation proceeds in
a series of global supersteps. Within each superstep, active vertices execute the same
user-defined computation, and create and deliver inter-vertex messages. Barriers ensure
synchronization between vertex computation: for the current superstep, all vertices com-
plete their computation and all messages are sent before the next superstep can start.
Giraph utilizes the design of Hadoop, from which it leverages only the Map phase. For
fault-tolerance, Giraph uses periodic checkpoints; to coordinate superstep execution, it
uses ZooKeeper. Giraph is executed in-memory, which can speed-up job execution, but,
for large amounts of messages or big datasets, can also lead to crashes due to lack of
memory.

GraphLab [87] is an open-source, graph-specific distributed computation platform
implemented in C++. Besides graph processing, it also supports various machine learning
algorithms. GraphLab stores the entire graph and all program state in memory. To further
improve performance, GraphLab implements several mechanisms such as: supporting
asynchronous graph computation to alleviate the waiting time for barrier synchronization,
using prioritized scheduling for quick convergence of iterative algorithms, and efficient
graph data structures and data placement. To match the execution mode of the other
platforms, we run all our GraphLab experiments in a synchronized mode.

Neo4j [101] is one of the popular open-source graph databases. Neo4j stores data
in graphs rather than in tables. Every stored graph in Neo4j consists of relationships
and vertices annotated with properties. Neo4j can execute graph-processing algorithms
efficiently on just a single machine, because of its optimization techniques that favor

49

response time. Neo4j uses a two-level, main-memory caching mechanism to improve its
performance. The file buffer caches the storage file data in the same format as it is stored
on the durable storage media. The object buffer caches vertices and relationships (and
their properties) in a format that is optimized for high traversal speeds and transactional
writes.

3.4.2 Platform and Experimental Configuration

Platform tuning: The performance of these systems depends on tuning. Several of the
platforms tested in this chapter have tens to hundreds of configuration parameters, whose
actual value can potentially change the performance of the platform. We use common
best-practices for tuning each of the platforms, as explained in our technical report [51].

Hardware: We deploy the distributed platforms on DAS4 [21], which is to provide a
common computational infrastructure for researchers within Advanced School for Com-
puting and Imaging in the Netherlands. Each machine we used in the experiments from
DAS4 consists of a Intel Xeon E5620 2.4 GHz CPU (dual quad-core, 12 MB cache) and
a total memory of 24 GB. All the machines are connected by 1 Gbit/s Ethernet network.
NFS is used as the file system in DAS4. The operation system installed on each ma-
chine is CentOS release 6.3 with the kernel version 2.6.32. We use a single machine with
one single enterprise SATA disk (SATA 3 Gbit/s, 7200 rpm, 32 MB cache) for the Neo4j
experiments.

Platform configuration, number of nodes: We deploy the distributed platforms on
20 up to 50 computing machines of DAS4. We set the Neo4j on a single DAS4 machine
with regular configuration. For all the experiments of Hadoop, YARN, Stratosphere, and
GraphLab, besides the computing machines, we allocate an additional node to take charge
of all master services. For Giraph, we use one more node for running ZooKeeper.

Parameters of Algorithms: We try to configure each algorithm with default param-
eter values. STATS and CONN do not need any parameters. For BFS, we randomly
pick a vertex to be the source for each graph. We use only out-edges to propagate for
directed graph, thus the directed graphs are not entirely traversed. We set the parameters
of algorithms identically on all platforms.

Further experiment configuration: Unless otherwise stated, we repeat each experi-
ment 10 times, and we report the average results from these runs. (An example where 10
repetitions would take too long is presented in Section 3.5.4).

3.5 Experimental Results

In this section we present a selection of the experimental results. We evaluate the six
graph processing platforms selected in Section 3.4, using the process and metrics, and

50

the datasets and algorithms introduced in Section 3.3. Compared with the previous work
(Section 3.7), our experiments show more comprehensive and quantitative results in di-
verse metrics.

The experiments we have performed are:

• Basic performance (Section 3.5.1): we have measured the job execution time on a
fixed infrastructure. Based on these execution times, we further report throughput
numbers, using the edges per second (EPS) and vertices per second (VPS) metrics.

• Resource utilization: we have investigated the CPU utilization, memory usage, and
network traffic.

• Scalability (Section 3.5.3): we have measured the horizontal and vertical scalability
of the platforms; we report the execution time and the normalized edges per second
(NEPS) for interesting datasets.

• Overhead (Section 3.5.4): we have analyzed the execution time in detail, and report
important findings related to the platform overhead.

3.5.1 Basic Performance: Job Execution Time

The fixed infrastructure we use for our basic performance measurements is a cluster of 20
homogeneous computing nodes provisioned from DAS4. With the configuration in [51],
each node is restricted at using a single core for computing. We configure the cluster
as follows. For the experiments on Hadoop and YARN, we run 20 map tasks and 20
reduce tasks on the 20 computing nodes. Due to the settings used for Hadoop [51], the
map phase will be completed in one wave; all the reduce tasks can also be finished in
one wave, without any overlap with the map phase [42]. In Giraph, Stratosphere, and
GraphLab, we set the parallelization degree to 20 tasks, also equal to the total number of
computing nodes.

With these settings, we run the complete set of experiments (6 platforms, 5 different
applications, and 7 datasets) and measure the execution time for each combination. In the
remainder of this section, we present a selection of our results.

Key findings:

• There is no overall winner, but Hadoop is the worst performer in all cases.
• Multi-iteration algorithms suffer for additional performance penalties in Hadoop

and YARN.
• EPS and VPS are suitable metrics for comparing the platforms throughput.
• The performance of all the platforms is stable, with the largest variance around

10%.
• Several of the platforms are unable to process all datasets for all algorithms, and

crash.

51

Table 3.5: Statistics of BFS.

G1 G2 G3 G4 G5 G6 G7
Coverage [%] 99.9 98.5 100 0.1 100 100 100

Iterations 68 8 9 11 6 8 23

10
0

10
1

10
2

10
3

10
4

Amazon

WikiTalk

KGS
Citation

DotaLeague

Synth
Friendster

1 min

15 mins

1 hour

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Datasets

Giraph

Stratosphere

Hadoop

YARN

GraphLab

Neo4j

Figure 3.1: The execution time of algorithm BFS of all datasets of all platforms.

Results for One Selected Algorithm

We present here the results obtained for one selected algorithm, BFS (see Section 3.3.2).
Because the starting node for the BFS traversal will impact performance by limiting

the coverage and number of iterations of the algorithm, we summarize in Table 3.5 the
vertex coverage and iteration count observed for the BFS experiments presented in this
section. Overall, BFS covers over 98% of the vertices, with the exception of the Citation
(G4) dataset. The iteration count depends on the structure of each graph and varies be-
tween 6 and 68; we expect higher values to impact negatively the performance of Hadoop.

We depict the performance of the BFS graph traversal in Figure 3.1 and discuss in the
following the main findings. Similarly to most figures in this section, Figure 3.1 has a
logarithmic vertical scale.

Hadoop always performs worse than the other platforms, mainly because Hadoop has
a significant I/O between two continuous iterations (see Section 3.4). In these experi-
ments, Hadoop does not use spills, so it has no significant I/O within the iteration. As
expected, the I/O overhead of Hadoop is worse when the number of BFS iterations in-
creases. For example, although Amazon is the smallest graph in our study, it has the
largest iteration count, which leads to a very long execution time. YARN performs only
slightly better than Hadoop—it has not been altered to support iterative applications. Al-
though Stratosphere is also a generic data-processing platform, it performs much better
than Hadoop and YARN (up to an order of magnitude lower execution time). We attribute
this to Stratosphere’s ability to optimize the execution plan based on code annotations
regarding data sizes and flows, and to the much more efficient use of the network channel.

52

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Amazon

WikiTalk

KGS
Citation

DotaLeague

Synth
Friendster

E
d
g
e
s
 p

e
r

s
e
c
o
n
d

Datasets

Giraph
Stratosphere

Hadoop

YARN
GraphLab

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Amazon

WikiTalk

KGS
Citation

DotaLeague

Synth
Friendster

V
e
rt

ic
e
s
 p

e
r

s
e
c
o
n
d

Datasets

Giraph
Stratosphere

Hadoop

YARN
GraphLab

Figure 3.2: The EPS and VPS of executing BFS.

In contrast to the generic platforms, for Giraph and GraphLab the input graphs are
read only once, and then stored and processed in-memory. Both Giraph and GraphLab
realize a dynamic computation mechanism, by which only selected vertices will be pro-
cessed in each iteration. This mechanism reduces the actual computing time for BFS,
in comparison with the other platforms (more details are discussed in Section 3.5.4). In
addition, GraphLab also addresses the problem of smart dataset partitioning, by limiting
the cut-edges between machines when splitting the graph. These systemic improvements
make the performance of both Giraph and GraphLab less affected by large BFS iteration
counts than the performance of other distributed platforms.

Because of the two-level main-memory cache of Neo4j, we differentiate two types of
executions: cold-cache (first execution) and hot-cache (follow-up executions). Figure 3.1
depicts the average results obtained for hot-cache executions. The two-level cache allows
Neo4j to achieve excellent hot-cache execution times, especially when the graph data
accessed by the algorithms fits in the cache. However, the cold-cache execution can be
very long: for example, the ratios between the cold-cache and hot-cache BFS executions
for Citation and DotaLeague are 45 and 5, respectively. Even for cold-cache execution,
Neo4j reads from the database only the graph data needed by the algorithm. This “lazy
read” mechanism minimizes the I/O overhead and accelerates traversal on the graphs
where the BFS coverage of the graph is limited, e.g., for Citation. However, limited by
the resources of a single machine, the performance of Neo4j becomes significantly worse
when the graph exceeds the memory capacity. For example, the hot-cache value of Synth
is about 17 hours, exceeding the scale of Figure 3.1.

We now report on the achieved throughput for the BFS algorithm, in both EPS and
VPS, for all platforms and datasets (Figure 3.2). We note that throughput is a metric
that takes into account the dataset structure and provides an indication of the platforms
performance per data item—be it an edge or a vertex. For example, KGS and Citation,
which have similar numbers of edges, file sizes, and BFS iteration counts, achieve similar
EPS values on most platforms. The exception is GraphLab, in which the EPS of Citation
is about two times larger than that of KGS. This is due to the restriction of GraphLab to

53

10
0

10
1

10
2

10
3

STATS BFS CONN CD EVO CONN(GraphLab)

1 min

15 mins

1 hour

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Algorithms

Amazon

WikiTalk

KGS

Citation

DotaLeague

Friendster

Figure 3.3: The execution time of all algorithms for all datasets running on Giraph, and
for CONN running on GraphLab (right-most bars).

process only directed graphs, which has required the conversion of the undirected KGS
to a directed version. This operation lead to a doubling in the number of edges, resulting
in a proportional increase of the execution time.

Results for Two Selected Platforms

We focus in this section on the graph-specific platforms (Giraph and GraphLab) and dis-
cuss their performance for all the algorithms and datasets, as depicted in Figure 3.3.

As Giraph is an in-memory-only platform, its performance is not affected by the large
penalties of I/O operations. Figure 3.3 shows that the execution time for most of the ex-
periments is below 100 seconds. However, when the amount of messages between com-
puting nodes becomes extremely large (tens of gigabytes), Giraph crashes. For example,
Giraph crashes for the STATS algorithm running on the WikiTalk dataset; for Friend-
ster, the largest of our datasets, Giraph completes only the EVO algorithm, for which
our graph evolution algorithm generates relatively few messages. From the selected re-
sults, GraphLab performs better than Giraph for the CONN algorithm for most graphs.
Moreover, GraphLab is able to process even the largest graph in this study.

Results for Two Selected Datasets

Finally, to understand the impact of algorithm complexity on each platform, we focus
now on two interesting datasets—DotaLeague and Citation. We depict their performance,
for all algorithms running on all platforms, in Figure 3.4.

Because Friendster is too large for some platforms, we present here the results for
graphs that all platforms can process: the second-largest real graph, DotaLeague, and
the small Citation graph. Even for the second-largest graph, Giraph, Hadoop and YARN
crashed when running STATS; we also had to terminate Stratosphere after running STATS
for nearly 4 hours without success; similarly, STATS and CD run for more than 20 hours

54

10
0

10
1

10
2

10
3

10
4

BFS CONN CD EVO CONN(Citation)

1 min

15 mins

1 hour

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Algorithms

Giraph

Stratosphere

Hadoop

YARN

GraphLab

Neo4j

Figure 3.4: The execution time for all platforms, running all algorithms for the
DotaLeague dataset, and CONN for the Citation dataset (right-most bars).

in Neo4j and are not shown in Figure 3.4. For the other algorithms, BFS, CONN, CD, and
EVO, the number of iterations is between 4 and 6. From Figure 3.4, the execution time of
BFS is lower than the execution time of CONN and CD, on all platforms. In each iteration
of CONN and CD, many more vertices will be active, in comparison to BFS. Furthermore,
in CONN, the number of active vertices stays relatively constant in each iteration, while
CD is more compute-intensive and variable. For EVO, Stratosphere takes advantage of its
programming model, as it can represent one EVO iteration by a single map-reduce-reduce
procedure; in contrast, Hadoop and YARN need to run two MapReduce jobs per iteration
and thus their execution time increases.

Citation is much smaller and sparser than DotaLeague. The CONN of Citation takes
20 iterations. The execution time of CONN of Citation on Hadoop, YARN, and Strato-
sphere increases compared with 6-iteration CONN of DotaLeague. As we explained for
the analysis of BFS (Section 3.5.1), more iterations result in higher I/O and other over-
heads.

3.5.2 Evaluation of Resource Utilization

To understand the resource utilization of each platforms, we investigate in this section the
CPU load, memory, and network usage of both the master node and the computing nodes.

For each platform, we execute BFS on DotaLeague. The configuration is consistent
to Section 3.5.1. We monitor the platforms by using the Ganglia Monitoring System [40]
with a sampling interval of 1 second. The monitoring results includes the usage of local
system such as operating system.

To make the resource utilization results comparable, We normalize the execution time
of different platforms and, for each platform, of different experiment runs (we use 10
repetitions of each experiment). For each experiment run, we linearly interpolate the real
monitoring samples to obtain 100 normalized usage points for each resource. We depict

55

0

2

4

6

8

10

0 20 40 60 80 100

C
P

U
 U

ti
liz

a
ti
o
n
 [
%

]

Normalized execution time [%]

Hadoop

YARN

Stratosphere

0

2

4

6

8

10

0 20 40 60 80 100

C
P

U
 U

ti
liz

a
ti
o
n
 [
%

]

Normalized execution time [%]

Giraph

GraphLab

Figure 3.5: The CPU utilization of a computing node.

0

4

8

12

16

20

0 20 40 60 80 100

M
e
m

o
ry

 [
G

B
]

Normalized execution time [%]

Hadoop

YARN

Stratosphere

0

4

8

12

16

20

0 20 40 60 80 100

M
e
m

o
ry

 [
G

B
]

Normalized execution time [%]

Giraph

GraphLab

Figure 3.6: The memory usage of a computing node.

in each figure corresponding to the resource utilization of a computing node the results
obtained in practice for a real computing node, such that the depiction is the closest to the
average resource utilization observed in practice.

Key findings:

• Few resources are needed for the master node of all platforms.
• The resource utilization of the computing nodes varies widely across different plat-

forms.

Possibly because there is only one job submitted to all platforms, the master does
not heavily use resources. The CPU utilization and the network traffic have low usage
for job management and platform operation (heartbeats, etc.). For all platforms, the CPU
utilization is below 0.5% and the network traffic is less than 400 Kbit/s (the only exception
is Stratosphere, which sometimes can reach up to 1 Mbit/s). The monitored memory usage
of all platforms is around 8 GB, including the memory consumption of operating systems
and services.

For computing nodes, Figures 3.5, 3.6, and 3.7 depict the CPU utilization, the memory
usage, and the network traffic of all platforms, respectively. The resource utilization of
computing nodes in YARN and Hadoop exhibit obvious volatility, due to the BFS job
consisting of 6 independent iterations. However, the curves do not actually exhibit 6

56

0

32

64

96

128

0 20 40 60 80 100

N
e
tw

o
rk

 [
M

b
it
/s

]

Normalized execution time [%]

Hadoop(in)

YARN(in)

Stratosphere(in)

0

4

8

12

16

0 20 40 60 80 100

N
e
tw

o
rk

 [
M

b
it
/s

]

Normalized execution time [%]

Giraph(in)

GraphLab(in)

Figure 3.7: The network traffic of a computing node. Note that the scales of vertical axes
are different.

usage spikes—the computing node with the resource utilization closest to the average is
not used intensively in each of the 6 iterations. The memory usage of Stratosphere keeps
around 20 GB, as configured [51]. This is because Stratosphere compute nodes allocate
the memory assigned by the configuration immediately after startup. This design may
decrease the possibility of resource sharing between Stratosphere and other applications.
Moreover, by using the network channel for transporting data, Stratosphere exhibits the
heaviest network throughput. Compared to the generic platforms, the resource usage of
Giraph and GraphLab are much smaller. As we discussed in Section 3.5.1, the reason is
the graph-friendly programming model of Giraph and GraphLab: these platforms only
process activated vertices in each iteration, which reduces the resource requirement.

3.5.3 Evaluation of Scalability

In this section, we evaluate the horizontal and vertical scalability of the distributed plat-
forms. Besides the job execution time, we also report the NEPS for comparing the per-
formance per computing unit.

To allow a comparison with the previous experiments, we use BFS results. To test
scalability, we use the two largest real graphs in our study, Friendster and DotaLeague (the
results of DotaLeague are in our technical report [51]). For testing horizontal scalability,
we increase the number of machines from 20 to 50 by a step of 5, and keep using a single
computing core per machine. For testing vertical scalability, we keep the cluster size at
20 computing machines and increase the number of computing cores per machines from
1 to 7. We step up the number of map (reduce) tasks and parallelization degree equally to
the available computing cores.

Key findings:

• Some platforms can scale up reasonably with cluster size (horizontally) or number
of cores (vertically).

57

 0

 2000

 4000

 6000

 8000

 20 25 30 35 40 45 50

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

machines

Hadoop
Stratosphere

GraphLab

GraphLab(mp)
Giraph

10
0

10
1

10
2

10
3

10
4

10
5

10
6

20 25 30 35 40 45 50

N
o

rm
a

liz
e

d
 e

d
g

e
s
 p

e
r

s
e

c
o

n
d

machines

Hadoop
Stratosphere

GraphLab

GraphLab(mp)
Giraph

Figure 3.8: The horizontal scalability (left) and NEPS (right) of processing G7.

• Increasing the number of computing cores may lead to worse performance, espe-
cially for small graphs.

• The normalized performance per computing unit mostly decreases with the increase
of cluster size and with the number of computing cores per node.

Horizontal Scalability

Figure 3.8 shows the horizontal scalability of BFS for Friendster (G7). Most of the plat-
forms presents significant horizontal scalability, except for GraphLab, which exhibits lit-
tle scalability. The horizontal scalability of GraphLab is constrained by the graph loading
phase using one single file. We thus explore tuning GraphLab: for GraphLab(mp) we split
the input file into multiple separate pieces, as many as the MPI processes. GraphLab(mp)
has much lower execution time than GraphLab. Moreover, GraphLab(mp) is scalable, as
its execution time decrease from about 480 seconds to 250 seconds when resources are
added.

We further investigate the performance per computing unit (computing node) to check
if they also be improved. We calculate the EPS from the execution time and normalize it
by the number of computing nodes to get the NEPS. The maximum value of NEPS can be
reached at different sizes of the cluster, for different platforms. For example, the NEPS
of Hadoop and Giraph peaks at 30 and 40 computing nodes of Friendster, respectively.
However, the general trend of NEPS is to decrease with the increase of cluster size. We
have obtained similar results for the vertex-centric equivalent of NEPS, NVPS.

Vertical Scalability

Figure 3.9 shows the vertical scalability of running BFS for Friendster (G7). There is no
result of Giraph and YARN of Friendster, because both YARN and Giraph crashed on
20 computing machines. For Friendster, both Hadoop and Startosphere can benefit from
using more computing cores. However, after 3 cores, the improvement become negligible.

58

 0

 2000

 4000

 6000

 8000

 1 2 3 4 5 6 7

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

cores

Hadoop
Stratosphere

GraphLab
GraphLab(mp)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 2 3 4 5 6 7

N
o

rm
a

liz
e

d
 e

d
g

e
s
 p

e
r

s
e

c
o

n
d

cores

Hadoop
Stratosphere

GraphLab
GraphLab(mp)

Figure 3.9: The vertical scalability (left) and NEPS (right) of processing G7.

By using more cores, graphs can be processed with higher parallelism, but may also
incur latency, for example, due to concurrent accesses to the disk. For GraphLab(mp),
for which we split the Friendster file into more pieces with the increase of the number
MPI processes, the job execution time does not decrease correspondingly. The reason is
that each MPI instance (or machine) has a just single loader for input files, thus in one
machine, the MPI processes cannot load graph pieces in parallel.

We check the performance per computing unit (computing core) by NEPS in vertical
scalability. We can find similar results to that of horizontal scalability, all NEPS drops for
all platforms. The competition between computing cores makes the reduce of execution
time not significant enough to improve the average performance of computing cores.

3.5.4 Evaluation of Overhead

In this section, we evaluate two elements of overhead: data ingestion time and execution
time overhead.

Key findings:

• The data ingestion time of Neo4j matches closely the characteristics of the graph.
Overall, data ingestion takes much longer for Neo4j than for HDFS.

• The data ingestion time of HDFS increases nearly linearly with the graph size.
• The percentage of overhead time in execution time is diverse across the platforms,

algorithms, and graphs.

For Neo4j, data ingestion process converts input graphs to the format used by the
Neo4j graph database. In contrast, the distributed platforms evaluated in this chapter
use HDFS, which means for them data ingestion consists of data transfers from the local
file system to HDFS. GraphLab even does not need data ingestion if using the local file
system (i.e., NFS). Only for Neo4j, because data ingestion takes long (up to days), we
only evaluate the data ingestion for Neo4j through one experiment repetition.

59

Table 3.6: Data ingestion time.

G1 G2 G3 G4 G5 G6 G7
HDFS [s] 1.2 1.8 3.0 3.9 7.0 10.9 312.0

Neo4j [h] 2.0 17.2 2.6 28.8 3.7 24.7 N/A

 0

 100

 200

 300

 400

Hadoop

YARN
Stratosphere

Giraph

GraphLab

GraphLab(mp)

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Platforms

Computation Time

Overhead Time

Figure 3.10: The execution time breakdown of platforms for BFS.

Table 3.6 summarizes the data ingestion results. The data ingestion time of Neo4j is
up to several orders of magnitude longer than that of HDFS. In our experimental envi-
ronment, which uses enterprise-grade magnetic disks, the data ingestion time of HDFS
increases by about 1 second for every 100 MB of graph data. In contrast, the data inges-
tion time of Neo4j depends on the structure and scale of graphs, so it changes irregularly
across the datasets in this study. Dominguez-Sal et al. [25] report similar results about
data ingestion time in their survey of graph database performance.

We define computation time as the time used for making progress with the graph algo-
rithms. The overhead time is the remainder from subtracting the computation time from
the job execution time. Thus, the overheads include the time for read and write, and for
communication. The fraction of time spent with overheads varies across the platforms
(Figure 3.10). Although BFS is not a compute-intensive algorithm, Hadoop and Strato-
sphere need to traverse all vertices, which increases their computation time. In GraphLab,
most of the time is spent on loading the graph into memory and on finalizing the results.
The percentage of overhead time on each platform is closely related to the complexity of
the algorithm and the characteristics of graph. For example, we also found that for Cita-
tion, the percentage of overhead time is 98% and 70% for BFS and CONN, respectively
(see technical report [51]).

3.6 Discussion

The method proposed in Section 3.3 raises several methodological and practical issues
that prevent it from being a benchmark. We argue that our method can result in meaning-
ful, comprehensive performance evaluation of graph-processing platforms, but the path

60

towards an industry-accepted benchmark still raises sufficient challenges. Outside the
scope of this work, we continue to pursue resolving these issues via the SPEC Cloud
Working Group.

Methodologically, our method has limitations in its process, workload design, and
metrics design. Specifically, our method does not offer a detailed, infrastructure- and
platform-independent process; for example, it does not limit meaningfully the amount
of tuning done to a system prior to benchmarking and it does not precisely specify the
acceptable components of a platform (should a cloud-based platform include the Internet
linking its users to the data center?). The workload design, although it covers varied
datasets and algorithms, does not feature an industry-accepted process of selection for
them, and does not select datasets and algorithms that can stress a specific bottleneck
in the system under test. Proving algorithmic coverage is currently not feasible, due
to field fragmentation and lack of public workload traces; solving this ”chicken-and-egg”
problem cannot be properly addressed without collecting workload traces for several years
and from several major operators.

Metrics-wise, our method does not provide only a single result—which helps with the
analysis of the causes of performance gaps between platforms—; does not provide met-
rics for a variety of interesting platform characteristics (e.g., power consumption, cost,
efficiency, and elasticity); and could do more in terms of normalized metrics (i.e., by nor-
malizing by various types of resources provided by the system, such as number of cores or
size of memory). Using other metrics is outside the scope of our work, as different com-
munities are interested in different operational aspects (SPEC identifies tens of relevant
metrics).

From a practical perspective, our method has limitations in portability, time, and cost.
The portability is limited by the need to re-implement algorithms for each platform and to
re-configure platforms for each experiment. The time spent in implementing our method
is analyzed in our technical report [51]. The cost of performing a benchmark, in particular
in tuning, is a non-trivial issue, for which few benchmarks provide a solution. Another
non-trivial practical aspect is reporting (an outcome of the analysis stage), which our
method does not precisely specify. In contrast, SPEC benchmark users can report results
for baseline (not tuned) and peak (tuned) systems, and SPEC results include a full disclo-
sure of the parameters used in configuring the systems; however, SPEC benchmarks are
sophisticated products and the result of years of development.

Experiments with larger environments and datasets, and with new algorithms and met-
rics, can add to the bulk of the results presented in this work. However, the need for such
experiments is not supported by existing published evidence: as we show in Section 3.7,
our work already extends and complements previous work. Requiring experiments in
larger clusters, while relevant for companies such as Facebook (thousands of nodes), does
not match the needs of SMEs that want efficient graph-processing, and the information

61

Table 3.7: Overview of related work. Legend: V–vertices, E–edges, C–computers.
Platforms Algorithms Dataset type Largest dataset System
Neo4j, MySQL [136] 1 other synthetic 100 KV 1 C

Neo4j, etc. [25] 3 others synthetic 1 MV 1 C

Pregel [92] 1 other synthetic 50 BV 300 C

GPS, Giraph [112] CONN, 3 others real 39 MV, 1.5 BE 60 C

Trinity, etc. [116] BFS, 2 others synthetic 1 BV 16 C

PEGASUS [71] CONN,2 others synthetic, real 282 MV 90 C

CGMgraph [14] CONN, 4 others synthetic 10 MV 30 C

Hadoop, GraphLab, etc. [28] 1 other real 3 MV, 117 ME 32 C

PBGL, CGMgraph [49] CONN, 3 others synthetic 70 MV, 1 BE 128 C

HaLoop, Hadoop [7] 2 others synthetic, real 1.4 BV, 1.6 BE 90 C

Hadoop, PEGASUS [70] 1 other synthetic, real 1 BV, 20 BE 32 C

Our work 5 classes synthetic, real 66 MV, 1.8 BE 50 C

we have about state-of-the-art (Section 3.7).

These limitations also affect other benchmarks [35] and performance evaluation stud-
ies included in the related work of this study. As we indicated in the introduction of our
article, we point out that the de-facto standard in benchmarking graph-processing plat-
forms is Graph500 (one algorithm and one graph type); in contrast, our work provides a
significant improvement in both algorithms (processing patterns and scope) and datasets
(two public graph archives, several application domains, and various graph structures).

3.7 Related Work

Many previous studies focus on performance evaluation of graph-processing, for different
platforms. Table 3.7 summarizes these studies and compares them with our work. Overall,
for the studies in our survey, most of the datasets included in previous evaluation are
synthetic graphs. Although some of the synthetic graphs are extremely large, they may not
have the characteristics of real graphs. Our evaluation selects 6 real graphs and 1 synthetic
graph with various characteristics. Relative to our study, fewer classes of algorithms are
used to compare the performance of platforms. From our observation, a very limited
number of metrics have been reported, with many of the previous studies focusing only
on the job execution time. Our work evaluates performance much more in-depth, by
considering more types of metrics. Finally, previous research compares few platforms; in
contrast, we investigate 6 popular platforms with different architectures. Our environment
is of similar scale with state-of-the-art studies in distributed systems.

62

3.8 Summary

A quickly increasing number of platforms can process large-scale graphs, and have thus
become potentially interesting for a variety of users and application domains. We focus
in this work on SMEs, which are businesses with little resources to spare in their graph-
processing clusters. To compare in-depth the performance of graph-processing platforms,
and thus facilitate platform selection and tuning for SMEs, we have proposed in this work
an empirical method and applied it to obtain a comprehensive performance study of six
platforms.

Our method defines an empirical performance evaluation process and selects metrics,
datasets, and algorithms; thus, it acts as a benchmarking suite despite not covering all the
methodological and practical aspects of a true benchmark. Our method focuses on four
performance aspects: raw performance, resource utilization, scalability, and overhead.
We use both performance and throughput metrics, and we also use normalized metrics to
characterize scalability. We implement a benchmarking suite that uses five representative
graph algorithms—general statistics, breadth-first search, connected component, commu-
nity detection, and graph evolution—, and seven graphs that represent graph structures for
multiple application domains, with sizes up to 1.8 billion edges and tens of GB of stored
data.

Using our benchmarking suite, we conduct a first detailed, comprehensive, real-world
performance evaluation of six popular platforms for graph-processing, namely, Hadoop,
YARN, Stratosphere, Giraph, GraphLab, and Neo4j. Our results show quantitatively and
comparatively the highlights and weaknesses of the tested platforms. The main lessons
are listed at the start of each experiment.

Chapter 4

Evaluating the Performance of
GPU-Enabled Graph Processing
Systems

In this chapter, we adapt and extend our empirical method in Chapter 3, by identifying
new performance aspects and metrics, and by selecting and including new datasets and al-
gorithms. By selecting nine diverse graphs and three typical graph-processing algorithms,
we conduct a comparative performance study of three GPU-enabled systems, Medusa,
Totem, and MapGraph. We present the first comprehensive evaluation of GPU-enabled
systems with results giving insight into raw processing power, performance breakdown
into core components, scalability, and the impact on performance of system-specific op-
timization techniques and of the GPU generation. We present and discuss many findings
that would benefit users and developers interested in GPU acceleration for graph process-
ing.

4.1 Overview

Many graph-processing algorithms have been designed to analyze graphs in industry
and academic applications, for example, item and friend recommendation in social net-
works [84], cheater detection in online games [54], and subnetwork identification in
bioinformatics [64]. To address various graphs and applications, many graph-processing
systems have been developed on top of diverse computation and storage infrastruc-
ture. Among them, GPU-enabled systems promise to significantly accelerate graph-
processing [59]. Understanding their performance, for example to select, tune, and extend
these systems, is very challenging. Previous studies [52, 58] have investigated the perfor-

63

64

mance of popular CPU-based distributed systems, such as Giraph [43], GraphLab [87],
and Hadoop [141]. However, few of them include GPU-enabled systems. To address this
problem, in this chapter we conduct the first comprehensive assessment of GPU-enabled
graph-processing systems (including GPU-only and hybrid CPU and GPU systems).

We have identified three dimensions of diversity that complicate the performance eval-
uation of graph-processing systems in our previous work [52]. Dataset diversity originates
from the variety of application areas for graph processing, from genomics to social net-
works, from citation databases to online games, all of which may create unique graph
structures and characteristics. Algorithm diversity is the result of the different insights
and knowledge that users and analysts want to gain from their graphs—a large number of
algorithms have been developed for calculating basic graph metrics, for searching for im-
portant vertices, for detecting communities, etc. System diversity derives from the uncoor-
dinated effort of different groups of developers who try to solve specific graph-processing
problems, while tuning for their existing hardware infrastructure. Many graph-processing
systems have appeared in recent years, from single-node systems such as GraphChi [80]
and Totem [41] to distributed systems such as Giraph [43]; from generic systems such as
Hadoop [141] to graph specific systems such as GraphX [46]; from CPU-based systems
such as GraphLab [87] to single-node GPU-enabled systems such as Medusa [152] and
MapGraph [39]. (To date, no mature, distributed graph-processing system using GPUs is
publicly available.)

Understanding the performance of single-node GPU-enabled systems is important for
two main reasons. Firstly, we argue that many datasets already fit to be processed in-
memory on such systems. This corresponds, for example, to the datasets in use at many
Small and Medium Enterprise (SMEs), and thus may affect up to 60% of the entire indus-
try revenue [29]. Secondly, single-node systems are representative for, performance-wise,
and the basic building block of future GPU-clusters for graph processing.

Understanding the performance of graph-processing systems is difficult. There is no
analytical approach to understand their performance comprehensively. Thus, experimen-
tal performance evaluation studies [52, 58] have been recently proposed. However, they
do not cover GPU-enabled systems. Moreover, many new challenges, such as differ-
ent formats of in-memory graph representations, many optional optimization techniques
provided by GPU-enabled systems, and different types of equipped GPUs, make it chal-
lenging to thoroughly understand the performance of GPU-enabled systems.

Our vision [57] is a four-stage empirical method for the performance evaluation of
any graph-processing system. In this chapter, we extend our previous method [52] for
evaluating graph-processing systems to include GPU-enabled systems. We define sev-
eral new performance metrics to comprehensively evaluate the interesting performance
aspects of GPU-enabled graph-processing systems—raw processing power, performance
breakdown, scalability, the impact on performance of system-specific optimization tech-

65

niques and of the GPU generation. We then conduct experiments, by implementing 3
typical graph algorithms and selecting 9 datasets with different structures, on 3 GPU-
enabled systems—Medusa, Totem, and MapGraph. Our main contributions are:

1. We propose a method for the performance evaluation of GPU-enabled graph-
processing systems (Section 4.2). This method extends significantly our previous
work for evaluating the performance of graph-processing systems, by defining new
performance aspects and metrics, and by selecting new datasets and algorithms.

2. We demonstrate how our method can be used for evaluating and comparing GPU-
enabled systems in practice. We setup comprehensive experiments (Section 4.3),
which we then conduct for three GPU-enabled graph-processing systems (Sec-
tion 4.4). Last, we also identify, for these systems, various highlights and limi-
tations (Section 4.5).

4.2 Extended Method for GPU-Enabled Systems

Our previous method for the performance evaluation of graph-processing systems [52]
consists of four main stages: identifying interesting and important performance aspects
and metrics; defining and selecting workloads with representativeness and coverage; im-
plementing, configuring, and executing the experiments; and analyzing and presenting
results in standard format. To address the challenges of the performance evaluation of
GPU-enabled systems, in this section we adapt and extend our previous method, by iden-
tifying new performance aspects and metrics, and by selecting and including new datasets
and algorithms.

4.2.1 Performance Aspects, Metrics, Process

To understand the performance of GPU-enabled systems, we identify five important per-
formance aspects: three of them are adapted from our previous work, and two are newly
designed relative to our previous work. For each aspect, we use at least one perfor-
mance metric to quantify and characterize system performance. We further adapt for
GPU-enabled systems the process for measuring and calculating the metrics.

We consider five performance aspects in this chapter:

1. Raw processing power (adapted from previous work): reflects the user perception
of how quickly graphs are processed. We report in this chapter the run time of the
algorithm for GPU-enabled systems.

2. Performance breakdown (adapted from previous work): the algorithm run time is
not sufficient to understand all the details of system performance. Breaking down

66

the total execution time into separate processing stages (system initialization time,
algorithm run time, and data transfer time) enables the in-depth comparison of sys-
tems and, possibly, the identification of bottlenecks.

3. Scalability (adapted from previous work): the ability of a system to maintain its
performance behavior when resources are added to its infrastructure. In our method,
we test the vertical scalability (by adding GPUs) of systems in both strong and
weak scaling. The observed changes in performance depend on both the number
of added GPUs, and the algorithm and dataset. Indirectly, scalability allows us to
reason about how well do graph-processing systems utilize accelerators.

4. The impact on performance of system-specific optimization techniques (newly de-
signed): systems that can use different types of computing resources, for example
both CPUs and GPUs, allow programmers to provide different implementations of
the same algorithm, optimized for the different hardware. We study the impact of
such optimizations (e.g., load balancing, graph representation), to understand their
impact on system performance.

5. The impact on performance of the GPU generation (newly designed): several GPU
generations are currently present in computing infrastructures, from mobile devices
to servers and clusters. Understanding the correlation between their characteristics
(compute capability, the number of cores, and memory capacity) and the system
performance could guide users towards optimal (cost, performance) choices for
their applications.

We summarize in Table 4.1 the performance metrics used to quantify the five per-
formance aspects. For each of the metrics, we define how it can be obtained: by direct
measurement or by calculation using measured parameters and dataset (i.e., graphs) prop-
erties. We define the total execution time (TE) as the time from submission until comple-
tion. For each submission, we do not write output data to disk, but transfer the output data
from GPUs to host memory. Algorithm run time (TA) is the time used for actually exe-
cuting the graph algorithms. Total execution time can be divided into times for different
processing stages of the whole execution, including graph and configuration initialization
time (TI), algorithm run time (TA), data transfer time from device to host (TD2H), and
overhead time (TO) which includes the overhead in the initialization stage and the clear
up stage. TI can be further split into (1) graph initialization time (TI−G, which includes
reading and building graph in the host memory and transferring the graph data from host
to device (TH2D)) , and (2) algorithm configuration time (TI−C , which includes setting up
algorithm-related configuration parameters and initial values in GPUs). We formulate the
relationship of the total execution time and its breakdown as follows:

TE = TI−G + TI−C + TA + TD2H + TO

67

Table 4.1: Summary of performance metrics used in this study.
Metric How measured? Derived Relevant aspect (use)
Total execution Total time of the - Raw processing power

time (TE) full execution (Table 4.6)

Algorithm Time of the - Raw processing power

run time (TA) algorithm running (Figure 4.1, 4.2, 4.3)

Time breakdown Time of the - Performance breakdown

detailed execution (Table 4.6)

Strong scaling TA of multiple GPUs (N) - Scalability

for the same graph (Figure 4.4)

Weak scaling TA of multiple GPUs (N) - Scalability

for different graphs (Figure 4.6)

Normalized edges - #E/TA/N Scalability

per second (NEPS) (Figure 4.5)

Speedup - TA/T
′
A Optimization, GPUs

(Figure 4.7, 4.8, 4.9)

#E is the number of all edges of the executed algorithm. T ′A is the algorithm run time of a
different setup.

We define Edges Per Second (EPS) as the ratio between the number of all edges of the
executed algorithm and the algorithm run time. EPS is a straightforward extension of the
TEPS metric used by Graph500 [48]. To investigate the performance per computing unit,
we further define the performance metric Normalized Edges Per Second (NEPS) as the
ratio between EPS and the total number of computing units (GPUs in this chapter). For
the same algorithm running on the same dataset, but with different setups (optimization
techniques and GPU generations), we define the speedup as the ratio between the algo-
rithm run time of baseline (see Section 4.4.4 and 4.4.5 for our baseline settings) and that
of a different setup.

4.2.2 Selection of Graphs and Algorithms

In this section, we discuss our selection of graphs and algorithms, which we used to
evaluate the GPU-enabled graph-processing systems.

Graph Selection

We select nine different graphs and summarize their information in Table 4.2. We
select both directed (Amazon, WikiTalk, and Citation) and undirected graphs (KGS,
DotaLeague, Scale-22 to Scale-25). To comply with the requirement of many GPU-
enabled systems, we need to store input undirected graphs in a directed manner. Thus, for
each undirected edge, we create two directed edges as an equivalent. The selected graphs
match well to the datasets used by SMEs in terms of scale and diversity. The graphs are

68

Table 4.2: Summary of datasets used in this study.

Graphs V E d D̄ Max D
Amazon (D) 262,111 1,234,877 1.8 5 5

WikiTalk (D) 2,388,953 5,018,445 0.1 2 100,022

Citation (D) 3,764,117 16,511,742 0.1 4 770

KGS (U) 293,290 22,390,820 26.0 76 18,969

DotaLeague (U) 61,171 101,740,632 2,719.0 1,663 17,004

Scale-22 (U) 2,394,536 128,304,030 2.2 54 163,499

Scale-23 (U) 4,611,439 258,672,163 1.2 56 257,910

Scale-24 (U) 8,870,942 520,760,132 0.7 59 406,417

Scale-25 (U) 17,062,472 1,047,207,019 0.4 61 639,144
V and E are the vertex count and edge count of the graphs. d is the link density (×10−5).
D̄ is the average vertex out-degree. Max D is the largest out-degree. (D) and (U) stands
for the original directivity of the graph. For each original undirected graph, we transfer it
to directed graph (see Section 4.2.2).

from diverse sources (e-business, social networks, synthetic graphs), and different char-
acteristics (e.g., high vs. low average degree, directed and undirected graphs). The Scale-
22 to Scale-25 are undirected graphs created by the Kronecker generator introduced in
Graph500 [48], with the scale from 22 to 25 and edge factor of 16. The other graphs have
been collected from real-world applications, and have been shared through the Stanford
Network Analysis Project (SNAP) [121]) and the Game Trace Archive (GTA) [54].

Algorithm Selection

Considering the simplicity of the programming model of several GPU-enabled systems,
we avoid algorithms using complex messages and mutating graph structures. Based on
our comprehensive survey of graph-processing algorithms and applications [51], we select
BFS, PageRank, and WCC as representative for three popular algorithms classes: graph
traversal (used in Graph500), general statistics, and connected components, respectively.
We summarize the characteristics of these algorithms in Table 4.3.

Breadth First Search (BFS) is a widely used algorithm in graph traversal. BFS can
be used as a building block for more complex algorithms, such as all-pairs shortest path
and item search. BFS is a textbook algorithm. The PageRank algorithm (PageRank) is
originally designed to rank websites in search engines. It can also be used to compute the
importance of vertices in a graph. Several versions of PageRank have been proposed. In
this chapter, we use the version described in Medusa [152]. Weakly Connected Compo-
nent (WCC) is an algorithm for extracting groups of vertices connected via graph edges.
For directed graphs, we say a group of vertices is weakly connected if any vertex in this
group can be linked by an edge (no matter the direction) to another vertex in this group.
We select in this chapter an implementation of WCC created by Wu and Du [144].

69

Table 4.3: Summary of algorithms used in this study.

Algorithm Main features Use
BFS iterative, low processing building block

PageRank iterative, medium processing decision-making

WCC iterative, medium processing building block

Table 4.4: Summary of systems used in this study.

System Version Type Release date
Medusa Medusa-0.2 Multiple GPUs 2013-02

Totem Trunk version Hybrid, multiple GPUs 2014-08

MapGraph MapGraph 0.3.2 Single GPU 2014-04

4.3 Experimental Setup

In this section, we make a selection of GPU-enabled graph-processing systems, discuss
the implementation of the graph-processing algorithms on the selected systems, and set
the configuration of the parameters for running the algorithms.

4.3.1 System Selection

Compared with the number of CPU-based graph-processing systems, there are fewer
single-node GPU-enabled systems, and no distributed GPU-enabled graph-processing
systems available for the public. Thus, in this chapter, we select three of the most mature
single-node GPU-enabled graph-processing systems: Medusa, Totem, and MapGraph.
Table 4.4 summarizes our selected systems. We introduce each system in the following.

Medusa [152] is a graph-processing framework designed to help programmers use the
GPU computing power with writing only sequential code. To achieve this goal, Medusa
provides a set of user-defined APIs to hide the GPU programming details. Medusa can
support multiple GPUs. Medusa extends the Bulk Synchronous Parallel (BSP) model by
applying a “Edge-Vertex-Message” (EMV) model for each superstep. The EMV model
breaks down the vertex-centric workload into separate chunks; the key concepts related to
a chunk are vertices, edges, and messages. Compared with a vertex-centric programming
model, the fine-grained EMV model can achieve better workload balance of threads [152].
Medusa supports four different formats to store graphs in-memory: the vertex-oriented
format Compressed Sparse Rows (CSR, or AA used in [152]), the edge-oriented format
(ESL), the hybrid format (HY) of CSR and ESL, and the column-major adjacency array
(MEG, or CAA used in [152]). HY and MEG are designed to reduce the uncoalesced
memory access on GPUs. A graph-aware message buffer scheme is designed by Medusa
to achieve better performance of processing messages between vertices. To maintain this

70

Table 4.5: Experimental setup for each experiment in Section 4.4.
Section Systems Algorithms Datasets Metrics GPU (Machine Type) Graph Formats

4.4.1 All All 6 Algorithm run time GTX 480 (Type 1) CSR

4.4.2 All All 2 Total execution time and its breakdown GTX 480 (Type 1) CSR

4.4.3 Medusa, Totem PageRank 4 Strong and weak scaling, NEPS GTX 580 (Type 2) CSR

4.4.4 All PageRank 6 Speedup GTX 480 (Type 1) CSR, HY, MEG

4.4.5 All All 6 Speedup GTX 480, GTX 580, K20m (Type 1, 3, 4) CSR

buffer, a message index needs to be stored for each edge. For multiple GPUs, Medusa pro-
vides a multi-hop replication scheme and overlapping of computation and communication
to alleviate the pressure from data transfers between partitions.

Totem [41] is a graph-processing system that can leverage both the CPU and the GPU
(hybrid) as computing units by assigning graph partitions to them. Totem can also support
multiple GPUs (with or without the CPU). Totem uses a vertex-centric programming ab-
straction under the BSP model. Each superstep of the BSP model includes three phases:
a computation phase in which each computing unit executes the algorithm kernel on its
assigned partitions, a communication phase in which each computing unit exchanges mes-
sages, and a synchronization phase to deliver all messages. Totem strictly uses CSR to
represent graphs in-memory. To alleviate the cost of communication between partitions,
Totem uses user-provided aggregation to reduce the amount of messages and maintains
two sets of buffers on each computing unit for overlapping communication and compu-
tation. Totem implements other optimizations to improve the performance, for example,
partitioning graphs by the vertex degrees and placing higher-degree vertices on CPU.

MapGraph [39] is an open-source project to support high-performance graph pro-
cessing. The latest version (see Table 4.4) of MapGraph can only support a single GPU.
MapGraph uses a modified Gather-Apply-Scatter model [87] to present each superstep of
graph-processing algorithms. In the Gather phase, vertices collect updated information
from in-edges and/or out-edges. During the Apply phase, every active vertex in the cur-
rent superstep updates its value. In the Scatter phase, vertices send out messages to their
neighbors. For each superstep, MapGraph maintains an array called frontier which con-
sists of active vertices, to reduce the computation. The frontier for the next superstep is
created in the Scatter phase of the current superstep. MapGraph uses CSR and the Com-
pressed Sparse Column format (CSC [93], which is a reverse topology index of CSR) to
store graphs. MapGraph adapts two strategies, dynamic scheduling and two-phase de-
composition, to balance the workload of different threads.

Notation: From hereon, we use M for Medusa, T-H for Totem in hybrid mode using
both the CPU and the GPU, T-G for Totem using the GPU(s) as the only computing
resource, and MG for MapGraph.

71

4.3.2 System and Experiment Configuration

Hardware: We perform our experiments on DAS4 [21], which is a cluster with many
different types of machines to cater different computation requirements of researchers in
the Netherlands. We use four types of machines from DAS4 to conduct our experiments.
Type 1 includes an Nvidia GeForce GTX 480 GPU (1.5 GB onboard memory) and an
Intel Xeon E5620 2.4 GHz CPU. Type 2 is equipped with 8 Nvidia GeForce GTX 580
GPU (3 GB onboard memory per GPU) and dual Intel Xeon X5650 2.66 GHz CPUs.
Type 3 consists of an Nvidia GeForce GTX 580 GPU (3 GB onboard memory) and an
Intel Xeon E5620 2.4 GHz CPU. Type 4 has an Nvidia Tesla K20m GPU (5 GB onboard
memory) and an Intel Sandy Bridge E5-2620 2.0 GHz CPU. The machines are used for
different experiments as shown in Table 4.5.

Algorithms: Some of the algorithms belong to libraries distributed with the systems,
but the programming details may be different. When this is the case, we select a unique
implementation, as described in Section 4.2.2. For each algorithm, we set the parameters
identically on all systems. For BFS, we use the same source vertex for each graph on all
systems. For PageRank, we consider maximum iteration as the only termination condi-
tion and set maximum iteration to 10 times. WCC does not need any specific parameter
configuration.

System tuning: Several configuration parameters could be tuned in each system. The
tuning of parameters can change the performance of these systems. We explore the in-
fluence of several common techniques for system tuning in Section4.4.4. For the other
experiments, we use the default settings of each system. For example, for the hybrid mode
of Totem, we place on the CPU higher-degree vertices, that is, the vertices whose total
degree is about one third of the number of edges of the whole graph.

Dataset considerations: Because the WCC algorithm considers that two vertices are
connected when there is an edge between them, when running the WCC algorithm for
directed graphs (Amazon, WikiTalk, and Citation), we create a reverse edge for each pair
of vertices which are originally connected by a single directed edge. The new datasets
are AmazonWCC, WikiTalkWCC, and CitationWCC, with the number of edges 1,799,584,
9,313,364, and 33,023,481, respectively.

Further configuration and settings: For all systems, the GPU compiler is Nvidia
CUDA 5.5. We use CUDPP 2.1 [19] and Intel TBB 4.1 [65] as third-party libraries for
Medusa and Totem, respectively. We repeat each experiment 10 times, and we report the
arithmetic mean. We only show error bars in our scalability test, because in all the other
experiments our results from 10 runs are very stable, with the largest variance under 5%.

72

10
0

10
1

10
2

10
3

Amazon

WikiTalk

Citation

KGS
DotaLeague

Scale-22

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Datasets

M

T-H

T-G

MG

Figure 4.1: The algorithm run time for BFS of 6 datasets on all systems. (Missing bars
are explained in text.)

4.4 Experimental Results

In this section we present our experimental results. Table 4.5 summarizes our experimen-
tal setups. The experiments we have performed are:

• Raw processing power (Section 4.4.1): we have measured the algorithm run time
and we report it for all combination of algorithms, datasets, and systems.

• Performance breakdown (Section 4.4.2): we have analyzed the total execution time
in detail. We show the breakdown of the total execution time as introduced in
Section 4.2.

• Scalability (Section 4.4.3): we have measured the vertical scalability of Totem and
Medusa in both strong scaling and weak scaling.

• The impact on performance of system-specific optimization techniques (Sec-
tion 4.4.4): we have applied system-specific optimization techniques and we report
the impact they have on the performance of systems.

• The impact on performance of the GPU generation (Section 4.4.5): we have inves-
tigated the behavior of all three systems on three different generations of GPUs and
we report the performance changes we have observed.

4.4.1 Raw Processing Power: Algorithm Run Time

In this section, we reported a full set of experiments (all algorithms, all systems, and 6
datasets) and analyze the algorithm run time.

Key findings:

• Totem is the only system that can process all 6 datasets for all algorithms. Medusa
and MapGraph crash for some of the setups.

• There is no overall best performer, but in most cases Totem performs the worst.

73

10
0

10
1

10
2

10
3

10
4

Amazon

WikiTalk

Citation

KGS
DotaLeague

Scale-22

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Datasets

M

T-H

T-G

MG

Figure 4.2: The algorithm run time for PageRank of 6 datasets on all systems. (Missing
bars are explained in text.)

10
0

10
1

10
2

10
3

AmazonWCC

WikiTalkWCC

KGS
CitationWCC

DotaLeague

Scale-22

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Datasets

M

T-H

T-G

MG

Figure 4.3: The algorithm run time for WCC of 6 datasets on all systems.(Missing bars
are explained in text.)

• The optimization techniques used by the graph-processing systems lead to incon-
sistent performance benefits across different algorithms.

• Relative to the performance we have observed on CPU-based systems [52], the
results of the GPU-enabled systems studied in this chapter are significantly faster.

We report results for the NVIDIA GTX 480 GPU, which fits all real-world datasets
and the Scale-22 synthetic one (experiments on larger datasets are discussed in Sec-
tion 4.4.3). We show the algorithm run time, for each combination of setup parameters,
in Figures 4.1, 4.2, and 4.3. For the horizontal axis of each figure, we order the datasets
by their number of edges, from left to right.

We depict the performance of BFS in Figure 4.1. We see that only Totem can handle
all 6 datasets. Medusa and MapGraph crash attempting to construct DotaLeague and
Scale-22 in-memory and report an “out of memory” error. Although in these experiments,
all systems use the CSR format to store graphs in-memory, the implementation details are
different. Totem strictly represents the graph in the CSR format by using two arrays V
and E: array V contains the start indices that can be used to fetch the neighbor lists, which
are stored in array E. Medusa uses a structure of arrays, which includes extra data such as
the number of edges for each vertex and the message index for each edge. In MapGraph,

74

a graph is represented in both the CSR format and the CSC format in-memory. The usage
of CSC doubles the memory consumption.

In Figure 4.1, the two modes of Totem have longer run times than either Medusa or
MapGraph. An important reason for this is the different parallelism granularities of the
kernel. In Totem, the number of threads is the same as the number of vertices and each
thread processes one vertex [59]. This mapping can result in workload imbalance because
every thread’s workload is skewed by the degree of its assigned vertex. The performance
of Totem worsens when the vertex degrees are highly skewed, as seen for example, for
running T-G on the WikiTalk dataset (the degrees of most vertices in WikiTalk are smaller
than 10K, but there is one vertex with more than 100K neighbors). This imbalance can
be alleviated by assigning these higher-degree vertices to the CPU, as shown by the result
of T-H on Wikitalk. In Medusa, the whole workload is divided into three phases which
target individual vertices, edges, and messages. Medusa uses a fixed amount of blocks and
threads per block to process all vertices and all edges. The workloads of threads are well
balanced by assigning vertices and edges to threads in turn. MapGraph adapts complex
dynamic scheduling and two-phase decomposition to balance the workload of threads.

For the BFS algorithm (Figure 4.1), MapGraph performs best for all the graphs it can
handle. We attribute this advantage to the design of a frontier which maintains active
vertices for each superstep. For the BFS algorithm, the active vertices in each superstep
can be significantly less than the full set of vertices. Thus, for each iteration of BFS
on MapGraph, only a part of vertices are accessed and computed. Although Medusa
and Totem do not compute non-active vertices, both systems have to access all vertices.
The impact of the frontier is significant when the set of active vertices is small. For
example, the algorithm run time of Citation (BFS traverse coverage is 0.1%) is much
shorter than other datasets (BFS traverse coverages are greater than 98.5%). However,
the implementation of a frontier may have negligible impact for other algorithms, and
may even cause crashes of the system due to lack of memory.

For PageRank (see Figure 4.2), MapGraph cannot outperform Medusa with any
dataset because all vertices are active in each superstep (according to our implementa-
tion of this algorithm, see Section 4.2.2). This is in contrast to our findings for BFS
(Figure 4.1) regarding the impact of the frontier. Furthermore, MapGraph cannot process
KGS because it doest not have enough memory for maintaining such a larger frontier.

The comparison of the algorithm run time of WCC on three systems is shown in
Figure 4.3. Unlike the results of BFS and PageRank, the performance of Totem is not
always worse than Medusa and MapGraph; Totem exhibits better performance in both
hybrid mode and GPU-only mode on AmazonWCC, KGS, and CitationWCC. There are
three main reasons that lead to this result. Firstly, a large amount of updated information
needs to be send between supersteps of WCC. Totem aggregates the updated information
sent to the same vertex that can reduce the inter-superstep communication time. Secondly,

75

Table 4.6: The breakdown of running the BFS algorithm on the Amazon dataset and the
WCC algorithm on the AmazonWCC dataset. (All time values in milliseconds.)

BFS on Amazon WCC on AmazonWCC
M MG T-H T-G M MG T-H T-G

TI−G 1278.1
1064.9 339.1 316.6

1787.1
1519.0 477.8 452.4

TI−C 0.7 0.5 0.3 0.2 1099.9 1062.0

TH2D 8.1 3.3 1.1 1.8 10.3 4.3 1.5 2.3

TA 29.3 8.2 148.0 51.9 20.6 59.2 49.9 18.5

TD2H 1.5 0.6 0.6 0.4 1.5 0.4 0.7 0.8

TO 723.7 18.2 3.7 46.5 739.5 18.0 4.1 46.4

TE 2032.5 1092.7 491.9 415.7 2548.8 1596.9 1632.5 1580.2

the distribution of vertex degrees of AmazonWCC, KGS, and CitationWCC is not highly
skewed. Thirdly, the computation of the algorithm is not intensive. The second and third
reasons result in a relatively balanced workload for each thread.

From Figures 4.1, 4.2, and 4.3, we also find that the structure of graphs have consistent
impact on the algorithm run time of all three algorithms in two modes of Totem. For
instance, the algorithm run time of T-H is always more than that of T-G on Amazon, while
the algorithm run time of T-H is always less on WikiTalk, no matter which algorithm runs.

4.4.2 Performance Breakdown

In this section, we report, for each algorithm, the total execution time and its breakdown.
Key findings:

• The time for reading the graph and for constructing the graph in-memory dominates
the total execution time.

• The initialization time of the systems should be reduced.

Because the performance breakdown of PageRank is very similar to that of BFS, we
show the breakdown of the total execution time on Amazon for just BFS and WCC in Ta-
ble 4.6. Note that the input file of WCC is AmazonWCC, making the graph initialization
time TI−G for all systems longer than that of BFS on Amazon.

Overall, we notice that for all algorithms, the initialization time (including TI−G and
TI−C) is the major part of the total execution. Thus, the performance of initialization is es-
sential for improving the overall performance of such systems. Compared with Totem and
MapGraph, Medusa needs more time for initialization because it reads the input file by
words, not by lines, and even if a graph is not partitioned, the data structures for building
partitions are created and calculated. Medusa also shows longer overhead, mainly caused
by the initialization of system, such as configuring the L1 cache and shared memory of
the GPU. The graph initialization and algorithm configuration in Medusa are aggregated.

76

 0

 1000

 2000

 3000

 1 2 3 4 5 6 7 8

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

GPUs

T-G
T-H

T-H-GPU
M

Figure 4.4: The strong scaling of Totem and Medusa on Scale-22. (The missing point for
Medusa, # GPUs =1, is explained in Section 4.4.1.)

 0

 200

 400

 600

 800

 1000

1 2 3 4 5 6 7 8

N
E

P
S

 [
M

ill
io

n
]

GPUs

M T-H-GPU T-G

Figure 4.5: The normalized edges per second of processing Scale-22. (The missing bar
for Medusa, # GPUs =1, is explained in Section 4.4.1.)

MapGraph uses a two-step procedure to build CSR and CSC formats in-memory. A graph
input file is read into the Coordinate (COO) format [93], the tuples in COO are then sorted
and the CSR and CSC formats are constructed from COO. However, when algorithms do
not need the CSC format for execution, the time for building the CSC format is wasted.

For the WCC algorithm, each vertex is assigned an initial value using its vertex ID.
However, in the hybrid mode of Totem, input graphs are partitioned and all vertices are re-
assigned to new IDs in each partitions. Each partition keeps a map for mapping new IDs
in this partition to original IDs in the input graph. Thus, for the configuration of WCC,
Totem needs to access the map once for initializing the value of each vertex. Totem does
not support special mechanism for initializing one partition graph, thus the configuration
time of the GPU-only mode is as high as that of the hybrid mode. Medusa faces the same
long configuration problem when it uses multiple GPUs.

4.4.3 Evaluation of Scalability

In this section, we evaluate the scalability of Totem and Medusa with using multiple
GPUs.

77

 0

 2000

 4000

 6000

 8000

 10000

 1 2 4 8

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

GPUs

T-G T-H

Figure 4.6: The weak scaling of Totem.
Key findings:

• Totem and Medusa show reasonable strong and weak scaling with the increase of
the number of GPUs.

• Increasing the number of GPUs may not always lead to performance improvement.

All experiments in this section are executed on a machine with 8 Nvidia GTX 580
3GB GPUs. We assign vertices randomly to GPUs. Our scalability tests are using PageR-
ank because it is the most compute-intensive algorithm in this chapter as shown in Sec-
tion 4.4.1. We test both strong scaling and weak scaling. For strong scaling, we use the
Scale-22 graph which is the largest graph that can be handled by Totem with only one
GPU. We increase the number of GPUs from 1 to 8. The strong scaling results for T-H
include both the CPU workload (constant) and the GPUs workload (scaled). For weak
scaling, we use four generated graphs from Scale-22 to Scale-25, and test them on 1, 2, 4,
and 8 GPUs.

For strong scaling, we observe that Medusa exhibits better scalability than Totem
(Figure 4.4). The algorithm run time of Medusa keeps decreasing by adding more GPUs.
For Totem, in both T-H and T-G, the algorithm run time does not change too much after a
certain number of GPUs. However, due to the random placement of vertices, the workload
per GPU may not be balanced. Combined with the increasing time for communication,
the decreasing trend of the algorithm run time is not obvious with adding GPUs. As we
discussed in Section 4.4.1, the workload of each thread on a GPU is not well balanced
for Totem, which may cause the bad scaling after using 4 GPUs in T-G. As for T-H,
because the algorithm run time is dominated by the CPU computation, when using 2
GPUs or more, the performance remains almost constant. This can be proved by the
longest algorithm run time of all GPUs (represent as T-H-GPU). We also notice that T-H
shows more unstable behavior (note the error bars), which indicates that the algorithm
execution on the GPUs is more stable than on the CPU.

We show in Figure 4.5 the normalized edges per second (NEPS) for Medusa and
Totem. To compute NEPS, we first calculate EPS by dividing the algorithm run time

78

by the number of edges accessed by PageRank, then we normalize EPS by the number of
GPUs. For the hybrid mode of Totem, we only consider the scaled workload on GPUs, see
T-H-GPU in Figure 4.5. We compute the EPS of T-H-GPU using the longest algorithm run
time of all GPUs and the number of edges placed on GPUs (according to the configuration
in Section 4.3, about two thirds of edges are processed on GPUs). The NEPS of T-H-GPU
remains relatively constant at around 450 million. Because the higher-degree vertices are
mainly assigned to the CPU, the degrees of the vertices placed on the GPUs are not vary,
leading to a relatively balanced workload for each GPU and for each thread on a same
GPU.

The weak scaling of T-G is presented in Figure 4.6. We do not have results for Medusa
because the experiments using Scale-22 to Scale-25 crashed due to the high memory
consumption. T-H is only shown as a reference to T-G: due to the use of both a single
CPU (workload is not scaled) and multiple GPUs (workload is scaled). The efficiency of
weak scaling of T-G is 84%, 61%, and 38%, for using 2, 4, and 8 GPUs, respectively. The
efficiency decreases because the total workload does not grow linearly with the increase
of the graph scale, and this may also because the vertex degrees of larger graphs are more
skewed (Table 4.2).

4.4.4 Evaluation of System-Specific Optimization Techniques

Many optimization techniques can be used to change the performance of the graph-
processing systems studied in this chapter. In this section, we evaluate the performance
of Medusa when storing the graph in-memory using different representations, the per-
formance of Totem when using the different configurations for the virtual warp-centric
technique [62], and the performance of MapGraph when using different thresholds for
choosing its scheduling strategies.

Key findings:

• Performance improvements depend significantly on system-specific optimization
techniques.

• Advanced techniques may not always have a positive impact of the performance on
systems.

We choose PageRank because it is the most compute-intensive algorithm in our study.
To focus on the performance of the GPU, we do not report result from T-H.

Medusa can support several graph representations, CSR, ESL, hybrid (HY) format of
CSR and ESL, and MEG. HY requires a threshold value to calculate the proportion of
CSR and ESL. Figure 4.7 shows the speedup of building graphs in the MEG format (M-
MEG) and the HY format (with the threshold of 4 and of 16, represented as M-HY-4 and
M-HY-16, respectively). The threshold values for M-HY are the default value (16) and

79

 0.25

 0.5

 0.75

 1

 1.25

Amazon WikiTalk Citation KGS

S
p
e
e
d
u
p

Datasets

M

M-MEG

M-HY-4

M-HY-16

Figure 4.7: The speedup of different graph representations on Medusa.

 1

 3

 5

Amazon

WikiTalk

Citation

KGS
DotaLeague

Scale-22

S
p
e
e
d
u
p

Datasets

T-G

T-G-VWarp-8

T-G-VWarp-32

Figure 4.8: The speedup of using different virtual warp-centric setups on Totem.

representative for the average vertex degree (4). We set the performance of Medusa using
the CSR format as the baseline. It is very surprising that all MEG and HY experiments
have worse performance than the CSR format. This result is different from the result
of [152] with running PageRank on a RMAT dataset on Medusa, in which MEG and HY
are better. We cannot directly compare our results because as we shown in our previous
work [52], results can be very sensitive to datasets. M-HY-4 significantly outperforms M-
HY-16 on Amazon, WikiTalk, and Citation because the threshold is closer to their average
vertex degrees, which is similar to the result of [152].

To improve the performance of Totem, we use the virtual warp-centric technique to
balance the workload of threads in the algorithm kernel. Figure 4.8 illustrates the speedup
of the algorithm run time by using virtual warp (with virtual warp size of 8 and of 32,
represented as T-G-VWarp-8 and T-G-VWarp-32, respectively). The warp size values
are the default value (32) and representative for the graph properties (8). We set the
performance of T-G as the baseline. From Figure 4.8, we notice that both T-G-VWarp-
8 and T-G-VWarp-32 can obtain significant improvement, with the highest speedup of
around 7. T-G-VWarp-8 has better performance than T-G-VWarp-32 on Amazon and
Citation, whose average degrees are closer to 8. This finding matches to the result of the
work of [62] with running BFS on several datasets.

80

Table 4.7: Summary of the GPU generations used in this study. SP/DP denote single/dou-
ble precision operations.

GTX 480 GTX 580 K20m
Frequency (GHz) 1.40 1.57 0.71

Cores 480 512 2496

Peak GFLOPS (SP/DP) 1344.0/672.0 1603.6/801.8 3519.3/1173.1

Memory capacity (GB) 1.5 3 5

Peak Memory Bandwidth (GB/s) 177.4 193.0 208.0

We have also investigated the performance of tuning MapGraph. In the scatter phase,
dynamic scheduling and two-phase decomposition can be used to create the frontier of the
next superstep. MapGraph uses a threshold on the frontier size of the current superstep to
determine which strategy would be executed. We tune the threshold for running PageRank
on all datasets with various values (from 1 to 20000, default value 1000). The algorithm
run time is not sensitive to the threshold, with a variance within 2% for different thresholds
on the same dataset and algorithm. We further check the threshold influence on BFS and
WCC, and we get the same result as PageRank.

4.4.5 Evaluation of the Impact of the GPU Generation

In this section, we run all experiments of Section 4.4.1 on two other GPUs: GeForce GTX
580 and Tesla K20m.

Key findings:

• Memory consumption is a key issue of Medusa and MapGraph, when processing
the largest graphs in our study.

• Using a GPU with improved processing capability can help, but not always.

The details of GPUs are introduced in Table 4.7. We compare the performance of
systems deployed on different generations of GPUs. We present a representative selection
of results from the whole set of experiments. To focus on the performance impact of the
GPU generation, we do not report results from the hybrid mode of Totem in this section.

Table 4.8 shows, for WCC, the change of processable datasets of Medusa and Map-
Graph on GTX 480, GTX 580, and K20m. We choose the WCC algorithm because on
GTX 480, it has the most number of datasets that cannot be processed on Medusa and
MapGraph. We use “Y” to depict a dataset that can be processed and “N” for crashes.
For each crash, we present the reason why it happens. “F” represents a crash that occurs
when the graph cannot Fit into the GPU memory at the initialization time. “R” represents
a crash that happens during the Run time of WCC. For each R, we further detail if it is
caused by out of Memory or CUDA Error. From Table 4.8, we find that more datasets can

81

Table 4.8: The success of running the WCC algorithm on Medusa (M) and MapGraph
(MG). (“Y” denotes successful processing. All other values denote crashes, see text for
details.)

GTX 480 GTX 580 K20m

KGS
M Y Y Y

MG N (R: M) Y Y

CitationWCC
M Y Y Y

MG N (R: M) N (R: M) Y

DotaLeague
M N (F) N (R: E) N (R: E)

MG N (F) N (R: M) N (R: M)

Scale-22
M N (F) N (F) N(R: E)

MG N (F) N (F) N (R: M)

 0

 1

 2

 3

 4

M(Amazon)

MG(Amazon)

T-G(Amazon)

 M(Citation)

MG(Citation)

T-G(Citation)

 T-G(DotaLeague)

 T-G(Scale-22)

S
p
e
e
d
u
p

Systems (Datasets)

GTX 480

GTX 580

K20m

Figure 4.9: The speedup of running PageRank using different GPU generations.

be processed by using GPUs with larger memory. For example, MapGraph can handle
KGS and CitationWCC on K20m. We also observe that DotaLeague and Scale-22 still
cannot be processed by Medusa and MapGraph. For DotaLeague and Scale-22 on Map-
Graph, all crashes are caused by out of memory, either in initializing the graph or running
the algorithm with large frontier. For Medusa, although memory is not the bottleneck on
K20m, CUDA errors are reported by its library CUDPP 2.1 [19].

In Figure 4.9, we report the obtained speedup for every system when using different
GPU generations. We set the performance on GTX 480 as a baseline and we pick the
PageRank algorithm because it has the longest algorithm run time in our study. For the
datasets, we choose Amazon (smallest dataset), Citation (the largest dataset that can be
processed by all systems on GTX 480), DotaLeague (the largest real-world dataset), and
Scale-22 (synthetic graph). In most cases, the performance we observed increases when
using more powerful GPUs. For Medusa and MapGraph, the performance improvement is
not significant. We even find performance degradation: for instance, T-G’s performance
on GTX 580 is worse than that on GTX 480. Overall, we note that simply migrating
systems to more powerful GPUs may not be sufficient to obtain much higher performance,

82

as we would expect. To get better performance, additional parameter tuning may be
performed.

4.5 Qualitative Analysis of User Experience

Performance is a key issue for selecting systems. From the perspective of an end user, the
usability of the systems is also important. In this section, we discuss our user-experience
with each of the selected system. We also compare the experience of using GPU-enabled
systems with our prior experience as users of CPU-based systems.

For Medusa, as the designers of Medusa claim, we could use the fewest lines of code,
relative to the other systems considered in this study, to implement the core part of the
algorithms. However, it takes more lines of code and more effort to design the data
structure for each of vertices, edges, and messages. The graph representation and the
design of the message buffer are not memory-efficient, which limit the scale of the graphs
that can be processed by Medusa. The errors reported by the third-party messaging library
(see Section 4.4.5) reveal that Medusa needs further validation with this library. Learning
how to use Medusa is not easy, because the documentation is scarce.

For Totem, we needed a majority of the lines of code for the core part of algorithms,
because no high-level API is provided. We had to implement two different versions of
every algorithm, for the CPU and for the GPU. The performance of Totem relies on the
implementation of algorithms, as users have to address the details for coding the kernel
for the GPU. Totem can process the largest datasets among the three systems, because
it has efficient memory usage, and because it can use the storage resources of the host.
The documentation about Totem is also scarce, but the clear structure of the project and
a large number of algorithm examples can help users get familiar with the system better
than Medusa.

MapGraph provides a set of APIs for users. Similarly to Medusa, users do not need
to touch kernel-programming on the GPU. MapGraph lacks the ability to handle large
datasets, as it is the most memory-consuming system in our study. MapGraph has better
documentation than Medusa and Totem, but a comprehensive user tutorial is still needed.
For the future, MapGraph promises to evolve towards a distributed system that can use
GPU-clusters.

Compared with CPU-based systems [51], there are still many aspects to be improved
in GPU-enabled graph-processing systems. We point out three main issues: the scale of
graphs could be processed is rather small, primarily due to lack of memory; it is difficult
to implement graph algorithms with complex message delivery and with graph structure
mutation, because the GPU programming models may not be suitable for these aspects;
the developer and user community is smaller and less active than for CPU-based systems.

83

4.6 Related Work

Motivated by the increasing practical need for graph-processing systems, many studies
have focused on the performance evaluation of graph-processing systems in the past two
years. Combined, this body of work compares the performance of many graph-processing
systems, using many performance aspects and metrics, tens of diverse datasets, and var-
ious graph-processing algorithms and applications. However, individual studies rarely
combine these desirable features of a performance evaluation study. This work comple-
ments all these previous studies with a process that focuses on a new class of systems
(GPU-enabled instead of CPU-based) and reports on a more diverse set of metrics.

Elser and Montresor [28] evaluate the performance of 5 distributed systems for graph
processing but use only 1 graph algorithms and only 1 performance metrics. Our previous
work [52] proposes an empirical method for benchmarking CPU-based graph-processing
systems and reports the performance of the systems using more metrics and broader work-
load concerns. Han et al. [58] use similar performance metrics to [52] and focus on a fam-
ily of Pregel-like systems. Lu et al. [88] include the influence of algorithmic optimizations
and the characteristics of input graphs.

Most of the previous evaluation studies were proposed on CPU-based systems. Rela-
tively few performance evaluation studies focus on GPU-enabled systems. Most of these
studies were proposed by system designers to exhibit their system, and may lack the
method or bias necessary for this kind of studies. Specifically, the previous studies on the
performance of GPU-enabled systems lack representative workloads [38], performance
metrics [39,152], and comparative systems [41,76]. Our study is the first in-depth perfor-
mance evaluation study of GPU-enabled graph-processing systems.

4.7 Summary

Using the capability of GPUs to process graph applications is a new promising branch of
graph-processing research. A number of GPU-enabled graph-processing systems, with
different programming models and various optimization strategies, have been developed,
which raises the challenging question of understanding their performance. We conduct
in this chapter the first comprehensive performance evaluation of GPU-enabled graph-
processing systems.

This method significantly extends our previous work on the topic, by adapting perfor-
mance aspects and introducing performance metrics that focus on GPU-enabled systems,
by adding more datasets, and by focusing on important graph-processing algorithms. We
focus on the following performance aspects: raw processing power, performance break-
down, scalability, the impact on performance of system-specific optimization techniques
and of the GPU generation. We use at least one performance metric to quantify each per-

84

formance aspect, such as total execution time and its breakdown to measure detailed per-
formance, normalized metric NEPS to characterize scalability, etc. We select 9 datasets
with diverse characteristics from both real-world domains and popular synthetic graph
generators, up to scales of more than 1 billion directed edges. We also select 3 graph
algorithms that are commonly used by the GPU graph-processing community.

We use the proposed method and report the first comprehensive performance evalua-
tion and comparison of 3 GPU-enabled graph-processing systems, Medusa, Totem, and
MapGraph. We show the strengths and weaknesses of each system and list key findings
for each of our experiments. Overall, we conclude that understanding the performance of
these systems can be very useful, but requires an in-depth experimental study.

Chapter 5

Designing Streaming Graph
Partitioning Policies

In this chapter, we model the execution time of distributed graph-processing systems. By
analyzing this model under the load of realistic graph-data characteristics, we propose a
method to identify important performance issues and then design new streaming graph-
partitioning policies to address them. By using three typical large-scale graphs and three
popular graph-processing algorithms, we conduct comprehensive experiments to study
the performance of our and of many alternative streaming policies on a real distributed
graph-processing system. We also explore the impact on performance of using different
real-world networks and of other real-world technical details. We further discuss how to
use our results and the coverage of our model and method.

5.1 Overview

The scale of graphs is increasing rapidly in recent years, and has already exceeded the
processing capabilities of single machines. Distributed graph-processing systems such
as Pregel [92], GraphLab [87], and GraphX [46], have been designed and developed to
process large-scale graphs by using the computation and memory capabilities of clusters.
For such systems, graph partitioning is essential in achieving good performance, because
it determines the computation workload of each working machine and the communication
between them. Many streaming graph partitioning policies [126,133,146] have been pro-
posed to efficiently partition graphs into balanced pieces for distributed graph-processing
systems. Streaming graph partitioning treats graph data as an online stream, by reading
the data serially and then determining the target partition of a vertex when it is accessed.
However, the impact on the overall system performance of these partitioning policies has

85

86

not been thoroughly evaluated on real graph-processing systems, and the understanding of
the performance issues raised by such policies when used in real-world graph-processing
systems is currently relatively limited. Gaining such knowledge can lead to the design of
new policies, to new methods for tuning existing policies, and in general to better sys-
tem design for distributed graph processing. Addressing this lack of understanding is
the goal of our present work, in which we model, analyze and design new policies, and
experimentally compare streaming graph-processing policies in real-world environments.

In this chapter we address the following five important challenges in partitioning large-
scale graphs. The first challenge is partitioning graphs into splits with balanced numbers
of vertices while minimizing edge-cuts, which is an NP-complete problem [1]. For graphs
with billions of edges [15], the partitioning time can become too long, even when using
partitioning heuristics. Second, many graphs of interest are not static but dynamic, with
vertices and edges being added all the time. As a consequence, graph partitioning is then
an online streaming process rather than an offline process. Third, the performance of par-
titioning depends on the graph-processing application. Fourth, because they are designed
to address the needs of specific communities, each with their own applications and do-
mains of expertise, graph-processing systems are designed around different programming
models and generally take different evolutionary paths. The core programming model,
which specifies how the system performs computation on vertices and how the distributed
components of the system communicate, can affect the performance impact of partition-
ing. Fifth, the structure and capacity of the cluster used may impact the performance
effect of a partitioning policy on the run time of graph-processing systems. For instance,
switching the network from relatively low-speed Ethernet to high-speed InfiniBand, or
the level of heterogeneity of a cluster [146] may change the relative merits of partitioning
policies.

Many graph-partitioning approaches have been proposed to address these challenges,
from offline partitioning heuristics to online, streaming, graph-partitioning policies.
These partitioning-centric studies focus on the design of reasonable partitioning policies
that are based on heuristics and rely on a limited set of theoretical metrics, such as the
edge cut ratio [126], the number of vertices per partition [75, 112], etc. The partitions are
created online by real-world graph-processing systems, which indicate that empirical met-
rics, such as partitioning time and algorithm run time are important for system developers
and users. However, few partitioning policies have been proposed from the perspective of
real systems. In contrast to such policies, the policies designed from a more theoretical
perspective lack of simplicity and of considering the relationship between the computa-
tion and the communication, because they use relatively complicated heuristics and focus
on minimizing the communication. And also, few experiments have been conducted on
real graph-processing systems to evaluate the performance of existing partitioning poli-
cies. As our own and related studies [52, 56, 88] of entire graph-processing systems have

87

shown, the results reported from narrow experiments can misreport performance by or-
ders of magnitude, especially when the input workloads and the algorithms change from
the conditions tested in the limited studies.

In this chapter, we address the challenges of streaming graph partitioning and the
problem of relative lack of understanding about streaming graph-partitioning policies.
Our main contributions are:

1. We model the run time of distributed graph-processing systems. We set the objec-
tive function of partitioning to minimizing the run time (Section 5.2). Our model
extends related work [146] by including different programming models and imple-
mentation of graph-processing systems.

2. We conduct an experimental analysis of the performance implications of partition-
ing policies, using our run time model and conducting real-world measurements on
a real-world graph-processing system—PGX.D [61]. We find out what graph char-
acteristics are closely related to the run time. We further propose streaming graph
policies based on the run-time-influencing graph characteristics (Section 5.3).

3. We evaluate and compare the performance of our policies, other streaming alter-
native, and also the start-of-the-art offline partitioner—METIS [72] on PGX.D, by
using 3 large-scale graphs and 3 popular graph-processing algorithms. We use a set
of metrics to present the partitioning performance, such as run time, partitioning
time, edge cut ratio, scalability, etc. We also consider the impact of different real-
world networks (Ethernet and InfiniBand) and the impact of a common technique
(selective ghost node) used by graph-processing systems (Section 5.4).

4. We discuss how to use our results and the coverage of our method for different types
of real-world graph-processing systems (Section 5.5).

5.2 A Model of Graph Processing Systems

In this section, we model the run time of different types of graph-processing systems
and we discuss the objective function of graph partitioning of real graph-processing sys-
tems. We focus on graph-processing systems that follow the BSP programming model,
that is, for which the graph-processing algorithm is executed in super-steps or iterations.
Our model focuses on two-phase systems (described later in this section), but it can also
represent single-phase systems such as the Pregel-based Apache Giraph. We consider in
our model machine-level and thread-level programming abstractions, and blocking and
parallel I/O. Conceptually, our model derives non-trivially from prior work; in contrast
to the prior model of Xu et al. [146], which is the closest related work to our present

88

study, our model considers a much larger variety of systems and has a higher granularity
of processing units.

Similarly to the model of Xu et al. [146], suppose we have M working machines
running N iterations of the same process. If T k

i is the run time on machine i of the k-th
iteration of some application, and if T k denotes the (total) run time of the k-th iteration
across all machines, then we have:

T k = max
i
{T k

i }, k = 1, 2, . . . , N. (5.1)

The total run time Tr of the application running on multiple machines can now be pre-
sented as:

Tr = ΣT k, k = 1, 2, . . . , N. (5.2)

We assume conservatively that in each iteration all vertices are active (that is, consid-
ered for processing) and that messages are sent to all their neighbors, for three reasons.
First, many popular algorithms match well this assumption, such as community detec-
tion [105] and PageRank [104]. Second, previous policies, and in particular the commonly
used family of policies based on METIS, partition the whole graph with all its vertices
and edges, so they implicitly follow this assumption. Last, predicting, for different al-
gorithms, which of the vertices and edges become active during an arbitrary iteration is
an open and challenging problem, but not a part of real-world graph-processing systems.
Currently, no real graph-processing system is able to make prediction-based workload
balancing in each iteration. Under this conservative assumption, the run time of every
iteration on each machine can be considered to be equal, say to value T i, and so we can
simplify Eq. (2) to:

Tr = N ×max
i
{T i}. (5.3)

From the survey [95], there are three vertex-centric programming abstractions of
graph-processing systems: one-phase abstraction, two-phase abstraction, and three-phase
abstraction. For each iteration, the one-phase programming abstraction runs a single com-
putation function, which consists of three computation tasks: processing incoming mes-
sages, applying vertex values, and preparing outgoing messages. The communication
starts after the completion of the single computation function. The one-phase abstrac-
tion is often used in practice, for example in Pregel-like systems [43, 92]. The two-phase
abstraction usually refers to two computation phases: the scatter phase (for preparing out-
going messages) and the gather phase (for processing incoming messages and applying
vertex values). The communication happens between the scatter phase and the gather
phase. The two-phase abstraction has been implemented in systems such as PGX.D [61].
Importantly, most one-phase systems can be converted to two-phase systems [95], but the
reverse may not be true. We summarize in Table 2 the notation we propose for the time of

89

Table 5.1: Notations for the time of computation and communication of machine i.

Symbol Meaning
T

g

i time spent processing incoming messages and applying vertex values across all threads.

T
g

i,l time spent processing incoming messages and applying vertex values in the l-th thread, l = 1, 2, ..., L.

T
s

i time spent preparing outgoing messages across all threads.

T
s

i,q time spent preparing outgoing messages in the q-th thread, q = 1, 2, ..., Q.

T
x

i time spent in communication, data transfers.

L number of threads involved in processing incoming messages and applying vertex values

Q number of threads involved in preparing outgoing messages

Figure 5.1: The computation phases and communication in one iteration of the Scatter-
Gather abstraction.

the computation tasks and for the communication. The three-phase systems usually use
the vertex-cut partitioning, which is out of the scope for this work. We further discuss
three-phase systems, as a future extension of our modeling work, in Section 5.5.2.

Graph-processing systems can use one of the following two I/O modes, between com-
putation and communication: blocking I/O and parallel I/O. With blocking I/O, com-
putation and communication are executed serially. With parallel I/O, computation and
communication can execute in parallel, with at least parts of the execution overlapped.
For blocking I/O, T i is the sum of the time spent on all computation phases and on com-
munication. For parallel I/O, T i is determined by the longest among the two computation
phases and communication. We show in Figure 5.1 two computation phases and commu-
nication in one iteration of the Scatter-Gather abstraction.

Another important aspect of graph processing that we consider in our model is the
granularity of the programming abstraction. In real graph-processing systems, where
multi-threading has been used to accelerate computation, the run time of a computation
phase is determined by the thread with the longest run time.

Table 5.2 summarizes the run time of a single iteration executed on machine i for
different programming abstractions and I/O modes, in coarse-grained machine-level and
fine-grained thread-level. Because the one-phase abstraction uses a single computation

90

Table 5.2: The time for one iteration (T i) for different programming abstractions and I/O
modes

System I/O block, machine-level I/O block, thread-level I/O parallel, machine-level I/O parallel, thread-level
One-phase T

g

i + T
s

i + T
x

i max(T
g

i,l + T
s

i,l) + T
x

i max(T
g

i + T
s

i , T
x

i) max(max(T
g

i,l + T
s

i,l), T
x

i)

Two-phase T
g

i + T
x

i + T
s

i max(T
g

i,l) + T
x

i + max(T
s

i,q) max(T
g

i , T
s

i , T
x

i) max(max(T
g

i,l),max(T
s

i,q), T
x

i)

function, all computations for a vertex are always executed by the same thread, which
means processing incoming messages and applying vertex updates cannot be parallelized
with preparing outgoing messages. For the parallel I/O mode of the two-phase abstraction,
the threads of a working machine need to be assigned to different computation phases
to gain all the possible performance through parallelism. Thus, the assignment of the
threads is an important factor for the run time of working machines. Moreover, for threads
in the same phase, being able to balance their workload is crucial for achieving high
performance.

The models we summarized in Table 5.2 are used to determine the graph character-
istics that may have an impact on the run time of graph-processing systems (see Sec-
tions 5.3.1 and 5.3.2). However, the models cannot be used to (precisely) predict the
run time of graph-processing systems, because the relationships between every time com-
ponent (such as T

g

i) of the models and the graph characteristics are not explored. It is
non-trivial to formulate uniform relationships for various graphs, datasets, and systems.

The main target of partitioning graphs for real graph-processing systems is to achieve
the shortest run time. Similarly to Xu et al. [146], we set the objective function for finding
a graph partitioning that minimizes the total run time Tr:

min{Tr} = N ×min{max
i
{T i}} (5.4)

In the following section, we investigate what are the interesting graph characteristics
that affect the run time of the computation phases and communication, and we use this
information to design new partitioning policies.

5.3 Design of Graph Partitioning Policies

The aim of this section is to design good graph-partitioning policies. In order to do
so, we want to identify the graph characteristics that have significant impact on the run
time of graph-processing systems. In Section 5.3.1, we propose a method for identifying
such graph characteristics, and in Section 5.3.2 we empirically validate this method in
the PGX.D graph-processing system. Then in Section 5.3.3 we design new streaming
graph-partitioning policies according to the graph characteristics we identified.

91

Figure 5.2: Our 3-step method for identifying the run-time-influencing graph characteris-
tics of a two-phase system. (The selection from the communication component may not
be performed if the communication is overlapped by the computation, depicted as dashed
lines and further discussed in Section 5.3.2.)

Table 5.3: The characteristics of a partition of a graph

Characteristic Symbol Definition
Number of vertices #V vertex count

Remote in-degree Dri the number of in-edges from other partitions

Remote out-degree Dro the number of out-edges to other partitions

Local in-degree Dli the number of in-edges in the partition

Local out-degree Dlo the number of out-edges in the partition (equal to local in-degree)

Total in-degree Dti the sum of remote in-degree and local in-degree

Total out-degree Dto the sum of remote out-degree and local out-degree

Remote degree Dr the sum of remote in-degree and remote out-degree

Local degree Dl the sum of local in-degree and local out-degree

Total degree Dt the sum of remote degree and local degree

5.3.1 Identifying the Run-Time-Influencing Characteristics

As many popular graph-processing systems [43,92] can only process directed graphs, we
consider without loss of generality graph-processing systems that use a directed graph
representation. In Table 5.3 we distinguish a number of characteristics of a partition of a
directed graph that may have an impact on the run times of graph processing algorithms.
Our target is to identify the graph characteristics that actually have the strongest such
impact. We propose the following three-step method to achieve this, which is illustrated
for a two-phase system in Figure 5.2.

Step 1: Determine the run time model of the graph-processing system from the possi-
bilities listed in Table 5.2.

92

Step 2: Determine the Potential Run-Time-Influencing (PRTI) graph characteristics
that may have an impact on the run time given the model determined in Step 1. These char-
acteristics represent the candidate set for Step 3 of our method. The PRTI graph charac-
teristics may vary for different graph-processing algorithms and perhaps even for the dif-
ferent components (e.g., computation and communication) of the same graph-processing
algorithm, and for the model of the graph-processing system. For each component (even
each phase if the model includes multiple phases) of the algorithm, we select a set of PRTI
graph characteristics according to the graph entities operated by the graph algorithm. For
example, the number of vertices (#V) is always selected for the scatter phase (one phase
of the computation component) because vertices are processed during the computation,
and the remote out-degree (Dro) is selected for the communication component if the al-
gorithm sends messages by remote out-going edges.

Step 3: Identify from the PRTI graph characteristics the actual Run-Time-Influencing
(RTI) graph characteristics that are strongly related to the run time of (a phase or compo-
nent of) an algorithm. In order to do so, we first create different candidate subsets from
each set of PRTI graph characteristics for the partial set of RTI graph characteristics. We
will show how to create these subsets in Section 5.3.2. We take an experimental approach
to pick the appropriate subset. For each experiment, we measure the run time of each
working machine and we calculate the values of the graph characteristics of the partition
stored on it shown in Table 5.3. For each candidate subset, we conduct a linear regres-
sion [98] between the run times of the working machines and the values of the graph
characteristics in that subset of the partitions assigned to them. In this way, we obtain a
value of the R-squared (R2) coefficient from every experiment.

We perform multiple experiments using different setups (in terms of system config-
urations, datasets, and graph-partitioning policies) and we build a histogram with the
numbers of occurrences of the R2 value in given ranges (for an example, see Table 5.6).
We select as the partial set of RTI graph characteristics the subset of PRTI with the most
occurrences in the highest range of R2 values. After having obtained the partial sets of
RTI characteristics of multiple phases/components of an algorithm, they can be combined
to form the set of RTI characteristics of the whole algorithm. The RTI graph charac-
teristics are strongly determined by the behavior of graph algorithms and the model of
graph-processing systems. Using different datasets may affect the coefficients of the lin-
ear regression between the run times and the values of the subset of PRTI graph char-
acteristics, but not affect the distribution of the R2 values. So, the obtained RTI graph
characteristics are also applicable for other graphs that are not used in the experiments.

93

5.3.2 Empirical Results Validating the Method

We will now empirically validate the method from the previous section for the PGX.D
graph-processing system.

Step 1: We use Table 5.2 to identify the run time model corresponding to PGX.D.
As PGX.D is a multi-threaded graph-processing system with two-phase abstraction and
parallel I/O, its run time model is:

T i = max(max(T
g

i,l),max(T
s

i,q), T
x

i). (5.5)

Step 2: We seek to understand the operation of PGX.D in order to select the PRTI
characteristics. In PGX.D, the threads assigned to the scatter phase and the gather phase
are called worker threads and copier threads, respectively. PGX.D balances the workload
across its worker threads with the edge-chunking technique and across its copier threads
with the max-slot first strategy. So, max(T

g

i,l) and max(T
s

i,q) are equal to the average
run time of worker threads and copier threads, respectively. PGX.D uses the continua-
tion mechanism to buffer and combine messages between working machines to reduce
communication. A dedicated poller thread is maintained in each working machine for
sending and receiving messages. PGX.D implements a commonly used technique, called
Selective Ghost Node (SGN), to further reduce the network traffic. SGN duplicates the
high-degree vertices (ghosts) in each partition. A vertex is selected as a ghost if the sum
of its in-degree and out-degree is larger than a pre-defined threshold. The use of SGN is
optional for users.

We apply Step 2 of our method on different components of the PageRank algorithm.
The scatter phase in PageRank reads all vertices and prepares messages to remote neigh-
bors through the out-edges of each vertex. Therefore, the PRTI graph characteristics of
the scatter phase are the number of vertices, the remote out-degree, the local out-degree,
and the total out-degree. The gather phase in PageRank processes all incoming messages
and updates each vertex, and so, the PRTI graph characteristics of the gather phase are the
number of vertices and the remote in-degree. The only PRTI graph characteristic of the
communication component in the PageRank algorithm is the remote out-degree.

Step 3: In order to identify the RTI graph characteristics for PGX.D, we perform
experiments with PageRank (maximum 10 iterations) with PGX.D deployed on a 16-
machine cluster in Oracle Labs with properties as in Table 5.4. We explain the exper-
imental setup in terms of the system configurations, the datasets, and the partitioning
policies that we employ.

We use four system configurations of worker and copier threads: w24c2, w18c8,
w12c14, and w6c20 [61], where the notation w24c2 means that we set 24 worker threads
and 2 copier threads in each working machine, etc. We conduct experiments with or
without using the SGN technique.

94

Table 5.4: The environment of our experiments

Category Item Detail

CPU
Type Intel Xeon E5-2660

Frequency 2.20 GHz

Parallelism 2 socket * 8 core * 2 HT

Network
Card Mellanox Connect-IB

Switch Mellanox SX6512

Raw BW 56 Gbit/s (per port)

Software
OS Linux 2.6.32 (OEL 6.5)

Compiler gcc 4.9.0

We use three large-scale graphs, Twitter, Scale 26, and Datagen p10m (see Table 6.4).
The Twitter dataset is one of the largest publicly available real-world datasets and con-
sists of a graph of its users with the follower relationships between them. Scale 26 is a
synthetic graph generated by the Graph500 generator, with a scale factor of 26. Graph500
is the de-facto standard for comparing hardware infrastructures for graph processing sys-
tems. Datagen p10m is created by the Linked Data Benchmark Council (LDBC) gen-
erator, which aims to produce graphs with structures and properties similar to those of
real-world social networks, such as Facebook. The LDBC generator is used by the Graph-
alytics project [10], which is an active big data benchmark for graph-processing systems.
The two generated graphs contain roughly 1 billion edges, and are comparable in size to
the Twitter dataset. We set the threshold for ghost selection of SGN to 50,000 for Twitter
and Scale 26, and to 600 for Datagen p10m.

We use three streaming graph-partitioning policies incorporated in PGX.D, viz. the
in-degree balanced policy (I), the out-degree balanced policy (O), and the total degree bal-
anced policy (IO). All policies assign vertices to partitions by balancing the in-degree, the
out-degree, or the total degree across partitions. To this end, each policy first determines
the average (in-/out-/total) degree per partition, and then assigns vertices sequentially to
the partitions, going from one partition to the next when the (in-/out-/total) degree of the
former exceeds the corresponding average.

We obtain 72 executions of PageRank by combining all system configurations with or
without SGN (4x2), all datasets (3), and all partitioning policies (3). We find that the run
time of PageRank is dominated by either the scatter phase or the gather phase. As PGX.D
optimizes the network traffic and is deployed on the high-speed InfiniBand network, the
communication time in PageRank is overlapped by both the scatter and gather phases. In
Figure 5.3, we show the run time of a single iteration, the run time of the longest worker
thread, and the run time of the longest copier thread of PageRank for Twitter when using
the w12c14 configuration. We notice that for all policies the run time of a single iteration

95

Table 5.5: Summary of datasets

Dataset V E d D̄ Q1 Q2 Q3 Max D Type & Source
Twitter 41,652,230 1,468,365,182 8 35 5 13 34 3,081,112 Real-world, Public [79]

Scale 26 32,804,978 1,073,741,824 10 33 1 4 17 1,710,236 Synthetic, Graph500 [48]

Datagen p10m 9,749,927 687,174,631 72 70 30 87 204 648 Synthetic, LDBC [81]

V and E are the vertex count and edge count of the graphs. d is the link density (×10−7).
D̄ is the average vertex out-degree. Q1, Q2, and Q3 are the first quartile, median, and the
third quartile of vertex total-degree, respectively. Max D is the largest vertex total-degree.

 0

 500

 1000

 1500

I IO O

R
u
n
 t
im

e
 [
m

s
]

Policies

Iteration

The longest worker thread

The longest copier thread

Figure 5.3: The run time of an iteration, of the longest worker thread, and of the longest
copier thread of PageRank for Twitter using system configuration w12c14.

is approximately 50 ms higher than the maximum run time of the longest worker and
copier threads, which is due to the overhead of the system. We have similar findings for
other system configurations. Thus, we only need to consider the scatter and gather phases
to select the RTI graph characteristics.

For each execution, we measure the run times of the scatter and gather phases, re-
spectively, of the sixteen working machines and we calculate for each machine the values
of the graph characteristics of its graph partition. We consider different candidate sub-
sets of RTI characteristics from the PRTI set, which we evaluate empirically in order to
determine the RTI graph characteristics. We could consider all subsets of the PRTI set
as candidates, but in practice, we can use previous knowledge to consider fewer subsets.
For example, we derive three subsets of characteristics from the PRTI set of the scatter
phase: the number of vertices (#V) and the total out-degree (Dto), only Dto, and the local
out-degree (Dlo). We consider the subset consisting of only Dto because many previous
partitioning policies focus on it. The subset of #V and Dto is considered because during
our experiments we found that some partitions with similar Dto but different #V have
(significantly) different run times. The subset of Dlo is randomly created as a control sub-
set in order to show how weak the relationship between the run time of the scatter phase
and a randomly selected graph characteristic can be.

For every candidate subset for each phase we create a histogram of the R2 values for

96

Table 5.6: The numbers of experiments with PageRank that have the value of R-squared
(R2) for the scatter phase in the indicated ranges.

Range T
g

i with #V and Dto T
g

i with Dto T
g

i with Dlo

[0.9, 1] 39 28 10

[0.8, 0.9) 8 11 7

[0.7, 0.8) 9 9 1

[0.6, 0.7) 5 4 6

[0, 0.6) 11 20 48

all 72 experimental setups. In Table 5.6 we show the histograms for the scatter phase.
From this table, we identify as the RTI graph characteristics of the scatter phase the num-
ber of vertices (#V) and the total out-degree (Dto) because they have the highest number
of values of R2 in the range of [0.9, 1]. Unlike previous policies, which focus on the
communication component by minimizing edge-cuts, our results show that the number
of vertices is also an important factor. Similarly, for the gather phase, we identify the
number of vertices (#V) and the remote in-degree (Dri) as the RTI graph characteristics.
Combining the results of both phases we identify as the complete set of RTI graph charac-
teristics for PageRank the number of vertices (#V), the total out-degree (Dto), and remote
in-degree (Dri).

We have conducted a similar set of experiments for the weakly connected component
(WCC) algorithm, which computes the maximal groups of vertices connected by edges.
The RTI graph characteristics of WCC are the number of vertices (#V), the total degree
(Dt), and the remote degree (Dr).

5.3.3 Four New Graph Partitioning Policies

In this section, we design four new graph-partitioning policies based on the findings from
the experiments in Section 5.3.2. The first of these, called the degree-balanced (DB)
policy, is new, while the other three of these are randomized versions of the I, IO, and O
policies from Section 5.3.2.

Our target is to design a good partitioning for graph-processing systems in general, not
for a specific algorithm. Combining the RTI graph characteristics identified by running
PageRank and WCC, we show that the number of vertices is a common characteristic. For
different algorithms, they may propagate messages through in- or out-edges. It is difficult
to determine which graph characteristics about degree we should balance. We decide to
select total in-degree and total out-degree, because of two main reasons. First, the remote
or local degree of a partition can only be calculated after the finish of partitioning. We
cannot use them during the execution of partitioning. Second, from the perspective of
the system, balancing the total in-degree and total out-degree is a generic way to cover

97

 0

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o
rm

a
liz

e
d
 g

ra
p
h
 c

h
a
ra

c
te

ri
s
ti
c
s

Partitions

Total in-degree

Total out-degree

The number of vertices

Figure 5.4: The normalized values of the graph characteristics achieved by the DB policy
for Twitter.

different algorithms. Thus, the primary purpose of our DB policy is to balance the total
in- and out-degree per partition, and its secondary purpose is to balance the sum of the
in-degree and out-degrees across the partitions by setting a constraint on the number of
vertices of the partitions.

With DB, every next vertex is assigned to the degree-smallest of what we call the
opposite partitions. For a vertex with in-degree Vi and out-degree Vo, a partition with total
current in-degree Dti and total current out-degree Dto is called opposite if Vi > Vo and
Dti ≤ Dto, or the other way around. The degree-smallest partition is the partition with the
smallest sum of its current total in-degree and total out-degree. We set a constraint on the
number of vertices per partition to ensure that they do not become too imbalanced. In the
DB policy, this constraint is flexible and can be set by the user. The process of assigning
a vertex to a partition by the DB policy is shown in Policy 1.

In order to show the balance of the partitions created by the DB policy, we apply it
to the three datasets (Twitter, Scale 26, and Datagen p10m) to create 16 partitions each.
We set the constraint on the size of the partitions to 1.5 times their average size (we
assume the size of the graph to be known ahead of time). In order to show the balance,
we normalize the number of vertices, the total in-degree and the total out-degree of each
partition relative to their average values across all partitions. Figure 5.4 shows that the
graph characteristics are very well balanced for the Twitter partitions. For the Scale 26
and Datagen p10m graphs, we achieve similar results. We have also partitioned the graphs
into different numbers of partitions (2, 4, 8, and 32), and also then we achieve balanced
partitions. Our results even indicate that we can achieve balanced numbers of vertices
without setting a constraint.

From the experimental results in Section 5.3.2, we find that the run time of the ma-
chines varies even though they have equal numbers of edges to process in the I, IO, and O
policies. The reason is that the numbers of vertices of the partitions, which are run-time-
influencing, are not balanced. To address this issue, we change the streaming order of the

98

Policy 1 The DB policy
Input: Vi, Vo, the constraint on the number of vertices C, a sorted queue of partitions

P [M] with ascending Dti +Dto, the number of partitions M
Output: the index of the assigned partition Index, a sorted queue of partitions after the

assignment
1: Flag ← 0 .Flag indicates if there is an opposite partition of the vertex in the queue.
2: if Vi > Vo then
3: for j = 1→M do
4: if Dj

ti ≤ Dj
to then .Dj

ti and Dj
to is the current total in-degree and the current

total out-degree of the j-th partition P j .
5: Assign the vertex to P j , update Dj

ti and Dj
to.

6: Flag ← 1, Index← j
7: break
8: end if
9: end for

10: if Flag = 0 then .Cannot find an opposite partition for the vertex.
11: Assign the vertex to P 1, update D1

ti and D1
to. .Assign the vertex to the small-

est/first partition.
12: Index← 1
13: end if
14: else if Vi < Vo then
15: for j = 1→M do
16: if Dj

ti ≥ Dj
to of P j then

17: Assign the vertex to P j , update Dj
ti and Dj

to.
18: Flag ← 1, Index← j
19: break
20: end if
21: end for
22: if Flag = 0 then
23: Assign the vertex to P 1, update D1

ti and D1
to.

24: Index← 1
25: end if
26: else .Vi = Vo

27: Assign the vertex to P 1, updateD1
ti andD1

to. .Assign the vertex to the smallest/first
partition.

28: Index← 1
29: end if
30: if #V of P Index ≥ C then
31: Remove P Index from the queue.
32: M ←M − 1
33: end if
34: Ascending sort the partition queue P [M] by Dti +Dto of each partition

99

vertices in these policies, from the sequential ordering to a random ordering, which ac-
cesses vertices randomly. There are also other stream orderings, such as the BFS ordering
and the DFS ordering. We select the random ordering for three main reasons. First, from
the evaluation of Stanton and Kliot [126], the random ordering has comparable perfor-
mance to the BFS and DFS orderings in many cases. Second, the BFS and DFS orderings
need to pre-traverse the graphs, which is time consuming, in particular for large graphs.
The traverse time may be even longer than the partitioning time. Third, the BFS and DFS
orderings can be more complicated when a graph has multiple connected components. By
using the random ordering of each original policy in PGX.D, we create three new policies
called RI, RIO, and RO, in which “R” stands for the random ordering. Figure 5.7 shows
a comparison of the O and RO policies. The RO policy achieves more balanced numbers
of vertices across partitions, while keeping the balance of the total degrees.

Many graphs are not static, but mutate over time. Although we only cover static
graphs in our experiments, our partitioning policies can be used to partition mutating
graphs online as well, obviating the need to re-partition a graph after it has changed. For
example,the DB policy does not need to know meta information of the graph (such as the
number of vertices and edges) or the neighborhoods of vertices to assign vertices. When
partitioning a mutating graph, it can simply assign new vertices one-by-one based on its
rules, and update the meta information of every partition (such as the total in-degree and
total out-degree). However, many graph-processing systems cannot support online graph-
partitioning policies and process mutating graphs. We are not able to show the ability of
partitioning mutating graphs of our policies in our experiments.

5.4 Experimental Results

In this section we conduct comprehensive experiments with different graph partitioning
policies, applications, and system configurations. In Section 5.4.1 we present our exper-
imental setup, and at the end of the section we explain the experiments reported in later
sections.

5.4.1 Experimental Setup

Experimental environment: We keep using the same cluster as shown in Table 5.4.
Besides using InfiniBand, in Section 5.4.5 we also evaluate the performance on 1 Gbit/s
Ethernet. We run all experiments on 16 working machines, except for the scalability test
in Section 5.4.4, in which we use four different numbers of machines (2, 4, 8, and 32).

Datasets: We will only present the results of executing graph-processing algorithms
on large-scale graphs. In fact, we have also run experiments on a smaller graph, Live-
journal [121] (with 4,847,571 vertices and 68,993,773 edges). However, the performance

100

Table 5.7: Experimental setup for each experiment in Section 5.4.

Section Algorithms Datasets Metrics Threads Network SGN technique
5.4.2 PageRank Twitter Run time All InfiniBand No

5.4.3 PageRank Twitter, Scale 26, Datagen p10m ECR, SD w12c14 InfiniBand No

5.4.4 All Twitter, Scale 26, Datagen p10m Run time, scalability w12c14 InfiniBand No

5.4.5 All Twitter, Scale 26, Datagen p10m Performance ratio w12c14 InfiniBand, Ethernet Yes

5.4.6 - Twitter, from Scale 22 to Scale 26 Partitioning time - - -

differences of the graph-partitioning policies are quite small in that case. In Section 5.4.6,
we include four more Graph500 graphs than we have used in Section 5.3.2, with the scale
factor running from 22 to 25. For these graphs, the numbers of vertices and edges are
doubled with every step of the scale factor.

Algorithms: We have conducted a comprehensive survey of graph-processing algo-
rithms [51]. Our survey covers over 100 research articles published in 10 representative
conferences (including VLDB, SIGKDD, SIGMOD, etc.) in recent years. Graph algo-
rithms in previous publications can be categorized into different classes by functionality.
We find that the top 3 occurred classes of algorithms are graph traversal, general statis-
tics, and connected components. The percentages of the occurrence of these 3 classes of
algorithms are 46.3%, 16.1%, and 13.4%, respectively. In total, they have about 70% oc-
currence among all types of algorithms. We select one exemplar algorithm from each of
these 3 classes, Breadth-First Search (BFS) from graph traversal, PageRank from general
statistics, and Weakly Connected Components from connected components. PageRank
and BFS propagate updates through out-edges. WCC propagates updates through both
in- and out-edges, and does not need any parameter. For PageRank, the termination con-
dition is set to maximum 10 iterations. For BFS, we select the same source vertex for
each graph for all partitioning policies.

Partitioning policies: In total, we evaluate 12 graph-partitioning policies: 2 stream-
ing policies (R and H) commonly used by graph-processing systems, 2 streaming policies
(LDG and CB) from the literature, the 3 original streaming policies (I, IO, and O) used in
PGX.D, our 4 new streaming policies (RI, RIO, RO and DB) presented in Section 5.3.3,
and the state-of-the-art partitioner (M). Except for RI, RIO, and RO, all policies use the
sequential ordering of the graphs. We summarize the partitioning policies in Table 5.8.
According to the experimental results of the CB policy [146], we set its degree threshold
percentage to 30%.

The experiments we have conducted are as follows:

• In Section 5.4.2, we evaluate the impact of the configurations of worker threads and
copier threads.

• In Section 5.4.3, we measure the workload imbalance of partitions by using the
edge cut ratio and the standard deviation of normalized run-time-influencing graph
characteristics.

101

Table 5.8: Twelve partitioning policies in our experiments.

Policy Streaming Mechanism
R Yes Randomly assign a vertex to a partition.

H [92] Yes Hash partitioning.

LDG [126] Yes Assign a vertex to the partition, which has most neighbors of the vertex.

CB [146] Yes Assign a vertex to a partition with the smallest workload or with the least incremental workload.

I [61] Yes Balance the in-degree of partitions, original policy in PGX.D.

IO [61] Yes Balance the total-degree of partitions original policy in PGX.D.

O [61] Yes Balance the in-degree of partitions, original policy in PGX.D.

RI Yes The I policy using random ordering, proposed in this work.

RIO Yes The IO policy using random ordering, proposed in this work.

RO Yes The O policy using random ordering, proposed in this work.

DB Yes The greedy degree-balanced policy, proposed in this work.

M [72] No METIS, multi-level graph partitioning

• In Section 5.4.4, we show the run time of graph-processing algorithms with differ-
ent datasets. We also present the scalability of each partitioning policy.

• In Section 5.4.5 we report the performance of using Ethernet and the impact of
using the selective ghost node technique.

• In Section 5.4.6 we investigate the time spent on graph partitioning, considering
different numbers of partitions and graph sizes.

A summary of the experiments, and of the remaining sections, is in Table 5.7.

5.4.2 The Impact of Worker and Copier Threads

There are many possible configurations with different numbers of worker threads and
copier threads. The configuration of worker threads and copiers threads can significantly
influence the performance of PGX.D [61]. In this section, we explore the impact of the
thread configuration on 12 partitioning policies.

Key findings:

• The configuration of worker and copier threads has a significant impact on the run
time of PGX.D for all partitioning policies.

• In most experimental runs, the thread configuration w12c14 shows the best perfor-
mance.

We use four configurations, w24c2, w18c8, w12c14, and w6c20, which give a reason-
able coverage of the possible configurations. Figure 5.5 shows the run time of PageRank
for the Twitter dataset. In general, the best performance is obtained from either w12c14
or w18c8 for different partitioning policies. We also conduct other groups of experi-
ments, with different algorithms, datasets and machines. In most cases, the configuration
of w12c14 achieves the best performance, and so we empirically use this as our default
thread configuration for the following experiments.

102

 0

 20

 40

 60

 80

 100

 120

 140

R H LDG CB I IO O RI RIO RO DB M

R
u
n
 t
im

e
 [
s
]

Policies

w24c2

w18c8

w12c14

w6c20

Figure 5.5: The run time of PageRank for Twitter with four thread configurations.

5.4.3 Workload Distribution

In this section we discuss the workload distribution among working machines. The work-
load includes two parts, the communication workload between working machines and the
computation workload on each machine.

Key findings:

• The edge cut ratio is not a good indicator for the quality of partitioning for real
graph-processing systems, at least when communication is not the performance bot-
tleneck of the system.

• The standard deviation of the normalized run-time-influencing graph characteristics
can be used to measure the imbalance of the computation workload.

• The design of partitioning policies should not only focus on minimizing the com-
munication, but also on balancing the communication between pairs of machines.

The edge cut ratio (ECR) is defined as the ratio of the number of edges that connect
vertices that are placed in two partitions over the total number of edges in the graph.
ECR is used by many previous studies to measure the total communication workload. We
show the ECR of the 12 partitioning policies on Twitter, Scale 26, and Datagen p10m
in Figure 5.6. Because CB, LDG, and M consider the neighborhoods of the vertex to
be assigned and of the already assigned vertices in each partition, they are the top 3
policies that achieve the lowest ECR for all three datasets (except that LDG ranks sixth
for Datagen p10m). In contrast, the ECR of other policies is very high, because they
assign vertices without considering their neighborhoods.

We use the standard deviation (SD) of the normalized (see Section 5.3.3 for the nor-
malization) run-time-influencing (RTI) graph characteristics (i.e., the number of vertices,
total out-degree, and total in-degree) to understand the computation workload across
working machines. Figure 5.7 shows the results for Twitter, which is partitioned into
16 splits. As shown in Figure 5.4, the Twitter partitions under the DB policy have bal-
anced RTI graph characteristics, so the SD of all normalized RTI graph characteristics is

103

 0

 20

 40

 60

 80

 100

Twitter Scale_26 Datagen_p10m

E
d
g
e
 c

u
t
ra

ti
o
 [
%

]

Datasets

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.6: The Edge Cut Ratio of all partitioning policies for 3 datasets.

 0.01

 0.1

 1

 10

R H LDG CB I IO O RI RIO RO DB M

S
D

 o
f
n
o
rm

a
liz

e
d
 g

ra
p
h
 c

h
a
ra

c
te

ri
s
ti
c
s

Policies

Total in-degree

Total out-degree

The number of vertices

Figure 5.7: The standard deviation of the normalized RTI graph characteristics for Twitter
for all partitioning policies (the values of missing bars are too small to display).

small. We also find that the SDs for the CB and LDG policies are significantly higher than
for the other policies. The reason is that vertices are accumulated to very large partitions
to reduce edge cuts in CB and LDG. For the M policy, although the SD of the normal-
ized number of vertices is small, the SDs of the normalized total in-degree and out-degree
are relatively large, which indicates that communication is not balanced between pairs of
working machines. Surprisingly, the random-based policies (R and H) also obtain small
SD (we have repeated the R partitioning 5 times with different random seeds and obtained
consistent results).

In Figure 5.8 we show the run time of PageRank on all 3 datasets for all graph parti-
tioning policies. The LDG, CB, and M policies result in the longest run times, even though
they achieve a low ECR. The reason is that communication is not the dominant workload
in PGX.D when using the high-speed InfiniBand, as we have discussed in Section 5.3.2.
This means that ECR is not a good metric when the communication is not the dominant
part of the workload. We find that in general, the partitioning policy with smaller SD of
the RTI graph characteristics leads to shorter run time, and so SD can be used as a metric
to evaluate the quality of partitioning for computation-dominated processing. Except for

104

 0

 20

 40

 60

Twitter Scale_26 Datagen_p10m

R
u
n
 t
im

e
 [
s
]

Datasets

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.8: The run time of PageRank for 3 datasets with all partitioning policies.

 0

 2

 4

 6

 2 4 8 16 32

R
u
n
 t
im

e
 [
s
]

Machines

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.9: The scalability of the BFS algorithm for Twitter.

 0

 20

 40

 60

 2 4 8 16 32

R
u
n
 t
im

e
 [
s
]

Machines

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.10: The scalability of the PageRank algorithm for Scale 26.

the CB, LDG, M, and O policies, the SD of the other policies is less than 0.5 and their
run times are very close to each other. In practice, it is useful to find a threshold for SD
beyond which the run time of graph processing may significantly increase. This threshold
may be determined by analyzing the statistics obtained from many more experiments with
various algorithms and datasets.

105

 0

 2

 4

 6

 8

 10

 2 4 8 16 32

R
u
n
 t
im

e
 [
s
]

Machines

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.11: The scalability of the WCC algorithm for Datagen p10m.

5.4.4 The Impact of the Partitioning Policies on Performance

In this section we present the performance impact of the partitioning policies on the per-
formance of graph algorithms for different algorithms, datasets, and number of working
machines.

Key findings:

• The Degree-Balanced policy achieves good performance, while previous streaming
policies from the literature (LDG and CB) perform the worst.

• The graph structure has an impact on the performance of graph partitioning.
• Most partitioning policies show reasonable scalability with the increase of the num-

ber of working machines (partitions).

The run time of PageRank for 3 datasets with all partitioning policies is depicted in
Figure 5.8. There is no overall winner among the partitioning policies, but LDG and CB
have the worst performance as the computation workload of for these policies is highly
skewed between working machines (see Figure 5.7). DB achieves good performance for
all graphs. For the Twitter graph, the run time of PageRank is the shortest. Random
ordering cannot always help to achieve good performances evidenced by the O and RO
policies for partitioning Scale 26. The impact of graph partitioning is more significant
in highly skewed graphs, such as Twitter and Scale 26. For Datagen p10m, we see that
only CB has obvious performance impact. Both LDG and M yield results comparative to
those other partitioning policies. Simple partitioning policies, such as the commonly used
H policy, perform well for most algorithms and graphs. The reason is that computation
is the dominant workload in our experiments and the H policy balances normalized RTI
graph characteristics as shown in Figure 5.7.

In Figures 5.9, 5.10, and 5.11 we show that most partitioning policies exhibit good
scalability when increasing the number of worker machines up to 16—the benefit of in-
creasing the number of machines from 16 to 32 is not significant. An important reason

106

is that the workload is not heavy enough when processing the graphs with more than 16
machines (i.e., the hardware resource is redundant). For LDG and CB, the scalability is
not obvious. To reduce edge-cuts, no matter how many number of partitions, LDG and
CB may place vertices to a small subset of partitions, which dominates the run time of the
algorithms. We also find that the random ordering results in poor scalability, such as the
RO policy shown in Figure 5.10.

5.4.5 The Impact of Network and the Selective Ghost Node

In this section, we compare the performance impact of using 56 Gbit/s InfiniBand versus
1 Gbit/s Ethernet, and of using selective ghost node (SGN), which is a commonly used
technique in graph-processing systems for reducing network traffic.

Key findings:

• The run time of graph-processing algorithms on high-speed InfiniBand is orders of
magnitude smaller than on low-speed Ethernet.

• Using the selective ghost node technique may not always have a positive impact on
the performance.

We report the performance of InfiniBand relative to Network when running 3 algo-
rithms with Twitter in Figure 5.12. In all experiments, using InfiniBand leads to much
better performance, from 10 times to nearly 900 times faster than the Ethernet. It is very
interesting that the performance ratio can be as much as hundreds times, while the band-
width of the InfiniBand is only about 50 times larger than that of the Ethernet. It may
because that the communication is not balanced between pairs of machines. For exam-
ple, one machine may have heavy communication with multiple other machines. Other
machines may have to wait that machine to finish their communication, which makes the
data transfer and message processing extremely slow.

We show the performance improvement for PageRank of 3 datasets by using SGN
on InfiniBand and on Ethernet in Figures 5.13 and 5.14, respectively. Not all values are
positive, indicating that using SGN cannot always help to achieve good performance,
because the time synchronizing ghost nodes can be longer than the run time reduced by
using SGN. Overall, the performance change on Ethernet is larger than that on InfiniBand,
because Ethernet is more sensitive to the change of network traffic.

5.4.6 The Time Spent on Partitioning Graphs

The complexity of the partitioning policies and the time spent on partitioning graphs
are also important for us to determine the choice of policies. Because the M policy is
implemented in an offline single-machine partitioner, and the LDG and CB policies need

107

 1

 10

 100

 1000

PageRank WCC BFS

P
e
rf

o
rm

a
n
c
e
 r

a
ti
o

Algorithms

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.12: The performance ratio of 3 algorithms for Twitter on InfiniBand relative to
Ethernet (vertical axis has logarithmic scale).

-40

-20

 0

 20

 40

Twitter Scale_26 Datagen_p10m

P
e
rf

o
rm

a
n
c
e
 c

h
a
n
g
e
 [
%

]

Datasets

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.13: The performance change of PageRank for 3 datasets when using SGN on
InfiniBand.

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

Twitter Scale_26 Datagen_p10m

P
e
rf

o
rm

a
n
c
e
 c

h
a
n
g
e
 [
%

]

Datasets

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.14: The performance change of PageRank for 3 datasets when using SGN on
Ethernet.

to acquire the global information to assign vertices, it is non-trivial to implement these
policies in a distributed manner. In this section, we compare the time spent on partitioning
graphs on a single machine.

108

Key findings:

• The LDG, CB, and M policies need much more time for partitioning graphs than
the other streaming policies.

• The number of partitions has a significant impact on the partitioning time of LDG
and CB.

• The partitioning time of all policies increases linearly with the size of the graph.

We first explore the time spent on partitioning the same graph into different numbers
of partitions. In Figure 5.15, we show the time of each policy for partitioning Twitter
into 2, 4, 8, 16, and 32 partitions, respectively. For the M policy, we use another machine
(equipped with two Intel Xeon CPU E5-2699 2.30 GHz processors and 384 GB memory),
because the M policy runs out of memory when using the working machine in Table 5.4.
LDG, CB, and M are the policies with the longest partitioning time. The M policy applies
a multi-level scheme, in which the coarsening phase is complex and time consuming.
This long partitioning time of M matches a previous experiment [133], where more than
8.5 hours is needed to partition the Twitter graph using a less powerful machine. For the
assignment of a vertex, the LDG and CB policies need to traverse all partitions to calculate
the number of its neighbors in each partition. To assign some low-degree vertices in
CB, counting the edges between each pair of partitions is also required. The traversal
of partitions is very expensive. With the increase of the number of partitions, the LDG
and CB policies need to spend significantly more time on partitioning, because of the
complexity of the traversal process. Except for LDG and CB, we observe time increase
of DB, which is incurred by sorting the partition queue, the size of which is equal to
the number of working machines. In practice, the size of clusters is limited, many of
which have less than thousands of machines. Thus, the impact of increasing the number
of partitions is limited for the DB policy.

We also investigate the partitioning time on different sizes of graphs. Figure 5.16
shows the time spent on partitioning Graph500 graphs with 5 different scales (from
Scale 22 to Scale 26). We partition each graph into 16 splits. Similarly to Twitter, we use
the same machine with 384 GB memory only for executing the M policy with Scale 26,
because out of memory. LDG, CB, and M are the slowest policies. All partitioning poli-
cies exhibit good scalability with increasing the size of graphs.

5.5 Discussion

In this section, we discuss how to use our results and how to extend the use of our model
and method to more graph-processing systems.

109

10
0

10
1

10
2

10
3

10
4

10
5

 2 4 8 16 32

P
a
rt

it
io

n
in

g
 t
im

e
 [
s
]

Partitions

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.15: The time spent on partitioning the Twitter graph into different numbers of
partitions for all policies (vertical axis has logarithmic scale).

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Scale_22 Scale_23 Scale_24 Scale_25 Scale_26

P
a
rt

it
io

n
in

g
 t
im

e
 [
s
]

Graph500 graphs

R

H

LDG

CB

I

IO

O

RI

RIO

RO

DB

M

Figure 5.16: The time spent on partitioning Graph500 graphs into 16 partitions for all
policies (vertical axis has logarithmic scale).

Table 5.9: Key findings of our experiments.

Section Key findings

5.4.2
The configuration of worker and copier threads has a significant impact on the run time of PGX.D.

In most experimental runs, the thread configuration w12c14 shows the best performance.

5.4.3
The ECR is not a good indicator for the quality of partitioning for real graph-processing systems.

The SD of the RTI graph characteristics can be used to measure the imbalance of the computation workload.

The design of partitioning policies should also focus on balancing the communication between machines.

5.4.4
The DB policy achieves good performance, while LDG and DB perform the poorest.

The graph structure has an impact on the performance of graph partitioning.

Most partitioning policies show reasonable scalability with the increase of the number of partitions.

5.4.5
The run time of algorithms on InfiniBand is orders of magnitude smaller than on Ethernet.

Using the selective ghost node technique may not always have a positive impact on the performance.

5.4.6
The LDG, CB, and M policies need much more time for partitioning graphs than the other streaming policies.

The number of partitions has a significant impact on the partitioning time of LDG and CB.

The partitioning time of all policies increases linearly with the size of the graph.

110

5.5.1 How to Use Our Results

We summarize the key findings of our experiments in Table 5.9. Key findings in Sec-
tion 5.4.4 and Section 5.4.6 are about the performance of partitioning policies. It is
difficult to obtain clear rules as to which partitioning policy should be used for which
graph-processing system, which algorithm, and which graph. We identify four main rea-
sons for this difficulty. First, graph-processing systems are designed and implemented
with specific goals and optimization techniques. It is not easy to quantify the impact of
these implementations and techniques on the performance of graph-partitioning policies.
Second, graph algorithms have various behaviors. The impact of graph algorithms on
the performance of partitioning policies is significant. Third, graphs have diverse struc-
tures and characteristics. It is very difficult to identify the typical graph structures and the
most important graph characteristics that can represent a given graph [88]. In practice,
the identified structures and characteristics should be easily calculated, which is crucial
for large-scale graphs. Fourth, heterogeneous hardware infrastructure (different CPU,
amount of memory, network connection, etc.) also has significant impact. For the same
combination of graph-processing system, algorithm, and graph, if the deployed cluster is
changed, the best partitioning policies may also change.

Although it is non-trivial to obtain best practice, we discover and summarize some
generic suggestions for designing and using policies. Key findings in Section 5.4.2 and
Section 5.4.5 are closely related to the PGX.D system and its hardware infrastructure.
They may not be applicable for other systems, but these findings indicate that system
configuration and tuning should be carefully conducted (for different partitioning poli-
cies). Key findings in Section 5.4.3 are more generic and can be used by other researchers
to design and measure the performance of their graph-partitioning policies. Our DB pol-
icy cannot always outperform other partitioning policies in all cases, but in general, it
achieves good performance (short run time of graph algorithm and fast partitioning pro-
cess), if any other graph system that falls in the same run time model of PGX.D, we would
suggest to use the DB policy.

5.5.2 The Coverage of Our Model and Method

In Section 5.2, we propose a run time model of two-phase graph processing systems,
which also encompasses one-phase systems. In our experiments, we use PGX.D (a real-
world production system based on the two-phase abstraction) as the real graph-processing
system. Because we have tested our work on production-quality code, and because of
the simplicity of the conversion between the one-phase abstraction and the two-phase
abstraction [95], our work also indicates that our method could be applied with trivial
adaptations to systems using the one-phase abstraction.

We now discuss the extensions needed to apply our work to systems based on the

111

three-phase abstraction. A typical three-phase abstraction is the Gather-Apply-Scatter
(GAS) model, which is first implemented in PowerGraph [45]. Vertex-cut partitioning is
often implemented in GAS systems: a vertex can have multiple copies, each of which
is distributed to a working machine. One copy is selected as the master, and others are
mirrors. In GAS, the gather phase collects the local incoming information for vertices,
then calculates their partial vertex values. The apply phase collects all partial values and
computes final vertex values. Last, the scatter phase distributes the update to correspond-
ing edges. There are two periods of communication in the GAS model, with one period
between the gather and apply phases for sending partial vertex values to the master, and
another between the apply and scatter phases for distributing final vertex values to all mir-
rors. We extend our run time model to GAS systems, for example, by observing that the
run time becomes the sum of the time spend on each of the three computation phases and
the two communication periods in the blocking I/O mode. Next, we can use our method
to pick out run-time-influencing graph characteristics for vertex-cut partitioning, and pro-
ceed design new policies. (Using these steps, we have already completed a preliminary
model for three-phase systems, but we do not report the outcome in this work, as we
have not proceeded with the design of new policies and have not conducted meaningful
experiments with them.)

5.6 Related Work

5.6.1 Graph Processing Systems

Single machines with limited resources are unable to handle growing modern graphs.
Generic distributed data-processing systems, such as Hadoop [141], have first been
adapted to analyze and process large-scale graphs on clusters. However, because of the
limitation of programming models, generic data-processing systems cannot support itera-
tive graph-processing applications very well. It has been reported that the performance of
generic data-processing systems, for graph-processing applications, is much worse than
specific graph-processing systems [43, 87, 92]. This has become a common knowledge in
the graph-processing community.

Many graph-processing systems adapt the vertex-centric paradigm, in which graph-
processing algorithms are implemented from the perspective of each vertex of graphs.
The Bulk Synchronous Parallel (BSP) computing model has been used by many graph-
processing systems, such as Pregel [92] and Hama [114], mainly because the BSP model
simplifies the design and implementation of iterative graph-processing algorithms. A BSP
computation of a graph-processing algorithm consists of a series of global iterations (or
supersteps). In each iteration, active vertices execute the same user-defined function, gen-
erate messages, and transfer them to neighbors that are not located in the same machine.

112

Synchronization is needed between two consecutive iterations to ensure that all vertices
have been processed and all messages have been delivered. The cost of synchronization in
BSP systems may incur performance degradation, especially when the workload between
working machines is not balanced. To improve performance, graph-processing systems,
such as GraphLab [87] and GraphHP [17], have used asynchronous models to avoid using
barriers for synchronization and to reduce the performance degradation caused by imbal-
anced workload. The use of asynchronous models increases the complexity of graph-
processing systems and, in some cases, creates redundant messages [151] when executing
graph algorithms.

Graph-processing systems can be categorized into three main multi-phase sys-
tems, based on their vertex computation abstractions [95]: one-phase [43, 92], two-
phase [61,109,128], and three-phase [39,45]. The main computation in graph processing
includes processing incoming messages, applying vertex updates, and preparing outgoing
messages. In each multi-phase abstraction, the main computation is placed and executed
in different computation phases. For example, in Scatter-Gather, which is a two-phase
abstraction, the scatter phase prepares outgoing messages, and the gather phase collects
incoming messages and applies updates to vertex values. We will further analyze and
discuss these three abstractions in Section 5.2 and Section 5.5.

5.6.2 Graph Partitioning Policies

The study of partitioning policies for graph-processing is based on two main disciplines,
graph partitioning and performance analysis. We survey in this section the related mate-
rials published in each of these two disciplines, in turn. Overall, ours is one of the few
studies combining theoretical work in graph partitioning with experimental comparison of
policies using several algorithms and datasets, which, as we indicate in the introduction,
is important for the validity of the results. Our main findings from this survey, regarding
graph partitioning, are summarized in Table 5.10.

Graph Partitioning. Graph partitioning has been explored and studied for a long time
in many research areas [73, 95], from scientific workflow scheduling [44] to recent work
on large-scale graph processing [46]. Balanced graph partitioning, which aims to balance
the number of vertices in each partition while minimizing the communication between
partitions, is known as the k-way graph partitioning problem and has been proved to be
NP-hard [1]. To achieve an approximate solution, many traditional heuristics [72, 110]
have been proposed. Many of them adapt the multi-level partitioning scheme, which
typically includes three main phases [110], coarsening to reduce the size of the graph,
partitioning the reduced graph, and uncoarsening to map back partitions for the original
graph. The prominent example of multi-level partitioning, METIS [72] and its family
of partitioning policies [32], are used by the community because of their high-quality

113

Table 5.10: Graph-processing systems using different partitioning approaches.

Partitioning approach Example heuristics Example systems using the approach
Traditional heuristics METIS [72], ParMETIS [74] -

Streaming Hash, LDG [126] Giraph [43], HeAPS [146]

Vertex-cut Random, Balanced p-way [45] PowerGraph [45], GraphX [46]

Dynamic Exchange [112], Migration [75] GPS [112], Mizan [75]

Chunking File size Hadoop [141], Stratosphere [138]

partitions and relatively fast partitioning speed. However, we identify three main reasons
for which these heuristics may be unable to handle the partitioning problem for distributed
graph-processing systems. First, most distributed graph processing systems are designed
for large-scale graphs, with millions of vertices and billions of edges. For partitioning
policies designed explicitly for single-node operation, such as METIS, large-scale graphs
and their intermediate partitioning data often do not fit in the main memory of the system,
which causes spills to disk and severe performance degradation, and in our experience
even system crashes. For multi-node heuristics such as ParMETIS [74], using them in
practice may be complex and time consuming, because they need a global view of graphs
and slow synchronization for partitioning. Second, these heuristics are designed to operate
offline. They need to access the entire graph for every partitioning operation, which makes
them relatively inefficient for growing and changing graphs. Third, many of the heuristics
are designed for scientific computing workloads. In particular, they have been designed to
solve k-way partitioning problem, by recursively executing 2-way partitioning when k is a
power of 2. They may not be able to effectively partition real-world graphs representative
for other domains, and in particular real-world graphs with arbitrary values of k [2].

To address the problems faced by offline heuristics, online streaming graph partition-
ing policies have been proposed for distributed graph-processing systems. Hash parti-
tioning, a type of streaming graph partitioning, is used in many graph processing systems,
such as Pregel-like systems [43, 92], because of its simplicity and short partitioning time.
The drawbacks of hash partitioning for real large-scale graphs are obvious. For computa-
tion, partitions created by hash partitioning policies from highly-skewed real graphs [45]
can have an even number of vertices but will often include partitions where vertices have
very diverse in-/out-degrees, case in which graph-processing algorithms such as Breadth-
First Search (BFS) traversal will incur high computation imbalance. For communication,
hash partitioning does not consider any locality of vertices and edges. There may be
an inordinate amount of edge-cuts between partitions, which results in intensive network
traffic. To conclude, hash partitioning policies have so far not considered highly-skewed
graphs, and result when used on real-world graphs in partitions that lead to imbalanced
computation and communication.

114

Many studies make efforts in two main directions to obtain balanced graph partitions.
The first direction is to design more complex steaming graph-partitioning policies. Stan-
ton and Kliot [126] propose more than ten streaming policies. Many factors are selected
and used in these policies, such as the relationship between the vertex to be assigned and
the current vertices in the partition, buffering for assigning a group of vertices, and stream-
ing orders. From their evaluation, a linear-weighted deterministic greedy policy (LDG)
performs the best. In LDG, a vertex is assigned to the partition with the most neighbors,
while using the remaining capacity of partitions as a penalty. Tsourakakis et al. [133] for-
mulate a partitioning objective function, considering the costs of edge cut and the size of
partitions. Based on this function, they design a streaming graph partitioning, FENNEL,
which is a greedy policy using different heuristics to place vertices. Closest to our work,
to address heterogeneity of computing hardware and network, Xu et al. [146] build a
model for the heterogeneous environments and discuss a time-minimized objective func-
tion from the perspective of graph-processing systems. They propose six streaming graph
partitioning policies and evaluate their performance in both homogeneous and heteroge-
neous environment. From their experimental results, the combined policy (CB) achieves
the best performance in homogeneous environment and reasonably good performance in
different settings of heterogeneous environment. They use the analytical method to esti-
mate the workload of the whole computation. In our model, we further divide the whole
computation and use real experiments to find out run-time-influencing graph characteris-
tics. Our method can be more precise. Advanced streaming graph partitioning policies
can achieve comparable performance of METIS [126, 146].

The second direction is to partition graphs by vertex-cut [45,46]. Vertex-cut partition-
ing places edges, instead of vertices, to different partitions. According to percolation the-
ory [127], good vertex-cuts can be achieved in power-law graphs. Evenly placing edges
can reduce the workload imbalance and the large communication of high-degree vertices,
which are represented as multiple replicas and stored in different partitions. Vertex-cut
partitioning has its drawbacks. System-wise, the graph-processing system needs to allow
a single vertex’s computation to span multiple machines, which increases the complexity
of the system. Performance-wise, too many pieces of vertex replicas can still generate
high communication, primarily to synchronize vertex status. We summarize our survey
of this class of graph-partitioning policies in Table 1, in the row “Vertex-cut”. Vertex-cut
partitioning is used by few graph-processing systems. In our work, we focus on edge-cut
partitioning, which is used by more systems.

To avoid the workload imbalance incurred by static streaming partitioning and vertex-
cut partitioning and also by the execution of algorithms (for example, active vertices vary
in each iteration during the process of the BFS algorithm), dynamic repartitioning is mov-
ing vertices between working machines during the execution of algorithms. The general
process of dynamic repartitioning methods can be abstracted as the following sequence of

115

four steps : discover workload imbalance of computing machines, find the pairs of com-
puting machines for migrating vertices, determine which vertices are required to move,
and migrate selected vertices from its source to destination. Mizan [75] selects the exe-
cution time of each machine as the metric for workload imbalance and maintains a dis-
tributed hash table to record the position of vertices. GPS [112] simply uses the outgoing
messages as the workload-imbalance metric. When computing machines are paired, they
will exchange vertices rather than migrate vertices from one to another. Both Mizan and
GPS take a delay migration strategy to alleviate the overhead of migration of vertices and
their associated data. Shang et al. [115] focus on how much of the workload should be
moved between pairs of working machines and on which vertices should be moved. They
also propose several constraints to improve the benefit of migration. We show systems
that support dynamic repartitioning in Table 5.10, in the row “Dynamic”.

Partitioning performance. Although many graph partitioning methods and policies
have been proposed, their performance has not been thoroughly evaluated with various
input graphs and algorithms. Theoretical metrics, such as the edge cut ratio and modu-
larity [4, 126, 133] are generally used to measure the quality of partitions. For real graph-
processing systems, these metrics do not directly represent the performance of partition-
ing [146]. In practice, metrics such as the run time of graph-processing algorithms, parti-
tioning time, and the variance of the run time on different machines/threads represent the
performance of bottleneck components in real graph-processing systems. Meyerhenke
et al. [97] design their graph partitioning heuristic based on label propagation and size
constraints for social networks and web graphs. Guerrieri and Montresor [50] discuss the
properties of high quality partitions and introduce a distributed edge-partitioning frame-
work. Both studies lack experimental results from executing algorithms on real graph
processing systems, to show the performance of their partitioning methods in practice.
Stanton and Kliot [126], FENNEL [133], and Xu et al. [146] compare the performance of
many streaming partitioning policies on data-processing systems. The systems they run
experiments on are not (advanced) graph-processing systems—Spark’s generic data pro-
cessing for Stanton and Kliot, Hadoop for FENNEL, and a prototype of Pregel for Xu et
al., contrast starkly with highly optimized production systems such as GraphLab [87] and
Giraph [43]. Their evaluations are also limited to the use of a single algorithm, PageR-
ank; our own and related studies [52, 56, 88] have shown that the results obtained from a
single algorithm do not characterize well the performance expected from the general field
of graph processing. In contrast, in this work, we conduct comprehensive experiments
on an advanced distributed graph-processing system—PGX.D, using 3 representative al-
gorithms, 3 large-scale graphs with billions of edges from different domains, different
practical configurations and in particular different types of network, and many different
performance metrics.

116

5.7 Summary

Graph partitioning is an important aspect of achieving high performance when designing
and using distributed graph-processing systems. Many graph partitioning policies have
been proposed so far, aiming to minimize communication, balance the number of vertices
on each working machine, and reduce the time spent on partitioning, etc. However, most
of the partitioning policies are not designed from the perspective of real-world distributed
graph-processing systems. In addition, the performance of existing partitioning policies
has not been evaluated in-depth on real systems. In this chapter, we address this situation
by proposing models, partitioning policies, and an experimental evaluation of different
partitioning policies in graph processing.

We model the run time of different types of graph-processing systems. We set min-
imizing the run time as the objective function of partitioning policies. The models we
proposed cover the one-phase and two-phase systems, using the blocking I/O and parallel
I/O modes, in machine-level and thread-level.

We propose a method to identify run-time-influencing graph characteristics by ana-
lyzing the run-time model and by understanding the relationship between different graph
characteristics and the run time. Based on the run-time-influencing graph characteristics,
we design new graph partitioning policies to obtain balanced partitions.

We use many metrics to evaluate the performance of twelve partitioning policies. We
select in our experiments three popular graph-processing algorithms and three large-scale
graphs from both real world and synthetic graph generators. We also evaluate the impact
of real-world networks and a commonly used technique in graph-processing systems. Our
results indicate that the newly-designed DB partitioning policy shows good performance,
while existing streaming policies, such as LDG and CB, do not perform well.

We also discuss our preliminary work and ideas regarding how to use our results and
the coverage of our model and method.

Chapter 6

Designing Distributed Heterogeneous
Graph Processing Systems

In this chapter, we design and implement three families of distributed heterogeneous sys-
tems that can use both the CPUs and GPUs of multiple machines. We further focus on
graph partitioning, for which we compare existing graph-partitioning policies and a new
policy specifically targeted at heterogeneity. We implement all our distributed heteroge-
neous systems based on the programming model of the single-machine TOTEM, to which
we add a new communication layer for CPUs and GPUs across multiple machines to sup-
port distributed graphs, and a workload partitioning method that uses offline profiling to
distribute the work on the CPUs and the GPUs. We conduct a comprehensive real-world
performance evaluation for all three families. To ensure representative results, we select
three typical algorithms and five datasets with different characteristics. Our results in-
clude algorithm run time, performance breakdown, scalability, graph partitioning time,
and comparison with other graph-processing systems. They demonstrate the feasibility of
distributed heterogeneous graph processing and show evidence of the high performance
that can be achieved by combining CPUs and GPUs in a distributed environment.

6.1 Overview

Increasingly large graphs are being generated every day, not only by big companies
such as Facebook [30] and LinkedIn [86], but also by Small and Medium Enterprises
(SMEs) [120] such as Wikimedia for online encyclopedia [142], Friendster for social
networks [36] and XFire for online gaming [145]. To process these graphs, many graph-
processing systems, using a variety of hardware platforms (e.g., multiple CPUs, GPUs,
or combinations thereof) have been designed and implemented. With CPUs and GPUs

117

118

becoming increasingly more powerful and affordable, SMEs who could previously invest
only in CPU-based commodity clusters can now afford to buy a heterogeneous environ-
ment. However, current graph-processing systems cannot operate on both distributed and
heterogeneous settings. This raises the important research question of How to design a
distributed and heterogeneous graph processing system? In this chapter, we explore sys-
tematically this question, through the design and experimental evaluation of three families
of distributed heterogeneous graph-processing systems.

Typical distributed CPU-based graph-processing systems such as Pregel [92],
GraphX [46], and PGX.D [61] can handle large graphs by using multiple machines,
but choose to ignore the additional computational power of accelerators because of the
increased complexity of the programming environment. GPU-enabled systems, on the
other hand, can accelerate graph processing considerably [59], but choose to ignore the
distributed environment because of the added complexity of (multi-layered) partitioning.
For example, Medusa [152] and Gunrock [137] can utilize multiple GPUs on a single ma-
chine and TOTEM [41] is a single-machine heterogeneous graph-processing system that
can use one CPU and multiple GPUs. MapGraph [38, 39] can use GPUs from multiple
machines.

In this chapter, we combine the scalability of distributed CPU-based graph-processing
systems with the computational power and energy efficiency of GPU-enabled graph-
processing systems. Specifically, we design and implement distributed heterogeneous
graph-processing systems that can use both the CPUs and the GPUs of multiple ma-
chines. Our study bridges the gap between existing distributed CPU-based systems and
GPU-enabled systems for large-scale graph processing.

We explore the design space of these distributed heterogeneous systems with a focus
on partitioning. Graph partitioning is mandatory for systems with multiple processing
units [53,146]. Well balanced partitions can improve the performance of graph-processing
systems, but the way to build and balance them depends heavily on the system character-
istics. In the presence of heterogeneity in the platform, balance is difficult to determine
and achieve [90, 117].

In this chapter, we propose three different graph-partitioning architectures:
Distributed-Parallel (DP), Parallel-Distributed (PD), and Combined (C). For the DP and
PD architectures, we select and combine existing graph-partitioning policies that have
promising characteristics for the respective phases; for C systems, we design a new pol-
icy to construct balanced partitions for multiple CPUs and GPUs.

To understand the performance differences between these systems and policies in
the context of real-life graph processing applications, we implement our distributed
CPU+GPU systems on top of the popular system TOTEM, from which we adopt the pro-
gramming model, the data structures, and several optimization techniques. To enable the
inter-machine communication necessary for a distributed system, we enhance the com-

119

munication layer of TOTEM (a single-machine system in which data is transferred only
between the CPU and the local GPUs) to use MPI [102] and GPUDirect [47]. We further
address other technical issues, such as separately building partitions on working machines
and aggregating results. Finally, because TOTEM doesn’t provide a method to compute
the workload partitioning between the CPU and the GPU, we propose a new method that
leads to balanced partitions among processing units. Our method is based on the approach
proposed by Shen et al. [117], which uses an offline profiling method to compute the rel-
ative capability of the CPU and the GPU. We extend this method to determine a balanced
partitioning of the input datasets on the CPU and the GPU.

We comprehensively evaluate the performance of three families of distributed het-
erogeneous graph-processing systems with different graph-partitioning policies. In our
experiments, we show how our systems can process large-scale graphs faster than single-
machine GPU-enabled systems and distributed CPU-based systems. Moreover, we show
that the systems we design can analyze large-scale graphs that cannot be handled by
single-machines systems.

Our contribution is four-fold:

1. We explore the design space of distributed heterogeneous graph-processing systems
(Section 6.3). Specifically, we explore three families of such systems using different
graph-partitioning architectures.

2. We design and select graph-partitioning policies for the three families of systems
(Section 6.3).

3. For each of the three families of systems, we implement the first working system
(Section 6.3).

4. We conduct comprehensive experiments to evaluate the performance of our dis-
tributed heterogeneous graph-processing systems (Section 6.4).

6.2 Extended BSP-Based Programming Model

Through comprehensive experiments, we have already evaluated the performance of ex-
isting GPU-enabled graph-processing systems [56]. Our past results indicate that TOTEM
is, among the systems we have tested, the most reliable one. Furthermore, TOTEM has
clear and comprehensive data structures for representing graphs and partitions, and sev-
eral optimization techniques for improving performance. In this section, we introduce the
programming model and the most important features of TOTEM (as shown in Figure 6.1).

TOTEM is a vertex-centric system following the Bulk Synchronous Parallel (BSP)
programming model [135]. In the BSP model, iterative graph algorithms are executed

120

Figure 6.1: The BSP-based programming model and features of a single-machine hetero-
geneous graph-processing system.

in multiple, consecutive supersteps. Each superstep coordinates processing data in paral-
lel, across physical processing units (P). Graph vertices are partitioned across processing
units. To avoid processing all vertices during each superstep, vertices can be activated and
only the active vertices are processed. Each superstep includes three phases: a computa-
tion phase during which all active vertices in each partition execute the same operations of
the graph algorithm; a communication phase during which vertices send messages via cut
edges, that is, edges whose vertices belong to partitions managed by different processing
units, to other partitions; and a synchronization phase, which guarantees that all messages
are transferred.

To use memory efficiently, TOTEM uses the Compressed Sparse Rows (CSR) [6] data
format to represent graphs and their partitions. The CSR format includes two arrays, the
vertex array V and the edge array E. Each element in V stores, for a vertex, the head
of its list of neighbors, as an index in E, and E stores for each vertex index a list of its
neighbors. Input graphs are split into multiple partitions, which are further assigned to
the CPU and the GPU(s).

A message aggregation technique is implemented in TOTEM to reduce the number
of messages sent via cut edges between partitions. The messages sent from vertices in a
partition to the same remote vertex are temporarily buffered. All messages for the same
remote vertex are combined into one message before sending. To allow for this aggrega-
tion, each partition maintains two sets of buffers: the outbox buffers and the inbox buffers.
Each outbox buffer stores messages to a remote partition, and each inbox buffer collects
messages from a remote partition. Thus, for each partition, the system has |P |− 1 outbox
and |P | − 1 inbox buffers (|P | is the number of partitions). This message aggregation

121

Figure 6.2: Three architectural families of distributed heterogeneous graph-processing
systems: DP (left), PD (middle), and C (right) systems.

technique can significantly reduce communication [41].
For heterogeneous CPU+GPU systems, a crucial operation is partitioning the work-

load between CPUs and GPUs. For many graph processing algorithms, the computation
workload can be heavily related to the number of edges of the input graph [41, 61, 150].
Thus, partitioning the workload is equivalent to determining the fraction of the edges to
be put on the CPU(s), which both in TOTEM and in our system is denote by α, with the
remainder to be put on the GPU(s). Existing studies have not proposed a method to select
this value. In Section 6.3.5, we describe our method to calculate the value of α. This
method is based on existing work on heterogeneous CPU+GPU systems [90, 117], which
we extended and adapted to graph-processing workloads.

6.3 The Design of Distributed Heterogeneous Systems

In this section we discuss the design of our three families of distributed heterogeneous
systems for graph processing. We further present the partitioning policies we have se-
lected and/or designed for these systems, and we discuss the most challenging aspects of
the implementation.

6.3.1 Three Families of Distributed Heterogeneous Systems

To extend single-machine graph-processing systems to a distributed architecture, graph
partitioning is a key aspect for both functionality and performance. In this section, we
focus on the architecture of graph partitioning in distributed heterogeneous systems.

Balanced partitions often lead to good system performance. To achieve balanced par-
titions in distributed heterogeneous systems, the graph partitioner (see Figure 6.1) must
consider three main aspects: inter-machine workload distribution, intra-machine work-
load distribution (i.e., between the CPU and the GPU), and communication minimization.
To explore these different aspects, we design three families of distributed heterogeneous
graph-processing systems, with the architectures depicted in Figure 6.2. We describe

122

these architectures further.
Distributed-Parallel (DP) systems: the partitioner takes two phases to partition the

input graph on the processing units. First, in the distributed phase, the partitioner as-
signs vertices to different computing machines, similar to the graph partitioning approach
used by many distributed graph-processing systems such as Pregel [92], Giraph [43], or
GPS [112]. Next, in the parallel phase, each machine further splits the subgraph it re-
ceived across its local CPUs and GPUs, similar to the actions taken in TOTEM.

Parallel-Distributed (PD) systems: in contrast to DP systems, PD systems reverse
the sequence of the distributed phase and the parallel phase: the graph is first divided into
two subgraphs, one to be processed by the CPUs and the other to be processed by the
GPUs, and then each subgraph is further distributed across CPUs and GPUs.

Combined (C) systems: unlike DP and PD systems, the combined systems use a
single-phase partitioning, the combined phase. The partitioner directly assigns vertices to
processing units, considering both the CPUs and the GPUs of the entire system. To still
achieve balanced partitions, the heterogeneity of processing units is the main challenge
that must be tackled. We describe our approach to this challenge in Section 6.3.4. We note
that our work is the first to consider a combined partitioning approach for heterogeneous
systems.

For all three families of distributed heterogeneous systems, the graph partitioner op-
erates on a single master machine. The partitioned data (vertices, edges, etc.) are then
sent to the working machines. Besides being out of the scope of this chapter, a distributed
partitioner is also non-trivial to implement, so we leave its design and implementation for
future work.

6.3.2 Classification of Partitioning Policies

Graph-partitioning has been studied for many years and many policies, with different
goals, have been proposed [53]. For example, the main target of the state-of-the-art graph
partitioner METIS [72] is to reduce the number of edge cuts between partitions, which
leads to less communication. The total-degree balanced policy (IO) used in the PGX.D
graph-processing system [61] aims to balance the total degrees of all partitions, allowing
each computing unit to have the same workload. Based on their goals and focuses, we
identify four classes of graph-partitioning policies, and summarize them in Table 6.1. We
discuss each of the four classes below.

The computation-focused policies focus on achieving balanced computation work-
loads across the processing units, with no consideration for the edge cuts between par-
titions. Policies in this class are based on the intuition that the computation workload
of graph-processing algorithms can occur incrementally, and mainly along the edges of
graphs [41, 61, 150]. Many computation-focused policies, such as the IO policy used by

123

Table 6.1: Four classes of graph-partitioning policies.

Class Examples
Computation-focused IO [61], HIGH [41], LOW [41]

Communication-focused METIS [72], LDG [126]

Computation-communication MW [146], MI [146]

Unfocused hash [92], random [126], chunking [141]

the PGX.D system, are designed to balance the in-degree and/or out-degree of partitions.
Considering the utilization of the cores of processing units, in particular for GPUs, the
vertex-degree centric policies have been used in heterogeneous CPU+GPU systems. For
example, the HIGH and LOW policies used by TOTEM fall into this class. For both of
these policies, the vertices of a graph are first sorted by their out-degrees, and then they
are split up into two parts. For the HIGH (LOW) policy, the part with higher (lower)
out-degrees is assigned to the CPU and the remainder to the GPU.

The communication-focused policies are proposed mainly to minimize the commu-
nication between partitions. Many traditional heuristics adopt theoretical methods to
achieve minimum communication, such as METIS and its family of partitioning poli-
cies [32]. Emerging streaming partitioning policies, which treat vertices as a stream and
assign them one-by-one instead of in bulk, also include many policies to reduce the com-
munication. For example, the LDG policy [126] places a vertex to a partition that already
has most of the new vertex’s neighbors. Some of the communication-focused policies
also make an effort, albeit minimal, to balance computation workload, for example the
LDG policy through a penalty function to avoid that too many vertices accumulate to one
partition and thus lead to highly imbalanced computation.

The computation-communication policies consider both the computation and the
communication workloads. For example, the Min-Workload (MW) policy [146] com-
bines the two workloads, by greedily assigning vertices to partitions that incur minimum
combined workload. The Min-Increased (MI) policy [146] places vertices with the least
increase of workload.

The unfocused class includes policies designed for simplicity—either to reduce the
implementation effort, or because partitioning is not believed to deliver a balanced work-
load. For example, the hash policy is commonly used by Pregel-like systems [43, 92].
The random (R) policy is another lightweight unfocused policy that randomly places ver-
tices to different partitions. Non-random policies, such as chunking [141], take subsets of
equal length from the input graph file and place them round-robin in different partitions.

124

6.3.3 Selection of Partitioning Policies

As discussed in Section 6.3.1, our three families of distributed heterogeneous graph-
processing systems use one or two phases for partitioning graphs: a distributed and a
parallel phase, or a combined phase. For each phase, any graph-partitioning policy could
in principle be selected and used. However, because of policy complexity and the archi-
tecture of the graph-processing systems, some policies may perform poorly in specific
partitioning phases. In this section we discuss the selection of suitable policies for each
family of systems; we will evaluate these choices in Section 6.4.

The distributed phase For the distributed phase, we need to address the load-
balancing in the distributed system. Because of message aggregation, our systems
already reduce inter-machine communication. Moreover, the partitioning policies in
both communication-focused and computation-communication-focused classes are very
expensive—for example, METIS (communication-focused) takes more than 8.5 hours to
partition a large graph (1.4 billion edges) with a typical machine that could be used by
an SME (3.6 GHz CPU and 16 GB memory) [133]. Therefore, we select the partitioning
policies for the distributed phase from the computation-focused class, as they will provide
fast partitioning and good balancing of the computation workload, leading to reasonable
load balancing.

To understand how to balance the workload, we observe that the computation can
be divided into two parts: one for processing incoming messages, and another one for
applying updates and creating outgoing messages. The partitioning policy should aim
to balance the substantial part of the workload, requiring a decision to be made between
balancing the in-degree or the out-degree of the partitions. Because of local message
aggregation, the number of incoming messages for a partition is at most (|P | − 1)× |Vp|,
with Vp the set of vertices of partition p). Because |Vp| << |Ep|, with Ep the set of edges
of partition p, this in-message processing part of the workload is significantly smaller
than the updates and out-going message preparation part, which requires computation
for each edge. With this knowledge, our policy for the distributed phase must focus on
balancing the out-degree. We select the out-degree balanced policy (O), which is one of
the partitioning policies proved successful by PGX.D [61]. By the O policy, vertices are
assigned to the first |P |− 1 partitions until the sum of vertex out-degrees in each partition
reaches |E|/|P |. The last partition takes all remaining vertices.

The parallel phase For the parallel phase, we need to address the heterogeneity of the
CPU(s) and the GPU(s). We cannot use here a degree balanced policy (such as O or
IO from PGX.D), because the GPU can process much faster than the CPU when they
have similar computation workload. TOTEM has proposed for the parallel phase two

125

policies—HIGH and LOW—to handle heterogeneity. Given the results from both [41]
and [113], which indicate that HIGH and LOW can both be successful for different algo-
rithms and datasets, we select both the HIGH and LOW policies for independent use in
the parallel phase.

The combined phase There is no policy that addresses the heterogeneity of the CPU
and the GPU in distributed environments. Thus, we design a new policy in Section 6.3.4.

The random policy Last, we also select the random policy from the unfocused class for
the distributed and the combined phases. The random policy is lightweight and easy to
implement. We aim to use it as a control policy for the O policy in the distributed phase,
and for the newly designed policy in the combined phase. We do not use the random
policy in the parallel phase, because previous studies on the performance of TOTEM [41,
113] have shown that in most cases, the random policy is the worst performing one.

6.3.4 The Design of a Profiling-Based Greedy Policy

In this section, we design a profiling-based greedy (PG) policy for the combined phase of
combined systems. The PG policy belongs to the computation-focused class.

Requirements. Combined systems need to directly place vertices on CPUs and GPUs
in a single combined phase (see Section 6.3.1). To balance the workload, the partitioning
policy of combined systems needs to address the heterogeneity of CPUs and GPUs.

None of the existing partitioning policies is able to deal with this type of heterogene-
ity. For existing computation-focused policies, many of them are proposed to distribute
graphs for CPU-based systems on homogeneous clusters, but these policies do not focus
on GPUs. Other computation-focus policies, such as the HIGH and LOW policies used
in TOTEM, are designed without considering distributed environments.

General idea of the new PG policy. To balance the assignment of vertices across
both CPUs and GPUs, the policy needs to assess the relative computation abilities of the
GPU and the CPU. We use the ratio of the GPU and CPU capabilities, r, to estimate a
balanced workload—i.e., a workload ratio of r : 1 for the GPU versus the CPU consti-
tutes a balanced workload. These capabilities can be obtained from an offline profiling
process as introduced in Section 6.2 and discussed in more detail in Section 6.3.5. Our
policy is inspired by streaming partitioning policies: we treat the vertex list as a stream,
and we place the vertices from this stream, one-by-one, in the partition currently having
the smallest computation workload. The PG policy simplifies the process of graph par-
titioning by considering only one vertex at a time, and achieves balanced partitions for
CPUs and GPUs.

126

Technical details. We define the computation workload on the CPU as the sum of
the vertex out-degrees of all vertices in the partition placed on the CPU. The computation
workload on the GPU is the similar sum computed for vertices placed on the GPU, but
divided by r to account for the computation ratio of the GPUs to CPUs. In the PG policy,
we maintain an array, indexed by partition, of the computation workload of all partitions.
For each next vertex, we search for the partition with the smallest workload, and place it
there. We update the computation workload of this partition by adding to it the out-degree
of the added vertex. If the partition is for a GPU and the required memory is too close to
the GPU memory capacity, the partition is removed from the computation workload array
and will not be further considered for the remainder of the partitioning process. When all
GPU partitions are full, all remaining vertices go to the CPUs.

Limitations. The computation ratio of the GPUs to CPUs must be known for the PG
partitioning policy to work. The profiling process to calculate this ratio is time consuming,
requiring many experiments (see Section 6.3.5). The more experiments, the more accurate
the computed ratio is. Because the partition quality of this policy strongly relies on the
accuracy of this ratio, when hardware infrastructure changes, the profiling process should
be re-executed for better accuracy.

Comparison with other policies. The complexity of the PG policy is low, because it
only needs to maintain the computation workload array for all partitions and to search for
the partition with least workload for each assignment. DP and PD systems use two-phase
partitioning, combining two policies, which means they access each vertex at least twice,
to decide its final partition. Moreover, although O and Random have low complexity,
HIGH and LOW need time-consuming sorting of vertices. We expect PG to be faster than
PD and DP. We further explore the partitioning time in Section 6.4.6.

6.3.5 Implementation Details

In this section, we describe the non-trivial elements of implementing the three families
of distributed heterogeneous systems, and of their partitioning policies. We begin from
the open-source code of TOTEM, which already implements the general single-machine
model introduced in Section 6.2. To this code, we add a profiling component to determine
r, the ability to operate as a distributed system with any of the three architectures, and the
partitioning policies.

Profiling the relative computation ability of the CPU and of the GPU. Previous
studies have shown that heterogeneous systems can outperform CPU-only or GPU-only
systems in many application domains, including graph processing, but the performance
gain is very sensitive to a good workload partitioning [41, 117]. Determining a good
workload partitioning is equivalent, in the case of our systems, to computing the right
α, i.e., the right workload fraction to be placed on the CPU (Section 6.2). This fraction

127

depends on the relative ability of the CPU and GPU to process a given workload, i.e., how
much slower is the CPU compared to the GPU. Previous studies have already shown that
using hardware performance models is unfeasible [91], and using the theoretical bounds
of the hardware platforms does not give accurate results [90,117]. Therefore, we propose
a profiling method to understand the computation heterogeneity between these processing
units. In our offline profiling method, we let the CPU and the GPU compute the same
workload, and calculate the ratio of the CPU run time to the GPU run time. Due to
the irregular, data-dependent nature of graph processing, we repeat the experiment for
multiple runs and compute an average (see Section 6.4.2 for details) to obtain an accurate
execution profile describing r.

Ideally, the most accurate values of r are computed using the graphs and algorithms
that are to be used at runtime. However, such a profiling method would be too expensive
to use in practice, and would cancel out the partitioning speed of our selected partitioning
policies. Therefore, we choose to trade-off accuracy for applicability, and implement our
profiling method using a 4-step micro-benchmarking strategy.

Step1. We select a representative graph processing algorithm. Specifically, we use
PageRank because it is stable in its performance (e.g., by contrast, BFS shows high per-
formance variability depending on the root of the search).

Step2. We use five synthetic datasets: Scale-20 to Scale-24, created by the Graph500
generator [48].

Step3. We randomly partition each graph and set 10% to 50% (with a step of 10%)
total edges on the CPU and the remaining (90% to 50%) on the GPU. Then, we reverse
the workload of the CPU and the GPU for each partitioning. Thus, we can obtain 10
pairs of CPU and GPU run times for processing the same workloads. We calculate the
computation ratio r as the CPU run time over the GPU run time. We repeat the process
with 5 random seeds for partitioning, and derive a mean value of r for each workload.

Step4. We observe the correlation between r and the different graph sizes (because
there is no single value of r for all graph sizes), and we determine how to select r for
different graphs (Section 6.4.2). We then calculate the fraction α as α = max{αl, 1/(r +

1)}, where αl is derived from the limitation to ensure that the GPU is not out of memory.
As we know the data structures for representing partitions on GPUs, αl can be estimated
using the vertex and edge counts of the partition.

Communication in the distributed system. To connect the CPUs and GPUs on
multiple machines, we extend the communication part of the TOTEM system. We use
MPI [102] and, where available, the Nvidia GPUDirect [47] technology to communicate
between processing units in our distributed heterogeneous systems. GPUDirect elimi-
nates the copy process between the CPU and the GPU(s), which means messages can be
directly transferred between each pair of processing units with low overhead. The usage
of GPUDirect improves the performance of delivering messages and simplifies the coding

128

Table 6.2: Graph-partitioning policies for partitioning phases.

Phase Policies
Distributed phase Out-degree balanced (O), Random (R)

Parallel phase HIGH (H), LOW (L)

Combined phase Profilling-based Greedy (PG), Random (R)

effort. We use MPI barriers to ensure that all messages are synchronously delivered.
Implemented Policies. Based on the selection and design of partitioning policies,

we summarize in Table 6.2 the policies we consider and implement for the partitioning
phases of the three families of systems.

Other distributed systems aspects. We deploy the graph partitioner on a master
machine. For each family of distributed heterogeneous systems, we implement all the
partitioning policies or policy combinations we have selected or created in Sections 6.3.3
and 6.3.4, respectively. After partitioning the input graph, the master sends all data to
the working machines, partition by partition. Working machines simultaneously recon-
struct (build) their partitions on each processing unit. We use the master to control the
process of executing the graph algorithm. For each iteration in the execution of the graph
algorithm, the master collects information from working machines, checks if all partitions
have finished their execution, and determines if execution should be stopped. The master
is also responsible for aggregating updates from all partitions to the original graph.

6.4 Experimental Results

In this section, we present the experiments conducted to evaluate the performance of our
three families of distributed heterogeneous systems. We introduce our experimental setup
in Section 6.4.1, and summarize it in Table 6.3. Our experiments include an evaluation
of the profiling method (Section 6.4.2) and a thorough evaluation of our three families of
distributed heterogeneous systems, using algorithm run time (Section 6.4.3), a breakdown
of algorithm run time (Section 6.4.4), and scalability (Section 6.4.5). We further analyze
the partitioning time for different policies (Section 6.4.6), and provide a performance
comparison between our systems and other graph-processing systems (Section 6.4.7).

6.4.1 Experimental Setup

Hardware: We conduct our experiments on the DAS4 cluster [21]. All machines we used
in our experiments are equipped with an Nvidia GeForce GTX 480 GPU (1.5 GB onboard
memory) and an Intel Xeon E5620 2.4 GHz CPU (24 GB memory). The machines are
connected by 24 Gbit/s InfiniBand. For the scalability test, we vary the number of working

129

Table 6.3: Experimental setup of the experiments in Section 6.4.
Section Algorithms Datasets Metric Machines

6.4.2 All Scale-20 to Scale-25 Algorithm run time 1, 4

6.4.3 All G1 to G5 Algorithm run time 4

6.4.4 PageRank G4 Breakdown 4

6.4.5 All G4, G5 Scalability 1-10

6.4.6 - Scale-20 to Scale-25 Partitioning time 1-10

6.4.7 All G1 to G5 Algorithm run time 1, 4

Table 6.4: Summary of datasets used in the experiments.
Graph |V | |E| d D̄

G1 WikiTalk (D) 2,388,953 5,018,445 0.1 2

G2 DotaLeague (U) 61,171 101,740,632 2,719.0 1,663

G3 Datagen p10m (D) 9,749,927 687,174,631 0.7 70

G4 Scale-25 (U) 17,062,472 1,047,207,019 0.4 61

G5 Friendster (U) 65,608,366 3,612,134,270 0.1 55
|V | and |E| are the vertex count and edge count of the graphs, d is the link density
(×10−5), and D̄ is the average vertex out-degree. (D) and (U) stand for the original
directivity of the graph. For each original undirected graph, we transform it into a
directed graph (see Section 6.4.1).

machines from 1 to 10. Our systems need one extra machine as the master.
Algorithms: Based on our literature survey on graph processing [51], we select 3

popular graph-processing algorithms. These are Breadth First Search (BFS), PageRank,
and Weakly Connected Component (WCC). We use the same implementation as in our
previous study [56]. For BFS on each graph, we use the same source vertex. For PageR-
ank, we set the maximum number of iterations to 10 as the only termination condition.
WCC does not have any specific configuration.

Datasets: We select 5 graphs with various characteristics, as seen in Table 6.4. We
include two real-world graph from SNAP [121] (i.e., WikiTalk and Friendster), and one
from the Game Trace Archive [54] (i.e., DotaLeague). We also use two synthetic graphs,
Scale-25 and Datagen p10m, from Graph500 [48] and the LDBC generators [81], respec-
tively. For undirected graphs (G2, G4, and G5), we use two directed edges to represent
an undirected edge, as required by the CSR format. The WCC algorithm decides two
vertices are connected if there is an edge between them. Thus, for the WCC algorithm
on directed graphs (G1 and G3), for each pair of vertices that are connected with only a
single directed edge, we create a reverse. The new graphs are G1WCC and G3WCC, with
edge counts 9,313,364 and 1,374,349,262, respectively.

Notation for system-policy configuration: We selected different policies for differ-
ent phases of three families of systems (Table 6.2). We use the notation of “System-
Policy/Policies” to denote the system-policy configuration. For example, C-PG stands for
the combined system using the PG policy, and DP-OH indicates the DP system using the
O and H policies. The DP and PD systems need α as an input parameter, and C-PG needs

130

 0

 10

 20

 30

0 50 100 150 200 250 300 350

c
o
m

p
u
ta

ti
o
n
 r

a
ti
o
 r

edge count [million]

Figure 6.3: The relationship between the computation ratio and the edge count.

the computation ratio r. C-R does not need any input parameter.
Further configuration and settings: We use CUDA 5.5 as the GPU compiler, Intel

TBB 4.1 [65] for sorting vertices by their out-degrees, and Open Mpi 1.8.2 for sending
messages. We repeat each experiment 10 times and report the mean value. We do not
show error bars because the results from different runs are stable, with the largest variance
under 5%.

6.4.2 Calculating the Computation Workload Fraction

In this section we discuss the computation ratio r for our machines, and we derive the
computation workload fraction α for CPUs for our graphs.

Key findings:

• The computation ratio r varies with the number of processed edges.
• The values of α obtained from PageRank can help BFS and WCC achieve good

performance.

Following our micro-benchmarking strategy (Section 6.3.5), we obtain different val-
ues for r, all ranging between 8.0 to 25.0. Figure 6.3 shows how r relates to the number
Em of millions of processed edges. Using regression for the smallest graphs and approx-
imating r as being constant for the other ranges, we find the following trends for r:

r =

9.3 + 0.2× Em, 0 < Em ≤ 50

19.5, 50 < Em ≤ 125

23.7, 125 < Em ≤ 350

When using multiple machines, each machine will have a value of r that corresponds to
the number of edges it has to process. In our experiments, the edges are evenly distributed,
because we use identical machines and a load-balancing driven policy. Thus, we can
use the same value of r for all machines. Because of the GPU memory limitation, the

131

10
0

10
1

10
2

10
3

10
4

10
5

0.01 0.1 0.3 0.5 0.7 0.9

α = 0.04

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

α

DP-RH PD-HR

10
0

10
1

10
2

10
3

10
4

10
5

0.01 0.1 0.3 0.5 0.7 0.9

α = 0.04

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

α

DP-RH PD-HR

Figure 6.4: The algorithm run time for BFS (left) and WCC (right) for different values of
α (vertical axes have a logarithmic scale).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

G1 G2 G3 G4 G5

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Datasets

C-PG

C-R

DP-RH

DP-RL

DP-OH

DP-OL

PD-HR

PD-LR

PD-HO

PD-LO

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

G1 G2 G3 G4 G5

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Datasets

C-PG

C-R

DP-RH

DP-RL

DP-OH

DP-OL

PD-HR

PD-LR

PD-HO

PD-LO

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

G1WCC G2 G4 G3WCC G5

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Datasets

C-PG

C-R

DP-RH

DP-RL

DP-OH

DP-OL

PD-HR

PD-LR

PD-HO

PD-LO

Figure 6.5: The algorithm run time of BFS (left), PageRank (middle), and WCC (right)
on 5 datasets for all system-policy configurations (vertical axes have a logarithmic scale).
Datasets are sorted in increasing order of their edge counts.

maximum value of Em per working machine is about 350. All these values are likely to
change for different machine configurations (i.e., different GPUs and CPUs).

We calculate α for each experiment in the following sections with different machine
counts and graphs. For example, α for graphs G1 to G5 on 4 working machines is 0.09,
0.06, 0.04, 0.04, and 0.85, respectively.

Our micro-benchmarking strategy uses PageRank for determining α (Section 6.3.5).
We preserve the same values for α for all 3 algorithms. To determine how suitable α is
for the other algorithms, we run BFS and WCC on the G4 graph on 4 working machines
using the DP-RH and PD-HR configurations with different values of α. We compare the
algorithm run time of using these values with the one obtained using the calculated value
of 0.04. Figure 6.4 shows these results (the horizontal line represents the algorithm run
time for α = 0.04 of DP-RH, which is very similar to PD-HR). For both BFS and WCC,
the calculated α leads to the best performance, with the only exception when using the
value of 0.01 of PD-HR.

132

6.4.3 Overview of the Performance of Three Families of Systems

In this section, we analyze algorithm run time, defined as the time for actually executing
the graph algorithm; algorithm run time does not include the time spent on operations like
initialization and result aggregation, and includes no system overhead [56].

Key findings:

• There is no overall winner, but C-R is in general the worst performing architecture.
• Our new PG policy for combined systems shows good performance.

Figure 6.5 shows the algorithm for all combinations of algorithms, systems, and
datasets. The results are similar for all algorithms: no system-policy configuration out-
performs the others in all cases. C-PG is typically in Top 3. C-R performs the worst
because it has no consideration for the heterogeneity of the CPU and the GPU. When we
fix the policy used for the distributed phase, and change the policy for the parallel phase,
we can compare the influence of the HIGH and LOW policies. In almost all cases, the
performance of the HIGH policy is better. We also notice that for G5, the performance
of different system-policy configurations is very similar. This happens because α = 0.85,
and therefore the CPU dominates the overall algorithm run time. For G4, we need to set
α to 0.35 for DP-OH and PD-HO to ensure that all partitions assigned to GPUs do not
break the GPU memory limitation. We further analyze this setting of α for DP-OH in
Section 6.4.4.

6.4.4 Breakdown of Algorithm Run Time

We further break down the algorithm run time into CPU- and GPU-computation time, and
communication time, and discuss their impact on performance.

Key findings:

• The computation time is the dominant part of the algorithm run time.
• C-PG can achieve a balanced intra- and inter-machine computation workload.
• The O policy may lead to poor performance and needs to be tuned.

The breakdown of the algorithm run time per machine of PageRank on G4 is pre-
sented in Figure 6.6 for the C-PG and DP-OH configurations. The communication time is
significantly shorter than the computation time (i.e., the maximum of the CPU time and
the GPU time), which is empirical evidence for our discussion on message aggregation in
Section 6.3.3. For C-PG, the computation times of the working machines are close to each
other, and within each machine, the difference between the CPU time and the GPU time
is also small. However, for DP-OH, the computation workload is not balanced across the
CPU and the GPU, because DP-OH needs to set α to 0.35 in order to hold all partitions on

133

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M1 M2 M3 M4

T
im

e
 [
m

s
]

Working Machine

CPU time
GPU time

Communication time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M1 M2 M3 M4

T
im

e
 [
m

s
]

Working Machine

CPU time
GPU time

Communication time

Figure 6.6: The breakdown of the algorithm run time of C-PG (left) and DP-OH (right,
α = 0.35) when running PageRank on graph G4 on each of the four working machines
(vertical axes have a logarithmic scale).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 4 6 8 10

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Machines

C-PG C-R DP-RH PD-HR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 4 6 8 10

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Machines

C-PG C-R DP-RH PD-HR

Figure 6.7: The scalability of running PageRank for G4 (left) and G5 (right) (vertical axes
have a logarithmic scale). We failed to run G5 on 1 machine due to resources limitation.

GPUs. Although the edge counts on the GPUs are balanced by DP-OH, the fourth GPU
partition has 200 times more vertices than the first GPU partition. This imbalance of the
vertex counts is caused by the behavior of the O policy and the input graph G4. In G4,
high-degree vertices have small vertex IDs and are assigned to the first machine (and then
to the first GPU) by the O policy. The O policy needs tuning to avoid such imbalance.

6.4.5 Scalability

In this section, we discuss the scalability of our systems using a number of working ma-
chines from 1 to 10.

Key finding:

• Our three families of systems show good scalability.

From Section 6.4.3, we select the best performing system-policy configurations.
These are C-PG for the Combined systems, DP-RH for the Distributed-Parallel systems,
and PD-HR for the Parallel-Distributed systems. We also select C-R for comparison. Fig-
ure 6.7 depicts the algorithm run time of PageRank for the G4 and G5 graphs (the results

134

 0

 2000

 4000

 6000

 8000

 1 2 4 6 8 10

P
a
rt

it
io

n
in

g
 t
im

e
 [
m

s
]

Machines

C-PG C-R DP-RH PD-HR

 0

 2000

 4000

 6000

 8000

Scale-20

Scale-21

Scale-22

Scale-23

Scale-24

Scale-25

P
a
rt

it
io

n
in

g
 t
im

e
 [
m

s
]

Graph500 graphs

C-PG C-R DP-RH PD-HR

Figure 6.8: The time spent on partitioning the Scale-25 graph into different numbers
of partitions (left) and on partitioning Graph500 graphs into 8 partitions on 4 machines
(right).

we obtained for BFS and WCC are similar, and therefore not included). For G4, using
up to 4 machines leads to excellent scalability. The values of α for 1, 2, and 4 machines
are 0.8, 0.5, and 0.04, respectively, meaning that increasingly more workload is placed on
the GPUs, and is therefore accelerated. However, when using more than 4 machines, the
performance gain is not significant, simply because G4 is not large enough to stress larger
clusters. For the graph G5, such a scalability limitation is not visible when using up to 10
machines. Even for 10 machines, the algorithm run time is still heavily dominated by the
execution on the CPUs.

6.4.6 Partitioning Time

In this section, we analyze the time spent on partitioning graphs for different system-
policy configurations.

Key findings:

• C-PG has shorter partitioning time than DP-RH and PD-HR. Its partitioning time
increases with partition count.

• The size of graphs can significantly influence the partitioning time, especially for
DP and PD systems.

We run two sets of experiments, one for partitioning Scale-25 with increasing partition
count (i.e., using an increasing number machines), see Figure 6.8 (left), and one for parti-
tioning 6 Graph500 graphs (Scale-20 to Scale-25) into 8 partitions on 4 machines (4 CPU
and 4 GPU partitions), see Figure 6.8 (right). Since the results of different configurations
of DP and PD systems are similar, we only present the results of DP-RH and PD-HR. The
time for partitioning Scale-25 of C-PG increases linearly with the partition count, as for
each vertex the operation of searching for the partition with the smallest workload has to
be performed. As the time required for this operation increases with the partition count,

135

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

G1 G2 G3 G4 G5

A
lg

o
ri
th

m
 r

u
n
 t
im

e
 [
m

s
]

Datasets

Medusa

MapGraph

TOTEM

Giraph

C-PG

Figure 6.9: The algorithm run time of PageRank on 5 datasets with different graph pro-
cessing systems (the vertical axis has a logarithmic scale, missing bars are explained in
the text).

more time is consumed by C-PG. However, compared with the time-consuming sorting
operation in the HIGH and LOW policies used in DP and PD systems, the partitioning
time of C-PG is much shorter. Moreover, the gap will increase as the graphs grow larger,
see Figure 6.8 (right).

6.4.7 Comparison with Other Graph Processing Systems

In this section, we compare the performance of our systems with other graph-
processing systems, including GPU-enabled systems (Medusa [152], MapGraph [39], and
TOTEM [41]), and a distributed CPU-based system (Giraph [43]).

Key finding:

• Our system can process all 5 datasets and achieves good performance compared
with the other systems.

We select C-PG, and we deploy both our system and Giraph on 4 working machines.
The other three systems work on one machine (altough MapGraph claims to be usable on
GPUs of multiple machines, the latest publicly available version tested in this section can
only work on a single machine). For TOTEM, we set α for each graph according to the
rules introduced in [41]. We use the HIGH policy in TOTEM, as it outperforms the LOW
policy for our selected datasets.

We run the PageRank algorithm on each system for graphs G1 to G5 and show the al-
gorithm run time in Figure 6.9. Although Medusa and MapGraph can process the smallest
graph G1 much faster, they both fail to run already on the medium-sized graph G2 due to
the limited GPU memory. TOTEM fails to run on the graph G5 during the graph parti-
tioning step. In contrast, our system can process all graphs. On the graph G4, our system
using 4 machines is about 6 times as fast as the single-machine TOTEM. This super-linear
speed-up is due to getting much more acceleration from the GPUs. Finally, our system

136

outperforms Giraph significantly (by a factor of more than 50). The reasons include the
acceleration of using GPUs and the reduced communication workload in our system. Gi-
raph fails to run for G5 with 4 machines, but successfully executes with 20 machines,
with an algorithm run time closes to that of C-PG with 4 machines. Similar results are
observed when running BFS and WCC.

In our previous work [56], we found that TOTEM takes around 7,000 ms to finish
PageRank on G4 with 8 GPUs (and no CPUs) in a single machine. In contrast, as shown
in Figure 6.7, C-PG takes only about 5,300 ms for the same job on a distributed system
with 8 machines with one CPU and one GPU each. We attribute this performance gain to
two reasons: (1) the CPUs play an important role in the performance of our distributed
systems, and (2) the inter-machine communication is not really a bottleneck.

6.5 Related Work

There are three directions of research that contribute to the success of our work: design-
ing graph-processing systems, graph partitioning, and workload partitioning for heteroge-
neous systems. In this section we place our work in the context of each of these research
directions.

Graph-processing systems. There are tens of graph processing systems developed
in the past 10 years, each one designed with specific requirements in mind. Among these
requirements, support for large-scale graph and efficient use of existing hardware infras-
tructure are often the most important ones. For example, Pregel [92], Giraph [43], or
PGX.D [61] are distributed CPU-based systems that offer a simple, high-level program-
ming model and focus on processing very large graphs with reasonable performance and
very good scalability. Other systems, like TOTEM [41], Medusa [152], Gunrock [137],
focus on offering users efficient ways to accelerate their graph processing using GPUs on
a single machine. Despite their high performance, these systems cannot handle large-scale
graphs efficiently. In this chapter, we combine the advantages of both worlds: we are the
first to design and evaluate three families of distributed heterogeneous graph-processing
systems.

Graph partitioning. Many graph-partitioning policies and methods have been pro-
posed in various research areas. In our previous work [53], we have summarized the char-
acteristics of existing partitioning policies and classified them into different classes from
different perspectives: edge-cut [92] and vertex-cut [45] , static [61] and dynamic [112],
and traditional heuristics [32] and streaming policies [126]. In this chapter, we com-
bine existing policies for parallel and distributed systems to address the 2-layer systems
we have designed (DP and PD systems). We further propose a novel partitioning pol-
icy, inspired by the streaming policies, to tackle both the heterogeneity and the scale of
GPU-enabled distributed systems.

137

Heterogeneous systems. A lot of work has been recently dedicated to the efficient
use of heterogeneous, CPU+GPU systems [60, 118, 123]. Most of this work focuses on
workload partitioning - static or dynamic - between the different processing units in the
system. In this chapter, we draw inspiration from static workload partitioning, which
uses an estimation of the relative compute capabilities of the processing units - CPUs
and GPUs - to compute an efficient partitioning before runtime. We adapt and extend
the state-of-the-art profiling-based approach from [117] to a method that determines the
right fraction of edges per processing unit. This fraction is an important parameter for our
graph partitioner.

6.6 Summary

In this chapter, we bridge the gap between large-scale systems and accelerated sys-
tems for graph processing by designing three families of distributed heterogeneous sys-
tems. Each family focuses on a different partitioning architecture—Distributed-Parallel,
Parallel-Distributed, or Combined. We combine promising policies for the DP and PD
systems, and propose a new policy for the C sytems. To tackle heterogeneity while parti-
tioning, we adapt and extend a profiling-based method to compute the workload fractions
for the CPU(s) and the GPU(s).

For the implementation of systems, we address several technical challenges, such as
implementing communication of CPUs and GPUs on multiple machines and building
partitions independently on each processing unit.

To evaluate performance, we conduct experiments for all three families of systems,
using different partitioning policies. Our results demonstrate the feasibility of distributed
heterogeneous systems for graph processing. Performance-wise, the systems are compet-
itive with the state-of-the-art.

138

Chapter 7

Conclusion and Future Work

In this chapter, we first summarize the contributions and findings of this thesis in Sec-
tion 7.1. We then propose several directions for future research in Section 7.2.

Processing graphs, especially at large scale, is an increasingly useful activity in a va-
riety of business, engineering, and scientific domains, such as online social networks,
online retail, and online gaming. To process large-scale graphs and complex graph al-
gorithms, many graph-processing systems, using or not using accelerators, have been
designed and developed. Graph processing has become a very popular research topic in
recent years. There are many challenges in this area, such as data collection and sharing,
system performance evaluation and comparison, and system design and tuning.

In this thesis, we have designed and maintained the Game Trace Archive, which pro-
vides many graphs from online games. We have proposed an empirical method and con-
ducted comprehensive experiments to understand the performance of CPU-based graph-
processing systems. We have extended this empirical method and run experiments to
evaluate the performance of GPU-enabled graph-processing systems. We have noticed
that graph partitioning is essential to the performance of distributed graph-processing
systems, and we have designed new partitioning policies with good performance. We
have designed three families of distributed heterogeneous graph-processing systems and
compared their performance with existing graph-processing systems.

7.1 Conclusion

We summarize our main contributions and findings as follows:

1. RQ-1: How to build a virtual meeting space for sharing, exchanging, and ana-
lyzing graphs? We design the Game Trace Archive (GTA) to be a virtual meeting
space for the community. We identify five main requirements to build an archive

139

140

for game traces, and address them with the GTA. We propose a unified format for
game traces. Gaming graphs, which are commonly exist in various games, can be
presented in this format. We introduce a number of tools associated with the format.
With these tools, we collect, process, and analyze 9 game traces. We collect in the
GTA traces corresponding to more than 8 million real players and more than 200
million information items, spanning over 14 operational years. We also show that
the GTA can be extended to include a variety of real game trace types. Analyzing
gaming graphs may guide the multi-disciplinary field of game design by provid-
ing new understanding of player behavior. For example, we find that a correlation
between the interactivity of match-based games and the retention of players over
both long and short term, that friendship does not always help to perform better in
games, and that in match-based games each player explores tens of different play
strategies over time.

2. RQ-2: How well do CPU-based graph-processing systems perform? We iden-
tify methodological and practical challenges of benchmarking graph-processing
systems. To address these challenges, we design an empirical method and use it
to evaluate six popular CPU-based graph-processing systems, including Hadooop,
YARN, Stratosphere, Giraph, GraphLab, and Neo4j. Our method defines the pro-
cesses of performance evaluation, and how to select performance metrics, datasets,
and algorithms. We report the performance on four aspects: raw performance, re-
source utilization, scalability, and overhead. We obtain interesting findings, for
example, there is no overall winner-system, Hadoop always performs worst, sev-
eral distributed systems are unable to process all datasets for all algorithms due to
the complexity of algorithms and the scale of graphs.

3. RQ-3: How well do GPU-enabled graph-processing systems perform? We
extend the empirical method first proposed for solving RQ-2 to measure the per-
formance of GPU-enabled graph-processing systems by identifying new perfor-
mance aspects and metrics, and by selecting and including new datasets and al-
gorithms. We implement the extended method on three GPU-enabled graph pro-
cessing systems, including TOTEM, Medusa, and MapGraph. For GPU-enabled
graph-processing systems, we focus on reporting five performance aspects: raw
processing power, performance breakdown, scalability, and, new for GPU-enabled
systems, the impact on performance of system-specific optimization techniques
and of the GPU generation. Our comprehensive results show that single-machine
GPU-enabled graph-processing systems can perform much faster than distributed
CPU-based systems and that the ability of processing large-scale graphs of single-
machine GPU-enabled systems is limited.

141

4. RQ-4: How to design low-overhead graph-partitioning policies for distributed
graph-processing systems? We design new graph-partitioning policies for real
world graph-processing systems. We model the run time of graph-processing sys-
tems. Our policies are designed to minimize the run time of graph-processing sys-
tems, which is different from the goals of many previous policies, such as mini-
mizing communication and balancing the number of vertices on each working ma-
chine. We propose a method to identify important performance issues and run-
time-influencing graph characteristics, based on which we design policies to obtain
balanced partitions. We conduct comprehensive experiments to evaluate and com-
pare the performance of our new policies and previous alternatives, by processing
various graph applications and reporting a set of performance metrics. Our results
demonstrate that our newly designed partitioning policies perform well, while ex-
isting streaming policies exhibit poor performance.

5. RQ-5: How to design a distributed and heterogeneous graph-processing sys-
tem? We design and implement three families of distributed heterogeneous graph-
processing systems, which bridge the gap between distributed CPU-based systems
and non-distributed GPU-enabled systems. We design these systems with different
partitioning architectures, including Distributed-Parallel, Parallel-Distributed, and
Combined. We select and/or design new partitioning policies for each family of
systems. To address the heterogeneity of the CPU and the GPU while partitioning,
we adapt and extend a profiling-based method to assign different fraction of work-
load to CPU(s) and GPU(s). We evaluate the performance of these three families
of systems with various combination of graph-partitioning policies and compare
the performance of our systems with existing graph-processing systems. From our
results, we see that our systems can achieve better performance than other graph-
processing systems, such as Giraph and TOTEM.

7.2 Future Work

As we present in Figure 1.2, this thesis consists of three main parts, graph-processing ap-
plications, knowledge gaining about system performance, and system design. We propose
future research directions for each part, respectively.

7.2.1 Using the Game Trace Archive

Beside graph processing, many research directions may benefit from the comprehensive
game information stored in the GTA. In this section, we discuss the potential usage of the
GTA.

142

1. Game resource management. Resource management is critical for game operators
and players. Inadequate management can lead to service shut-down, player de-
parture, etc. Knowledge about the evolution of the player graph, from the simple
player count to the complex guild information, can enable accurate prediction of
the needed resources. The GTA can also help in understanding the change of game
workloads with different time patterns (diurnal, weekly, etc.). Idle resources of one
game may be used to support other games or applications during a specific period
in a day or week [13].

2. Quality of Experience for players. Using the information from the GTA can help
in improving the Quality of Experience for players in many aspects, for example,
building reputation systems [69]. Reputation systems are important for successful
online games. The reputation of a player (ratee) is calculated from ratings given by
the other players (raters). During the calculation, each rating could have its own
weight, which may be assigned according to many metrics derived from the GTA
data, such as the level and online time of rater, the relationship of rater and ratee in
the gaming graph, etc.

3. In-game advertisement. Advertisement is an important source of revenue for game
operators. Successful game advertisements should meet at least the following re-
quirements: for advertisers, advertisements should attract more users than their ex-
pectation; for game operators, they should obtain more income from advertisement
than the revenue loss due to the effect of user experience. To achieve this require-
ment, the content of advertisements should be well designed and the placement of
advertisements should be well selected. If an advertisement interrupts player im-
mersion, especially during important and time-limited tasks, the advertisement may
fail. What is worse, this may even result in player departure. Analyzing the type and
frequency of player in-game operations may help advertisers and game operators to
integrate seamless advertisements.

7.2.2 Benchmarking Graph Processing Systems

In Chapters 3 and 4, we have introduced our empirical method to evaluate and compare
the performance of graph-processing systems. In this section, we suggest two directions
to enhance our method and to spread our results.

1. A comprehensive benchmark for graph-processing systems. To further address the
methodological and practical challenges we have envisioned in Chapter 3, we have
to extend our empirical method and to design a comprehensive benchmark for
graph-processing systems. We can design the benchmark by including more al-
gorithms and datasets, by designing a unified benchmarking process that simplifies

143

the engineering effort, and by visualizing performance results. Our research group
is actually working on this benchmark, with cooperative effort from both academia
and industry.

2. New common knowledge for the community. We have discovered many interest-
ing results through our experiments. For example, Hadoop, overall, is the worst
performer compared with existing popular graph-processing systems. These re-
sults have been noticed and accepted by researches in the graph-processing area,
and helped the community avoid redundant work on evaluating the performance
of Hadoop on graph processing and on designing Hadoop-based graph-processing
systems. By conducting more experiments, we may be able to obtain new common
knowledge, such as what is the best graph-processing systems for specific graph-
processing algorithms.

7.2.3 Designing Graph Processing Systems

The performance of graph-processing systems can be improved by many techniques and
tuning methods. In this section, we focus on the design of graph-partitioning policies and
of distributed heterogeneous graph-processing systems.

1. Graph-partitioning policies considering the heterogeneity of clusters and algorith-
mic variety in real-world graph processing. Graph-processing systems are de-
ployed on clusters with different hardware, such as machines with different proces-
sors, accelerators, and amount of memory, and networks with different types and
topologies. For heterogeneous clusters, it may be necessary to consider modeling
the capability of the entire hardware infrastructure and to design specific graph-
partitioning polices. Graph algorithms, such as Breadth-First Search, may exhibit
diverse behavior in each iteration. It is challenging to predict and balance the work-
load in each iteration, because we do not know what are the active vertices. Dy-
namic repartitioning polices may help solve this balancing problem.

2. Enhanced distributed heterogeneous graph-processing systems. We have designed
and implemented three families of distributed heterogeneous graph-processing sys-
tems. To make them more practical and to improve their performance, we can
extend our systems by covering more heterogeneous hardware infrastructures, de-
signing a distributed graph partitioner with many partitioning policies, and explor-
ing CPU and GPU optimization techniques and their impact on the performance.

3. Support for mutating graphs. Graphs are growing and changing over time. Many
graph-processing systems and graph-partitioning polices are designed to address
static graphs. It is time and resource consuming to repartition and reprocess old

144

data for mutating graphs, especially for graphs with large scale. Efficient support
for mutating graphs is a very interesting and challenging topic for the design of
partitioning policies and graph-processing systems.

4. Support for property graphs. Modern graphs have rich information (properties) as-
sociated with vertices and edges. Many existing graph-processing systems can only
support processing graphs with few properties, such as weights and timestamps.
To extract more interesting and useful information, analyzing graph with multiple
properties is required, but very challenging.

Bibliography

[1] K. Andreev and H. Racke. Balanced Graph Partitioning. Theory of Computing
Systems, 39(6):929–939, 2006.

[2] S. Arora, S. Rao, and U. Vazirani. Expander Flows, Geometric Embeddings and
Graph Partitioning. Journal of the ACM, 56(2):5:1–5:37, 2009.

[3] D. A. Bader and K. Madduri. Designing Multithreaded Algorithms for Breadth-
First Search and St-Connectivity on the Cray MTA-2. In International Conference
on Parallel Processing, pages 523–530, 2006.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner.
Benchmarking for Graph Clustering and Partitioning. In Encyclopedia of Social
Network Analysis and Mining, pages 73–82. 2014.

[5] M. Balint, V. Posea, A. Dimitriu, and A. Iosup. User Behavior, Social Networking,
and Playing Style in Online and Face to Face Bridge Communities. In Annual
Workshop on Network and Systems Support for Games, pages 13:1–13:2, 2010.

[6] R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods. SIAM, 1994.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient Iterative Data
Processing on Large Clusters. Proceedings of the VLDB Endowment, 3(1-2):285–
296, 2010.

[8] K. P. Burnham. Multimodel Inference: Understanding AIC and BIC in Model
Selection. Sociol. Methods & Research, 33(2), 2004.

[9] M. Capobianco and O. Frank. Graph Evolution by Stochastic Additions of Points
and Lines. Discrete Mathematics, 46(2):133 – 143, 1983.

[10] M. Capota, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling, and P. Boncz. Graph-
alytics: a Big Data Benchmark for Graph-Processing Platforms. In Graph Data-
management Experiences & Systems, pages 7:1–7:6, 2015.

145

146

[11] Ü. V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar. Multithreaded Clustering
for Multi-level Hypergraph Partitioning. In International Parallel and Distributed
Processing Symposium, 2012.

[12] Ü. V. Çatalyürek, K. Kaya, A. E. Sariyüce, and E. Saule. Shattering and Com-
pressing Networks for Betweenness Centrality. In International Conference on
Data Mining, pages 686–694, 2013.

[13] C. Chambers, W. Feng, S. Sahu, D. Saha, and D. Brandt. Characterizing Online
Games. Transactions on Networking, 18(3):899–910, 2010.

[14] A. Chan, F. Dehne, and R. Taylor. CGMgraph/CGMlib: Implementing and Testing
CGM Graph Algorithms on PC Clusters and Shared Memory Machines. Interna-
tional Journal of High Performance Computing Applications, 19(1):81–97, 2005.

[15] F. Checconi and F. Petrini. Traversing Trillions of Edges in Real Time: Graph
Exploration on Large-Scale Parallel Machines. In International Parallel and Dis-
tributed Processing Symposium, pages 425–434, 2014.

[16] K. Chen, P. Huang, and C. Lei. Game Traffic Analysis: an MMORPG Perspective.
Computer Networks, 50(16):3002–3023, 2006.

[17] Q. Chen, S. Bai, Z. Li, Z. Gou, B. Suo, and W. Pan. GraphHP: A Hybrid Platform
for Iterative Graph Processing. 2014.

[18] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2009.

[19] CUDPP, 2015. http://cudpp.github.io/.

[20] P. Danzig, J. Mogul, V. Paxson, and M. Schwartz. The Internet Traffic Archive,
2008. http://ita.ee.lbl.gov/.

[21] DAS4, 2014. http://www.cs.vu.nl/das4/.

[22] K. Dempsey, K. Duraisamy, H. Ali, and S. Bhowmick. A Parallel Graph Sampling
Algorithm for Analyzing Gene Correlation Networks. Procedia Computer Science,
4:136 – 145, 2011.

[23] A. Denault, C. Canas, J. Kienzle, and B. Kemme. Triangle-Based Obstacle-Aware
Load Balancing for Massively Multiplayer Games. In Annual Workshop on Net-
work and Systems Support for Games, pages 4:1–4:6, 2011.

http://cudpp.github.io/
http://ita.ee.lbl.gov/
http://www.cs.vu.nl/das4/

147

[24] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and Ü. V. Çatalyürek.
Parallel Hypergraph Partitioning for Scientific Computing. In International Paral-
lel and Distributed Processing Symposium, pages 124–124, 2006.

[25] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vanó, S. Gómez-Villamor,
N. Martı́nez-Bazán, and J. Larriba-Pey. Survey of Graph Database Performance
on the HPC Scalable Graph Analysis Benchmark. Web-Age Information Manage-
ment, pages 37–48, 2010.

[26] N. Ducheneaut, N. Yee, E. Nickell, and R. Moore. The Life and Death of Online
Gaming Communities: A Look at Guilds in World of Warcraft. In the SIGCHI
Conference on Human Factors in Computing Systems, pages 839–848. ACM, 2007.

[27] N. Ducheneaut, N. Yee, E. Nickell, and R. J. Moore. Alone Together?: Exploring
the Social Dynamics of Massively Multiplayer Online Games. In the SIGCHI
Conference on Human Factors in Computing Systems, pages 407–416, 2006.

[28] B. Elser and A. Montresor. An Evaluation Study of BigData Frameworks for Graph
Processing. In IEEE International Conference on BigData, pages 60–67, 2013.

[29] European Commission Annual Reports. In Ecorys, 2013.

[30] Facebook, 2015. https://www.facebook.com/.

[31] T. Falkowski, A. Barth, and M. Spiliopoulou. Dengraph: A Density-Based Com-
munity Detection Algorithm. In International Conference on Web Intelligence,
pages 112–115, 2007.

[32] Family of Graph and Hypergraph Partitioning Software, 2015. http://glaros.
dtc.umn.edu/gkhome/views/metis.

[33] W. Feng, D. Brandt, and D. Saha. A Long-Term Study of a Popular MMORPG. In
Annual Workshop on Network and Systems Support for Games, pages 19–24, 2007.

[34] W. Feng and W. Feng. On the Geographic Distribution of On-Line Game Servers
and Players. In Annual Workshop on Network and Systems Support for Games,
pages 173–179, 2003.

[35] M. Ferdman, et al. Clearing the Clouds: A Study of Emerging Scale-Out Work-
loads on Modern Hardware. In International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 37–48, 2012.

[36] Friendster, 2014. http://www.friendster.com/.

https://www.facebook.com/
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.friendster.com/

148

[37] J. Fritsch, B. Voigt, and J. Schiller. The Next Generation of Competitive Online
Game Organization. In Annual Workshop on Network and Systems Support for
Games, 2007.

[38] Z. Fu, H. Dasari, B. Bebee, M. Berzins, and B. Thompson. Parallel Breadth First
Search on GPU Clusters. In IEEE International Conference on Big Data, pages
110–118, 2014.

[39] Z. Fu, M. Personick, and B. Thompson. MapGraph: A High Level API for Fast
Development of High Performance Graph Analytics on GPUs. In Graph Data-
management Experiences & Systems, pages 2:1–2:6, 2014.

[40] Ganglia Monitoring System, 2014. http://ganglia.sourceforge.net/.

[41] A. Gharaibeh, E. Santos-Neto, L. B. Costa, and M. Ripeanu. Efficient Large-Scale
Graph Processing on Hybrid CPU and GPU Systems. CoRR, abs/1312.3018, 2013.

[42] B. Ghit, N. Yigitbasi, and D. Epema. Resource Management for Dynamic MapRe-
duce Clusters in Multicluster Systems. In Workshop on Many-Task Computing on
Grids and Supercomputers, 2012.

[43] Giraph, 2014. http://giraph.apache.org/.

[44] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha. Distributed data placement
to minimize communication costs via graph partitioning. In International Confer-
ence on Scientific and Statistical Database Management, pages 20:1–20:12. ACM,
2014.

[45] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In USENIX Conference on
Operating Systems Design and Implementation, pages 17–30, 2012.

[46] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
GraphX: Graph Processing in a Distributed Dataflow Framework. In USENIX Con-
ference on Operating Systems Design and Implementation, pages 599–613, 2014.

[47] GPUDirect, 2015. https://developer.nvidia.com/gpudirect/.

[48] Graph500, 2014. http://www.graph500.org/.

[49] D. Gregor and A. Lumsdaine. The Parallel BGL: A Generic Library for Distributed
Graph Computations. Parallel Object-Oriented Scientific Computing, 2005.

[50] A. Guerrieri and A. Montresor. Distributed Edge Partitioning for Graph Processing.
arXiv:1403.6270, 2014.

http://ganglia.sourceforge.net/
http://giraph.apache.org/
https://developer.nvidia.com/gpudirect/
http://www.graph500.org/

149

[51] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke.
How Well Do Graph-Processing Platforms Perform? An Empirical Performance
Evaluation and Analysis: Extended Report. Technical Report PDS-2013-004, Delft
University of Technology, 2013.

[52] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How
Well Do Graph-Processing Platforms Perform? An Empirical Performance Evalu-
ation and Analysis. In International Parallel and Distributed Processing Sympo-
sium, pages 395–404, 2014.

[53] Y. Guo, S. Hong, H. Chafi, A. Iosup, and D. Epema. Modeling, Analysis, and
Experimental Comparison of Streaming Graph-Partitioning Policies: A Technical
Report. Technical Report PDS-2015-002, Delft University of Technology, 2015.

[54] Y. Guo and A. Iosup. The Game Trace Archive. In Annual Workshop on Network
and Systems Support for Games, pages 4:1–4:6, 2012.

[55] Y. Guo, S. Shen, O. Visser, and A. Iosup. An Analysis of Online Match-Based
Games. In International Workshop on Massively Multiuser Virtual Environments,
pages 134–139, 2012.

[56] Y. Guo, A. L. Varbanescu, A. Iosup, and D. Epema. An Empirical Performance
Evaluation of GPU-Enabled Graph-Processing Systems. In International Sympo-
sium on Cluster, Cloud and Grid Computing, pages 423–432, 2015.

[57] Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. Benchmarking
Graph-Processing Platforms: a Vision. In International Conference on Perfor-
mance Engineering, pages 289–292, 2014.

[58] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, and T. Jin. An Experimental
Comparison of Pregel-Like Graph Processing Systems. Proceedings of the VLDB
Endowment, 7(12):1047–1058, 2014.

[59] P. Harish and P. Narayanan. Accelerating Large Graph Algorithms on the GPU Us-
ing CUDA. In International Conference on High Performance Computing, pages
197–208. 2007.

[60] E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard. Multi-GPU and Multi-
CPU Parallelization for Interactive Physics Simulations. In International Euro-Par
Conference on Parallel Processing, pages 235–246, 2010.

[61] S. Hong, S. Depner, T. Manhardt, J. V. D. Lugt, M. Verstraaten, and H. Chafi.
PGX.D: A Fast Distributed Graph Processing Engine. In International Conference
for High Performance Computing, Networking, Storage and Analysis, 2015.

150

[62] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating CUDA Graph
Algorithms at Maximum Warp. ACM SIGPLAN Notices, 46(8):267–276, 2011.

[63] J. Hsieh and C. Sun. Building a Player Strategy Model by Analyzing Replays of
Real-Time Strategy Games. In Neural Networks, pages 3106–3111, 2008.

[64] T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering Regulatory
and Signalling Circuits in Molecular Interaction Networks. Bioinformatics, pages
S233–S240, 2002.

[65] Intel TBB, 2015. https://www.threadingbuildingblocks.org/.

[66] B. Iordanov. HyperGraphDB: A Generalized Graph Database. Web-Age Informa-
tion Management, pages 25–36, 2010.

[67] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. Epema. The
Grid Workloads Archive. Future Generation Computer Systems, 24(7):672–686,
2008.

[68] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-
Parallel Programs from Sequential Building Blocks. ACM SIGOPS Operating Sys-
tems Review, 41(3):59–72, 2007.

[69] E. Kaiser and W. Feng. PlayerRating: A Reputation System for Multiplayer Online
Games. In Annual Workshop on Network and Systems Support for Games, pages
1–6, 2009.

[70] K. Kambatla, G. Kollias, and A. Grama. Efficient Large-Scale Graph Analysis in
MapReduce. In International Workshop on Parallel Matrix Algorithms and Appli-
cations, 2012.

[71] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A Peta-Scale Graph
Mining System Implementation and Observations. In International Conference on
Data Mining, pages 229–238, 2009.

[72] G. Karypis and V. Kumar. Multilevel Graph Partitioning Schemes. In International
Conference on Parallel Processing, pages 113–122, 1995.

[73] G. Karypis and V. Kumar. A Parallel Algorithm for Multilevel Graph Partition-
ing and Sparse Matrix Ordering. Journal of Parallel and Distributed Computing,
48(1):71–95, 1998.

[74] G. Karypis, K. Schloegel, and V. Kumar. ParMETIS: Parallel Graph Partitioning
and Sparse Matrix Ordering Library. 1997.

https://www.threadingbuildingblocks.org/

151

[75] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan:
A System for Dynamic Load Balancing in Large-Scale Graph Processing. In Eu-
ropean Conference on Computer Systems, pages 169–182, 2013.

[76] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. CuSha: Vertex-Centric Graph
Processing on GPUs. In International Symposium on High-performance Parallel
and Distributed Computing, pages 239–252, 2014.

[77] J. Kinicki and M. Claypool. Traffic Analysis of Avatars in Second Life. In Inter-
national Workshop on Network and Operating Systems Support for Digital Audio
and Video, pages 69–74, 2008.

[78] T. G. Kolda, A. Pinar, and C. Seshadhri. Triadic Measures on Graphs: The Power
of Wedge Sampling. In International Conference on Data Mining, pages 10–18,
2013.

[79] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a Social Network or a
News Media? In International Conference on World Wide Web, pages 591–600,
2010.

[80] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-Scale Graph Compu-
tation on Just a PC. In USENIX Conference on Operating Systems Design and
Implementation, pages 31–46, 2012.

[81] LDBC, 2015. http://ldbcouncil.org/.

[82] Y.-T. Lee, K.-T. Chen, Y.-M. Cheng, and C.-L. Lei. World of Warcraft Avatar
History Dataset. In Annual ACM Conference on Multimedia Systems, pages 123–
128, 2011.

[83] J. Leskovec and C. Faloutsos. Sampling from Large Graphs. In International
Conference on Knowledge Discovery in Data Mining, pages 631–636, 2006.

[84] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over Time: Densification
Laws, Shrinking Diameters and Possible Explanations. In International Confer-
ence on Knowledge Discovery in Data Mining, pages 177–187, 2005.

[85] I. X. Leung, P. Hui, P. Liò, and J. Crowcroft. Towards Real-Time Community
Detection in Large Networks. Physical Review E, 2009.

[86] LinkedIn, 2015. https://gb.linkedin.com/.

[87] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed GraphLab: A Framework for Machine Learning and Data Mining in
the Cloud. 5(8):716–727, 2012.

http://ldbcouncil.org/
https://gb.linkedin.com/

152

[88] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-Scale Distributed Graph Computing
Systems: An Experimental Evaluation. Proceedings of the VLDB Endowment,
8(3):281–292, 2014.

[89] A. Lugowski, D. M. Alber, A. Buluç, J. R. Gilbert, S. Reinhardt, Y. Teng, and
A. Waranis. A Flexible Open-Source Toolbox for Scalable Complex Graph Anal-
ysis. In International Conference on Data Mining, pages 930–941, 2012.

[90] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism on Heterogeneous
Multiprocessors with Adaptive Mapping. In International Symposium on Microar-
chitecture, pages 45–55, 2009.

[91] S. Madougou, A. L. Varbanescu, C. de Laat, and R. van Nieuwpoort. An Empirical
Evaluation of GPGPU Performance Models. In International Workshop on Al-
gorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms,
2014.

[92] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A System for Large-Scale Graph Processing. In Interna-
tional Conference on Management of Data, pages 135–146, 2010.

[93] MapGraph, 2015. http://mapgraph.io/.

[94] W. A. Mason and A. Clauset. Friends FTW! Friendship and competition in Halo:
Reach. CoRR, abs/1203.2268, 2012.

[95] R. R. McCune, T. Weninger, and G. Madey. Thinking Like a Vertex: A Survey of
Vertex-Centric Frameworks for Large-Scale Distributed Graph Processing. ACM
Computing Survey, 48(2):25:1–25:39, 2015.

[96] D. Merrill, M. Garland, and A. S. Grimshaw. Scalable GPU Graph Traversal. In
Symposium on Principles and Practice of Parallel Programming, pages 117–128,
2012.

[97] H. Meyerhenke, P. Sanders, and C. Schulz. Parallel Graph Partitioning for Complex
Networks. arXiv:1404.4797, 2014.

[98] D. C. Montgomery, E. A. Peck, and G. G. Vining. Introduction to Linear Regres-
sion Analysis, volume 821. John Wiley & Sons, 2012.

[99] V. Nae, A. Iosup, and R. Prodan. Dynamic Resource Provisioning in Massively
Multiplayer Online Games. Transactions on Parallel and Distributed Systems,
22(3):380–395, 2010.

http://mapgraph.io/

153

[100] A. Narayanan and V. Shmatikov. De-Anonymizing Social Networks. In Security
and Privacy, pages 173–187, 2009.

[101] Neo4j, 2014. http://www.neo4j.org/.

[102] Open MPI, 2015. http://www.open-mpi.org/.

[103] OrientDB, 2016. http://orientdb.com/.

[104] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. 1999.

[105] U. N. Raghavan, R. Albert, and S. Kumara. Near Linear Time Algorithm to Detect
Community Structures in Large-Scale Networks. Physical Review E, 2007.

[106] M. Redekopp, Y. Simmhan, and V. K. Prasanna. Optimizations and Analysis of
BSP Graph Processing Models on Public Clouds. In International Symposium on
Parallel and Distributed Processing, pages 203–214, 2013.

[107] E. J. Riedy, D. A. Bader, and H. Meyerhenke. Scalable Multi-Threaded Community
Detection in Social Networks. In Workshop on Multithreaded Architectures and
Applications, 2012.

[108] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas. Nobody
Ever Got Fired for Using Hadoop on a Cluster. In International Workshop on Hot
Topics in Cloud Data Processing, pages 2:1–2:5, 2012.

[109] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-Centric Graph Pro-
cessing Using Streaming Partitions. In Symposium on Operating Systems Princi-
ples, pages 472–488, 2013.

[110] I. Safro, P. Sanders, and C. Schulz. Advanced Coarsening Schemes for Graph
Partitioning. Journal of Experimental Algorithmics, 2015.

[111] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Zhao. Sharing Graphs Using Differ-
entially Private Graph Models. In Internet Measurement Conference, pages 81–98,
2011.

[112] S. Salihoglu and J. Widom. GPS: A Graph Processing System. Technical report,
2012.

[113] S. Sallinen, D. Borges, A. Gharaibeh, and M. Ripeanu. Exploring Hybrid Hard-
ware and Data Placement Strategies for the Graph 500 Challenge. In International
Conference for High Performance Computing, Networking, Storage and Analysis,
2014.

http://www.neo4j.org/
http://www.open-mpi.org/
http://orientdb.com/

154

[114] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. Hama: An Efficient
Matrix Computation with the MapReduce Framework. In Cloud Computing Tech-
nology and Science, pages 721–726, 2010.

[115] Z. Shang and J. X. Yu. Catch the Wind: Graph Workload Balancing on Cloud. In
International Conference on Data Engineering, pages 553–564, 2013.

[116] B. Shao, H. Wang, and Y. Li. The Trinity Graph Engine. Technical report, Techni-
cal Report 161291, Microsoft Research, 2012.

[117] J. Shen, A. L. Varbanescu, and H. Sips. Look Before You Leap: Using the Right
Hardware Resources to Accelerate Applications. In International Conference on
High Performance Computing and Communications, pages 383–391, 2014.

[118] J. Shen, A. L. Varbanescu, H. Sips, M. Arntzen, and D. Simons. Glinda: A Frame-
work for Accelerating Imbalanced Applications on Heterogeneous Platforms. In
International Conference on Computing Frontiers, pages 14:1–14:10, 2013.

[119] S. Shen and A. Iosup. The XFire Online Meta-Gaming Network: Observation and
High-Level Analysis. In International Workshop on Massively Multiuser Virtual
Environments, 2011.

[120] SMEs, 2015. http://ec.europa.eu/growth/smes/.

[121] SNAP, 2014. http://snap.stanford.edu/index.html/.

[122] E. Solomonik, A. Buluç, and J. Demmel. Minimizing Communication in All-Pairs
Shortest Paths. In International Symposium on Parallel and Distributed Process-
ing, pages 548–559, 2013.

[123] F. Song, S. Tomov, and J. Dongarra. Enabling and Scaling Matrix Computations on
Heterogeneous Multi-Core and Multi-GPU Systems. In International Conference
on Supercomputing, pages 365–376, 2012.

[124] Sparksee, 2016. http://sparsity-technologies.com/.

[125] F. Spitzer and A. Mathematician. Principles of Random Walk. Springer, 1964.

[126] I. Stanton and G. Kliot. Streaming Graph Partitioning for Large Distributed Graphs.
In International Conference on Knowledge Discovery and Data Mining, pages
1222–1230, 2012.

[127] D. Stauffer and A. Aharony. Introduction to Percolation Theory. CRC press, 1994.

http://ec.europa.eu/growth/smes/
http://snap.stanford.edu/index.html/
http://sparsity-technologies.com/

155

[128] P. Stutz, A. Bernstein, and W. Cohen. Signal/Collect: Graph Algorithms for the
(Semantic) Web. In International Semantic Web Conference on The Semantic Web,
pages 764–780. 2010.

[129] M. Suznjevic, I. Stupar, and M. Matijasevic. MMORPG Player Behavior Model
Based on Player Action Categories. In Annual Workshop on Network and Systems
Support for Games, pages 6:1–6:6, 2011.

[130] T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. Matsuoka. Performance Char-
acteristics of Graph500 on Large-Scale Distributed Environment. In International
Semantic Web Conference on The Semantic Web, pages 149–158, 2011.

[131] P.-Y. Tarng, K.-T. Chen, and P. Huang. On Prophesying Online Gamer Departure.
In Annual Workshop on Network and Systems Support for Games, pages 16:1–16:2,
2009.

[132] The Parallel Workloads Archive Team. Parallel Workloads Archive, 2007. http:
//www.cs.huji.ac.il/labs/parallel/workload/.

[133] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. FENNEL: Stream-
ing Graph Partitioning for Massive Scale Graphs. In International Conference on
Web Search and Data Mining, pages 333–342, 2014.

[134] M. Tsvetovat, J. Reminga, and K. Carley. DyNetML: Interchange Format for Rich
Social Network Data. Technical Report CMU-ISRI-04-105, Carnegie Mellon Uni-
versity, 2004.

[135] L. G. Valiant. A Bridging Model for Parallel Computation. Communications of the
ACM, 33(8):103–111, 1990.

[136] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A Comparison
of a Graph Database and a Relational Database: A Data Provenance Perspective.
In Annual Southeast Regional Conference, pages 42:1–42:6, 2010.

[137] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. Gunrock:
A High-Performance Graph Processing Library on the GPU. In Symposium on
Principles and Practice of Parallel Programming, 2015.

[138] D. Warneke and O. Kao. Nephele: Efficient Parallel Data Processing in the Cloud.
In Workshop on Many-Task Computing on Grids and Supercomputers, pages 8:1–
8:10, 2009.

[139] D. J. Watts and S. H. Strogatz. Collective Dynamics of ‘Small-World’ Networks.
Nature, 393(6684):440–442, 1998.

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

156

[140] B. Weber and M. Mateas. A Data Mining Approach to Strategy Prediction. In
International Conference on Computational Intelligence and Games, pages 140–
147, 2009.

[141] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[142] Wikimedia, 2015. https://wikimediafoundation.org/wiki/FAQ/en/.

[143] R. J. Wilson. Introduction to Graph Theory. Academic Press, 1972.

[144] B. Wu and Y. Du. Cloud-Based Connected Component Algorithm. In International
Conference on Artificial Intelligence and Computational Intelligence, pages 122–
126, 2010.

[145] XFire, 2012. http://xfire.com/.

[146] N. Xu, B. Cui, L.-n. Chen, Z. Huang, and Y. Shao. Heterogeneous Environment
Aware Streaming Graph Partitioning. Transactions on Knowledge and Data Engi-
neering, 27(6):1560–1572, 2015.

[147] YARN, 2014. http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.

[148] J. Yeo, D. Kotz, and T. Henderson. CRAWDAD: A Community Resource for
Archiving Wireless Data at Dartmouth. SIGCOMM Computer Communication
Review, 36(2):21–22, 2006.

[149] B. Zhang, A. Iosup, and D. Epema. The Peer-to-Peer Trace Archive: Design and
Comparative Trace Analysis. Technical Report PDS-2010-003, Delft University of
Technology, 2010.

[150] T. Zhang, J. Zhang, W. Shu, M.-Y. Wu, and X. Liang. Efficient Graph Computation
on Hybrid CPU and GPU Systems. Journal of Supercomputing, 71(4):1563–1586,
2015.

[151] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Accelerate Large-Scale Iterative Com-
putation through Asynchronous Accumulative Updates. In Workshop on Scientific
Cloud Computing Date, pages 13–22, 2012.

[152] J. Zhong and B. He. Medusa: Simplified Graph Processing on GPUs. Transactions
on Parallel and Distributed Systems, 25(6):1543–1552, 2014.

[153] X. Zhu, W. Han, and W. Chen. GridGraph: Large-Scale Graph Processing on a
Single Machine Using 2-level Hierarchical Partitioning. In USENIX Conference
on Usenix Annual Technical Conference, pages 375–386, 2015.

https://wikimediafoundation.org/wiki/FAQ/en/
http://xfire.com/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

157

[154] X. Zhuang, A. Bharambe, J. Pang, and S. Seshan. Player Dynamics in Massively
Multiplayer Online Games. CMU-CS-07-158, 2007.

[155] Zynga. CityVille, 2012. http://company.zynga.com/games/cityville.

http://company.zynga.com/games/cityville

158

Summary

Distributed Heterogeneous Systems for Large-Scale Graph Processing

Graph processing is increasingly popular in a variety of scientific and engineering do-
mains. Consequently, graphs and graph-processing algorithms have become increasingly
more diverse. Following the big data trend in every computer-related domain, graphs
have also become increasingly larger. Processing graphs is requiring more sophisticated
computer systems. Important for this thesis, graph-processing systems now need to com-
bine scalability (a grand challenge in computer science) and raw processing power (an
endless race), with efficiency especially in cost and energy requirements (a difficult to
define and ensure non-functional property for computer systems). New trade-offs be-
tween these elements are offered by two important trends in computer systems. First,
distributed systems have grown in popularity and cost-efficiency. Second, GPUs of-
fer an excellent performance-energy ratio and are included in most modern computers.
By combining distributed CPU-based systems and non-distributed GPU-enabled systems
into distributed heterogeneous systems, large-scale graph processing may become possi-
ble and efficient. However, many challenges still exist in the area of graph processing
before distributed heterogeneous systems can be well understood. In this thesis, we con-
duct fundamental and applied research to address three major challenges in three research
directions of graph processing: application (understanding new data characteristics and
sharing graphs), knowledge (evaluating and comparing the performance of various graph-
processing systems), and design (designing new partitioning policies and entire graph-
processing systems that can use both CPUs and GPUs on multiple machines).

In the application direction (Chapter 2), we design the Game Trace Archive (GTA),
which is a virtual meeting space for exchanging and sharing gaming data and graphs. The
GTA addresses five main requirements on building a trace archive in the online gaming
domain. To facilitate the exchange and usage of game traces, within the GTA, we design
a unified format to cover diverse types of game traces and graphs. We create many tools
related to this format. By using these tools, we collect over 10 game traces from different
gaming genres in the GTA, and share them through an online archive (http://gta.st.
ewi.tudelft.nl/). These traces cover more than 8 million real players and more than
200 million gaming elements, spanning over 14 operational years. We also conduct an

159

http://gta.st.ewi.tudelft.nl/
http://gta.st.ewi.tudelft.nl/

160

analysis of game traces, with a focus on online match-based games. We obtain interesting
and valuable information that may benefit the game operators to improve their services
and to design future games.

In the knowledge direction (Chapter 3 and 4), we propose an empirical method on
evaluating the performance of graph-processing systems, including both CPU-based and
GPU-enabled systems. We envision seven methodological and practical challenges on
benchmarking graph-processing systems. We define a four-step method to address these
challenges. We select and define interesting performance metrics, implement a bench-
marking suite with representative graph-processing algorithms and datasets, deploy the
suite on many popular graph-processing systems, and report comprehensive performance
results of these systems. Some of our findings have become the common knowledge of the
graph community. For example, Hadoop, which is a widely-used generic data-processing
system, has very poor performance on processing graphs. Based on our experience of
using the graph-processing systems we tested, we also discuss the highlights and the lim-
itations of these systems.

In the design direction (Chapter 5 and 6), we design graph-partitioning policies for
distributed graph-processing systems and also three families of distributed heterogeneous
graph-processing systems. To design new partitioning policies, we model the run time of
of graph-processing systems. We propose a method to identify the graph characteristics
that are closely related to the run time of graph-processing systems, based on the run time
models of systems and the behavior of graph-processing algorithms. To balance these
graph characteristics, we design a new low-overhead graph-partitioning policies and tune
existing policies. To design distributed heterogeneous systems, we focus on exploring
the design space of systems with different partitioning architectures. For each family of
systems, we select and/or design graph-partitioning policies. To balance the workload on
CPUs and GPUs, we profile the relative computation ability of the CPU and the GPU
using a four-step micro-benchmarking strategy. We evaluate the performance of systems
with different combinations of partitioning policies. We also compare the performance of
our systems with other existing graph-processing systems. Experimental results show that
our system can achieve better performance, and in some cases even be the only system
that can complete the work without crashing.

To conclude, we design and maintain the first comprehensive Game Trace Archive to
benefit graph and gaming researchers. We are the first to comprehensively evaluate and
compare the performance of six popular CPU-based graph-processing systems and three
popular GPU-enabled graph-processing systems. We propose a method to facilitate the
design of graph-partitioning policies for different graph-processing systems. We are the
first to design families of distributed heterogeneous graph-processing systems to bridge
the gap between existing CPU-based systems and GPU-enabled systems.

Our work has already done a step toward understanding distributed heterogeneous

161

systems for large-scale graph processing. However, more work remains to be done. In
the future work, we plan to analyze the graphs stored in the GTA and extract more useful
information, to design a comprehensive benchmark and evaluate more graph-processing
systems, to enhance our current distributed heterogeneous systems, and to design graph-
processing systems that can support mutating graphs and property graphs.

162

Samenvatting

Gedistribueerde Heterogene Systemen voor Grootschalige Graafverwerking

Graafverwerking wordt steeds populairder binnen verschillende wetenschappelijke en
toegepaste domeinen. Hierdoor worden grafen en graafalgoritmen steeds diverser. Als
gevolg van ‘Big Data’, een trend die vrijwel elk aspect van de informatica raakt, worden
deze grafen ook steeds groter. Het verwerken van grafen vereist dus meer en meer ge-
avanceerde computersystemen. Centraal in dit proefschrift staat het volgende probleem:
heden ten dagen moeten graafverwerkingssystemen schaalbaarheid (een grote uitdaging
in de informatica) en harde verwerkingscapaciteit (een eindeloze opdracht) combineren
met efficiëntie in termen van kosten en energieverbruik (een eigenschap van computer-
systemen die moeilijk is te definiëren en te garanderen). Twee belangrijke ontwikkelingen
binnen de informatica hebben ervoor gezorgd dat er hiertussen nieuwe afwegingen zijn
ontstaan. Ten eerste, gedistribueerde computersystemen groeien in populariteit en kosten-
efficiëntie. Ten tweede, GPU’s (grafische verwerkingseenheden) zijn beschikbaar op de
meeste moderne computers en bieden een zeer goede verhouding tussen prestaties en
energieverbruik. Door gedistribueerde CPU-gebaseerde systemen te combineren met
niet-gedistribueerde GPU-gebaseerde systemen zal grootschalige graafverwerking mis-
schien uiteindelijk zowel mogelijk als efficiënt worden. Desalniettemin, er zijn nog
vele uitdagingen op het gebied van graafverwerking voordat gedistribueerde heterogene
systemen volledig begrepen worden. In dit proefschrift onderzoeken we drie belangrijke
uitdagingen in drie verschillende onderzoeksrichtingen aan de hand van toegepast en fun-
damenteel onderzoek: toepassing (het begrijpen van nieuwe data-karakteristieken en het
uitwisselen van grafen met anderen), kennis (het evalueren en vergelijken van de prestaties
van verschillende graafverwerkingssystemen), en ontwerp (het ontwerpen van nieuwe
partitioneringsstrategieën en het ontwikkelen van nieuwe graafverwerkingssystemen die
gebruik maken van zowel CPU’s als GPU’s op verschillende computers).

Op het gebied van toepassing (Hoofdstuk 2), ontwerpen we de Game Trace Archive
(GTA): een virtuele ontmoetingsplek voor het uitwisselen en delen van game-gerelateerde
data en grafen. De GTA richt zich op vijf belangrijke eisen voor het maken van een archief
voor game traces op het gebied van online games. Om de uitwisseling van game traces
mogelijk te maken hebben we binnen de GTA een uniform opslagformaat ontworpen dat

163

164

de traces van verschillende soorten games ondersteunt. Ook hebben we verschillende
hulpprogramma’s ontwikkeld die werken met dit formaat. Met behulp van deze hulp-
programma’s hebben we meer dan 10 game traces verzamelt van verschillende soorten
games binnen de GTA en deze beschikbaar gemaakt door middel van een online archief
(http://gta.st.ewi.tudelft.nl/). Deze traces bevatten de gegevens van meer
dan 8 miljoen online spelers en meer dan 200 miljoen game elementen over een periode
van 14 jaar. We hebben deze game traces geanalyseerd waarbij de nadruk lag op online
wedstrijd-gebaseerde games. Hierbij vonden we interessante en waardevolle informatie
die beheerders van deze games kunnen gebruiken bij het verbeteren van hun service en
het ontwerpen van nieuwe games.

Op het gebied van kennis (Hoofdstuk 3 en 4), presenteren we een empirische methode
voor het evalueren van de prestaties van graafverwerkingssystemen. Dit betreft zowel
CPU- als GPU-gebaseerde systemen. We bekijken zeven methodologische en praktische
uitdagingen die komen kijken bij het benchmarken van een graafverwerkingssysteem. We
presenteren een methode die deze uitdagingen aanpakt in vier stappen. We selecteren
en definiëren interessante metrieken voor het meten van de prestaties, implementeren
een benchmark suite die bestaat uit algoritmen en data sets die representatief zijn voor
graafverwerking, voeren deze benchmark suite uit op verschillende populaire graaf-
verwerkingssystemen en beschrijven uitgebreid de resultaten van deze systemen. Som-
mige van onze bevindingen zijn onderhand uitgegroeid tot algemene kennis binnen het
domein van de graafverwerking. Bijvoorbeeld, Hadoop is een zeer populair systeem
voor het verwerken van algemene data, maar blijkt zeer slechte prestaties te leveren bij
het verwerken van grafen en is dus niet geschikt voor dit type data. Aan de hand van
onze ervaringen met verschillende graafverwerkingssystemen, bespreken we de positieve
eigenschappen en de beperkingen van deze systemen.

Op het gebied van ontwerp (Hoofdstuk 5 en 6), presenteren we strategieën om
grafen te partitioneren voor gedistribueerde graafverwerkingssystemen en voor drie
soorten gedistribueerde heterogene graafverwerkingssystemen. Om deze partitionerings-
strategieën te kunnen ontwerpen hebben we de totale looptijd van verschillende systemen
gemodelleerd. We presenteren een methode om de karakteristieken van een graaf te
bepalen die een grote invloed hebben op de looptijd van een systeem aan de hand van
deze modellen en het gedrag van verschillende graafalgoritmen. Op basis van de belang-
rijkste karakteristieken van grafen, presenteren we een nieuwe partitioneringsstrategie en
stellen we de bestaande partitioneringsstrategieën beter af. Om een nieuw gedistribueerd
heterogeen systeem te ontwerpen, verkennen we de ontwerpruimte van verschillende
systemen aan de hand van verschillende partitioneringsstrategieën. Voor elk type systeem,
selecteren of ontwerpen we een geschikte partitioneringsstrategie. Om het werk gelijk-
matig over CPU’s en GPU’s te verdelen, onderzoeken we de relatieve verwerkingssnel-
heid van de CPU en GPU aan de hand van een micro-benchmark die bestaat uit vier

http://gta.st.ewi.tudelft.nl/

165

stappen. We onderzoeken de prestaties van graafverwerkingssystemen met verschillende
combinaties van partitioneringsstrategieën. We vergelijken ook de prestaties van ons
systeem met andere bestaande systemen. Experimentele resultaten laten zien dat ons
systeem beter presteert dan de anderen, voor sommige taken is ons systeem de enige die
het werk kan voltooien zonder te crashen.

Tenslotte presenteren we het eerste uitgebreide archief voor game traces (Game Trace
Archive) waar zowel onderzoekers op het gebied van grafen als op het gebied van games
baat bij hebben. We zijn de eerste die een uitgebreide evaluatie uitvoeren en de prestaties
vergelijken van zes populaire CPU- en drie GPU-gebaseerde graafverwerkingssystemen.
We presenteren een methode om ondersteuning te bieden bij het ontwerpen van graaf-
partitioneringsstrategieën voor verschillende soort graafverwerkingssystemen. We zijn
de eerste die een gedistribueerd heterogeen graafverwerkingssystemen ontwerpen en
hiermee het gat tussen CPU- en GPU-gebaseerde systemen kleiner maken.

Ons werk is een belangrijkste stap voorwaarts in het begrijpen van gedistribueerde
heterogene systemen voor grootschalige graafverwerking. Echter, er is nog veel werk dat
gedaan moet worden. In de toekomst willen wij ons richten op: het analyseren van de
grafen in de GTA en hieruit zinvolle informatie halen, het ontwerpen van een uitgebreide
benchmark voor het evalueren van graafverwerkingssystemen, het verbeteren van onze
huidige gedistribueerde heterogene systeem en het ontwerpen van een graafverwerkings-
systeem dat kan omgaan met grafen die veranderen over de tijd en grafen met data op de
knopen en de links.

166

Biography

Yong Guo was born in Jingzhou, China, on December 25, 1988. Yong received his Bach-
elor degree in Computer Science and Technology and graduated as Excellent Graduate
Student (top 2%) from National University of Defense Technology (NUDT), China, in
2009. Then, Yong started his master study in Computer Science and Technology at
NUDT, without sitting the entrance examination. After one year and a half, due to his
excellent performance, Yong was admitted as a PhD student at NUDT, one year ahead
of his master graduation time. In September 2011, Yong became a PhD student in the
Parallel and Distributed Systems group at Delft University of Technology (TUD), the
Netherlands, with a four-year scholarship by the China Scholarship Council. In 2015,
Yong did a three-month internship on graph processing and partitioning at Oracle Labs,
in the USA. In 2013, 2014, and 2016, Yong was a teaching assistant for the master course
of Distributed Computing Systems at TUD. Yong’s research work focuses on designing
large-scale graph-processing systems, on evaluating the performance of graph-processing
systems, and on analyzing player behavior and evolution of online games.

Publications

1. Yong Guo, Sungpack Hong, Hassan Chafi, Alexandru Iosup, and Dick Epema,
“Modeling, Analysis, and Experimental Comparison of Streaming Graph-
Partitioning Policies”, Journal of Parallel and Distributed Computing (JPDC),
http://dx.doi.org/10.1016/j.jpdc.2016.02.003, 2016.

2. Yong Guo, Ana Lucia Varbanescu, Dick Epema, and Alexandru Iosup “Design
and Experimental Evaluation of Distributed Heterogeneous Graph-Processing Sys-
tems”, IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2016.

3. Yong Guo, Ana Lucia Varbanescu, Alexandru Iosup, and Dick Epema, “An
Empirical Performance Evaluation of GPU-Enabled Graph-Processing Systems”,
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2015.

167

168

4. Alexandru Iosup , Mihai Capotă, Tim Hegeman, Yong Guo, Wing Lung Ngai,
Ana Lucia Varbanescu, Merijn Verstraaten, “Towards Benchmarking IaaS and PaaS
Clouds for Graph Analytics”, Workshop on Big Data Benchmarking (WBDB), 2014.

5. Alexandru Iosup, Siqi Shen, Yong Guo, Stefan Hugtenburg, Jesse Donkervliet,
Radu Prodan, “Massivizing Online Games Using Cloud Computing: A Vision”,
IEEE International Conference on Multimedia and Expo Workshops (ICMEW),
2014.

6. Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup, Claudio
Martella, and Theodore L. Willke, “How Well do Graph-Processing Platforms Per-
form? An Empirical Performance Evaluation and Analysis”, IEEE International
Parallel & Distributed Processing Symposium (IPDPS), 2014.

7. Yong Guo, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella, and
Theodore L. Willke, “Benchmarking Graph-Processing Platforms: A Vision”,
ACM/SPEC international conference on Performance engineering (ICPE), 2014.

8. Yong Guo and Alexandru Iosup, “The Game Trace Archive”, Annual Workshop on
Network and Systems Support for Games (NetGames), 2012.

9. Yong Guo, Siqi Shen, Otto Visser, and Alexandru Iosup, “An Analysis of Online
Match-Based Games”, International Workshop on Massively Multiuser Virtual En-
vironments (MMVE), 2012.

	Introduction
	Graph Processing Applications
	Graph Processing Systems
	Graph Partitioning Policies
	Problem Statement
	Main Contributions and Thesis Outline

	Designing the Game Trace Archive: More Graph Datasets
	Overview
	Requirements for a Game Trace Archive
	The Game Trace Archive
	The Design of the Game Trace Archive
	The Design of the Game Trace Format

	Analysis of Traces from the Game Trace Archive
	Analysis of Workload Characteristics
	Analysis of Win Ratio
	Analysis of Player Behavior and Evolution
	Analysis of Gaming Graphs

	Related Work
	Summary

	Evaluating the Performance of CPU-Based Graph Processing Systems
	Overview
	Our Vision for Benchmarking
	Methodological Challenges
	Practical Challenges

	Benchmarking Graph Processing Systems
	Performance Aspects, Metrics, Process
	Selection of Graphs and Algorithms

	Experimental Setup
	Platform Selection
	Platform and Experimental Configuration

	Experimental Results
	Basic Performance: Job Execution Time
	Evaluation of Resource Utilization
	Evaluation of Scalability
	Evaluation of Overhead

	Discussion
	Related Work
	Summary

	Evaluating the Performance of GPU-Enabled Graph Processing Systems
	Overview
	Extended Method for GPU-Enabled Systems
	Performance Aspects, Metrics, Process
	Selection of Graphs and Algorithms

	Experimental Setup
	System Selection
	System and Experiment Configuration

	Experimental Results
	Raw Processing Power: Algorithm Run Time
	Performance Breakdown
	Evaluation of Scalability
	Evaluation of System-Specific Optimization Techniques
	Evaluation of the Impact of the GPU Generation

	Qualitative Analysis of User Experience
	Related Work
	Summary

	Designing Streaming Graph Partitioning Policies
	Overview
	A Model of Graph Processing Systems
	Design of Graph Partitioning Policies
	Identifying the Run-Time-Influencing Characteristics
	Empirical Results Validating the Method
	Four New Graph Partitioning Policies

	Experimental Results
	Experimental Setup
	The Impact of Worker and Copier Threads
	Workload Distribution
	The Impact of the Partitioning Policies on Performance
	The Impact of Network and the Selective Ghost Node
	The Time Spent on Partitioning Graphs

	Discussion
	How to Use Our Results
	The Coverage of Our Model and Method

	Related Work
	Graph Processing Systems
	Graph Partitioning Policies

	Summary

	Designing Distributed Heterogeneous Graph Processing Systems
	Overview
	Extended BSP-Based Programming Model
	The Design of Distributed Heterogeneous Systems
	Three Families of Distributed Heterogeneous Systems
	Classification of Partitioning Policies
	Selection of Partitioning Policies
	The Design of a Profiling-Based Greedy Policy
	Implementation Details

	Experimental Results
	Experimental Setup
	Calculating the Computation Workload Fraction
	Overview of the Performance of Three Families of Systems
	Breakdown of Algorithm Run Time
	Scalability
	Partitioning Time
	Comparison with Other Graph Processing Systems

	Related Work
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Using the Game Trace Archive
	Benchmarking Graph Processing Systems
	Designing Graph Processing Systems

	Bibliography
	Summary
	Samenvatting
	Biography

