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Chapter 1

Introduction

1.1 Historical overview of coupled elastic waves and
electromagnetic fields in porous media

In the field of global geophysics, seismology is the most important tool for imaging
the Earth, which makes use of the mechanical waves that are generated due to nat-
ural hazards like earthquakes. Also in the field of applied geophysics, which is con-
cerned with shallower subsurface imaging and characterization using data measured
at or below the Earth’s surface, seismic imaging plays the key role in exploration.
Increasing societal challenges such as environmental issues or the quest for natural
resources have sparked the continuous search for improved imaging and character-
ization techniques. Besides seismic waves, other types of physical phenomena are
therefore increasingly being exploited for geophysical purposes, both for global scale
and exploration scale purposes. Examples are electromagnetic methods like Induced
Polarization (IP) (e.g. Marshall & Madden (1959); Oldenburg & Li (1994); Revil
& Florsch (2010), MagnetoTelluric (MT) methods Cagniard (1953); Vozoff (1972);
Colombo & De Stefano (2007); Carbajal et al. (2012)), Ground-Penetrating Radar
(GPR) (e.g. Sambuelli et al. (1999); Guha et al. (2005); Kruse et al. (2006); Feld &
Slob (2014)) and Controlled Source Electromagnetics (CSEM) (e.g. Chave & Cox
(1982); Eidesmo et al. (2002); Constable (2010); Hunziker et al. (2011); Colombo
et al. (2013); Hunziker et al. (2014)). Furthermore, even within seismic wave stud-
ies, different approaches exist as well. Classically, only acoustic waves were being
used. In addition, elastodynamic systems are used to describe the pressure and shear
wave propagation. More complex systems are being studied increasingly as well, like
viscoelastic and poroelastic wave propagation (e.g. Carcione et al. (2010); Rubino
et al. (2015)). There have also been studies focusing on interactions between mechan-
ical wavefields and electromagnetic fields. Currently, we know two types of seismo-
electromagnetic effects. In 1936, Thompson (1936) showed that an electric field
change can occur associated to elastodynamic waves, since the mechanical disturb-
ances change the local resistivity of the medium. He demonstrated this using a setup
that actively generates a constant current between two electrodes and that measures

1



2 1. Introduction

the potential difference. While measuring, an elastodynamic wave propagates in the
medium, passing by the electrodes and creating a change in potential difference.
Thompson (1936) suggested that these measurements could be used to distinguish
the propagation direction of different arrivals (for example horizontal versus vertical
propagation). The second type of seismo-electromagnetic effect was first described
by Ivanov (1940), who discusses the coupling between mechanical waves and fully
coupled electromagnetic fields, where the electric and magnetic fields are influencing
each other. This is the type of seismo-electromagnetic (seismo-EM) phenomenon
that we investigate in this thesis. A theory for wave propagation of electrokin-
etic phenomena in fluid-saturated porous media was developed by Frenkel (1944),
in which he predicted the slow compressional wave and the seismo-electromagnetic
effect. He made a marginal error in the development of the Biot-Gassmann con-
stants and also only considered the electric effect and not the full Maxwell equations
(Pride & Garambois, 2005). Martner and Sparks reported in 1959 that an elec-
tric potential difference generated by seismic wave propagation in the subsurface
could be detected by electrode pairs (Martner & Sparks, 1959). A set of equations
was presented by Neev & Yeats (1989), in an attempt to extend Biot’s theory to
include the electrokinetic effects associated with the flow of fluid in poroelastic me-
dia. The theory was restricted to the resistive (low-frequency) domain in both fluid
flow and electrical conduction. The Onsager reciprocity conditions enabled ther-
modynamic consistency. They did not use the Maxwell equations and also did not
include the frequency-dependence of the transport equations. Using the principle of
volume-averaging, Pride (1994) derived a set of governing equations describing the
seismo-electromagnetic system in fully-saturated porous media, by coupling Biot’s
poroelasticity equations to the full Maxwell electromagnetic equations. This boosted
the geophysical research on seismo-electromagnetic phenomena. Several theoretical
developments and numerical modeling experiments (e.g.Haartsen & Pride (1997);
Haines & Pride (2006); Garambois & Dietrich (2002); Haines (2004); Haines & Pride
(2006); Revil et al. (2007); Zyserman et al. (2010); Sava & Revil (2012); Grobbe &
Slob (2013); Kröger et al. (2014); Grobbe et al. (2014, 2016a); Revil et al. (2015);
Grobbe & Slob (2016)), as well as field tests (e.g. Butler et al. (1996); Thompson
et al. (2007); Dupuis et al. (2007); Dean & Dupuis (2011a); Dean et al. (2012)) have
been carried out in attempts to better understand this complex physical phenomenon
and to develop applications for the geophysical community. Starting from the ba-
sic governing equations derived by Pride (1994), Haartsen & Pride (1997) derived
a set of eigenvectors for modeling seismo-electromagnetic wavefields in horizontally
layered, radially symmetric (1D), fluid-saturated porous media. To model 2D and
3D media, finite-difference (e.g. Haines & Pride (2006)) and finite-element schemes
(Zyserman et al., 2010) have been developed. Recently, Warden et al. (2013) have ex-
tended the theory to deal with partially-saturated media as well. Revil and coauthors
have developed and tested an alternative formulation of the seismo-electromagnetic
theory (e.g. Revil et al. (2003); Jardani et al. (2010); Revil et al. (2015)). In the
seismo-electromagnetic theory of Pride (1994), full coupling between the electric
and magnetic fields is considered, whereas Revil and coauthors make use of the well-
known quasi-static approach for electromagnetic fields, which exploits the fact that
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at low frequency (which seems to be applicable to the seismo-electromagnetic effect
where seismic frequencies are considered), the electric and magnetic parts are not
coupled. Hence, the curl-free electric field can be written as minus the gradient of an
electrical potential. Since seismo-electromagnetic phenomena are sensitive to a large
number of parameters, such a simpler representation of the system might be benefi-
cial for both our understanding of the phenomenon as well as for further developing
the technique towards imaging and inversion (e.g. Jardani et al. (2010); Mahardika
et al. (2012); Sava & Revil (2012); Revil et al. (2015)). However, for this approxim-
ation, a frequency-limit holds that depends on the measurement configuration and
the target depth. In seismo-electromagnetic phenomena, the actual coupling occurs
in transport equations that are constituents of Biot’s equations and Maxwell’s equa-
tions. Different assumptions can be made regarding the physical mechanisms that
underly the model. These assumptions have their effect on the actual model para-
meters. In the theory as presented by Pride (1994), and as adopted in our paper,
he assumes that no wave induced diffusion effects occur, that there are no chemical
gradients present (meaning that there are no free charges induced on the surfaces
of the grains), that there is no wave scattering at the scale of the grains, that there
are no piezoelectric or other anisotropic effects occurring and that the disturbances
that happen in the medium only have linear effects. Furthermore, the pore fluids
are assumed to be ideal electrolytes. It is important to realize that these postulates
that Pride (1994) states, affecting the dynamic coupling coefficient and permeability
as well as the electrical conductivity, are not per definition the correct ones. Revil &
Mahardika (2013) present an elegant alternative using other assumptions. This res-
ults in theoretical complex conductivity expressions that agree with experimentally
observed quadrature conductivities. Their formulation enables the investigation of
seismo-electromagnetic effects (so in this case no quasi-static approach is used) in
unsaturated porous media. Recently, Jardani & Revil (2015) extended the theory for
full coupling in two-phase flow media. For the purpose of this thesis, we desire that
all coupling effects (even very weak effects) are taken into account in our modeling.
To this end, we do not want to make any approximations regarding the Maxwell
equations, and prefer to model the fully-coupled Maxwell equations. In this thesis,
we build upon the theory as developed by Pride (1994), but alternatively we could
have followed the theory as formulated by Revil & Mahardika (2013).

Besides theoretical and numerical studies, laboratory studies have been car-
ried out in attempts to better understand the electrokinetic foundations of coupled
seismo-electromagnetics, the seismo-electromagnetic phenomenon itself and the re-
sponses that are to be expected (e.g. Jouniaux & Pozzi (1995); Zhu et al. (2000); Zhu
& Toksöz (2005); Revil et al. (2007); Allègre et al. (2010); Schakel et al. (2011); Haas
et al. (2013); Smeulders et al. (2014); Bordes et al. (2015)). By comparing laboratory
experiments with theoretical models, several aspects of electrokinetic and seismo-
electromagnetic theory have been validated (e.g. Bordes et al. (2008); Schakel &
Smeulders (2010); Schakel et al. (2011); Schoemaker et al. (2012); Smeulders et al.
(2014)). However, from all laboratory studies still no convincing match has been
obtained between modeled and measured data on actual rock samples. This might
imply that the theory still needs to be further developed. On the other hand, carry-
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ing out seismo-electromagnetic experiments in a laboratory setting is quite difficult,
and therefore easily prone to errors or deviations from theory. For single and mul-
tiple cylindrical pores in a sample, good results have been obtained validating the
analytical models for the transport equations (Schoemaker et al., 2012).

1.2 What can the seismo-electromagnetic effect
bring us?

The seismo-electromagnetic method is complementary to conventional seismics or
conventional controlled-source electromagnetics (CSEM). Conventional seismics can
hardly distinguish between e.g. water- and oil-saturated rocks. Due to the subsur-
face coupling between the elastodynamic wavefields and the electromagnetic fields,
the seismo-electromagnetic signals may provide both seismic resolution and elec-
tromagnetic fluid-sensitivity at the same time, potentially allowing to discriminate
between these different types of rock saturation (Schoemaker et al., 2012). Further-
more, several studies have already shown that the seismo-electromagnetic method
can provide us with supplemental information on crucial reservoir parameters like
porosity and permeability, as well as sensitivity to pore-fluid properties (e.g. Pride
(1994); Haines & Pride (2006); Revil et al. (2007)). This can potentially be used
for example to detect or monitor gas/oil/water or oil/water contacts (Revil & Ma-
hardika, 2013; Smeulders et al., 2014). Additionally, the seismo-electromagnetic
method has been proven useful for imaging and monitoring of aquifers and aquifer
contamination (Rosid & Kepic, 2005; Dupuis et al., 2007; Revil & Mahardika, 2013),
Vertical Seismic Profiling of glaciofluvial sediments (Dupuis & Butler, 2006), and for
exploration of glaciers, e.g. for mapping thin water-bearing strata or for monitoring
of ice fracturing (Kulessa et al., 2006). For these reasons, the seismo-electromagnetic
method is of interest to the oil and gas industry, as well as to e.g. hydrological in-
stitutes.

Recently, the seismo-electromagnetic effect is also studied for global scale applica-
tions, e.g. using seismo-electromagnetic phenomena for the detection of microcracks
prior to ruptures generating earthquakes (e.g. Fujinawa et al. (2011); Ren et al.
(2012b); Haas et al. (2013); Fujinawa & Noda (2016)).

We can distinguish two types of coupling in the seismo-electromagnetic phenom-
ena (e.g. Garambois & Dietrich (2002); Revil et al. (2015)). The first is the coupling
that occurs ‘inside’ the seismic wave or electromagnetic field, which is referred to
as the coseismic electromagnetic field or the coelectromagnetic mechanical field, re-
spectively. Since the coseismic field is generated locally, it can only provide us with
localized information at the location where the wave passes and is recorded, i.e. at
the receivers. This effect might therefore be useful for borehole applications, such
as discussed by e.g. Zhu et al. (2000); Zhu & Toksöz (2005). Another borehole ap-
plication might be to map the permeability close around the well with the purpose
of determining where to optimally perforate the well-casings.

The second type of coupling occurs when such a field encounters an interface
with contrasting medium parameters. An incident electromagnetic field or seis-
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mic wave reflects from and transmits through such an interface both electromag-
netic and seismic fields. This second type of coupling is referred to as the seismo-
electromagnetic conversion or interface response (IR) field. If we focus on the seismic-
to-electromagnetic conversion, this second-order coupling effect yields an independ-
ent electromagnetic diffusive field, which is generated whenever there is a contrast
in mechanical, hydraulic or electrical medium parameters. The electromagnetic dif-
fusion is characterized by the diffusion number, and the velocity-per-frequency is
several orders of magnitude higher than the seismic wave velocities. These diffusive
electromagnetic events will arrive almost instantaneously at the receiver level and
hence these IR events will show up in seismo-electrograms as more or less horizontal
events at one-way seismic traveltime (the seismic traveltime from the source to the
generating interface). The reciprocal, electromagnetic-to-seismic conversion, also
creates ‘flat’ events, but now due to the fact that the incoming diffusive electromag-
netic fields have a velocity-per-frequency that is several orders of magnitude higher
than the seismic converted field velocity. These converted fields can provide us with
information at depth and are therefore of primary interest when exploiting seismo-
electromagnetic methods in industry. However, since these fields are second-order
coupling effects, their signal strength and signal-to-noise ratio is very low. Further-
more, other secondary effects could take place, such as effects due to gradients in
chemical potential and temperature. The IR fields might also be useful in borehole
scenarios, if the receivers are then located close to the target area of interest and
hence less amplitude losses will occur for the diffusive electromagnetic fields.

In addition to these two types of coupling, seismo-electromagnetic conversion
occurs directly at the source, where for example an instantaneous electromagnetic
field is being generated upon seismic source impact. This is sometimes referred to as
a third-type of seismo-electromagnetic signal (see for example Revil et al. (2015)).

These three types of seismo-electromagnetic coupling and their corresponding
seismogram and electrogram recordings are schematically illustrated in Figure 1.1.

Throughout this thesis, we will describe both the seismo-electromagnetic and
the reciprocal electromagneto-seismic effects with the term ‘seismo-electromagnetic’.
The source-receiver combination under consideration will make clear which effect we
are looking at.

1.3 Problem statement and thesis objectives

Currently, the major challenge of the seismo-electromagnetic method is the very
weak signal-to-noise ratio of the seismo-electromagnetic signals. For shallow subsur-
face applications, such as ground-water monitoring, field tests have proven that the
seismo-electromagnetic method can successfully be applied (Rosid & Kepic, 2005;
Dupuis et al., 2007). Despite possible borehole and near-surface applications, in
order to make the seismo-electromagnetic method feasible for energy industrial and
natural hazard applications, we need to find ways to improve the signal-to-noise
ratio of especially the second-order seismo-electromagnetic conversion effect. There
are only a few examples of promising field tests with deeper subsurface targets (e.g.
Butler et al. (1996); Thompson et al. (2007)). More field data tests of the seismo-



6 1. Introduction

1

Layer 1
Layer 2

Coseismic Field

Geophones
electrodes

Interface Response Field

Electric
dipole

2

(a) (b)

(c) (d)

Synthetic
Seismogram Seismo-

electrogram

Synthetic
Seismogram Seismo-

electrogram

1

Offset  (m)

Time  (s)

2

3 3

3

Figure 1.1: Schematic of the types of seismo-electromagnetic coupling (modified from Schoemaker
et al. (2012)). A porous layer (layer 1), with some saturation, overlies a porous half-space (layer
2), that has contrasting medium parameters compared to layer 1 (panels (a) and (c)). The seismic
source generates a mechanical wave (labelled 1), that is recorded by geophones at the surface
(left part of panel (b)). This is the direct seismic wave. This wave also creates a co-propagating
coseismic electric field that is registered by the surface electrodes (right part of panel (b)). When
the seismic wave arrives at the interface separating the porous layers, the interface response field
is generated (labelled 2), that arrives instantaneously at one-way seismic time (orange event), and
is only recorded by the surface electrodes (right part of panel (d)). The third event is the source-
converted diffusive EM field (green arrows), that arrives around t = 0 s, indicated by the green
event in panels (b) and (d).

electromagnetic method are certainly required to really bring this method to the
next level.

Several different attempts to boost the seismo-electromagnetic signal strength
have been made over the last couple of years, all with limited effect. Recently,
Sava & Revil (2012); Revil et al. (2013); Sava et al. (2014) have explored to use
seismo-electromagnetic focusing techniques to maximize the seismo-electromagnetic
conversion. In addition, more specifically dedicated seismo-electromagnetic pro-
cessing could help, as discussed in for example Butler & Russell (1993); Warden
et al. (2012). A brute-force approach is to use commercial hydraulic vibroseis trucks
to try and boost the signal-to-noise ratio of the seismo-electromagnetic data by send-
ing large amounts of energy into the subsurface (Dean & Dupuis, 2011a; Dean et al.,
2012; Valuri et al., 2012). Having strong sources is not always possible or desirable
and is likely to boost the noise-levels as well. Therefore, it may be beneficial to be
able to replace those strong sources by receivers. This is the principle of interfero-
metry. From an imaging point of view, it has been shown effective for a wide class of
phenomena, including purely seismic and electromagnetic systems (Draganov et al.,
2006; Wapenaar et al., 2008a; Schuster et al., 2004; Schuster, 2010). When applying
interferometry, responses recorded at different receivers are cross-correlated in order
to obtain the Green function between these receivers. It can include the responses
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of both passive and active sources. The cross-correlation process reorganizes meas-
ured data such that it may allow for improved imaging compared to the situations
where imaging algorithms are applied to the measured data directly. When having
downhole receivers, the virtual source method based on interferometric principles
(Bakulin & Calvert, 2006; Mehta et al., 2007a) has been proven useful. This leads
to the idea that seismo-electromagnetic interferometry can also help overcoming
the weak signal-to-noise ratio challenge. Initial studies applying interferometry by
cross-correlation on the SH-TE propagation mode in 1D scenarios, were successful
(De Ridder, 2007; De Ridder et al., 2009; Schoemaker et al., 2012).

It is important to realize that even if the signals would be stronger, the fact re-
mains that the seismo-electromagnetic effect is a very complex physical phenomenon
and hard to fully understand. Applying existing acoustical geophysical processing,
imaging, and inversion techniques to seismo-electromagnetic data can be very chal-
lenging, but is not impossible (Jardani et al., 2010; Mahardika et al., 2012; Chen &
De Hoop, 2014; Maas et al., 2015).
These two challenges lead to the key aim of this thesis, which is two-fold:

1. Increase our theoretical and physical understanding of the seismo-electromagnetic
phenomenon by analytically-based numerical modeling.

2. Investigate the potential of seismo-electromagnetic interferometry.

To be able to model the data for all possible seismo-electromagnetic source-
receiver combinations, a requirement for studying interferometry with seismo-
electromagnetic fields, we need to develop an analytically-based, layered-Earth mod-
eling code. To this end, we develop ‘ESSEMOD’, which stands for Electromagneto-
Seismic and Seismo-Electromagnetic MODeling. Our modeling code is developed in
a combined Fortran / C language, and compatible with the ‘Seismic Unix’ parameter
interface. To make it possible to compare the modeling results with typical seismo-
electromagnetic laboratory wave propagation experiments, we include fluid/porous
medium/fluid transitions in our modeling code.

1.4 Thesis outline

We start in Chapter 2 by introducing the theoretical aspects of the seismo-
electromagnetic phenomenon. We provide in Section 2.1 an overview of the govern-
ing seismo-electromagnetic equations that form the basis of this thesis. In Section
2.2, we rewrite the system of equations to capture the seismo-electromagnetic sys-
tem in a general differential field equation. We then present in Section 2.3 three
different eigenvector sets: a literature eigenvector set according to our preferences,
the power-flux normalized version of this eigenvector set, and an independently
derived alternative eigenvector set. We finalize this chapter by showing explicit
homogeneous-space Green’s function solutions in Section 2.4.

In Chapter 3, we describe the underlying theory applicable to coupled seismo-EM
layer-code modeling. Section 3.1 starts with deriving the Global Reflection Scheme
that is a crucial part of the algorithm of the layered-Earth modeling code. In Section
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3.2, we focus on specific modeling scenarios, by showing theoretically the implications
of having a pressure free-surface in the model, or fluid/porous medium/fluid trans-
itions. We then focus in Section 3.3 on how we deal with field composition and the
combination of the propagation modes. We also explain how we use Fourier-Bessel
transformations to transform the data from the horizontal wavenumber-frequency
domain to the space-frequency domain. We explicitly present all Fourier-Bessel
transformations for all existing seismo-electromagnetic source-receiver combinations.
We finalize this chapter with a note on 3D and 2D modeling with our code ‘ESSE-
MOD’ (section 3.4).

Chapter 4 is an overview of several numerical studies carried out using seismo-
EM layer-code modeling. In Section 4.1, we start by focusing on the numerical
validation of the three different eigenvector sets and several accuracy aspects of
these sets. We then, in Section 4.2, validate the results of ESSEMOD using the
explicit homogeneous-space Green’s function solutions of Section 2.4. We valid-
ate different aspects of the global reflection scheme of Section 3.1 using reciprocity
tests, shown in Section 4.3. Next, we present in Section 4.6 several numerical res-
ults for surface reflection and surface to horizontal borehole measurements. We
look at different source-receiver combinations. Furthermore, we carry out a feas-
ibility study focused on signal measurability. Section 4.4 then moves onwards to
modeling typical seismo-electromagnetic wave propagation laboratory experiments,
where a porous sample is placed in a water tank. We validate our modeling code for
fluid/porous medium/fluid transitions by comparing the purely electromagnetic part
with an independently developed electromagnetic layered-Earth modeling code. We
continue our validation in Section 4.5, by successfully comparing the results of our
code ESSEMOD with an independently developed layered-Earth coupled seismo-
electromagnetic modeling code (Garambois & Dietrich, 2002). In Section 4.7, we
explore the possible natural seismo-electromagnetic signal enhancements due to thin-
bed geological settings. After these numerical modeling studies, we move onwards
to carefully investigate interferometric synthesis with seismo-electromagnetic fields,
using cross-correlation based interferometry applied to the 2D SH-TE propagation
mode, presented in Chapter 5. We then discuss some methods and applications
of seismo-electromagnetic phenomena in Chapter 6. We first focus on our Multi-
Depth-Level Field Decomposition method (Section 6.1), which incorporates the re-
cordings at multiple depth levels in the process of field decomposition into up- and
downgoing waves and different field types. In Section 6.2, we then move on towards
inversion, studying the seismo-electromagnetic sensitivity using resolution functions.
We discuss some other potential applications of the seismo-electromagnetic method
in Section 6.3. We finalize the thesis by presenting the main Conclusions of this
thesis, as well as a brief Outlook, in Chapter 7.



Chapter 2

Theory of the
seismo-electromagnetic
phenomenon

2.1 Overview seismo-electromagnetic governing
equations

The set of macroscopic governing equations for the seismo-electromagnetic system in
an arbitrary inhomogeneous fluid-saturated porous medium were derived by Pride
(1994). We briefly recapitulate the starting set of equations used. Next, we express
the vertical variations of the field quantities for each propagation mode individually
in terms of a system matrix containing the medium parameters and the horizontal
partial differentiation operators acting on these field quantities, which forms the
basic formulation for seismo-electromagnetic layered-Earth modeling codes (Wood-
house, 1974; Kennett, 1983; Ursin, 1983; Wapenaar & Grimbergen, 1996; Haartsen &
Pride, 1997; Garambois & Dietrich, 2002; Ren et al., 2010; Hu & Gao, 2011; Grobbe
& Slob, 2013; Grobbe et al., 2016a,b).

Once we have successfully captured both the SH-TE propagation mode and the
P-SV-TM propagation mode in this format, we introduce the power-flux normalized
eigenvector system as derived starting from Haartsen & Pride (1997), followed by
the derivation of our own independent alternative eigenvector set, starting straight
from the system matrices for the SH-TE and P-SV-TM modes. Throughout this
thesis we use

f̂(xi, ω) =

ˆ ∞
−∞

f(xi, t)e
−jωtdt, (2.1)

as the definition for the forward temporal Fourier transform and

f̃(k1, k2, x3, ω) =

ˆ ∞
−∞

ˆ ∞
−∞

f̂(xi, ω)ejkαxαdx1dx2, (2.2)

9
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for the forward spatial Fourier transform. Here, ω denotes the angular frequency
in [rad· s−1], t is time, j indicates the imaginary unit, xi indicates the three spa-
tial directions of the right-handed Cartesian coordinate system (with the positive
x3-direction pointing downwards (depth)), and kα, with α = 1 or 2, denotes the
horizontal wavenumber in those respective directions. The hat indicates a quant-
ity in the space-frequency domain, the tilde sign indicates a quantity in the hori-
zontal wavenumber-frequency domain. Note that these Fourier transform definitions
are opposite to the definitions used by e.g. Haartsen & Pride (1997). Through-
out this thesis, Latin subscripts can take the values 1,2 and 3, Greek subscripts
can take the values 1 and 2. The Einstein summation convention holds for re-
peated indices (unless indicated otherwise). Before diving into the world of seismo-
electromagnetics, it is important to realize that the propagating electromagnetic
parts of the coupled seismo-electromagnetic fields are diffusive fields, and that these
diffusive fields behave differently compared to propagating waves (the latter includes
the coseismic fields that propagate along with the seismic wave). For instance, the
phase term of the frequency-domain homogeneous-space solution to the 3D wave
equation has the form exp(−j ωcR), where c denotes the wave propagation velo-
city (with weak or no dependence on frequency) and R represents the propagation
distance R = |xri − xsi |, where the superscripts s and r indicate the source and re-
ceiver locations. The homogeneous-space equivalent for a diffusive electromagnetic
field has the form exp

(
−√jωσµR

)
= exp

(
−
√

ωσµ
2 R(1 + j)

)
. Here, σ represents

the electric conductivity and µ is the magnetic permeability. We can split this ex-
pression in a real part (the damping term) and an imaginary part (phase term), as
exp

(
−
√

ωσµ
2 R

)
exp

(
−j
√

ωσµ
2 R

)
. We can cast the imaginary part of this expression

in a similar format as is used to describe the phase term for waves, exp
(
−j ω

cdiff
R
)

,

using ω
cdiff

=
√

ωσµ
2 , where the diffusion ‘velocity’ cdiff is then derived as cdiff =

√
2ω
σµ .

We can clearly observe that this diffusion ‘velocity’ is proportional to the square root
of frequency. As a result, we cannot speak about the ‘velocity’ of a diffusive field.
We can only use the term velocity when considering a single frequency, i.e. we
can speak of a velocity-per-frequency. Instead of using the term velocity, diffusive
fields are characterized by their diffusion number. Slightly counterintuitive, diffus-
ive fields can also be considered to propagate. However, they propagate with very
strong attenuation: after one wavelength the amplitude has reduced to exp(−2π).
Additionally, where waves scale linearly with length, diffusive fields typically have
length scaling with the square root of time (Mulder et al., 2008).

We can now start with the coupled seismo-electromagnetic theory. We distin-
guish two equations of motion, two electromagnetic equations and two stress-strain
relationships. For notational convenience, we introduce in our notation the Laplace
parameter s = jω.

2.1.1 Pride’s equations of motion

The equations of motion derived by Pride (1994) are an extension of Biot’s poroelastic
equations of motion: they include a coupling term coupling the mechanical part to
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the electric field. Considering an arbitrary, inhomogeneous medium they are given
by

sρbv̂si + sρf ŵi −
1

2

∂(τ̂ bij + τ̂ bji)

∂xj
= f̂ bi , (2.3)

sρf v̂si +
η

k̂
ŵ
′
i +

∂p̂f

∂xi
= f̂fi , (2.4)

where

ŵ
′
i = ŵi − L̂Êi, (2.5)

ŵi = φ(v̂fi − v̂si ), (2.6)

ρb = φρf + (1− φ)ρs. (2.7)

In the above equations ŵi is the Biot filtration velocity, Êi is the electric field
strength, L̂ represents the dynamic seismo-electromagnetic coupling coefficient, which
couples the elastodynamic wavefields to the electromagnetic wavefields, η represents
the viscosity of the pore fluid, φ is the porosity of the medium, and k̂ represents
the frequency-dependent dynamic permeability. Combining these parameters yields
the filtration velocity with coupling denoted by ŵ

′
i. Furthermore, v̂si and v̂fi are the

solid and fluid particle velocities, respectively, τ̂ bij represents the bulk stress tensor,

p̂f is the fluid pressure, ρb, ρs and ρf are the frequency-independent, isotropic bulk,
solid and fluid density, respectively, and f̂ bi and f̂fi denote the volume densities of ex-
ternal force applied to the bulk and fluid phases, respectively. The dynamic coupling
coefficient L̂ can be written as follows

L̂ = L0

1 +
s

ωc

m

4

(
1− 2

dl

Λ

)2
1− dl

√
sρf

η

2

− 1

2

. (2.8)

In equation (2.8), L0 represents the static coupling coefficient, which is defined as
(Garambois & Dietrich, 2001; Pride & Garambois, 2005)

L0 = −φε0ε
f
r ζ
p

α∞η

(
1− 2

dl

Λ

)
. (2.9)

Furthermore, ε0 and εfr are the electric permittivity of vacuum and the relative elec-
tric permittivity of the fluid, respectively. The symbol α∞ represents the tortuosity
of the porous medium. The dynamic coupling coefficient has been experimentally
investigated as a function of frequency (e.g. Schoemaker et al. (2012)). In (2.8) and
(2.9), Λ represents the volume-to-surface ratio of the porous material and dl the
Debye screening length. The Debye screening length represents the characteristic
thickness of the electrical double layer (EDL) and is typically on the order of nano-
meters. Physically, the Debye screening length can be considered as representing the
distance over which mobile charge carriers present in the electrolyte screen out the
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surface charge present on the grains of the fluid-saturated porous medium (Debye &
Hückel, 1923; Pride, 1994; Schoemaker et al., 2012), mathematically described as

dl =

L∑
l=1

√
ε0ε

f
rkBT

e2z2
lNl

. (2.10)

Here, kB represents the Boltzmann constant, T the temperature (in [K]), Nl is the
bulk ionic concentration of species l with valence zl, for a total of L species present
in the system, and e represents the elementary charge. We can calculate Nl using

Nl = 103cNA‖z′l‖, (2.11)

with NA being Avogadro’s constant, c the electrolyte concentration of the pore-fluid
in [mol/L], and ‖z′l‖ being the absolute value of the valency of the conjugate ion of

zl. However, for realistic Earth scenarios, we typically consider the limit where dl

Λ
is small, yielding

L0 = −φε0ε
f
r ζ
p

α∞η
. (2.12)

Furthermore, ζp represents the zeta potential. Different expressions exist for the
zeta potential. However, Pride & Morgan (1991) carried out a literature review on
experimental studies of the zeta potential of quartz, showing that

ζp = 8 + 26 log10 c, (2.13)

is a reasonable approximation of the zeta potential (in [mV]), where c denotes the
electrolyte concentration of the pore fluid in [mol/L]. Similar to the dynamic coupling
coefficient, the dynamic permeability is defined as

k̂ = k0

[(
1 +

s

ωc

4

m

) 1
2

+
s

ωc

]−1

, (2.14)

where, k0 represents the static permeability, which can be related to the porosity
cubed using a Carmen-Kozeny relationship, for example

k0 = 2 · 10−11φ3, (2.15)

for clean Fontainebleau sandstones (Bourbié et al., 1987). Furthermore, m is the
similarity parameter, representing a combination of pore-geometry parameters

m =
φΛ2

α∞k0
. (2.16)

The similarity parameter is a dimensionless number, that will be fixed to a value of
8 (Johnson et al., 1987). Important to notice in both equations (2.8) and (2.14), ωc
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represents the critical frequency separating the low-frequency viscous flow regime
from the high-frequency inertial flow regime, defined as

ωc =
φη

α∞k0ρf
. (2.17)

For realistic rock and fluid parameters and general field scenarios, this transition fre-
quency lies above the maximum frequency of interest (this maximum being roughly
between 10 and 1000 Hz). The frequency dependency of the dynamic coupling coeffi-
cient is related to relaxation mechanisms associated with the development of viscous
boundary layers in the pores (Pride, 1994). So, when ω � ωc, viscous boundary
layers are not being developed yet, and hence we can neglect the second term of
equation (2.8). This reduces the complex, frequency-dependent dynamic coupling
coefficient to the static coupling coefficient

L̂ = L0. (2.18)

A similar reasoning holds for the dynamic permeability, which could be approximated
by the static permeability for the frequency range under consideration. However, nu-
merically speaking, coding the dynamic permeability is less tedious than coding the
dynamic coupling coefficient, and therefore we use equation (2.14) in our numerical
schemes.

Note that when the coupling coefficient is equal to zero, equations (2.3) and (2.4)
reduce to Biot’s poroelasticity equations and the elastodynamic waves decouple from
the electromagnetic fields.

2.1.2 Rheology: Stress-strain relations

For an arbitrary, inhomogeneous, isotropic medium, the stress-strain relations are
given by:

−sτ̂ bij + dijkl
∂v̂sk
∂xl

+ Cδij
∂ŵk
∂xk

= dijklĥ
b
kl + Cδij q̂

i, (2.19)

sp̂f + C
∂v̂sk
∂xk

+M
∂ŵk
∂xk

= Cĥbkk +Mq̂i, (2.20)

with ĥbij representing the density of external deformation rate acting on the bulk and

q̂i being the source volume density of injection rate in the fluid phase. The following
symmetry properties hold: τ̂ bij = τ̂ bji, ĥ

b
ij = ĥbji and d̂ijkl = d̂jikl = d̂ijlk = d̂klij .

Here, M and C are static scalar stiffness parameters and dijkl is a static stiffness
tensor of rank four but, for isotropic media, a function of only two parameters given
by

dijkl =

[
KG −

2

3
Gfr

]
δijδkl +Gfr(δikδjl + δilδjk), (2.21)

where Gfr denotes the shear modulus of the solid framework, KG is Gassmann’s
bulk modulus and δij denotes the Kronecker delta. Isolating the divergence of the
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Biot filtration velocity ∂ŵk
∂xk

in (2.20), yields

∂ŵk
∂xk

=
1

M

[
Ĉδklĥ

b
kl +Mq̂i − sp̂f − Ĉδkl

∂v̂sk
∂xl

]
. (2.22)

We can define the stiffness parameters C and M as well as Gassmann’s bulk modulus
KG in terms of the fluid, solid and grain framework bulk moduli, yielding

KG =
Kfr + φKf + (1 + φ)Ks∆

1 + ∆
, (2.23)

C =
Kf +Ks∆

1 + ∆
, (2.24)

M =
Kf

φ(1 + ∆)
. (2.25)

Here, Ks is the solid compression modulus, Kf the fluid compression modulus and
Kfr the compression modulus of the solid framework. ∆ is defined as:

∆ =
Kf

φ(Ks)2

[
(1− φ)Ks −Kfr

]
. (2.26)

Rewriting equations (2.19) and (2.22) for the isotropic, frequency-independent
case, results in

−sτ̂ bij + dijkl
∂v̂sk
∂xl

+ Cδij
∂ŵk
∂xk

= dijklĥ
b
kl + Cδij q̂

i, (2.27)

∂ŵk
∂xk

=
1

M

[
Cĥbkk +Mq̂i − sp̂f − C ∂v̂

s
k

∂xk

]
. (2.28)

Replacing ∂ŵk
∂xk

in (2.27) by the expression (2.28) eliminates this term, yielding

−sτ̂ bij + dijkl
∂v̂k
∂xl

+
Cδij
M

[
Cδklĥ

b
kl +Mq̂i − sp̂f − Cδkl

∂v̂k
∂xl

]
= dijklĥ

b
kl +Cδij q̂

i.

(2.29)

Bringing all source terms to the right-hand side and further simplifying yields,

−sτ̂ bij +

[
dijkl −

C2

M
δijδkl

]
∂v̂k
∂xl
− sC

M
δij p̂ = eijklĥ

b
kl, (2.30)

with eijkl = dijkl − C2

M δijδkl. Alternatively, eijkl = Sδijδkl + Gfr(δikδjl + δilδjk),

where S = KG − 2
3G

fr − C2

M , where we can recognize the elastodynamic Lamé
constant λc = KG− 2

3G
fr. We can also work with the stiffness H = KG+ 4

3G
fr (e.g.

Biot (1962)), which leads to the alternative formulation dijkl = (H − 2Gfr)δijδkl +
Gfr(δikδjl + δilδjk). Furthermore, we define Kc = S + 2Gfr and we can relate
HM − C2 = MKc.
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2.1.3 Maxwell’s electromagnetic field equations with coup-
ling to Biot’s equations of motion

Now that we have described the governing equations of the mechanical wave-part
of the seismo-electromagnetic theory, we focus on the electromagnetic field-part.
Below, Maxwell’s equations for electromagnetic fields are presented, containing a
coupling term to Biot’s equations of motion in porous media (Pride, 1994)

sD̂i + Ĵ i,ei − εijk
∂Ĥk

∂xj
= −Ĵei , (2.31)

sB̂i + Ĵ i,mi + εijk
∂Êk
∂xj

= −Ĵmi . (2.32)

Here, D̂i denotes the electric flux density and B̂i the magnetic flux density. Êi
and Ĥi represent the electric and magnetic field strength, respectively. The right-
hand side of these two equations contain the external electric (Ĵei ) and magnetic

(Ĵmi ) current sources. Finally, Ĵ i,ei and Ĵ i,mi denote the averaged induced electric
and magnetic current density, respectively. These induced current densities can be
expressed as

Ĵ i,ei = σ̂eÊi − L̂
(
∂p̂f

∂xi
+ sρf v̂si − f̂fi

)
, (2.33)

Ĵ i,mi = σ̂mĤi. (2.34)

Here, σ̂e and σ̂m describe the frequency-dependent electric and magnetic conduct-
ivity, respectively. These two parameters describe electromagnetic relaxation. For
Earth materials, we can ignore the magnetic relaxation losses, σ̂m = 0. Recognizing
the expression for the equation of motion (2.4) in equation (2.33) and using it to
express the induced electric current density in terms of the electric field and the
filtration velocity yields

Ĵ i,ei =

(
σ̂e − η

k̂
L̂2

)
Êi +

η

k̂
L̂ŵi. (2.35)

In, equations (2.31) and (2.32), εijk is the Levi-Civita symbol representing the
alternating pseudo-tensor used to express (in combination with the spatial partial
derivatives) the curls of the magnetic and electric fields, where

εijk =


1 if i, j, k is an even permutation of 1,2,3,

−1 if i, j, k is an odd permutation of 1,2,3,

0 otherwise.

(2.36)

The following constitutive relations hold

D̂i = εÊi, (2.37)

B̂i = µĤi, (2.38)
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where ε = ε0εr and µ = µ0µr. Here, µ0 representing the magnetic permeability of
vacuum, µr represents the relative magnetic permeability, and εr the relative electric
permittivity defined as

εr =
φ

α∞

(
εfr − εsr

)
+ εsr, (2.39)

where εsr and εfr are the relative electric permittivities of the solid and fluid, re-
spectively. We choose µr = 1, which is reasonable for Earth materials. In equation
(2.35), one can clearly observe what happens with the coupling to Biot’s poroelasti-
city equations when the coupling coefficient is chosen equal to zero.

When we substitute the constitutive relations (2.37) and (2.38) as well as equa-
tion (2.35) into Maxwell’s electromagnetic field equations with coupling to Biot’s
equations of motion (2.31) and (2.32), the result reads

sεÊi +

[
σ̂e − η

k̂
L̂2

]
Êi +

η

k̂
L̂ŵi − εijk

∂Ĥk

∂xj
= −Ĵei , (2.40)

sµ0Ĥi + εijk
∂Êk
∂xj

= −Ĵmi . (2.41)

Following Pride & Garambois (2005), we can use the following reduced static ex-

pression (to leading order in dl

Λ ) for the frequency-dependent electrical conductivity

σ̂e =
φσf

α∞
, (2.42)

where we use the simplified version of the fluid conductivity

σf = (ez)2N(b+ + b−). (2.43)

This expression is based on the assumption that only one valency-type ion is present;
therefore the subscript l is removed on z and N . Here, b+ and b− represent the ionic
mobilities of the cations and anions, respectively. We use a typical value for the
ionic mobility of 3.0 · 1011 ms−1N−1 for inorganic ions (Haartsen & Pride, 1997).

2.1.4 Seismo-Electromagnetic Theory based on Revil’s As-
sumptions

So far, we have discussed the seismo-electromagnetic theory following the assump-
tions of Pride (1994). Different underlying theoretical assumptions can lead to
different expressions, especially for the dynamic coupling coefficient, the dynamic
permeability and the complex conductivity. We now briefly discuss the seismo-
electromagnetic model according to Revil & Mahardika (2013). This model could
have been used just as easily as the foundation for this thesis. However, the theory
was not yet published at the start of this PhD research. In the following discussion,
it is important to distinguish two end-member scenarios, based on the size of the
electrical double layer with respect to the size of the pores, (Revil & Mahardika,
2013):
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1. A thick double layer, where the counterions of the diffuse layer are uniformly
distributed in the pore space

2. A thin double layer, where the thickness of the diffuse layer is much smaller
than the size of the pores.

Pride (1994) makes use of a thin double layer theory based on the zeta potential. In
contrast, Revil & Mahardika (2013) describe the (thick and thin) double layer theory
based on the excess charge density. We here state the main alternative expressions
for the dynamic coupling coefficient, permeability and conductivity, as presented by
Revil & Mahardika (2013):

L̂(ω, sw) =
k̂(ω, sw)Q̂

V
(ω, sw)

ηw
, (2.44)

where the bar below the symbols indicates that it is a parameter according to Revil &
Mahardika (2013). Here, L̂(ω, sw) denotes the frequency- and saturation-dependent
coupling coefficient, where sw denotes the water saturation, and ηw the dynamic
viscosity of the pore water. The complex frequency- and saturation-dependent per-
meability k̂(ω, sw) is given (for our definition of the Fourier transform) by

k̂(ω, sw) =
krk0

1 + jωτk
, (2.45)

and is used to describe the effect of the inertial force in Darcy’s law. Here, τk is the
relaxation time

τk =
krk0ρwF

ηw
s1−n
w , (2.46)

characterizing the transition between the viscous laminar flow regime and the inertial
laminar flow regime in the frequency-domain Navier-Stokes equation, where n is
called the second Archie exponent. The critical angular frequency associated with
this relaxation time is ωc = 1

τk
. Here, F = φ−m is the formation factor that is

related to the porosity by the first Archie law, where m is the cementation exponent
(Archie, 1942). In addition, the relative permeability kr can be used to express the
relationship between the permeability and water saturation, using Brooks & Corey
(1964)

kr = s
2+3λ
λ

w , (2.47)

where λ forms part of the exponent describing how permeability scales with wa-
ter saturation, following a power-law behaviour. It is shown in Revil (2013) that
2+3λ
λ can be written as n + 2 to be the correct scaling factor when computing the

permeability. One of the most important parameters in the model by Revil & Ma-
hardika (2013) is Q̂(ω, sw), the frequency- and saturation-dependent excess of charge
(or volumetric charge density) that can be dragged by the flow of the pore water
through the pore space of the material. The frequency-dependency comes from the
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fact that more charges are dragged in the inertial flow regime than in the viscous
laminar flow regime, which is in agreement with Pride (1994). We can further distin-

guish Q̂
0

V
and Q̂

∞
V

, representing the dynamic volumetric charge density dragged in
the low-frequency (ωτk � 1;ω � ωc) and high-frequency (ωτk � 1;ω � ωc regimes,
respectively. The relaxation time (or similarly the critical frequency) distinguishes
the different regimes. Therefore, we can use the following expression to compute the
effective charge density as a function of frequency

1

Q̂
V

(ω)
=

1

Q̂
∞
V

+

 1

Q̂
0

V

− 1

Q̂
∞
V

 1√
1 + jωτk

. (2.48)

In the thick double layer approximation, Q̂
∞
V
≈ Q̂

0

V
(i.e. regardless of the fre-

quency, all the counterions of the diffuse layere are dragged by the fluid flow), leading
to the following saturation-dependent excess charge density

Q̂
V

(ω, sw) ≈
Q̂

0

V

sw
. (2.49)

For the thin double layer approximation, it is expected that Q̂
∞
V
� Q̂

0

V
, leading

to

Q̂
V

(ω, sw) ≈ Q̂0

V
s−1
w

√
1 + jωτk. (2.50)

Another crucial difference between Pride (1994) and Revil & Mahardika (2013)
lies in the formulation of the complex conductivity. The frequency-dependency of the
complex conductivity can be directly attributed to the fact that the force applied
to the charge carriers is not only controlled by the electric field, but also by an
electrochemical potential. As a result, diffusion and electromigration are always
coupled phenomena in porous media. As a second contribution to the total current
density, we can distinguish the advective drag of excess charge of the pore space by
the flow of the pore water. Following Revil & Mahardika (2013), we can express
their complex conductivity σ̂(ω) as

σ̂ = σ′ − jσ′′ = |σ̂|exp(−jψ), (2.51)

with the magnitude of the conductivity described by |σ̂| =
√

(σ′)2 + (σ′′)2, and the
phase lag between the electrical current and the resulting electrical field given by ψ =
atanσ

′′

σ′ . Here, σ′ denotes the in-phase electrical conductivity, which can be expressed
as a function of the pore water conductivity σw and the surface conductivity σS , as

σ′ =
1

F
snwσw + σS . (2.52)

Expressions for the surface conductivity σS are discussed in Revil (2012, 2013).
Furthermore, σ′′ represents the quadrature conductivity, which can be expressed as

σ′′ = −A(φ,m)

F
sn−1
w b+S

(
fr

1− fr

)
, (2.53)
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with fr representing the fraction of counterions in the diffuse layer, and b+S de-
noting the mobility of the counterions in the Stern layer (Revil, 2012, 2013). The
frequency-dependence of σ′′ is not explicit in equation (2.53) (Revil, 2012). For the
quasi-static scenario, this quadrature conductivity should go to zero under DC con-
ditions. The quadrature conductivity typically becomes frequency-dependent below
0.1 Hz (Revil, 2012), a frequency that is below our seismo-electromagnetic range
of interest. The above discussed complex conductivity agrees with experimental
data. The complex conductivity as used in the model of Pride (1994), also con-
tains frequency-dependency. However, this frequency-dependency is the result of an
electro-osmotic contribution which is expected to be negligible (Marshall & Madden,
1959). Pride (1994) ignores induced polarization effects. As a result of all this, the
conductivity description based on the assumptions of Pride (1994) will not describe
the observed quadrature conductivity of porous clayey materials correctly.

In the above, we have highlighted some important differences between the models
of Pride (1994) and Revil & Mahardika (2013). Especially the formulation of Revil
& Mahardika (2013) in terms of volumetric charge density and their definitions of
the complex conductivity can be considered useful improvements. In addition, the
theory as formulated by Revil & Mahardika (2013) allows for investigating seismo-
electromagnetic effects in unsaturated porous media. Recently, Jardani & Revil
(2015) extended the theory for full coupling in two-phase flow media. The theoret-
ical description of partially-saturated scenarios following the model of Pride (1994)
has been presented in Warden et al. (2013). Despite obvious differences in the as-
sumptions between the two models, in the low-frequency limit, which is the limit
that holds for most seismic scenarios (where the critical frequency lies above the
bandwidth of interest), the model based on volumetric charge density as described
by Revil & Mahardika (2013) is compatible with the model of Pride (1994), as shown
in Appendix A of Revil & Mahardika (2013). This thesis follows the model of Pride
(1994), but our seismo-EM layer-code could of course be adjusted to incorporate the
assumptions of Revil & Mahardika (2013) instead.
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2.2 Capturing the seismo-electromagnetic system
in a general differential field equation

2.2.1 Separating horizontal from vertical derivatives

We start with the following mechanical equations of motion (including electromag-
netic coupling), stress-strain relations and electromagnetic field equations in space-
frequency:

sρbv̂si + sρf ŵi − ∂j τ̂ bij = f̂ bi , (2.54)

sρf v̂si +
η

k̂

(
ŵi − L̂Êi

)
+ ∂ip̂

f = f̂fi , (2.55)

∂kŵk =
1

M

(
Cĥbkk +Mq̂i

−sp̂f − C∂kv̂sk
)
, (2.56)

−sτ̂ bij + eijkl∂lv̂
s
k −

sC

M
δij p̂

f = eijklĥ
b
kl, (2.57)

sεÊi +

(
σe − η

k̂
L̂2

)
Êi +

η

k̂
L̂ŵi − εijk∂jĤk = −Ĵei , (2.58)

sµ0Ĥi + εijk∂jÊk = −Ĵmi . (2.59)

We now desire to separate the horizontal components from the vertical components.
From equation (2.54) we obtain

∂3τ̂
b
i3 = sρbv̂i + sρf ŵi − f bi − ∂ατ̂ biα. (2.60)

Using equation (2.56), we find

∂3ŵ3 =
1

M

(
Cĥbkk +Mq̂i − sp̂f − C∂kv̂sk

)
− ∂αŵα

=
1

M

(
Cĥbkk +Mq̂i − sp̂f − C∂αv̂sα

)
− ∂αŵα −

C

M
∂3v̂

s
3.

(2.61)

Starting from equation (2.57), and separating the horizontal spatial derivates acting
on the particle velocity from the vertical derivatives, we find

eijk3∂3v̂
s
k = eijklĥ

b
kl + sτ̂ bij +

sC

M
δij p̂

f − eijkα∂αv̂sk. (2.62)

We now select the x3-normal component j = 3 of the stress-tensor τ̂ bij , which is the
only normal component that we desire in the final field quantity expressions. The
other j-components of the stress tensor are eliminated, since they are not continuous
over a horizontal interface, and since we are expressing the vertical variations of the
field quantities in terms of their horizontal derivatives. We define the compliance
tensor, being the inverse ep3i3 of the stiffness tensor ei3k3, (remember that eijkl is an
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extension of the elastodynamic stiffness tensor dijkl, often also referred to as cijkl),
as

ep3i3ei3k3 = δpk. (2.63)

We apply this inverse to both the left-hand side and the right-hand sides of equation
(2.62), leading to

∂3v̂
s
p = ep3i3

(
ei3klĥ

b
kl + sτ̂ bi3 +

sC

M
δi3p̂

f − ei3kα∂αv̂sk
)
. (2.64)

The compliance tensor is given explicitly by

ep3i3 =

 e1313 = 1
Gfr

e1323 = 0 e1333 = 0
e2313 = 0 e2323 = 1

Gfr
e2333 = 0

e3313 = 0 e3323 = 0 e3333 = 1
S+2Gfr

 . (2.65)

Therefore, there are only non-zero solutions to equation (2.64) when p = i.
Let us now focus on equation (2.60). We can recognize horizontal derivatives

of the horizontal normal components of the stress tensor. We only desire vertical
normal components of the stress tensor in our final field equations. Therefore, using
equation (2.57), we express these horizontal components of the stress tensor in terms
of the other field components, as

∂ατ̂
b
iα = ∂α

1

s

(
eiαkβ∂β v̂

s
k + eiαk3∂3v̂

s
k −

sC

M
δiαp̂

f − eiαkβĥbkβ − eiαk3ĥ
b
k3

)
. (2.66)

We now rewrite equation (2.61), eliminating the vertical derivative of the vertical
component particle velocity and the horizontal filtration velocity components using
equations (2.64), with k = 3 and (2.68), respectively, yielding

∂3ŵ3 =
1

M

(
Cĥbkk +Mq̂i − sp̂f − C∂αv̂sα

)
− C
M

(
e3333

[
e3311ĥ

b
11 + e3322ĥ

b
22 + e3333ĥ

b
33 + sτ̂ b33

+
sC

M
δ33p̂

f − e3311∂1v̂
s
1 − e3322∂2v̂

s
2

])
−
(
−sρ

f k̂

η
∂αv̂

s
α + L̂∂αÊα −

k̂

η
∂α∂αp̂

f +
k̂

η
∂αf̂

f
α

)
.

(2.67)

Similarly, from equation (2.55), we can find expressions for the horizontal com-
ponents of the filtration velocity (since we only desire the vertical component in the
final field quantity expressions), as

ŵα = −sρ
f k̂

η
v̂sα + L̂Êα −

k̂

η
∂αp̂

f +
k̂

η
f̂fα . (2.68)
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Combining equations (2.60) and (2.66), we substitute the expressions for the
vertical derivative of the particle velocity (equation (2.64)) and the horizontal fil-
tration velocity (equation (2.68)), to obtain for the x1-component of the x3-normal
component of the bulk stress tensor:

∂3τ̂
b
13 = sρbv̂s1 + sρf

(
−sρ

f k̂

η
v̂s1 + L̂Ê1 −

k̂

η
∂1p̂

f +
k̂

η
f̂f1

)
− f̂ b1

−1

s
∂α

{
e1αkβ∂β v̂

s
k + e1αk3

(
ei3k3

(
ei3mnĥ

b
mn + sτ̂ bi3

+
sC

M
δi3p̂

f − ei3mα∂αv̂sm
])

−sC
M
δ1αp̂

f − e1αkβĥ
b
kβ − e1αk3ĥ

b
k3

}
. (2.69)

We can observe that the term describing eiαk3∂3v̂
s
k only contributes if k = 3 (and

hence i = 3), leading to

∂3τ̂
b
13 = sρbv̂s1 + sρf

(
−sρ

f k̂

η
v̂s1 + L̂Ê1 −

k̂

η
∂1p̂

f +
k̂

η
f̂f1

)
− f̂ b1

−1

s
∂α

{
e1αkβ∂β v̂

s
k + e1α33

(
e3333

(
e33mnĥ

b
mn + sτ̂ b33

+
sC

M
δ33p̂

f − e33mα∂αv̂
s
m

])
−sC
M
δ1αp̂

f − e1αkβĥ
b
kβ − e1αk3ĥ

b
k3

}
. (2.70)

In a similar way, choosing i = 2 in equations (2.60) and (2.66) and combining both
equations, followed by substitution of the expressions for the vertical derivative of
the particle velocity (equation (2.64)) and the horizontal filtration velocity (equation
(2.68)), we obtain the expression for ∂3τ̂

b
23.

From equation (2.58) we obtain,

∂3Ĥ1 = sε̂Ê2 +
η

k̂
L̂ŵ2 + ∂1Ĥ3 + Ĵe2 , (2.71)

∂3Ĥ2 = −sε̂Ê1 −
η

k̂
L̂ŵ1 + ∂2Ĥ3 − Ĵe1 , (2.72)

where we made use of ε̂ = ε+ σ̂e

s − ρ̂EL̂2. Similarly, using equation (2.59), we derive

∂3Ê1 = −sµ0Ĥ2 + ∂1Ê3 − Ĵm2 , (2.73)

∂3Ê2 = sµ0Ĥ1 + ∂2Ê3 + Ĵm1 . (2.74)

Now explicitly evaluating eijkl = Sδijδkl + Gfr(δikδjl + δilδjk), as well as using
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equation (2.65), yields

∂3v̂
s
1 =

(
ĥb31 + ĥb13

)
+

s

Gfr
τ̂ b13 − ∂1v̂

s
3, (2.75)

∂3v̂
s
2 =

(
ĥb32 + ĥb23

)
+

s

Gfr
τ̂ b23 − ∂2v̂

s
3, (2.76)

∂3v̂
s
3 =

s

Kc
τ̂ b33 +

sC

MKc
p̂f − S

Kc
(∂1v̂

s
1 + ∂2v̂

s
2) +

S

Kc

(
ĥb11 + ĥb22

)
+ ĥb33

(2.77)

∂3ŵ3 = − sC

MKc
τ̂ b33 −

s

M

(
1 +

C2

MKc

)
p̂f +

k̂

η
∂2
αp̂

f

+
ρf

ρ̂E
∂αv̂

s
α − L̂∂αÊα −

k̂

η
∂αf̂

f
α −

C

M

(
1− S

Kc

)
∂αv̂

s
α

− C
M

S

Kc
ĥbαα +

C

M
ĥbαα + q̂i, (2.78)

∂3τ̂
b
13 = −∂1

S

Kc
τ̂ b33 − sρf

k̂

η
∂1p̂

f +
1

s
∂1

(
sC

M

[
1− S

Kc

]
p̂f−[

4Gfr(S +Gfr)

Kc
∂1v̂

s
1 +

2SGfr

Kc
∂2v̂

s
2

])
+sρbv̂s1 − s2(ρf )2 k̂

η
v̂s1 + sρf L̂Ê1 − f̂ b1 + sρf

k̂

η
f̂f1

−1

s
∂1

(
S2

Kc

[
ĥb11 + ĥb22

])
+

1

s
∂1

(
Kcĥ

b
11 + Sĥb22

)
−1

s
∂2

(
Gfr [∂1v̂

s
2 + ∂2v̂

s
1]
)

+
1

s
∂2

(
Gfr

[
ĥb21 + ĥb12

])
, (2.79)

∂3τ̂
b
23 = −∂2

S

Kc
τ̂ b33 − sρf

k̂

η
∂2p̂

f +
1

s
∂2

(
sC

M

[
1− S

Kc

]
p̂f−[

2SGfr

Kc
∂1v̂

s
1 +

4Gfr(S +Gfr)

Kc
∂2v̂

s
2

])
+sρbv̂s2 − s2(ρf )2 k̂

η
v̂s2 + sρf L̂Ê2 − f̂ b2 + sρf

k̂

η
f̂f2

−1

s
∂2

(
S2

Kc

[
ĥb11 + ĥb22

])
+

1

s
∂2

(
Sĥb11 +Kcĥ

b
22

)
−1

s
∂1

(
Gfr [∂1v̂

s
2 + ∂2v̂

s
1]
)

+
1

s
∂1

(
Gfr

[
ĥb21 + ĥb12

])
. (2.80)

From equation (2.60), we also directly obtain

∂3τ̂
b
33 = sρbv̂s3 + sρf ŵ3 − f̂ b3 −

(
∂1τ̂

b
31 + ∂2τ̂

b
32

)
. (2.81)

From equation (2.55), we derive

−∂3p̂
f = sρf v̂s3 +

η

k̂

(
ŵ3 − L̂Ê3

)
− f̂f3 . (2.82)
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Starting from equations (2.71) and (2.72), we eliminate Ĥ3 using

Ĥ3 =
1

sµ0

(
∂2Ê1 − ∂1Ê2 − Ĵm3

)
, (2.83)

and the horizontal filtration velocity components using equation (2.68) which leads
to

∂3Ĥ1 = sε̂Ê2 +
η

k̂
L̂
(
−sρ

f k̂

η
v̂s2 + L̂Ê2 −

k̂

η
∂2p̂

f +
k̂

η
f̂f2

)

+
1

sµ0

(
∂1∂2Ê1 − ∂2

1Ê2 − ∂1Ĵ
m
3

)
+ Ĵe2 , (2.84)

∂3Ĥ2 = −sε̂Ê1 −
η

k̂
L̂
(
−sρ

f k̂

η
v̂s1 + L̂Ê1 −

k̂

η
∂1p̂

f +
k̂

η
f̂f1

)

+
1

sµ0

(
∂2

2Ê1 − ∂2∂1Ê2 − Ĵm3
)
− Ĵe1 . (2.85)

Finally, starting from equations (2.73) and (2.74), we eliminate Ê3 using

Ê3 =
1

sε̂

(
−η
k̂
L̂ŵ3 + ∂1Ĥ2 − ∂2Ĥ1 − Ĵe3

)
, (2.86)

which yields

∂3Ê1 = −sµ0Ĥ2 +
1

sε̂

(
−η
k̂
L̂∂1ŵ3 + ∂2

1Ĥ2 − ∂1∂2Ĥ1 − ∂1Ĵ
e
3

)
− Ĵm2 ,

(2.87)

∂3Ê2 = sµ0Ĥ1 +
1

sε̂

(
−η
k̂
L̂∂2ŵ3 + ∂2∂1Ĥ2 − ∂2

2Ĥ1 − ∂2Ĵ
e
3

)
+ Ĵm1 .

(2.88)

We now have expressed the vertical derivatives of the desired field quantities in terms
of other fields and horizontal derivatives on other fields.
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2.2.2 Taking horizontal derivatives and combining field quant-
ities into mode quantities

Since we are considering a medium that is invariant in two directions (layered-Earth),
it can be useful to decouple the total 3D system of equations into two independent
seismo-electromagnetic propagation modes: the SH-TE propagation mode, where
the horizontally-polarized shear-waves are coupled to the transverse electric mode,
and the P-SV-TM propagation mode where the Biot fast and slow pressure waves are
coupled to the transverse magnetic mode via the vertically-polarized shear waves. To
decouple the system in these two independent propagation modes, we first apply a
2D spatial Fourier transformation to equations (2.75)-(2.88) to obtain the horizontal
wavenumber-frequency domain expressions (denoted by the tilde sign). We can
express these equations in terms of their mode quantities, by taking the divergence
or rotation of the expressions under consideration. To this end, let us first define
the following mode quantities:

ṽs,H = −jk1ṽ
s
2 + jk2ṽ

s
1, (2.89)

τ̃ b,H = −jk1τ̃
b
23 + jk2τ̃

b
13, (2.90)

ẼH = −jk1Ẽ2 + jk2Ẽ1, (2.91)

H̃H = −jk1H̃1 − jk2H̃2, (2.92)

for the SH-TE mode, and

ṽs,Vnorm =
k1

κ
ṽs1 +

k2

κ
ṽs2, (2.93)

τ̃ b,Vnorm =
k1

κ
τ̃ b13 +

k2

κ
τ̃ b23, (2.94)

ẼVnorm =
k1

κ
Ẽ1 +

k2

κ
Ẽ2, (2.95)

H̃V
norm =

k1

κ
H̃2 −

k2

κ
H̃1, (2.96)

for the P-SV-TM mode. Here the radial wavenumber κ =
√
k2

1 + k2
2. For P-SV-

TM, the subscript ‘norm’ indicates that these specific mode quantities have been
normalized with a factor −jκ (this to obtain favourable symmetry properties in the
system matrix later on). Consequently, the factors on the right-hand side, before
the field quantities, have also been normalized by −jκ. The field quantities that are
not present in the mode expressions above are purely P-SV-TM field quantities. We
can observe for example in equation (2.89), that by taking jk2 of ṽs1 (corresponding
to −∂2v̂

s
1 and adding this to −jk1 of ṽs2 yields the SH-TE particle velocity mode

quantity. Up till this point, we have eliminated τ̂ bαβ , ŵα, Ĥ3, and Ê3, using the
horizontal wavenumber-frequency versions of equations (2.57), (2.68), (2.83), and
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(2.86), respectively, according to

τ̃ bαβ = −1

s

(
eαβkljklṽ

s
k +

sC

M
δαβ p̂

f + eαβklh̃
b
kl

)
, (2.97)

w̃α = −sρ
f k̂

η
ṽsα + L̂Ẽα +

k̂

η
jkαp̃

f +
k̂

η
f̃fα , (2.98)

H̃3 =
1

sµ0

(
−ẼH − J̃m3

)
, (2.99)

Ẽ3 =
1

sε̂

(
−η
k̂
L̂w̃3 − jκH̃V

norm − J̃e3
)
. (2.100)

We now take the derivatives of equations (2.75)-(2.88) and combine according to
equations (2.89)-(2.96), yielding two sets of governing equations, one for the SH-TE
mode and one for the P-SV-TM mode, expressing the vertical variations of the mode
and field quantities in terms of the horizontal variations. For the SH-TE mode, this
results in:

∂3ṽ
s,H =

s

Gfr
τ̃ b,H − jk1

(
h̃b23 + h̃b32

)
+ jk2

(
h̃b13 + h̃b31

)
, (2.101)

∂3τ̃
b,H =

Gfr

s
κ2ṽs,H +

(
sρb − s2(ρf )2 k̂

η

)
ṽs,H + sρf L̂ẼH +

jk1

(
f̃ b2 − sρf

k̂

η
f̃f2

)
− jk2

(
f̃ b1 − sρf

k̂

η
f̃f1

)

+
Gfr

s

(
−k2

1 + k2
2

) (
h̃b21 + h̃b12

)
− k1k2

2Gfr

s

(
−h̃b11 + h̃b22

)
,(2.102)

∂3Ẽ
H = sµ0H̃

H − jkαJ̃mα , (2.103)

∂3H̃
H = sε̂ẼH − sρf L̂ṽs,H +

η

k̂
L̂2ẼH +

1

sµ0
κ2ẼH

+L̂
(
−jk1f̃

f
2 + jk2f̃

f
1

)
− jk1J̃

e
2 + jk2J̃

e
1 +

1

sµ0
κ2J̃m3 . (2.104)



2.2. Capturing the seismo-EM system in a general differential field equation 27

Similarly, for the normalized P-SV-TM mode, we obtain

∂3ṽ
s,V
norm =

s

Gfr
τ̃ b,Vnorm + jκṽs3 +

kα
κ

(
h̃bα3 + h̃b3α

)
, (2.105)

∂3ṽ
s
3 =

s

Kc
τ̃ b33 +

sC

MKc
p̃f +

jκS

Kc
ṽs,Vnorm +

S

Kc

(
h̃b11 + h̃b22

)
+ h̃b33, (2.106)

∂3w̃3 = −s C

MKc
τ̃ b33 −

s

M

(
1 +

C2

MKc

)
p̃f − k̂

η
κ2p̃f

−jκ ρ
f

ρ̂E
ṽs,Vnorm + jκ

C

M

(
1− S

Kc

)
ṽs,Vnorm + jκL̂ẼVnorm

+
k̂

η
jkαf̃

f
α −

CS

MKc

(
h̃b11 + h̃b22

)
+
C

M

(
h̃b11 + h̃b22

)
+ q̃i, (2.107)

∂3p̃
f = −sρf ṽs3 −

η

k̂

(
1 +

ρ̂E

ε̂
L̂2

)
w̃3 − jκ

ρ̂E

ε̂
L̂H̃V

norm −
ρ̂E

ε̂
L̂J̃e3 + f̃f3 ,

(2.108)

∂3τ̃
b,V
norm = jκ

S

Kc
τ̃ b33 + jκ

ρf

ρ̂E
p̃f − jκ C

M

(
1− S

Kc

)
p̃f + κ2 1

s

4Gfr(S +Gfr)

Kc
ṽs,Vnorm

+

(
sρb − s2(ρf )2 k̂

η

)
ṽs,Vnorm + sρf L̂ẼVnorm

+
ρf

ρ̂E
kα
κ
f̃fα −

kα
κ
f̃ bα +

jκ

s

S2

Kc

(
h̃b11 + h̃b22

)
+

2Gfrk1k2

sjκ

(
h̃b21 + h̃b12

)
+
k2

1

sjκ

(
Kch̃

b
11 + Sh̃b22

)
+

k2
2

sjκ

(
Sh̃b11 +Kch̃

b
22

)
, (2.109)

∂3τ̃
b
33 = jκτ̃ b,Vnorm + sρbṽs3 + sρf w̃3 − f̃ b3 , (2.110)

∂3Ẽ
V
norm = −sµ0H̃

V
norm −

κ2

sε̂
H̃V
norm + jκ

ρ̂EL̂
ε̂
w̃3 +

jκ

sε̂
J̃e3 +

k2

κ
J̃m1 −

k1

κ
J̃m2 ,(2.111)

∂3H̃
V
norm = −sε̂ẼVnorm + sρf L̂ṽs,Vnorm −

η

k̂
L̂2ẼVnorm − jκL̂p̃f − L̂

kα
κ
f̃fα −

kα
κ
J̃eα.

(2.112)

We can now capture these two sets of governing seismo-electromagnetic equations
(independently for each propagation mode) in the following matrix-vector represent-
ation of the two-way wave equation

∂3q̃
H,V (kH , x3, ω) = ÃH,V (kH , x3, ω)q̃H,V (kH , x3, ω)+d̃H,V (kH , x3, ω)δ(x3−xs3).

(2.113)

This two-way wave equation can be used for a variety of waves and fields (Wapen-
aar et al., 2008b). Equation (2.113) expresses, in matrix-vector notation indicated
by the boldface symbols, the vertical variations of the field quantities in
q̃H,V (kH , x3, ω), in terms of the medium parameters and radial wavenumbers in
system matrix ÃH,V (kH , x3, ω) acting on these field quantities (Woodhouse, 1974;
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Kennett, 1983; Ursin, 1983; Wapenaar & Grimbergen, 1996). Furthermore,
d̃H,V (kH , x3, ω) represents the source vector containing all source terms of the
seismo-electromagnetic SH-TE and P-SV-TM modes. The field quantities for each
of these modes in q̃H,V are continuous across horizontal interfaces. Considering the
fact that in the Earth the major variations occur in the depth direction, it makes
sense to take the vertical axis as the direction of preference and separate the ver-
tical variations of the field from the horizontal variations of the same field. We
desire to arrange the field quantities in q̃H,V in such a way that the corresponding
system matrices ÃH,V have optimal symmetry properties. This allows for essential
simplifications of our eigenvector analysis.

Capturing the SH-TE propagation mode

We use the following arrangement of the field vector for the SH-TE propagation
mode

q̃H =

(
q̃H1
q̃H2

)
=


ṽs,H

ẼH

τ̃ b,H

−H̃H

 , (2.114)

where the superscript H indicates that that respective field quantity is an SH-TE
mode quantity.

The corresponding system matrix reads

ÃH =

(
O Ã12

Ã21 O

)
, (2.115)

which consists of anti-diagonal symmetric block matrix operators, reading

ÃH
12 =

(
β 0
0 −ζ

)
, (2.116)

ÃH
21 =

(
α+ κ2

β χ

χ −(η̂E + κ2

ζ )

)
. (2.117)

In equation (2.115), O is a two-by-two zero-matrix. Furthermore, the following
relations hold between the different variables

α = sρ̂c, (2.118)

ρ̂c = ρb − (ρf )2

ρ̂E
, (2.119)

ρ̂E =
η

sk̂
, (2.120)

χ = sρf L̂, (2.121)
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β =
s

Gfr
, (2.122)

ζ = σ̂m + sµ, (2.123)

η̂E = σ̂e + sε, (2.124)

ε̂ = ε0εr +
σ̂e

s
− ρ̂EL̂2 = ε+

σ̂e

s
− ρ̂EL̂2 =

η̂E

s
− ρ̂EL̂2. (2.125)

The SH-TE source vector in the horizontal wavenumber-frequency domain then reads

d̃H =
(
d̃H1 , d̃

H
2 , d̃

H
3 , d̃

H
4

)t
, (2.126)

where

d̃H1 = −jk1

[
h̃b23 + h̃b32

]
+ jk2

[
h̃b13 + h̃b31

]
, (2.127)

d̃H2 = −jkαJ̃mα , (2.128)

d̃H3 = jk1

[
f̃ b2 −

ρf

ρ̂E
f̃f2

]
− jk2

[
f̃ b1 −

ρf

ρ̂E
f̃f1

]
+

1

s

[
−k2

1 + k2
2

] [
Gfrh̃b21 +Gfrh̃b12

]
−k1k2

s

[
−2Gfrh̃b11 + 2Gfrh̃b22

]
, (2.129)

d̃H4 = −L̂
[
−jk1f̃

f
2 + jk2f̃

f
1

]
+ jk1J̃

e
2 − jk2J̃

e
1 −

1

sµ0
κ2J̃m3 . (2.130)

Capturing the P-SV-TM propagation mode

For the P-SV-TM propagation mode, we use the following arrangement of the field
vector:

q̃V =

(
q̃V1
q̃V2

)
=



ṽs3
w̃3

τ̃ b,Vnorm
H̃V
norm

τ̃ b33

−p̃f
ṽs,Vnorm
ẼVnorm


, (2.131)

where the superscript V indicates that these field quantities are P-SV-TM mode
quantities.

These choices result in the following P-SV-TM system matrix

ÃV =

(
O ÃV

12

ÃV
21 O

)
, (2.132)
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where the submatrices are defined as

ÃV
12 =


s
Kc

−s C
MKc

jκS
Kc

0

−s C
MKc

s
M

[
1 + C2

MKc

]
+ k̂

ηκ
2 −jκ ρf

ρ̂E
+ jκ CM

[
1− S

Kc

]
jκL̂

jκS
Kc

−jκ ρf
ρ̂E

+ jκ CM

[
1− S

Kc

]
1
s

4Gfr(S+Gfr)
Kc

κ2 + sρ̂c χ

0 jκL̂ χ −η̂E

 ,

(2.133)

and

ÃV
21 =


sρb sρf jκ 0

sρf sρ̂E η̂E

ς̂ 0 jκ ξ̂ς̂
jκ 0 β 0

0 jκ ξ̂ς̂ 0 −ζ − 1
ς̂ κ

2

 . (2.134)

The following additional relations hold between different variables

ξ =
η

k̂
L̂ = sρ̂EL̂, (2.135)

ς̂ = η̂E − ξ̂L̂, (2.136)

η̂e

ς̂
= 1 +

ξ̂L̂
ς̂
. (2.137)

The corresponding P-SV-TM source vector in the horizontal wavenumber-frequency
domain is given by

d̃V =
(
d̃V1 , d̃

V
2 , d̃

V
3 , d̃

V
4 , d̃

V
5 , d̃

V
6 , d̃

V
7 , d̃

V
8

)t
, (2.138)

where

d̃V1 =
S

(S + 2Gfr)

[
h̃b11 + h̃b22

]
+ h̃b33, (2.139)

d̃V2 =
j

sρ̂E
kαf̃

f
α +

C

M

[
h̃b11 + h̃b22

] [
1− S

(S + 2Gfr)

]
+ q̃i, (2.140)

d̃V3 =
1

κ

ρf

ρ̂E
kαf̃

f
α −

1

κ
kαf̃

b
α −

2j

s

k1k2

κ

[
Gfrh̃b21 +Gfrh̃b12

]
−jκ
s

2GfrS

(S + 2Gfr)

[
h̃b11 + h̃b22

]
− 2jGfr

sκ

[
k2

1h̃
b
11 + k2

2h̃
b
22

]
, (2.141)

d̃V4 = − 1

κ

[
L̂kαf̃fα + kαJ̃

e
α

]
(2.142)
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d̃V5 = −f̃ b3 , (2.143)

d̃V6 =
ρ̂E

ε̂
L̂J̃e3 − f̃f3 , (2.144)

d̃V7 =
kα
κ

[
h̃bα3 + h̃b3α

]
, (2.145)

d̃V8 =
jκ

sε̂
J̃e3 +

1

κ

[
k2J̃

m
1 − k1J̃

m
2

]
. (2.146)
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2.3 Deriving the eigenvectorsi

Now that we have specified our field vectors q̃H,V , system matrices ÃH,V , and source
vectors d̃H,V for the SH-TE and P-SV-TM propagation modes, we can move onwards
to derive and present the eigenvector sets belonging to this specific arrangement
of the field vectors. In this section, we derive the eigenvector sets that form the
basis for our numerical modeling examples. Before diving into greater detail, let
us first evaluate what this eigenvector problem looks like in general. The system
matrices above are organized such that they obey the following symmetry relation{

ÃH,V
}t

NH,V = −NH,V ÃH,V , with

ÑH,V =

(
O I
−I O

)
, (2.147)

where the submatrices are either size 2-by-2 or 4-by-4 for the SH-TE and P-SV-
TM mode, respectively. Here, I is a diagonal identity submatrix, and O is a null
matrix. The system matrix ÃH,V can be decomposed into matrices consisting of its
eigenvectors and eigenvalues via

ÃH,V = L̃H,V Λ̃H,V
1

{
L̃H,V

}−1

. (2.148)

Here, L̃H,V and
{

L̃H,V
}−1

represent the composition and decomposition matrices,

respectively, that consist of the eigenvectors of the SH-TE or P-SV-TM system
matrices. The eigenvectors form the basis for wavefield decomposition into one-way
wavefields (see Grobbe et al. (2016b) for a discussion on seismo-electromagnetic field
decomposition).

Furthermore, Λ̃1 is a diagonal matrix consisting of the eigenvalues of the system,
that can be written as

Λ̃H,V
1 =

(
−Λ̃H,V O

O Λ̃H,V

)
, (2.149)

where

Λ̃H =

(
ΓSH 0

0 ΓTE

)
, (2.150)

and

Λ̃V =


ΓPf 0 0 0

0 ΓPs 0 0
0 0 ΓSV 0
0 0 0 ΓTM

 . (2.151)

iThis section is part of the journal paper published in Geophysical Journal International
doi: 10.1093/gji/ggw128 (Grobbe et al., 2016a). Note that minor changes have been introduced to
make the text consistent with the other chapters of this thesis.
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The relations between the vertical wavenumbers Γw and the spherical wavenumbers
γw for a certain type of field w are

Γ2
w = γ2

w + κ2, (2.152)

γ2
w = Γ2

w − κ2, (2.153)

with

γw =
s

ĉw
(2.154)

and where w can be the horizontally polarized shear wave SH, the transverse electric
mode TE, the fast compressional wave Pf , the Biot slow compressional wave Ps,
the vertically polarized shear wave SV or the transverse magnetic mode TM . In
equation (2.154), ĉw represents the complex wave or field velocity for the specific
field type w. To determine the eigenvalues of the system, we need to choose the
proper sign of the square root. We choose the positive sign of the square root, based
on the fact that for the eigenvalue matrix, we desire that <{Γw} > 0, based on
physical wave propagation constraints (see e.g. Grobbe et al. (2016b)).

Pride & Haartsen (1996) have determined the complex velocities for each field
type, which we can rewrite for our field quantities and our definition of the Fourier
transform as

ĉSH =

√√√√√ 2

ρ̂c

Gfr
+ ζηE

s2 +

√[
ρ̂c

Gfr
− ζηE

s2

]2
− 4ζχ2

s3Gfr

, (2.155)

ĉTE =

√√√√√ 2

ρ̂c

Gfr
+ ζηE

s2 −
√[

ρ̂c

Gfr
− ζηE

s2

]2
− 4ζχ2

s3Gfr

, (2.156)

ĉPf =

√√√√√ 2(HM − C2)

ν̂ −
√
ν̂2 − 4(HM − C2)

[
ρb ρ̂

EηE

sε̂ − (ρf )2
] , (2.157)

ĉPs =

√√√√√ 2(HM − C2)

ν̂ +

√
ν̂2 − 4(HM − C2)

[
ρb ρ̂

E η̂E

ς̂ − (ρf )2
] , (2.158)

ĉSV = ĉSH , (2.159)

ĉTM = ĉTE , (2.160)

where ν̂ = ρbM + ρ̂E η̂EH
ς̂ − 2ρfC. Due to the isotropic and lateral invariance of the

medium, the horizontally and vertically polarized shear wave velocities are equal
to each other. The same holds for the transverse electric and transverse magnetic
(diffusive) velocities. Note that the expressions for the velocities contain divisions
by s. Numerically, we stabilized the expressions adding a small imaginary number
to the angular frequencies, thereby modeling using complex frequencies and in the
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Table 2.1: Table showing the required conversions when starting from Pride & Haartsen
(1996); Haartsen & Pride (1997).

Haartsen and Pride system Our system

ωp κ
−jω s
ss

γs
s

jωq̃w −Γw
q̃w

Γw
s

∓ ±
‘EV related to field quantity ũ’ ‘s · EV related to field quantity ũ’

final step compensating for this small imaginary part in the inverse temporal Fourier
transform. Alternatively, one could model the spherical wavenumbers where this
problem does not occur.

Now, we present two different eigenvector sets. The first set we derive starting
from the published eigenvector sets by Haartsen & Pride (1997), where we adjust
those sets to our field quantities and their arrangement in the field vectors and where
we apply power-flux normalization. The second set we derive starting directly from
the system matrices ÃH,V , thereby paying special attention to the situation of the
coupling coefficient being equal to zero. We again apply power-flux normalization
in the final stage.

2.3.1 Power flux-normalizing the Haartsen and Pride-based
eigenvectors

Starting from the eigenvectors as published by Haartsen & Pride (1997), we apply
the conversions as displayed in Table 1 to comply with our field quantities and
Fourier definitions and to express the eigenvectors in terms of wavenumbers.

Here, p denotes the horizontal slowness and q̃w the vertical slowness. Since we
are dealing with particle velocity fields whereas Haartsen & Pride (1997) use particle
displacement, we need to multiply each of the eigenvectors that are directly related
to the displacement ũ with the Laplace parameter s. In addition, for Haartsen &
Pride (1997), the − sign indicates downgoing fields and the + sign denotes upgoing
fields (which is an opposite definition compared to our notation). Furthermore, there
is a typo in Haartsen & Pride (1997): for the first element of the SV/TM eigenvector
set the ∓-sign should be a ±-sign.

SH-TE Propagation Mode We arrange the eigenvector elements according to
our preferred field vector organization of equation (6.48). Our composition matrix
L̃H , where each column corresponds to the eigenvectors of system matrix ÃH for a
certain field type, is organized as

L̃H =

(
L̃H1 L̃H1
L̃H2 −L̃H2

)
. (2.161)
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Let us now use K̃H , K̃H
1 and K̃H

2 (instead of L̃H , L̃H1 and L̃H2 ) to indicate our starting
eigenvector matrix and submatrices, i.e. the eigenvector matrices before applying
the power-flux normalization procedure. The starting eigenvector submatrices read

K̃H
1 =

(
s s

− sµ0ρ̂
EL̂GfrφSH
ρf

− sµ0ρ̂
EL̂GfrφTE
ρf

)
, (2.162)

and

K̃H
2 =

(
−ΓSHG

fr −ΓTEG
fr

−ΓSH ρ̂
EL̂GfrφSH
ρf

−ΓTE ρ̂
EL̂GfrφTE
ρf

)
, (2.163)

where φSH,TE is a certain scaling factor that depends on the field type, defined as

φSH,TE = −
γ2
SH,TE − s2ρb

Gfr

γ2
SH,TE − ς̂ζ

. (2.164)

Now that we have obtained the SH-TE eigenvector set according to our preferences
and based on velocity field normalization, we demonstrate how we can power-flux
normalize these eigenvectors in an effective way. We can find the power-flux nor-
malized eigenvector matrix by requiring that{

L̃H
}−1

(κ, x3, ω) = −
{

ÑH
}−1 {

L̃H
}t

(κ, x3, ω)ÑH . (2.165)

The details on how to derive the power-flux normalized eigenvector matrix that
satisfies this condition are given in Appendix 2.3.A. Through this procedure, we
end-up with the following power-flux normalized composition matrix:

L̃H =


sd1 sd2

− sµ0ρ̂
EL̂GfrφSH
ρf

d1 − sµ0ρ̂
EL̂GfrφTE
ρf

d2

−ΓSHG
frd1 −ΓTEG

frd2

−ΓSH ρ̂
EL̂GfrφSH
ρf

d1 −ΓTE ρ̂
EL̂GfrφTE
ρf

d2

sd1 sd2

− sµ0ρ̂
EL̂GfrφSH
ρf

d1 − sµ0ρ̂
EL̂GfrφTE
ρf

d2

ΓSHG
frd1 ΓTEG

frd2
ΓSH ρ̂

EL̂GfrφSH
ρf

d1
ΓTE ρ̂

EL̂GfrφTE
ρf

d2

 . (2.166)

Looking at equation (2.228), it can be observed that the decomposition matrix{
L̃H
}−1

can be written as

{
L̃H
}−1

= =
1

2


{

L̃H1

}−1 {
L̃H2

}−1{
L̃H1

}−1

−
{

L̃H2

}−1

 . (2.167)
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However, using equation (2.165), we can determine the power-flux normalized de-

composition matrix
{

L̃H
}−1

. In a general notation, this power-flux normalized

decomposition matrix is organized as follows

{
L̃H
}−1

=

 {
L̃H2

}t {
L̃H1

}t{
L̃H2

}t
−
{

L̃H1

}t
 . (2.168)

Comparing the expressions (2.167) and (2.168) we can observe that for power-flux
normalized eigenvector systems, we can use the transpose of a submatrix as the
inverse of the other submatrix, via{

L̃H1 (κ, x3, ω)
}−1

= 2
{

L̃H2 (κ, x3, ω)
}t

(2.169){
L̃H2 (κ, x3, ω)

}−1

= 2
{

L̃H1 (κ, x3, ω)
}t
. (2.170)

P-SV-TM Propagation Mode Starting from the published eigenvector set of
Haartsen & Pride (1997), corresponding to our arrangement of the field vector and
applying the same conversions as discussed for the SH-TE mode (Table 1), we find
the P-SV-TM eigenvectors that meet our conditions. In order to let our composition
matrix K̃V obey the following structure,

K̃V =

(
K̃V

1 K̃V
1

K̃V
2 −K̃V

2

)
, (2.171)

we introduce an additional minus sign for the upgoing fast and slow compressional
wave related eigenvectors, as described in Haartsen & Pride (1997). This does not
change the field vector q̃V , but will introduce a minus sign difference when looking
at the one-way wavefields corresponding to these two wavetypes. Our starting P-
SV-TM submatrices, before the flux-normalization procedure, now read

K̃V
1 =


sΓPf
γPf

sΓPs
γPs

sΓPfφPf
γPf

sΓPsφPs
γPs

− 2GfrjκΓPf
γPf

− 2GfrjκΓPs
γPs

0 0
−sjκ
γSV

−sjκ
γTM

−Gfr
ρf

(
γ2
SV

s2 −
ρb

Gfr

)
sjκ
γSV

−Gfr
ρf

(
γ2
TM

s2 −
ρb

Gfr

)
sjκ
γTM

−G
fr(Γ2

SV +κ2)
γSV

−G
fr(Γ2

TM+κ2)
γTM

−γSV ρ̂E

ρf
L̂GfrφSV −γTM ρ̂E

ρf
L̂GfrφTM

 , (2.172)

and
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K̃V
2 =


−γPf

(
H + 2Gfrκ2

γ2
Pf

+ φPfC
)
−γPs

(
H + 2Gfrκ2

γ2
Ps

+ φPsC
)

−γPf (C + φPfM) −γPs (C + φPsM)
sjκ
γPf

sjκ
γPs

−ρ̂EL̂φPfsjκ
γPf ε̂

−ρ̂EL̂φPssjκ
γPsε̂

2GfrjκΓSV
γSV

2GfrjκΓTM
γTM

0 0
sΓSV
γSV

sΓTM
γTM

−
ΓSV µ0

ρ̂E

ρf
L̂GfrφSV s

γSV
−

ΓTMµ0
ρ̂E

ρf
L̂GfrφTMs

γTM

 ,

(2.173)

where φw is again a certain scaling factor, depending on the wavetypes w, defined
as

φPf,Ps = −
s2ρb −Hγ2

Pf,Ps

s2ρf − Cγ2
Pf,Ps

, (2.174)

and where φSV,TM is equal to the scaling factor discussed for the SH-TE mode,
equation (2.164).

To find the P-SV-TM power-flux normalization factors, we can again follow
the same procedure as discussed for the SH-TE system. Following this procedure
provides us in the end with the desired power-flux normalization factors. We omit
the precise details of this derivation since it is similar to the procedure discussed
extensively for the SH-TE propagation mode. The power-flux normalization factors
read

dV1 = dV5 =
1√

2sΓPf

(
−H − 2φPfC − φ2

PfM
) , (2.175)

dV2 = dV6 =
1√

2sΓPs (−H − 2φPsC − φ2
PsM)

, (2.176)

dV3 = dV7 =
1√

2sΓSV

(
−Gfr + µ0

[
ρ̂EL̂GfrφSV

ρf

]2) , (2.177)

dV4 = dV8 =
1√

2sΓTM

(
−Gfr + µ0

[
ρ̂EL̂GfrφTM

ρf

]2) , (2.178)

where we recognize identical factors for SH versus SV, and TE versus TM, equations
(2.247) versus (2.177), and (2.248) versus (2.178), respectively. Again, we choose the
positive sign of the square root.
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These normalization factors are again elements of the diagonal matrix D̃V ,
and using L̃V = K̃V D̃V we obtain the desired power-flux normalized eigenvector
matrices for the P-SV-TM mode.

We can observe that when the seismo-electromagnetic coupling coefficient L̂ is
equal to zero, the fourth row of composition submatrix, equation (2.172), and the
fourth row of composition submatrix, equation (2.173), are zero for all elements.
These rows are involved when composing the two-way electromagnetic P-SV-TM
mode field quantities (H̃V

norm and ẼVnorm, respectively) from one-way wavefields, via
q̃V = L̃V p̃, where p̃V contains the downgoing and upgoing wavefields (see also
for example Grobbe et al. (2016b)). When there is no coupling between mech-
anical and electromagnetic fields, we expect columns one, two and three of the
composition submatrices to be equal to zero, whereas the fourth column (corres-
ponding to the TM field type) should be non-zero, generating the electromagnetic
fields. We can see that for the Haartsen & Pride (1997)-based eigenvector set, also
this fourth column is equal to zero. Furthermore, we can observe that the fourth,
electromagnetically-associated column is non-zero for most of the other rows (which
correspond to mechanical field quantities) when there is no seismo-electromagnetic
coupling. This is physically not what we expect; we expect zero values for these
elements since there is no coupling between mechanical and electromagnetic fields.
We investigate numerically the zero-valued coupling coefficient scenario more closely
later on.

2.3.2 Deriving alternative power-flux normalized eigenvector
sets

Now that we have our power-flux normalized eigenvectors sets for both the SH-TE
and P-SV-TM modes, starting from the published eigenvector sets by Haartsen &
Pride (1997), we now show how we can derive the eigenvectors directly from the
system matrices ÃH and ÃV , equations (2.115) and (2.132), respectively. Thereby,
we construct our eigenvector matrices in such a way that the eigenvector matrices
get the correct shape when the coupling coefficient L̂ = 0. For the eigenvector
matrices, this means that the rows corresponding to for example an electromagnetic
field quantity in q̃V , should automatically obtain zero elements in their columns
corresponding to the mechanical wave types when L̂ is equal to zero.

Let us start by looking at equations (2.115), (2.132), (2.148), and (2.149). We
can observe that the following relations hold between the system submatrices, the
composition and decomposition submatrices and the eigenvalues submatrices

ÃH,V
12 = −L̃H,V1 Λ̃H,V

{
L̃H,V2

}−1

, (2.179)

ÃH,V
21 = −L̃H,V2 Λ̃H,V

{
L̃H,V1

}−1

, (2.180)

with the eigenvalue submatrices for the SH-TE and P-SV-TM modes described by
equations (2.150) and (2.151), respectively. Let us now focus on the specific choices
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made in deriving the SH-TE and P-SV-TM eigenvector sets. Please note that we
follow slightly different procedures while deriving the eigenvectors for both propaga-
tion modes. We could for example apply the same steps for the SH-TE mode as we
describe for the P-SV-TM mode. However, from experience we have noticed that
the end-result of this procedure yields numerically less stable results for the SH-TE
mode than the alternative way of deriving described here. Vice versa, we cannot
apply the SH-TE procedure when deriving the P-SV-TM mode since the size of
the system is way bigger and in addition the system is more complicated, making
the derivations tedious. On the contrary, the P-SV-TM procedure described here is
more straightforward and less tedious, plus it yields numerically stable results for
this propagation mode.

SH-TE Propagation Mode Let us start by focusing on the SH-TE system. We
start by rewriting equation (2.179) to find an expression for L̃H2 as

L̃H2 = −
{

ÃH
12

}−1

L̃H1 Λ̃H . (2.181)

We can easily find the inverse of ÃH
12 since this is a diagonal matrix. We choose L̃H1

in such a way that we obtain the desired structure for L̂ = 0 as well as fulfill the
physics of the seismo-electromagnetic system. Writing equation (2.181) in explicit
matrix notation yields

L̃H2 =

( − 1
β 0

0 − 1
ζ

)(
dH1 dH2 χ

dH1 Aχ dH2 B

)(
ΓSH 0

0 ΓTE

)
=

−
(

dH1 ΓSH
β

dH2 χΓTE
β

dH1 AχΓSH
ζ

dH2 BΓTE
ζ

)
. (2.182)

Now using equation (2.180), we can obtain four equations for solving for two
unknowns (A and B).(

α+
κ2

β

)
dH1 + dH1 Aχ

2 =
dH1 Γ2

SH

β
, (2.183)(

α+
κ2

β

)
dH2 χ+ dH2 Bχ =

dH2 χΓ2
TE

β
, (2.184)

dH1 χ−
(
ηE +

κ2

ζ

)
dH1 Aχ = −d

H
1 AχΓ2

SH

ζ
, (2.185)

dH2 χ
2 −

(
ηE +

κ2

ζ

)
dH2 B = −d

H
2 BΓ2

TE

ζ
. (2.186)

Dividing out the terms that occur both at the left- and right-hand sides (amongst
which are the scaling factors dH1 and dH2 ), isolating the unknowns A and B and
using the relations between spherical and radial wavenumbers (equations (2.152)
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and (2.153)) yields two possible expressions for each of the two unknowns:

A =
γ2
SH − αβ
χ2β

, (2.187)

B =
γ2
TE − αβ
β

, (2.188)

A = − ζ

γ2
SH − ηEζ

, (2.189)

B = − χ2ζ

γ2
TE − ηEζ

. (2.190)

Remember, we want expressions that are stable when no seismo-electromagnetic
coupling occurs (i.e. no divisions by L̂ only). Therefore, we use equation (2.189)
as the expression for A. For B, the selection is ambiguous. We choose equation
(2.188) as the expression for B. By equating equation (2.187) to (2.189) and (2.188)
to (2.190), the following interesting relations can be found(

γ2
SH − αβ

) (
γ2
SH − ηEζ

)
= −χ2βζ, (2.191)(

γ2
TE − αβ

) (
γ2
TE − ηEζ

)
= −χ2βζ. (2.192)

Now that we have solved for the two unknown parameters A and B of the eigen-
vector matrix, we can normalize the eigenvectors with respect to different quantities.
Note that in the whole derivation so far the normalization factors dH1 and dH2 dropped
out of the equations, meaning that the expressions for the two unknown parameters
are normalization independent. Due to the way we have organized our system mat-
rix ÃH (symmetry), and due to the specific structure of the composition matrix L̃H

in terms of its submatrices L̃H1 and L̃H2 , we can find our power-flux normalization
factors, by requiring that

L̃H1

{
L̃H2

}t
=

1

2
ĨH , (2.193)

where we make use of the relations between the transverse and the inverse of certain
composition submatrices (equations (2.169) and (2.170)).

By requiring equation (2.193) to hold we can solve for the flux-normalization
scaling factors dH1,2. We combine the expressions for the diagonal elements of 1

2 ĨH

with the expressions for the off-diagonals, yielding expressions containing solely dH1
or dH2 . Furthermore, we recognize and apply the relations (2.191) and (2.192).
Depending on which one of these relations we apply, different end-results for dH1
and dH2 are obtained. We choose to use the following end-results as power-flux
normalization factors

dH1 =

√
− β (γ2

SH − ηEζ)

2 [ΓSH (γ2
SH − γ2

TE)]
, (2.194)

dH2 =

√
− β2ζ

2 [ΓTE (γ2
SH − γ2

TE) (γ2
TE − αβ)]

. (2.195)
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Substituting equations (2.194) and (2.195) in the expressions for L̃H1 and L̃H2 (see
equation (2.182)), yields

L̃H1 =


√
− β(γ2

SH−ηEζ)
2ΓSH(γ2

SH−γ2
TE)

√
− β2ζχ2

2ΓTE(γ2
SH−γ2

TE)(γ2
TE−αβ)√

− βζ2χ2

2ΓSH(γ2
SH−ηEζ)(γ2

SH−γ2
TE)

√
− ζ(γ2

TE−αβ)
2ΓTE(γ2

SH−γ2
TE)

 ,

(2.196)

and

L̃H2 =−


√
−ΓSH(γ2

SH−ηEζ)
2β(γ2

SH−γ2
TE)

√
− ζχ2ΓTE

2(γ2
SH−γ2

TE)(γ2
TE−αβ)√

− βχ2ΓSH
2(γ2

SH−γ2
TE)(γ2

SH−ηEζ)

√
−ΓTE(γ2

TE−αβ)
2ζ(γ2

SH−γ2
TE)

 . (2.197)

We refer to this eigenvector set as the GST SH-TE set.

P-SV-TM Propagation Mode For the P-SV-TM system, we take a slightly
different approach, since we cannot easily invert ÃV

12. We could of course have used
the inverse of ÃV

21, however, experience has taught us this does not result in the
desired stable final eigenvector expressions. The approach expressed here shows
great similarities with the approach presented for the SH-TE mode (and could have
also been used for the SH-TE mode). We start by rewriting equation (2.180) to find
an expression for L̃V2 as

L̃V2 = −ÃV
21L̃

V
1

{
Λ̃V
}−1

. (2.198)

Let us now choose L̃V1 in such a way that we obtain the desired structure for
L̂ = 0 as well as fulfill the physics of the seismo-electromagnetic system. We therefore
choose L̃V1 as follows

L̃V1 =


dV1 dV2 A dV3 B dV4 Dχ
dV1 E dV2 dV3 F dV4 Gχ
dV1 N dV2 O dV3 dV4 Pχ

0 0 dV3 Tχ dV4

 . (2.199)

As can be observed, we have added the factor χ, containing L̂, to the elements of L̃V1
such that the correct elements of L̃V1 are equal to zero if L̂ equals zero (i.e. that no
coupling between the mechanical and electromagnetic parts occurs). What can also
be recognized, is that two elements (elements (4,1) and (4,2)) are explicitly defined
as zero. They correspond to the P-SV-TM mode magnetic field due to the fast and
slow compressional waves. As has been shown in various laboratory experiments
Bordes et al. (2008), the magnetic field is purely associated with shear waves or of
course electromagnetic fields. Furthermore, as we see later on when determining
the L̃V2 submatrix, these zero elements will move to positions (2,3) and (2,4) in L̃V2 ,
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which correspond to the fluid pressure due to SV waves and TM fields. Since the
fluid pressure is only associated with the fast and slow pressure waves, these SV and
TM elements must be zero, which proves that by choosing the discussed elements
equal to zero, the physics of the seismo-electromagnetic phenomenon are correctly
preserved. Here, dV1:4 denotes a still to be determined (or chosen) scaling factor that
for example power flux-normalizes the whole system. Again, dV1:4 can be seen as
elements of a diagonal scaling matrix D̃V .

As can be observed in equation (2.198), we need the inverse of (2.151) to find
L̃V2 . This inverse reads

{
Λ̃V
}−1

=


1

ΓPf
0 0 0

0 1
ΓPs

0 0

0 0 1
ΓSV

0

0 0 0 1
ΓTM

 . (2.200)

Using equation (2.198) we can express L̃V2 in terms of L̃V1 and the known values
for the elements of the system submatrix ÃV

21 and the inverse of the eigenvalues{
Λ̃V
}−1

, yielding

L̃2 = −


dV1
ΓPf

[
sρb + sρfE + jκN

] dV2
ΓPs

[
sρbA+ sρf + jκO

]
dV1
ΓPf

[
sρf + sρ̂E

(
1 + ξ̂L̂

ς̂

)
E
]

dV2
ΓPs

[
sρfA+ sρ̂E

(
1 + ξ̂L̂

ς̂

)]
dV1
ΓPf

[jκ+ βN ]
dV2
ΓPs

[jκA+ βO]
dV1
ΓPf

[
jκ ξ̂ς̂E

]
dV2
ΓPs

[
jκ ξ̂ς̂

]
dV3

ΓSV

[
sρbB + sρfF + jκ

] dV4
ΓTM

[
sρbDχ+ sρfGχ+ jκPχ

]
0 0

dV3
ΓSV

[jκB + β]
dV4

ΓTM
[jκDχ+ βPχ]

dV3
ΓSV

[
jκ ξ̂ς̂F +

(
−ζ − κ2

ς̂

)
Tχ
]

dV4
ΓTM

[
jκ ξ̂ς̂Gχ+

(
−ζ − κ2

ς̂

)]
 .

(2.201)

We can indeed observe that elements (2,3) and (2,4) are zero, as required from a
physical point of view.

Now that we have defined and consistently determined the composition sub-
matrices L̃V1 and L̃V2 in general terms, respectively, we can use the other equation,
equation (2.179), to determine a set of equations that contains all necessary inform-
ation to solve for the unknown parameters of these composition submatrices. To
this end, we rewrite equation (2.179) as

ÃV
12L̃

V
2 = −L̃V1 Λ̃V . (2.202)

Writing out equation (2.202) explicitly will yield four sets of four equations, one set
for each field type (Pf, Ps, SV and TM), which can be used to solve for the unknown
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parameters. The details of this derivation are presented in Appendix 2.3.B. Solving
for the unknown parameters in this way yields

N =
−2jκ

β
, (2.203)

E =

KcMς̂
ĉ2Pf

− ρbMς̂ + ρfCς̂

Mς̂ρf − ρ̂ECηE , (2.204)

A =
−ρfMς̂ + ρ̂ECηE

ρbMς̂ − ρfCς̂ − KcMς̂
ĉ2Ps

, (2.205)

O = NA (2.206)

B1 = s2ρb − s2
(
ρf
)2
ς̂

ρ̂EηE
− 2

(
S +Gfr

)
κ2 −Kcγ

2
SV , (2.207)

T1 =
−2s3κ2

(
ρf
)2 L̂2

ηEB1
− κ2

ς̂

(
sρ̂EL̂2 + ηE − ς̂

)
+ ηEζ − γ2

SV , (2.208)

T =

−2sκ2(1+ S

Gfr
)

B1
− s

Gfr

T1
, (2.209)

B =
sjκ

B1

[
ρf ξ̂χT

ρ̂EηE
−
(

1 +
S

Gfr

)]
, (2.210)

F =
−sρf ς̂B − jκξ̂χT

sρ̂EηE
, (2.211)

D1 =

[
s2ρb − s2(ρf )2ς̂

ρ̂EηE
− 2

(
S +Gfr

)
κ2 −Kcγ

2
TM

]
, (2.212)

D2 =

[
−Kc

(
−ζ − κ2

ς̂

)
− Sκ2

ηE
− Kcξχκ

2

sρfηE ς̂

]
, (2.213)

D3 =

[
s2ρbS − s2

(
ρf
)2
Sς̂

ρ̂EηE
+ 4Gfr

(
S +Gfr

)
κ2 + s2ρ̂cKc −

sρfKcξχ

ρ̂EηE

]
,

(2.214)

P1 =

[
s2ρ̂cKc

Gfr
+ 2

(
S +Gfr

)
κ2 −Kcγ

2
TM

]
, (2.215)

P =

[
D1D2 + κ2

ηE
D3

]
[
P1D1 + κ2

(
1 + S

Gfr

)
D3

] , (2.216)

D =
sjκ

[
1
ηE
− P

(
1 + S

Gfr

)]
D1

, (2.217)

G =
−s(ρf )2ς̂D − jκρ̂E

sρ̂EηEρf
. (2.218)

Now that we have solved for all ten unknown parameters of the eigenvector
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matrix, we can normalize the eigenvectors with respect to different quantities. Note
that in the whole derivation so far the normalization factors dV1 , dV2 , dV3 and dV4
dropped out of the equations, meaning that the expressions for the ten unknown
parameters are normalization independent. Where Haartsen & Pride (1997) have
used displacement normalization, we here choose for power-flux normalization. Due
to the way we have organized our system matrix ÃV , and due to the specific structure
of the composition matrix L̃V in terms of its submatrices L̃V1 and L̃V2 , we can find
power-flux normalization factors, by requiring that{

L̃V1

}t
L̃V2 =

1

2
ĨV , (2.219)

where we make use of the relations between the transverse and the inverse of sub-
matrices (similar to equations (2.169) and (2.170)). By requiring equation (2.219)
to hold and explicitly writing out these submatrix multiplications in general terms,
we can solve for the flux-normalization scaling factors dV1:4, yielding

dV1 =

√√√√− ΓPf

2s
[
ρb + E

(
2ρf + ρ̂EηEE

ς̂

)] , (2.220)

dV2 =

√√√√− ΓPs

2s
[
A (ρbA+ 2ρf ) + ρ̂EηE

ς̂

] , (2.221)

dV3 =

√√√√− ΓSV

2
[
B (sρbB + 2jκ)− sρ̂EηEF 2

ς̂ + β + Ψχ2T 2
] , (2.222)

dV4 =

√√√√− ΓTM

2
[
χ2 (sρbD2 + 2jκPD + βP 2)− sρ̂EηEχ2G2

ς̂ + Ψ
] , (2.223)

with Ψ = −ζ − κ2

ς̂ . We have now found expressions for the power-flux normalized
eigenvectors of the P-SV-TM system, straight from the system matrices and defined
and derived in such a way that they obey the physics of fully decoupled poroelastic
and electromagnetic systems when L̂ = 0 and remain numerically stable. We refer
to this eigenvector set as the GST P-SV-TM set.

Appendix

2.3.A Details of the Power-flux Normalization Procedure for
the SH-TE HP Eigenvector Set

This appendix presents the details on how to effectively power-flux normalize the
HP eigenvector set for the SH-TE propagation mode. Starting from the velocity
field normalized eigenvector set for the SH-TE propagation mode, we can derive the
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power-flux normalized eigenvector matrix by requiring that equation (2.165) must
hold. Having ÑH as described in (2.147), its inverse reads

{
ÑH

}−1

=

(
O −I
I O

)
=


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 . (2.224)

From this, it can be easily seen that the following relation holds between N and its
inverse:

−
{

ÑH
}−1

= ÑH . (2.225)

However, the flux-normalized L̃H for which (2.165) holds is not yet known. To
find the correct flux-normalized composition matrix L̃H , the following steps are
performed. Let us first define L̃H as

L̃H = K̃HD̃H , (2.226)

where D̃H can be an arbitrary invertible diagonal matrix, in this case chosen as

D̃H =

(
D̃H

1 O

O D̃H
2

)
=


dH1 0 0 0
0 dH2 0 0
0 0 dH3 0
0 0 0 dH4

 . (2.227)

By making this choice, and knowing that for the resulting composition matrix
L̃H (via (2.226)) the following organization must still hold

L̃H =

(
L̃H1 L̃H1
L̃H2 −L̃H2

)
, (2.228)

which is also the structure of K̃H , this already leads to the following requirement
for D̃H , D̃H

1 = D̃H
2 . More specifically, dH3 and dH4 are required to be equal to dH1

and dH2 , respectively.
We now explicitly write out the composition matrix K̃H in general terms, where

we have replaced all elements, except for the first row, by general symbols a, b, c, d, e
and f

K̃H =


s s s s
e f e f
a b −a −b
c d −c −d

 . (2.229)

The transpose of the composition matrix,
{

K̃H
}t

then reads:

{
K̃H

}t
=

 {
K̃H

1

}t {
K̃H

2

}t{
K̃H

1

}t
−
{

K̃H
2

}t
 . (2.230)
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To obtain the flux-normalized composition matrix L̃H , (2.165) is rewritten in terms
of K̃H , using L̃H = K̃HD̃H(

K̃HD̃H
)−1

= −
{

ÑH
}−1 (

K̃HD̃H
)t

ÑH = ÑH
(
K̃HD̃H

)t
ÑH . (2.231)

In addition,

L̃L̃−1 = L̃−1L̃ = I, (2.232)

holds, of course, as well. Hence, combining (2.231) and (2.232) results in

ÑH
(
K̃HD̃H

)t
ÑHK̃D̃ = ÑH

{
D̃H

}t {
K̃H

}t
ÑHK̃HD̃H = IH . (2.233)

Let us now for notational convenience drop the superscript H. Explicitly expressing
equation (2.233) in full matrix-notation yields

ÑD̃tK̃tNK̃D̃ =

 D̃1

(
K̃t

2K̃1 + K̃t
1K̃2

)
D̃1 D̃1

(
K̃t

2K̃1 − K̃t
1K̃2

)
D̃1

D̃1

(
K̃t

2K̃1 − K̃t
1K̃2

)
D̃1 D̃1

(
K̃t

2K̃1 + K̃t
1K̃2

)
D̃2


=

(
I O
O I

)
. (2.234)

Using the general expressions for K̃1 and K̃2 (equation (2.229)) the following terms
are evaluated

K̃t
2K̃1 + K̃t

1K̃2 =

(
2(as+ ec) as+ fc+ bs+ ed

as+ fc+ bs+ ed 2(bs+ fd)

)
, (2.235)

and

K̃t
2K̃1 − K̃t

1K̃2 =

(
0 as+ fc− bs− ed

−as− fc+ bs+ ed 0

)
. (2.236)

Let us for simplicity introduce a new parameter $ = as+fc−bs−ed. From (2.234)
it turns out that the following condition must hold

D̃1

(
K̃t

2K̃1 − K̃t
1K̃2

)
D̃1 = O. (2.237)

Evaluating equation (2.237) results in:

D̃1

(
K̃t

2K̃1 − K̃t
1K̃2

)
D̃1 =

(
0 dH1 d

H
2 $

−dH1 dH2 $ 0

)
. (2.238)

From both equations (2.234) and (2.238) it follows that, in order for the required
conditions to hold, $ must be equal to 0. Hence, after filling in the expressions for
the different terms making up $, the following expression has to hold:−Gfr + µ0

(
ρ̂EGfrL̂
ρf

)2

φshφte

 (sΓSH + sΓTE) = 0. (2.239)
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In order for this condition to be satisfied, we require

−1 + µ0

(
ρ̂EL̂
ρf

)2

Gfrφshφte = 0. (2.240)

Hence,

µ0

(
ρ̂EL̂
ρf

)2

Gfrφshφte = 1. (2.241)

For equation (2.241) to be satisfied,

φshφte =
1

µ0

(
ρ̂EL̂
ρf

)2

Gfr
, (2.242)

must hold. This condition is checked and proven to be satisfied.
Furthermore, for equation (2.234) to hold, the following condition must be sat-

isfied

D̃1

(
K̃t

2K̃1 + K̃t
1K̃2

)
D̃1 = I. (2.243)

Writing out this condition in its general terms shows that the following must hold

D̃1

(
K̃t

2K̃1 + K̃t
1K̃2

)
D̃1 =(

2
(
dH1
)2

(as+ ec) dH1 d
H
2 (as+ bs+ fc+ ed)

dH1 d
H
2 (as+ bs+ fc+ ed) 2

(
dH2
)2

(bs+ fd)

)
. (2.244)

It turns out that the same condition (2.241) needs to be satisfied in order for the
anti-diagonal of (2.244) to be zero. The only conditions that still need to be satisfied
are:

2
(
dH1
)2

(as+ ec) = 1, (2.245)

2
(
dH2
)2

(bs+ fd) = 1. (2.246)

This is where the actual power-flux normalization will take place.
From equations (2.245) and (2.246), using equaton (2.241), it follows that

dH1 =
1√

2sΓsh

[
−Gfr + µ0

(
ρ̂EL̂Gfrφsh

ρf

)2
] =

(
−2sΓshG

fr

[
1− φsh

φte

])− 1
2

,

(2.247)

dH2 =
1√

2sΓte

[
−Gfr + µ0

(
ρ̂EL̂Gfrφte

ρf

)2
] =

(
−2sΓteG

fr

[
1− φte

φsh

])− 1
2

.

(2.248)



48 2. Theory of the seismo-electromagnetic phenomenon

We choose the positive sign of the square root, based on the fact that for the ei-
genvalue matrix, we desire that <{Γw} > 0. We can now evaluate L̃H = K̃HD̃H

yielding the flux-normalized composition matrix L̃H of equation (2.166).

2.3.B Details of the Alternatively Derived Power-Flux Nor-
malized P-SV-TM GST Eigenvector Set

This appendix presents the details for deriving the GST P-SV-TM eigenvector set
as presented in this thesis. We start from equation (2.202). Since both the right-
hand side and the left-hand side of equation (2.202) (implicitly in L̃V2 ) contain a
minus sign, these will cancel and will be ignored in the derivations below. Explicitly
writing out equation (2.202) yields four sets of four equations each, one set for each
field type (Pf, Ps, SV and TM):
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Set 1:

s

Kc

dV1
ΓPf

[
sρb + sρfE + jκN

]
−s C

MKc

dV1
ΓPf

[
sρf + sρ̂E

(
1 +

ξ̂L̂
ς̂

)
E

]

+jκ
S

Kc

dV1
ΓPf

[jκ+ βN ] = dV1 ΓPf ,

(2.249)

−s C

MKc

dV1
ΓPf

[
sρb + sρfE + jκN

]
+

(
s

M

[
1 +

C2

MKc

]
+
k̂

η
κ2)(

dV1
ΓPf

[
sρf + sρ̂E

(
1 +

ξ̂L̂
ς̂

)
E

]
)

+(−jκ ρ
f

ρ̂E
+ jκ

C

M

[
1− S

Kc

]
)(
dV1
ΓPf

[jκ+ βN ])

+jκL̂(
dV1
ΓPf

[
jκ
ξ̂

ς̂
E

]
) = dV1 EΓPf ,

(2.250)

jκS

Kc

dV1
ΓPf

[
sρb + sρfE + jκN

]
+(−jκ ρ

f

ρ̂E
+ jκ

C

M

[
1− S

Kc

]
)(
dV1
ΓPf

[
sρf + sρ̂E

(
1 +

ξ̂L̂
ς̂

)
E

]
)

+(
1

s

4Gfr (S +Gfr)

Kc
κ2 + sρ̂c)(

dV1
ΓPf

[jκ+ βN ])

+χ(
dV1
ΓPf

[
jκ
ξ̂

ς̂
E

]
) = dV1 NΓPf ,

(2.251)

(jκL̂)(
dV1
ΓPf

[
sρf + sρ̂E

(
1 +

ξ̂L̂
ς̂

)
E

]
)

+χ(
dV1
ΓPf

[jκ+ βN ])

−ηE(
dV1
ΓPf

[
jκ
ξ̂

ς̂
E

]
) = 0, (2.252)
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Set 2:

(
s

Kc
)(
dV2
ΓPs

[
sρbA+ sρf + jκO

]
)

+(−s C

MKc
)(
dV2
ΓPs

[
sρfA+ sρ̂E

(
1 +

ξ̂L̂
ς̂

)]
)

+
jκS

Kc

dV2
ΓPs

[jκA+ βO] = dV2 AΓPs,

(2.253)

(−s C

MKc
)(
dV2
ΓPs

[
sρbA+ sρf + jκO

]
)

+(
s

M

[
1 +

C2

MKc

]
+
k̂

η
κ2)(

dV2
ΓPs

[
sρfA+ sρ̂E

ηE

ς̂

]
)

+(−jκ ρ
f

ρ̂E
+ jκ

C

M

[
1− S

Kc

]
)(
dV2
ΓPs

[jκA+ βO])

+(jκL̂)(
dV2
ΓPs

[
jκ
ξ̂

ς̂

]
) = dV2 ΓPs,

(2.254)

(
jκS

Kc
)(
dV2
ΓPs

[
sρbA+ sρf + jκO

]
)

+(−jκ ρ
f

ρ̂E
) + jκ

C

M

[
1− S

Kc

]
)(
dV2
ΓPs

[
sρfA+ sρ̂E

(
1 +

ξ̂L̂
ς̂

)]
)

+(
1

s

4Gfr (S +Gfr)

Kc
κ2 + sρ̂c)(

dV2
ΓPs

[jκA+ βO])

+χ(
dV2
ΓPs

[
jκ
ξ̂

ς̂

]
) = OΓPs,

(2.255)

(jκL̂)(
dV2
ΓPs

[
sρfA+ sρ̂E

(
1 +

ξ̂L̂
ς̂

)]
)

+(χ)(
dV2
ΓPs

[jκA+ βO])

−ηE(
dV2
ΓPs

[
jκ
ξ̂

ς̂

]
) = 0, (2.256)
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Set 3:

(
s

Kc
)
dV3

ΓSV

[
sρbB + sρfF + jκ

]
+
jκS

Kc

dV3
ΓSV

[jκB + β] = dV3 BΓSV , (2.257)

(−s C

MKc
)(
dV3

ΓSV

[
sρbB + sρfF + jκ

]
)

+(−jκ ρ
f

ρ̂E
+ jκ

C

M

[
1− S

Kc

]
)(
dV3

ΓSV
[jκB + β])

+(jκL̂)(
dV3

ΓSV

[
jκ
ξ̂

ς̂
F +

(
−ζ − κ2

ς̂

)
Tχ

]
) = dV3 FΓSV , (2.258)

(
jκS

Kc
)(
dV3

ΓSV

[
sρbB + sρfF + jκ

]
)

+(
1

s

4Gfr (S +Gfr)

Kc
κ2 + sρ̂c)(

dV3
ΓSV

[jκB + β])

+χ(
dV3

ΓSV

[
jκ
ξ̂

ς̂
F +

(
−ζ − κ2

ς̂

)
Tχ

]
) = dV3 ΓSV , (2.259)

(2.260)

χ
dV3

ΓSV
[jκB + β]

−ηE(
dV3

ΓSV

[
jκ
ξ̂

ς̂
F +

(
−ζ − κ2

ς̂

)
Tχ

]
) = dV3 TχΓSV , (2.261)
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Set 4:

(
s

Kc
)(

dV4
ΓTM

[
sρbDχ+ sρfGχ+ jκPχ

]
)

+(
jκS

Kc
)(

dV4
ΓTM

[jκDχ+ βPχ]) = dV4 DχΓTM , (2.262)

(2.263)

(−s C

MKc
)(

dV4
ΓTM

[
sρbDχ+ sρfGχ+ jκPχ

]
)

+(−jκ ρ
f

ρ̂E
+ jκ

C

M

[
1− S

Kc

]
)(

dV4
ΓTM

[jκDχ+ βPχ])

+(jκL̂)(
dV4

ΓTM

[
jκ
ξ̂

ς̂
Gχ+

(
−ζ − κ2

ς̂

)]
) = dV4 GχΓTM , (2.264)

(
jκS

Kc
)(

dV4
ΓTM

[
sρbDχ+ sρfGχ+ jκPχ

]
)

+(
1

s

4Gfr (S +Gfr)

Kc
κ2 + sρ̂c)(

dV4
ΓTM

[jκDχ+ βPχ])

+χ(
dV4

ΓTM

[
jκ
ξ̂

ς̂
Gχ+

(
−ζ − κ2

ς̂

)]
) = dV4 PχΓTM , (2.265)

χ(
dV4

ΓTM
[jκDχ+ βPχ])

−ηE(
dV4

ΓTM

[
jκ
ξ̂

ς̂
Gχ+

(
−ζ − κ2

ς̂

)]
) = dV4 ΓTM . (2.266)

The first two sets, corresponding to the Pf and Ps eigenvectors, have two un-
known parameters that need to be solved for, whereas the second two sets, corres-
ponding to the SV and TM eigenvectors, contain three unknown parameters. Since
each set consists of four equations, it is obvious the system that needs to be solved
for has a certain amount of redundancy. We require the final expressions for the
unknown parameters to be as concise as possible, in order to minimize numerical
round-off errors. Furthermore, care must be taken that no divisions by the radial
wavenumber κ or the coupling coefficient L̂ take place, since we want the system to
be numerically stable for scenarios where κ = 0 and / or with no coupling between
the mechanical and electromagnetic systems. Taking these aspects into considera-
tion, the following expressions for the unknown parameters have been found. For
set 1, corresponding to the Pf eigenvectors, we have used equations (2.249) and
(2.252), to solve for the two unknowns N and E, yielding

N =
−2jκ

β
, (2.267)

E =
1

s2

[
KcΓ

2
Pf − s2ρb + s2ρfC

M − Sκ2 − 2κ2Gfr
]

[
ρf − ρ̂ECηE

Mς̂

] . (2.268)
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Parameter E can be further simplified as

E =

KcMς̂
ĉ2Pf

− ρbMς̂ + ρfCς̂

Mς̂ρf − ρ̂ECηE . (2.269)

For set 2, corresponding to the Ps eigenvectors, we have used equations (2.253)
and (2.256) to solve for the two unknown parameters A and O

A =

[
−s2ρf + s2ρ̂ECηE

Mς̂

]
[
s2ρb − s2ρfC

M −KcΓ2
Ps + 2κ2Gfr + κ2S

] , (2.270)

O =
−2jκA

β
= NA. (2.271)

We can simplify A as

A =
−ρfMς̂ + ρ̂ECηE

ρbMς̂ − ρfCς̂ − KcMς̂
ĉ2Ps

. (2.272)

As can be seen, the expression for A is similar to E: A = −1/E with the velocity of
the Biot slow P-wave instead of the Biot fast P-wave.

To determine the three unknown parameters B, F and T of set 3, corresponding
to the SV eigenvectors, we need three equations. To obtain stable solutions without
divisions by solely κ or L (which can be zero and cause instabilities) we use equations
(2.257), (2.261) and the equation following from the fact that we require L̃2(2, 3) = 0,

L̃2(2, 3) = −
(
sρfdV3 B

ΓSV
+
sρ̂EηEdV3 F

ς̂ΓSV
+
jκξ̂dV3 χT

ς̂ΓSV

)
= 0. (2.273)

We use equation (2.273) to express F in terms of B and T, then subsequently
equation (2.257) to find an expression of B in terms of T and finally equation (2.261)
to express T in terms of solely known variables. As far as we are aware of, this order of
applying the superposition principle yields the most compact and stable expressions
for B, F and T. This results in the following expressions

B1 = s2ρb − s2
(
ρf
)2
ς̂

ρ̂EηE
− 2

(
S +Gfr

)
κ2 −Kcγ

2
SV , (2.274)

T1 =
−2s3κ2

(
ρf
)2 L̂2

ηEB1
− κ2

ς̂

(
sρ̂EL̂2 + ηE − ς̂

)
+ ηEζ − γ2

SV , (2.275)

T =

−2sκ2(1+ S

Gfr
)

B1
− s

Gfr

T1
, (2.276)

B =
sjκ

B1

[
ρf ξ̂χT

ρ̂EηE
−
(

1 +
S

Gfr

)]
, (2.277)

F =
−sρf ς̂B − jκξ̂χT

sρ̂EηE
. (2.278)
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Finally, we try to derive numerically stable expressions for the three unknown
parameters of set 4, D, G and P, using equations (2.262), (2.265) and again the
equation following from the fact that we require that also L̃2(2, 4) = 0

L̃2(2, 4) = − dV4
ΓTM

[
sρf ς̂χD + sρ̂EηEχG+ jκξ

]
= 0. (2.279)

We use equation (2.279) to express G in terms of D, subsequently equation (2.262)
to express D in terms of P, and finally equation (2.265) to express P in terms of solely
known variables. Again, this order of applying the superposition principle yields the
most compact and stable expressions for D, G and P, as far as we are aware of. This
results in

D1 =

[
s2ρb − s2(ρf )2ς̂

ρ̂EηE
− 2

(
S +Gfr

)
κ2 −Kcγ

2
TM

]
, (2.280)

D2 =

[
−Kc

(
−ζ − κ2

ς̂

)
− Sκ2

ηE
− Kcξχκ

2

sρfηE ς̂

]
, (2.281)

D3 =

[
s2ρbS − s2

(
ρf
)2
Sς̂

ρ̂EηE
+ 4Gfr

(
S +Gfr

)
κ2 + s2ρ̂cKc −

sρfKcξχ

ρ̂EηE

]
,

(2.282)

P1 =

[
s2ρ̂cKc

Gfr
+ 2

(
S +Gfr

)
κ2 −Kcγ

2
TM

]
, (2.283)

P =

[
D1D2 + κ2

ηE
D3

]
[
P1D1 + κ2

(
1 + S

Gfr

)
D3

] , (2.284)

D =
sjκ

[
1
ηE
− P

(
1 + S

Gfr

)]
D1

, (2.285)

G =
−s(ρf )2ς̂D − jκρ̂E

sρ̂EηEρf
. (2.286)
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2.4 Explicit homogeneous space Green’s function
solutions

We have seen that for layered-Earth geometries, we can capture the expressions for
both the SH-TE and the P-SV-TM propagation modes separately into the following
matrix differential equation

∂3F̃
H,V − ÃH,V F̃H,V = S̃H,V δ(x3 − xs3), (2.287)

where the tilde denotes that the expressions are given in the horizontal wavenumber-
frequency domain. Here, F̃ denotes the two-way field vector, Ã is the two-way
operator or system matrix and S̃ contains the two-way source quantities. The system
matrix for the SH-TE system is of size 4x4, whereas the size of the P-SV-TM system
matrix is 8x8. We follow an approach different from that of Pride & Haartsen (1996)
to obtain the homogeneous space Green’s functions. Where Pride & Haartsen (1996)
inverted a subset of equations to derive a few homogeneous space-solutions, we model
all seismoelectric and electroseismic source-receiver combinations both in ESSEMOD
and with homogeneous space Green’s function solutions. We make use of power
flux-normalized composition and decomposition matrices. Due to the power-flux
normalization, we use the transpose of the composition (sub)matrices as the inverse
for the decomposition (sub)matrices. We start by transforming equation (2.287)
to the three-dimensional wavenumber domain (denoted by the breve) using ∂3 ⇐⇒
−jk3, from which we obtain(

jk3I ĂH,V
12

ĂH,V
21 jk3I

)(
F̆H,V1

F̆H,V2

)
= −

(
S̆H,V1

S̆H,V2

)
, (2.288)

which can be solved as(
F̆H,V1

F̆H,V2

)
= −

(
ĞH,V

11 ĞH,V
12

ĞH,V
21 ĞH,V

22

)(
S̆H,V1

S̆H,V2

)
, (2.289)

where the following expressions hold for the Green function matrices

ĞH,V
11 = −2jk3L̆

H,V
1

(
k2

3I + (ΛH,V )2
)−1

(
L̆H,V2

)t
, (2.290)

ĞH,V
12 = 2ĂH,V

12 L̆H,V2

(
k2

3I + (ΛH,V )2
)−1

(
L̆H,V1

)t
, (2.291)

ĞH,V
21 = 2ĂH,V

21 L̆H,V1

(
k2

3I + (ΛH,V )2
)−1

(
L̆H,V2

)t
, (2.292)

ĞH,V
22 = −2jk3L̆

H,V
2

(
k2

3I + (ΛH,V )2
)−1

(
L̆H,V1

)t
. (2.293)

To arrive at this result, we made use of inversion by partitioning (Press et al., 1988),

(
A B
C D

)(
P Q
R S

)
=

(
I O
O I

)
, (2.294)
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where(
P Q
R S

)
=

(
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

)
. (2.295)

We take

A = D = jk3I, B = Ă12, C = Ă21, (2.296)

and make use of the fact that A and D are unit diagonal matrices except for the
scalar constant jk3, such that we arrive at the expressions for the Green function
matrices. Note that the eigenvalue matrix contains the vertical wavenumbers on the
diagonal and the matrix (k2

3I + Λ2) is easily invertible. The matrices Ă12 and Ă21

and the composition matrices do not depend on jk3. Hence, the Green function
matrices do not depend on jk3 except in the diagonal matrix that has to be inverted
and the factor itself that appears in the expressions for Ğ11 and Ğ22. We can rewrite
the system matrices using equation (2.148), and using ĞH,V = (k2

3I + (Λ̆H,V )2)−1,
where ĞH,V is a diagonal Green’s function matrix containing the scalar Green’s
functions for the different field types for the mode under consideration. This leads
to:

ĞH,V
11 = −2jk3L̆

H,V
1 ĞH,V

(
L̆H,V2

)t
, (2.297)

ĞH,V
12 = −2L̆H,V1 Λ̆H,V ĞH,V

(
L̆H,V1

)t
, (2.298)

ĞH,V
21 = −2L̆H,V2 Λ̆H,V ĞH,V

(
L̆H,V2

)t
, (2.299)

ĞH,V
22 = −2jk3L̆

H,V
2 ĞH,V

(
L̆H,V1

)t
. (2.300)

We can now select which source-receiver combination we want to model in a homo-
geneous space, in order to validate the results obtained from ESSEMOD. We can
express all source-receiver combinations in terms of homogeneous space-solutions.
When certain field quantities are present in the field vectors of both propagation
modes, the SH-TE and P-SV-TM results need to be combined in the end to find the
total Green’s function solution for these fields. We will start with a comprehensive
example and focus on a combined field E1 due to a pure P-SV-TM source-type: f̂ b3
being the bulk force in the x3-direction (depth), where the hat denotes a space-
frequency domain quantity. For the arrangement of the field vector as used in our
seismo-EM layer-code, the expression for the electric field belonging to the P-SV-TM
propagation mode due to f̂ b3 reads

Ĕ
V ;fb3
norm = −2jk3f̂

b
3

4∑
k=1

L̆V2,4kĞ
V
kkL̆

V
1,1k. (2.301)

The following relation holds between the electric fields for the P-SV-TM mode and
the SH-TE mode and the electric field component in the x1-direction

Ĕ1 = −jk1Ĕ
V
norm/κ+ jk2Ĕ

H
norm/κ, (2.302)
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where κ is the radial wavenumber, κ =
√
k2

1 + k2
2, and where the subscript ’norm’

refers to the fact that the field quantities of both propagation modes have been
normalized with a factor−κ. In the case of a pure P-SV-TM source type (like the f̂ b3),
the SH-TE contribution to the expression (2.302) is zero. Using this relation, filling
in the correct components of the composition matrices in (2.301) and transforming
analytically back to the space-frequency domain, the necessary homogeneous Green’s

function solution for E
fb3
1 can be obtained. We omit the exact expressions here for

brevity. In this way, all possible seismoelectric and electroseismic source-receiver
combinations can be expressed in terms of their homogeneous space solution and
can be compared with the numerical homogeneous results from layer-code modeling.

To further illustrate this, we will look at v
Je1
1 , the particle velocity in the x1-direction

due to an electric dipole source in the x1-direction, and v
fb1
1 , the particle velocity in

the x1-direction due to a bulk force source in the x1-direction. For the arrangement
of the field vector as used in our seismo-EM layer-code, the expressions for the
particle velocity field belonging to the P-SV-TM propagation mode due to Ĵe1 and

f̂ b1 , read

v̆
V ;Je1
norm =

2jk1

κ
Ĵe1

4∑
k=1

L̆V2,3kΓ̆VkkĞ
V
kkL̆

V
2,4k, (2.303)

v̆
V ;fb1
norm =

2jk1

κ
f̂ b1

4∑
k=1

L̆V2,3kΓ̆VkkĞ
V
kkL̆

V
2,3k, (2.304)

respectively. Similarly, the expressions for the particle velocity field belonging to the
SH-TE propagation mode due to Ĵe1 and f̂ b1 , are

v̆
H;Je1
norm = −2jk2

κ
Ĵe1

2∑
k=1

L̆H1,1kΓ̆HkkĞ
H
kkL̆

H
1,2k, (2.305)

v̆
H;fb1
norm = −2jk2

κ
f̂ b1

2∑
k=1

L̆H1,1kΓ̆HkkĞ
H
kkL̆

H
1,1k, (2.306)

respectively. We can combine the particle velocity fields of both propagation modes
into the particle velocity field in the x1-direction, via

v̆1 = −jk1v̆
V
norm/κ+ jk2v̆

H
norm/κ. (2.307)

Combining equations (2.303), (2.305), and (2.307), as well as (2.304), (2.306), and
(2.307), yields again the required analytical homogeneous space solution, which can
be directly modeled and compared with the numerical results for a homogeneous
medium as generated by seismo-EM layer-code modeling.
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Chapter 3

The model: Theory of seismo-EM
layer-code modeling

3.1 Global reflection scheme for seismo-EM layer-
code modeling

3.1.1 Two-way and one-way fields

As we have seen, we can decompose the system matrix ÃH,V into matrices con-
sisting of its eigenvectors and eigenvalues, for both the SH-TE and the P-SV-TM
propagation modes independently. The eigenvector matrices are also referred to as
composition matrices, since they compose two-way field quantities from one-way
fields. Vice versa, the inverse of the composition matrices are referred to as de-
composition matrices, since they decompose two-way fields into one-way fields. The
following general relation holds between the recorded two-way fields and the decom-
posed one-way fields(

q̃1

q̃2

)
=

(
L̃1 L̃1

L̃2 −L̃2

)(
p̃+

p̃−

)
, (3.1)

where the + sign indicates downgoing fields (in the positive x3-direction) and the
− sign indicates upgoing fields. In this chapter, we have omitted the superscripts
H and V indicating the SH-TE and P-SV-TM propagation modes, respectively, for
notational convenience. Be aware that each equation presented holds for both the
SH-TE and P-SV-TM modes independently, since we have decoupled both modes
in Section 2.2.2. For wavefields, p̃+ represents the one-way, decomposed downgoing
field and p̃− the one-way, decomposed upgoing field at a certain level of decompos-
ition. For diffusive fields, p̃+ is the field that decays in the positive x3-direction
and p̃− is the field that decays in the negative x3-direction. Decomposed fields
are not uniquely defined. The fields can be normalized with respect to different
quantities. In principle any normalization of the composition matrix will work. We
use power-flux normalized composition matrices. One of the advantages of using

59
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power flux-normalization is that favourable reciprocity relations hold for the flux-
normalized one-way fields (Frasier (1970), Wapenaar (1998)). In equation (3.1), q̃1

represents a subvector of the two-way field quantity vector q̃, being composed from
one-way fields by applying the L̃1 submatrices to the one-way fields p̃±. Simil-
arly, q̃2 is the subvector being composed from one-way fields by applying the ±L̃2

submatrices to the one-way fields p̃±.
In multi-component (MC) field decomposition schemes, the downgoing and upgo-

ing one-way fields can be obtained by left-multiplying the recorded two-way field vec-
tor with the inverse of the composition matrix, where we make use of the power-flux
normalization transpose-to-inverse property (e.g. equations (2.169) and (2.170)),
yielding(

p̃+

p̃−

)
=

(
L̃t2 L̃t1
L̃t2 −L̃t1

)(
q̃1

q̃2

)
. (3.2)

For a more extensive discussion on field decomposition, including the introduction of
the Multi-Depth-Level Field Decomposition Scheme, the reader is referred to Section
6.1.

In our seismo-EM layer-code, we start by directly modeling one-way fields gener-
ated at the source-level, which are then propagating/diffusing through the layered-
Earth model, and are finally composed into two-way fields at the receiver level.
To correctly describe the propagation/diffusion of the fields through the layered-
Earth model, we make use of a Global Reflection Scheme (based on the three-layer
scalar reflection scheme by Airy (1833)). In the electromagnetic community, Red-
heffer (1961) solved the layered-Earth problem using the scattering matrix for elec-
tromagnetic waves, thereby introducing the so-called Redheffer star product. The
reflectivity method of Kennett (1983) is basically built upon this work, and is well-
known in the seismic community for modeling layered-Earth responses. There are
some important differences between the reflectivity method of Kennett (1983) and
our global reflection scheme. To solve the layered-Earth problem, Kennett (1983)
uses the full scattering matrices, thereby explicitly requiring to calculate and store
(computationally-speaking) both the upgoing and downgoing global reflection and
transmission matrices at the interfaces in the model. To solve the layered-Earth
problem, the method of Kennett (1983) requires his numerical scheme to calculate
these matrices iteratively, stepping through the layered-model more than once. In
our global reflection scheme, we express the system in terms of reflection matrices
only. We distinguish local reflection matrices from global reflection matrices. This
allows our iterative scheme to step through the layered-model more effectively. Our
scheme also only requires calculation and storage of the global reflection matrices. In
the presentation of our global reflection scheme, we will refer to the vertical spatial
(depth) direction x3 as z, for notational convenience.
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3.1.2 Local and global reflection matrices

The local reflection operators, indicated by r̃, describe the generation of outgoing
fields from an incoming field due to the reflection at an interface between contrasting
media. We define the local downgoing reflection matrix as follows

p̃−n (zn+1) = r̃−+
n (zn+1)W̃+(zn+1, zn)p̃+

n (zn), (3.3)

where zn+1 is the depth of the interface under consideration, at the bottom of layer
n and above layer n+ 1 (see also Figure 3.1). Equation (3.3) holds for wavefields
generated above the interface under consideration. We read the superscript −+ from
right to left, indicating that a downgoing one-way field (p̃+

n ) reflects into an upgoing
one-way field (p̃−n ) at that specific interface.

r̃−+
n (zn+1)

r̃+−
n (zn)

z1

z2

zn−1

zn
zn+1

zN−1

zN

D0

D1

D2

Dn−2

Dn−1

Dn
Dn+1

DN−2

DN−1

DN

Air, Fluid, or P.M.

Porous Medium (P.M.)

Fluid or P.M.

Figure 3.1: Schematic overview of the layered-Earth configurations used in ESSEMOD, indicating
the interface- and layer-counting notational system. Here, Dn indicates the layer counting (which
corresponds to the subscript n under the quantities in the equations) and zn denotes the interface
counting (which corresponds to the zn-arguments of the quantities in the equations). In addition,
r̃−+
n denotes a downgoing to upgoing local reflection coefficient, and r̃−+

n an upgoing to downgoing
local reflection coefficient. The same superscript notation holds for the global reflection coefficients.

The forward extrapolation operator W̃+(zn+1, zn), extrapolates the downgoing
fields downwards, from interface zn to interface zn+1. When using these extrapola-
tion operators, it is implicitly assumed that the medium between the two depth levels
is source-free and homogeneous. The downgoing and upgoing forward extrapolation
operators W̃+(zn+1, zn) and W̃−(zn, zn+1) are defined as

W̃+(zn+1, zn) = W̃−(zn, zn+1) = exp(−Λ̃ (zn+1 − zn)), (3.4)
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where Λ̃ represents an n-by-n diagonal matrix containing the eigenvalues for each of
the n-field types present in the system under consideration (for example n = 2 for
the SH-TE mode, where SH and TE are the field types under consideration). Note
that the above equation (3.4) is a symbolic notation (due to the use of a matrix in
the argument of the exponent). Effectively, the exponent of each of the individual
elements in diagonal matrix Λ̃ is taken. Since we are dealing with laterally invariant
media, Λ̃ is a purely diagonal matrix as we have seen in Section 2.3. Note that it
is crucial to define the sign of the field extrapolation operators in such a way that
evanescent and diffusive fields decay. As discussed, we choose the positive sign of
the square root, based on the fact that for the eigenvalue matrix, we desire that
<{Γw} > 0, based on physical wave propagation constraints (Grobbe et al., 2016b).

Similar to equation (3.3), the local upgoing reflection matrix, for wavefields gen-
erated below the interface under consideration, is defined as

p̃+
n (zn) = r̃+−

n (zn)W̃−(zn, zn+1)p̃−n (zn+1). (3.5)

The term local reflection matrix already indicates that these matrices only account
for one reflection at one specific interface. To account for all multiple reflections
behind the locally reflecting interface, a global reflection matrix R̃ is defined as

p̃−n (zn+1) = R̃−+
n (zn+1)W̃+(zn+1, zn)p̃+

n (zn), (3.6)

p̃+
n (zn) = R̃+−

n (zn)W̃−(zn, zn+1)p̃−n (zn+1), (3.7)

with equation (3.6) describing the downgoing global reflection matrix and equation
(3.7) representing the upgoing global reflection matrix. Equation (3.6) holds for
locations z below the source location zs, i.e. for z > zs. On the contrary, equation
(3.7) holds for locations z above the source location zs, i.e. for z < zs.

To extrapolate the local or global reflection matrices away from the interface to
an arbitrary depth level z in a homogeneous source-free subdomain, between zn and
zn+1, the wavefield extrapolators W̃ (equation (3.4)) are used as follows

p̃−n (z) = W̃−(z, zn+1)p̃−n (zn+1), (3.8)

p̃+
n (z) = W̃+(z, zn)p̃+

n (zn). (3.9)

Now, recognizing and substituting equations (3.6) and (3.7), yields

p̃−n (z) = W̃−(z, zn+1)R̃−+
n (zn+1)W̃+(zn+1, zn)p̃+

n (zn), (3.10)

p̃+
n (z) = W̃+(z, zn)R̃+−

n (zn)W̃−(zn, zn+1)p̃−n (zn+1). (3.11)

Using the relations

W̃−(z, zn+1) = W̃+(zn+1, z), (3.12)

W̃+(z, zn) = W̃−(zn, z), (3.13)

yields

p̃−n (z) = W̃+(zn+1, z)R̃
−+
n (zn+1)W̃+(zn+1, zn)p̃+

n (zn), (3.14)

p̃+
n (z) = W̃−(zn, z)R̃

+−
n (zn)W̃−(zn, zn+1)p̃−n (zn+1). (3.15)
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From these two equations, we can extract expressions for the global down- and

upgoing reflection matrices at an arbitrary depth level z in layer n, R̃
−+,+−
n :

R̃
−+

n (z) = W̃+(zn+1, z)R̃
−+
n (zn+1)W̃+(zn+1, zn), (3.16)

R̃
+−
n (z) = W̃−(zn, z)R̃

+−
n (zn)W̃−(zn, zn+1), (3.17)

where the calligraphic font R̃ denotes that these global reflection matrices are ‘spe-
cial’ in the sense that they are the result of extrapolation operators acting upon the
‘standard’ global reflection matrices defined at the interfaces.

3.1.3 Calculating the global reflection matrices outside the
source layer

Considering the boundary conditions at an interface zn+1

lim
z↓zn+1

q̃n+1(z)− lim
z↑zn+1

q̃n(z) = 0, (3.18)

and evaluating the limits yields

q̃n(zn+1) = q̃n+1(zn+1). (3.19)

Substitution of q̃n = L̃p̃n results in

L̃np̃n(zn+1) = L̃n+1p̃n+1(zn+1). (3.20)

As shown before (e.g equation (2.161)), the flux-normalized composition matrix
L̃ is organized as

L̃ =

(
L̃1 L̃1

L̃2 −L̃2

)
. (3.21)

Using this property of L̃, separating the down- and upgoing one-way fields and
substituting it into (3.20) results in

L̃1,np̃+
n (zn+1) + L̃1,np̃−n (zn+1) = L̃1,n+1p̃

+
n+1(zn+1) + L̃1,n+1p̃

−
n+1(zn+1),

(3.22)

L̃2,np̃+
n (zn+1)− L̃2,np̃−n (zn+1) = L̃2,n+1p̃

+
n+1(zn+1)− L̃2,n+1p̃

−
n+1(zn+1).

(3.23)

We use equations (3.6) and (3.14) (and recognize equation (3.16)), and we eval-
uate the fields at z = zn+1, leading to
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p̃−n (zn+1) = R̃−+
n (zn+1)p̃+

n (zn+1), (3.24)

p̃−n+1(zn+1) = R̃
−+

n+1(zn+1)p̃+
n+1(zn+1). (3.25)

Here, p̃−n (zn+1) is the upgoing one-way field in the nth-layer (above the interface),
at interface zn+1, whereas p̃−n+1(zn+1) is the upgoing field in layer n+ 1 (below the
interface), at interface zn+1. Substituting equations (3.24) and (3.25) into equations
(3.22) and (3.23), results in

L̃1,n

[
I + R−+

n (zn+1)
]
p̃+
n (zn+1) = L̃1,n+1

[
I + R̃

−+

n+1(zn+1)
]

p̃+
n+1(zn+1),

(3.26)

L̃2,n

[
I−R−+

n (zn+1)
]
p̃+
n (zn+1) = L̃2,n+1

[
I− R̃

−+

n+1(zn+1)
]

p̃+
n+1(zn+1).

(3.27)

Using equations (3.26) and (3.27), we express the global, downgoing reflection

matrix R̃−+
n (zn+1) in terms of R̃

−+

n+1(zn+1):

R̃−+
n (zn+1) =

[(
L̃
down

1,n − L̃
down

2,n

)
+
(
L̃
down

1,n + L̃
down

2,n

)
R̃
−+

n+1(zn+1)
]
×[(

L̃
down

1,n + L̃
down

2,n

)
+
(
L̃
down

1,n − L̃
down

2,n

)
R̃
−+

n+1(zn+1)
]−1

, (3.28)

where the cross-symbol (×) simply denotes a matrix-matrix multiplication and where

L̃
down

1,n =
[
L̃1,n

]−1

L̃1,n+1 = 2L̃t2,nL̃1,n+1, (3.29)

L̃
down

2,n =
[
L̃2,n

]−1

L̃2,n+1 = 2L̃t1,nL̃2,n+1. (3.30)

Here, we have exploited the fact that we have power-flux normalized the composi-
tion and decomposition matrices, enabling us to write the inverse of a composition
submatrix as the transpose of another composition submatrix. This expression can
be used for reflectors below the source level.

Equation (3.28) is the matrix-vector equivalent of an equation presented by
Fokkema & Ziolkowski (1987). Using equation (3.28), we can calculate the global
downgoing reflection matrix at any interface, starting from the bottom interface of
the model and recursively updating the operator upwards. There will be no reflec-
tions created from below the bottom interface of the model, located at zN . In other
words, R̃−+

N (z > zN ) = 0, changing equation (3.28) for the bottom interface into

R̃−+
N−1(zN ) = r̃−+

N−1(zN ) =
(
L̃
down

1,N−1 − L̃
down

2,N−1

)(
L̃
down

1,N−1 + L̃
down

2,N−1

)−1

. (3.31)

The reflection at the bottom interface can be purely described by a local downgoing
reflection matrix. We use this definition of the local reflection matrix (equation
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(3.31)), that holds for each individual interface, to rewrite equation (3.28) as

R̃−+
n (zn+1) =[

r̃−+
n (zn+1) +

(
L̃
down

1,n + L̃
down

2,n

)
R̃
−+

n+1(zn+1)
(
L̃
down

1,n + L̃
down

2,n

)−1
]
×[

I +
(
L̃
down

1,n − L̃
down

2,n

)
R̃
−+

n+1(zn+1)
(
L̃
down

1,n + L̃
down

2,n

)−1
]−1

. (3.32)

We can derive a similar expression for the global upgoing reflection matrix (for
reflectors above the source level). We start with

L̃1,n

[
R̃

+−
n (zn+1) + I

]
p̃−n (zn+1) = L̃1,n+1

[
R̃+−
n+1(zn+1) + I

]
p̃−n+1(zn+1),

(3.33)

L̃2,n

[
R̃

+−
n (zn+1)− I

]
p̃−n (zn+1) = L̃2,n+1

[
R̃+−
n+1(zn+1)− I

]
p̃−n+1(zn+1).

(3.34)

Using equations (3.33) and (3.34), we express the global, upgoing reflection mat-

rix R̃+−
n+1(zn+1) in terms of R̃

+−
n (zn+1):

R̃+−
n+1(zn+1) =

[(
L̃
up

1,n − L̃
up

2,n

)
+
(
L̃
up

1,n + L̃
up

2,n

)
R̃

+−
n (zn+1)

]
×[(

L̃
up

1,n + L̃
up

2,n

)
+
(
L̃
up

1,n − L̃
up

2,n

)
R̃

+−
n (zn+1)

]−1

, (3.35)

where

L̃
up

1,n =
[
L̃1,n+1

]−1

L̃1,n = 2L̃t2,n+1L̃1,n, (3.36)

L̃
up

2,n =
[
L̃2,n+1

]−1

L̃2,n = 2L̃t1,n+1L̃2,n, (3.37)

and

R̃
+−
n (zn+1) = W̃−(zn, zn+1)R̃+−

n (zn)W̃−(zn, zn+1). (3.38)

We can use equation (3.35) to iteratively determine the global upgoing reflection
matrix, starting at the upper interface of the model and moving downwards. There
are no reflections occurring above the upper interface of the model. In other words,
R̃+−

1 (z < z1) = 0 in equation (3.35), yielding

R̃+−
1 (z1) = r̃+−

1 (z1) =
(
L̃
up

1,0 − L̃
up

2,0

)(
L̃
up

1,0 + L̃
up

2,0

)−1

, (3.39)

for the upper interface. Recognizing this definition of the local upgoing reflection
matrix (for each individual interface) in equation (3.35), yields
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R̃+−
n+1(zn+1) =

[
r̃+−
n+1(zn+1) +

(
L̃
up

1,n + L̃
up

2,n

)
R̃

+−
n (zn+1)

(
L̃
up

1,n + L̃
up

2,n

)−1
]
×[

I +
(
L̃
up

1,n − L̃
up

2,n

)
R̃

+−
n (zn+1)

(
L̃
up

1,n + L̃
up

2,n

)−1
]−1

. (3.40)

Equations (3.32) and (3.40) form the basis of the recursive global reflection
scheme.

3.1.4 Calculating the global reflection matrices in a homo-
geneous bounded subdomain with sources

Imagine a homogeneous bounded subdomain with a source at source level z = zs,
where zs is not the depth of an interface. Fields above the source level are denoted
with a superscript a and fields below the source level with superscript b. Evaluating
the boundary condition at this source level zs, results in

lim
z↓zs

q̃bn(z)− lim
z↑zs

q̃an(z) = d̃n(zs). (3.41)

Writing this equation in terms of one-way fields/sources, gives

L̃np̃bn(zs)− L̃np̃an(zs) = L̃nb̃n(zs). (3.42)

As can be seen, the composition matrix L̃n can be divided out on the left-hand
and right-hand sides. By writing the up- and downgoing one-way fields explicitly,
the following relations are obtained:

p̃b,+n (zs) = p̃a,+n (zs) + b̃+
n (zs), (3.43)

p̃b,−n (zs) = p̃a,−n (zs) + b̃−n (zs). (3.44)

Using equation (3.8) to obtain the upgoing one-way fields (from below) at the
source level zs and writing it in terms of downgoing one-way fields below the source
level, yields

p̃b,−n (zs) = W̃−(zs, zn+1)R̃−+
n (zn+1)W̃+(zn+1, zs)p̃

b,+
n (zs)

= W̃+(zn+1, zs)R̃
−+
n (zn+1)W̃+(zn+1, zs)p̃

b,+
n (zs)

= R̃−+
n (zs)p̃

b,+
n (zs). (3.45)

In a similar way the downgoing one-way fields (from above) at the source level
can be written in terms of the upgoing one-way fields above the source level as
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p̃a,+n (zs) = W̃+(zs, zn)R̃+−
n (zn)W̃−(zn, zs)p̃

a,−
n (zs)

= W̃−(zn, zs)R̃
+−
n (zn)W̃−(zn, zs)p̃

a,−
n (zs)

= R̃+−
n (zs)p̃

a,−
n (zs). (3.46)

Combining equations (3.43), (3.44), (3.45) and (3.46) results in the following expres-
sions for the four possible one-way wavefields (up- and downgoing, above and below
the source level):

p̃a,+n (zs) =
[
I− R̃+−

n (zs)R̃
−+
n (zs)

]−1

×[
R̃+−
n (zs)R̃

−+
n (zs)b̃

+(zs)− R̃+−
n (zs)b̃

−(zs)
]
, (3.47)

p̃a,−n (zs) =
[
I− R̃−+

n (zs)R̃
+−
n (zs)

]−1

×[
R̃−+
n (zs)b̃

+(zs)− b̃−(zs)
]
, (3.48)

p̃b,+n (zs) =
[
I− R̃+−

n (zs)R̃
−+
n (zs)

]−1

×[
b̃+(zs)− R̃+−

n (zs)b̃
−(zs)

]
, (3.49)

p̃b,−n (zs) =
[
I− R̃−+

n (zs)R̃
+−
n (zs)

]−1

×[
R̃−+
n (zs)b̃

+(zs)− R̃−+
n (zs)R̃

+−
n (zs)b̃

−(zs)
]
. (3.50)

We can clearly recognize the multiple-generator, the terms on the right-hand side
between the brackets indicating the inverse. We now consider three possible model-
ing scenarios:

1. Source and Receivers in the same layer (with receivers (slightly) above or below
the source), in ESSEMOD referred to as ‘above=0’

2. Source and Receivers in different layers, with receivers below the source, in
ESSEMOD referred to as ‘above=-1’

3. Source and Receivers in different layers, with receivers above the source, in
ESSEMOD referred to as ‘above=1’.

Let us first consider scenario 1. In this case, we treat the direct field separately,
using homogeneous-space Green’s function solutions which we add to the final solu-
tion in the space-frequency domain. Therefore, we can skip equations (3.48) and
(3.49), and only need equations (3.47) and (3.50). We define the receiver depth level
as zr, and rewrite the equations such that we record the one-way down- or upgoing
fields of the left-hand side of the equations at zr, generated by a one-way down- or
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upgoing source on the right-hand side at zs:

p̃a,++
n (zr) =

[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

×[
R̃+−
n (zr, zs)R̃

−+
n (zs, zs)b̃

+(zs)
]
, (3.51)

p̃a,+−n (zr) =
[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

×[
−R̃+−

n (zr, zs)b̃
−(zs)

]
, (3.52)

p̃b,−+
n (zr) =

[
I− R̃−+

n (zn+1, zn)R̃+−
n (zn, zn+1)

]−1

×[
R̃−+
n (zr, zs)b̃

+(zs)
]
, (3.53)

p̃b,−−n (zr) =
[
I− R̃−+

n (zn+1, zn)R̃+−
n (zn, zn+1)

]−1

×[
−R̃−+

n (zr, zs)R̃
+−
n (zs, zs)b̃

−(zs)
]
, (3.54)

where

R̃+−
n (zn, zn+1) = R̃+−

n (zn)W̃−(zn, zn+1), (3.55)

R̃−+
n (zn+1, zn) = R̃−+

n (zn+1)W̃+(zn+1, zn), (3.56)

R̃+−
n (zr, zs) = W̃+(zr, zn)R̃+−

n (zn)W̃−(zn, zs), (3.57)

R̃−+
n (zs, zs) = W̃−(zs, zn+1)R̃−+

n (zn+1)W̃+(zn+1, zs). (3.58)

(3.59)

For scenario 2, we only require equation (3.49). Since in this case, the receivers
are located in a layer below the source layer, we describe the one-way fields until the
lower interface of the source layer:

p̃b,++
n (zn+1) = W̃+(zn+1, zs)

[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

b̃+(zs),

(3.60)

p̃b,+−n (zn+1) =
[
I− R̃+−

n (zn+1, zn)R̃−+
n (zn, zn+1)

]−1 [
−R̃+−

n (zn+1, zs)b̃
−(zs)

]
,

(3.61)

where

R̃+−
n (zn+1, zs) = W̃+(zn+1, zn)R̃+−

n (zn)W̃−(zn, zs). (3.62)

From here onwards, either full layer propagation will take place (through one or
multiple layers, dependent on the receiver location), or propagation over a small
distance in the receiver layer to the receiver level. Let us briefly take a closer look at

the multiple generator, e.g
[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

. We can expand

this function as



3.1. Global reflection scheme for seismo-EM layer-code modeling 69

[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

=
[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

×([
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]
+ R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

)
= I +

[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

R̃+−
n (zn, zn+1)R̃−+

n (zn+1, zn). (3.63)

Substituting this in equation (3.60), leads to

p̃b,++
n (zn+1) = W̃+(zn+1, zs)b̃

+(zs)+

W̃+(zn+1, zs)
[
I− R̃+−

n (zn, zn+1)R̃−+
n (zn+1, zn)

]−1

×

R̃+−
n (zn, zn+1)R̃−+

n (zn+1, zn)b̃+(zs), (3.64)

where we clearly recognize the expression for p̃a,++
n of equation (3.51) (with adjusted

arguments). In addition, comparing equations (3.52) and (3.61), we can observe that
they are identical (with adjusted arguments). This shows that we do not require the
other two expressions, since they are implicitly present.

Similarly, for scenario 3, we only require equation (3.48). Since in this case, the
receivers are located in a layer above the source layer, we describe the one-way fields
until the upper interface of the source layer:

p̃a,−−n (zn) = W̃−(zn, zs)
[
I− R̃−+

n (zn+1, zn)R̃+−
n (zn, zn+1)

]−1

b̃−(zs),

(3.65)

p̃a,−+
n (zn+1) =

[
I− R̃−+

n (zn+1, zn)R̃+−
n (zn, zn+1)

]−1 [
−R̃−+

n (zn, zs)b̃
+(zs)

]
,

(3.66)

where

R̃−+
n (zn, zs) = W̃−(zn, zn+1)R̃−+

n (zn+1)W̃+(zn+1, zs). (3.67)

From here onwards, these fields can be transmitted across the interface, after
which either full layer propagation will take place (through one or multiple layers,
dependent on the receiver location), or propagation over a small distance (in the
receiver layer) to the receiver level. The proper transmission of fields across interfaces
will be addressed next.

3.1.5 Calculating the one-way fields outside the source layer

Thusfar, we have considered the reflection of fields from the interfaces in the model.
However, the transmission of fields across interfaces also needs to be properly ad-
dressed. Let us start by considering a geometry where the source is located above the
receiver level. We know the downgoing field p̃+

n (zn+1) and can express the upgoing
field as:

p̃−n (zn+1) = R̃−+
n (zn+1)p̃+

n (zn+1). (3.68)
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Similarly, we can express the upgoing field at the other side of the interface as

p̃−n+1(zn+1) = R̃
−+

n+1(zn+1)p̃+
n+1(zn+1). (3.69)

In this geometry, the only ‘unknown’ field is p̃+
n+1(zn+1).

Let us consider again the boundary conditions at a source-free interface at depth
z = zn+1, below the source level z = zs,

lim
z↓zn+1

q̃n+1(z)− lim
z↑zn+1

q̃n(z) = 0. (3.70)

We express the limit of equation (3.70) in terms of one-way fields and bring one
term to the other side of the equation, yielding

L̃n+1p̃n+1(zn+1) = L̃np̃n(zn+1). (3.71)

Expressing everything in terms of the downgoing fields, and isolating the un-
known field p̃+

n+1(zn+1), yields

p̃+
n+1(zn+1) =

[
I + R̃

−+

n+1(zn+1)
]−1

L̃−1
1,n+1L̃1,n

[
I + R̃−+

n (zn+1)
]

p̃+
n (zn+1)

=
[
I + R̃

−+

n+1(zn+1)
]−1

2L̃t2,n+1L̃1,n

[
I + R̃−+

n (zn+1)
]

p̃+
n (zn+1),

(3.72)

where we have used the general rule for matrix inversion: (AB)−1 = B−1A−1. In
this way the downgoing field can be transmitted across the interfaces and determined
in each subsequent layer. Once the layer containing the receivers is reached, the
global downgoing reflection matrix in that layer can be used again to determine the
upgoing fields.

Similarly, we can derive an expression for properly transmitting fields across
interfaces in the upgoing direction, which is of use when the receivers are located
above the source level. In this case, we express the downgoing fields in terms of
upgoing fields and isolate the unknown field p̃−n (zn+1), yielding

p̃−n (zn+1) =
[
I + R̃

+−
n (zn+1)

]−1

L̃−1
1,nL̃1,n+1

[
I + R̃+−

n+1(zn+1)
]

p̃−n+1(zn+1)

=
[
I + R̃

+−
n (zn+1)

]−1

2L̃t2,nL̃1,n+1

[
I + R̃+−

n+1(zn+1)
]

p̃−n+1(zn+1).

(3.73)

We now have all the ingredients required to succesfully apply the Global Re-
flection Scheme in seismo-EM layer-code modeling. As we have seen, to determine
the global downgoing reflection matrices, we start at the bottom interface in the
model, whereas for determining the global upgoing reflection matrices, we start at
the top interface in the model. In certain scenarios, we can desire specific boundary
conditions to hold at these model boundaries. These conditions affect the local re-
flection matrices at these interfaces, and in certain scenarios also the global reflection
matrices. We now discuss for both the SH-TE and P-SV-TM propagation modes
the implications of desiring a free-surface at the top of the model, and fluid/porous
medium or porous medium/fluid transitions at the top or bottom of the model,
respectively.
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3.2 Including a pressure-free surface and
fluid/porous medium/fluid boundaries

3.2.1 SH-TE scattering matrix at a free-surface

We approximate the surface of the Earth as a free-surface, i.e. the air is approxim-
ated as a vacuum. As a consequence, only electromagnetic fields can diffuse across
this surface and there are no seismic waves present in the vacuum. These boundary
conditions have clear implications on the local reflection matrices at this free-surface.
Let us first consider this scenario for the SH-TE propagation mode. The boundary
conditions at the free-surface (z = z1) are:

• τ̃ b,H is zero

• ẼH is continuous

• H̃H is continuous.

We now evaluate the incoming and outgoing one-way fields at the free-surface, via

p̃H,out = S̃H p̃H,in, (3.74)

where S̃H represents the scattering matrix at the free-surface. Explicitly, this results
in:

 p̃−0,TE(z1)

p̃+
1,SH(z1)

p̃+
1,TE(z1)

 =

 r̃−+
TE−TE(z1) t̃−TE−SH(z1)
t̃+SH−TE(z1) r̃+−

SH−SH(z1)
t̃+TE−TE(z1) r̃+−

TE−SH(z1)

t̃−TE−TE(z1)
r̃+−
SH−TE(z1)
r̃+−
TE−TE(z1)

 p̃+
0,TE(z1)

p̃−1,SH(z1)

p̃−1,TE(z1)

 .

(3.75)

In the scattering matrix, the first subscript denotes the outgoing field type, the
second subscript the incoming field type. To solve this system, we require three
boundary conditions. Expressed in terms of two-way field quantities, we use:

 ẼH

0

−H̃H


vacuum

=

 ẼH

τ̃ b,H

−H̃H


p.m.

, (3.76)

where p.m. stands for ‘porous medium’. Before we can express these two-way
field boundary conditions in terms of eigenvector-composition matrices and one-way
fields, we need to derive the eigenvectors for the vacuum.
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For

q̃Hvacuum =

(
ẼH

−H̃H

)
, (3.77)

the SH-TE system matrix reduces to

ÃH
vacuum =

(
0 −ζ

−
(
η̂E + κ2

ζ

)
0

)
. (3.78)

We know that the wavenumber is related to the velocity via ‖k‖ = s
jĉ , where

k = (k1, k2, k3). We now express k3 in terms of the velocity and the radial wavenum-

ber as k2
3 = −s2

ĉ2 − κ2. If k3 = 0, −s
2

ĉ2 = κ2 We can now solve the zero-eigenvalue
problem (where k3 = 0) by solving the problem where determinant of the sys-
tem matrix is equal to zero, leading to −ζη̂E − κ2 = 0. We can recognize that
−s2
ĉ2 = −ζη̂E = −s2µ0ε0, since the electric conductivity of vacuum is zero and the

relative magnetic permeability in vacuum is equal to one. This leads to the well-

known electromagnetic velocity of vacuum: ĉEM,vacuum =
√

1
µ0ε0

. This can be

written in terms of vertical wavenumbers ΓEM . We now derive the SH-TE eigen-
vectors for a vacuum, by solving ÃH

vacuumL̃Hvacuum = L̃HvacuumΛ̃vacuum;H
1 and the

flux-normalization condition L̃H1

(
L̃H2

)t
= 1

2I:(
0 −ζ

−
(
η̂E + κ2

ζ

)
0

)(
dH1,EM dH1,EM

BHEMd
H
1,EM −BHEMdH1,EM

)
=(

dH1,EM dH1,EM
BHEMd

H
1,EM −BHEMdH1,EM

)(
−ΓEM 0

0 ΓEM

)
, (3.79)

leading to

BHEM =
ΓEM
ζ

, (3.80)

dH1,EM =

√
ζ

2ΓEM
. (3.81)

We can now express equation (3.76) in terms of the eigenvectors and one-way fields,
as

 dH1,EM dH1,EM
0 0

BHEMd
H
1,EM −BHEMdH1,EM

( p̃+
0,TE

p̃−0,TE

)
=

 L̃H1;21 L̃H1;22 L̃H1;21 L̃H1;22

L̃H2;11 L̃H2;12 −L̃H2;11 −L̃H2;12

L̃H2;21 L̃H2;22 −L̃H2;21 −L̃H2;22




p̃+
1,SH

p̃+
1,TE

p̃−1,SH
p̃−1,TE

 . (3.82)
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Separating the incoming and outgoing fields at the free-surface, mimicking equation
(3.75), yields −dH1,EM L̃H1;21 L̃H1;22

0 L̃H2;11 L̃H2;12

BHEMd
H
1,EM L̃H2;21 L̃H2;22

 p̃−0,TE
p̃+

1,SH

p̃+
1,TE

 =

 dH1,EM −L̃H1;21 −L̃H1;22

0 L̃H2;11 L̃H2;12

BHEMd
H
1,EM L̃H2;21 L̃H2;22

 p̃+
0,TE

p̃−1,SH
p̃−1,TE

 . (3.83)

Multiplying the left- and right-hand sides of equation (3.83) with the inverse of the
matrix on the left-hand side, yields the scattering matrix S̃H we are after

S̃H =

 −dH1,EM L̃H1;21 L̃H1;22

0 LH2;11 L̃H2;12

BHEMd
H
1,EM L̃H2;21 L̃H2;22

−1 dH1,EM −L̃H1;21 −L̃H1;22

0 L̃H2;11 L̃H2;12

BHEMd
H
1,EM L̃H2;21 L̃H2;22

 .

(3.84)

We now have all required expressions for the local SH-TE transmission and re-
flection coefficients at the free-surface.

3.2.2 P-SV-TM scattering matrix at a free-surface

In a similar way, we can derive the free-surface scattering matrix for the P-SV-TM
mode. The boundary conditions at the free-surface (z = z1) now read:

• τ̃ b,Vnorm and τ̃ b33 are zero

• p̃f is zero

• ẼVnorm is continuous

• H̃V
norm is continuous.

Evaluating the incoming and outgoing one-way wavefields at the free-surface via

p̃V,out = S̃V p̃V,in, (3.85)
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where S̃V represents the scattering matrix. Explicitly, this results in
p̃−0,TM (z1)

p̃+
1,Pf (z1)

p̃+
1,Ps(z1)

p̃+
1,SV (z1)

p̃+
1,TM (z1)

 =


r̃−+
TM−TM (z1) t̃−TM−Pf (z1) t̃−TM−Ps(z1)

t̃+Pf−TM (z1) r̃+−
Pf−Pf (z1) r̃+−

Pf−Ps(z1)

t̃+Ps−TM (z1) r̃+−
Ps−Pf (z1) r̃+−

Ps−Ps(z1)

t̃+SV−TM (z1) r̃+−
SV−Pf (z1) r̃+−

SV−Ps(z1)

t̃+TM−TM (z1) r̃+−
TM−Pf (z1) r̃+−

TM−Ps(z1)

t̃−TM−SV (z1) t̃−TM−TM (z1)
r̃+−
Pf−SV (z1) r̃+−

Pf−TM (z1)

r̃+−
Ps−SV (z1) r̃+−

Ps−TM (z1)
r̃+−
SV−SV (z1) r̃+−

SV−TM (z1)
r̃+−
TM−SV (z1) r̃+−

TM−TM (z1)




p̃+
0,TM (z1)

p̃−1,Pf (z1)

p̃−1,Ps(z1)

p̃−1,SV (z1)

p̃−1,TM (z1)

 .

(3.86)

To solve this system, 5 boundary conditions are needed. We consider the following
boundary conditions:

0

H̃V
norm

0
0

ẼVnorm


vacuum

=


τ̃ b,Vnorm
H̃V
norm

τ̃ b33

−p̃f
ẼVnorm


p.m.

. (3.87)

For

q̃Vvacuum =

(
H̃V
norm

ẼVnorm

)
, (3.88)

the P-SV-TM system matrix reduces to

ÃV
vacuum =

(
0 −η̂E

−ζ − κ2

η̂E
0

)
. (3.89)

We again solve the problem where the determinant of the system matrix is equal
to zero, yielding −η̂Eζ − κ2 = −s2ε0µ0 − κ2 = 0, since in the vacuum, there is no
coupling, i.e. L̂ = 0, reducing ς̂ to η̂E . We again find the expression for the electro-
magnetic velocity in vacuum. We now derive the P-SV-TM eigenvectors for a va-
cuum, by solving ÃV

vacuumL̃Vvacuum = L̃VvacuumΛ̃vacuum,V
1 and the flux-normalization

condition L̃V1

(
L̃V2

)t
= 1

2I:(
0 −η̂E

−ζ − κ2

ς̂ 0

)(
dV1,EM dV1,EM

BVEMd
V
1,EM −BVEMdV1,EM

)
=(

dV1,EM dV1,EM
BVEMd

V
1,EM −BVEMdV1,EM

)(
−ΓEM 0

0 ΓEM

)
, (3.90)
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leading to

BVEM =
ΓEM
η̂E

, (3.91)

dV1,EM =

√
η̂E

2ΓEM
. (3.92)

It is important to realize that the electric conductivity in vacuum is zero. We can
now express equation (3.87) in terms of the eigenvectors and one-way fields, as

0 0
dV1,EM dV1,EM

0 0
0 0

BVEMd
V
1,EM −BVEMdV1,EM


(
p̃+

0,TM (z1)

p̃−0,TM (z1)

)
=


L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34

L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

L̃V2;11 L̃V2;12 L̃V2;13 L̃V2;14

L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24

L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44

L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34

L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

−L̃V2;11 −L̃V2;12 −L̃V2;13 −L̃V2;14

−L̃V2;21 −L̃V2;22 −L̃V2;23 −L̃V2;24

−L̃V2;41 −L̃V2;42 −L̃V2;43 −L̃V2;44





p̃+
1,Pf (z1)

p̃+
1,Ps(z1)

p̃+
1,SV (z1)

p̃+
1,TM (z1)

p̃−1,Pf (z1)

p̃−1,Ps(z1)

p̃−1,SV (z1)

p̃−1,TM (z1)


. (3.93)

Separating the incoming and outgoing fields at the free-surface, mimicking equa-
tion (3.86), yields


0 L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34

−dV1,EM L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

0 L̃V2;11 L̃V2;12 L̃V2;13 L̃V2;14

0 L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24

BVEMd
V
1,EM L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44




p̃−0,TM (z1)

p̃+
1,Pf (z1)

p̃+
1,Ps(z1)

p̃+
1,SV (z1)

p̃+
1,TM (z1)

 =


0 −L̃V1;31 −L̃V1;32 −L̃V1;33 −L̃V1;34

dV1,EM −L̃V1;41 −L̃V1;42 −L̃V1;43 −L̃V1;44

0 L̃V2;11 L̃V2;12 L̃V2;13 L̃V2;14

0 L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24

BVEMd
V
1,EM L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44




p̃+
0,TM (z1)

p̃−1,Pf (z1)

p̃−1,Ps(z1)

p̃−1,SV (z1)

p̃−1,TM (z1)

 .

(3.94)



76 3. The model: Theory of seismo-EM layer-code modeling

Next, left-multiplying the left- and right-hand side of (3.94) with the inverse of
the matrix on the left-hand side gives the desired form of (3.86). We now have all
required expressions for the local P-SV-TM transmission and reflection coefficients
at the free-surface.

3.2.3 SH-TE local scattering matrix at a porous medium/fluid
interface

Consider we have a fluid halfspace (indicated by superscript fl or subscript fluid)
below a porous medium. For the SH-TE propagation mode, the interface separating
both layers has significant effects on the propagating wavefields, since the fluid layer
does not sustain shear waves. We again desire to derive the correct scattering matrix
at such an interface. We start again by writing the problem under consideration as
follows

p̃Hout = S̃p.m./fl;H p̃Hin. (3.95)

For the contrast under consideration, this means p̃−0,SH
p̃−0,TE
p̃+

1,EM

 =

 r̃−+
SH−SH r̃−+

SH−TE t̃−SH−EM
r̃−+
TE−SH r̃−+

TE−TE t̃−TE−EM
t̃+EM−SH t̃+EM−TE r̃+−

EM−EM

 p̃+
0,SH

p̃+
0,TE

p̃−1,EM

 . (3.96)

For this porous medium/fluid interface, we would like to solve for r̃−+, the local
downgoing reflection coefficient. As can be seen, in order to solve for this scattering
matrix, 3 boundary conditions are required. For the SH-TE system under consider-
ation, the following boundary conditions apply for porous medium/fluid interfaces:

• ẼH is continuous across the interface

• −H̃H is continuous across the interface

• τ̃ b,H is zero in the fluid

• ṽs,H is ‘free’.

We select the first three boundary conditions to solve this problem. In terms of a
two-way field-equality, this reads

q̃Hp.m. =

 ẼH

τ̃ b,H

−H̃H

 = q̃Hfluid =

 ẼH

0

−H̃H

 . (3.97)

The composition matrix for the porous medium is already known (see Section 2.3).
However, the composition matrix for the fluid layer needs to be derived in order to
solve the system correctly. Let us consider the following problem(

ẼH

−H̃H

)
=

(
dfl,H1,EM dfl,H1,EM

Bfl,HEM dfl,H1,EM −Bfl,HEM dfl,H1,EM

)(
p̃+
EM

p̃−EM

)
, (3.98)
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where dfl,H1;EM is the power flux-normalization factor for the fluid layer, which needs

to be determined, and Bfl,HEM is a certain scaling factor for the system in the fluid.

The system matrix ÃH
fluid;EM corresponding to this system reads

ÃH
fluid;EM =

(
0 −ζ

−
(
ηe + κ2

ζ

)
0

)
. (3.99)

In order to obtain the expressions for these unknown factors, the relation between
system matrix, eigenvectors and eigenvalues needs to be solved again. For this, the
expression for the electromagnetic velocity in the fluid layer needs to be derived as
well. We can do so by solving

ÃH
fluid;EM =

∣∣∣∣∣ 0 −ζ
−
(
ηe + κ2

ζ

)
0

∣∣∣∣∣ = 0. (3.100)

Writing out each of the terms in its individual constituents, and using

κ2

−s2
=

1

ĉ2EM
, (3.101)

yields

ĉEM =

√
1

µ0

(
σe

s + ε0εr
) , (3.102)

where the electric conductivity is non-zero. Now, we solve for

ÃH
fluid;EM L̃Hfluid;EM = L̃Hfluid;EM Λ̃fl,H

1;EM , (3.103)

reading(
0 −ζ

−
(
ηe + κ2

ζ

)
0

)(
dfl,H1,EM dfl,H1,EM

Bfl,HEM dfl,H1,EM −Bfl,HEM dfl,H1,EM

)
=(

dfl,H1,EM dfl,H1,EM

Bfl,HEM dfl,H1,EM −Bfl,HEM dfl,H1,EM

)(
−ΓEM 0

0 ΓEM

)
. (3.104)

Using first row-first column we find Bfl,HEM = ΓEM
ζ . Now using L̃fl,H1 (L̃fl,H2 )t = 1

2I,

we find Bfl,HEM (dfl,H1,EM )2 = 1
2 , yielding dfl,H1,EM =

√
1

2Bfl,HEM

=
√

ζ
2ΓEM

. This leads to

the following composition matrix for the SH-TE propagation mode in a fluid

L̃fl,H =

(
dfl,H1,EM dfl,H1,EM

Bfl,HEM dfl,H1,EM −Bfl,HEM dfl,H1,EM

)
. (3.105)
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Now, all information is available for applying the correct boundary conditions at
the porous medium/fluid interface, following

L̃Hfluidp̃
H
fluid = L̃Hp.m.p̃

H
p.m.. (3.106)

Writing this equation explicitly, yields dfl,H1,EM dfl,H1,EM

0 0

Bfl,HEM dfl,H1,EM Bfl,HEM dfl,H1,EM

( p̃+
EM

p̃−EM

)
=

 L̃H1;21 L̃H1;22 L̃H1;21 L̃H1;22

L̃H2;11 L̃H2;12 −L̃H2;11 −L̃H2;12

L̃H2;21 L̃H2;22 −L̃H2;21 −L̃H2;22




p̃+
SH

p̃+
TE

p̃−SH
p̃−TE

 . (3.107)

Now, mimicking the format of equation (3.100), we obtain −L̃H1;21 −L̃H1;22 dfl,H1,EM

L̃H2;11 L̃H2;12 0

L̃H2;21 L̃H2;22 Bfl,HEM dfl,H1,EM


 p̃−0,SH

p̃−0,TE
p̃+

1,EM

 =

 L̃H1;11 L̃H1;12 −dfl,H1,EM

L̃H1;21 L̃H1;22 0

L̃H2;21 L̃H2;22 Bfl,HEM dfl,H1,EM


 p̃+

0,SH

p̃+
0,TE

p̃−1,EM

 . (3.108)

Now, to obtain the desired scattering matrix S̃p.m./fl;H , we need to left multiply at
both sides with the inverse of the composition matrix on the left-hand side. Elements
S̃Hαβ then correspond with the local reflection matrix we are after.

3.2.4 SH-TE local scattering matrix at a fluid/porous me-
dium interface

In a similar way, a fluid/p.m. interface scattering matrix can be derived, where
the fluid halfspace is located on top of the porous medium The expression p̃Hout =
S̃fl/p.m.;H p̃Hin then reads p̃−0,EM

p̃+
1,SH

p̃+
1,TE

 =

 r̃−+
EM−EM t̃−EM−SH t̃−EM−TE
t̃+SH−EM r̃+−

SH−SH r̃+−
SH−TE

t̃+TE−EM r̃+−
TE−SH r̃+−

TE−TE

 p̃+
0,EM

p̃−1,SH
p̃−1,TE

 . (3.109)

The expression for the electromagnetic field velocity remains the same, also the
scaling factors determined previously for the SH-TE fluid layer composition matrix
are identical. Using the same set of boundary conditions and setting up the equation
for the two-way fields at the fluid/porous medium interface, using the format of
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equation (3.109), yields dfl,H1,EM −Lfl,H1;21 −Lfl,H1;22

0 −Lfl,H2;11 −Lfl,H2;12

−Bfl,HEM dfl,H1,EM −Lfl,H2;21 −Lfl,H2;22


 p̃−0,EM

p̃+
1,SH

p̃+
1,TE

 =

 −dfl,H1,EM Lfl,H1;21 Lfl,H1;22

0 −Lfl,H2;11 −Lfl,H2;12

−Bfl,HEM dfl,H1,EM −Lfl,H2;21 −Lfl,H2;22


 p̃+

0,EM

p̃−1,SH
p̃−1,TE

 . (3.110)

Now, left-multiplying both sides again with the inverse of the matrix on the left-
hand side, yields the desired scattering matrix at the fluid/porous medium interface.
Here, the elements of the second and third column on the second and third row of
S̃fl/p.m.;H correspond to the desired local reflection coefficient matrix r̃+−.

3.2.5 P-SV-TM scattering matrix at a porous medium/fluid
interface

For the P-SV-TM propagation mode, a similar scattering matrix needs to be derived
for the porous medium/fluid transition. However, the boundary conditions at the
porous medium/fluid interface are slightly different from the ones for the SH-TE
propagation mode, since pressure waves can propagate through a fluid as well as
electromagnetic fields. However, since the shear waves are not sustained in the
fluid layers, the pressure waves and electromagnetic fields travel independently (non-
coupled) from each other. Let us start again writing the problem under consideration
as follows

p̃Vout = S̃p.m./fl;V p̃Vin. (3.111)

For the contrast under consideration, this means

p̃−0,Pf
p̃−0,Ps
p̃−0,SV
p̃−0,TM
p̃+

1,P

p̃+
1,EM


=



r̃−+
Pf−Pf r̃−+

Pf−Ps r̃−+
Pf−SV

r̃−+
Ps−Pf r̃−+

Ps−Ps r̃−+
Ps−SV

r̃−+
SV−Pf r̃−+

SV−Ps r̃−+
SV−SV

r̃−+
TM−Pf r̃−+

TM−Ps r̃−+
TM−SV

t̃+P−Pf t̃+P−Ps t̃+P−SV
t̃+EM−Pf t̃+EM−Ps t̃+EM−SV

r̃−+
Pf−TM t̃−Pf−P t̃−Pf−EM
r̃−+
Ps−TM t̃−Ps−P t̃−Ps−EM
r̃−+
SV−TM t̃−SV−P t̃−SV−EM
r̃−+
TM−TM t̃−TM−P t̃−TM−EM
t̃+P−TM r̃+−

P−P r̃+−
P−EM

t̃+EM−TM r̃+−
EM−P r̃+−

EM−EM





p̃+
0,Pf

p̃+
0,Ps

p̃+
0,SV

p̃+
0,TM

p̃−1,P
p̃−1,EM


. (3.112)

For this interface, we would like to solve for r̃−+, the local reflection coefficient
expressing the reflection of a downgoing field into an upgoing field. As can be seen,
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in order to solve for this scattering matrix, 6 boundary conditions are required.
Consider we have a fluid layer below a solid material layer. For the P-SV-TM
propagation mode, the interface separating both layers has significant effects on the
propagating wavefields. The boundary conditions for this propagation mode are a
bit more tedious than the ones for the SH-TE system. We here consider open-pore
boundary conditions according to Deresiewicz & Skalak (1963); Pride & Haartsen
(1996); Schakel & Smeulders (2010). The following relations hold:

(1− φ)ṽs3 + φṽf3 = ṽfluid3 , (3.113)

−p̃f = −p̃fluid, (3.114)

σ̃13 = σ̃33 = 0; intergranular stress, (3.115)

H̃V
norm = H̃V

norm, (3.116)

ẼVnorm = ẼVnorm. (3.117)

Furthermore, the following relation between bulk stress and intergranular stress
holds (Pride & Haartsen, 1996; Schakel & Smeulders, 2010)

τ̃ b = −σ̃ − p̃I. (3.118)

Also, Van Dalen (2011) shows this relation as follows

τij = −σij − (1− φ)pδij . (3.119)

When encountering a fluid, where porosity φ = 1, Van Dalen shows that

τij = −σij − (1− φ)pδij = −φp. (3.120)

Effectively, for the vertical bulk stress τ b33, this yields,

τ b33 = −σ33 − p+ φp = −φp. (3.121)

When encountering a fluid, σ33 = 0, and φ = 1, yielding indeed

τ̃ b33 = −p̃. (3.122)

For the P-SV-TM system under consideration, the following boundary conditions
apply for fluid-porous medium interfaces:

• ẼVnorm is continuous across the interface

• H̃V
norm is continuous across the interface

• p̃f is continuous across the interface

• ṽs3 + w̃3 is continuous across the interface and forms ṽfluid3

• τ̃ b,Vnorm is zero in the fluid layer

• τ̃ b33 + p̃f is zero in the fluid layer
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• ṽVnorm is ‘free’.

We select the first six boundary conditions to solve this problem. The conditions for
the horizontal particle velocities ṽV are then free.

Recall that the relation between two-way recorded wavefield quantities and the
one-way decomposed wavefields reads

q̃V = L̃V p̃V , (3.123)

where

q̃Vp.m. =



ṽs3
w̃3

τ̃ b,Vnorm
H̃V
norm

τ̃ b33

−p̃f
ṽs,Vnorm
ẼVnorm


. (3.124)

Applying the correct fluid-porous medium boundary conditions, yields the following
equality across the interface

q̃Vp.m. =



ṽs3 + w̃3

τ̃ b,Vnorm
H̃V
norm

τ b33 + p̃f

−p̃f
ẼVnorm

 = q̃Vfluid =


ṽfluid3

0

H̃V
norm

0
−p̃fluid
ẼVnorm

 . (3.125)

The composition matrix for the porous medium is already known (see Section
2.3). However, the composition matrix for the fluid layer needs to be derived in
order to solve the system correctly. As mentioned before, the pressure waves and
the electromagnetic fields are uncoupled in the fluid layer, meaning L̂ = 0. There-
fore, we can derive scaling factors and composition matrices for the seismic and
electromagnetic systems independently.

We can derive the system matrix ÃV
fluid;P corresponding to the acoustic system

in a fluid straight from the basic acoustic wave equation. The system matrix for the
field vector (q̃Vfluid)

t = (ṽfluid3 ,−p̃fluid), reads

Ãfl;V
P =

(
0 s

Kf + κ2

sρf

sρf 0

)
. (3.126)

Again, the system matrix for the P-SV-TM electromagnetic system in a fluid is given
by:

Ãfl;V
EM =

(
0 −η̂E

−ζ − κ2

η̂E
0

)
. (3.127)
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Solving the zero-eigenvalue problem for both cases yields the acoustic velocity in a

fluid, ĉP =
√

Kf

ρf
, and the electromagnetic velocity in a fluid, ĉEM =

√
1

µ0( σ̂
e

s +ε)
.

Next, we solve for

ÃV
fluid;P L̃Vfluid;P = L̃Vfluid;P Λ̃fl,V

1;P , (3.128)

and

ÃV
fluid;EM L̃Vfluid;EM = L̃Vfluid;EM Λ̃fl,V

1;EM , (3.129)

explicitly reading as(
0 s

Kf + κ2

sρf

sρf 0

)(
dfl,V1,P dfl,V1,P

Bfl,VP dfl,V1,P −Bfl,VP dfl,V1,P

)
=(

dfl,V1,P dfl,V1,P

Bfl,VP dfl,V1,P −Bfl,VP dfl,V1,P

)(
−ΓP 0

0 ΓP

)
, (3.130)

and (
0 −η̂E

−ζ − κ2

η̂E
0

)(
dfl,V1,EM dfl,V1,EM

Bfl,VEM dfl,V1,EM −Bfl,VEM dfl,V1,EM

)
=(

dfl,V1,EM dfl,V1,EM

Bfl,VEM dfl,V1,EM −Bfl,VEM dfl,V1,EM

)(
−ΓEM 0

0 ΓEM

)
. (3.131)

We find for the seismic scaling factors Bfl,VP = − sρfΓP
and for the electromagnetic

scaling Bfl,VEM = ΓEM
η̂E

. Solving for the power-flux normalization factors, we derive

dfl,V1,P =
√
− ΓP

2sρf
, and dfl,V1,EM =

√
η̂e

2ΓEM
.

Now, all information is available for applying the correct boundary conditions
of equation (3.125) at the porous medium/fluid interface, written in terms of eigen-
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vectors and one-way fields as:

dfl,V1,P 0 dfl,V1,P 0

0 0 0 0

0 dfl,V1,EM 0 dfl,V1,EM

0 0 0 0

Bfl,VP dfl,V1,P 0 −Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM 0 −Bfl,VEM dfl,V1,EM




p̃+P
p̃+EM
p̃−P
p̃−EM

 =



L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

L̃V2;11 − L̃V2;21 L̃V2;12 − L̃V2;22 L̃V2;13 − L̃V2;23 L̃V2;14 − L̃V2;24
L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24
L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44

L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

−(L̃V2;11 − L̃V2;21) −(L̃V2;12 − L̃V2;22) −(L̃V2;13 − L̃V2;23) −(L̃V2;14 − L̃V2;24)

−L̃V2;21 −L̃V2;22 −L̃V1;23 −L̃V2;24
−L̃V2;41 −L̃V1;42 −L̃V2;43 −L̃V2;44





p̃+Pf
p̃+Ps
p̃+SV
p̃+TM
p̃−Pf
p̃−Ps
p̃−SV
p̃−TM


.

(3.132)

Now separating incoming and outgoing fields, mimicking the format of equation
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(3.112), we obtain

−(L̃V1;11 + L̃V1;21) −(L̃V1;12 + L̃V1;22) −(L̃V1;13 + L̃V1;23) −(L̃V1;14 + L̃V1;24)

−L̃V1;31 −L̃V1;32 −L̃V1;33 −L̃V1;34
−L̃V1;41 −L̃V1;42 −L̃V1;43 −L̃V1;44

(L̃V2;11 − L̃V2;21) (L̃V2;12 − L̃V2;22) (L̃V2;13 − L̃V2;23) (L̃V2;14 − L̃V2;24)

L̃V2;21 L̃V2;22 L̃V1;23 L̃V2;24
L̃V2;41 L̃V1;42 L̃V2;43 L̃V2;44

dfl,V1,P 0

0 0

0 dfl,V1,EM

0 0

Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM





p̃−Pf
p̃−Ps
p̃−SV
p̃−TM
p̃+P
p̃+EM


=



L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

L̃V2;11 − L̃V2;21 L̃V2;12 − L̃V2;22 L̃V2;13 − L̃V2;23 L̃V2;14 − L̃V2;24
L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24
L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44

−dfl,V1,P 0

0 0

0 −dfl,V1,EM

0 0

Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM





p̃+Pf
p̃+Ps
p̃+SV
p̃+TM
p̃−P
p̃−EM


. (3.133)

Now, to obtain the desired scattering matrix S̃p.m/fl;V , we need to left multiply at
both sides with the inverse of the composition matrix on the left-hand side.
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3.2.6 P-SV-TM scattering matrix at a fluid/porous medium
interface

In a similar way, we can derive the P-SV-TM scattering matrix at a fluid/porous
medium interface. For the contrast under consideration, we start with

p̃−P
p̃−EM
p̃+
Pf

p̃+
Ps

p̃+
SV

p̃+
TM

 =



r̃−+
P−P r̃−+

P−EM t̃−P−Pf
r̃−+
EM−P r̃−+

EM−EM t̃−EM−Pf
t̃+Pf−P t̃+Pf−EM r̃+−

Pf−Pf
t̃+Ps−P t̃+Ps−EM r̃+−

Ps−Pf
t̃+SV−P t̃+SV−EM r̃+−

SV−Pf
t̃+TM−P t̃+TM−EM r̃+−

TM−Pf

t̃−P−Ps t̃−P−SV t̃−P−TM
t̃−EM−Ps t̃−EM−SV t̃−EM−TM
r̃+−
Pf−Ps r̃+−

Pf−SV r̃+−
Pf−TM

r̃+−
Ps−Ps r̃+−

Ps−SV r̃+−
Ps−TM

r̃+−
SV−Ps r̃+−

SV−SV r̃+−
SV−TM

r̃+−
TM−Ps r̃+−

TM−SV r̃+−
TM−TM





p̃+
P

p̃+
EM

p̃−Pf
p̃−Ps
p̃−SV
p̃−TM

 . (3.134)

For this interface, we would like to solve for r̃+−, the local reflection coefficient ex-
pressing the reflection of an upgoing field into a downgoing field. Again, in order to
solve for this scattering matrix, 6 boundary conditions are required. We select the
same boundary conditions as for the porous medium/fluid P-SV-TM scenario. All
acoustic and EM velocities, system matrices, scaling factors and power-flux normal-
ization factors remain also the same. So, all information is available for applying
the correct boundary conditions of equation (3.125) at the fluid/porous medium
interface. Separating incoming and outgoing fields, mimicking the format of equa-
tion(3.134), we obtain
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−dfl,V1,P 0

0 0

0 −dfl,V1,EM

0 0

Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM

L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

(L̃V2;11 − L̃V2;21) (L̃V2;12 − L̃V2;22) (L̃V2;13 − L̃V2;23) (L̃V2;14 − L̃V2;24)

L̃V2;21 L̃V2;22 L̃V1;23 L̃V2;24
L̃V2;41 L̃V1;42 L̃V2;43 L̃V2;44





p̃−P
p̃−EM
p̃+Pf
p̃+Ps
p̃+SV
p̃+TM


=



dfl,V1,P 0

0 0

0 dfl,V1,EM

0 0

Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM

−(L̃V1;11 + L̃V1;21) −(L̃V1;12 + L̃V1;22) −(L̃V1;13 + L̃V1;23) −(L̃V1;14 + L̃V1;24)

−L̃V1;31 −L̃V1;32 −L̃V1;33 −L̃V1;34
−L̃V1;41 −L̃V1;42 −L̃V1;43 −L̃V1;44

L̃V2;11 − L̃V2;21 L̃V2;12 − L̃V2;22 L̃V2;13 − L̃V2;23 L̃V2;14 − L̃V2;24
L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24
L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44





p̃+P
p̃+EM
p̃−Pf
p̃−Ps
p̃−SV
p̃−TM


.

(3.135)

Now, to obtain the desired scattering matrix S̃fl/p.m.;V , we need to left multiply at
both sides with the inverse of the composition matrix on the left-hand side.

3.2.7 SH-TE global downgoing reflection matrix at a
fluid/porous medium interface

Thus far, we have considered the effects of porous medium/fluid and fluid/porous
medium interfaces on the local scattering matrices. However, these interfaces also
have an effect on the global reflection matrices, that need to be properly updated
across these interfaces in the recursive scheme. In the following sections, we will
describe the expressions required for correctly updating the global reflection matrices
across these interfaces.

Let us start with the scenario where we have a fluid halfspace above a porous
medium, for the SH-TE propagation mode. We desire to correctly update the global
downgoing reflection matrix across the fluid/porous medium interface. We again
select the same boundary conditions as discussed before for the SH-TE system in
porous medium/fluid and fluid/porous medium transitions, to solve the problem.

Applying the correct fluid-porous medium boundary conditions, yields the fol-
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lowing equality across the interface

q̃Hp.m. =

 ẼH

τ̃ b,H

−H̃H

 = q̃Hfluid =

 ẼH

0

−H̃H

 . (3.136)

We already know the required composition matrices for the SH-TE system in a
porous medium and in a fluid. Writing the equality (3.145) in terms of one-way
fields yields

L̃Hfluidp̃
H
fluid = L̃Hp.m.p̃

H
p.m., (3.137)

or explicitly dfl,H1;EM dfl,H1;EM

0 0

Bfl,HEM dfl,H1;EM −Bfl,HEM dfl,H1;EM

( p̃+
EM

p̃−EM

)
=

 L̃H1;21 vH1;22 L̃H1;21 L̃H1;22

L̃H2;11 L̃H2;12 −L̃H2;11 −L̃H2;12

L̃H2;21 L̃H2;22 −L̃H2;21 −L̃H2;22




p̃+
SH

p̃+
TE

p̃−SH
p̃−TE

 . (3.138)

Here, we want to find the global downgoing reflection matrix (R̃−+
n (zn+1)) at the

fluid side of the interface. In order to find this reflection matrix, we need to express
it in terms of the global reflection matrix at the porous medium side of the interface

R̃
−+

n+1(zn+1). On the fluid side of the interface, the following relation holds

p̃−fluid = R̃−+
n (zn+1)p̃+

fluid. (3.139)

Similarly, in the porous medium, the upgoing fields can be expressed as

p̃−p.m. = R̃
−+

n+1(zn+1)p̃+
p.m.. (3.140)

We can now express the one-way upgoing fields in the porous medium in terms of
the downgoing fields in the porous medium times the global reflection matrix at the

porous medium side of the interface, R̃
−+

n+1(zn+1), as

(
p̃−SH(zn+1)
p̃−TE(zn+1)

)
=

(
R̃−+
SH−SH R̃−+

SH−TE
R̃−+
TE−SH R̃−+

TE−TE

)(
p̃+
SH(zn+1)
p̃+
TE(zn+1)

)
. (3.141)

Using these expressions, we can rewrite equation (3.138) in terms of only downgoing
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fields at the porous medium side:
L̃H1;21

[
1 + R̃−+

11

]
+ L̃H1;22R̃−+

21 L̃H1;22

[
1 + R̃−+

22

]
+ L̃H1;21R̃−+

12

L̃H2;11

[
1− R̃−+

11

]
− L̃H2;12R̃−+

21 L̃H2;12

[
1− R̃−+

22

]
− L̃H2;11R̃−+

12

L̃H2;21

[
1− R̃−+

11

]
− L̃H2;22R̃−+

21 L̃H2;22

[
1− R̃−+

22

]
− L̃H2;21R̃−+

12


 p̃+

SH

p̃+
TE



=


dfl,H1;EM dfl,H1;EM

0 0

Bfl,HEM dfl,H1;EM −Bfl,HEM dfl,H1;EM


 p̃+

EM

p̃−EM

 .

(3.142)

We now first reorganize this expression separating the unknown, outgoing one-
way fields from the incoming one-way fields, as


L̃H1;21

[
1 + R̃−+

11

]
+ L̃H1;22R̃−+

21 L̃H1;22

[
1 + R̃−+

22

]
+ L̃H1;21R̃−+

12

L̃H2;11

[
1− R̃−+

11

]
− L̃H2;12R̃−+

21 L̃H2;12

[
1− R̃−+

22

]
− L̃H2;11R̃−+

12

L̃H2;21

[
1− R̃−+

11

]
− L̃H2;22R̃−+

21 L̃H2;22

[
1− R̃−+

22

]
− L̃H2;21R̃−+

12

−dfl,H1;EM

0

Bfl,HEM dfl,H1;EM




p̃+
SH

p̃+
TE

p̃−EM

 =


dfl,H1;EM

0

Bfl,HEM dfl,H1;EM

( p̃+
EM

)
. (3.143)

Now, we can solve for the unknown one-way fields on the left-hand side, by mul-
tiplying both sides with the inverse of the matrix on the left-hand side, yielding

 p̃+
SH

p̃+
TE

p̃−EM

 =

 T̃+
SH−TE
T̃+
TE−TE

R̃−+
n (zn+1)

 p̃+
EM , (3.144)

where R̃−+
n (zn+1) is the global reflection coefficient at the fluid side we were after,

correctly updated across the interface in the recursive scheme. We also recognize
the global transmission coefficients that are required for example when the source is
located in the fluid and the receivers in the porous medium.

3.2.8 SH-TE global upgoing reflection matrix at a
porous medium/fluid interface

We now consider the scenario where we have a fluid halfspace below a porous me-
dium, for the SH-TE propagation mode, and desire to correctly update the global
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upgoing reflection matrix across the porous medium/fluid interface. We again select
the same boundary conditions as discussed before for the SH-TE system in porous
medium/fluid and fluid/porous medium transitions, to solve the problem.

Applying the correct fluid/porous medium boundary conditions, yields the fol-
lowing equality across the interface

q̃Hp.m. =

 ẼH

τ̃ b,H

−H̃H

 = q̃Hfluid =

 ẼH

0

−H̃H

 . (3.145)

We already know the required composition matrices for the SH-TE system in a
porous medium and in a fluid.

Writing the equality (3.145) in terms of one-way fields yields

L̃Hfluidp̃
H
fluid = L̃Hp.m.p̃

H
p.m., (3.146)

or explicitly dfl,H1;EM dfl,H1;EM

0 0

Bfl,HEM dfl,H1;EM −Bfl,HEM dfl,H1;EM

( p̃+
EM

p̃−EM

)
=

 L̃H1;21 L̃H1;22 L̃H1;21 L̃H1;22

L̃H2;11 L̃H2;12 −L̃H2;11 −L̃H2;12

L̃H2;21 L̃H2;22 −L̃H2;21 −L̃H2;22




p̃+
SH

p̃+
TE

p̃−SH
p̃−TE

 . (3.147)

Here, we want to find the global upgoing reflection matrix R̃+−
n+1(zn+1) at the fluid

side of the interface. In order to find this reflection matrix, we need to express it
in terms of the global upgoing reflection matrix at the porous medium side of the

interface R̃
+−
n (zn+1). On the fluid side of the interface, the following relation holds

p̃+
fluid = R̃+−

n+1(zn+1)p̃−fluid. (3.148)

Similarly, in the porous medium, the downgoing fields can be expressed as

p̃+
p.m. = R̃

+−
n (zn+1)p̃−p.m.. (3.149)

We can now express the one-way downgoing fields in the porous medium in terms
of the upgoing fields in the porous medium times the global reflection matrix at the

porous medium side of the interface, R̃
+−
n (zn+1), as

(
p̃+
SH(zn+1)
p̃+
TE(zn+1)

)
=

(
R̃+−
SH−SH R̃+−

SH−TE
R̃+−
TE−SH R̃+−

TE−TE

)(
p̃−SH(zn+1)
p̃−TE(zn+1)

)
. (3.150)



90 3. The model: Theory of seismo-EM layer-code modeling

Using these expressions, we can rewrite equation (3.147) in terms of only upgoing
fields at the porous medium side:

L̃H1;21

[
1 + R̃+−

11

]
+ L̃H1;22R̃+−

21 L̃H1;22

[
1 + R̃+−

22

]
+ L̃H1;21R̃+−

12

−L̃H2;11

[
1− R̃+−

11

]
+ L̃H2;12R̃+−

21 −L̃H2;12

[
1− R̃+−

22

]
+ L̃H2;11R̃+−

12

−L̃H2;21

[
1− R̃+−

11

]
+ L̃H2;22R̃+−

21 −L̃H2;22

[
1− R̃+−

22

]
+ L̃H2;21R̃+−

12


 p̃−SH

p̃−TE



=


dfl,H1;EM dfl,H1;EM

0 0

Bfl,HEM dfl,H1;EM −Bfl,HEM dfl,H1;EM


 p̃+

EM

p̃−EM

 .

(3.151)

We now first reorganize this expression separating the unknown, outgoing one-way
fields from the incoming one-way fields, as

L̃H1;21

[
1 + R̃+−

11

]
+ L̃H1;22R̃+−

21 L̃H1;22

[
1 + R̃+−

22

]
+ L̃H1;21R̃+−

12

−L̃H2;11

[
1− R̃+−

11

]
+ L̃H2;12R̃+−

21 −L̃H2;12

[
1− R̃+−

22

]
+ L̃H2;11R̃+−

12

−L̃H2;21

[
1− R̃+−

11

]
+ L̃H2;22R̃+−

21 −L̃H2;22

[
1− R̃+−

22

]
+ L̃H2;21R̃+−

12

−dfl,H1,EM

0

−Bfl,HEM dfl,H1,EM




p̃−SH

p̃−TE

p̃+
EM

 =


dfl,H1,EM

0

−Bfl,HEM dfl,H1;EM

( p̃−EM )
. (3.152)

Now, we can solve for the unknown one-way fields on the left-hand side, by mul-
tiplying both sides with the inverse of the matrix on the left-hand side, yielding

 p̃−SH
p̃−TE
p̃+
EM

 =

 T̃−SH−TE
T̃−TE−TE

R̃+−
n+1(zn+1)

 p̃−EM , (3.153)

where R̃+−
n+1(zn+1) is the global upgoing reflection coefficient at the fluid side we

were after, correctly updated across the interface in the recursive scheme. We also
recognize the global transmission coefficients that are required for example when the
source is located in the fluid and the receivers in the porous medium.

3.2.9 P-SV-TM global downgoing reflection matrix at a
fluid/porous medium interface

Similar to the SH-TE scenario, we also require expressions for the P-SV-TM propaga-
tion mode to correctly update the global reflection coefficients across fluid/porous
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medium interfaces. We consider the scenario where a fluid halfspace is located above
a porous medium, and we desire to correctly update the downgoing global reflection
matrix in our recursive scheme. We select the same boundary conditions as discussed
before for the P-SV-TM system in porous medium/fluid and fluid/porous medium
transitions, to solve the problem.

We again apply the P-SV-TM fluid-solid boundary conditions of equation (3.125).
We already know the required composition matrices for the P-SV-TM system in a
porous medium and in a fluid. Writing equality (3.125) in terms of one-way fields
yields



dfl,V1,P 0 dfl,V1,P 0

0 0 0 0

0 dfl,V1,EM 0 dfl,V1,EM

0 0 0 0

Bfl,VP dfl,V1,P 0 −Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM 0 −Bfl,VEM dfl,V1,EM




p̃+P
p̃+EM
p̃−P
p̃−EM

 =



L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

L̃V2;11 − L̃V2;21 L̃V2;12 − L̃V2;22 L̃V2;13 − L̃V2;23 L̃V2;14 − L̃V2;24
L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24
L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44

L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

−(L̃V2;11 − L̃V2;21) −(L̃V2;12 − L̃V2;22) −(L̃V2;13 − L̃V2;23) −(L̃V2;14 − L̃V2;24)

−L̃V2;21 −L̃V2;22 −L̃V1;23 −L̃V2;24
−L̃V2;41 −L̃V1;42 −L̃V2;43 −L̃V2;44





p̃+Pf
p̃+Ps
p̃+SV
p̃+TM
p̃−Pf
p̃−Ps
p̃−SV
p̃−TM


.

(3.154)

Here, we want to find the global downgoing reflection matrix (R̃−+
n (zn+1)) at

the fluid side of the interface. In order to find this reflection matrix, we need to
express it in terms of the global reflection coefficient at the porous medium side of
the interface R̃−+

n+1(zn+1). On the fluid side of the interface, the following relation
holds

p̃−fl = R̃−+
n (zn+1)p̃+

fl. (3.155)

Similarly, in the porous medium, the upgoing fields can be expressed as

p̃−p.m. = R̃
−+

n+1(zn+1)p̃+
p.m.. (3.156)

We can now express the one-way upgoing fields in the porous medium in terms of
the downgoing fields in the porous medium times the global reflection matrix at the

porous medium side R̃
−+

n+1(zn+1):
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p̃−Pf
p̃−Ps
p̃−SV
p̃−TM

 =


R̃−+
Pf−Pf R̃−+

Pf−Ps R̃−+
Pf−SV R̃−+

Pf−TM
R̃−+
Ps−Pf R̃−+

Ps−Ps R̃−+
Ps−SV R̃−+

Ps−TM
R̃−+
SV−Pf R̃−+

SV−Ps R̃−+
SV−SV R̃−+

SV−TM
R̃−+
TM−Pf R̃−+

TM−Ps R̃−+
TM−SV R̃−+

TM−TM




p̃+
Pf

p̃+
Ps

p̃+
SV

p̃+
TM

 .

(3.157)

Using these expressions, we can rewrite equation (3.154) in terms of only down-
going fields at the porous medium side

L̃11 L̃12 L̃13 L̃14

L̃21 L̃22 L̃23 L̃24

L̃31 L̃32 L̃33 L̃34

L̃41 L̃42 L̃43 L̃44

L̃51 L̃52 L̃53 L̃54

L̃61 L̃62 L̃63 L̃64




p̃+
Pf

p̃+
Ps

p̃+
SV

p̃+
TM



=



dfl,V1,P 0 dfl,V1,P 0

0 0 0 0

0 dfl,V1,EM 0 dfl,V1,EM

0 0 0 0

Bfl,VP dfl,V1,P 0 −Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM 0 −Bfl,VEM dfl,V1,EM




p̃+
P

p̃+
EM

p̃−P
p̃−EM

 ,

(3.158)

Here,

L̃1J = (L̃1;1I + L̃1;2I)(δIJ + R̃−+
IJ ), (3.159)

L̃2J = L̃1;3I(δIJ + R̃−+
IJ ), (3.160)

L̃3J = L̃1;4I(δIJ + R̃−+
IJ ), (3.161)

L̃4J = (L̃2;1I − L̃2;2I)(δIJ − R̃−+
IJ ), (3.162)

L̃5J = L̃2;2I(δIJ − R̃−+
IJ ), (3.163)

L̃6J = L̃2;4I(δIJ − R̃−+
IJ ), (3.164)

where in this case the capital subscripts I and J can take the values 1 to 4 and the
Einstein summation convention holds for repeated indices.

We separate the unknown, outgoing one-way fields from the incoming one-way



3.2. Including a pressure-free surface andfluid/porous medium/fluid boundaries 93

fields, yielding:

L̃11 L̃12 L̃13 L̃14 −dfl,V1,P 0

L̃21 L̃22 L̃23 L̃24 0 0

L̃31 L̃32 L̃33 L̃34 0 −dfl,V1,EM

L̃41 L̃42 L̃43 L̃44 0 0

L̃51 L̃52 L̃53 L̃54 Bfl,VP dfl,V1,P 0

L̃61 L̃62 L̃63 L̃64 0 Bfl,VEM dfl,V1,EM





p̃+
Pf

p̃+
Ps

p̃+
SV

p̃+
TM

p̃−P
p̃−EM

 = (3.165)



dfl,V1,P 0

0 0

0 dfl,V1,EM

0 0

Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM


(

p̃+
P

p̃+
EM

)
. (3.166)

We solve for the unknown one-way fields on the left-hand side by left-multiplying
both sides with the inverse of the matrix on the left-hand side, yielding

p̃+
Pf

p̃+
Ps

p̃+
SV

p̃+
TM

p̃−P
p̃−EM

 =



T̃+
Pf−P T̃+

Pf−EM
T̃+
Ps−P T̃+

Ps−EM
T̃+
SV−P T̃+

SV−EM
T̃+
EM−P T̃+

EM−EM
R̃−+
P−P ;n(zn+1) R̃−+

P−EM ;n(zn+1)

R̃−+
EM−P ;n(zn+1) R̃−+

EM−EM ;n(zn+1)


(

p̃+
P

p̃+
EM

)
, (3.167)

where R̃−+
n (zn+1) represent the global reflection coefficients at the fluid-side that we

were after.

3.2.10 P-SV-TM global upgoing reflection matrix at a
porous medium/fluid interface

We now consider the scenario where a fluid halfspace is located below a porous
medium, and we desire to correctly update the upgoing global reflection matrix in
our recursive scheme. The procedure is similar as for the case where a fluid halfspace
is located above a porous medium. We select the same boundary conditions as
discussed before for the P-SV-TM system in porous medium/fluid and fluid/porous
medium transitions, to solve the problem.

We again apply the P-SV-TM fluid-porous medium boundary conditions of equa-
tion (3.125). We already know the required composition matrices for the P-SV-TM
system in a porous medium and in a fluid. Writing the equality (3.125) in terms of
one-way fields yields
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dfl,V1,P 0 dfl,V1,P 0

0 0 0 0

0 dfl,V1,EM 0 dfl,V1,EM

0 0 0 0

Bfl,VP dfl,V1,P 0 −Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM 0 −Bfl,VEM dfl,V1,EM




p̃+P
p̃+EM
p̃−P
p̃−EM

 =



L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

L̃V2;11 − L̃V2;21 L̃V2;12 − L̃V2;22 L̃V2;13 − L̃V2;23 L̃V2;14 − L̃V2;24
L̃V2;21 L̃V2;22 L̃V2;23 L̃V2;24
L̃V2;41 L̃V2;42 L̃V2;43 L̃V2;44

L̃V1;11 + L̃V1;21 L̃V1;12 + L̃V1;22 L̃V1;13 + L̃V1;23 L̃V1;14 + L̃V1;24
L̃V1;31 L̃V1;32 L̃V1;33 L̃V1;34
L̃V1;41 L̃V1;42 L̃V1;43 L̃V1;44

−(L̃V2;11 − L̃V2;21) −(L̃V2;12 − L̃V2;22) −(L̃V2;13 − L̃V2;23) −(L̃V2;14 − L̃V2;24)

−L̃V2;21 −L̃V2;22 −L̃V1;23 −L̃V2;24
−L̃V2;41 −L̃V1;42 −L̃V2;43 −L̃V2;44





p̃+Pf
p̃+Ps
p̃+SV
p̃+TM
p̃−Pf
p̃−Ps
p̃−SV
p̃−TM


.

(3.168)

Here, we want to find the global upgoing reflection matrix (R̃+−
n+1(zn+1)) at the

fluid side of the interface. In order to find this reflection matrix, we need to express it
in terms of the global reflection coefficient at the porous medium side of the interface
R̃+−
n (zn+1). On the fluid side of the interface, the following relation holds

p̃+
fl = R̃+−

n+1(zn+1)p̃−fl. (3.169)

Similarly, in the porous medium, the downgoing fields can be expressed as

p̃+
p.m. = R̃

+−
n (zn+1)p̃−p.m.. (3.170)

We can now express the one-way downgoing fields in the porous medium in terms
of the upgoing fields in the porous medium times the global reflection matrix at the

porous medium side R̃
+−
n (zn+1):


p̃+
Pf

p̃+
Ps

p̃+
SV

p̃+
TM

 =


R̃+−
Pf−Pf R̃+−

Pf−Ps R̃+−
Pf−SV R̃+−

Pf−TM
R̃+−
Ps−Pf R̃+−

Ps−Ps R̃+−
Ps−SV R̃+−

Ps−TM
R̃+−
SV−Pf R̃+−

SV−Ps R̃+−
SV−SV R̃+−

SV−TM
R̃+−
TM−Pf R̃+−

TM−Ps R̃+−
TM−SV R̃+−

TM−TM




p̃−Pf
p̃−Ps
p̃−SV
p̃−TM

 .

(3.171)

Using these expressions, we can rewrite equation (3.168) in terms of only upgoing
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fields at the porous medium side

L̃11 L̃12 L̃13 L̃14

L̃21 L̃22 L̃23 L̃24

L̃31 L̃32 L̃33 L̃34

L̃41 L̃42 L̃43 L̃44

L̃51 L̃52 L̃53 L̃54

L̃61 L̃62 L̃63 L̃64




p̃−Pf
p̃−Ps
p̃−SV
p̃−TM



=



dfl,V1,P 0 dfl,V1,P 0

0 0 0 0

0 dfl,V1,EM 0 dfl,V1,EM

0 0 0 0

Bfl,VP dfl,V1,P 0 −Bfl,VP dfl,V1,P 0

0 Bfl,VEM dfl,V1,EM 0 −Bfl,VEM dfl,V1,EM




p̃+
P

p̃+
EM

p̃−P
p̃−EM

 ,

(3.172)

where the expressions for L̃(1:6)J are identical to the expressions for the P-SV-TM

global downgoing reflection matrix (3.159)-(3.164), except for the fact that R̃−+
IJ

should be replaced by R̃+−
IJ , and that equations (3.162)-(3.164) should be multiplied

by minus one.
We separate the unknown, outgoing one-way fields from the incoming one-way

fields, yielding:

L̃11 L̃12 L̃13 L̃14 −dfl,V1,P 0

L̃21 L̃22 L̃23 L̃24 0 0

L̃31 L̃32 L̃33 L̃34 0 −dfl,V1,EM

L̃41 L̃42 L̃43 L̃44 0 0

L̃51 L̃52 L̃53 L̃54 −Bfl,VP dfl,V1,P 0

L̃61 L̃62 L̃63 L̃64 0 −Bfl,VEM dfl,V1,EM





p̃−Pf
p̃−Ps
p̃−SV
p̃−TM
p̃+
P

p̃+
EM

 =

(3.173)

dfl,V1,P 0

0 0

0 dfl,V1,EM

0 0

−Bfl,VP dfl,V1,P 0

0 −Bfl,VEM dfl,V1,EM


(

p̃−P
p̃−EM

)
.

(3.174)

We solve for the unknown one-way fields on the left-hand side by left-multiplying
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both sides with the inverse of the matrix on the left-hand side, yielding

p̃−Pf
p̃−Ps
p̃−SV
p̃−TM
p̃+
P

p̃+
EM

 =



T̃−Pf−P T̃−Pf−EM
T̃−Ps−P T̃−Ps−EM
T̃−SV−P T̃−SV−EM
T̃−EM−P T̃−EM−EM

R̃+−
P−P ;n+1(zn+1) R̃+−

P−EM ;n+1(zn+1)

R̃+−
EM−P ;n+1(zn+1) R̃+−

EM−EM ;n+1(zn+1)


(

p̃−P
p̃−EM

)
,

(3.175)

where R̃+−
n+1(zn+1) represent the global upgoing reflection coefficients at the fluid-

side that we were after. We now have obtained all required expressions (for both the
SH-TE and P-SV-TM propagation mode), for modeling scenarios with a free-surface,
and scenarios with fluid/porous medium/fluid transitions.
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3.3 Field composition, combining modes and
Fourier-Bessel transformations

For layered-Earth geometries, we have carried out all calculations and correspond-
ing seismo-EM layer-code modeling in the horizontal wavenumber-frequency domain.
However, we would like to obtain data in the space-time domain as the final output
from our layer-code modeling. For the frequency-to-time transformation, we make
use of a temporal inverse Fourier transformation. The horizontal wavenumber ex-
pressions cannot be analytically transformed back to the space domain; the inverse
spatial transformation has to be computed numerically. We could of course make use
of a 2D spatial inverse Fourier Transformation. However, numerically speaking, this
is quite an expensive procedure. We therefore choose to rewrite the set of equations
in such a way, that the use of Fourier-Bessel transformations is possible.

3.3.1 Field decomposition and composition

Before diving into the details of the Fourier-Bessel transformations, let us first focus
on field decomposition and composition. As we have seen, we can capture the 3D
governing set of seismo-electromagnetic equations for horizontally layered, 1D media
in the format of equation 2.113, which reads (slightly adjusted)

∂q̃H,V

∂x3
− ÃH,V q̃H,V = d̃H,V δ(x3 − xs3), (3.176)

where xs3 denotes the vertical spatial coordinate of the source. We can decompose the
two-way fields into one-way fields by applying field decomposition (see e.g. Grobbe
et al. (2016a)). We can write equation (3.176) for decomposed, one-way fields as

∂p̃H,V

∂x3
− Λ̃H,V p̃H,V = (L̃H,V )−1d̃H,V δ(x3 − xs3). (3.177)

Here, we have made use of the fact that we have explicit expressions for the com-
position matrix L̃H,V , the eigenvectors of the two propagation modes, such that
ÃH,V = L̃H,V Λ̃H,V (L̃H,V )−1 holds (which we also used in the derivation of the
eigenvector sets in Section 2.3).

We use the following relationship between the one-way fields due to two-way
source types:

p̃H,V = G̃
H,V

(L̃H,V )−1d̃H,V , (3.178)

where G̃ is the Green function matrix containing the one-way impulse responses of
the layered medium. Composing the two-way fields from one-way fields via

q̃H,V = L̃H,V p̃H,V , (3.179)

we obtain a general equation for two-way wavefields due to two-way source types for
each individual propagation mode:

q̃H,V = L̃H,V G̃
H,V

(L̃H,V )−1d̃H,V . (3.180)
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This equation forms the basis for the composition of two-way physical field quantities
at the receiver level in layer-code modeling. If we now replace the two-way source
vector d̃H,V in equation 3.177 by a unit matrix I, we can express equation 3.177 in
terms of the Green matrices, as

∂G̃
H,V

∂x3
− Λ̃H,V G̃

H,V
= Iδ(x3 − xs3). (3.181)

We have implicitly chosen point sources at xH = (0.0, 0.0), which is reasonable
since we are dealing with a laterally-invariant layered medium. Let us now drop the
superscripts defining the two modes for convenience. The Green function matrix is
organized as

G̃ =

(
G̃

++
G̃

+−

G̃
−+

G̃
−−

)
, (3.182)

where for example G̃
+−

denotes the Green function submatrix for downgoing fields
(+ superscript) at the receiver level generated by an upgoing source (- superscript).
Similar meanings can be given to the other Green’s function submatrices. As we
know, the composition and decomposition matrices of equation 3.180 are defined as

L̃ =

(
L̃1 L̃1

L̃2 −L̃2

)
, (3.183)

L̃−1 =

(
L̃t2 L̃t1
L̃t2 −L̃t1

)
. (3.184)

We can redefine equation 3.180 in terms of two-way Green’s matrices as

q̃ = G̃d̃, (3.185)

where G̃ = L̃G̃L̃−1, or more explicitly as

q̃1 = G̃11d̃1 + G̃12d̃2, (3.186)

q̃2 = G̃21d̃1 + G̃22d̃2, (3.187)

with

G̃11 = L̃1

[
G̃

++
+ G̃

+−
+ G̃

−+
+ G̃

−−]
L̃t2, (3.188)

G̃12 = L̃1

[
G̃

++ − G̃
+−

+ G̃
−+ − G̃

−−]
L̃t1, (3.189)

G̃21 = L̃2

[
G̃

++
+ G̃

+− − G̃
−+ − G̃

−−]
L̃t2, (3.190)

G̃22 = L̃2

[
G̃

++ − G̃
+− − G̃

−+
+ G̃

−−]
L̃t1. (3.191)
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This formulation can be used for both 2D and 3D models. For 2D, we simply apply
a 1D spatial inverse Fourier transformation to obtain the space-frequency results,
whereas in 3D scenarios we apply Fourier-Bessel transformations as derived in the
next sections. Before explicitly deriving the Fourier-Bessel transformations for each
seismo-electromagnetic source-receiver combination, let us quickly recapitulate the
theory of propagation modes. Please note that now that we have assumed point
sources and express everything in terms of Green’s functions, the source vector d̃H,V

looks slightly different. To explain this, let us look at how we defined the sources
thus far. In the space-time domain, the electric current source in the x1-direction is
defined as

Je1 (x, t) = J e1 (t)δ(x− xs). (3.192)

In the space-frequency domain, where we started our seismo-electromagnetic gov-
erning equations, this source term reads

Ĵe1 (x, ω) = Ĵ e1 (ω)δ(x− xs), (3.193)

where we can see that the source terms implicitly contain a spatial delta function.
In the horizontal wavenumber-frequency domain, this leads to

J̃e1 (kH , x3, ω) = Ĵ e1 (ω)exp(jkαx
s
α)δ(x3 − xs3). (3.194)

Similar definitions hold for the other source terms. For the point sources, where we
choose xsH = (0, 0) as the horizontal source location, equation 3.194 reduces to

J̃e1 (kH , x3, ω) = Ĵ e1 (ω)δ(x3 − xs3). (3.195)

We use this since we are considering a horizontally invariant medium. By looking
at the Green function solutions (the responses to the delta-functions), the source
vectors (like the one in equation 3.185) read

d̃H =
(
d̃H1 , d̃

H
2 , d̃

H
3 , d̃

H
4

)t
, (3.196)

for the SH-TE mode, where

d̃H1 = −jk1

[
Ĥb23 + Ĥb32

]
+ jk2

[
Ĥb13 + Ĥb13

]
, (3.197)

d̃H2 = −jkαĴmα , (3.198)

d̃H3 = jk1

[
F̂b2 −

ρf

ρ̂E
F̂f2
]
− jk2

[
F̂b1 −

ρf

ρ̂E
F̂f1
]

+
Gfr

s

[
−k2

1 + k2
2

] [
Ĥb12 + Ĥb21

]
− 2Gfrk1k2

s

[
−Ĥb11 + Ĥb22

]
, (3.199)

d̃H4 = −L̂
[
−jk1F̂f2 + jk2F̂f1

]
+ jk1Ĵ e2 − jk2Ĵ e1 −

1

sµ0
κ2Ĵm3 , (3.200)

and

d̃V =
(
d̃V1 , d̃

V
2 , d̃

V
3 , d̃

V
4 , d̃

V
5 , d̃

V
6 , d̃

V
7 , d̃

V
8

)t
, (3.201)
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for the P-SV-TM mode, where

d̃V1 =
S

(S + 2Gfr)

[
Ĥb11 + Ĥb22

]
+ Ĥb33, (3.202)

d̃V2 =
j

sρ̂E
kαF̂fα +

C

M

[
Ĥb11 + Ĥb22

] [
1− S

(S + 2Gfr)

]
+ Q̂i, (3.203)

d̃V3 =
1

κ

ρf

ρ̂E
kαF̂fα −

1

κ
kαF̂bα −

2j

s

k1k2

κ

[
GfrĤb21 +GfrĤb12

]
− jκ

s

2GfrS

(S + 2Gfr)

[
Ĥb11 + Ĥb22

]
− 2jGfr

sκ

[
k2

1Ĥb11 + k2
2Ĥb22

]
, (3.204)

d̃V4 = − 1

κ

[
L̂kαF̂fα + kαĴ eα

]
, (3.205)

d̃V5 = −F̂b3 , (3.206)

d̃V6 =
ρ̂E

ε̂
L̂Ĵ e3 − F̂f3 , (3.207)

d̃V7 =
kα
κ

[
Ĥbα3 + Ĥb3α

]
, (3.208)

d̃V8 =
jκ

sε̂
Ĵ e3 +

1

κ

[
k2Ĵm1 − k1Ĵm2

]
. (3.209)

We can recognize the symbols indicating the purely frequency-dependent source
functions (which act as a temporal filter).

3.3.2 Mode theory and combining the modes

When dealing with the governing equations of the seismo-electromagnetic system,
physical field quantities were combined by taking either the divergence or rotation of
the expressions under consideration, yielding different mode field quantities for both
the SH-TE and P-SV-TM propagation modes. We composed the different mode
quantities, in the horizontal wavenumber-frequency domain, as

ṽs,H = −jk1ṽ
s
2 + jk2ṽ

s
1, (3.210)

τ̃ b,H = −jk1τ̃
b
23 + jk2τ̃

b
13, (3.211)

ẼH = −jk1Ẽ2 + jk2Ẽ1, (3.212)

H̃H = −jk1H̃1 − jk2H̃2, (3.213)

for the SH-TE mode, and as

ṽs,Vnorm =
k1

κ
ṽs1 +

k2

κ
ṽs2, (3.214)

τ̃ b,Vnorm =
k1

κ
τ̃ b13 +

k2

κ
τ̃ b23, (3.215)

ẼVnorm =
k1

κ
Ẽ1 +

k2

κ
Ẽ2, (3.216)

H̃V
norm =

k1

κ
H̃2 −

k2

κ
H̃1, (3.217)
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for the P-SV-TM mode, where the subscript ‘norm’ indicates that the mode quant-
ities have been normalized with a factor −jκ, such that the system matrix ÃV has
favourable symmetry properties. Consequently, the factors before the field quantities
have also been normalized by −jκ.

At the receiver level, both propagation modes and their mode quantities, that
were thus far treated independently in the layered-Earth system, need to be com-
bined to obtain the individual physical field quantities that compose these mode
quantities. We combine the expressions for a certain mode quantity-type (for ex-
ample equations 3.212 and 3.216), in such a way that one of the two physical field
quantities (Ẽ1 or Ẽ2) remains. As an explicit example, we consider combining the
electric mode quantities ẼH and ẼV into the physical electric field quantity in the
x1-direction, Ẽ1. We start by multiplying equation 3.212 at both the left- and
right-hand side with jk2, yielding

jk2Ẽ
H = jk2

[
−jk1Ẽ2 + jk2Ẽ1

]
= k1k2Ẽ2 − k2

2Ẽ1. (3.218)

Similarly, we write the P-SV-TM mode expression, equation 3.216, as

−jκẼVnorm = −jk1Ẽ1 − jk2Ẽ2, (3.219)

and multiply both the left-hand side and the right-hand side with jk1, yielding

k1κẼ
V
norm = jk1

[
−jk1Ẽ1 − jk2Ẽ2

]
= k2

1Ẽ1 + k1k2Ẽ2. (3.220)

We now subtract equation 3.218 from equation 3.220, leaving us with the desired
physical field quantity Ẽ1:

k1κẼ
V
norm − jk2Ẽ

H = k2
1Ẽ1 + k1k2Ẽ2 − k1k2Ẽ2 + k2

2Ẽ1

= [k2
1 + k2

2]Ẽ1 = κ2Ẽ1. (3.221)

Ẽ1 =
k1

κ
ẼVnorm −

jk2

κ2
ẼH . (3.222)

Similarly, we can multiply the SH-TE mode expression at both sides with jk1 and
the P-SV-TM mode expression with jk2. When we now add the final expressions we
end up with the other physical quantity that composes these mode quantities, Ẽ2:

Ẽ2 =
k2

κ
ẼVnorm +

jk1

κ2
ẼH . (3.223)

We can clearly recognize two core expressions for mode combination, referred
to as type Ẽ1 and ‘receiver’-type Ẽ2. All other physical quantities that compose
a mode quantity can be derived via one of these two types. A third type can be
defined as well, corresponding to the purely P-SV-TM field quantities that do not
need to be combined with the SH-TE mode quantities. We refer to this type as the
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ṽ3-type. The complete list of final mode-combining expressions, reads

Ẽ1 =
k1

κ
ẼVnorm −

jk2

κ2
ẼH , (3.224)

τ̃ b13 =
k1

κ
τ̃ b,Vnorm −

jk2

κ2
τ̃ b,H , (3.225)

H̃2 =
k1

κ
H̃V
norm +

jk2

κ2
H̃H , (3.226)

ṽs1 =
k1

κ
ṽs,Vnorm −

jk2

κ2
ṽs,H , (3.227)

Ẽ2 =
k2

κ
ẼVnorm +

jk1

κ2
ẼH , (3.228)

τ̃ b23 =
k2

κ
τ̃ b,Vnorm +

jk1

κ2
τ̃ b,H , (3.229)

H̃1 = −k2

κ
H̃V
norm +

jk1

κ2
H̃H , (3.230)

ṽs2 =
k2

κ
ṽs,Vnorm +

jk1

κ2
ṽs,H . (3.231)

We can generalize these expressions in terms of the elements of the two-way
field vectors q̃H,V as defined in equations (6.48) and (6.49) of Section 2.2. For
completeness, we here add the ṽs3-type expressions, leading to

Ẽ1 =
k1

κ
q̃V8 −

jk2

κ2
q̃H2 , (3.232)

τ̃ b13 =
k1

κ
q̃V3 −

jk2

κ2
q̃H3 , (3.233)

H̃2 =
k1

κ
q̃V4 −

jk2

κ2
q̃H4 , (3.234)

ṽs1 =
k1

κ
q̃V7 −

jk2

κ2
q̃H1 , (3.235)

Ẽ2 =
k2

κ
q̃V8 +

jk1

κ2
q̃H2 , (3.236)

τ̃ b23 =
k2

κ
q̃V3 +

jk1

κ2
q̃H3 , (3.237)

H̃1 = −
[
k2

κ
q̃V4 +

jk1

κ2
q̃H4

]
, (3.238)

ṽs2 =
k2

κ
q̃V7 +

jk1

κ2
q̃H1 , (3.239)

ṽs3 = q̃V1 , (3.240)

w̃s3 = q̃V2 , (3.241)

τ̃ b33 = q̃V5 , (3.242)

−p̃f = q̃V6 , (3.243)

where the subscripts in the right-hand side correspond to the elements of the two-way
field vector q̃H,V .
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3.3.3 Explicit Fourier-Bessel transformations

At the receiver level, we now compose the different two-way seismo-electromagnetic
source-receiver combinations by combining equations (3.232)-(3.243) with equation
(3.180). We select both the desired field quantity (row of L̃H,V and the generating
source-type (column of (L̃H,V )−1). In our derivations, we make use of the notation
of equation (3.180) instead of the Green matrix notation, since this one-way field
notation corresponds with the algorithm of our seismo-EM layer-code. We explicitly
derive the Fourier-Bessel Transformations required to transform the data from the
horizontal wavenumber-frequency domain to the space-frequency domain. Before
diving into the details, we briefly present some useful Bessel function relations.
After that, we demonstrate the derivations for each source-type by focusing on one
of the three ‘receiver’-type expressions.

Some useful derivatives of Bessel functions

We here present some important relations for Bessel functions and their spatial de-
rivatives, which we need in the explicit derivations of the Fourier-Bessel transform-
ations. In the horizontal wavenumber domain expressions we can expect product
factors (jkα)n, with n = 1, 2, 3. Also, factors like jk1k

2
2 can occur but in essence they

are not different. Factors containing the radial wavenumber κ do not play a role.
Factors like (−jkα)n in the horizontal wavenumber domain transform to operators
∂nα in the space domain. These differentiation operators can act on the Bessel func-
tions in the Fourier-Bessel integrals. We can numerically evaluate these integrals, or
first obtain the space domain expressions and then subsequently evaluate the deriv-
atives. We define the radial distance r and angle φ as r =

√
(x1 − xs1)2 + (x2 − xs2)2

and φ = atan(x2

x1
), with r ≥ 0 and −π < φ ≤ π. We aim to obtain expressions

without explicit divisions by the radial distance r, since r can be equal to zero. We
use the following rules from Abramowitz & Stegun (1965),

J−n(κr) = (−1)nJn(κr), (3.244)

J ′n(κr) =
1

2
(Jn−1(κr)− Jn+1(κr)) , (3.245)

2n

κr
Jn(κr) = Jn−1(κr) + Jn+1(κr), (3.246)

to derive

∂αJ0(κr) = −xα
r
κJ1(κr), (3.247)

where J0(κr) is the Bessel function of the first kind and order zero, with argument
κr. Be aware that the chain-rule applies to the argument of the Bessel functions as
well. Furthermore, we can obtain

∂2
1J0(κr) = −κ

2

2

(
J0(κr)− x2

1 − x2
2

r2
J2(κr)

)
, (3.248)
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and similarly

∂2
2J0(κr) = −κ

2

2

(
J0(κr) +

x2
1 − x2

2

r2
J2(κr)

)
. (3.249)

We also derive

∂1∂2J0(κr) =
κ2x1x2

r2
J2(κr), (3.250)

∂1∂
2
2J0(κr) =

κ3

4

x1

r

[
J1(κr)−

(
1− 2

(
x2

1 − x2
2

r2

))
J3(κr)

]
, (3.251)

∂2
1∂2J0(κr) =

κ3

4

x2

r

[
J1(κr)−

(
1 + 2

(
x2

1 − x2
2

r2

))
J3(κr)

]
, (3.252)

∂3
1J0(κr) = −κ

2

2

(
∂1J0(κr)− ∂1

[
x2

1 − x2
2

r2
J2(κr)

])
=

κ3

4

x1

r

(
3J1(κr) +

(
1− 2

x2
1 − x2

2

r2

)
J3(κr)

)
, (3.253)

∂3
2J0(κr) = −κ

2

2

(
∂2J0(κr) + ∂2

[
x2

1 − x2
2

r2
J2(κr)

])
=

κ3

4

x2

r

(
3J1(κr) +

(
1 + 2

x2
1 − x2

2

r2

)
J3(κr)

)
. (3.254)

In cylindrical coordinates, we can use directional cosines to calculate the Cartesian
solutions:

cos(φ) =
x1

r
, (3.255)

sin(φ) =
x2

r
, (3.256)

cos(φ)sin(φ) =
x1x2

r2
, (3.257)

cos(2φ) =
x2

1 − x2
2

r2
. (3.258)
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This leads to

∂1J0(κr) = −κcos(φ)J1(κr), (3.259)

∂2J0(κr) = −κsin(φ)J1(κr), (3.260)

∂2
1J0(κr) = −κ

2

2
[J0(κr)− cos(2φ)J2(κr)] , (3.261)

∂2
2J0(κr) = −κ

2

2
[J0(κr) + cos(2φ)J2(κr)] , (3.262)

∂1∂2J0(κr) = κ2cos(φ)sin(φ)J2(κr), (3.263)

∂1∂
2
2J0(κr) =

κ3

4
cos(φ) [J1(κr)− (1− 2cos(2φ)) J3(κr)] , (3.264)

∂2
1∂2J0(κr) =

κ3

4
sin(φ) [J1(κr)− (1 + 2cos(2φ)) J3(κr)] , (3.265)

∂3
1J0(κr) =

κ3

4
cos(φ) [3J1(κr) + (1− 2cos(2φ)) J3(κr))], (3.266)

∂3
2J0(κr) =

κ3

4
sin(φ) [3J1(κr) + (1 + 2cos(2φ)) J3(κr))]. (3.267)

It can be seen that no explicit divisions by the radial distance need to occur, since
everything can be expressed in terms of directional sines and cosines, and integer
order Bessel functions. There still seem to occur singularities for r = 0 in the
directional sines and cosines. However, this is only an apparent problem since these
angle-dependent terms only occur together with Jn with n = 1, 2, .... For these
Bessel functions, Jn(0) = 0 (i.e. for a zero argument, when r = 0), and hence no
singularity problems occur at r = 0.

Example: The Fourier-Bessel transformation for E
Je1
1

We here present the Fourier-Bessel transformations for each source-type for receiver-
type E1, by explicitly focusing on the Ẽ1 fields. By selecting a different row of
L̃H,V , we can obtain the expressions for τ̃ b13, H̃2, and ṽs1. Combining (3.224) with
(3.180) and selecting specific columns of (L̃H,V )−1 corresponding to different source-
types, yields different relations for the horizontal electric field component in the x1-
direction due to different two-way sources, expressed in terms of the one-way fields
(or Green’s functions as denoted in equations 3.188-3.191). Note that again s = jω.

We start with the expression for Ẽ
Je1
1 , representing the two-way field Ẽ1 recorded at
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the receiver level due to a two-way source J̃e1 at the source level,

Ẽ
Je1
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)− jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)− jk2

κ2
q̃H2 (κ, x3, ω)

=
k1

κ

[
L̃V8,J(κ, x3, ω)G̃

V

J,K(κ, x3, ω)(L̃V )−1
K,4(κ, x3, ω)

]
d̃V4 (κ, x3, ω)

−jk2

κ2

[
L̃H2,J(κ, x3, ω)G̃

H

J,K(κ, x3, ω)(L̃H)−1
K,4(κ, x3, ω)

]
d̃4(κ, x3, ω)

=
k1

κ

[
L̃V8,J(κ, x3, ω)G̃

V

J,K(κ, x3, ω)(L̃V )−1
K,4(κ, x3, ω)

](−1

κ
k1Ĵ e1 (ω)

)
−jk2

κ2

[
L̃H2,J(κ, x3, ω)G̃

H

J,K(κ, x3, ω)(L̃H)−1
K,4(κ, x3, ω)

] (
−jk2Ĵ e1 (ω)

)
=

{−k2
1

κ2

[
L̃V8,J(κ, x3, ω)G̃

V

J,K(κ, x3, ω)(L̃V )−1
K,4(κ, x3, ω)

]
−k

2
2

κ2

[
L̃H2,J(κ, x3, ω)G̃

H

J,K(κ, x3, ω)(L̃H)−1
K,4(κ, x3, ω)

]}
Ĵ e1 (ω)

= G̃ee11(kH , x3, x
s
3, ω)Ĵ e1 (ω). (3.268)

Here, G̃ee11(kH , x3, x
s
3, ω) is the two-way Green’s function in the horizontal wavenumber-

frequency domain, where the superscripts denote field type and source type, respect-
ively, and the subscripts the components of this field type and source type. For this
case, this means the Green function describing an electric field in the x1 direction due
to an electric current source in the same direction. This expression cannot be analyt-
ically transformed back to space-time, but the inverse spatial Fourier transformation
has to be computed numerically. We can write the space-frequency solution as

Ê
Je1
1 (x, ω) = Ĝee11(x,xs, ω)Ĵ e1 (ω)

=
Ĵ e1 (ω)

4π2

ˆ ∞
kH=−∞

G̃ee11(kH , x3, x
s
3ω)exp(−j(kH ·∆xH)dk1dk2,

(3.269)

where kH = k1x̂1 + k2x̂2, with x̂α denoting unit vectors in the indicated direction.
Similarly ∆xH = (xr1)x̂1 + (xr2)x̂2, with the superscript r denoting the receiver-
related positions. We now drop the superscript indicating the receiver. We also
drop the explicit horizontal wavenumber-frequency arguments in the right-hand side
of the equations. We take

k1 = κ cos(ψ + φ), x1 = r cos(φ) = |xH | cos(φ), (3.270)

k2 = κ sin(ψ + φ), x2 = r sin(φ) = |xH | sin(φ), (3.271)

such that

dk1dk2 = κdκdψ, 0 < κ <∞, 0 < ψ < 2π, (3.272)
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and change to cylindrical coordinates in kH -space:

kH · xH ≡ |kH ||xH|cos(ψ) = κ|xH |cos(ψ), (3.273)

where ψ is the angle between kH and xH . We can write

kH · xH = k1x1 + k2x2 = κ cos(ψ + φ)‖xH‖ cos(φ)

+ κ sin(ψ + φ)|xH |
= κ [cos(ψ)cos(φ)− sin(ψ)sin(φ)] |xH | cos(φ)

+ κ [sin(ψ)cos(φ) + cos(ψ)sin(φ)] |xH | sin(φ)

= κ|xH |cos(ψ)
[
(sin(φ))2 + (cos(φ))2

]
= κ|xH |cos(ψ)

= κrcos(ψ). (3.274)

Substituting these expressions in equation 3.269, making use of k2
1
FT−1

−→ − ∂2
1 and

k2
2
FT−1

−→ −∂2
2, and recognizing and substituting the expression for the Bessel function

of the first kind and order zero,

J0(κr) =
1

2π

ˆ 2π

ψ=0

exp(−jκrcosψ)dψ, (3.275)

yields, combined with equations 3.261 and 3.262:

Ê
Ĵe1
1 (x, ω) =

Ĵ e1 (ω)

2π

ˆ ∞
κ=0

[
∂2

1

κ2

(
L̃V8,J G̃

V

J,K(L̃V )−1
K,4

)
+
∂2

2

κ2

(
L̃H2,J G̃

H

J,K(L̃H)−1
K,4

)]
J0(κr)κdκ

=
Ĵe1 (ω)

2π

ˆ ∞
κ=0

[
−1

2
(J0(κr)− cos(2φ)J2(κr))

(
L̃V8,J G̃

V

J,K(L̃V )−1
K,4

)
−1

2
(J0(κr) + cos(2φ)J2(κr))

(
L̃H2,J G̃

H

J,K(L̃H)−1
K,4

)]
κdκ. (3.276)

We can write this equation such that the directional cosines are outside of the
integral

Ê
Ĵe1
1 (x, ω) =

− Ĵ
e
1 (ω)

4π

ˆ ∞
κ=0

[
J0(κr)

(
L̃V8,J G̃

V

J,K(L̃V )−1
K,4 + L̃H2,J G̃

H

J,K(L̃H)−1
K,4

)]
κdκ

+
Ĵe1 (ω)

4π
cos(2φ)

ˆ ∞
κ=0

[
J2(κr)

(
L̃V8,J G̃

V

J,K(L̃V )−1
K,4 − L̃H2,J G̃

H

J,K(L̃H)−1
K,4

)]
κdκ.

(3.277)

This form can be used because there are no separate divisions by factors of κ inside
L̃H,V2,J and (L̃H,V )−1

K,4. Otherwise these factors would have to be taken out explicitly.
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For all other seismo-electromagnetic source-receiver combinations, we will present
the result until the form of equation 3.276. Bear in mind that each of these expres-
sions can we rewritten such that the directional cosines are outside the integral (like
in equation (3.277)). This is also how the Fourier-Bessel transformations are coded
in ESSEMOD.
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Appendix

3.3.A Explicit Fourier-Bessel transformations for all source-
receiver combinations

In this appendix, we present the explicit Fourier-Bessel transformations for all
other independent seismo-electromagnetic source-receiver combinations. We do not
present the explicit expressions for the eliminated fields of equations (2.97)-(2.100).
We skip the explicit transformation to cylindrical coordinates followed by the recog-
nition of the Bessel function of the first kind and order zero and we directly jump
from equations of the horizontal wavenumber-frequency form of equation 3.268 to
the space-frequency form of equation 3.276. We have reduced the fontsize of the
equations for a more compact presentation.

E1-type two-way field quantity expressions

For Ẽ
Je2
1 , we transform

Ẽ
Je2
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=

{
−k1k2
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
]

+
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
]}
Ĵ e2 (ω),

(3.278)

to

Ê
Je2
1 (x, ω) =

Ĵ e2 (ω)

2π

ˆ ∞
κ=0

[
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
−
∂1∂2

κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)]
J0(κr)κdκ

=
Ĵ e2 (ω)

2π

ˆ ∞
κ=0

[
cos(φ)sin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
−cos(φ)sin(φ)

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)]
J2(κr)κdκ. (3.279)

For Ẽ
Je3
1 , we transform
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Ẽ
Je3
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
k1

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,6(κ, x3, ω)
]( ρ̂EL̂

ε̂
Ĵ e3 (ω)

)

+
jk1

sε̂

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]
Ĵ e3 (ω), (3.280)

to

Ê
Je3
1 (x, ω) =

Ĵ e3 (ω)

2π

ˆ ∞
κ=0

[
j∂1

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

) ρ̂EL̂
ε̂

−∂1
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

) 1

sε̂

]
J0(κr)κdκ

=
Ĵ e3 (ω)

2π

ˆ ∞
κ=0

[
−jcos(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

) ρ̂EL̂
ε̂

+κcos(φ)
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

) 1

sε̂

]
J1(κr)κdκ. (3.281)

The imaginary number j under the integral is compensated by an explicit factor

j inside the L̃V8,J G̃
V

J,K(L̃V )−1
K,6 term, making the expression physical. Note that Ĵ e3

is a purely P-SV-TM source-type. Hence, we can compose the true field quantity
using only the P-SV-TM mode. This holds for all other source types that are purely

existing in the P-SV-TM mode. For Ẽ
Jm1
1 , we transform

Ẽ
Jm1
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=

{
k1k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]

−
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,2(κ, x3, ω)
]}
Ĵm1 (ω),

(3.282)

to
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Ê
Jm1
1 (x, ω) =

Ĵm1 (ω)

2π

ˆ ∞
κ=0

[
−
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
+
∂1∂2

κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)]
J0(κr)κdκ

=
Ĵm1 (ω)

2π

ˆ ∞
κ=0

[
−cos(φ)sin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
+cos(φ)sin(φ)

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)]
J2(κr)κdκ. (3.283)

For Ẽ
Jm2
1 , we transform

Ẽ
Jm2
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=

{
−k21
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]

−
k22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,2(κ, x3, ω)
]}
Ĵm2 (ω),

(3.284)

to

Ê
Jm2
1 (x, ω) =

Ĵm2 (ω)

2π

ˆ ∞
κ=0

[
∂21
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
+
∂22
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)]
J0(κr)κdκ

=
Ĵm2 (ω)

2π

ˆ ∞
κ=0

{
−

1

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
(J0(κr)− cos(2φ)J2(κr))

−
1

2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)
(J0(κr) + cos(2φ)J2(κr))

}
κdκ. (3.285)

For Ẽ
Jm3
1 , we transform

Ẽ
Jm3
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

= jk2
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
)( 1

sµ0
Ĵm3 (ω)

)
,

(3.286)
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to

Ê
Jm3
2 (x, ω) =

Ĵm3 (ω)

2π

ˆ ∞
κ=0

[
−∂2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)( 1

sµ0

)]
J0(κr)κdκ

=
Ĵm3 (ω)

2π

ˆ ∞
κ=0

κsin(φ)
(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)( 1

sµ0

)
J1(κr)κdκ.

(3.287)

For Ẽ
fb1
1 , we transform

Ẽ
fb1
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

= −
k21
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
]
F̂b1(ω)

−
k22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]
F̂b1(ω), (3.288)

to

Ê
fb1
1 (x, ω) =

F̂b1(ω)

2π

ˆ ∞
κ=0

[
∂21
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
+
∂22
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]
J0(κr)κdκ

=
F̂b1(ω)

2π

ˆ ∞
κ=0

[
−

1

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
(J0(κr)− cos(2φ)J2(κr))

−
1

2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)
(J0(κr) + cos(2φ)J2(κr))

]
κdκ.

=
F̂b1(ω)

4π

ˆ ∞
κ=0

{
−J0(κr)

[(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
+
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]
+cos(2φ)J2(κr)

[(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
−
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]}
κdκ. (3.289)

For Ẽ
ff1
1 , we transform
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Ẽ
f
f
1

1 (kH , x3, ω) =
k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
jk21
κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
1

sρ̂E
F̂f1 (ω)

)]
+
k21
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f1 (ω)

)
−L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
(
L̂F̂f1 (ω)

)]
+
k22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f1 (ω)

)
−L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
(
L̂F̂f1 (ω)

)]
, (3.290)

to

Ê
f
f
1

1 (x, ω) =
F̂f1 (ω)

2π

ˆ ∞
κ=0

[
−j

∂21
κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
−
∂21
κ2

(
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
)( ρf

ρ̂E

)
+
∂21
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂

−
∂22
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
)( ρf

ρ̂E

)
+
∂22
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]
J0(κr)κdκ

=
F̂b1(ω)

2π

ˆ ∞
κ=0

{
jκ

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
(J0(κr)− cos(2φ)J2(κr))

+
1

2

[(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E
−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂
]

(J0(κr)− cos(2φ)J2(κr))

+
1

2

[(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

) ρf
ρ̂E

−
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]

(J0(κr) + cos(2φ)J2(κr))
}
κdκ.

=
F̂b1(ω)

2π

ˆ ∞
κ=0

{
1

2

[(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)( jκ

sρ̂E

)
+
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E
−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂
]

(J0(κr)− cos(2φ)J2(κr))

+
1

2

[(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

) ρf
ρ̂E

−
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)]
L̂ (J0(κr) + cos(2φ)J2(κr))

}
κdκ.

(3.291)
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For Ẽ
fb2
1 , we transform

Ẽ
fb2
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

= −
k1k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
]
F̂b2(ω)

+
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]
F̂b2(ω),

(3.292)

to

Ê
fb2
1 (x, ω) =

F̂b2(ω)

2π

ˆ ∞
κ=0

[
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
−
∂1∂2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]
J0(κr)κdκ

=
F̂b1(ω)

4π

ˆ ∞
κ=0

[
cos(φ)sin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
−cos(φ)sin(φ)

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]
J2(κr)κdκ.

(3.293)

For Ẽ
ff2
1 , we transform

Ẽ
f
f
2

1 (kH , x3, ω) =
k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
jk1k2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
1

sρ̂E
F̂f2 (ω)

)]
+
k1k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f2 (ω)

)
−L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
(
L̂F̂f2 (ω)

)]
−
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f2 (ω)

)
−L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
(
L̂F̂f2 (ω)

)]
,

(3.294)

to
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Ê
f
f
2

1 (x, ω) =
F̂f2 (ω)

2π

ˆ ∞
κ=0

[
−j

∂1∂2

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
−
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E

+
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂

+
∂1∂2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

) ρf
ρ̂E

−
∂1∂2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]
J0(κr)κdκ

=
F̂b2(ω)

2π

ˆ ∞
κ=0

[
−jκ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

) 1

sρ̂E

−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E

+
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂

+
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

) ρf
ρ̂E

−
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]

cos(φ)sin(φ)J2(κr)κdκ.

(3.295)

For Ẽ
fb3
1 , we transform

Ẽ
fb3
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
−k1
κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,5(κ, x3, ω)
] (
F̂b3(ω)

)
,

(3.296)

to

Ê
fb3
1 (x, ω) =

F̂b3(ω)

2π

ˆ ∞
κ=0

[
−
j∂1

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,5

)]
J0(κr)κdκ

=
F̂b3(ω)

2π

ˆ ∞
κ=0

[
jcos(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,5

)]
J1(κr)κdκ.

(3.297)

For Ẽ
ff3
1 , we transform
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Ẽ
f
f
3

1 (kH , x3, ω) =
k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
−k1
κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,6(κ, x3, ω)
] (
F̂f3 (ω)

)
,

(3.298)

to

Ê
f
f
3

1 (x, ω) =
F̂f3 (ω)

2π

ˆ ∞
κ=0

[
−
j∂1

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

)]
J0(κr)κdκ

=
F̂f3 (ω)

2π

ˆ ∞
κ=0

[
jcos(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

)]
J1(κr)κdκ.

(3.299)

For Ẽq
i

1 , we transform

Ẽq
i

1 (kH , x3, ω) =
k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
k1

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)
] (
Q̂i(ω)

)
,

(3.300)

to

Êq
i

1 (x, ω) =
Q̂i(ω)

2π

ˆ ∞
κ=0

[
j∂1

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)]
J0(κr)κdκ

=
Q̂i(ω)

2π

ˆ ∞
κ=0

[
−jcos(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)]
J1(κr)κdκ.

(3.301)

For Ẽ
hb11
1 , we transform
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Ẽ
hb11
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
k1

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
Ĥb11(ω)

−jk1
[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
Ĥb11(ω)

−
jk31
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
Ĥb11(ω)

−
jk1k22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
Ĥb11(ω),

(3.302)

to

Ẽ
hb11
1 (kH , x3, ω) =

Ĥb11(ω)

2π

ˆ ∞
κ=0

{
j∂1

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
+∂1

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
−
∂31
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
−
∂1∂22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]}
J0(κr)κdκ.

=
Ĥb11(ω)

2π

ˆ ∞
κ=0
−jcos(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
J1(κr)

−κcos(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
J1(κr)

−
κ

4
cos(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
(3J1(κr)

+ (1− 2cos(2φ)J3(κr)))

−
κ

4
cos(φ)

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
(J1(κr)

− (1− 2cos(2φ)) J3(κr))κdκ.

(3.303)

For Ẽ
hb22
1 , we transform
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Ẽ
hb22
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
k1

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
Ĥb22(ω)

−jk1
[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
Ĥb22(ω)

−
jk1k22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
Ĥb22(ω)

+
jk1k22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
Ĥb22(ω),

(3.304)

to

Ẽ
hb22
1 (kH , x3, ω) =

Ĥb22(ω)

2π

ˆ ∞
κ=0

{
j∂1

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
+∂1

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
−
∂1∂22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
+
∂1∂22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]}
J0(κr)κdκ.

=
Ĥb11(ω)

2π

ˆ ∞
κ=0
−jcos(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
J1(κr)

−κcos(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
J1(κr)

−
κ

4
cos(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
(J1(κr)

− (1− 2cos(2φ)J3(κr)))

+
κ

4
cos(φ)

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
(J1(κr)

− (1− 2cos(2φ)) J3(κr))κdκ.

(3.305)

For Ẽ
hb33
1 , we transform
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Ẽ
hb33
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
k1

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)
]
Ĥb33(ω),

(3.306)

to

Ê
hb33
1 (x, ω) =

Ĥb33(ω)

2π

ˆ ∞
κ=0

[
j∂1

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,1

)]
J0(κr)κdκ

=
Ĥb33(ω)

2π

ˆ ∞
κ=0

[
−jcos(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,1

)]
J1(κr)κdκ.

(3.307)

For Ẽ
hb13
1 , we transform

Ẽ
hb13
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
k21
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,7(κ, x3, ω)
] (
Ĥb13(ω) + Ĥb31(ω)

)
+
k22
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
)(
Ĥb13(ω) + Ĥb31(ω)

)
,

(3.308)

to

Ê
hb13
1 (x, ω) =

(
Ĥb13(ω) + Ĥb31(ω)

)
2π

ˆ ∞
κ=0

[
−∂21
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
−
∂22
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)]
J0(κr)κdκ

=

(
Ĥb13(ω) + Ĥb31(ω)

)
2π

ˆ ∞
κ=0

[
1

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
(J0(κr)− cos(2φ)J2(κr))

+
1

2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)
(J0(κr) + cos(2φ)J2(κr))

]
κdκ.

(3.309)

For Ẽ
hb23
1 , we transform
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Ẽ
hb23
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

=
k1k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,7(κ, x3, ω)
] (
Ĥb23(ω) + Ĥb32(ω)

)
−
k1k2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
)(
Ĥb23(ω) + Ĥb32(ω)

)
,

(3.310)

to

Ê
hb23
1 (x, ω) =

(
Ĥb23(ω) + Ĥb32(ω)

)
2π

ˆ ∞
κ=0

[
−∂1∂2
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
+
∂1∂2

κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)]
J0(κr)κdκ

=

(
Ĥb23(ω) + Ĥb32(ω)

)
2π

ˆ ∞
κ=0

[
−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
+
(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)]
cos(φ)sin(φ)J2(κr)κdκ.

(3.311)

For Ẽ
hb12
1 , we transform

Ẽ
hb12
1 (kH , x3, ω) =

k1

κ
ẼVnorm(κ, x3, ω)−

jk2

κ2
ẼH(κ, x3, ω)

=
k1

κ
q̃V8 (κ, x3, ω)−

jk2

κ2
q̃H2 (κ, x3, ω)

= −
jk21k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
](2

s

[
GfrĤb21(ω)

+GfrĤb12(ω)
])

+
jk21k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]

1

s

[
GfrĤb21(ω) +GfrĤb12(ω)

]
−
jk32
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]

1

s

[
GfrĤb21(ω) +GfrĤb12(ω)

]
,

(3.312)

to



3.3. Field composition, combining modes and Fourier-Bessel transformations 121

Ê
hb12
1 (x, ω) =

(
Ĥb12(ω) + Ĥb21(ω)

)
2π

ˆ ∞
κ=0

[
−
∂21∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) 2Gfr

s

+
∂21∂2

κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

−
∂32
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

]
J0(κr)κdκ

=

(
Ĥb12(ω) + Ĥb21(ω)

)
2π

ˆ ∞
κ=0

{
κ

4
sin(φ)

[
−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) 2Gfr

s

+
(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

]
(J1(κr)− (1 + 2cos(2φ)) J3(κr))

−
κ

4
sin(φ)

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

(3J1(κr) + (1 + 2cos(2φ)) J3(κr))

}
κdκ.

(3.313)

E2-type two-way field quantity expressions

We here present the Fourier-Bessel transformations for each source-type for receiver-
type E2, by explicitly focusing on the Ẽ2 fields. By selecting different rows of L̃H,V ,
we can obtain the expressions for τ̃ b23, H̃1, and ṽs2.

For Ẽ
Je1
2 , we transform

Ẽ
Je1
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=

{
−k1k2
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
]

+
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
]}
Ĵ e1 (ω),(3.314)

to

Ê
Je1
2 (x, ω) =

Ĵ e1 (ω)

2π

ˆ ∞
κ=0

[
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
−
∂1∂2

κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)]
J0(κr)κdκ

=
Ĵ e1 (ω)

2π

ˆ ∞
κ=0

[
cos(φ)sin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
−cos(φ)sin(φ)

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)]
J2(κr)κdκ. (3.315)
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For Ẽ
Je2
2 , we transform

Ẽ
Je2
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=

{
−k22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
]

−
k21
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
]}
Ĵ e2 (ω),(3.316)

to

Ê
Je2
2 (x, ω) =

Ĵ e2 (ω)

2π

ˆ ∞
κ=0

[
∂22
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
+
∂21
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)]
J0(κr)κdκ

=
Ĵ e2 (ω)

2π

ˆ ∞
κ=0

{
−

1

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
(J0(κr) + cos(2φ)J2(κr))

−
1

2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)
(J0(κr)− cos(2φ)J2(κr))

}
κdκ. (3.317)

For Ẽ
Je3
2 , we transform

Ẽ
Je3
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
k2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,6(κ, x3, ω)
]( ρ̂EL̂

ε̂
Ĵ e3 (ω)

)

+
jk2

sε̂

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]
Ĵ e3 (ω), (3.318)

to

Ê
Je3
2 (x, ω) =

Ĵ e3 (ω)

2π

ˆ ∞
κ=0

[
j∂2

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

) ρ̂EL̂
ε̂

−∂2
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

) 1

sε̂

]
J0(κr)κdκ

=
Ĵ e3 (ω)

2π

ˆ ∞
κ=0

[
−jsin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

) ρ̂EL̂
ε̂

+κ sin(φ)
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

) 1

sε̂

]
J1(κr)κdκ. (3.319)
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For Ẽ
Jm1
2 , we transform

Ẽ
Jm1
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=

{
k22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]

+
k21
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,2(κ, x3, ω)
]}
Ĵm1 (ω),(3.320)

to

Ê
Jm1
2 (x, ω) =

Ĵm1 (ω)

2π

ˆ ∞
κ=0

[
−
∂22
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
−
∂21
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)]
J0(κr)κdκ

=
Ĵm1 (ω)

2π

ˆ ∞
κ=0

{
1

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
(J0(κr) + cos(2φ)J2(κr))

+
1

2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)
(J0(κr)− cos(2φ)J2(κr))

}
κdκ. (3.321)

For Ẽ
Jm2
2 , we transform

Ẽ
Jm2
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=

{
−k1k2
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]

+
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,2(κ, x3, ω)
]}
Ĵm2 (ω),

(3.322)

to

Ê
Jm2
2 (x, ω) =

Ĵm2 (ω)

2π

ˆ ∞
κ=0

[
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
−
∂1∂2

κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)]
J0(κr)κdκ

=
Ĵm2 (ω)

2π

ˆ ∞
κ=0

{
cos(φ)sin(φ)

[(
L̃V8,J G̃

V
J,K(L̃V )−1

K,8

)
−
(
L̃H2,J G̃

H
J,K(L̃H)−1

K,2

)]
J2(κr)

}
κdκ.

(3.323)
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For Ẽ
Jm3
2 , we transform

Ẽ
Jm3
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

= −jk1
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
)( 1

sµ0
Ĵm3 (ω)

)
,

(3.324)

to

Ê
Jm3
2 (x, ω) =

Ĵm3 (ω)

2π

ˆ ∞
κ=0

[
∂1
(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)( 1

sµ0

)]
J0(κr)κdκ

=
Ĵm3 (ω)

2π

ˆ ∞
κ=0
−κcos(φ)

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,4

)( 1

sµ0

)
J1(κr)κdκ.

(3.325)

For Ẽ
fb1
2 , we transform

Ẽ
fb1
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

= −
k1k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
]
F̂b1(ω)

+
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]
F̂b1(ω),

(3.326)

to

Ê
fb1
2 (x, ω) =

F̂b1(ω)

2π

ˆ ∞
κ=0

[
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
−
∂1∂2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]
J0(κr)κdκ

=
F̂b1(ω)

2π

ˆ ∞
κ=0

{
cos(φ)sin(φ)

[(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
−
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]
J2(κr)

}
κdκ.

(3.327)
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For Ẽ
ff1
2 , we transform

Ẽ
f
f
1

2 (kH , x3, ω) =
k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
jk1k2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
1

sρ̂E
F̂f1 (ω)

)]
+
k1k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f1 (ω)

)
−L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
(
L̂F̂f1 (ω)

)]
−
k1k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f1 (ω)

)
−L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
(
L̂F̂f1 (ω)

)]
, (3.328)

to

Ê
f
f
1

2 (x, ω) =
F̂f1 (ω)

2π

ˆ ∞
κ=0

[
−j

∂1∂2

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
−
∂1∂2

κ2

(
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
)( ρf

ρ̂E

)
+
∂1∂2

κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂

+
∂1∂2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
)( ρf

ρ̂E

)
−
∂1∂2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]
J0(κr)κdκ

=
F̂b1(ω)

2π

ˆ ∞
κ=0

{
cos(φ)sin(φ)

[(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)(−jκ
sρ̂E

)
−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E

+
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂

+
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

) ρf
ρ̂E

−
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]
J2(κr)

}
κdκ.

(3.329)

For Ẽ
fb2
2 , we transform
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Ẽ
fb2
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

= −
k22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
]
F̂b2(ω)

−
k21
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]
F̂b2(ω), (3.330)

to

Ê
fb2
2 (x, ω) =

F̂b2(ω)

2π

ˆ ∞
κ=0

[
∂22
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
+
∂21
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)]
J0(κr)κdκ

=
F̂b2(ω)

4π

ˆ ∞
κ=0

[
−

1

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

)
(J0(κr) + cos(2φ)J2(κr))

−
1

2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

)
(J0(κr)− cos(2φ)J2(κr))

]
κdκ.

(3.331)

For Ẽ
ff2
2 , we transform

Ẽ
f
f
2

2 (kH , x3, ω) =
k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
jk22
κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
1

sρ̂E
F̂f2 (ω)

)]
+
k22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f2 (ω)

)
−L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
(
L̂F̂f2 (ω)

)]
+
k21
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f2 (ω)

)
−L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4(κ, x3, ω)
(
L̂F̂f2 (ω)

)]
,

(3.332)

to
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Ê
f
f
2

2 (x, ω) =
F̂f2 (ω)

2π

ˆ ∞
κ=0

[
−j

∂22
κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
−
∂22
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E

+
∂22
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂

−
∂21
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

) ρf
ρ̂E

+
∂21
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]
J0(κr)κdκ

=
F̂b2(ω)

2π

ˆ ∞
κ=0

{
1

2

[
−jκ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

) 1

sρ̂E

+
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E

−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,4

)
L̂
]

(J0(κr) + cos(2φ)J2(κr))

+
1

2

[(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3

) ρf
ρ̂E

−
(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,4

)
L̂
]

(J0(κr)− cos(2φ)J2(κr))
}
κdκ.

(3.333)

For Ẽ
fb3
2 , we transform

Ẽ
fb3
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
−k2
κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,5(κ, x3, ω)
] (
F̂b3(ω)

)
,

(3.334)

to

Ê
fb3
2 (x, ω) =

F̂b3(ω)

2π

ˆ ∞
κ=0

[
−
j∂2

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,5

)]
J0(κr)κdκ

=
F̂b3(ω)

2π

ˆ ∞
κ=0

[
jsin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,5

)]
J1(κr)κdκ.

(3.335)

For Ẽ
ff3
2 , we transform
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Ẽ
f
f
3

2 (kH , x3, ω) =
k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
−k2
κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,6(κ, x3, ω)
] (
F̂f3 (ω)

)
,

(3.336)

to

Ê
f
f
3

2 (x, ω) =
F̂f3 (ω)

2π

ˆ ∞
κ=0

[
−
j∂2

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

)]
J0(κr)κdκ

=
F̂f3 (ω)

2π

ˆ ∞
κ=0

[
jsin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,6

)]
J1(κr)κdκ.

(3.337)

For Ẽq
i

2 , we transform

Ẽq
i

2 (kH , x3, ω) =
k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
k2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)
] (
Q̂i(ω)

)
,

(3.338)

to

Êq
i

2 (x, ω) =
Q̂i(ω)

2π

ˆ ∞
κ=0

[
j∂2

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)]
J0(κr)κdκ

=
Q̂i(ω)

2π

ˆ ∞
κ=0

[
−jsin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,2

)]
J1(κr)κdκ.

(3.339)

For Ẽ
hb11
2 , we transform



3.3. Field composition, combining modes and Fourier-Bessel transformations 129

Ẽ
hb11
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
k2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
Ĥb11(ω)

−jk2
[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
Ĥb11(ω)

−
jk21k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
Ĥb11(ω)

+
jk21k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
Ĥb11(ω),

(3.340)

to

Ẽ
hb11
2 (kH , x3, ω) =

Ĥb11(ω)

2π

ˆ ∞
κ=0

{
j∂2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
+∂2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
−
∂21∂2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
+
∂21∂2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]}
J0(κr)κdκ.

=
Ĥb11(ω)

2π

ˆ ∞
κ=0
−jsin(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
J1(κr)

−κ sin(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
J1(κr)

−
κ

4
sin(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
(J1(κr)

− (1 + 2cos(2φ)J3(κr)))

+
κ

4
sin(φ)

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
(J1(κr)

− (1 + 2cos(2φ)) J3(κr))κdκ.

(3.341)

For Ẽ
hb22
2 , we transform
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Ẽ
hb22
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
k2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
Ĥb22(ω)

−jk2
[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
Ĥb22(ω)

−
jk32
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
Ĥb22(ω)

−
jk21k2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
Ĥb22(ω),

(3.342)

to

Ẽ
hb22
2 (kH , x3, ω) =

Ĥb22(ω)

2π

ˆ ∞
κ=0

{
j∂2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
+∂2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
−
∂32
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
−
∂21∂2

κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]}
J0(κr)κdκ.

=
Ĥb11(ω)

2π

ˆ ∞
κ=0
−jsin(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
J1(κr)

−κ sin(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2GfrS

sKc

]
J1(κr)

−
κ

4
sin(φ)

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
(3J1(κr)

+ (1 + 2cos(2φ)J3(κr)))

−
κ

4
sin(φ)

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
2Gfr

s

]
(J1(κr)

− (1 + 2cos(2φ)) J3(κr))κdκ.

(3.343)

For Ẽ
hb33
2 , we transform
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Ẽ
hb33
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
k2

κ

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)
]
Ĥb33(ω),

(3.344)

to

Ê
hb33
2 (x, ω) =

Ĥb33(ω)

2π

ˆ ∞
κ=0

[
j∂2

κ

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,1

)]
J0(κr)κdκ

=
Ĥb33(ω)

2π

ˆ ∞
κ=0

[
−jsin(φ)

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,1

)]
J1(κr)κdκ.

(3.345)

For Ẽ
hb13
2 , we transform

Ẽ
hb13
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
k1k2

κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,7(κ, x3, ω)
] (
Ĥb13(ω) + Ĥb31(ω)

)
−
k1k2

κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
)(
Ĥb13(ω) + Ĥb31(ω)

)
,

(3.346)

to

Ê
hb13
2 (x, ω) =

(
Ĥb13(ω) + Ĥb31(ω)

)
2π

ˆ ∞
κ=0

[
−∂1∂2
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
+
∂1∂2

κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)]
J0(κr)κdκ

=

(
Ĥb13(ω) + Ĥb31(ω)

)
2π

ˆ ∞
κ=0

{
cos(φ)sin(φ)

[
−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
+
(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)]
J2(κr)

}
κdκ.

(3.347)

For Ẽ
hb23
2 , we transform
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Ẽ
hb23
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

=
k22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,7(κ, x3, ω)
] (
Ĥb23(ω) + Ĥb32(ω)

)
+
k21
κ2

(
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,1(κ, x3, ω)
)(
Ĥb23(ω) + Ĥb32(ω)

)
,

(3.348)

to

Ê
hb23
2 (x, ω) =

(
Ĥb23(ω) + Ĥb32(ω)

)
2π

ˆ ∞
κ=0

[
−∂22
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
−
∂21
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)]
J0(κr)κdκ

=

(
Ĥb23(ω) + Ĥb32(ω)

)
2π

ˆ ∞
κ=0

{
1

2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,7

)
(J0(κr) + cos(2φ)J2(κr))

+
1

2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,1

)
(J0(κr)− cos(2φ)J2(κr))

}
κdκ.

(3.349)

For Ẽ
hb12
2 , we transform

Ẽ
hb12
2 (kH , x3, ω) =

k2

κ
ẼVnorm(κ, x3, ω) +

jk1

κ2
ẼH(κ, x3, ω)

=
k2

κ
q̃V8 (κ, x3, ω) +

jk1

κ2
q̃H2 (κ, x3, ω)

= −
jk1k22
κ2

[
L̃V8,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
](2

s

[
GfrĤb21(ω)

+GfrĤb12(ω)
])

−
jk31
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]

1

s

[
GfrĤb21(ω) +GfrĤb12(ω)

]
+
jk1k22
κ2

[
L̃H2,J (κ, x3, ω)G̃HJ,K(κ, x3, ω)(L̃H)−1

K,3(κ, x3, ω)
]

1

s

[
GfrĤb21(ω) +GfrĤb12(ω)

]
,

(3.350)

to
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Ê
hb12
2 (x, ω) =

(
Ĥb12(ω) + Ĥb21(ω)

)
2π

ˆ ∞
κ=0

[
−
∂1∂22
κ2

(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) 2Gfr

s

−
∂31
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

+
∂1∂22
κ2

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

]
J0(κr)κdκ

=

(
Ĥb12(ω) + Ĥb21(ω)

)
2π

ˆ ∞
κ=0

{
κ

4
cos(φ)

[
−
(
L̃V8,J G̃

V
J,K(L̃V )−1

K,3

) 2Gfr

s

+
(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

]
(J1(κr)− (1− 2cos(2φ)) J3(κr))

−
κ

4
cos(φ)

(
L̃H2,J G̃

H
J,K(L̃H)−1

K,3

) Gfr
s

(3J1(κr) + (1− 2cos(2φ)) J3(κr))

}
κdκ.

(3.351)

vs3-type two-way field quantity expressions

We here present the Fourier-Bessel transformations for each source-type for receiver-
type vs3, by explicitly focusing on the ṽs3 fields. By selecting different rows of L̃H,V ,
we can obtain the expressions for w̃3, τ̃ b33, and −p̃f . In this section, we drop the
superscript s, denoting ‘solid’, for notational convenience.

For ṽ
Je1
3 , we transform

ṽ
Je1
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=

{
−k1
κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
]}
Ĵ e1 (ω),

(3.352)

to

v̂
Je1
3 (x, ω) =

Ĵ e1 (ω)

2π

ˆ ∞
κ=0

[
−
j∂1

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)]
J0(κr)κdκ

=
Ĵ e1 (ω)

2π

ˆ ∞
κ=0

[(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)
jcos(φ)J1(κr)

]
κdκ.

(3.353)

For ṽ
Je2
3 , we transform

ṽ
Je2
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=

{
−k2
κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
]}
Ĵ e2 (ω),

(3.354)
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to

v̂
Je2
3 (x, ω) =

Ĵ e2 (ω)

2π

ˆ ∞
κ=0

[
−
j∂2

κ2

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)]
J0(κr)κdκ

=
Ĵ e2 (ω)

2π

ˆ ∞
κ=0

[
jsin(φ)

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)]
J1(κr)κdκ.

(3.355)

For ṽ
Je3
3 , we transform

ṽ
Je3
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=
[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,6(κ, x3, ω)
]( ρ̂EL̂

ε̂
Ĵ e3 (ω)

)

+
[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]( jκ

sε̂
Ĵ e3 (ω)

)
,

(3.356)

to

v̂
Je3
3 (x, ω) =

Ĵ e3 (ω)

2π

ˆ ∞
κ=0

[(
L̃V1,J G̃

V
J,K(L̃V )−1

K,6

) ρ̂EL̂
ε̂

+
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,8

) jκ
sε̂

]
J0(κr)κdκ.

(3.357)

For ṽ
Jm1
3 , we transform

ṽ
Jm1
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=

{
k2

κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]}
Ĵm1 (ω),

(3.358)

to

v̂
Jm1
3 (x, ω) =

Ĵm1 (ω)

2π

ˆ ∞
κ=0

[
j∂2

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,8

)]
J0(κr)κdκ

=
Ĵm1 (ω)

2π

ˆ ∞
κ=0
−jsin(φ)

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,8

)
J1(κr)κdκ.

(3.359)
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For ṽ
Jm2
3 , we transform

ṽ
Jm2
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=

{
−k1
κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,8(κ, x3, ω)
]}
Ĵm2 (ω),

(3.360)

to

v̂
Jm2
3 (x, ω) =

Ĵm2 (ω)

2π

ˆ ∞
κ=0
−
j∂1

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,8

)
J0(κr)κdκ

=
Ĵm2 (ω)

2π

ˆ ∞
κ=0

jcos(φ)
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,8

)
J1(κr)κdκ.

(3.361)

Note that we here do not present the vs3 response due to a Jm3 source: Jm3 is a
pure SHTE source-type. Since vs3 is purely a PSVTM field-type, we do not need to
evaluate this specific source-receiver combination.

For ṽ
fb1
3 , we transform

ṽ
fb1
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

= −
k1

κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
]
F̂b1(ω),

(3.362)

to

v̂
fb1
3 (x, ω) =

F̂b1(ω)

2π

ˆ ∞
κ=0

[
−
j∂1

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

)]
J0(κr)κdκ

=
F̂b1(ω)

4π

ˆ ∞
κ=0

jcos(φ)
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

)
J1(κr)κdκ.

(3.363)

For ṽ
ff1
3 , we transform

ṽ
f
f
1

3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

= jk1

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
1

sρ̂E
F̂f1 (ω)

)]
+
k1

κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f1 (ω)

)
−L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
(
L̂F̂f1 (ω)

)]
,

(3.364)
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to

v̂
f
f
1

3 (x, ω) =
F̂f1 (ω)

2π

ˆ ∞
κ=0

[
−∂1

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
+
j∂1

κ

(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
)( ρf

ρ̂E

)
−
j∂1

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)
L̂
]
J0(κr)κdκ

=
F̂b1(ω)

2π

ˆ ∞
κ=0

{
κcos(φ)

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
−jcos(φ)

[(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E
−
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)
L̂
]}

J1(κr)κdκ.

(3.365)

For ṽ
fb2
3 , we transform

ṽ
fb2
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

= −
k2

κ

(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
)
F̂b2(ω),

(3.366)

to

v̂
fb2
3 (x, ω) =

F̂b2(ω)

2π

ˆ ∞
κ=0

[
−
j∂2

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

)]
J0(κr)κdκ,

=
F̂b2(ω)

4π

ˆ ∞
κ=0

jsin(φ)
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

)
J1(κr)κdκ.

(3.367)

For ṽ
ff2
3 , we transform

ṽ
f
f
2

3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

= jk2

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
1

sρ̂E
F̂f2 (ω)

)]
+
k2

κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)

(
ρf

ρ̂E
F̂f2 (ω)

)
−L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,4(κ, x3, ω)
(
L̂F̂f2 (ω)

)]
,

(3.368)
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to

v̂
f
f
2

3 (x, ω) =
F̂f2 (ω)

2π

ˆ ∞
κ=0

[
−∂2

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,2

)( 1

sρ̂E

)
+
j∂2

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E

−
j∂2

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)
L̂
]
J0(κr)κdκ

=
F̂b2(ω)

2π

ˆ ∞
κ=0

[
κ sin(φ)

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,2

) 1

sρ̂E

−jsin(φ)
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

) ρf
ρ̂E

+jsin(φ)
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,4

)
L̂
]
J1(κr)κdκ.

(3.369)

For ṽ
fb3
3 , we transform

ṽ
fb3
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=
[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,5(κ, x3, ω)
] (
−F̂b3(ω)

)
,

(3.370)

to

v̂
fb3
3 (x, ω) =

F̂b3(ω)

2π

ˆ ∞
κ=0
−
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,5

)
J0(κr)κdκ.

(3.371)

For ṽ
ff3
3 , we transform

ṽ
f
f
3

3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=
[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,6(κ, x3, ω)
] (
−F̂f3 (ω)

)
,

(3.372)

to

v̂
f
f
3

3 (x, ω) =
F̂f3 (ω)

2π

ˆ ∞
κ=0
−
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,6

)
J0(κr)κdκ.

(3.373)
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For ṽq
i

3 , we transform

ṽq
i

3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=
[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)
] (
Q̂i(ω)

)
,

(3.374)

to

v̂q
i

3 (x, ω) =
Q̂i(ω)

2π

ˆ ∞
κ=0

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,2

)
J0(κr)κdκ

(3.375)

For ṽ
hb11
3 , we transform

ṽ
hb11
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
Ĥb11(ω)

+

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
−2jκGfrS

sKc

]
Ĥb11(ω)

−
jk21
κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
Ĥb11(ω),

(3.376)

to
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ṽ
hb11
3 (kH , x3, ω) =

Ĥb11(ω)

2π

ˆ ∞
κ=0

{(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)
)( S

Kc

)
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)
)( C

M

(
1−

S

Kc

))
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
) −2jκGfrS

sKc

+
j∂21
κ

(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
) 2Gfr

s

}
J0(κr)κdκ,

=
Ĥb11(ω)

2π

ˆ ∞
κ=0

{[(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)
)( S

Kc

)
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)
)( C

M

(
1−

S

Kc

))
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
) −2jκGfrS

sKc

]
J0(κr)

−
jκ

2

(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
) 2Gfr

s

(J0(κr)− cos(2φ)J2(κr))}κdκ.
(3.377)

For ṽ
hb22
3 , we transform

ṽ
hb22
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)

(
S

Kc

)
+L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)

(
C

M

(
1−

S

Kc

))]
Ĥb22(ω)

+

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
−2jκGfrS

sKc

]
Ĥb22(ω)

−
jk22
κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

]
Ĥb22(ω),

(3.378)

to
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ṽ
hb22
3 (kH , x3, ω) =

Ĥb22(ω)

2π

ˆ ∞
κ=0

[(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)
)( S

Kc

)
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)
)( C

M

(
1−

S

Kc

))
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
) −2jκGfrS

sKc

+
j∂22
κ

(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

)]
J0(κr)κdκ

=
Ĥb22(ω)

2π

ˆ ∞
κ=0

{[(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)
)( S

Kc

)
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,2(κ, x3, ω)
)( C

M

(
1−

S

Kc

))
+
(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
) −2jκGfrS

sKc

]
J0(κr)

−jκ
2

(
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
2Gfr

s

)
(J0(κr) + cos(2φ)J2(κr))}κdκ.

(3.379)

For ṽ
hb33
3 , we transform

ṽ
hb33
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=
[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,1(κ, x3, ω)
]
Ĥb33(ω),

(3.380)

to

v̂
hb33
3 (x, ω) =

Ĥb33(ω)

2π

ˆ ∞
κ=0

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,1

)
J0(κr)κdκ.

(3.381)

For ṽ
hb13
3 , we transform

ṽ
hb13
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=
k1

κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,7(κ, x3, ω)
] (
Ĥb13(ω) + Ĥb31(ω)

)
,

(3.382)

to
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v̂
hb13
3 (x, ω) =

(
Ĥb13(ω) + Ĥb31(ω)

)
2π

ˆ ∞
κ=0

j∂1

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,7

)
J0(κr)κdκ

=

(
Ĥb13(ω) + Ĥb31(ω)

)
2π

ˆ ∞
κ=0
−jcos(φ)

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,7

)
J1(κr)κdκ.

(3.383)

For ṽ
hb23
3 , we transform

ṽ
hb23
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

=
k2

κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,7(κ, x3, ω)
] (
Ĥb23(ω) + Ĥb32(ω)

)
,

(3.384)

to

v̂
hb23
3 (x, ω) =

(
Ĥb23(ω) + Ĥb32(ω)

)
2π

ˆ ∞
κ=0

j∂2

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,7

)
J0(κr)κdκ

=

(
Ĥb23(ω) + Ĥb32(ω)

)
2π

ˆ ∞
κ=0
−jsin(φ)

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,7

)
J1(κr)κdκ.

(3.385)

For ṽ
hb12
3 , we transform

ṽ
hb12
3 (kH , x3, ω) = q̃V1 (κ, x3, ω)

= −
jk1k2

κ

[
L̃V1,J (κ, x3, ω)G̃VJ,K(κ, x3, ω)(L̃V )−1

K,3(κ, x3, ω)
](2

s

[
GfrĤb21(ω)

+GfrĤb12(ω)
])
,

(3.386)

to

v̂
hb12
3 (x, ω) =

(
Ĥb12(ω) + Ĥb21(ω)

)
2π

ˆ ∞
κ=0

j∂1∂2

κ

(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

) 2Gfr

s
J0(κr)κdκ

=

(
Ĥb12(ω) + Ĥb21(ω)

)
2π

ˆ ∞
κ=0

jκcos(φ)sin(φ)
(
L̃V1,J G̃

V
J,K(L̃V )−1

K,3

) 2Gfr

s
J2(κr)κdκ.

(3.387)
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3.4 2D and 3D numerical modeling with
ESSEMOD

Based on the previous presented theory, we have developed an analytically-based,
numerical modeling code for modeling all electromagneto-seismic and seismo-
electromagnetic source-receiver combinations in layered-Earth geometries. We have
named our modeling code ‘ESSEMOD’, which stands for Electromagneto-Seismic
and Seismo-Electromagnetic MODeling. Our seismo-EM layer-code is developed in
a combined Fortran / C language, and compatible with the ‘Seismic Unix’ parameter
interface. The code can model both 2D and 3D situations, in 1D layered-Earth
geometries. In 2D, the SH-TE and P-SV-TM propagation modes are naturally
decoupled (see e.g. Grobbe et al. (2016b)). We use a 1D spatial inverse Fourier
transformation to transform the data from the horizontal wavenumber-frequency
domain to the space-frequency domain. Care must be taken that proper spatial
sampling occurs in the 2D modeling, such that aliasing, and effects due to the
periodicity related to the discrete inverse fast Fourier transformation, are avoided
(Bracewell, 2000). In 3D, the two propagation modes need to be combined, as
discussed earlier. We use the presented Fourier-Bessel transformations to transform
the data from the horizontal wavenumber-frequency domain to the space-frequency
domain. Proper radial distance-radial wavenumber sampling needs to occur in this
case, such that the Bessel functions damp out sufficiently and the data is correctly
transformed to the space-frequency domain.



Chapter 4

The model: Numerical results of
seismo-EM layer-code modeling

4.1 Numerical tests with different eigenvector setsi

In this section we present the numerical results of seismo-electromagnetic layered-
Earth modeling, using different eigenvector sets. For our tests, we use our layer-code
ESSEMOD. First, we focus on the numerical stability of each of the eigenvector sets.
We investigate both the stability and internal consistency of the eigenvector sets
using two different tests:

1. A numerical stability analysis based on the fact that the combination of system
matrix, eigenvectors and eigenvalues should yield a zero result.

2. A numerical stability test of the flux-normalized eigenvector systems by in-
vestigating the preciseness and correctness of using the transpose of the sub-
matrices as its inverse.

We use Nt = 2048 time-samples with a time-sampling step of ∆t = 0.001 s.
We use the same, two-halfspace model for all numerical stability tests, consisting of
halfspace (medium) A over halfspace (medium) B. The relevant model parameters
are specified in Table 4.1. Note that velocity ranges (the real parts of the com-
plex velocities) are displayed in Table 4.1 for the bandwidth under consideration.
We use a Ricker wavelet with a peak frequency of 30 Hz and a peak amplitude of
1 · 109 N/m3. The source is located at x3 = 100 m and the receivers are placed at
x3 = 770 m depth. The subsurface contains one interface, at x3 = 1000 m depth,
such that both coseismic / coelectric fields as well as interface response fields (or
seismo-electromagnetic conversion) are generated. In the appendices, we present
radial wavenumber-radial frequency (κ-ω) images for each submatrix element, corres-
ponding to certain row-column combinations of the consistency and stability checks.

iThis section is part of the journal paper published in Geophysical Journal International
doi: 10.1093/gji/ggw128 (Grobbe et al., 2016a). Note that minor changes have been introduced to
make the text consistent with the other chapters of this thesis.
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Table 4.1: Overview of the velocities in [m/s], (static) coupling coefficients in [m2 · s · V −1], and
porosity [-] values for each of the different media. To illustrate the frequency-dependency of certain
wave/field-types, velocity ranges (the real parts of the complex velocities) are displayed for the
bandwidth under consideration, presenting the values for the lowest and highest frequency. Note
that the EM-velocities are proportional to the square-root of frequency.

Phys. quantity Medium A Medium B Medium C Medium D

Pf -vel. [m/s] 3159.81-3159.84 3153.67-3153.68 3145.83-3145.84 4388.43-4388.43
Ps-vel. [m/s] 2.89-92.96 3.98-131.09 3.92-129.12 3.12-4.25
S-vel. [m/s] 2110.79-2110.87 1952.83-1953.03 1959.91-1960.09 1825.74-1825.74
EM -vel. [m/s] 31796.34-1.01·106 4496.68-1.42 · 105 4388.31-1.39 · 105 1.0 · 107-2.84 · 107

L̂0 [m2s/V] 9.07 ·10−9 2.08 ·10−9 2.18·10−9 9.07 ·10−14

φ [-] 0.4 0.2 0.21 4 · 10−6

Next, we investigate what impact the different numerical stabilities have on the
modeling results. We start with a validating comparison between the Haartsen
and Pride (1997)-based particle velocity normalized eigenvector set (referred to as
the ‘HP’ set), the Haartsen and Pride (1997)-based flux-normalized eigenvector set
(referred to as the ‘HPF’ set) and our flux-normalized eigenvector set (referred to
as the ‘GST’ set) is made. We use the same model as for the numerical stability
tests and prove that all eigenvector sets yield similar results for this model under
consideration.

We also consider the special case scenario for this model, where the seismo-
electromagnetic coupling coefficient L̂ is chosen equal to zero, resulting in a decoup-
ling of the poroelastic and the electromagnetic parts of the seismo-electromagnetic
system. In other words, in this case purely poroelastic and purely electromagnetic
systems are modeled, without coupling between electromagnetic and mechanical
fields. We investigate the differences between the HPF set and the GST set, for
both a purely poroelastic wavefield and a purely electromagnetic field.

We finalize by presenting the results for two different models, that demonstrate
the true impact of these numerical stability issues, and issues with low coupling
coefficients, on the seismo-electromagnetic modeling results.

4.1.1 Numerical Stability

We now test the different eigenvector sets on their numerical stability and con-
sistency. To this end, we carry out two different tests: a system consistency test
and a flux-normalization identity test. We display the results of these checks for
each individual submatrix element, for all radial wavenumber-frequency combina-
tions in Appendices 4.1.A-4.1.E, where Appendices 4.1.A-4.1.C display the results
of the system consistency tests and Appendices 4.1.D and 4.1.E present the results
of the flux-normalization identity tests. Theoretically, all plots should present a
zero-value. The computations are carried out in double precision with 15-17 signi-
ficant decimal places. The results are plotted on a logarithmic scale, running from
10−6 to 10−22. We define 10−6 as our absolute threshold-value, where values greater
than this threshold are considered to be unacceptable errors (not anymore below
numerical precision).
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System Consistency Tests

To check the numerical consistency and stability of the seismo-electromagnetic sys-
tems under consideration, we investigate a modified version of equation (2.148)

ÃH,V L̃H,V − L̃H,V Λ̃H,V
1 = 0. (4.1)

Since the system matrix ÃH,V is anti-diagonal we can carry-out this check per
submatrix. This yields two independent equations that can be used to check the
system matrix, eigenvector, and eigenvalue inter-consistency and accuracy:

ÃH,V
12 L̃H,V2 + L̃H,V1 Λ̃H,V = 0, (4.2)

ÃH,V
21 L̃H,V1 + L̃H,V2 Λ̃H,V = 0. (4.3)

The results of equations (4.2) and (4.3) are referred to as H1 and H2 (for the SH-
TE system), respectively, and as V1 and V2 (for the P-SV-TM system), respectively.

Let us first focus on the SH-TE system. We can observe that for the GST
set (Figures 4.9 and 4.10), the diagonal elements (1,1) and (2,2) of the H2 system
(Figures 4.10(a) and 4.10(d)) have the largest error. However, all deviations from
the expected zero-value result are around the acceptable order of 10−10. This means
that the observed variations in deviation from zero are displaying the numerical
noise levels.

When we look at the results from the HP set (Figures 4.13 and 4.14), we ob-
serve that H1 element (2,2) (Figures 4.13(d)) and H2 elements (1,1), (1,2) and (2,2)
(Figures 4.10(a), 4.10(b) and 4.10(d), respectively) all have values in the order of
10−6 or more, where H2 elements (1,2) and (2,2) (Figures 4.10(b) and 4.10(d)) show
values in the order of 104 and 103, respectively.

When we then look at the flux-normalized version of this eigenvector set, HPF
(Figures 4.17 and 4.18), we can clearly see that the values have decreased signific-
antly. Except H2 element (1,2) (Figure 4.18(b)), which shows a value in the order
of 10−7, all elements have values of 10−10 or smaller. The way the eigenvectors
are normalized plays an important role in the numerical precision and stability of
modeling seismo-electromagnetic phenomena. The GST eigenvector set is shown to
perform numerically stable for all elements.

Next, we take a closer look at the numerical consistency of the P-SV-TM system.
Again, we start by looking at the results of the GST set, displayed in Figures 4.11
and 4.12. Most of the elements of both the V1 and V2 systems show values in the
order of the numerical noise levels. There is only one visible outlier: V1 element
(4,3) (Figures 4.11(o)) with a value in the order of 10−8, but it is still below the
threshold of 10−6. This error level is mainly caused due to ‘spikes’ that occur at
specific wavenumber-frequency combinations (e.g. around κ = 0.3 m−1 at 100Hz).
This is visible as the red ‘peak’ slope in element (4,3) of Figure 4.11(o).

Looking at the results from eigenvector set HP (Figures 4.15 and 4.16), we
can clearly observe larger errors, in multiple elements: V1 elements (2,4) (Fig-
ures 4.15(h)), (3,1)-(3,4) (Figures 4.15(i)-4.15(l)), (4,2) (Figures 4.15(n)) and (4,4)
(Figures 4.15(p)) and V2 elements (1,1)-(1,4) (Figures 4.16(a)-4.16(d)), (2,1)-(2,4)
(Figures 4.16(e)-4.16(h)), (4,1) (Figures 4.16(m)), (4,3) (Figures 4.16(o)) and (4,4)
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Figure 4.1: H2 system check, for submatrix element (1,2), plotted for 100 Hz as a function of
radial wavenumber κ. (a) HP eigenvector set (b) HPF eigenvector set (c) GST eigenvector set

(Figures 4.16(p)). Some of the elements again show huge deviations from the the-
oretically expected zero-value, resulting in unacceptable error levels (in the order of
1 · 10−6 or higher).

When flux-normalizing this eigenvector set, resulting in the HPF set, we can
again observe a significant improvement in numerical consistency and stability. Now,
only 4 elements show a significant error: V1 element (3,4) (Figures 4.19(l)) (order
10−8) and V2 elements (2,1), (2,3) and (2,4) (Figures 4.20(e), 4.20(g) and 4.20(h)).
Again, flux-normalizing the eigenvector sets is proven to stabilize the numerical res-
ults and improve numerical accuracy. In addition, it is again shown that the GST
set overall results in the best numerical stability and precision. The numerical con-
sistency errors of the HP and HPF may have implications on finding small amplitude
signals when there are also strong signals in the data. The HP and HPF sets may
generate disturbing numerical noise that partially masks the small amplitude events
(for example interface response fields) that can be correctly modeled with the more
stable and precise GST set.

Figure 4.1 displays the system consistency results for element (1,2) of the H2
system, for the HP, HPF and GST eigenvector sets (corresponding to Figures 4.1a,
4.1b, and 4.1c, respectively), for a single frequency of 100 Hz as a function of radial
wavenumber. These plots provide clear insight in the numerical variations with
different wavenumbers. We can clearly observe that the GST set is numerically
consistent for this element, the HP set shows unacceptable error levels and the flux-
normalizing this HP set results in slightly better consistency, but still less than the
GST set.

Flux-Normalization Identity Tests

Now that we have shown that power flux-normalizing the eigenvector sets improves
numerical stability/precision and internal system consistency, we focus with our
second test only on the power-flux normalized eigenvector sets HPF and GST. We
know that for flux-normalized systems, we can express the inverse of the composition
matrix in terms of the transposes of the composition submatrices (see for example
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equation (2.168)). We make use of this knowledge to carry out the following two
numerical checks

2
{

L̃H,V2

}t
L̃H,V1 − ĨH,V = 0, (4.4)

2
{

L̃H,V1

}t
L̃H,V2 − ĨH,V = 0. (4.5)

The results of equation (4.4) will be again referred to as H1 and V1 for the SH-TE
and P-SV-TM modes, respectively. Similarly, the results of equation (4.5) will be
referred to as H2 and V2 for the SH-TE and P-SV-TM systems, respectively.

We start again with the SH-TE system. Figures 4.21 and 4.22 show that for
the GST set, all elements have values less than 10−15, which is beyond numerical
precision and hence only displays numerical noise.

For the HPF set, displayed in Figures 4.25 and 4.26, we can observe that all
elements still show acceptable error levels. However, the maximum values are now
in the order of 10−10, slightly higher than the GST set. We can nevertheless conclude
that for both flux-normalized eigenvector sets, we can correctly use the transpose of
the composition submatrices as an inverse. Another observation is the fact that the
matrix of elements of the figures corresponding to H1, Figures 4.21 and 4.25, are the
transpose of the matrix of elements of the Figures 4.22 and 4.26 corresponding to
H2, for both the GST and HPF sets.

Let us now look at the P-SV-TM propagation mode. The results for the GST set
are presented in Figures 4.23 and 4.24. We can observe that most of the elements
have values below or around numerical precision. There are a few elements that
display slightly higher values: elements (3,4) and (4,3) for V1 (Figures 4.23(l) and
4.23(o)) (having values in the order of 10−7 and 10−8, respectively) and for V2 the
elements (3,4) and (4,3) (Figures 4.24(l) and 4.24(o)) (but now having values the
other way around; in the order of 10−8 and 10−7, respectively). So once again, the
figures of V1 and V2 are each others transpose. The value in the order of 10−7 is
caused mainly due to the spike around κ = 0.3 for 100 Hz. In contrast, looking at
the results for the HPF set (Figures 4.27 and 4.28), we can observe that element
(3,4) in V1 (Figure 4.27(l)) and hence (4,3) in V2 (Figure 4.28(o)) have lower values
compared to the ones for the GST eigenvector set for these elements. However, other
elements, for example element (1,4) (Figure 4.27(d)) and (2,4) (Figure 4.27(h)) in V1
(and hence (4,1) (Figure 4.28(m)) and (4,2) (Figure 4.28(n)) for V2) display larger
values than for the GST set and element (4,3) of V1 (Figure 4.27(o)) and hence (3,4)
of V2 (Figure 4.28(o)) for V2 have similar values as the GST set. In conclusion, both
flux-normalized eigenvector sets perform also well enough for the P-SV-TM mode
when using the transpose of the composition submatrices as an inverse. The GST
and HPF sets result in larger and smaller values for different elements. Overall, the
GST eigenvector set seems to be slightly more stable for the P-SV-TM mode than
the HPF set, but both sets yield acceptable results.

A clear example can be seen in Figure 4.2, displaying the flux-normalization
identity checks for all radial wavenumbers for a single frequency of 100 Hz. Figure
4.2(a) displays the results of the HPF set, Figure 4.2(b) of the GST set. We can
observe that the GST set results in random deviations from zero in the order of 10−18,
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Figure 4.2: V2 identity check, for submatrix element (4,2), plotted for 100 Hz as a function of
radial wavenumber κ. (a) HPF eigenvector set (b) GST eigenvector set

which is around numerical precision. In contrast, the HPF set shows correlated
deviations in the order of 10−8, which might still be acceptable but is obviously
numerically less stable and precise.

4.1.2 Implications for the Seismo-Electromagnetic Modeling
Results

Validating Comparisons between the Three Eigenvector Sets

We here compare the seismo-electromagnetic modeling results of layer-code mod-
eling for an electric field component in the x1-direction, generated by a seismic dipole
bulk force source in the x1-direction, for the model under consideration. We com-
pare the results of using the HPF set (Figure 4.3(a)), the HP set (Figure 4.3(b)) and
the GST set (Figure 4.3(c)). Using the logarithmic plotting scale, we can clearly
observe the different seismo-electromagnetic events and we can observe that there
is a perfect match between the three eigenvector sets in both phase and amplitude
for all events. The logarithmic scale displays the base-10 logarithm of the absolute
value of the data. To illustrate this further, a plot showing a trace-overlay between
the HPF set (black-dashed), the HP set (blue-dotted) and the GST set (red solid)
is presented in Figure 4.3(c). However, differences in the numerical noise levels are
visible (e.g. the noise for t>0.7 s). The HP and HPF sets display higher numerical
noise levels than the GST eigenvector set. This is an indicator for differences in
numerical stability for the different eigenvector sets.

These numerical results serve as a validation for each of the individual eigenvector
sets.
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Figure 4.3: Eigenvector validation comparison of seismo-electromagnetic shot records for a shot
at x3 = 100 m depth registered at depth level x3 = 770 m, in a model with an interface at
x3 = 1000 m. The displayed fields are the electric field component in the x1-direction due to a
seismic bulk force source component in the same direction. The results of Figures a-c are plotted on
a logarithmic scale. The logarithmic scale displays the base-10 logarithm of the absolute value of the
data. (a) seismo-electromagnetic shot records modeled with the HP eigenvector set. (b) seismo-
electromagnetic shot records modeled with the HPF eigenvector set. (c) seismo-electromagnetic
shot records modeled with the GST eigenvector set. (d) Zero-offset trace-overlay of the HPF
modeling result displayed with the black-dashed line, the HP result in blue solid and the GST
results displayed in red solid.
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Numerical inaccuracy: strong and weak events

We have seen that each eigenvector set visibly generates the same results for the
two-halfspace model under consideration. But what are then the implications of
the obvious differences in numerical stability and consistency between the HP, HPF
and GST eigenvector sets? To this end, we study a model where an additional
second interface is placed 1000 m below the first interface (at a depth of 2000 m)
of the numerical consistency model used thusfar. The interface separates the upper
medium B from the lower medium C, resulting in only a 5% porosity contrast over
this interface (and of course a resulting contrast in medium parameters that depend
on the porosity). The results are presented in Figures 4.4 and 4.5. Looking at
Figure 4.4, we clearly see that the GST set (Figure 4.4c) results in a very clean shot
record. The HP set is already less clean (Figure 4.4a), and the HPF set shows a
lot of numerical noise for the later arrival times (Figure 4.4b). We can observe that
the strong events arriving roughly in the first 0.5 s, are modeled consistently by the
HP, HPF, and GST sets. However, in Figure 4.4b, we can clearly observe in the
HPF results, that the weak events arriving at later times, related mainly to multiple
reflections and conversions between the two interfaces, are of similar amplitude as
the noise levels. The top inset figure of the trace overlay presented in Figure 4.5,
clearly shows that after roughly t = 1 s, the events modeled with the HPF set (black,
dashed) strongly deviate from the GST results (red, solid). These deviations occur
for the smaller amplitude events, in this model events with amplitudes in the order
of 10−7 V/m. Due to numerical instability, additional wiggles are visible, amplitude
and waveform differences can be observed, and the noise levels reach values that are
similar or even higher than the amplitudes of the events. For the HP eigenvector set
(blue, solid), the results match better with the GST set, also for these weaker events
at later times in the order of 10−7 V/m. However, for the very weak events in the
order of 10−10 V/m, so 3 orders of magnitude weaker, obvious erroneous modeling
results can be observed for the HP set (bottom inset figure of Figure 4.5, whereas
the GST set still models these events numerically stable and clean.

The Limiting Case of No Seismo-Electromagnetic Coupling

We now investigate the effect of taking L̂ = 0 (i.e. no seismo-electromagnetic coup-
ling occurs) on the numerical stability of each eigenvector set. We first explore what
happens if we set the seismo-electromagnetic coupling coefficient equal to zero. In
other words, we model situations where there is no coupling between poroelastic and
electromagnetic fields. In this way, we can model the purely poroelastic and purely
electromagnetic fields independently.

We start by focusing on the purely electromagnetic part by looking at the electric
field response in the x1-direction generated by an electric current source in the x1-
direction. Theoretically, we expect only the direct electromagnetic event and its
reflection at the interface at depth. Both events will arrive at almost identical times
on the seismic time scale (around t=0). The results are presented in Figure 4.6(a),
a trace overlay for zero-offset. The results of the GST set are presented with the
solid red line, and the results using the HPF set are plotted in black-dashed. We can
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Figure 4.4: Eigenvector comparison of seismo-electromagnetic shot records for a shot at x3 = 100
m depth registered at depth level x3 = 770 m, in a model with an interface separating medium A
from medium B at x3 = 1000 m and an additional interface with only a 5% porosity contrast,
separating medium B from medium C, at x3 = 2000 m. The displayed fields are the electric
field component in the x1-direction due to a seismic bulk force source component in the same
direction. The results are plotted on a logarithmic scale. (a) seismo-electromagnetic shot records
modeled with the HP eigenvector set. (b) seismo-electromagnetic shot records modeled with the
HPF eigenvector set. (c) seismo-electromagnetic shot records modeled with the GST eigenvector
set.

clearly observe that no electromagnetic events are being generated, when using the
HPF set, i.e. the result is zero whereas we theoretically expect two events. The result
of the GST set clearly does show an electromagnetic event around t=0. The two
expected events show up as one event on a seismic time scale. Similar observations
can be made for the other offsets. We have already predicted this behaviour by
looking at equations (2.172) and (2.173). For additional electromagnetic comparisons
of seismo-EM layer-code modeling using the GST eigenvector set with independent
electromagnetic modeling codes, the reader is referred to Grobbe et al. (2014) and
Maas et al. (2015).

This electromagnetic test already shows that the HPF set does not correctly
model the purely electromagnetic scenario when the coupling coefficient is zero. So
how about the purely poroelastic scenario? To answer this question, we look at
the results of the x1-component of the particle velocity generated by a seismic bulk
force source in the same direction. Figure 4.6(b) shows the zero-offset comparison
between the HPF set in black-dashed and the GST set in solid red for this purely
poroelastic scenario. The result of the HPF set has been reduced by a factor of 1000.
One can clearly see that the HPF set does not model the purely poroelastic scenario
correctly either. In contrast, for the results using the GST set we can clearly identify
the different events at the correct arrival times that we theoretically expect for this
purely poroelastic scenario (direct and reflected fields). Similar observations can be
made for the other offsets. To truly validate the correctness in both amplitude and
phase, a comparison with an independent poroelastic code can be made. However,
for the purpose of this section, it is sufficient to acknowledge the differences in mod-
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Figure 4.5: Zero-offset trace overlay plot of seismo-electromagnetic modeling with three different
eigenvector sets. The plots show the results for a shot at x3 = 100 m depth registered at depth level
x3 = 770 m, in a model with an interface separating medium A from medium B at x3 = 1000 m
and an additional interface with only a 5% porosity contrast, separating medium B from medium
C, at x3 = 2000 m. The displayed fields are the electric field component in the x1-direction due to
a seismic bulk force source component in the same direction. The blue-solid line shows the results
for the HP set (also the lower zoom inset), the black-dashed line for the HPF set (also the upper
zoom inset) and the red-solid line for the GST set.
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Figure 4.6: Electric field component in the x1-direction due to a seismic bulk force source in
the same direction, for a shot at x3 = 100 m depth registered at depth level x3 = 770 m in a
situation with no seismo-electromagnetic coupling (the coupling coefficient is equal to zero). The
results shown are obtained using the GST eigenvector set in red solid, and the HPF set in black-
dashed. (a) Zero-offset trace comparison for a purely electromagnetic scenario: the electric field
in the x1-direction due to an electric current source in the same direction. (b) Zero-offset trace
comparison for a purely poroelastic scenario: the horizontal particle velocity field component in
the x1-direction due to a dipole bulk force source in the same direction.

eling results between the HPF eigenvector set and the GST eigenvector set in case
of decoupled mechanical and electromagnetic fields, recognizing that the GST set
correctly models these scenarios whereas the HPF set fails. Do the eigenvector sets
yield a correct zero-valued result in case of no seismo-electromagnetic coupling for a
seismo-electromagnetic source-receiver combination: the x1 electric field component
generated by a seismic bulk force source in the x1-direction? Theoretically, this
should yield a zero-valued result since no coupling should occur between poroelastic
and electromagnetic fields. Comparisons between the HPF set and the GST set
indeed showed a zero-valued result at all offsets for both sets (not shown).

We now know that the HPF set (and hence also the HP set), is not correctly
modeling the decoupled, purely poroelastic and electromagnetic scenarios when the
seismo-electromagnetic coupling coefficient is equal to zero. So, what happens if
we model coupled seismo-electromagnetic scenarios in media containing layers with
very small coupling coefficients? To this end, we model seismo-electromagnetic phe-
nomena in a two half-space model, where the upper half-space (originally medium
A) now has a very low porosity (almost approaching a pure solid), and hence a very
small coupling coefficient (properties of medium D, see Table 2). The parameters
dependent on the porosity of course change accordingly. Figures 4.7 and 4.8 show
the results of this scenario. In Figure 4.7, we can observe that the GST eigenvector
set (Figure 4.7a) models the seismo-electromagnetic fields correctly and numerically
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stable. In contrast, the HP eigenvector set fails to correctly model this scenario in a
numerically stable fashion (Figure 4.7b). Looking at the trace overlay in Figure 4.8,
we can see that the major events still match reasonably for all three eigenvector sets.
However, zooming in to the weaker events in the first 0.7 s, we can observe differ-
ences in the amplitude of for example the direct source converted EM field at t=0 s.
In addition, we can observe that the GST set has very low noise levels (red, solid),
whereas the noise levels of the HP set are quite high (blue, solid). As an example,
compare the weak amplitude of the arrival around 0.5 s with the noise levels of the
HP and HPF sets at earlier and later times (Figure 4.8). So for models containing
small, multiple arrivals, these arrivals will be masked by the noise levels of the HP
set (and the HPF set), and visible in the GST set. Figure 4.7c shows that the HPF
eigenvector set, when exploiting the power flux-normalized transpose property for
the inverse, completely fails to model this scenario correctly. However, when the
HPF set is used with a numerical inverse instead of making use of this transposition
property (equations (2.169) and (2.170)), the modeling results are identical to the
HP results (compare Figures 4.7b and 4.7d). We can conclude that for modeling
scenarios with small coupling coefficients (due to for example low porosity values or
high electrolyte concentrations), the HP and HPF eigenvector sets can seriously fail
to correctly model all the events, especially weaker events (such as certain seismo-
electromagnetic interface response fields or multiples). The GST eigenvector set
remains stable at all times and always yields clean results.

4.1.3 Discussion

The validating results of Figure 4.3 have shown that the HP and HPF sets suffer
from higher numerical noise levels than the GST set. The HP set shows about
6 orders of magnitude difference between the strongest events in the shot record
and the noise levels, the HPF set about 5 orders of magnitude difference and the
GST set about 10 orders of magnitude difference. Although this might indicate
that the HP set performs slightly better than its flux-normalized HPF version, the
numerical stability tests have proven that the HPF set overall has better numer-
ical stability and precision than the HP set. The HPF set makes use of the power
flux-normalized transpose property to obtain the decomposition matrix (equations
(2.169) and (2.170)), whereas the HP set was always modeled using a numerical in-
verse to obtain the decomposition matrix. This numerical inverse probably smooths
out numerical inaccuracies and instabilities that can be the consequence of a badly
scaled or badly organized composition (eigenvector) matrix, whereas the transpos-
ition operation simply reorganizes the values of the composition matrix to obtain
the decomposition matrix. This fact is nicely illustrated in Figure 4.7, where the
HPF set yields exactly the same results as the HP set when a numerical inverse is
used. The results for the GST set in Figure 4.3 display a 10-orders of magnitude
difference between signal and numerical noise, already providing a first indication
that the GST set yields the best numerical stability and precision. In addition,
the two-interface model and the low-porosity model have proven that the GST set
yields stable and clean results at all times, whereas the HPF set and the HP set
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Figure 4.7: Eigenvector comparison of seismo-electromagnetic shot records for a shot at x3 =
100 m depth registered at depth level x3 = 770 m, in a model with an interface at x3 = 1000
m, separating medium D from medium B. The displayed fields are the electric field component
in the x1-direction due to a seismic bulk force source component in the same direction. The
results are plotted on a logarithmic scale. (a) seismo-electromagnetic shot records modeled with
the GST eigenvector set. (b) seismo-electromagnetic shot records modeled with the HP eigenvector
set. (c) seismo-electromagnetic shot records modeled with the HPF eigenvector set, when the
inverse of the eigenvector matrix is obtained from the transposition equivalence property. (d)
seismo-electromagnetic shot records modeled with the HPF eigenvector set, when the inverse of the
eigenvector matrix is computed numerically.
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Figure 4.8: Zero-offset trace overlay plot of seismo-electromagnetic modeling with three different
eigenvector sets. The plots show the results for a shot at x3 = 100 m registered at depth level
x3 = 770 m, in a model with an interface at x3 = 1000 m, separating medium D from medium
B. The displayed fields are the electric field component in the x1-direction due to a seismic bulk
force source component in the same direction. The blue-solid line shows the results for the HP
set, the black-dashed line for the HPF set, when the inverse of the eigenvector matrix is computed
numerically, and the red-solid line for the GST set.
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break down.
So what are these numerical instabilities and inaccuracies caused by? The

seismo-electromagnetic composition matrices consist of different parameters and
their columns represent different field types (the fast P-wave, slow P-wave, SV-wave,
TM-field, SH-wave, and the TE-field). The wide variety of seismo-electromagnetic
medium parameters can have a wide variety in terms of orders of magnitude: the
shear modulus has for example relatively large values, whereas the permeability has
small values. Also, looking at the wave/field velocities, the Biot slow P-wave has
much smaller velocity values than the electromagnetic field velocities. These big and
small values interact with each other, for example in the computation of the global
reflection coefficients of the layered-Earth numerical algorithm for each interface in
the model. The relative magnitude of the variables in the computations can dictate
the severity of round-off errors that are introduced. For example, a loss of numerical
precision can occur due to the addition of a large number with a small number. We
have seen that power flux-normalizing the HP set (leading to the HPF set), visibly
improves the numerical consistency of the eigenvector set. This normalization based
on the power of the system adjusts the composition matrix in such a way, that the
relative magnitude of the different variables varies less. The GST eigenvector set
is designed completely independently, taking the underlying physics explicitly into
account. In addition, the GST set is power flux-normalized, balancing the compos-
ition matrix even further. Therefore, the relative magnitude of different variables is
more consistent, and varies even less. We must note that the final expressions of
the GST eigenvector set for the P-SV-TM mode as presented in this thesis are more
complicated and extensive than the HPF eigenvector set.

As we have shown, the numerical stability differences have obvious implications
on finding small amplitude signals when there are also strong signals in the data.
Especially, later arriving, weak events (for example multiples and interface response
fields) are masked by numerical noise levels of the HP and HPF sets, whereas these
events are correctly modeled with the more stable and precise GST set. Further-
more, the fact that the GST set is capable of correctly modeling scenarios with no
seismo-electromagnetic coupling at all (i.e. modeling the independent poroelastic
and electromagnetic fields), is an additional benefit. It is also an indication that the
physics of the HP and HPF sets are not correctly taken into account. In addition, as
soon as there is little coupling between the mechanical and electromagnetic fields (for
example low porosity values or high electrolyte concentration), the modeling results
of the GST set compared to the HP and HPF sets, behave differently. Our mod-
eling scenario clearly shows that the GST set remains stable and models all events
correctly and clean, whereas the HP and HPF sets show numerical noise levels that
are of similar amplitude as the weak events in the data. This makes distinguising
between noise and physical weak events impossible. The seismo-electromagnetic in-
terface response fields that we are mainly after, since those fields can provide us with
information at depth, often have very weak amplitudes. We therefore desire that
our numerical modeling codes model all events correctly and as clean as possible,
enabling better interface response interpretation of our modeling results.

In the model with two interfaces, as well as the model with weak seismo-
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electromagnetic coupling, we have only changed the porosity values of the medium
compared to the model used for the validation of the eigenvector sets (see Table
2). Of course, many other parameters or parameter combinations, as well as model
geometries can yield small seismo-electromagnetic coupling coefficients, weak, late
arriving events or big contrasts between large and small amplitude events. Also, in
this section we have only studied the horizontal electric field due to a seismic bulk
force source. There are many other seismo-electromagnetic source-receiver combin-
ations. The numerical effects and instabilities of the HP and HPF eigenvector sets
might be even more pronounced for other source-receiver combinations, dependent
on for example the model scenario under consideration. Furthermore, for the seismic
frequency bandwidth, the Biot slow wave is actually a diffusive field that decays very
rapidly and diffuses at very low velocities. It almost never shows up in the seismo-
electromagnetic shot records. However, when studying seismo-electromagnetic phe-
nomena in for example the ultrasonic frequency range, the Biot slow wave becomes
a propagating wave and can show up in the records. Numerical instabilities as-
sociated with these parts of the eigenvector sets might become more pronounced
for these frequency bandwidths as well. Typical seismo-electromagnetic laboratory
wave propagation experiments (Schakel et al., 2011; Smeulders et al., 2014; Zhu et al.,
2000; Zhu & Toksöz, 2005) make use of ultrasonic frequencies due to the small scale
of the experiments. Validating such physical experiments by correct, complete, and
precise numerical modeling is crucial for our further understanding of the seismo-
electromagnetic phenomena and the absolute and relative amplitudes that are to be
expected from the different seismo-electromagnetic coupling mechanisms.

One can argue how crucial the discussed errors in the modeling of the weak events
are for the overall picture. It is true that all three eigenvector sets model the major
events correctly. However, the HPF set already models events that have a magnitude
in the order of 10−3 weaker than these major events, not correctly. The HP set mod-
els events that are 10−6 weaker than the largest events incorrectly, and these events
are masked by the noise levels. These are serious errors for numerical modeling,
and not neglegible. Of course it might be difficult to measure these weaker events in
field experiments, but with numerical modeling, we desire our results to be complete,
correct, clean and numerically stable. The GST set yields such results at all times.
It is therefore strongly recommended to use this newly developed eigenvector set for
future layered-Earth seismo-electromagnetic modeling experiments.

4.1.4 Conclusions

We have shown how to effectively flux-normalize the Haartsen & Pride (1997) ei-
genvector sets (with particle velocity instead of displacement). In addition, we
have derived an alternative flux-normalized eigenvector set directly from the sys-
tem matrices, thereby imposing specific physical conditions that guarantee correct
modeling of the independent poroelastic and electromagnetic systems as well, when
the seismo-electromagnetic coupling coefficient is equal to zero. Our approach is in
principle applicable to any physical wave or field phenomenon that can be captured
in the presented system matrix format.
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We have carried out two different numerical stability tests: the first test focused
on the internal consistency of the system matrix, its eigenvectors and eigenvalues
and the second test focused on the stability and preciseness of the flux-normalized
systems.

From the first test we conclude that flux-normalizing the eigenvector sets stabil-
izes the numerical results and improves numerical accuracy, for both the SH-TE and
P-SV-TM propagation modes. Flux-normalizing the HP eigenvector set, resulting in
the HPF set, drastically improves the numerical stability, but still there are stability
issues. Our GST set results overall in the best numerical performance both in terms
of stability and preciseness. The HP and HPF sets showed significant numerical con-
sistency errors for specific matrix elements and certain radial wavenumber-frequency
combinations.

The second test focused on how well we can express the inverse of the composition
matrix in terms of the transposes of the composition submatrices. For the SH-
TE mode, the GST eigenvector set results in slightly smaller errors than the HPF
eigenvector set. However, both error levels are acceptable. For the P-SV-TM mode,
the GST and HPF sets have larger and smaller errors at different elements. Overall,
the GST set seems to be slightly more stable for the P-SV-TM mode, but again
both eigenvector sets yield acceptable results. We can conclude that for both flux-
normalized eigenvector sets, we can correctly use the transpose of the composition
submatrices as an inverse.

We have validated the results using the different eigenvector sets in our seismo-
EM layer-code ESSEMOD. From the validating comparisons using a two-halfspace
model we conclude that each eigenvector set generates identical results for all the
major events in the model under consideration. However, the proven differences
in numerical stability and precision between the HP, HPF and GST sets play an
important role for different scenarios. As we have shown, the differences have obvious
implications on finding small amplitude signals when there are also strong signals in
the data. Especially, later arriving, weak events (for example multiples and interface
response fields) are masked by numerical noise levels of the HP and HPF sets,
whereas these events are correctly modeled with the more stable and precise GST
set.

When the seismo-electromagnetic coupling coefficient is equal to zero (i.e. when
there is no coupling between mechanical and electromagnetic fields), it turns out that
only the GST set models the purely poroelastic and purely electromagnetic systems
correctly. The incorrect modeling of the independent mechanical and electromag-
netic fields by the HP and HPF sets has been explained by theoretically looking at
the eigenvector sets as well. It is also an indication that the physics of the HP and
HPF sets are not correctly taken into account. Our approach of explicitly enforcing
the physics in our derivation of the GST eigenvector set results in correctly modeling
of the decoupled purely poroelastic and purely electromagnetic scenarios as well.

In addition, we have shown that as soon as there is little coupling between the
mechanical and electromagnetic fields (for example low porosity values or high elec-
trolyte concentrations), the modeling results of the GST set compared to the HP
and HPF sets, behave differently. Our modeling scenario clearly shows that the
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GST set remains stable at all times and models all coupled seismo-electromagnetic
events correctly and clean, whereas the HP and HPF sets show clearly numerical
noise levels that are of similar amplitude as the weak events in the data, making a
distinction between noise and physical weak events impossible.

Although it might be difficult to measure the physically weak events in actual field
experiments, in numerical modeling, we desire our results to be complete, correct,
clean, and numerically stable to obtain optimal insights in the physics of seismo-
electromagnetic phenomena. The GST set is proven to yield such results at all
times, and we therefore recommend to use this newly developed eigenvector set for
future layered-Earth seismo-electromagnetic modeling experiments.
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Appendix

4.1.A System Consistency Test using GST Eigenvectors

This appendix shows the results of the system consistency tests according to equation
(4.2), for H1 and V1, and equation (4.3), for H2 and V2, respectively. These tests
were carried out using the GST eigenvector sets.
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Figure 4.9: H1 system check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.10: H2 system check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.11: V1 system check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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Figure 4.12: V2 system check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)



4.1. Numerical tests with different eigenvector sets 165

4.1.B System Consistency Test using HP Eigenvectors

This appendix shows the results of the system consistency tests according to equation
(4.2), for H1 and V1, and equation (4.3), for H2 and V2, respectively. These tests
were carried out using the HP eigenvector sets.
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Figure 4.13: H1 system check with the HP set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.14: H2 system check with the HP set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.15: V1 system check with the HP set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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Figure 4.16: V2 system check with the HP set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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4.1.C System Consistency Test using HPF Eigenvectors

This appendix shows the results of the system consistency tests according to equation
(4.2), for H1 and V1, and equation (4.3), for H2 and V2, respectively. These tests
were carried out using the HPF eigenvector sets.
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Figure 4.17: H1 system check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.18: H2 system check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.19: V1 system check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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Figure 4.20: V2 system check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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4.1.D Flux-Normalization Identity Test using GST eigenvectors

This appendix shows the results of the flux-normalization identity tests according
to equation (4.4), for H1 and V1, and equation (4.5), for H2 and V2, respectively.
These tests were carried out using the GST eigenvector sets.
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Figure 4.21: H1 Identity check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.22: H2 Identity check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)



4.1. Numerical tests with different eigenvector sets 175

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(a)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(b)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(c)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(d)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(e)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(f)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(g)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(h)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(i)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(j)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(k)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(l)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(m)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(n)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(o)

0 0.25 0.5

0

1,000

2,000

3,000

κ [m-1]

ω
[r

ad
s-1

]

(p)

−6−8−10−12−14−16−18−20−22

Figure 4.23: V1 Identity Check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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Figure 4.24: V2 Identity Check with the GST set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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4.1.E Flux-Normalization Identity Test using HPF Eigenvectors

This appendix shows the results of the flux-normalization identity tests according
to equation (4.4), for H1 and V1, and equation (4.5), for H2 and V2, respectively.
These tests were carried out using the HPF eigenvector sets.
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Figure 4.25: H1 Identity Check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.26: H2 Identity Check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(2,1) (d) submatrix element (2,2)
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Figure 4.27: V1 Identity Check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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Figure 4.28: V2 Identity Check with the HPF set for all radial wavenumber-angular frequency
combinations. (a) submatrix element (1,1) (b) submatrix element (1,2) (c) submatrix element
(1,3) (d) submatrix element (1,4) (e) submatrix element (2,1) (f) submatrix element (2,2) (g)
submatrix element (2,3) (h) submatrix element (2,4) (i) submatrix element (3,1) (j) submatrix
element (3,2) (k) submatrix element (3,3) (l) submatrix element (3,4) (m) submatrix element
(4,1) (n) submatrix element (4,2) (o) submatrix element (4,3) (p) submatrix element (4,4)
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4.2 Homogeneous Space Green’s Function Valida-
tion

4.2.1 Introduction

In recent years, quite some numerical finite-element and finite-difference codes have
been developed for modeling the seismoelectric effect in 2D (e.g. Haines & Pride
(2006), Zyserman et al. (2010)). Furthermore, Haartsen & Pride (1997) and Garam-
bois & Dietrich (2002) have used an analytically-based code to model some 3D seis-
moelectric source-receiver combinations in horizontally layered, radially symmetric
media. With our code ESSEMOD, we are capable of modeling the wave propagation
of all existing Electromagneto-Seismic and Seismo-Electromagnetic source-receiver
combinations in layered-Earth scenarios. Our layer-code makes use of global reflec-
tion coefficients, leading to an efficient numerical scheme due to the fact that explicit
computation of the scattering matrices is not required. Fourier-Bessel transforma-
tions are used to go back from the horizontal wavenumber-frequency domain to the
space-frequency domain. We compare the results of several of these modeled source-
receiver combinations in a homogeneous medium with explicitly derived analytical
homogeneous space Green’s function solutions, as presented in section 2.4, to val-
idate the results of our seismo-EM layer-code modeling in both arrival times and
amplitudes. Especially the amplitudes are important due to the fact that the main
reason seismoelectric phenomena are not yet used in industry, are the weak amp-
litudes of these phenomena (e.g. Dean & Dupuis (2011a), Thompson et al. (2007)).
By validating our layer-code with homogeneous space Green’s function solutions,
we obtain certainty in our modeling results and can get better insights in which
parameters affect the amplitudes most. Furthermore, ESSEMOD can then be used
to validate existing seismo-electromagnetic layered-Earth numerical modeling codes
(e.g. Garambois & Dietrich (2002), Haartsen & Pride (1997)). When compared
and validated with these codes, our layer-code can be used for testing finite element
and finite difference codes, as well as for further investigation of all parameters and
coupling effects that play a role in this complex physical phenomenon.

4.2.2 Results

We have directly modeled the homogeneous space expressions for the source-receiver
combinations as presented in section 2.4, in order to check the results that are
generated by layer-code modeling for a homogeneous medium (referred to as ‘ES-
SEMOD’). To simulate a homogeneous medium in the seismo-EM layer-code, all
medium parameters in the different layers are chosen equal to each other, such that
all reflection coefficients are zero. For the modeling geometry we have placed a
source at xS = (0, 0, 100) m, the receivers at 770 m depth and we consider a receiver
grid of 51 receivers in both the x1- and x2-directions with a spacing of 10 m. For the
source, we use a Ricker wavelet with a peak frequency of 30 Hz, a phase shift of -0.1 s
to visualize the direct source converted EM event arriving around t=0 more clearly,
and an amplitude of 0.1 GPa/m (for the seismic source types) and 0.1 GA/m2 (for
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the electrical current source). An overview of the relevant symbols, their physical
meaning and the values used for the numerical modeling experiments are presented
in Table 4.2. In both numerical schemes (layer-code modeling and the analytical
Green’s function solutions), all seismo-electromagnetic parameters and their mutual
relations are used as input variables, as formulated in Pride (1994). We start by

looking at the v
Je1
1 source-receiver combination. We have derived the explicit ana-

lytical Green’s function solutions using the more compact, HPF eigenvector set. Of
course we could also derive the Green function solutions using the GST set. Figure

4.29 displays the results of the v
Je1
1 source-receiver combination for Figure 4.29a, the

analytical Green’s function solution, Figure 4.29b, the ESSEMOD HPF solution and
Figure 4.29c the ESSEMOD GST solution. We can clearly observe the three different
events that are to be expected: the direct source-converted EM field, the direct fast
P-wave and the direct S-wave coseismic fields. We have used the logarithmic scale
in order to be able to see most of the generated fields. All three solutions show a
perfect match of the events in both amplitude and phase. This is emphasized in the
trace-overlay comparison for zero-offset, presented in Figure 4.30. We see the result
obtained from ESSEMOD using the GST set in red, the ESSEMOD result using the
HPF set is displayed in black-dashed and we use blue dots for the analytical result.

However, we can also clearly observe differences in numerical noise levels between
the HPF set and the GST set, by looking at Figure 4.29. The GST set yields
a much cleaner shot record and is once again proven to be preferred for seismo-
electromagnetic layered-Earth modeling. We can also see that the GST set matches
perfectly with the analytically derived Green’s function solutions (which are based
on the HPF set). To truly compare ‘apples’ with ‘apples’, we will only present the
comparison with the HPF-based ESSEMOD results for the other source-receiver
combinations under consideration. We will also adjust the scale of the figures such
that we purely can focus on the events.
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Figure 4.29: Comparison between the analytical Green’s function solution and the results of

ESSEMOD using the HPF and the GST eigenvector sets, for the v
Je1
1 source-receiver combination.

The amplitudes are plotted on a logarithmic scale, in order to clearly visualize all generated events.
(a) The analytical Green’s function solution (b) Result of ESSEMOD using the HPF set (c)Result
of ESSEMOD using the GST set

.
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Let us examine the homogeneous space solutions compared to ESSEMOD more

closely, by looking at a purely P-SV-TM source-receiver combination: E
fb3
1 .
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Figure 4.30: Single, zero-offset trace comparison for v
Je1
1 for ESSEMOD GST in red, ESSEMOD

HPF in black-dashed and the analytical result blue-dotted.

Figure 4.30 shows the comparison between the analytical result (Figure 4.30a)
and ESSEMOD (Figure 4.30b), for this combination. We can again observe that both
the timing and the amplitudes of the different fields are identical for the analytical
case and ESSEMOD. A direct flat EM event is visible at t=0 s, which corresponds
to the part of equation 2.301 describing the ĜTM Green’s function expression. This
is again the source-converted direct EM-wave. Around t=0.2 s we can observe a
hyperbola with an arrival time corresponding to the fast P-wave velocity, a coseismic
field. The contribution in the analytical case comes from the part of equation (2.301)
describing the ĜPf Green’s function. Around t=0.3 s we observe another hyperbola
with a steeper curvature, meaning a slower propagation velocity. The arrival time
of this event, another coseismic field, corresponds to the vertically polarized shear-
wave velocity, described in the analytical case by the part of equation (2.301) dealing
with ĜSV . All individual contributions of the different fields for different medium
parameters or fluid properties can be modeled and checked separately using the
corresponding field parts of the analytical Green’s function solutions. Using this
analysis, it can be seen that the slow P-wave does not contribute in this time window,
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which makes sense due to its very low propagation velocity.
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Figure 4.31: (a) Comparison between the analytical Green’s function solution and the HPF

ESSEMOD result, for the E
fb3
1 source-receiver combination. The amplitudes are plotted on a

logarithmic scale, in order to clearly visualize all generated events. (a) The analytical Green’s
function solution (b) Result of ESSEMOD using the HPF set.

Figure 4.32 shows a trace comparison per offset for this dataset, where we have
selected each 5th trace for plotting, and we have amplified the direct EM event with
a factor of 100 and the direct S-wave with a factor of 1000. Again the result of
ESSEMOD HPF is shown with red solid lines, and the analytical result in black-
dashed. One can clearly see that the phase, amplitude and waveform all match
perfectly.

Finally, Figure 4.33 shows the shot records on a logarithmic scale for the v
fb1
1 and

the H
fb1
2 source-receiver combinations, respectively.

Figure 4.33 displays the result for the v
fb1
1 source-receiver combination. As we

now consider a seismic wave quantity due to a seismic source type, one can expect
higher amplitudes than in the previous two examples, due to the fact that a complete
field type conversion is not required to generate the desired field. Looking at Figure
4.33a, these higher expected amplitudes can indeed be observed. One can observe
that in this case the slower, SV-wave related event has a higher amplitude than the
fast pressure wave related event. This seems logical, since the source is a dipole bulk
force source in the horizontal x1-direction, generating mainly shear waves. Figure

4.34 shows the result for the H
fb1
2 source-receiver combination, the magnetic field due

to the same dipole bulk force source as used to obtain the result of Figure 4.33. We
now observe a direct source converted EM field and only a direct S-wave coseismic
field. This is what we expect, since the magnetic field is purely associated with shear
waves (see also e.g. Garambois & Dietrich (2002)).

We again observe for both the v
fb1
1 and the H

fb1
2 source-receiver combinations, that

the analytical Green’s function solutions and the modeling of ESSEMOD using the
HPF set in a homogeneous domain, match perfectly in both phase and amplitude.
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Figure 4.32: Trace comparison for E
fb3
1 for ESSEMOD HPF in red and the analytical result in

black-dashed. We have amplified the direct EM event with a factor of 100 and the direct S-wave
with a factor of 1000.

4.2.3 Conclusions

We have shown by comparison with explicit homogeneous space Green’s function
solutions that our seismo-EM layer-code ESSEMOD correctly models the propaga-
tion of a particle velocity field component in the x1-direction due to both a Je1
and an f b1 source type, the electric field component in the x1-direction due to an f b3
source type and the magnetic field component in the x2-direction due to an f b1 source
type. We are capable of validating both the amplitudes and arrival times of the res-
ults of layer-code modeling for all electromagneto-seismic and seismoelectromagnetic
source-receiver combinations in homogeneous media. Hereby, we reduce uncertainty
in the obtained numerical results. From the explicit expressions we have obtained
insight in the strength of the contributions of the four different possible wave types.
Once all sources and receivers are validated, ESSEMOD can be used to compare
numerical results obtained with other seismo-electromagnetic layered-Earth codes
and afterwards also to validate existing seismo-electromagnetic finite-difference and
finite-element codes.
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Figure 4.33: (a) Comparison between the analytical Green’s function solution and the HPF

ESSEMOD result, for the v
fb1
1 source-receiver combination. The amplitudes are plotted on a logar-

ithmic scale, in order to clearly visualize all generated events. (a) The analytical Green’s function
solution (b) Result of ESSEMOD using the HPF set.
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Figure 4.34: (a) Comparison between the analytical Green’s function solution and the HPF

ESSEMOD result, for the H
fb1
2 source-receiver combination. The amplitudes are plotted on a

logarithmic scale, in order to clearly visualize all generated events. (a) The analytical Green’s
function solution (b) Result of ESSEMOD using the HPF set.

4.3 Numerical reciprocity checks

In this section, we test the algorithm of our seismo-EM layer-code by carrying out
seismo-electromagnetic reciprocity checks. For the reciprocal experiment, every re-
ceiver of the ‘normal’ experiment is turned into a source in the reciprocal experiment.
At the same time, in the reciprocal experiment there is only one receiver at the loc-
ation of the source in the ‘normal’ experiment. The source types and receiver types
are switching as well: in the reciprocal experiment the source type becomes the re-
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Table 4.2: Overview of the relevant medium parameters used for both modeling schemes.

Property symbol Value Dimension

Porosity ϕ 0.4 [-]
Pore fluid density ρf 1.0 · 103 [kg/m3]
Bulk density ρb 2.7 · 103 [kg/m3]
Shear modulus framework of grains Gfr 9.0 · 109 [Pa]
Pore fluid viscosity η 1.0 · 10−3 [kg/(m s)]
Tortuosity α∞ 3.0 [-]
Static permeability k0 1.3 · 10−12 [m2]

Static electrokinetic coupling L̂ 9.07 · 10−9 [m2/(s V)]

Dynamic permeability k̂ ω-dependent [m2]
Effective fluid density ρ̂E ω-dependent [kg m−3s−1]
Magnetic permeability of vacuum µ0 4.0 · 10−7π [H m−1]
Velocity of light in free-space c0 299792458 [m s−1]
Dielectric permittivity of vacuum ε0 8.85 · 10−12 [F m−1]
Relative dielectric permittivity εr 14.13 [F m−1]
Bulk electric conductivity σe 1.2 · 10−3 [S m−1]
Eff. electr. permittivity incl. coupling ε̂ ω-dependent [F m−1]

ceiver type and vice versa. Depending on the relevant reciprocity relations, there can
be sign switches between the normal and the reciprocal experiments. We here com-
pare different source-receiver combinations, for different modeling scenarios. Our
source is in the ‘normal’ experiment located at 100 m depth, the receivers at 770 m
depth. We start by looking at a purely homogeneous space scenario, for medium A.
This is the same medium as used for our homogeneous space validations in Section
4.2, Table 4.2. After that, we introduce a free surface and test for correct recip-
rocal behaviour of the modeling code. Next, we introduce an interface at 1000 m,
creating a contrast medium A over medium B. Medium B varies from medium A
having a porosity of 0.2, a static permeability of 1.6·10−12 [m2] and a concentration
of 1.0·10−2 [mol/L]. We finalize by looking at models with multiple interfaces, by
adding another interface at 1100 m, where the contrast is medium B over medium
A.

4.3.1 Homogeneous space reciprocity results

We start by looking at the v
Je1
1 combination and its reciprocal E

fb1
1 , displayed in

Figure 4.35a. Figure 4.35b displays the opposite modeling scenario. We can observe
that for both scenarios, the ‘normal’ modeling results displayed in solid red and the
reciprocal modeling results displayed in black-dashed, perfectly match in both phase
and amplitude. Since we are modeling in homogeneous space, both scenarios yield
identical results. In a layered-Earth, the results of Figure 4.35a and Figure 4.35b
would be different. For this source-receiver combination, we have amplified both the
direct EM and the direct shear waves by a factor of 100, for visualization purposes.

We now compare the H
fb1
2 results of the ‘normal’ model run with the −vJ

m
2

1 results
of the reciprocal model. The results are presented in Figure 4.36. In this case, we
have amplified the direct EM event with a factor of 10. We can observe that the
‘normal’ model and the reciprocal model are identical, but polarity reversed. This



188 4. The model: Numerical results of seismo-EM layer-code modeling

−300 −200 −100 0 100 200 300−0.1

0

0.1

0.2

0.3

0.4

0.5

Offset (m)

T
im

e
(s

)

vJ1e1 Ef1b
1 recipr.

−300 −200 −100 0 100 200 300−0.1

0

0.1

0.2

0.3

0.4

0.5

Offset (m)

T
im

e
(s

)

Ef1b
1 vJ1e1 recipr.

(a) (b)

Figure 4.35: Reciprocity trace comparison with offset (a) v
Je1
1 combination for the ‘normal’

experiment, E
fb1
1 for its reciprocal (b) E
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1 for its

reciprocal
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Figure 4.36: Reciprocity trace comparison with offset. H
fb1
2 combination for the ‘normal’ exper-

iment in solid red, −vJ
m
2

1 for its reciprocal in black-dashed.

is due to the fact that the reciprocity relation between these two source-receiver
combinations introduces also an additional minus sign, which we did not yet correct
for in this model.

In order to easily see all generated events in the following, more complicated
models, we will now display the shot records again on a logarithmic scale. We now

introduce a free surface in the homogeneous space models. We look at the E
fb1
1

combination and its reciprocal v
Je1
1 . Figure 4.37a displays the shot record for E

fb1
1
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and Figure 4.37b shows the reciprocal result for v
Je1
1 . We again observe a perfect

dynamic match.
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Figure 4.37: (a) Reciprocity shot record comparison on a logarithmic scale, for a homogeneous

model with a free surface. (a) E
fb1
1 combination for the ‘normal’ experiment, (b) v

Je1
1 for the

reciprocal experiment. (c) The difference plot (a)-(b), normalized with (b) and multiplied with a
factor 100, displaying the relative error in percentage.

We can observe each of the expected events: the direct coseismic fields and their
source-side ghosts. Some of the events are masked by the direct P- and S-wave
arrivals, since their arrival time is similar to these direct coseismic fields. This
modeling experiment shows that the free surface is correctly implemented. Since it
is difficult to compare figures in small detail on a logarithmic scale, we also look
at the relative difference between the forward model and the reciprocal result. The
difference plot in Figure 4.37c, displays the subtraction of the forward model minus
the reciprocal model, normalized by the reciprocal model and multiplied with a
factor of 100, to result in the relative error in percentage. We can clearly see that
at the locations where the events occur, the relative difference is 0 %. However, a
small difference is observable in Figure 4.37c just before t =0.5 s, which is probably
related to the weak tail of the event starting around t = 0.4 s in Figures 4.37a and
4.37b. The higher relative errors occur at locations where no events are visible. This
is to be expected since when there are minor differences occurring for the values that
are very small (close to zero), the corresponding relative error grows quickly. The
difference plot clearly displays a perfect match between the forward and reciprocal
models. For the following results, we will not display these difference plots anymore,
but we have checked the results in this manner.

4.3.2 Models with interfaces

We start by looking at the reciprocity tests for models with a single interface at 1000

m depth. We look again at the E
fb1
1 combination and its reciprocal v

Je1
1 . Comparing

Figure 4.38a and Figure 4.38b, we can observe as good as identical results in both
phase and amplitude. The shot records contain besides coseismic/coelectric fields,
also flat events corresponding to interface responses. However, these are hard to see
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for this model, due to the fact that they are masked by the coseismic fields.
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Figure 4.38: (a) Reciprocity shot record comparison on a logarithmic scale, for a model with a

single interface at 1000 m depth. (a) E
fb1
1 combination for the ‘normal’ experiment , (b) v

Je1
1 for

its reciprocal.

Figures 4.38a and 4.38b show that by adding another layer, additional multiples
are observable, due to bounces of the fields in the layer between 1000 and 1100 m
depth. Again, a perfect dynamic match is visible.
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Figure 4.39: (a) Reciprocity shot record comparison on a logarithmic scale, for a model with an

interface at 1000 m and a second interface at 1100 m depth. (a) E
fb1
1 combination for the normal

experiment, (b) v
Je1
1 for its reciprocal.

For the same model, Figure 4.40a shows the result for the H
fb1
2 combination,

whereas Figure 4.40b displays the reciprocal results for −vJ
m
2

1 . Again we observe a
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perfect dynamic match.
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Figure 4.40: (a) Reciprocity shot record comparison on a logarithmic scale, for a model with an

interface at 1000 m and a second interface at 1100 m depth. (a) H
fb1
2 combination for the normal

experiment, (b) −vJ
m
2

1 for its reciprocal.

All figures in this section display identical results for both the ‘normal’ and
reciprocal scenarios, for multiple source-receiver combinations, indicating that the
underlying algorithm of ESSEMOD models both geometrical configurations (source
above or below the receivers) consistently.
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4.4 Seismo-electromagnetic wave propagation
modeling in configurations with
fluid/porous medium/fluid transitions:
A numerical validation

4.4.1 Abstract

Based on the theory of Chapter 3, Sections 3.2.3-3.2.9, we have extended our layer-
code to be able to model seismo-electromagnetic wave propagation in arbitrarily
layered Earth geometries with fluid / porous medium / (fluid) interfaces. In this way,
we are capable of effectively simulating full seismo-electromagnetic wave propaga-
tion, i.e. all existing seismoelectromagnetic and electromagneto-seismic source-
receiver combinations, in typical laboratory configurations. We validate the un-
derlying global reflection scheme by comparing it with an independently developed
layered-Earth modeling code for purely electromagnetic fields. The results show a
perfect match in both amplitude and phase, indicating that ESSEMOD is correctly
modeling the electromagnetic parts of the seismo-electromagnetic wave propagation
in horizontally layered media with fluid / porous medium / fluid transitions. We
finalize with a seismo-electromagnetic reciprocal modeling experiment, proving that
also the full seismo-electromagnetic wave propagation through fluid / porous me-
dium transitions is modeled consistently.

4.4.2 Introduction

The main reason why seismo-electromagnetic techniques are not yet widely applied in
industry, is that the seismo-electromagnetic conversion has a very low signal-to-noise
ratio. In addition, very little is still understood of this complex physical phenomenon.
Therefore, it is crucial to be able to perform numerical modeling experiments to care-
fully investigate the effect and the parameters that play a role. However, to really
make a step towards successful application of seismo-electromagnetic methods in
the field, the numerical modeling results have to be compared and validated using
laboratory experiments.
Over the last couple of years, several seismo-electromagnetic laboratory experiments
have been carried out in an attempt to validate the posed theory by Pride (1994)
and to better understand this complex physical phenomenon (e.g., Zhu et al. (2000),
Zhu & Toksöz (2005), Schoemaker et al. (2012)). Typically, the laboratory experi-
ments are carried out using water-tanks in which the sources, receivers and sample
under consideration can be deployed. In order to successfully model these kinds of
configurations, the numerical algorithm must be able to handle configurations with
fluid / porous medium interfaces correctly. Some recent examples of comparisons
between laboratory measurements and theoretical numerical predictions are Schakel
et al. (2011) and Smeulders et al. (2014). However, the numerical modeling scheme
used in these articles was specifically designed for the laboratory configuration at
use. The schemes make use of an explicitly defined seismo-electromagnetic reflec-
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tion coefficient at a certain interface (Schakel & Smeulders, 2010). Furthermore, only
the electric field components due to an acoustic pressure source could be modeled,
thereby only considering the seismo-electromagnetic P-SV-TM propagation mode.

We have extended our layer-code to be able to model seismo-electromagnetic
wave propagation in arbitrarily layered Earth geometries with fluid / porous me-
dium / (fluid) interfaces. In this way, we are capable of effectively simulating full
seismo-electromagnetic wave propagation (i.e. all existing seismo-electromagnetic
source-receiver combinations) in typical laboratory configurations, meaning a por-
ous sample in a water tank.
The theoretical details can be found in Chapter 3, Sections 3.2.3-3.2.9. We will
present a first aspect of the actual validation of the numerical code itself: the com-
parison with an independently developed layered-Earth modeling code for purely
electromagnetic fields (Hunziker et al., 2015). By putting the coupling coefficient
in our modeling code to zero, the poroelastic system completely decouples from the
electromagnetic system. In this way, the seismo-EM layer-code can also be used to
model poroelastic and electromagnetic wave phenomena in layered Earth models. In
addition, the decoupled system provides us with the means to reduce the complex-
ity of the recordings, thereby enabling to validate specific parts of the algorithm, in
this case the reflection and transmission at fluid / porous media interfaces. We will
finalize with a seismo-electromagnetic reciprocal modeling experiment in a geometry
with fluid / porous medium transitions.

4.4.3 Results

We want to focus on the validation of the global reflection algorithm that underlies
the seismo-EM layer-code, adapted for typical laboratory configurations that contain
fluid / porous medium / fluid transitions. To this end, we compare the electromag-
netic part of our code, with the results of an already existing, purely electromagnetic
layered-Earth code, referred to as ‘EMMOD’ (Hunziker et al., 2015).
We model for Nt = 2048 amount of time samples, with a sampling step ∆t =
2.083333 · 10−5 s. The number of radial frequencies ω is defined as Nω = Nt/2 + 1,
and the radial frequency sampling rate ∆ω = 2π/(Nt ·∆t) rad · s−1. The wavelet
is a first derivative of a Gaussian, with a peak frequency of 3 kHz. We consider 51
receivers in both horizontal directions, with a spacing of 10 m. All results represent
the shot records at zero-offset for x2, sliced along the x1 direction. The positive
x3-axis is pointing downwards, indicating depth.
Let us consider a geometry with a porous medium (represented by a porous layer)
in between two fluid-halfspaces. We study a purely electromagnetic scenario. We
focus on three different experiments. Firstly, a full transmission experiment where
we place the electric current source (in the horizontal x1 direction) in the upper
fluid halfspace at -40 m depth (40 m above the fluid/porous medium interface), and
the horizontal x1 electric field component receivers in the lower fluid halfspace at
1200 m depth. The fluid / porous medium and porous medium / fluid interfaces
are located at 0 m and 1000 m depth, respectively. As can be clearly observed
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in Figure 4.41, the modeled results of ESSEMOD and EMMOD almost perfectly
match in both amplitude and phase. Small differences are observable in the later
arriving, weaker field, around t =0.45 s. Despite these small differences, the res-
ults are clearly demonstrating that the full transmission is correctly modeled in our
seismo-EM layer-code. Often in seismo-electromagnetic wave propagation laborat-
ory tests, the receivers / electrodes are placed in the solid, whereas the source is an
acoustic pressure source located in the fluid. To model a similar configuration, we
again consider a source at -40 m in the upper fluid halfspace, but now the receivers
are being placed in the porous medium, at 600 m. The rest of the geometry remains
the same. The results are presented in Figure 4.42. It can be clearly observed that
the global reflection algorithm of the seismo-EM layer-code can also handle these
specific geometries correctly. Thirdly, we will consider a pure reflection geometry,
i.e. source and receivers both placed in the upper fluid halfspace. To investigate
whether the recursive updating of the global reflection matrices works properly, we
have added another porous layer to the porous medium. The interface separating
these two porous layers is positioned at 700 m. We now place the source at -400 m
and the receivers at -30 m. The rest of the geometry stays identical to the previous
model runs. Figure 4.43 clearly shows that the results of ESSEMOD and EMMOD
also perfectly match for this reflection experiment, except for small differences in
amplitude for the later arriving, weaker field, around t = 0.22 s. Despite these small
differences, the results indicate correct recursive calculation of the global reflection
matrices.
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Figure 4.41: Full transmission comparison between ESSEMOD (left panel) and EMMOD (right

panel) for E
Je1
1 .

As a final experiment, we simulate seismo-electromagnetic wave propagation in
a fluid / porous medium configuration, with the interface located at x3 =0 m. We
have removed the lower fluid halfspace, to avoid complex shot records due to multiple
seismic reverberations in the porous layer. We will test the algorithm by carrying
out a reciprocity test. We first model a horizontal particle velocity field in the x1

direction, registered in the porous halfspace at x3 =800 m, due to a horizontal x1

oriented electric current source placed in the fluid halfspace at x3 =-100 m. For
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Figure 4.42: Source in the fluid, receivers in the porous medium comparison between ESSEMOD

(left panel) and EMMOD (right panel) for E
Je1
1 .
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Figure 4.43: Reflection comparison between ESSEMOD (left panel) and EMMOD (right panel)

for E
Je1
1 .

the reciprocal test, we turn every receiver at x3 =800 m into a source and place
only one receiver at x3 =-100 m. The seismo-electromagnetic reciprocal field of
vJ1e

1 is Ef1b
1 , the horizontal component electric field in the x1 direction due to a

seismic dipole bulk force source in the same direction. Now, the first derivative of
a Gaussian wavelet has a peak frequency of 30 Hz. The results in Figure 4.44 show
that also the reciprocal test for seismo-electromagnetic wave propagation in fluid /
porous medium configurations matches in both phase and amplitude. We expect
two interface response fields, related to the seismic P- and S-wave propagation in
the porous medium. The fields arrive at traveltimes corresponding to the one-way
path of the mechanical waves in the porous medium.



196 4. The model: Numerical results of seismo-EM layer-code modeling

v
1

J1e

offset [m]

ti
m

e
 [

s
]

 

 

−200 0 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

E
1

f1b
 recipr.

offset [m]

ti
m

e
 [

s
]

 

 

−200 0 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

Figure 4.44: Reciprocity tests for seismo-electromagnetic wave propagation in a fluid/porous
medium configuration. Note that the event at the bottom of the time window (around t = 2 s),
represents the acausal part of the direct source-converted EM response arriving around t = 0 s.

(left) v
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4.4.4 Discussion

The above results show that the global reflection algorithm underlying our seismo-
EM layer-code seems to be working correctly for typical laboratory geometries with
fluid/porous medium/fluid transitions. However, not all aspects of the modeling
code have been validated here. Previously, the amplitudes and phases have been
successfully validated for the full seismo-electromagnetic theory in homogeneous
space geometries (e.g. Section 4.2, Grobbe & Slob (2013)). This gives us some
control on the modeling results, but it does not validate the underlying reflection
mechanism of the layer-code. In an attempt to validate this reflection scheme for
typical seismo-electromagnetic laboratory configurations with fluid / porous medium
transitions, we have here compared the electromagnetic part of the theory with an
existing layered-Earth code for electromagnetic fields. The poroelasticity part of the
seismo-electromagnetic theory has not yet been compared with any other existing
layered-Earth codes. Nevertheless, the reflection scheme is identical for the electro-
magnetic part and the full seismo-electromagnetic theory. In addition, the seismo-
electromagnetic reciprocity test shows consistent modeling of seismo-electromagnetic
wave phenomena in configurations with fluid / porous medium transitions. Further
comparison with other seismo-EM layer-codes is desirable to compare for example
the absolute amplitudes.
In order to be able to really validate the algorithm and its underlying theory, we
need to compare the seismo-EM layer-code with physical laboratory experiments
The algorithm was proven to be working correctly for typical laboratory geometries,
thereby clearing the way to comparisons of this type.
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4.4.5 Conclusions

As we have shown in the previous section, the results of the validation tests indic-
ate that our seismo-EM layer-code is correctly modeling the electromagnetic parts
of the seismo-electromagnetic wave propagation in horizontally layered media with
fluid/porous medium/fluid transitions. The results show a perfect match in both
phase and amplitude for full transmission and pure reflection experiments as well as
for a combination of both. By focusing on the electromagnetic parts only (by choos-
ing the seismo-electromagnetic coupling coefficient equal to zero), we were able to
effectively test the recursive global reflection algorithm of our seismo-EM layer-code
in configurations that resemble typical seismo-electromagnetic laboratory configur-
ations. In addition, the seismo-electromagnetic reciprocity test in a configuration of
a fluid halfspace overlying a porous medium halfspace, shows that also the coupled
poroelastic and electromagnetic fields are modeled consistently and yield the expec-
ted results.

4.5 Validation with seismo-electromagnetic model-
ing code of Garambois and Dietrich

4.5.1 Introduction

Thusfar, we have validated our seismo-EM layer-code ESSEMOD by

1. Comparing runs of ESSEMOD with different eigenvector sets

2. Comparing ESSEMOD with explicit homogeneous space Green’s function solu-
tions

3. Numerical Reciprocity Tests

4. Comparison of the EM-part of ESSEMOD with an independently developed
EM-code.

All of these tests provide confidence that the algorithm of our seismo-EM layer-code
works correctly. Nevertheless, not all aspects of the layer-code have been validated.
For example, the poroelastic part has not been compared with an independently
developed modeling code. Furthermore, we can check visually whether the events
arrive at the expected travel times, but in terms of amplitude we have only obtained
certainty for homogeneous space models and for the purely EM-scenario. There
exists another seismo-EM layered-Earth modeling code, developed by Garambois
& Dietrich (2002). The same deficiency in amplitude validation holds for their
code. Therefore, in this section we try to validate the two independently developed
seismo-electromagnetic layered-Earth modeling codes (ESSEMOD and the code of
Garambois & Dietrich (2002)), not only in terms of phase, but also focusing on
absolute amplitudes. It is crucial to get certainty with respect to the amplitudes
that come out of the modeling codes, since the amplitudes are the bottleneck for the
application of seismo-electromagnetic techniques in the field.
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4.5.2 Results

We compare the results of ESSEMOD with the code of Garambois & Dietrich (2002)
by looking at the electric field in the x1-direction due to a seismic bulk force source
in the same direction. We consider the same model as described in Table 4.1, where
we locate the source at 100 m depth in medium A, the receivers at 300 m depth in
medium A, and the interface separating medium A and medium B located at 1000
m. As a source, we use a Ricker wavelet with a peak frequency of 30 Hz and an
amplification factor of 1·108. We apply a time shift of 0.1 s to the wavelet such that
the direct EM event arriving at t=0 also has a nice waveform. We use Nt =2048,
∆t =0.001 s, Nω=Nt/2+1 and ∆ω= 2π

Nt·∆t rad·s−1. Figure 4.45 displays a shot record
comparison on a logarithmic scale. We can see that the arrival times and relative
amplitudes of most of the events are matching perfectly. The only events that are
generated stronger by ESSEMOD are the direct S-wave and the reflected S-S wave
related coseismic fields. Figure 4.46 displays a zero-offset trace comparison between
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Figure 4.45: (a) Shot record comparison ESSEMOD with the code of Garambois & Dietrich

(2002), for E
fb1
1 , plotted on a logarithmic scale. (a) Results code Garambois and Dietrich (b)

Results ESSEMOD.

the result of ESSEMOD in red-dashed, and the result of Garambois and Dietrichs
modeling code in blue. The results of ESSEMOD have been amplified by a factor
of 4 to match the absolute amplitudes of Garambois and Dietrich. All events match
perfectly, except for the direct shear wave and reflected S-S wave related coseismic
fields, where the amplitudes of ESSEMOD are (after amplification with the factor
of 4) stronger than the amplitudes generated by Garambois and Dietrich. Another
difference is the polarity switch for the direct source converted EM fields. Since,
we have validated this source-receiver combination already by homogeneous space
solutions and reciprocity tests, we are quite sure that the polarity of ESSEMOD is
correct.
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Figure 4.46: (a) Zero-offset trace comparison of ESSEMOD in red-dashed, with the code of

Garambois & Dietrich (2002) in blue, for E
fb1
1 , where the results of ESSEMOD have been amplified

by a factor of 4.

4.5.3 Discussion and Conclusions

For the model and source-receiver combination under consideration, we have ob-
tained an almost perfect match in both phase and relative amplitudes between ES-
SEMOD and the code of Garambois & Dietrich (2002). The only anomalous events
are the direct S wave and the reflected S-S related coseismic fields. In terms of
absolute amplitudes, there is only a difference of a factor of about 4: the code of
Garambois & Dietrich (2002) yields amplitudes that are about 4 times higher than
ESSEMOD. The cause of this difference is yet unknown and currently under investig-
ation. There is a polarity switch between the codes for the direct, source converted
EM field. Based on homogeneous space validations and reciprocity tests, we are
quite sure that ESSEMOD generates the correct polarity. Despite the small differ-
ences, the almost perfect match in terms of phase and relative amplitudes provides
an acceptable validation of the algorithm of our seismo-EM layer-code. Further
numerical validation tests and comparisons for different models and source-receiver
combinations should be carried out in the future.
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4.6 Seismo-electromagnetic feasibility study

4.6.1 Introduction

The major current challenge for the seismo-electromagnetic method is its meas-
urability in the field. The technique has a lot of potential benefits compared to
conventional geophysical methods. However, if the converted signals are not (or
hardly) measurable by the physical devices (geophones, electrodes) or obscured by
noise or other signals, the method remains mainly a theoretical exercise. There are
some succesful field examples of seismo-electromagnetic signals for groundwater ap-
plications (e.g. Butler et al. (2002); Rosid & Kepic (2005)), but even for aquifers,
that are typically located at tens of meters of depth, the studies show significant
challenges in signal measurability.

For oil and gas exploration, the targets are typically located at a few kilomet-
ers depth (Thompson et al., 2007). To investigate the potential of the seismo-
electromagnetic effect for exploration purposes, we here carry out a small numerical
feasibility study. We investigate for the same model different source-receiver com-
binations and focus on the signal strength recorded at different distances from the
target depth level, which is located at 1000 m depth. At this depth level, an interface
is located separating the upper medium B from the lower medium A (which are the
same media as used for our reciprocity tests in Section 4.3). There is no free surface
in the model, to be able to focus better on a few major events. Currently, seismic
commercial vibrators can apply a maximum pressure of about 0.5 MPa to an area
of about 1 m2. Geophones can generally detect surface displacements larger than
the order of 10−9 m at frequencies above 1 Hz. We place our source at 1 m depth,
and use a Ricker wavelet with a peak frequency of 30 Hz and an amplification factor
of 5·105. We focus mainly on the interface response fields, since those are the fields
that can provide us with information at depth.

4.6.2 Results

For the model under consideration, we can expect P-wave related interface response
fields around 0.32 s, and S-wave related interface response fields around 0.51 s (for
the seismic-to-electromagnetic conversions). For the electric-to-seismic conversions,
the interface response fields arrivals vary with the receiver depth, and arrive at times
equal to the one-way seismic time from the interface upwards to the receiver level.
We focus on 6 acquisition geometries, where the receivers are located at 10 m, 15
m, 20 m, 50 m, 500 m, 700 m and 900 m depth. We look at six different source-

receiver combinations: four seismic-to-electromagnetic combinations (E
fb1
1 , E

fb3
1 , Eq

i

1

and H
fb1
2 ), one electromagnetic-to-seismic combination ( v

Je1
1 ) and one seismic-to-

seismic combination (v
fb1
1 ). Note that the logarithmic scale of the figures displaying

Eq
i

1 is adjusted to higher amplitudes. Let us assume that signals equal to or larger
than the order 10−8 are measurable. We start by looking at Figure 4.47. In this
scenario, the source is located at 1 m depth and the receivers at 10 m depth. Since
the source and receivers are located at depth levels quite close to each other, the
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numerical results show higher numerical noise levels than we have seen before. This
can be explained due to the fact that the Fourier-Bessel transformations need to be
evaluated for higher arguments in these scenarios in order to make them damp prop-
erly. This numerical noise issue can probably be tackled by increasing the number
of radial wavenumber samples. Especially Figure 4.47c shows high noise levels, the
rest of the figures are quite clean already for this sampling. We observe that for this
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Figure 4.47: Shot records for the source at 1 m depth and the receivers at 10 m depth, with a

target interface at 1000 m depth. The shot records are plotted on a logarithmic scale. (a) E
fb1
1 (b)

E
fb3
1 (c) Eq

i

1 (d) v
fb1
1 (e) v

Je1
1 (v) H

fb1
2 .

scenario, almost all coseismic and interface response fields are below the measur-
able signal strength, except for the direct P- and S-waves. Only the seismic-seismic
source-receiver combination (Figure 4.47d) displays higher amplitudes for the later
events. Note that it seems that there is one type of event missing (P-to-S conversion
or S-to-P conversion). This is not the case: these two events arrive more or less at
the same time due to the fact that the downward and upward pathlengths are more

or less similar for this modeling scenario. In addition, the Eq
i

1 combination (Figure
4.47c), an electric field in the x1-direction due to a monopole pressure source, has
higher amplitudes than the other converted field combinations. It only displays P-
wave related interface response fields, due to the source type under consideration.
At zero-offset, no P-SV conversion occurs, and no electric field is generated. We
observe relatively high amounts of numerical noise for this specific source-receiver
combination for the model configuration under consideration. This most likely has
to do with the fact that the receivers (10 m depth) are located very close to the
source (1 m depth). We will see that by increasing this vertical distance, the noise
levels decrease rapidly. Apparently, the Fourier-Bessel transformation is not suffi-
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ciently damped yet for this specific source-receiver combination with the number
of radial wavenumbers κ or radial distance r (the arguments of the Fourier-Bessel
transformation) under consideration. For the other source-receiver combinations,
these parameters are sufficiently sampled and large enough to yield clean numerical
results, also for this specific acquisition scenario.

We can observe that the coseismic magnetic field strengths (Figure 4.47f), which
are purely associated with S-waves, are also slightly higher.
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Figure 4.48: Shot records for the source at 1 m depth and the receivers at 15 m depth, with a

target interface at 1000 m depth. The shot records are plotted on a logarithmic scale. (a) E
fb1
1 (b)

E
fb3
1 (c) Eq

i

1 (d) v
fb1
1 (e) v

Je1
1 (v) H

fb1
2 .

Figure 4.48 displays for the same radial sampling already cleaner figures, due
to 5 meter depth difference in the receiver level. We can now observe that the

Eq
i

1 combination shows measurable coseismic responses as well as a measurable P-
wave related interface response field. The other converted field components do not
display measurable converted responses yet. Moving the receiver level 5 meters
downwards, we observe in Figure 4.49 still only measurable converted fields for the

Eq
i

1 combination (Figure 4.49c). The amplitudes of all events have been slightly
increased.

Moving the receivers to 50 m depth (Figure 4.50), we start noticing that the

coseismic arrivals for the H
fb1
2 combination start to approach the measurable range

as well. The interface response fields are still too weak to be measured in the field.
We now move the receivers to 500 m depth (Figure 4.51). We can observe that the

P-wave related interface response field at 0.3 s in Figure 4.51c, for Eq
i

1 is clearly
measurable. However, we can see that the coseismic fields slowly approach the
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Figure 4.49: Shot records for the source at 1 m depth and the receivers at 20 m depth, with a

target interface at 1000 m depth. The shot records are plotted on a logarithmic scale. (a) E
fb1
1 (b)

E
fb3
1 (c) Eq

i

1 (d) v
fb1
1 (e) v

Je1
1 (v) H

fb1
2 .

arrival times of the interface response field. We see an overall signal strengthening
for all other source-receiver combinations, but still only the direct coseismic fields
are measurable. The coseismic reflected fields and interface response fields have

amplitudes of the order 10−10. For the H
fb1
2 (Figure 4.51f), we can observe that the

S-wave related interface response field starts to become measurable. The results for
the receivers at 700 m depth, displayed in Figure 4.52, clearly show that for the

H
fb1
2 combination, the interface response field is clearly measurable. For Eq

i

1 , the
P-wave related interface response field is still strongly visible, but starts interfering

with the coseismic arrivals. The E
fb1
1 fields (Figure 4.52a) seem to show a recordable

S-wave related interface response field for the near-offsets. However, this stronger
amplitude in the near-offsets is probably caused by signal interference with the
coseismic reflected fields.

Our final acquisition geometry has the receivers located at 900 m depth, so
100 m from the target interface (about 1 P-wavelength). We can clearly observe

that this is not an optimal configuration for the Eq
i

1 combination, since all events
arrive more or less at the same time. Similar behaviour is visible for the other
seismic-to-electromagnetic combinations. The S-wave related interface response field

for the H
fb1
2 combination is also not clearly distinguishable anymore. This can be

explained by the fact that the upgoing seismic paths are not so long anymore, yielding
small phase shifts on the arrival times. Therefore, the interface response fields that
arrive more or less at one-way seismic downgoing time, start overlapping with the
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Figure 4.50: Shot records for the source at 1 m depth and the receivers at 50 m depth, with a

target interface at 1000 m depth. The shot records are plotted on a logarithmic scale. (a) E
fb1
1 (b)

E
fb3
1 (c) Eq
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1 (d) v
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1 (e) v

Je1
1 (v) H
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coseismic reflected fields and the direct fields. For the electromagnetic-to-seismic
configuration of Figure 4.53e, we see that the interface response fields (that arrive at
1-way upgoing time) do not suffer from being masked by coseismic arrivals. These
interface responses arrive all around zero time now. Nevertheless, the amplitudes are
still in the order of 10−10, just slightly weaker than required for signal measurability.

4.6.3 Discussion

We can observe that, when using source wavelets with an amplitude similar to the
maximum amplitude of present-day commercial vibroseis trucks, most converted
fields for most seismo-electromagnetic source-receiver combinations have amplitudes
that are just outside the dynamic range of present-day geophones. The source-

receiver combinations that yield the strongest converted signals are Eq
i

1 and H
fb1
2 .

Especially the Eq
i

1 combination seems to generate measurable responses even with
acquisition geometries that approach surface-to-surface acquisition. Moving the re-
ceivers deeper, closer to the target, increases the signal strength of especially the
interface response fields. This is explainable, due to the fact that the electromag-
netic interface response fields are diffusive fields that decay rapidly with distance.
Therefore, smaller propagation distance leads to less losses and stronger recorded
signals. Nevertheless, when moving too close to the target depth, direct and reflec-
ted coseismic fields start interfering with the interface response fields, masking the
desired fields. Specific filtering aimed at separating coseismic fields from interface
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Figure 4.51: Shot records for the source at 1 m depth and the receivers at 500 m depth, with a

target interface at 1000 m depth. The shot records are plotted on a logarithmic scale. (a) E
fb1
1 (b)

E
fb3
1 (c) Eq

i

1 (d) v
fb1
1 (e) v

Je1
1 (v) H

fb1
2 .

response fields is required for these scenarios. For the electromagnetic-to-seismic
configurations, the interface response fields do not suffer from being masked by co-
seismic arrivals, for the acquisition geometry under consideration. Nevertheless, the
amplitudes are still in the order of 10−10, just slightly weaker than required for signal
measurability. Vice versa, seismic-to-electromagnetic configurations would not suf-
fer from interface response fields that are masked by coseismic fields, for acquisition
geometries where the source is located close to the target, and the receivers located
close to the surface. In recent years, an acquisition design appears to emerge in
the industry that makes makes use of horizontal downhole sensor arrays or a high-
density of vertical boreholes in a certain area (e.g. Bakulin et al. (2012b), Bakulin
et al. (2012a) Berron et al. (2012), Cotton & Forgues (2012)). The results of this
small feasibility study show that these types of acquisition geometries are useful, and
maybe even crucial, for potential application of the seismo-electromagnetic method
for exploration purposes. Being able to separate downgoing from upgoing fields
and field types, could help distinguishing coseismic fields from interface response
fields. However, for successful field decomposition, often many different fields need
to be recorded. For seismo-electromagnetics, this number of fields is enormous and
practically not feasible. Being able to decompose fields into their field types and
up- and downgoing constituents using less recorded fields is beneficial. In Section
6.1, we introduce a multi-depth-level decomposition scheme that enables success-
ful field decomposition using less different field type recordings. As a next step
for feasibility studies, more realistic source signals should be used in these studies,
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Figure 4.52: Shot records for the source at 1 m depth and the receivers at 700 m depth, with a

target interface at 1000 m depth. The shot records are plotted on a logarithmic scale. (a) E
fb1
1 (b)

E
fb3
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1 (d) v
fb1
1 (e) v

Je1
1 (v) H
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for example loading a vibroseis sweep signal in the seismo-EM layer-code. In this
way, the responses due to realistic source signals can be investigated. The seismo-
electromagnetic method is sensitive to many different parameters. Certain contrasts
can yield higher converted signals than other contrasts. Therefore, as a next step,
more different geological models should be tested, thereby focusing on the signal
strength variability with different geological contrasts.

4.6.4 Conclusions

The source-receiver combinations that yield the strongest converted signals are Eq
i

1

and H
fb1
2 . Especially the Eq

i

1 combination seems to generate measurable responses
even with acquisition geometries that approach surface-to-surface acquisition. The
depth of the receivers plays an important role in the signal measurability of the
seismo-electromagnetic fields. The closer the receivers are located to the target,
the higher the signal strengths, especially of the seismo-electromagnetic converted
fields (interface responses). However, when located too close to the target depth, the
coseismic reflected fields arrive at more or less the same time as the one-way seismic
traveltime interface responses, thereby masking the weaker interface response fields.
The electromagnetic-to-seismic conversions do not suffer from these interferences,
for the acquisition scenario under consideration (i.e. source close to the surface,
receivers at depth).
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Figure 4.53: Shot records for the source at 1 m depth and the receivers at 900 m depth, with a

target interface at 1000 m depth. The shot records are plotted on a logarithmic scale. (a) E
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4.7 Seismo-electromagnetic thin-bed responses:
natural signal enhancements?ii

4.7.1 Abstract

We study if nature can help us to overcome the very low signal-to-noise ratio of
seismo-electromagnetic converted fields by investigating the effects of thin-bed geo-
logical structures on the seismo-electromagnetic signal. To investigate the effects
of bed-thinning on the seismo-electromagnetic interference patterns, we numerically
simulate seismo-electromagnetic wave propagation through horizontally layered me-
dia with different amounts and thicknesses of thin-beds. We distinguish two limits
of bed thickness. Below the upper limit, the package of thin-beds starts acting like
an ‘effective’ medium. Below the lower limit, further thinning does not affect the
seismo-electromagnetic interface response signal strength anymore. We demonstrate
seismo-electromagnetic sensitivity to changes in medium parameters on a spatial
scale much smaller than the seismic resolution. Increasing amounts of thin-beds
can cause the interface response signal strength to increase or decrease. Whether
constructive or destructive interference occurs seems to be dependent on the seismo-
electromagnetic coupling coefficient contrasts. When the combined result of the

iiThis section has been published as an open-access journal paper in Journal of Geophysical
Research doi: 10.1002/2015JB012381 (Grobbe & Slob, 2016). Note that minor changes have been
introduced to make the text consistent with the other chapters of this thesis.
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contrast, between upper halfspace and package of thin-beds, and the internal thin-
bed contrast, is positive, constructive interference occurs. Destructive interference
occurs when the combined contrast is negative. Maximum amplitude tuning occurs
for thicknesses of thin-bed packages similar to the dominant pressure- and shear
wavelengths. Artefacts due to model periodicity are excluded by comparing peri-
odic media with random models. By simulating moving oil/water contacts during
production, where the oil layer is gradually being thinned, seismo-electromagnetic
signals are proven very sensitive to oil/water contacts. An oil layer with a thickness
of about 1

350 of the dominant shear wavelength is still recognized.

4.7.2 Introduction

Despite several attempts to boost the signal strength of the seismo-electromagnetic
converted fields (e.g. Dean & Dupuis (2011a); Dean et al. (2012); Sava & Revil
(2012); Sava et al. (2014) the desired amplification of the signal for guaranteed
successful measurements in the field has not yet been achieved.

But what if nature itself can already help us? From seismics, it is well-known that
a seismic wave travelling through a package of thin-beds can experience amplitude-
tuning effects that result in anomalously high amplitudes for the seismic signal (e.g.
Widess (1973); Robertson & Nogami (1984)). Can similar enhancing signal effects
occur for seismo-electromagnetic phenomena? We start with a brief recapitula-
tion of seismic amplitude tuning effects in thin-bed geological settings, including an
extension towards the seismo-electromagnetic scenario. We will then numerically
investigate what effects thin-beds can have on the seismo-electromagnetic signal,
thereby focusing especially on the seismo-electromagnetic conversion. To this end,
we use our analytically based, seismo-electromagnetic layer-code
(Grobbe & Slob, 2013; Grobbe et al., 2014, 2016a). We observe that certain thin-bed
geological settings can yield constructive interference of the seismo-electromagnetic
responses, amplifying the signal strength with a factor of 3. We will highlight the
factors that play a role in this possible enhancement of the seismo-electromagnetic
signal strength by thin-beds. We study the effects of the seismo-electromagnetic
coupling coefficient contrasts by varying the electrolyte concentrations of the pore-
fluid. The seismo-electromagnetic coupling coefficient is a very important seismo-
electromagnetic parameter, since this parameter controls the amount of coupling
between the mechanical waves and the electromagnetic fields. At low frequencies,
this coefficient is fundamentally the same as the coefficient measured in classical
streaming potential laboratory experiments (e.g. Morgan et al. (1989); Jouniaux
et al. (2000); Schoemaker et al. (2012)). We finalize by focusing on an oil/water
contact in a reservoir, and by simulating production we will see the effects a varying
ratio of oil/water thickness has on the seismo-electromagnetic signals.
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4.7.3 Theory: Brief introduction to thin-beds and the rela-
tion with seismo-electromagnetics

In the field of seismic exploration, it is well-known that when a seismic wave travels
through a package of thin-layers (with appropriate amplifying thickness) amplitude-
tuning effects can occur resulting in anonamously high amplitudes (Robertson & No-
gami, 1984). The big question is, can similar naturally signal enhancing effects occur
for seismo-electromagnetic phenomena? Since the seismo-electromagnetic effect is
a complex physical phenomenon of which very little is still understood, the exact
effect of a seismo-electromagnetic wave propagating through a package of thin-beds
is unpredictable. However, one can intuitively understand that constructive interfer-
ence might take place. Let us consider the following thought-experiment: since the
interface response fields arrive almost instantaneously at one-way seismic traveltime,
an incremental increase in seismic traveltime (due to for example downward wave
propagation through a thin-bed) followed by a seismo-electromagnetic conversion at
the bottom interface of the thin-bed (that arrives instantaneously on seismic time
scales), might result in constructive interference of the recorded IR fields. In other
words, when the one-way seismic traveltime is not increasing too much, the gener-
ated IR field of the bottom interface of a certain thin-bed might map constructively
on the generated IR field of the top interface of the thin-bed. The possibility of
IR field enhancing effects due to the presence of a thin-bed has been discussed in
Pride & Garambois (2005), where they show that the amplitude of the converted
electric field can be drastically increased (by a factor of 10 in their example of a thin
shale layer), if there is a thin layer of a third-type of material present close to the
interface that generates the IR field. Furthermore, Dietrich & Garambois (2013) dis-
cuss a possible super-resolution of very thin layers using the seismo-electromagnetic
conversions. When studying seismo-electromagnetic thin-bed responses, important
questions to ask are of course: what is the sub-seismic resolution limit for seismo-
electromagnetic sensitivity? Does an increase in the amount of thin-beds necessarily
lead to an increase of the IR field signal strength? What parameters play a role in
determining whether constructive or destructive interference occurs? Do different
pore-fluid contrasts and relative thicknesses have an effect on the interference pat-
tern? As Widess (1973) already acknowledges: How thin is a thin-bed? Seismically
speaking, based on reflective properties, a thin-bed may be defined as a bed with a
thickness that is less than λpeak/8. In this case, the reflections of the top and bot-
tom edges of the thin-bed interfere constructively (Zhou, 2014). Here, λpeak is the
dominant wavelength for the seismic velocity of the bed (Widess, 1973), determined
by the relation between peak frequency of the source wavelet and the seismic wave
velocity of the layer under consideration. In addition, Widess (1973) observed that
for bed thicknesses smaller than the tuning thickness, the composite wavelet ap-
proaches the derivative of the basic wavelet (Zhou, 2014). It is important to realize,
that when geologists speak of thin-beds, they often refer to beds of a few centimeters
until meters thick, whereas the seismic definition of a thin-bed can result in much
thicker beds. As an example, consider a peak frequency of a wavelet of 30 Hz and
a medium with a P-wave velocity of 3000 m/s, which results in a peak wavelength



210 4. The model: Numerical results of seismo-EM layer-code modeling

of 100 m. According to Widess (1973), every bed with a thickness of 12.5 m or less
is considered a thin-bed. Geologically speaking, according to the seismic definition,
most beds in nature are then a thin-bed. For seismo-electromagnetics, it is yet un-
known what should be considered as a thin-bed, if tuning effects or wavelet shape
changes occur, and for which bed thicknesses the seismo-electromagnetic signals are
not sensitive anymore.

4.7.4 Method: Numerical modeling

To investigate the effects of thin-beds on seismo-electromagnetic signals, we make
use of our seismo-EM layer-code (Grobbe & Slob, 2013; Grobbe et al., 2016a). Our
layer-code ESSEMOD is capable of modeling all existing electroseismic and seismo-
electromagnetic source-receiver combinations. In this study, we focus on the effect of
thin-beds on one of the most common seismo-electromagnetic source-receiver com-
binations, a horizontal electric field component E1 in the x1-direction due to a
horizontal seismic dipole bulk force source f b1 (for example a seismic shear wave vi-
brator) in the same x1-direction. Of course, a similar numerical study can be carried
out focusing on other source-receiver combinations.

We simulate seismo-electromagnetic wave propagation through layered-Earth
configurations with different amounts and thicknesses of thin-beds to study the effect
of bed-thinning on the amplification or weakening of the IR fields. To fully focus on
the effect of the thin-beds we use two very simple reference configurations consisting
of two homogeneous halfspaces (hs), either medium A and medium B or medium
A and medium C. In Table 4.3, we present the effective seismo-electromagnetic
velocities of the different field types, the input medium parameters and the relevant
petrophysical parameters determining the static coupling coefficient, for each of the
different media. We can observe that the dominant factor is the change in poros-
ity of the medium. The shear waves are more affected by a porosity change than
pressures waves (the pores are saturated with fluid, so higher porosity means more
fluid), which explains why the P-wave velocity does not vary as much as the shear
wave velocity does.

For convenience, we only present the effective seismo-electromagnetic wave ve-
locities resulting from the chosen medium properties and the corresponding seismo-
electromagnetic coupling coefficients. These are presented in Table 4.3. We use
Nt = 2048 time-samples with a time-sampling step of ∆t = 0.001 s. The amount
of radial frequencies is Nω = Nt/2 + 1 and the radial frequency sampling step
∆ω = 2π/(Nt ·∆t) rad· s−1. The wavelet is a causal, first-derivative of a Gaussian
with peak frequency of 30 Hz and an amplification factor of 1 · 109. Let us start
with the reference configuration of halfspace A above halfspace B. We now define a
package of certain package thickness PT , that we insert in between halfspace A and
halfspace B (see Figure 6.3). We consider configurations with PT = 20, 40, 80, 160
m. In addition, we consider PT = 70 and 105 m, which correspond to the dominant
wavelength of the shear (S)-wave and the Biot fast pressure (P)-wave, respectively.
According to Widess (1973), the minimum seismic thin-bed thickness then reads by
definition λpeak/8 = 105/8 = 13.125 m for P-waves and λpeak/8 = 70/8 = 8.75 m
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Table 4.3: Overview of the velocities of the different field types, input medium parameters and
relevant petrophysical parameters determining the static coupling coefficient, for each of the differ-
ent media. To illustrate the frequency-dependency of certain wave/field-types, velocity ranges (the
real parts of the complex velocities) are displayed for the bandwidth under consideration. Note
that the EM-velocities are proportional to the square-root of frequency.

Physical quantity Medium A (top hs) Medium B (layer or hs) Medium C (layer or hs)

Pf -velocity [m/s] 3159.81-3159.84 3153.67-3153.68 3348.94-3349.00
Ps-velocity [m/s] 2.89-92.96 3.98-131.09 5.46-189.62
S-velocity [m/s] 2110.79-2110.87 1952.83-1953.03 1886.09-1886.70
EM -velocity [m/s] 31796.34-1005899.70 4496.68-142233.40 20109.77-636104.47
L0 [m2 · s · V −1] 9.07 ·10−9 2.08 ·10−9 1.65 ·10−9

ζp [V] -9.6 ·10−2 -4.4·10−2 -7·10−2

σf [S m−1] 9.27 ·10−3 0.93 9.27 ·10−2

σ̂e [S m−1] 1.24 ·10−3 6.18 ·10−2 3.09 ·10−3

Half-space 
Medium B 

Half-space 
Medium A 

Half-space 
medium A 

Half-space 
Medium C 

PT

Figure 4.54: Schematic overview of the two reference configurations and the inserted packages of
thin-beds, with a total package thickness PT.

for S-waves.
We divide the package PT into an even amount of thin-beds Nl. The layers

alternate between medium B and medium C or vice versa. We consider the following
amounts of sublayers: Nl = 2, 4, 8, 16, 32 and for PT > 40 m also Nl = 64. By
fixing the package thickness and dividing it consistently into different amounts of
thin-beds, the bed thickness changes accordingly. In this way both the effects of
bed-thickness and amount of beds can be investigated.

4.7.5 Results

In this section, we present the results of the various numerical thin-bed experiments.
We first present the results of the model A−B − C −B, which yields constructive
interference. We look at both the effects of varying package thicknesses, varying bed
thickness and varying amounts of sublayers. Then, we present the results of model
A−C−B−C, which leads to destructive interference. To exclude possible artefacts
due to the periodicity of the models used, we compare these results with a model
with arbitrary bed thicknesses and a model with random bed thicknesses. Here,
arbitrary means manually chosen by the user in an arbitrary fashion, and random
means mathematically random. We slowly increase the amount of sub-layers with
varying bed thicknesses for a total package thickness PT of 80 m. To study the effect
of coupling coefficients on the interference patterns, we focus on varying electrolyte
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concentrations in the pore fluid. We finalize by investigating the sensitivity of the
model to different saturating fluids, namely an oil/water contact in a porous rock.
We simulate oil production where the thickness of the oil layer compared to the
water layer thickness starts varying.

Constructive Interference

Let us start with the configurations A−B−C−B,A−B−C−B−C−B and so on.
We model the reference response as halfspace A above halfspace B. A right-handed
Cartesian spatial coordinate system is considered, where x3 is pointing downwards
representing depth. The source is located at x3 =100 m and the receivers are placed
at x3 =700 m. The interface that separates the bottom of halfspace A from the
top of the inserted thin-bed package is located at x3 =1000 m depth (or in other
words, this is the interface separating halfspace A from halfspace B in the reference
response). Considering the seismic wave velocities of medium A (see Table 4.3), we
expect the generated IR fields to arrive at one-way seismic time t =0.285 s for the P-
wave associated IR field (from now on referred to as PIR), and at t =0.427 s for the
IR field generated by an S-wave (referred to as SIR). The rest of the visible events
represent coseismic wavefields. Note that, for this specific medium configuration and
acquisition scenario, the event marked as PIR is actually a combination of the P-
wave associated IR field, and the coseismic field associated with the direct shear wave
from the source to the receiver level. Both events arrive more or less at the same
time in the seismo-electromagnetic record, especially at zero-offset. We first present
the seismo-electromagnetic thin-bed responses for different package thicknesses PT
with equal bed thicknesses (and hence different amounts of thin-beds Nl per package
thickness). Figure 4.55a presents the results for bed thicknesses of 10 m and Figure
4.55b for bed thicknesses of 5 m. The reference response is the response when PT = 0
and hence Nl = 0. Looking at Figure 4.55, several observations can be made. We
can clearly observe that the PIR signal at t =0.285 s is not strengthened or weakened
at all due to the presence of thin-beds. The SIR at t =0.427 s on the other hand,
is clearly affected by the thin-beds. Figure 4.55a shows that for bed thicknesses of
10 m, multiples are visible which are not present in the reference response. In this
case, the signal can still distinguish between the individual layers. There seems to
be a slight increase of the SIR amplitude with increasing Nl, but overall the beds
are still too thick to yield significant constructive or destructive interference. Figure
4.55b shows that for PT = 20 m and PT = 40 m, multiples are still visible for
bed thicknesses of 5 m, whereas for PT = 80 and PT = 160 m, the multiples start
vanishing. Furthermore, PT = 160 m displays the largest SIR amplification. Hence,
increasing amounts of thin-beds of the same thickness (in this case 5 m) can cause
the multiples to start vanishing at a certain point (in this case for PT = 80 or larger)
and the SIR to increase. Nevertheless, we can also observe that the SIR does not
necessarily increase with increasing Nl. Figure 4.56a presents the zero-offset results
for bed thicknesses of 2.5 m. Similar patterns can be observed as in Figure 4.55.
Comparing the results for different PT with the reference response, we see that for
PT = 20 and PT = 40, additional multiples are still visible before the SIR compared
to the reference response, whereas these multiples vanish again with increasing PT
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and hence increasing Nl. Overall, increasing Nl seems to yield an increase in SIR
strength. Figure 4.56b shows the same results but now for 140 m offset. We can see
that the shape of the PIR event changes with offset, but there is still no visible signal
interference due to the presence of thin-beds. The SIR reference response is slightly
diminished. In addition, the highest signal strength now occurs for PT = 80, instead
of PT = 160. Furthermore, PT = 80 now shows an additional multiple just after
the SIR response, indicating that for greater offsets, not all multiples are compressed
yet for the amount of sublayers in PT = 80. This can be explained in terms of the
apparent thicknesses of the beds, which can vary with offset.
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Figure 4.55: Response for thin-bed geometries of the form A-B-C-B, for different package thick-
nesses PT with equal individual bed thicknesses of (a) 10 m (b) 5 m.
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Figure 4.56: Response for thin-bed geometries of the form A-B-C-B, for different package thick-
nesses PT with equal individual bed thicknesses of 2.5 m (a) at zero-offset (b) at 140 m offset.
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To take a closer look at the effects of increasing Nl in a certain PT , we show
in Figure 4.57 the seismo-electromagnetic response for a thin-bed geometry A-B-
C-B, varying with the amount of layers Nl for a fixed package thickness of either
PT = 80 m in Figure 4.57a or PT = 160 m in Figure 4.57b. We can observe
that the generated multiple train caused by relatively ‘thick’ beds, at low values for
Nl and relatively high PT , is compressed with increasing Nl and correspondingly
decreasing bed thickness. The individual beds are slowly not sensed anymore by the
signal and as a result the multiples vanish and the package of thin-beds starts acting
like an ‘effective’ medium. In this way the multiples start ‘mapping’ at the arrival
time of the SIR. Hence, one can intuitively understand that increasing amounts of
thin-beds can lead to an increased IR signal strength. This is what we also observed
in Figures 4.55 and 4.56. One can argue that as soon as all multiples have been
compressed, the maximum signal strengthening has been achieved. We can observe
that the seismo-electromagnetic signal is still affected for a while by the amount of
thin-beds even when the individual beds are already not recognized anymore (no
multiples). Another way to look at this is that further thinning of the sublayers, at
a certain point does not improve the signal strength of the IR fields anymore, since
the thickness is below the sensitive resolution of the seismo-electromagnetic fields.
Illustrative examples can be found comparing the signal of Nl = 32 with the signal
of Nl = 64 for PT = 80 in Figure 4.57a. So, we can distinguish two limits of bed
thickness: an upper and lower limit. The upper limit of bed thickness determines
whether the individual layers are still recognized or not. When beds are thinner than
this limit, the package of thin-beds starts acting like an ‘effective’ medium and the
multiples vanish from the record. The lower limit of bed thickness determines the
border from whereon further thinning does not affect the seismo-electromagnetic IR
signal strength anymore, because the bed thickness is below the sensitive resolution
of the seismo-electromagnetic fields.

From the results of Figures 4.55, 4.56 and 4.57, we can conclude that both the
thickness of the thin-beds as well as the amount of thin-beds play a role in whether
or not the multiples (created by the individual thin-beds) vanish in the record (i.e.,
are compressed at the SIR of the reference response). The upper limit seems to
occur when the thin-bed thickness reaches a value of around 5 m thickness (and
Nl > 16). This corresponds to thicknesses of 1/14 and 1/21 of the dominant S-
and P-wavelengths, 70 m and 105 m, respectively. The lower limit, from whereon
further thinning does not affect the signal strength anymore, seems to occur around
2.5 m thickness. This lower limit corresponds to 1/28 and 1/42 of the dominant
S- and P-wavelengths, respectively. An important anomaly to the general pattern
described above, can be observed in PT = 160, for Nl = 2. In this case the
individual bed-thicknesses equal 80 m, which is around the dominant S-wavelength.
This observation stimulates P- and S-wave tuning experiments, where the amount
of thin-beds is increased each with a bed thickness of either the dominant P- or
S-wavelength. These experiments showed that for both cases, increasing Nl did
not make a difference for the amplifying effect and the results are not displayed
here. In another tuning experiment, we focus on the package thickness PT . The
results are displayed in Figure 4.58. We look at the interference patterns for varying
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Figure 4.57: Response for thin-bed geometry A-B-C-B, varying with the amount of layers Nl, for
a package thickness of (a)80 m (b) 160 m

Nl in tuning package thicknesses of PT = 70 m (Figure 4.58a) or PT = 105 m
(Figure 4.58b). We can observe that in both cases, there seems to be a maximum
strengthening of the S-wave related IR signal of a factor 3, higher than we have
observed in the earlier presented experiments. This is an indication that not only the
amount of thin-beds Nl and the thin-bed thickness, but also the package thickness
PT itself plays an important role in the amplification of the SIR due to thin-bed
geological structures.
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Figure 4.58: Response for thin-bed geometries of the form A-B-C-B, varying with the amount of
layers Nl for packages with tuning thicknesses of (a) 70 m (dominant shear wavelength) (b) 105
m (dominant pressure wavelength)
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Destructive Interference

Let us now look what happens if we change the order of the thin-beds, i.e. looking
at configurations like A-C-B-C with reference response halfspace A-halfspace C. Ex-
cept the change in the order of the thin-beds, the modeling experiment is identical
to the experiment discussed above. In Figure 4.59, displaying the results of these
experiments, similar observations can be made as before in Figures 4.55-4.58, except
that now increasing Nl leads to a decreased signal strength of the S-wave related
IR field. Looking at the medium properties of media B and C, two main differences
can be observed. First, the contrast in electromagnetic velocity between medium B
and medium A is much larger than between medium C and medium A. Second, the
coupling coefficient of medium B is larger than the one of medium C and therefore
forms a smaller difference with the highest coupling coefficient, that of medium A.
Hence, the contrast in coupling coefficients between medium A and package of thin-
beds PT is positive (i.e. the upper layer has a higher value than the lower layer of
the contrast under consideration). Intuitively, one can imagine that the contrast in
coupling coefficients plays an important role in the signal strengthening or weakening
of the IR fields. One can observe that the reference response of halfspace A-halfspace
C indeed has a higher S-wave related IR field than the reference response of half-
space A-halfspace B due to the higher contrast in coupling coefficients. However,
remarkable is the fact that additional thin-bed contrasts decrease the SIR in case
of a packages of thin-beds that have alternating thin-beds starting with medium C
over medium B (a negative coupling coefficient contrast), but increase the SIR when
the thin-bed alternations start with medium B over medium C (a positive coupling
coefficient contrast).

Intuitively, the controlling factor seems to be whether the package of thin-beds
starts with a positive or negative contrast in coupling coefficient. To focus on the
effect of contrasts in coupling coefficients, we will now briefly investigate what hap-
pens to the thin-bed responses when we change the electrolyte concentrations in the
pore fluid.

Different Electrolyte Concentrations in the Pore Fluid

The electrolyte concentration in the pore fluid directly influences the zeta-potential.
For example, the empirical study by Pride & Morgan (1991) found

ζp = 8 + 26log10C, (4.6)

to be a reasonable approximation of the zeta-potential (with the zeta-potential in
millivolts). Here, C denotes the electrolyte concentration of the pore fluid in mol/L.
Revil et al. (1999) have demonstrated this equation from first principles using elec-
trical double layer theory. They provide a physical explanation for the two constants
that appear in equation (4.6). As we have seen, the zeta-potential on its turn, dir-
ectly influences the value of the static seismo-electromagnetic coupling coefficient L0

(equation (2.9)).
Several laboratory studies have shown that a higher ionic concentration leads to

a lower seismo-electromagnetic coupling coefficient and a weaker observed seismo-
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Figure 4.59: Response for thin-bed geometries of the form A-C-B-C, varying with the amount of
layers Nl for package thicknesses (a) 20 m. (b) 40 m. (c) 80 m. (d) 160 m. (e) 70 m. (dominant
S-wavelength) (f) 105 m. (dominant P-wavelength)

electromagnetic effect (e.g. Schoemaker (2011); Zhu & Toksöz (2013)). We here
focus solely on the effect of changing electrolyte concentrations. Therefore, all other
seismo-electromagnetic input model parameters are chosen equal to each other for all
three media (medium A,B and C), resulting in (more or less) equal seismic velocities
for all media. Since there are no seismic velocity contrasts, there are no coseismic
reflection arrivals to be expected in the records. The parameters that directly or
indirectly depend on the electrolyte concentration of course do change accordingly
(e.g. fluid conductivity), resulting in differences in the electromagnetic velocities
between the three media.

We use a package of PT = 80 m, with structure A-B-C-B. The electrolyte con-
centrations are chosen such that medium A has the highest electrolyte concentration
of 1 ·10−4 mol/L and hence the lowest coupling coefficient with a value of 9.07 ·10−9

m2·s·V−1. We vary the relative distribution of concentrations between medium B
and C, using values of 1 ·10−5 mol/L and 1 ·10−6 mol/L. In this way, either medium
B has a higher concentration than medium C, or vice versa. The corresponding
coupling coefficients are 1.15 · 10−8 m2·s·V−1 and 1.4 · 10−8 m2·s·V−1, respectively.
The contrast in coupling coefficient between medium A and the package of thin-
beds PT now has a negative contrast (opposite to the results of Figure 4.57a). The
results are presented in Figure 4.60. Figure 4.60a shows the results where medium
C has a higher coupling coefficient than medium B, resulting in a negative thin-
bed contrast within the package PT (since PT starts with medium B over medium
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C). We observe, focusing on the first peak of the SIR, that with increasing Nl,
the SIR response slightly increases as well. Figure 4.60b presents the results where
medium B has a higher coupling coefficient than medium C, resulting in a positive
thin-bed contrast within the package PT . We now observe that with increasing
Nl, the SIR decreases. At first sight, this seems to be contradicting with the ob-
servations of Figure 4.57a, where a positive thin-bed contrast within package PT
resulted in increasing SIR with increasing Nl, and a negative contrast resulted in
decreasing SIR with increasing Nl. However, there is another difference between
the experiments resulting in Figures 4.57a and 4.60. In Figure 4.57a, the contrast
between medium A and package of thin-beds PT was positive, whereas for Figure
4.60, this contrast is negative. In both cases, when the combined result of the con-
trast between upper halfspace and package of thin-beds, and the internal thin-bed
contrast is positive, constructive interference occurs, whereas destructive interfer-
ence occurs when the combined contrast is negative. We can also observe in Figure
4.60b that a higher contrast between medium A and B results in a higher reference
response SIR. Besides the above observations, we can observe that the PIR response
in these experiments is also affected by the presence of thin-beds. In Figure 4.60a we
can see that the PIR has a smaller reference response than in Figure 4.60b, but has
a signal strengthening due to the presence of thin-beds. We can also observe that
the PIR waveform is slightly changed (this also slightly occurs for the SIR). This
impedes the interpretation of the interference patterns: it is difficult to determine
whether signal strengthening or weakning occurs with increasing Nl.
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Figure 4.60: Response for thin-bed geometries of the form A-B-C-B, varying with the amount of
layers Nl for package thickness PT = 80 and varying coupling coefficients. (a) Relative distribution
of coupling coefficients: medium A < medium B < medium C. (b) Relative distribution of coupling
coefficients: medium A < medium C < medium B.
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Random models

To exclude the possibility of introduced artefacts due to the periodicity of the thin-
bed models under consideration, we investigate the signal interference patterns for
a model with package thickness PT = 80 m, where the added sublayers have either
arbitrary arbitrarily chosen by the user or mathematically random bed thicknesses.
The random bed thicknesses are determined using a single uniformly distributed
random number generator in the interval (0,1), that calculates the random positions
(for a fixed amount) of the interfaces as a fraction of the sum of the random numbers
times the fixed package thickness. In other words, each layer is a random fraction
of the package thickness. We increase ‘randomisation’ going from arbitrary models
to random models. We still vary the amount of sublayers Nl as we did before,with
the pattern A−B−C −B and so on. The results are presented in Figure 4.61a for
arbitrary bed thicknesses and in Figure 4.61b for random bed thicknesses.

We compare the results of Figure 4.61 with the result of the periodic thin-bed ex-
periments for a package thickness PT=80 m with equally thick thin-beds as presented
earlier in Figure 4.57a. We can clearly observe similar signal-enhancing interference
patterns for the shear wave related IR field. We can again observe that for increasing
amounts of sublayers, the multiple arrivals from the relatively thick sublayers (low
amount of sublayers) are being compressed and map at the arrival time of the shear
wave-related IR field. However, where in the periodic case the line representing a
total of 64 sublayers (Nl = 64) yields the largest signal strength for the shear wave-
related IR field, in the case of arbitrary sublayer thickness of Figure 4.61a, both
Nl = 16 and Nl = 64 result in the largest signal strength. Looking more closely, we
can still observe that for Nl = 64, small multiples are being observed for example
at times slightly less than t = 0.43 s. This might indicate that for Nl = 64 and
PT = 80 m, the seismo-electromagnetic signal still did not fully reach its maximum
thin-bed sensitivity in thin-bed settings with arbitrary bed thickness. When we in-
crease the randomness of the bed-thickness, we can again observe that the multiples
are being compressed with increasing Nl, but also the maximum amplification for
Nl = 64 is less than in the case of periodic and arbitrary layering. Furthermore,
there seems to be a slightly bigger phase shift on the SIR responses for different
Nl in case of completely random bed thicknesses. Overall, the interference patterns
between Figures 4.57a, 4.61a and 4.61b look very similar, with similar multiple
convergence pattern. Therefore, we can conclude that the earlier discussed inter-
ference patterns are not artefacts due to the periodicity of the sublayer thickness,
but represent seismo-electromagnetic signal-enhancing (or destructive) interference
mechanisms. Nevertheless, there seems to be a higher amplification of the SIR when
the thin-bed thicknesses are less random. Also, the multiples seem to converge at
smaller Nl in scenarios with less randomness for the bed thicknesses (or in other
words, higher periodicity).

Reservoir Monitoring: Oil-water contacts

We now focus on the sensitivity of the seismo-electromagnetic signals to different
saturating fluids. We investigate what happens when the relative thickness of two
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Figure 4.61: Response for thin-bed geometries of the form A-B-C-B, varying with the amount of
layers Nl for a package thickness of 80 m and with (a) arbitrary bed thicknesses (b) random bed
thicknesses.

different saturating fluids in a fixed package of rock of 30 m thickness (representing
a reservoir) changes. To this end, we simulate a medium, where the thickness of an
oil layer decreases and the thickness of a water layer increases. This situation occurs
for example in an oil reservoir during production. The starting-thickness ratio is 20
m oil layer and 10 m water layer. The water layer is fully-saturated, the oil-layer has
80 % oil-saturation and 20 % water-saturation. This leads to the relevant medium
parameters as presented in Table 4.4 (only the values differing from Table 4.3 are
presented), where the effective values for the oil-layer are displayed (i.e. saturation
has already been taken into account). We have included the effect of saturation in
a linear manner, which is allowed due to the volume-averaging principles that Pride
(1994) applied in deriving the seismo-electromagnetic theory. For viscosity, we have
used a logarithmic version of linear addition, as presented by Warden et al. (2013).
Figure 6.6 displays the results of the oil-water production simulation. The reference
response is the seismo-electromagnetic response from halfspace A over halfspace
B, where both halfspaces are fully water-saturated. Looking at the purely seismic
information of the coseismic fields, we can observe a phase delay due to dispersion
related to the presence of (the more viscous) oil. In addition, we can observe that
the presence of oil has a signal enhancing effect on the SIR field. The highest signal
strength occurs for the thickest oil-layer: 20 m oil layer, 10 m water layer, in other
words the starting-thickness ratio of this model. During oil production, when the
water content in the 30 m package increases and the oil layer gets thinner, the
shear-wave related IR signal strength weakens. Furthermore, we can observe that
the seismo-electromagnetic signal is very sensitive to the oil-water contact: an oil
layer of 0.2 m thickness (the line representing p2-29p8) is still slightly recognized.
Once the oil layer thickness reaches 0.02 m, the corresponding line overlaps with
the reference response, indicating that the seismo-electromagnetic signal does not



4.7. Seismo-electromagnetic thin-bed responses: natural signal enhancements? 221

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48
−1

−0.5

0

0.5

1

1.5

2
·10−6

SIR

COSEISMIC

time[s]

A
m
p
li
tu
d
e
[V

/m
]

20-10 m.
15-15 m.
10-20 m.
5-25 m.
2-28 m.
1-29 m.
p2-p29p8 m.
p02-29p98 m.
REF:HSA-HSB

Figure 4.62: Oil-water monitoring. Different colors indicate the coupled seismo-EM response for
situations with different relative thicknesses of oil-water saturation in a fixed package of rock of 30
m. The source is positioned at x3 = 100 m and has an amplification factor of 1 · 109, the receivers
are placed at x3 = 700 m and the interface separating the upper halfspace from the 30 m package
of rock is located at x3 = 1000 m. The blue-dashed line represents the reference response from
halfspace A over halfspace B, both fully water-saturated.

sense the presence of oil anymore. The thickness of 0.2 m is far below the dominant
wavelength of the seismic shear wave generating this SIR, which is about 70 m.
According to Widess (1973), beds with thicknesses less than 1/8 of this dominant
wavelength, 8.75 m, are considered thin-beds. The seismo-electromagnetic signal
clearly has a very high sensitivity to the presence of oil-water contacts.

4.7.6 Discussion

We have studied the effect of changing electrolyte concentrations in the pore fluid
on the seismo-electromagnetic interference patterns. Unfortunately, we cannot dir-
ectly link these effects to the changing seismo-electromagnetic coupling coefficient
only: for example, the fluid conductivity also changes with changing electrolyte
concentration, thereby affecting the electromagnetic velocities. However, it seems
reasonable to address the observed changes to changes in the seismo-electromagnetic
coupling coefficients, since physically speaking these coefficients control the amount
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Table 4.4: Overview of the relevant parameters and wave/field velocities for each of the different
media colorcor (only the deviations from Table 4.3 are presented). Media A and B are water-
saturated. To illustrate the frequency-dependency of certain wave/field-types, velocity ranges (the
real parts of the complex velocities) are displayed for the bandwidth under consideration. Note
that the EM-velocities are proportional to the square-root of frequency.

Physical quantity Medium A (top hs) Medium B (layer or hs) Eff. Param. Oil Layer

σf [S/m] 0.93 0.93 0.19
σ̂e [S/m] 0.12 6.18·10−2 1.24·10−2

C [mol L−1] 1.0 ·10−2 1.0 ·10−2 0.002

εfr [-] 70 70 20.4
η [N s m−2] 1 ·10−3 1 ·10−3 1.4 ·10−3

Kf [N m−2] 2.25 ·109 2.25 ·109 1.49 ·109

ρf [kg m−3] 1.0 ·103 1.0 ·103 9.32 ·102

L0 [m2· s· V−1] 3.64 ·10−9 1.82·10−9 5.35·10−10

ζp [V] -4.4·10−2 -4.4·10−2 -6.22·10−2

Pf [m/s] 3166.73-3166.76 3163.19-3163.19 3015.65-3015.66
Ps [m/s] 2.91-93.74 4.00-131.93 2.98-96.96
S vel. [m/s] 2110.79-2110.87 1952.83-1953.03 1958.49-1958.57
EM vel. [m/s] 3179.63-1.01·105 4496.68-142233.38 10054.89-318044.72

of coupling between mechanical waves and electromagnetic fields. For other seismo-
electromagnetic parameters, it is even harder to uniquely determine the effect of
that specific parameter on the thin-bed interference patterns, since most seismo-
electromagnetic parameters are mutually related. We have of course considered a
simple situation where we only changed the electrolyte concentration of the pore
fluid. In reality, the chance that between different media other medium properties
also vary is high. Nevertheless, for monitoring purposes of for example oil or gas
production, this is an interesting observation, since we purely focus on changes in the
saturating pore fluid, and assume that the rest of the reservoir remains the same.
Despite probable changes in permeability during production, this is a reasonable
first assumption.

Our simplified oil/water contact modeling experiments simulating oil production
have proven that seismo-electromagnetic signals are very sensitive to oil-water con-
tacts. This observation has previously been made in laboratory experiments (e.g.
Smeulders et al. (2014)). We have modeled a situation with two immiscible flu-
ids using an approximative theory (Pride, 1994) in which the capillary effects are
neglected. This approach is unable to describe all physical mechanisms involved
in the wave propagation and attenuation in porous media containing two immis-
cible fluids. As an alternative, the formulations of Revil & Mahardika (2013) could
be used. However, macroscopically we believe that the observed sensitivity effects
of seismo-electromagnetic signals to oil/water contrasts are still valid, and only in
terms of amplitudes or exact interference patterns differences might occur when
using the formulation of Revil & Mahardika (2013). In our oil/water experiment,
we have observed that during oil production, when the water content in the 30 m
package increases and the oil layer gets thinner, the SIR signal strength weakens.
However, as we have also seen, effective strengthening or weakening of thin-bed re-
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sponses seems to be determined by the contrasts in seismo-electromagnetic coupling
coefficient. In the laboratory experiments by Smeulders et al. (2014), an increasing
interface response with decreasing oil-bed thickness was observed. However, this can
probably be explained due to the fact that in this laboratory experiment, a porous
sample was placed in a water tank. The pressure wave generated by the source in
the water, therefore experiences a contrast between pure water on both sides of the
sample (where the seismo-electromagnetic coupling coefficient is zero) and a porous
medium. The contrasts in coupling coefficients are then clearly different from our
modeled contrast, and therefore it is expected that different effects on the interface
response signal are observed, as we have also seen in our varying electrolyte modeling
experiments. However, now that we schematically have simulated an oil reservoir
during production, we can use our seismo-EM layer-code to try and validate, as a
next step, the oil/water contact seismo-electromagnetic laboratory experiments as
presented by Smeulders et al. (2014).

Since we of course only modeled a few scenarios and contrasts, we do not exclude
that different interference patterns might occur in for example media with different
medium parameters for the thin-beds and thin-bed contrasts, or for example when
investigating different seismo-electromagnetic source-receiver combinations. Also,
in our varying electrolyte simulations, the upper halfspace always had the lowest
coupling coefficient. Different interference patterns are to be expected when the
upper halfspace has a coupling coefficient that has a value that lies for example in
between the coupling coefficients of the thin-bed layers. Besides focusing at amp-
litude changes, one could also try to study and exploit the fact that interference
patterns can cause phase shifts and waveform changes as well.

Are thin-bed geological structures the solution for the weak signal-to-noise ratio
of the seismo-electromagnetic signals that limits the use of this technique in the geo-
physical community? Probably not. What is more important is the awareness that
thin-bed geological settings can have serious consequences for the recorded seismo-
electromagnetic interface response signals, due to complex interference patters. For
example, a strong response in the record might be due to a strong reflector/contrast,
but might also be the effect of signal strengthening/weakening due to the presence of
thin-beds. Due to the complexity of the interference patterns and the many possible
parameter combinations that can influence these patters, it is very difficult to find
effective medium expressions that properly describe the response of the package of
thin-beds.

In reality, we of course cannot control the thickness of the beds that we en-
counter in the field and also not the order of the contrasts (determining constructive
or destructive interference). However, we have seen that we can distinguish two
limits of bed thickness: an upper limit of bed thickness that determines whether the
individual layers are still recognized or not and a lower limit that determines the
border from whereon further thinning does not affect the seismo-electromagnetic IR
signal strength anymore. To have an effective medium response, the beds need to be
thinner than the upper limit. The lower limit than determines the maximum signal
strengthening or weakening that can occur, together with the total package thickness
of the thin-beds. The maximum amplitude tuning occurs for package thicknesses
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similar to the dominant wavelengths of the P- and S-waves. We can take this know-
ledge into account in our acquisition design. By changing the dominant frequencies
of the seismic source signal, we can effectively change the optimal tuning package
thickness for the generated waves. When we have a geological setting where con-
structive interference occurs, we can try to optimize the amplitude tuning effects
by playing with the source bandwidth. Combined with for example velocity ana-
lysis, this determined dominant wavelength can assist in determining the thin-bed
package thickness of the subsurface. Can we obtain the desired factor of amplitude
enhancement that we need to measure the seismo-electromagnetic signals? We are
not sure. However, the investigation presented in this section is carried out only
for one seismo-electromagnetic source-receiver combination and certain geological
models. Different models can result in different interference patterns, that might
lead to even greater amplifying effects. Furthermore, there might be differences in
signal enhancing for different seismo-electromagnetic source-receiver combinations.
Depending on for example the geological properties as obtained from boreholes, the
optimal seismo-electromagnetic source-receiver combination can be determined (i.e.
the combination that is to be expected to experience maximum signal strength-
ening) for the specific geological setting under consideration, and hence be taken
into account in the seismo-electromagnetic acquisition design e.g. which source- and
receiver-types to deploy. In addition, not only amplitude changes but also phase
changes and waveform changes have been observed. These phase and waveform
changes could be useful as well, but require additional investigation.

In this section, we have not focused on the sensitivity of coseismic fields to thin-
bed structures. It is important to realize that coseismic electromagnetic fields can
only provide localized information (at the receivers), since they co-propagate within
the seismic waves. Therefore, all seismo-electromagnetic information of the subsur-
face thin-bed structures has been lost from the signal once the coseismic fields reach
the receivers at the surface. The only information of the thin-bed structures left in
the signal is purely seismic information (and we have seen that seismic signals are
less sensitive to thin-beds than seismo-electromagnetic fields). Nevertheless, there
might still be some useful seismic information in the coseismic fields, for example the
observed phase delay due to dispersion related to the presence of (the more viscous)
oil.

The challenge of the weak seismo-electromagnetic signal-to-noise ratio is unfortu-
nately not solved yet. It is important to be aware that nature can help us in the form
of thin-bed geology, but can also make our lives more difficult due to complex signal
interference patterns that are hard to describe in terms of an effective medium. We
could try to take these geological settings into account in our acquisition designs and
the way we use our seismo-electromagnetic sources. Existing seismo-electromagnetic
signal enhancing techniques like seismo-electromagnetic focusing or specific filtering
techniques combined with a search for optimal natural signal enhancements due to
thin-bed geology could be a way forward. Combined efforts might yield the desired
amplification factor that is required for industrial and global geophysical applica-
tions.
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4.7.7 Conclusions

Using numerical seismo-electromagnetic wave propagation experiments through pack-
ages of thin-beds, we have shown that thin-bed geological settings can improve the
signal strength of the seismo-electromagnetic interface response fields. Increasing
amounts of thin-beds of can cause the shear-wave related interface response strength
to increase or decrease. In our experiments, the pressure-wave related interface re-
sponse fields are not visibly affected by the presence of thin-beds.

Both the thickness of the thin-beds as well as the amount of thin-beds play a
role in whether or not the multiples (created by the individual thin-beds) vanish in
the record (i.e., are compressed at the position of the shear-wave related interface
response field in the reference response (the response for which there are no thin-beds
present). We can distinguish two limits of bed thickness: an upper and lower limit.
The upper limit of bed thickness determines whether the individual layers are still
recognized or not. When beds are thinner than this limit, the package of thin-beds
starts acting like an ‘effective’ medium and the multiples vanish from the record. The
lower limit of bed thickness determines the border from whereon further thinning
does not affect the seismo-electromagnetic IR signal strength anymore, because the
bed thickness is below the sensitive resolution of the seismo-electromagnetic fields.
The upper limit seems to occur when the thin-bed thickness reaches a value of around
5 m thickness. This corresponds to thicknesses of 1/14 and 1/21 of the dominant S-
and P-wavelengths in our models, 70 m and 105 m, respectively. The lower limit,
from whereon further thinning does not affect the signal strength anymore, seems
to occur around 2.5 m thickness. This lower limit corresponds to 1/28 and 1/42 of
the dominant S- and P-wavelengths, respectively. This is far below the conventional
seismic definition of a thin-bed.

Tuning package thickness experiments of 70 m and 105 m show that there seems
to be a maximum strengthening of the shear-wave related interface response signal
of a factor 3 for these package thicknesses. This is an indication that not only the
amount of thin-beds and the thin-bed thickness, but also the package thickness itself
plays an important role in the amplification of the shear-wave related interface re-
sponse fields due to thin-bed geological structures. The maximum amplitude tuning
occurs for package thicknesses similar to the dominant wavelengths of the P- and
S-waves.

Whether the thin-beds result in an effective strengthening or weakening of the
signal, seems to be determined by the contrast in seismo-electromagnetic coupling
coefficients between the different thin-beds. Specific experiments where the electro-
lyte concentration of the pore fluid was varied have shown that when the combined
result of the coupling coefficient contrast between the upper halfspace and package of
thin-beds, and the internal thin-bed contrast itself is positive, constructive interfer-
ence occurs, whereas destructive interference occurs when the combined contrast is
negative. Other interference patterns can occur for other combinations of contrasts,
impeding the description of seismo-electromagnetic thin-bed responses in terms of
‘effective’ media.

Arbitrary (user chosen) and mathematically random bed-thickness modeling ex-
periments resulted in responses that are very similar to the periodic bed-thickness
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results. We can therefore conclude that the observed seismo-electromagnetic inter-
ference patterns are not artefacts due to the periodicity of the bed thickness, but
truly seismo-electromagnetic signal-enhancing (or destructing) interference mechan-
isms. Nevertheless, there seems to be a higher amplification of the shear-wave related
interface response fields when the thin-bed thicknesses are less random. Also, the
multiples generated by the individual thin-beds seem to converge at smaller amounts
of thin-beds in scenarios with less randomness for the bed thicknesses (higher bed-
periodicity).

Our oil/water contact modeling experiments where the oil layer is gradually
thinned prove that the seismo-electromagnetic signal has a very high sensitivity to
oil-water contacts: an oil layer with 20% water saturation and of 0.2 m thickness,
a thickness of about 1

350 of the dominant wavelength of the shear wave generating
this response, is still slightly recognized. This is a clear indicator of the high seismo-
electromagnetic sensitivity for different saturating fluids.



Chapter 5

Theory and numerical results of
seismo-electromagnetic
correlation-based interferometry
with two-way fields

5.1 Abstract

We explore the application of interferometric techniques to the seismo-
electromagnetic system, which might eventually lead to an improved signal-to-noise
ratio of the weak converted fields. We present an effective way of deriving expli-
cit homogeneous space Green’s function expressions for the 2D SH-TE propagation
mode, using power-flux normalized eigenvectors. We derive the theory for interfer-
ometric retrieval of 2D SH-TE seismo-EM Green’s functions. Using a theoretically
desirable circular source configuration as well as a more realistic configuration with
sources placed along a line, we show that we can correctly retrieve the dynamic
seismo-EM 2D SH-TE response in a homogeneous medium, using seismic boundary
sources only. We demonstrate this for two source-receiver combinations: an electric
field and a magnetic field due to a seismic source, using explicit homogeneous space
Green’s function solutions. The volume source contributions account for the losses
in the acausal part of the retrieved response as well as the instantaneous source-
converted EM field. Using seismo-EM layer-code data, we then show that we can
also correctly retrieve the direct shear wave-related causal coseismic field in a ho-
mogeneous medium, in both phase and amplitude. To obtain a perfect match in
absolute amplitudes, we apply a single linear scaling factor. We finally carry out
interferometric experiments in a model containing a single interface at 800 m depth,
proving that we can correctly retrieve all 2D SH-TE causal seismic-related direct and
reflected coseismic fields, as well as interface response fields, by cross-correlation in-
terferometry, using seismic boundary sources only. These results are promising for
the application of 3D seismo-electromagnetic interferometry using our seismo-EM

227



228 5. Theory and results Seismo-EM interferometry

layer-code, and later on, in the field.

5.2 Introduction

In order to make the seismo-electromagnetic method feasible for industrial applic-
ations, we need to somehow enhance its signal-to-noise ratio. Recently, the oppor-
tunities for applying a seismo-electromagnetic beamforming technique to maximize
the seismo-electromagnetic conversion have been explored (Sava & Revil, 2012; Re-
vil et al., 2015). Another brute-force approach is to use vibroseis trucks to try and
boost the signal-to-noise ratio by sending large amounts of energy into the subsur-
face (Dean & Dupuis, 2011b; Dean et al., 2012). Having strong sources is not always
possible or desirable and is likely to boost the noise-levels as well.

From an imaging point of view, the principle of interferometry has been shown
effective for a wide class of phenomena, including purely seismic and electromagnetic
systems (Schuster et al., 2004; Draganov et al., 2006; Slob et al., 2007; Wapenaar
et al., 2008a; Schuster, 2010). When applying interferometry, responses recorded at
different receivers are cross-correlated in order to obtain the Green function between
these receivers. It can include the responses of both passive and active sources.
The cross-correlation process reorganizes measured data such that it may allow for
improved imaging compared to the situations where imaging algorithms are applied
to the measured data directly. When having downhole receivers, the virtual source
method based on interferometric principles (Bakulin & Calvert, 2006; Mehta et al.,
2007a) has been proven useful.

Recently, De Ridder et al. (2009) have shown that for a 1D scenario for the
SH-TE propagation mode, correct Green’s function retrieval via cross-correlation
based interferometry is possible using only seismic boundary sources. Eventually,
we desire to know the applicability of interferometric principles for seismo-EM field
data examples. We here make a first step towards this goal, and extend the theory
and configuration to a purely 2D scenario for the SH-TE propagation mode. Us-
ing explicit homogeneous space solutions derived directly from the system matrix
using power-flux normalized eigenvectors, we investigate whether we can retrieve
correct seismo-electromagnetic responses via correlation-based interferometry using
boundary sources only. Starting from a general interferometric Green’s function
expression that is derived from correlation-type reciprocity theorems (Wapenaar
et al., 2006; Wapenaar & Fokkema, 2004), we select a certain seismo-electromagnetic
source-receiver combination to illustrate theoretically the interferometric retrieval of
seismo-electromagnetic fields. We then present two numerical examples of interfero-
metric seismo-electromagnetic Green’s function retrieval in a homogeneous medium
using explicit homogeneous space Green’s function solutions. We numerically in-
vestigate interferometric retrieval of an electric field and a magnetic field due to a
seismic source, for a theoretically desirable circular source configuration, followed by
a more realistic line source configuration. We then follow-up with correlation-based
interferometry using seismo-EM layer-code data modeled in a homogeneous medium,
for the 2D SH-TE scenario. We finalize modeling a scenario with our seismo-EM
layer-code containing a single interface at 800 m depth, and prove that we can cor-
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rectly retrieve the causal coseismic and interface responses using seismic boundary
sources only.

5.3 Theory

5.3.1 Seismo-EM 2D SH-TE homogeneous space solutions

In 2D, mode separation into SH-TE and P-SV-TM occurs naturally. In this section,
we will focus on the 2D SH-TE propagation mode only. A similar analysis can be
carried out for the P-SV-TM propagation mode. We start by expressing the SH-TE
propagation mode into the following matrix differential equation

∂3F̃− ÃF̃ = S̃δ(x3 − xs3), (5.1)

where F̃t = (F̃t1, F̃
t
2) denotes the two-way field vector, Ã is the two-way system

matrix and S̃ = (S̃t1, S̃
t
2) contains the two-way source terms, with xs3 denoting

the x3-coordinate of the source position. We obtain the 2D field quantities, sys-
tem matrix and source terms by setting k2 = 0 and dividing the 3D SH-TE field
quantities and source terms, which are presented in e.g. Haartsen & Pride (1997),
Grobbe et al. (2016a), by −jk1, where j denotes the imaginary unit and k1 is
the horizontal wavenumber in the x1-direction (and k2 the horizontal wavenum-
ber in the x2-direction). The 2D field vector is composed as F̃t1 = (ṽs2, Ẽ2) and
F̃t2 = (τ̃ b23,−H̃1), which are the solid particle velocity, the electric field, the bulk
stress component and the magnetic field, respectively. Here the subscripts indicate
the orientation with respect to the right-handed Cartesian coordinate system and
the superscripts provide extra information about the field (or source) type (acting
on solid (s), fluid (f), bulk (b) and so on). The superscript t denotes vector or matrix
transposition. The corresponding source vector is defined as S̃t1 = (h̃b23 + h̃b32, J̃

m
1 ),

S̃t2 = (−
[
f̃ b2 − ρf

ρ̂E
f̃f2

]
− jk1G

fr

s

[
h̃b21 + h̃b12

]
,−J̃e2 − L̂f̃f2 − jk1

sµ0
J̃m3 ), where h̃b23 is the

bulk external deformation rate density, J̃m1 the external magnetic current density,

f̃ b2 the bulk dipole force source, f̃f2 the fluid dipole force source, h̃b12 is the bulk
external deformation rate density, J̃m3 the external magnetic current density, J̃e2 the
external electric current density and where h̃b12 = h̃b21 and h̃b23 = h̃b32. Here, s = jω
(where ω is the radial frequency) and the hat indicates the space-frequency domain
(or frequency-dependency). The SH-TE two-way system matrix reads

Ã =

(
O Ã12

Ã21 O

)
, (5.2)

where the SH-TE two-way system submatrices are defined as

Ã12 =

(
β̂ 0

0 −ζ̂

)
; Ã21 =

 α̂+
k21
β̂

χ̂

χ̂ −
(
η̂E +

k21
ζ̂

)  . (5.3)

Furthermore, β̂ = s
Gfr

, ζ̂ = σ̂m + sµ, χ̂ = sρf L̂, α̂ = sρ̂c and η̂E = σ̂e + sε. In ad-
dition, σ̂m is the frequency-dependent magnetic conductivity (chosen zero since we
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ignore magnetic relaxation losses), µ = µ0µr, the product of the magnetic permeab-
ility in vacuum and the relative magnetic permeability, ρf being the density of the

fluid, L̂ representing the seismo-electromagnetic coupling coefficient, ρ̂c = ρb− (ρf )2

ρ̂E

where ρb is the bulk density and ρ̂E = η

sk̂
(with η being the viscosity of the fluid

and k̂ the permeability of the medium). Furthermore, σ̂e = φσf

α∞
is the frequency-

dependent electrical conductivity with φ denoting the porosity of the medium, σf the
conductivity of the fluid and α∞ the tortuosity of the medium. Finally, ε = ε0εr, the
product of the dielectric permittivity in vacuum and the relative dielectric permittiv-
ity. The 2D system matrix Ã can again be decomposed into matrices consisting of its
eigenvectors and eigenvalues via Ã = L̃Λ̃1L̃

−1, where L̃ and L̃−1 represent the com-
position and decomposition matrices, respectively, that consist of the eigenvectors of
the SH-TE system matrix. Λ̃1 = diag(−ΓSH ,−ΓTE ,ΓSH ,ΓTE), a diagonal matrix
consisting of the eigenvalues of the system, where Γ2

SH,TE = γ2
SH,TE + k2

1. Similar
to Section 2.4, we use the following expressions for the Green matrices

Ğ11 = −2jk3L̆
H
1 ĞL̆t2, (5.4)

Ğ12 = 2Ă12L̆2ĞL̆t1, (5.5)

Ğ21 = 2Ă21L̆1ĞL̆t2, (5.6)

Ğ22 = −2jk3L̆2ĞL̆t1. (5.7)

Here, Ğ is a diagonal matrix consisting of the 2D scalar Green’s functions for the
two field types (horizontally polarized shear waves and transverse electric fields).
The space-frequency solution of this matrix looks like
Ĝ = diag

(
1

2πK0(γSHR
rs), 1

2πK0(γSHR
rs)
)
. Here, K0(γSH,TER

rs) is the modified
Bessel function of the second kind and order zero. Its argument contains the spherical
wavenumber γSH,TE = s

ĉSH,TE
with ĉSH,TE representing the SH wave or TE field ve-

locities. Furthermore, Rrs denotes the distance between the source position (super-
script s) and the receiver position (superscript r) Rrs =

√
(xr1 − xs1)2 + (xr3 − xs3)2.

We now have all ingredients to derive the desired explicit 2D homogeneous Green’s
functions expressions for the SH-TE propagation mode for each source-receiver com-
bination. This enables us to model all 2D SH-TE seismo-electromagnetic responses
in a homogeneous domain that are required for the application of interferometry.

5.3.2 2D SH-TE interferometry

Following the description of the 3D seismo-electromagnetic system in Wapenaar &
Fokkema (2004), we start by capturing the 2D SH-TE system also in the general
diffusion, flow and wave equation format: jωAû + Bû + Dxû = ŝ. Here û and ŝ
contain the field and source quantities, respectively, whereas A and B are matrices
containing space-dependent material parameters and Dx is a matrix containing the
spatial differential operators ∂

∂x1
and ∂

∂x3
. Note that this A is different than before.

Here, ût =
(
Ê2, Ĥ1, Ĥ3, v̂

s
2,−τ̂ b23,−τ̂ b21

)
and ŝt = (ŝ1, ŝ2, ŝ3, ŝ4, ŝ5, ŝ6), where ŝ1 =

−Ĵe2−L̂f̂f2 , ŝ2 = −Ĵm1 , ŝ3 = −Ĵm3 , ŝ4 = f̂ b2− ρf

ρ̂E
f̂f2 , ŝ5 = ĥb32+ĥb23 and ŝ6 = ĥb12+ĥb21.

For the details of A, B and Dx, the reader is referred to Wapenaar & Fokkema
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(2004). By replacing the source vector ŝ by a point source matrix Iδ(x − xA), the
field quantities in û can be replaced by a Green’s matrix, resulting in

Ĝ(xB ,xA, ω) =



ĜE2,s1 ĜE2,s2 ĜE2,s3 ĜE2,s4 ĜE2,s5 ĜE2,s6

ĜH1,s1 ĜH1,s2 ĜH1,s3 ĜH1,s4 ĜH1,s5 ĜH1,s6

ĜH3,s1 ĜH3,s2 ĜH3,s3 ĜH3,s4 ĜH3,s5 ĜH3,s6

Ĝv2,s1 Ĝv2,s2 Ĝv2,s3 Ĝv2,s4 Ĝv2,s5 Ĝv2,s6

Ĝτ23,s1 Ĝτ23,s2 Ĝτ23,s3 Ĝτ23,s4 Ĝτ23,s5 Ĝτ23,s6

Ĝτ21,s1 Ĝτ21,s2 Ĝτ21,s3 Ĝτ21,s4 Ĝτ21,s5 Ĝτ21,s6


, (5.8)

where xA corresponds to the source location and xB to the receiver location and
the superscripts denote (receiver-type, source-type), according to their position in û
and ŝ, respectively. Each of the elements corresponds to a Green’s function which
we can model using the homogeneous space Green’s function expressions as de-
rived in the previous section. We can now select the Green function for a certain
seismo-electromagnetic source-receiver combination and evaluate the interferometric
Green’s function retrieval expression as presented in Wapenaar et al. (2006):

Ĝ(xB ,xA, ω) + Ĝ†(xA,xB , ω) =

−
˛
∂S

Ĝ(xB ,x, ω)NxĜ
†(xA,x, ω)dx +

ˆ
S

Ĝ(xB ,x, ω)
(
−2ω=(Â) + B̂ + B̂†

)
Ĝ†(xA,x, ω),

(5.9)

where the first term on the left-hand side represents the causal retrieved Green’s
function with the virtual source at receiver location xA and the receiver at xB and
where the second term represents the acausal retrieved Green’s function with the
virtual source at receiver location xB and the receiver at xA. The dagger sign denotes
the complex conjugate transpose. Furthermore, the first integral on the right-hand
side is the boundary source integral, summing the contributions from different source
locations x to receivers xA and xB and the second integral represents the volume
source integral. Nx is the matrix consisting of normal vector elements n1 and n3

with positions and signs equal to the organization of partial derivative matrix Dx.
We will here focus on element (1,4) of equation (5.8), and evaluate expression (5.9)
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for this element considering only boundary source contributions, which results in[
ĜE2,s4(xB ,xA, ω) +

{
Ĝv2,s1(xA,xB , ω)

}∗]
Ŝ =

−
˛
∂S

[
ĜE2,s1
B (−n3)(Ĝv2,s2A )∗ + ĜE2,s1

B n1(Ĝv2,s3A )∗

+ĜE2,s2
B (−n3)(Ĝv2,s1A )∗ + ĜE2,s3

B n1(Ĝv2,s1A )∗

+ĜE2,s4
B n3(Ĝv2,s5A )∗ + ĜE2,s4

B n1(Ĝv2,s6A )∗

+ĜE2,s5
B n3(Ĝv2,s4A )∗ + ĜE2,s6

B n1(Ĝv2,s4A )∗
]
Ŝdx, (5.10)

where the subscript B replaces the spatial and frequency terms in the Green func-
tion argument (xB ,x, ω) and where the subscript A replaces (xA,x, ω). We model
all Green’s functions using a Ricker wavelet with a peak frequency of 30 Hz. In
the above equation, Ŝ denotes the power spectrum of this Ricker wavelet and the
asterix denotes complex conjugation. We will model the left-hand side of equa-
tion (5.10) as the reference response (that will be displayed in blue), whereas the
right-hand side will result in the interferometrically retrieved response (displayed
in red-dashed). Similar integral representations can be derived and modeled for all
other seismo-electromagnetic source-receiver combinations (including the combina-
tion of our second numerical example).

5.4 Numerical Results

5.4.1 2D SH-TE interferometry using homogeneous-space
solutions

Circular source acquisition

Our aim is to investigate whether we can retrieve the correct seismo-electromagnetic
response that we are after using correlation-based interferometry with boundary
sources only, preferably of a certain type. We first consider a 2D circular source
geometry in the (x1, x3)-plane with two receivers located at xA = (0,−200) and
xB = (0, 200) and 500 sources located at the boundary of the circle with centerpoint
= (0, 0) and radius R=1200 m (see Figure 5.1). This will yield perfect illumination
from all sides.

Having illumination from all sides, we should theoretically be able to retrieve
the response matching in both phase and amplitude. However, the volume source
terms in equation (5.9) account for the losses. When losses occur, using only
boundary sources might not yield the desired retrieved responses. We consider a
porous, fluid-saturated medium with properties such that in the frequency band-
width under consideration (0-500 Hz), the shear wave velocity ranges from about
ĉSH = 2110.8− 2110.9 m/s and the transverse electric field diffusive velocity ranges
from about ĉTE = 31421.5 − 1005811.5 m/s. Since we model a homogeneous me-
dium, only coseismic fields and source-converted fields are to be expected, and no
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Figure 5.1: Schematic overview of the interferometric experiments. Red indicates the source
positions, either circular or two line source configurations. The blue-dashed line indicates an
interface, the blue square is the center point of the circle, and the black triangles are the receivers
xA and xB .

interface response fields. We use the explicit homogeneous space Green’s function ex-
pressions to model the responses. We investigate the retrieval of two source-receiver
combinations:

1. GE2,s4(xB ,xA, t) +Gv2,s1(xA,xB ,−t),

2. GH1,s4(xB ,xA, t) +Gv2,s2(xA,xB ,−t),

where the positive times represent the causal responses and the time-reversals the
acausal responses. The distance between receivers xA and xB is 400 m, resulting in
a direct coseismic or coelectric event at a shear wave arrival time of around t=0.19
s. Furthermore, we expect a source-converted field with EM velocity, arriving more
or less instantaneously at t=0. The results of these two interferometric numerical
experiments are displayed in Figures 5.2, 5.3, and 5.4, subfigures (a) and (b), respect-
ively. Starting by looking at Figure 5.2, we can observe that by using all boundary
sources, we correctly retrieve the desired direct shear wave coseismic event in the
causal part in both phase and amplitude, for both source-receiver combinations.
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Figure 5.2: Interferometric retrieval of 2D SH-TE source-receiver combinations using all bound-
ary sources for a circular acquisition geometry. Blue: reference, red-dashed: retrieved. (a) In-
terferometric retrieval of GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t) (b) Interferometric retrieval of
GH1,s4 (xB ,xA, t) +Gv2,s2 (xA,xB ,−t).
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Figure 5.3: Interferometric retrieval of 2D SH-TE source-receiver combinations using seismic
boundary sources only for a circular acquisition geometry. Blue: reference, red-dashed: retrieved.
(a) Interferometric retrieval of GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t) (b) Interferometric re-
trieval of GH1,s4 (xB ,xA, t) +Gv2,s2 (xA,xB ,−t).

The acausal part of Figure 5.2a displays a polarity reversed direct arrival and two
additional spurious events. This also holds for the response of Figure 5.2b. We also
observe that the instantaneously converted EM arrival at t=0 s is not correctly re-
trieved using boundary sources only. The boundary sources only slightly contribute
to this source-converted EM field in Figure 5.2a, and hardly in Figure 5.2b. Based
on our knowledge from 1D results (De Ridder et al., 2009), we expect that by adding
the volume source contributions, the spurious events will vanish, the polarity of the
acausal direct shear wave arrival will be reversed, and that the instantaneous conver-
ted EM arrival will be retrieved correctly as well. In other words, the volume sources
which account for the losses in the medium are necessary to correctly retrieve the
events in the acausal part as well as the direct source-converted EM field. These
volume sources are not required to retrieve the events in the causal part. Since we
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Figure 5.4: Interferometric retrieval of 2D SH-TE source-receiver combinations using EM bound-
ary sources only for a circular acquisition geometry. Blue: reference, red-dashed: retrieved. (a)
Interferometric retrieval of GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t) (b) Interferometric retrieval
of GH1,s4 (xB ,xA, t) +Gv2,s2 (xA,xB ,−t).

are interested in the causal part of the response, the losses in the medium and lack
of volume sources do not matter. Figure 5.3 shows the retrieved response using only
seismic boundary sources (a more realistic acquisition scenario). For both source-
receiver scenarios (Figures 5.3a and 5.3b), we can still observe a correct retrieval of
the event in the causal part without visible amplitude losses. We see a very small
contribution of the seismic boundary sources to the source-converted EM field. Fig-
ure 5.4 shows the retrieved events using only EM boundary sources. In Figure 5.4a,
we can indeed observe that these sources do not contribute to the retrieval of the
shear wave velocity related direct coseismic fields, but they do contribute to the
instantaneously source-converted electric field at t = 0 and to the spurious events
at negative times greater than t = −0.25 s. Figure 5.4b emphasizes that the EM
boundary sources do not really contribute to the source-converted magnetic field,
and that this field should be almost completely recovered by the volume sources
accounting for the losses in the medium.

Line source acquisition

We now move on to a slightly more realistic acquisition scenario, where sources are
located at two horizontal lines above and below the receiver levels. We use two
source arrays located at −1200 m and 1200 m depth (see Figure 5.1). We apply a
far-field approximation, meaning that only the terms in equation (5.10) related to the
n3 normal components are contributing. Based on stationary phase analysis of the
correlation gathers of GE2,s4(xB ,xA, t)+Gv2,s1(xA,xB ,−t), presented in Figure 5.5,
we determine the maximum offset that we need for our source coverage. Based on this
stationary phase analysis, we determine we need about 1025 sources with a source
spacing of 4 meters to obtain enough illumination for the interferometric Green’s
function recovery. A Hanning taper with a taper length of 500 is applied, tapering
the non-stationary zones to avoid artefacts. We have already applied this Hanning
taper in Figure 5.5. We can clearly observe in Figure 5.5 that the Hanning taper
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nicely tapers most of the non-stationary zones in the correlation gathers, avoiding
artefacts in the interferometric retrieved result. The receivers are located at the
same positions as before, and we investigate the same Green’s function retrieval.
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Figure 5.5: Cross-correllograms for both source acquisition lines, where a Hanning source taper
with a taper length of 500 has been applied; (a) all source types, upper source line at -1200 m (b)
seismic source types only, upper source line at -1200 m (c) EM source types only, upper source
line at -1200 m (d) all source types, lower source line at 1200 m (e) seismic source types only,
lower source line at 1200 m (f) EM source types only, lower source line at 1200 m.
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Figure 5.6: Interferometric retrieval of 2D SH-TE source-receiver combinations using all bound-
ary sources for a line source acquisition geometry. Blue: reference, red-dashed: retrieved. (a)
Interferometric retrieval of GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t) (b) Interferometric retrieval
of GH1,s4 (xB ,xA, t) +Gv2,s2 (xA,xB ,−t).

Figures 5.6a and 5.6b show again a perfect dynamic retrieval of the causal direct
shear-wave related coseismic field. Comparing the red-dashed retrieved signal of
Figure 5.6a, with the circular source configuration of Figure 5.2a, the amplitudes of
the acausal spurious events are now slightly less, and also the source-converted field
contribution has a smaller amplitude. Figures 5.7a and b show the retrieved response
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Figure 5.7: Interferometric retrieval of 2D SH-TE source-receiver combinations using seismic
boundary sources only for a line source acquisition geometry. Blue: reference, red-dashed: re-
trieved. (a) Interferometric retrieval of GE2,s4 (xB ,xA, t) +Gv2,s1 (xA,xB ,−t) (b) Interferomet-
ric retrieval of GH1,s4 (xB ,xA, t) +Gv2,s2 (xA,xB ,−t).
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Figure 5.8: Interferometric retrieval of 2D SH-TE source-receiver combinations using EM bound-
ary sources only for a line source acquisition geometry. Blue: reference, red-dashed: retrieved. (a)
Interferometric retrieval of GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t) (b) Interferometric retrieval
of GH1,s4 (xB ,xA, t) +Gv2,s2 (xA,xB ,−t).

using only seismic boundary sources. For both scenarios, we still observe perfect
retrieval of the direct shear wave coseismic event in the causal part without visible
amplitude losses. There is no visible contribution of the seismic boundary sources to
the source-converted EM field. Figures 5.8a and b present the retrieved events using
only EM boundary sources. In Figure 5.8a, we can indeed observe that these sources
do not contribute to the retrieval of the S-wave velocity related direct coseismic fields,
but they do contribute to the instantaneously source-converted electric field at t=0
and to the spurious events at negative times greater than t=-0.25 s. Figure 5.8b
emphasizes again that the EM boundary sources do not visibly contribute to the
source-converted EM field for the magnetic field recovery, and that this field should
be almost completely recovered by the volume sources accounting for the losses in
the medium.
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5.4.2 2D SH-TE interferometry using layer-code data

The interferometric examples thus far, have been obtained with an independent
numerical script, using the explicit analytical homogeneous space Green’s function
expressions. From these experiments, we can conclude that also for line source con-
figurations (i.e. having no perfect illumination from all sides), using the far-field ap-
proximation, we can still correctly retrieve dynamic seismo-EM 2D SH-TE responses,
using seismic boundary sources only. This paves the way to carry out interferometric
experiments with our layer-code ESSEMOD, where line source configurations can be
easily modeled, exploiting the lateral invariance of the layered-Earth medium. We
can model the required 2D SH-TE data using one source and an array of receivers
with the length of the required line source arrays, for example 1025 receivers with 4
m receiver-spacing, corresponding to the 1025 sources with 4 m source-spacing of the
homogeneous space line source experiments presented earlier. We apply the same
Hanning source taper as determined previously. We will focus on interferometric
retrieval of GE2,s4(xB ,xA, t) +Gv2,s1(xA,xB ,−t).

Homogeneous Scenario

First, we will model a homogeneous scenario, where we choose all layers to be the
same medium, with identical medium parameters as used for the earlier described
interferometric experiments. The results are presented in Figures 5.9 and 5.10. We
can observe a perfect match for the direct shear wave-related coseismic causal event
in both phase and amplitude. To obtain a correct match in absolute amplitudes,
between the reference response in blue and the interferometrically retrieved result
in red-dashed, we have multiplied the reference response with a single scaling factor
of 6.2 · 103. We have determined this scaling factor by dividing the amplitude of the
retrieved response at t = 0.185 s with the amplitude of the reference response at that
time. This time corresponds more or less with the direct shear wave-related causal
coseismic field arrival time. Comparing these homogeneous results with the results
earlier obtained using the explicit homogeneous space Green’s functions (Figure 5.6,
5.7, and 5.8), we can observe some differences. First of all, the absolute amplitudes of
the results using the homogeneous space Green’s function solutions are in the order
of 10−12, whereas the results using the seismo-EM layer-code data are in the order
of 10−6. In other words, the layer-code data yields larger amplitudes. Furthermore,
the amplitude of the source-converted retrieved EM field using the layer-code data
(red-dashed line around t = 0 s), is much larger compared to the result using the
homogeneous space solutions. The relative amplitude of the direct shear wave with
respect to the source converted field seems a bit weaker for the layer-code data
than for the homogeneous space solutions. Nevertheless, despite these differences,
there are also a lot of similarities. The two spurious events in the acausal part are
located at the same time in both experiments, the direct shear wave related causal
coseismic field is perfectly retrieved in both amplitude and phase, and the acausal
direct coseismic field has a polarity reversed retrieved field. The retrieved response
using the layer-code data has a larger amplitude than the reference response. This
is remarkable, and indicates, together with the fact that the absolute amplitudes of
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the results using the layer-code data are about 6 orders of magnitude larger than the
results using the homogeneous space solutions, that probably either some of the 2D
cross-correlated source-receiver combinations are modeled not perfectly correctly in
terms of amplitude in our seismo-EM layer-code, or that there is a simple constant
scaling factor lacking somewhere else in the 2D part of our layer-code program
(e.g. a factor in the spatial Fourier transformation). Nevertheless, the dynamic
match of the interferometric result, and the great similarities between the results of
both experiments, provide confidence that we can trust the interferometric results
obtained using our seismo-EM layer-code (except for a single scaling factor), allowing
to carry out interferometric experiments in layered-Earth scenarios.
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Figure 5.9: Interferometric retrieval of the 2D SH-TE GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t)
source-receiver Green’s function combination in a homogeneous medium, using all boundary
sources, for a line source acquisition geometry. The data being cross-correlated are modeled with
our seismo-EM layer-code. Blue: reference, red-dashed: retrieved.

Looking at Figures 5.10a and 5.10b, we can again observe that the seismic sources
are sufficient to retrieve the direct shear wave-related causal coseismic field, and
that the EM sources contribute to the retrieval of the source-converted EM field.
Furthermore, for the retrieval of the acausal direct coseismic field and the source
converted EM field, we require the volume sources.

Scenario with an interface at 800 m

We now explore interferometric seismo-electromagnetic Green’s function retrieval in
the same model as used for the homogeneous experiment, but we add an interface at
800 m (so 600 m below receiver xB , ssee Figure 5.1). There is a contrast in porosity
(0.4 above and 0.2 below), static permeability (1.3 ·10−12 m2 above and 1.6 ·10−12
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(b)
Figure 5.10: Interferometric retrieval of the 2D SH-TE GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t)
source-receiver Green’s function combination in a homogeneous medium, for a line source acquisi-
tion geometry. The data being cross-correlated are modeled with our seismo-EM layer-code. Blue:
reference, red-dashed: retrieved. (a) Retrieved Green’s function using seismic boundary sources
only. (b) Retrieved Green’s function using EM boundary sources only.

m2 below), and electrolyte concentration (1 ·10−4 mol/L above and 1 ·10−2 mol/L
below). We have zero-padded our data in the time domain, to avoid periodicity
effects. The expected arrivals are a source converted EM field, a direct shear wave-
related coseismic field around t = 0.1896 s, a reflected shear-wave coseismic field
around t = 0.76 s, and a shear wave-related interface response field, arriving at
one-way seismic time from the source level to the interface, t = 0.47 s.

The results are presented in Figures 5.11 and 5.12. We can observe a perfect
match for all causal events (except the source-converted EM field) in both phase
and amplitude. To obtain a correct match in absolute amplitudes, between the
reference response in blue and the interferometrically retrieved result in red-dashed,
we have again multiplied the reference response with a single scaling factor of 6.2 ·
103. We have determined this scaling factor again by dividing the amplitude of the
retrieved direct shear wave-related causal coseismic field with the amplitude of the
reference response for that event, around t = 0.185 s. We can observe that this
single scaling factor is sufficient to let the amplitudes of all causal events (except
for the source-converted EM field) match perfectly. In other words, it only requires
a constant, time-independent scaling factor. We can observe a spurious event in
the acausal times, at the location of the acausal interface response field. In Figure
5.12a, we observe that all causal events (except for the source-converted EM field)
can be correctly retrieved without visible amplitude losses, using seismic boundary
sources only. Also the polarity reversed direct coseismic acausal field is generated
solely by seismic boundary sources. Figure 5.12b emphasizes that the EM sources
do not contribute to the retrieval of these events. The seismic sources contribute
to half of the amplitude of the acausal spurious event (Figure 5.12a). The EM
sources contribute to the other half of the amplitude of this acausal spurious event,
as well as to the large amplitude of the source-converted retrieved field (Figure
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Figure 5.11: Interferometric retrieval of the 2D SH-TE GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t)
source-receiver Green’s function combination in a medium with a single interface at 800 m, using
all boundary sources, for a line source acquisition geometry in a homogeneous medium. The data
being cross-correlated are modeled with our seismo-EM layer-code. Blue: reference, red-dashed:
retrieved.
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Figure 5.12: Interferometric retrieval of the 2D SH-TE GE2,s4 (xB ,xA, t) + Gv2,s1 (xA,xB ,−t)
source-receiver Green’s function combination in a medium with a single interface at 800 m, for
a line source acquisition geometry. The data that is being cross-correlated is modeled with our
seismo-EM layer-code. Blue: reference, red-dashed: retrieved. (a) Retrieved Green’s function
using seismic boundary sources only. (b) Retrieved Green’s function using EM boundary sources
only.

5.12b). The observations are again very similar to the observations made for the
homogeneous model. We can conclude that we can correctly retrieve all 2D SH-
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TE causal seismic-related direct and reflected coseismic fields, as well as interface
response fields, by cross-correlation interferometry, using seismic boundary sources
only. For the retrieval of the acausal responses, as well as the source-converted EM
field, we require volume sources that account for the losses in the medium.

5.5 Discussion

We have carried out correlation-based interferometric experiments for the 2D SH-TE
propagation mode. Experiments for the 2D P-SV-TM propagation mode, as well as
for the full 3D system where both modes are combined, will most likely lead to similar
conclusions. The observed differences in absolute amplitudes are probably related
to the integration constants of the Fourier transform. Besides interferometry by
cross-correlation, we can apply interferometry by multi-dimensional deconvolution
(MDD), using one-way decomposed fields (Wapenaar et al., 2011; Van der Neut
et al., 2011). The multi-component approach to decomposition requires recordings
of different field quantities (e.g. White (1965)). The seismo-EM scenario is described
by many different field quantities. It is practically unfavorable, or maybe even
impossible, that recordings of a wide-variety of these field quantities are required to
decompose seismo-EM field data into one-way fields. Therefore, in Section 6.1, we
will present an effective way of decomposing seismo-EM fields using recordings at
multiple depth levels, thereby reducing the amount of field quantities necessary for
the decomposition. The decomposed fields can then be used for e.g. interferometry
by MDD.

5.6 Conclusions

We have presented an effective way of deriving explicit homogeneous space Green’s
function expressions for the 2D SH-TE propagation mode, using power-flux normal-
ized eigenvectors. The theory for interferometric retrieval of 2D SH-TE seismo-EM
Green’s functions was also presented. Using both a circular source configuration
and a line source configuration, we have shown that we can correctly retrieve the
dynamic seismo-EM 2D SH-TE response in a homogeneous medium, using seismic
boundary sources only. This was demonstrated for two source-receiver combinations:
an electric field and a magnetic field due to a seismic source, using explicit homogen-
eous space Green’s function solutions. The volume source contributions account for
the losses in the acausal part of the retrieved response as well as the instantaneous
source-converted EM field. Using seismo-EM layer-code data, we have shown that
we can also correctly retrieve the direct shear wave-related causal coseismic field in
a homogeneous medium, in both phase and amplitude. To obtain a perfect match
in absolute amplitudes, a single linear scaling factor was required. Finally, the in-
terferometric experiments in a model containing a single interface at 800 m depth
prove that we can correctly retrieve all 2D SH-TE causal seismic-related direct and
reflected coseismic fields, as well as interface response fields, by cross-correlation
interferometry, using seismic boundary sources only.



Chapter 6

Methods and applications of
seismo-electromagnetic phenomena

6.1 Unified Multi-Depth-Level field decompositioni

6.1.1 Abstract

Wavefield decomposition forms an important ingredient of various geophysical meth-
ods. An example of wavefield decomposition is the decomposition into up- and down-
going wavefields and simultaneous decomposition into different wave-/field-types.
The multi-component field decomposition scheme makes use of the recordings of dif-
ferent field quantities (such as particle velocity and pressure). In practice, different
recordings can be obscured by different sensor characteristics, requiring calibration
with an unknown calibration factor. Not all field quantities required for multi-
component field decomposition might be available, or they can suffer from different
noise levels. The multi-depth-level decomposition approach makes use of field quant-
ities recorded at multiple depth levels, e.g. two horizontal boreholes closely separated
from each other, a combination of a single receiver array combined with free-surface
boundary conditions or acquisition geometries with a high-density of vertical bore-
holes. We theoretically describe the multi-depth-level decomposition approach in a
unified form, showing that it can be applied to different kinds of fields in dissipative,
inhomogeneous, anisotropic media: e.g. acoustic, electromagnetic, elastodynamic,
poroelastic and seismo-electromagnetic fields. We express the one-way fields at one
depth level in terms of the observed fields at multiple depth levels, using extrapola-
tion operators that are dependent on the medium parameters between the two depth
levels. Lateral invariance at the depth level of decomposition allows us to carry out
the multi-depth-level decomposition in the horizontal wavenumber-frequency do-
main. We illustrate the multi-depth-level decomposition scheme using two synthetic
elastodynamic examples. The first example uses particle velocity recordings at two

iThis section has been published as a journal paper in Geophysical Prospecting
doi:10.1111/1365-2478.12290 (Grobbe et al., 2016b). Note that minor changes have been intro-
duced to make the text consistent with the other chapters of this thesis.
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depth levels, the second example combines recordings at one depth level with the
Dirichlet free-surface boundary condition of zero-traction. Comparison with multi-
component decomposed fields shows a perfect match in both amplitude and phase for
both cases. The multi-depth-level decomposition scheme is fully customizable to the
desired acquisition geometry. The decomposition problem is in principle an inverse
problem. Notches may occur at certain frequencies, causing the multi-depth-level
composition matrix to become uninvertible, requiring additional notch filters. We
can add multi-depth-level free-surface boundary conditions as extra equations to the
multi-component composition matrix, thereby overdetermining this inverse problem.
The combined multi-component-multi-depth-level decomposition on a land data set
clearly shows improvements in the decomposition results, compared to the perform-
ance of the multi-component decomposition scheme.

6.1.2 Introduction

Separation of recorded fields into downgoing and upgoing constituents is a technique
that is used in many geophysical methods. Decomposed fields form the basis for
various surface-related multiple elimination and deghosting procedures (e.g. Frijlink
et al. (2011), Majdanski et al. (2011)) and for depth imaging using primary and
multiple reflections (e.g. Muijs et al. (2007)). Novel methodologies that make use
of horizontal downhole sensors, such as the virtual source method (e.g. Bakulin &
Calvert (2006), Mehta et al. (2007b), Alexandrov et al. (2012)) and multidimen-
sional deconvolution (Wapenaar et al., 2011), rely on decomposing the seismic field
at depth.
The principle of decomposition can be applied to all kinds of fields. However, ap-
plying field decomposition to a real data set is often quite challenging. The multi-
component (MC) field decomposition scheme makes use of differently recorded field
components, for example both pressure (p) and vertical component particle velocity
(v3) data for a purely acoustic case (e.g. White (1965), Day et al. (2013)).
In practice, recordings can be obscured by different sensor characteristics, requir-
ing calibration with an unknown calibration factor e.g. Schalkwijk et al. (2003),
Day et al. (2013). A way to find the calibration factor for land data with buried
receivers is described by Alexandrov et al. (2014). They make use of auto- and
cross-correlations between the geophone and hydrophone data (with muted direct
arrivals) and find the calibration factor by minimizing the auto-correlation energy
in a time window placed around an estimated two-way travel time. In addition to
the problem of an unknown calibration factor, the noise levels might be different for
different sensor types, resulting in different data quality for different fields (Burn-
stad et al., 2012). This can lead to unsatisfactory decomposed data. Furthermore,
not all field quantities required for MC field decomposition might be available. Es-
pecially, when dealing with more complex field phenomena (e.g. elastodynamic or
seismo-electromagnetic fields), the MC field decomposition requires measuring many
different field quantities. Let us focus for example on the elastodynamic fields. The-
ory tells us that for decomposing non-normal incidence elastodynamic fields into
upgoing and downgoing compressional waves (P-waves) and shear waves (S-waves),
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it is required to record, at a certain desired decomposition receiver level, all three
components of the particle velocity fields and all three components of the traction
tensor (Wapenaar et al., 1990). Depending on the setting and respective boundary
conditions, certain components might vanish. For example, considering a typical
land acquisition geometry with receivers placed at the Earth’s surface, it is well
known that the traction tensor is zero due to the Dirichlet boundary condition. As
a result, MC decomposition can be carried out with 3-component geophones only
(e.g. Dankbaar (1985), Nakata et al. (2014)). At the seafloor (for example in marine
Ocean-Bottom-Cable or Ocean-Bottom-Node acquisition), only the shear tractions
vanish, such that 4-component sensors are required (e.g. Schalkwijk et al. (2003),
Amundsen & Reitan (1995)). When considering an acquisitional setting with re-
ceivers placed in a horizontal or vertical borehole in the subsurface, all traction
and particle velocity components are non-zero. For this case, to carry out successful
elastodynamic MC field decomposition, registration of all six components is required.
However, shear tractions are in general not recorded, leading to an underdetermined
problem (Van der Neut et al., 2010).

In recent years, an acquisition design appears to emerge in the industry that
makes use of horizontal downhole sensor arrays (e.g. Bakulin et al. (2012b), Bakulin
et al. (2012a) Berron et al. (2012), Cotton & Forgues (2012)). Inspired by marine
acquisition designs that utilize recordings at multiple depth levels for successful
field decomposition (e.g. Moldoveanu et al. (2007), Van Borselen et al. (2013)), we
develop a multi-depth-level (MDL) field decomposition scheme for land acquisition.
This MDL approach uses configurations with field quantity information on multiple
depth levels, for example two horizontal boreholes that are closely separated from
each other. Alternatively, a combination of a single receiver array just below a free
surface combined with the natural (Dirichlet) free-surface boundary conditions could
be considered as well.

The MDL decomposition scheme might provide solutions to practical issues of
the MC decomposition scheme, since the MDL decomposition scheme requires only
specific field quantities to be recorded, and fields with different receiver signatures
or noise levels can be treated separately. In modern seismic acquisition, it can be
highly relevant to have a configuration of two horizontal boreholes that are closely
separated from each other. Effectively, a similar acquisition geometry, with record-
ings at multiple depth levels, can be obtained by having a high density of vertical
boreholes in a certain area (e.g. Bakulin et al. (2012b), Bakulin et al. (2012a)). In
the fields of microseismic monitoring and passive interferometry, downhole sensors
are often being deployed to reduce the noise level (e.g. Maxwell et al. (2010), Al-
magro Vidal et al. (2011) and Xu et al. (2012)). Applying the MDL decomposition
scheme using a single horizontal sensor array in combination with the free-surface
Dirichlet boundary condition, might be useful for these scenarios.

Since the principle of decomposition is not limited to acoustic fields only, we
will present a unified MDL decomposition scheme that can be applied to all kinds
of fields. In the appendices, we explicitly show how to apply the MDL theory
to acoustic, elastodynamic, poroelastic, electromagnetic and seismo-electromagnetic
phenomena. Special attention is paid to possible issues concerning the measurability
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of certain fields in 2D borehole configurations.
We will illustrate the MDL decomposition first with two synthetic examples for

a flux-normalized elastodynamic case. However, the MDL decomposition problem
cannot always be solved. Depending on the acquisition design and the wave ve-
locities, the problem can be ill-posed at certain (notch) frequencies. In practice,
these problems can be circumvented by designing appropriate notch filters (see e.g.
Appendix A for the acoustic case). An alternative route is to integrate MC and
MDL decomposition, leading to a joint inverse problem that can be solved in the
least-squares sense, thereby combining the best of both worlds. We refer to this
approach as MC-MDL decomposition. We demonstrate with a field data example
that MC-MDL decomposition can lead to better decomposition results than pure
MC decomposition, since additional data are utilized.

6.1.3 Unified theory of multi-depth-level field decomposition

Our starting point is the following matrix-vector representation of the two-way wave
equation in the space-frequency domain (denoted by the hat), for a right-handed
Cartesian coordinate system where the positive x3-direction is pointing downwards
(depth),

∂q̂(x, ω)

∂x3
= Â(x, ω)q̂(x, ω). (6.1)

Equation (6.1) expresses the vertical variations of the field quantities in q̂(x, ω), in
terms of the medium parameters and the horizontal partial differentiation operators
in matrix Â(x, ω) acting on these field quantities (e.g. Woodhouse (1974), Kennett
(1983), Ursin (1983), Wapenaar & Grimbergen (1996)). The field quantities in q̂
are continuous across horizontal interfaces. Considering the fact that in the Earth
the major variations occur in the depth direction, it makes sense to take the vertical
axis as the direction of preference and separate the vertical variations of the field
from the horizontal variations of the same field. However, the coordinate system can
also be rotated and alternative expressions can be derived in for example curvilinear
coordinates (Frijlink & Wapenaar, 2010). In equation (6.1), x is the space-coordinate
vector (x1, x2, x3) and ω represents radial frequency (we will omit these terms now
for notational convenience). Throughout this section, boldface symbols indicate

vector or tensor quantities. We use f̂(xi, ω) =
´∞
−∞ f(xi, t)e

−jωtdt as the definition
for the forward temporal Fourier transform. Throughout this section we consider
positive ω only.

The general two-way wave equation holds for different kinds of fields in dis-
sipative, inhomogeneous, anisotropic media, e.g. acoustic fields, electromagnetic
wave and/or diffusive fields, elastodynamic fields, poroelastic fields and seismo-
electromagnetic fields (Wapenaar et al., 2008b). We can carry out the MDL decom-
position in the space-frequency domain, making use of pseudo-differential operators
as illustrated for an acoustic case in e.g Grimbergen et al. (1998). However, already
for the elastodynamic system this process is both mathematically and numerically
quite tedious. In this section, we will assume that the medium is laterally invari-
ant at the depth level of decomposition. This assumption allows us to carry out
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the decomposition in the horizontal wavenumber-frequency domain (denoted by the
tilde sign). We use the following definition for the forward spatial Fourier transform:

f̃(k1, k2, x3, ω) =
´∞
−∞
´∞
−∞ f̂(xi, ω)ejk1x1ejk2x2dx1dx2. The following general rela-

tion then holds between the recorded two-way fields and the decomposed one-way
fields (

q̃1

q̃2

)
=

(
L̃+

1 L̃−1
L̃+

2 L̃−2

)(
p̃+

p̃−

)
, (6.2)

where the + sign indicates downgoing fields (in the positive x3-direction) and the
− sign indicates upgoing fields. For wavefields, p̃+ represents the one-way, decom-
posed downgoing field and p̃− the one-way, decomposed upgoing field at a certain
level of decomposition. For diffusive fields, p̃+ is the field that decays in the positive
x3-direction and p̃− is the field that decays in the negative x3-direction. Further-
more, L̃±1 and L̃±2 represent submatrices of the composition matrix L̃ that depend
on the horizontal wavenumber and the medium properties at the receiver level (e.g.
Ursin (1983), Wapenaar et al. (2008b)). Decomposed fields are not uniquely defined.
The fields can be normalized with respect to different quantities. Depending on our
wishes, we can retrieve the up- and downgoing constituents of a particular field
component (e.g. pressure or particle velocity normalization). Most of the mar-
ine wavefield separation/deghosting schemes make use of either pressure or vertical
component particle velocity normalization (e.g. Beasley et al. (2013b), Day et al.
(2013)). However, in principle any normalization of the composition matrix will
work. Throughout this section, we will consider a normalization based on power,
referred to as power flux-normalized composition matrices. One of the advantages
of using power flux-normalization is that favourable reciprocity relations hold for
the flux-normalized one-way fields (Frasier (1970), Wapenaar (1998)). In equation
(6.2), q̃1 represents a subvector of the two-way field quantity vector q̃, being com-
posed from one-way fields by applying the L̃±1 submatrices to the one-way fields p̃±.
Similarly, q̃2 is the subvector being composed from one-way fields by applying the
L̃±2 submatrices to the one-way fields p̃±. Note that for both L̃ and q̃ the subscripts
1 and 2 do not represent spatial directions.

In the multi-component (MC) field decomposition schemes, the downgoing and
upgoing one-way fields can be obtained by left-multiplying the two-way field vector
with the inverse of the composition matrix,(

p̃+

p̃−

)
=

(
L̃+

1 L̃−1
L̃+

2 L̃−2

)−1(
q̃1

q̃2

)
. (6.3)

Here, additional regularization can be applied or, alternatively, equation (6.3) can
be solved for by a sparsity promoting algorithm (Van der Neut & Herrmann, 2012).
When dealing with an power flux-normalized composition matrix, we can express
the inverse of the composition matrix in terms of the transposes of the composition
submatrices as follows

L̃−1(kH) =

(
−L̃−2 (−kH)t L̃−1 (−kH)t,

L̃+
2 (−kH)t −L̃+

1 (−kH)t

)
. (6.4)
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Here, kH = (k1, k2) is the horizontal wavenumber vector. For notational conveni-
ence, the x3 and ω arguments are omitted here. Equation (6.4) generally holds, i.e.
for both anisotropic and isotropic media. In case of an isotropic medium, we can
organize the field quantities in q̃ in such a way that we obtain an anti-blockdiagonal
symmetry in the system matrix Ã. In this case, the following properties hold for
the composition submatrices L̃−1 = L̃+

1 and L̃−2 = −L̃+
2 . As can be observed in

equation (6.3), in order to be able to perform the up/down decomposition correctly,
all two-way field components of q̃ must have been recorded.

In the multi-depth-level (MDL) decomposition scheme, we express the one-way
fields at one level in terms of the observed fields at multiple levels. In this way,
we require only a certain selection of field quantities to be measured on multiple
depth levels for carrying out successful up/down decomposition. With closely we
here mean a distance over which it is reasonable to assume a homogeneous domain
between the two depth levels, or where smooth velocity variations can occur and
the propagators need to be correctly estimated from the data. It is important that
no reflectors are present between the two depth levels. Let us first illustrate the
principle of MDL decomposition in terms of the governing matrix-vector equations.
We start by defining equation (6.2) in terms of multiple depth levels. In this section,
we will develop MDL decomposition for the minimum requirement of two different
depth levels, x3;A and x3;B , where x3;A < x3;B . However, when information at
more depth levels is available, this can help stabilizing the decomposition procedure
(Van der Neut et al., 2013). We start expressing the decomposed downgoing and
upgoing power flux-normalized fields at one depth level in terms of the observed
fields at multiple levels. We do so by extrapolating one-way fields from one depth
level to another,

p̃+
B = W̃+(x3;B , x3;A)p̃+

A, (6.5)

p̃−B = F̃−(x3;B , x3;A)p̃−A. (6.6)

When using these extrapolation operators, it is implicitly assumed that the medium
between the two depth levels is source-free and homogeneous. For all kinds of fields,
the inverse extrapolation operator F̃−(x3;B , x3;A) in equation (6.6) is closely related

to the forward propagator W̃+(x3;B , x3;A) as:

F̃−(x3;B , x3;A) = (W̃+(x3;B , x3;A))−1. (6.7)

When we are dealing with purely propagating waves in a lossless medium, the fol-
lowing relation holds

F̃−(x3;B , x3;A) = (W̃+(x3;B , x3;A))∗. (6.8)

Here, the asterix (*) denotes complex conjugation. The forward extrapolation oper-
ator W̃+(x3;B , x3;A), extrapolates the downgoing (+) fields downwards, from depth

level x3;A to depth level x3;B . The inverse extrapolation operator F̃−(x3;B , x3;A),
extrapolates the upgoing fields (-) downwards from depth level x3;A to depth level

x3;B . The downgoing and upgoing forward extrapolation operators W̃+(x3;B , x3;A)
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and W̃−(x3;A, x3;B) are defined as

W̃+(x3;B , x3;A) = W̃−(x3;A, x3;B) = exp(−jH̃|x3;B − x3;A|), (6.9)

where −jH̃ represents an n-by-n diagonal matrix containing the eigenvalues for each
of the n-wavetypes present in the system under consideration (for example n = 3
for the elastodynamic case, where the P -wave and S-wave are the wavetypes under
consideration). Note that the above equation (6.9) is a symbolic notation (due to
the use of a matrix in the argument of the exponent). Effectively, the exponent
of each of the individual elements in diagonal matrix H̃ is taken. Since we are
dealing with laterally invariant media, H̃ is a purely diagonal matrix with elements
that correspond to the vertical wavenumbers k3;w and that can be defined for each
wavetype w as

k3;w =

√
ω2

ĉ2w
− κ2. (6.10)

Here, the radial wavenumber is defined as κ =
√
k2

1 + k2
2, ω denotes the radial

frequency and ĉw represents the complex, frequency-dependent velocity for each field
type (Wapenaar & Berkhout, 1989) (i.e. in its general form it includes attenuation).
Note that it is crucial to define the sign of the field extrapolation operators in such
a way that evanescent and diffusive fields decay. The sign of the square root in
equation (6.10) should be therefore chosen accordingly.

Let us look for example at electromagnetic fields. Similar to Amundsen et al.
(2006), we can express the complex electromagnetic velocity as

ĉ =
1√
µε̄
, (6.11)

where

ε̄ = ε+
σ

jω
, (6.12)

is the complex electric permittivity, consisting of the electric permittivity ε, the
electric conductivity σ and the magnetic permeability µ, which is often taken equal
to the magnetic permeability in free space, µ0 = 4π · 10−7. Examining equations
(6.11) and (6.12) more closely, we can distinguish three different scenarios depending
on the medium parameters and the frequencies under consideration. When the
term σ

jω � ε, which is effectively the case for very low frequencies (and/or high

conductivity values), we can neglect the first (electric permittivity) term and the
expression for the complex velocity becomes purely imaginary. We refer to this case
as purely diffusive fields (Figure 6.1(a)). We can observe that the k3-values in this
case start at a -45 degree angle in the complex plane (opposite real and imaginary
parts) for κ = 0 and that both the real and imaginary parts of k3 decrease with
increasing κ-values. Going towards higher frequencies (and/or lower conductivity
values), the first term becomes more important and we are dealing with a ‘mixed’
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Figure 6.1: Real and imaginary parts of k3 in the complex plane. (a) Purely diffusive fields. Only
the sign of the imaginary part of k3 needs to be constrained. (b) Wave propagation with losses.
Only the sign of the imaginary part of k3 needs to be constrained. (c) Wave propagation without
losses. In this case the sign of both the real and imaginary parts of k3 need to be constrained.

scenario; this scenario occurs for wave propagation in a medium with losses (Figure
6.1(b)). In this case the k3-value for κ = 0 is almost purely real, and moves with
increasing values for κ via combinations of non-zero real and imaginary parts of k3

towards an almost purely imaginary k3-value. Finally, when we reach a frequency
bandwidth that results in σ

jω � ε, we can neglect the second term and the expression
for the complex velocity becomes purely real in the limit. This scenario occurs for
wave propagation in lossless media (Figure 6.1(c)). Here, k3 is in the limiting case
purely real for κ = 0 and remains purely real with increasing values for κ until

κ2 = ω2

ĉ2w
, which can be described as

k3;w =

√
ω2

ĉ2w
− κ2, for κ2 ≤ ω2

ĉ2w
. (6.13)

When κ then further increases,

k3;w = −j
√
κ2 − ω2

ĉ2w
, for κ2 >

ω2

ĉ2w
, (6.14)

holds, resulting in purely imaginary k3-values in the limiting case. So in this scenario
we can basically distinguish these two separate cases (for our definition of the Fourier
transform).

What can be clearly observed in Figure 6.1 is that for the first and second case
(purely diffusive fields and wave propagation with losses) it is sufficient to constrain
the sign of the square root such that the imaginary part of k3 < 0. For the third
case, since we have obtained equations (6.13) and (6.14) by taking lim

σ↓0
, k3 actually

still has a very small imaginary part for propagating waves. Hence, by constraining
the sign of the imaginary part (equation (6.14)), the sign of the real part (equation
(6.13)) is still automatically determined as well.
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If σ is exactly equal to zero (and ω exactly real-valued), an ambiguous situation
is created for the third case of wave propagation in lossless media. To overcome
this ambiguity, we then need to constrain the signs of both the real and imaginary
parts of k3. Note that in this case equation (6.13) results in a purely real-valued
k3, and that equation (6.14) yields a purely imaginary k3. Since we want the real
part of the arguments of the exponents in equation (6.9) to be negative (in order
to avoid that the exponents blow up), we take the negative sign of the square root
in equation (6.14). We choose the correct sign for the real part (equation (6.13))
based on the fact that we desire that the phase decreases with increasing distance,
whereas the amplitude stays constant. One can physically link these choices to the
fact that for propagating waves in lossless media, the amplitude remains constant (no
losses), whereas the phase is decreasing with increasing distance. On the contrary, for
evanescent fields in lossless media, the phase remains constant whereas the amplitude
is decreasing with increasing distance. Please note that the first case of purely
diffusive fields as described above, is in principle also a limiting case, where the lim

ε↓0
is taken, resulting in an almost purely imaginary complex velocity. However, for
this case, regardless of whether we consider the limiting case or whether we take ε
exactly equal to zero, constraining the sign of the imaginary part is always sufficient
to constrain the problem, as can be observed in figure 6.1(a).

Imagine now a field situation where we have obtained only q̃2 field quantity
recordings, at different depth levels. According to equation (6.2) we can express the
two-way field quantities of q̃2 recorded at depth level x3;A in terms of the one-way
up- and downgoing fields as(

L̃+
2 L̃−2

)( p̃+
A

p̃−A

)
= q̃2;A, (6.15)

and for the recordings at depth level x3;B(
L̃+

2 L̃−2
)( p̃+

B

p̃−B

)
= q̃2;B . (6.16)

Note that the subscripts A and B have been omitted in the composition submatrices,
since we have already assumed that the medium is homogeneous between those two
depth levels. If recordings at more than two depth levels are available, this procedure
can be extended for all possible depth levels. By using equations (6.5) and (6.6),
we can express the one-way fields for depth level x3;B also in terms of the one-way
fields for level x3;A,

(
L̃+

2 W̃+ L̃−2 F̃−
)( p̃+

A

p̃−A

)
= q̃2;B . (6.17)

Combining equations (6.15) and (6.17) in terms of the one-way fields at depth level
x3;A, we obtain(

L̃+
2 L̃−2

L̃+
2 W̃+ L̃−2 F̃−

)(
p̃+
A

p̃−A

)
=

(
q̃2;A

q̃2;B

)
, (6.18)
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or more general

S̃

(
p̃+
A

p̃−A

)
=

(
q̃2;A

q̃2;B

)
. (6.19)

Here, S̃ represents the MDL composition matrix. When we assume that the me-
dium properties between the levels are known (for example from borehole data), the
extrapolators can be computed. Alternatively, one might be interested to estimate
the extrapolation operators directly from the data. One way of doing this is via
direct-field interferometry. For a discussion on interferometric propagator estima-
tion, the reader is referred to Van der Neut et al. (2013). We have now obtained an
expression relating the one-way fields at depth level x3;A via the MDL composition

matrix S̃ to the recorded two-way field quantities of the subvector q̃2 at both depth
levels x3;A and x3;B . By multiplying both the left- and right-hand sides of equation

(6.19) with the inverse of the MDL composition matrix S̃−1, the one-way up- and
downgoing flux-normalized fields (for each wavetype (e.g. P-waves and S-waves in
the elastodynamic case)) at depth level x3;A can be obtained(

p̃+
A

p̃−A

)
=

(
L̃+

2 L̃−2
L̃+

2 W̃+ L̃−2 F̃−

)−1(
q̃2;A

q̃2;B

)
= S̃−1

(
q̃2;A

q̃2;B

)
.

(6.20)

In other words, the two-way field system under consideration has now been decom-
posed (for depth level x3;A), using only q̃2 field recordings at two depth levels. We

can invert the modified composition matrix S̃ numerically at each frequency and
horizontal wavenumber individually. Additional regularization can be applied to
solve the inverse problem. Note that in this decomposition procedure we treat the
different vertical arrays simultaneously. The benefit of this procedure is that instead
of decomposing only for the plane wave, normal incidence (wavenumber k1 = 0)
events, we decompose for all the angles of incidence. A drawback of this procedure
is that since we treat everything in the horizontal wavenumber-frequency domain,
our horizontal spatial sampling must fulfill the Nyquist sampling criterion. Be aware
that the inversion of the composition matrix in equation (6.20) might not always be
stable, due to the occurrence of notches at certain frequencies. The matrix inversion
is unstable, when the determinant of the composition matrix is equal to zero. In
other words, for certain frequency-wavenumber combinations and certain velocities
and depths, the field extrapolation operators can obtain a value that makes the rows
of matrix S̃ no longer linearly independent (Van der Neut et al., 2013). Looking at
the definitions of the field extrapolation operators (equations (6.9) and (6.10)), it
can be seen that the notch frequencies are highly dependent on the vertical distance
between the receiver arrays (Day et al., 2013). The notch problem is further ad-
dressed in Appendix A, using the acoustic representation of the field data example
of this section. Bear in mind that similar notch problems can occur for all wave and
diffusion phenomena captured in this unified MDL scheme.
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In addition to the notch problems, alternative instabilities can occur for example
at the critical angles in the wavenumber-frequency spectrum. This is because at the
critical angle, k3 = 0 and elements of the composition matrix L̃ can contain divisions
by k3. The MDL decomposition of equation (6.20) will be illustrated by Synthetic
Elastodynamic Example 1.

Depending on the data acquisition geometry under consideration, one might
prefer to express the one-way fields at depth level x3;A in terms of the one-way fields
at depth level x3;B . This can be beneficial for example in passive geometries with
the earthquake or microseismic sources below the lowest receiver level x3;B . Slightly
different to the basic case described above in equations (6.5) and (6.6), we then
express the up- and downgoing fields at x3;A in terms of the up- and downgoing
fields at x3;B as

p̃+
A = F̃+(x3;A, x3;B)p̃+

B , (6.21)

p̃−A = W̃−(x3;A, x3;B)p̃−B , (6.22)

where

F̃+(x3;A, x3;B) = (W̃−(x3;A, x3;B))−1. (6.23)

Again, in the case of purely propagating waves,

F̃+(x3;A, x3;B) = (W̃−(x3;A, x3;B))∗, (6.24)

holds. The MDL decomposition procedure can be further modified according to
one’s preferences. For example, combinations of the field subvectors q̃1 and q̃2 and
the corresponding submatrices of the composition matrix L̃, might be useful. For
example, when a certain depth level, in our case x3;A since x3;A < x3;B , coincides
with the free surface of the Earth (or for example the ocean-bottom), the boundary
conditions at that level might imply that certain field quantities in either q̃1 or q̃2

are equal to zero.
Let us consider this specific case, where we move depth level x3;A upwards such

that it coincides with the Earth’s free surface and where we assume that the (pass-
ive) source is located in the subsurface. We now assume that the field quantity
subvector q̃1 is zero at the free surface due to the Dirichlet boundary condition.
Hence, we do not explicitly need physical receivers at depth level x3;A. We combine
this constraint with the physical recordings of field quantity subvector q̃2 at depth
level x3;B . Analogous to equation (6.20), we can then obtain the one-way up- and
downgoing fields at depth level x3;B , by solving(

p̃+
B

p̃−B

)
=

(
L̃+

1 F̃+ L̃−1 W̃−

L̃+
2 L̃−2

)−1(
q̃1;A = 0

q̃2;B

)
= S̃−1

(
q̃1;A = 0

q̃2;B

)
.

(6.25)

Alternatively, one could derive explicit expressions for p̃+
B and p̃−B using analytical
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expressions for the inverse of the composition matrix, yielding

p̃+
B =

[
L̃+

2 − L̃−2

{
L̃−1 W̃−

}−1

L̃+
1 F̃+

]−1

q̃2;B , (6.26)

p̃−B =

[
L̃−2 − L̃+

2

{
L̃+

1 F̃+
}−1

L̃−1 W̃−
]−1

q̃2;B . (6.27)

The system of the wave/field phenomenon under consideration has now been
decomposed (for depth level x3;B), using only the field quantity recordings of field
subvector q̃2 measured at depth level x3;B , combined with the fact that the field
quantities of the subvector q̃1 at level x3;A are zero. Note that if x3;A=x3;B , equa-
tion (6.25) reduces to the MC decomposition scheme of equation (6.3). The applic-
ation of equation (6.25) will be illustrated with Synthetic Elastodynamic Example
2. Interesting to mention is the similarity between equation (6.25) and deghosting
procedures (e.g. Fokkema & Van den Berg (1993), Frijlink et al. (2011)). However,
in equation (6.25), the deghosting procedure is expressed more generally, holding for
all kinds of fields.

We can summarize the MDL decomposition theory using a general notation,
distinguishing between decomposition at the upper depth level and decomposition at
the lower depth level (hereby still assuming that x3;A < x3;B). For the decomposition
at the upper level, we would like to express the one-way fields at level x3;B in terms
of the one-way fields at x3;A(

L̃+
j L̃−j

L̃+
k W̃+ L̃−k F̃−

)(
p̃+
A

p̃−A

)
=

(
q̃j;A
q̃k;B

)
, (6.28)

where j and k can take up the values 1 or 2 and j is not necessarily equal to k.
Similarly, for the decomposition at the lower level, we express the one-way fields at
level x3;A in terms of the one-way fields at x3;B(

L̃+
j F̃+ L̃−j W̃−

L̃+
k L̃−k

)(
p̃+
B

p̃−B

)
=

(
q̃j;A
q̃k;B

)
. (6.29)

Equations (6.28) and (6.29) form the basis of the MDL field decomposition scheme.
Theoretically, one can even set-up the decomposition problem in a similar way as
equations (6.28) and (6.29), but then trying to obtain one-way fields at both depth
levels, e.g. p̃+

B and p̃−A.
When looking at equations (6.28) and (6.29), we can observe that in order to suc-

cessfully carry out MDL up/down field decomposition, we either need field quantity
recordings at at least two depth levels x3;A and x3;B , or recordings at one depth
level x3;B combined with boundary conditions at depth level x3;A. One can imagine
that instead of measuring the full field quantity subvectors q̃1 or q̃2 and their cor-
responding submatrices L̃1,2, one wishes to select only a few, easily measurable or
well-constrained field quantities of q̃1 and q̃2 to solve the decomposition problem.
By selecting the desired rows of the composition submatrices corresponding with the
selected field quantities, the MDL decomposition can be carried out. Be aware that
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this can only be done if the selected rows that compose the matrix S̃ have sufficient
rank. In other words, the matrix to be inverted should not be rank-deficient. If the
matrix is full-rank, the custom character of the adapted composition matrix S̃ will
not cause any additional problems since the decomposition matrix is obtained via
numerical inversion. The customly defined combinations of measured or boundary
condition-defined field quantities and selected composition submatrix rows are not
explicitly defined in the general scheme of equations (6.28) and (6.29). Here, we
only want to point out the possibility of these kinds of combinations.

Please remain aware that the equations above are defined in the horizontal
wavenumber-frequency domain, implicitly assuming lateral invariance at the depth
level of decomposition. A similar scheme can be developed in the space-frequency
domain for inhomogeneous media, using pseudo-differential operators (e.g. Fish-
man et al. (1987), Grimbergen et al. (1998), Wapenaar et al. (2001), Wapenaar
et al. (2008b)). However, already for the elastodynamic case, the space-frequency
derivations become quite a tedious exercise, both analytically and numerically.

Now that we have obtained a unified MDL decomposition scheme, we can apply
the scheme to different wave phenomena. The Appendices A-E show in more detail
how to apply the scheme when dealing with acoustic, elastodynamic, poroelastic,
electromagnetic and seismo-electromagnetic fields. Throughout this section, we will
consider geometries where horizontal boreholes are located in the subsurface. The
MDL decomposition scheme is then applied to obtain up/down field separation. Be-
sides up/down decomposition, the scheme also decomposes the field quantities into
its different wave modes. One can theoretically imagine that when considering sur-
face measurements at several horizontal spatial locations and rotating the geometry
of the MDL scheme, one might also apply the MDL decomposition principles to field
left/right decomposition.

We will start illustrating the principle of the MDL decomposition scheme further
with two synthetic flux-normalized elastodynamic examples. In this case, q̃1 = −τ̃ 3

and q̃2 = ṽ and the flux-normalized composition matrix L̃ is chosen according
to Wapenaar et al. (2008b). Here, τ̃ 3 represents the traction vector acting at a
horizontal plane and ṽ denotes the particle velocity vector. Note that for these two
synthetic examples no approximations regarding amplitudes have been made. After
the synthetic elastodynamic examples, we will present an acoustic representation
of a field land data example where the MC and MDL decomposition schemes are
combined.

Before we look in closer detail to the examples, let us make some final, but crucial
remarks regarding borehole measurements. First of all, one can imagine that if the
receivers are placed in a horizontal borehole, this results in a ‘line’ measurement.
Let us for example consider a horizontal borehole in the x1-direction. When we
then consider propagation/diffusion in a 3D medium, out-of-plane waves/fields are
still taken into account, and hence variations of a certain field quantity in the x2-
direction are still considered (e.g. Bleistein et al. (1987), Bleistein (1987)). This is
called the 2.5D situation. In contrast, we can consider a purely 2D situation where
effectively line-sources in e.g. the x2-direction are considered. In this situation, the
field quantity components have no variations with respect to the x2-direction. The
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resulting data are referred to as 2D (e.g. Bleistein et al. (1987), Bleistein (1987)).
In the 2D scenario, natural mode separation can occur for e.g. elastodynamic (P-
SV and SH mode), electromagnetic (TE and TM mode) or seismo-electromagnetic
(SH-TE and P-SV-TM mode) phenomena.

In addition, the type of borehole also plays a crucial role. For example, if the
borehole has a concrete casing and is filled with a fluid, this has consequences for
the receivers and types of fields that can be recorded. For example, theoretically
no shear waves will be measurable inside the borehole if it is fluid-filled. Certain
field quantities might then be zero at for example depth level x3;B , whereas the
field quantity is theoretically non-zero and measurable (in absence of the borehole).
However, in practice, shear waves are routinely measured in for example VSP and
logging using sensors in a fluid-filled borehole (e.g. Cheng & Toksöz (1981)). In this
section, we will develop everything from an ideal theoretical point-of-view. Keep in
mind that in reality, the situation is far more complex. Fluid-filled boreholes modify
the responses as for example formulated by Peng et al. (2003). This does not neces-
sarily mean that the MDL decomposition scheme does not work. On the contrary,
having for example shear wave measurements available in fluid-filled boreholes might
help the MDL decomposition scheme (it does need additional calibration).

In case of electromagnetic fields, metallic borehole casings can cause problems as
well. In the following synthetic examples, we assume that the receivers are buried
on a horizontal line in the subsurface, but not placed in a fluid-filled borehole. In
the field data example presented afterwards, the receivers are similarly placed in the
subsurface. We will use an acoustic scheme for decomposing this data set.

6.1.4 Synthetic Elastodynamic Example 1: Configuration with
Two Receiver Depth Levels

To illustrate the MDL decomposition approach, we will apply the method to a
synthetic elastodynamic example, using equation (6.20). We make use of a 2D elast-
odynamic finite-difference model (Thorbecke & Draganov, 2011), where receivers are
being placed at two depth levels x3;A = 1000 m and x3;B = 1010 m, below a strongly
reflecting salt body (see Figure 6.2). We consider the plane spanned by x1 and x3.
Hence, the fields in the x2-direction in the field vector of Appendix C decouple. The
P-wave and S-wave velocities for the layer in which the receivers are located are 2500
m/s and 1800 m/s, respectively. The density of the layer is 1500 kg/m3. The source
is a monopole pressure source with a peak frequency of 20 Hz. We use the more
stable, alternative 2D versions of the power flux-normalized composition matrix L̃,
as presented in Wapenaar et al. (2008b). Figure 6.3 represents the original shot
records as recorded at depth level x3;A, with the two-way physical field quantities
τ13, τ33, v1 and v3. Due to the complexity of the model, up- and downgoing events
are interfering. Furthermore, the presence of the strongly reflecting salt body results
in strong differences in amplitudes between down- and upgoing events.

We now carry out both MC and MDL field decomposition, resulting in the de-
composed fields of Figure 6.4, where the MC decomposed one-way fields are shown in
black and the MDL decomposed fields in red (dashed). There is an excellent match
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Figure 6.2: Geometry of Synthetic Elastodynamic Example 1. (a) The colors represent P-wave
velocities in m/s. (b) The colors represent S-wave velocities in m/s. (c) The colors represent
density values in kg/m3.

in both amplitude and phase. In other words, the MDL decomposition scheme man-
ages to retrieve the correct one-way fields at x3;A using only particle velocities at x3;A

and x3;B . There is a difference for the first upgoing P-wave event (Figure 6.4(c)).
The MC decomposition scheme shows a (black) event where this event is absent for
the MDL decomposition scheme. It turns out that this is leakage from the strong
downgoing P-wave energy. This is most likely caused by small numerical errors in
the computed pressure fields (in combination with the large relative strength of this
downgoing event), which had to be interpolated in time and space to align with the
particle velocity fields, because a staggered grid has been used in the finite differ-
ence code (Virieux, 1986). The MDL decomposition scheme does not suffer from
this problem, since it only uses particle velocity data.

For the MDL decomposition, we have carried out a damped least-squares inver-
sion of the customized composition matrix S̃, using a Tikhonov regularization with
damping factor of 1 · 10−4 of the maximum amplitude of S̃S̃†. Here the dagger-sign
denotes the complex conjugate transpose.

It is very nice to see the effect of the strongly reflecting salt body. One can observe
in the downgoing fields (for both P- and S-waves) three pronounced downgoing
events, corresponding to the direct downgoing field and the internal multiples within
the salt layer. Also when looking at the two-way input data, one can clearly see
that the upgoing fields are obscured due to the presence of the salt body. However,
after decomposition, the upgoing fields are clearly distinguishable and similar results
are obtained for the MC decomposition and the MDL decomposition methods. In
addition, the MC and MDL decomposition schemes are handling the interference
between up- and downgoing fields equally well.

Note that for a 2.5D scenario, also τ̃23 and ṽ2 should be measured for MC de-
composition, and only ṽ2 should be measured additionally for MDL decomposition.
Similar results are then to be expected.
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Figure 6.3: Original shot records registered at depth level x3;A = 1000 m. (a) Two-way data
−τ13 (b) Two-way data −τ33 (c) Two-way data v1 (d) Two-way data v3
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Figure 6.4: Comparison between the MC decomposition results in black and the MDL decomposi-
tion results in red (dashed).(a) Downgoing P-waves (b) Downgoing S-waves (c) Upgoing P-waves
(d) Upgoing S-waves
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6.1.5 Synthetic Elastodynamic Example 2: Configuration with
a Single Horizontal Sensor Array below a Free Surface

As mentioned above, the MDL decomposition procedure is fully customizable ac-
cording to one’s preferences. Here we will consider a special case, moving depth
level x3;A upwards such that it coincides with the Earth’s free surface. Effectively
we have an acquisition geometry consisting of a single horizontal sensor array com-
bined with a free-surface constraint. We will use equation (6.25) as the governing
equation of the MDL decomposition scheme matching the acquisition geometry un-
der consideration. Again, a 2D finite-difference elastodynamic model will be used,
with receivers placed only at x3;B , at 5 m depth. We first consider a homogeneous
medium. The P-wave velocity of the medium is 2000 m/s, the S-wave velocity 1400
m/s and the density is 1000 kg/m3. A 45 degrees (anti-clockwise) oriented dipole
force source with a peak frequency of 20 Hz, buried at 2000 m depth, is considered
as the (passive) source. The only upgoing fields to be expected, are one upgoing
P-wave and one upgoing SV-wave. At the free surface, P-SV field conversion can
occur (Aki & Richards, 1980). Therefore, we expect two downgoing P-wave events
(P-P and SV-P) and two downgoing SV-wave events (P-SV and SV-SV).

The originally recorded two-way fields are presented in Figure 6.5. Due to the
45 degrees anti-clockwise diagonally oriented force source, the recorded fields reveal
asymmetric amplitudes along the hyperbolas. We again compare the results of the
MC decomposition and the MDL decomposition approach in Figure 6.6. The black
lines represent the one-way fields at depth level x3;B obtained via MC decomposition.
In this case, both stress and particle velocity measurements were required. The
MDL decomposition results are displayed in red (dashed). These up/down and
wave mode decomposed fields were obtained using only particle velocity recordings
at x3;B combined with the free-surface Dirichlet boundary condition of zero traction.
One can clearly observe that the MDL approach, using now only particle velocity
data at one depth level, again retrieves the correct one-way fields. There is a perfect
match in both phase and amplitude. In addition, the decomposition results show
indeed only the expected one-way fields, i.e. one upgoing P-wave and one upgoing
SV-wave, two downgoing P-wave events and two downgoing SV-wave events. Again,
by measuring additionally τ̃23 and ṽ2 for MC decomposition and only ṽ2 as extra
quantity for MDL decomposition, similar results are to be expected for the 2.5D
scenario.

The downgoing field can be interpreted as the elastodynamic free-surface ghost
of the upgoing field. The proposed algorithm can therefore be used for elastody-
namic deghosting. This can be very useful for passive data processing, for instance
for passive seismic interferometry (Draganov et al., 2006; Xu et al., 2012). In addi-
tion, decomposition has been used in combination with multi-dimensional deconvo-
lution of passive recordings at the surface (Nakata et al., 2014). Using MDL decom-
position, similar multi-dimensional deconvolution procedures can be carried out on
passive data with receivers located in the subsurface (which might lead to a better
signal-to-noise ratio of the recordings) (Almagro Vidal et al., 2014; Almagro Vidal
& Wapenaar, 2014).
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Figure 6.5: Original shot records for a homogeneous model registered at depth level x3;B = 5 m.
(a) Two-way data −τ13 (b) Two-way data −τ33 (c) Two-way data v1 (d) Two-way data v3
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Figure 6.6: Comparison between the MC decomposition results in black and the MDL decompos-
ition results in red (dashed) for the homogeneous model.(a) Downgoing P-waves (b) Downgoing
S-waves (c) Upgoing P-waves (d) Upgoing S-waves
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Figure 6.7: Geometry of Synthetic Elastodynamic Example 2 with velocity variations of -20% to
+20% with respect to the homogeneous velocities. (a) The colors represent P-wave velocities in
m/s. (b) The colors represent S-wave velocities in m/s.

So far, we have only considered scenarios where the correct velocity has been used
at the decomposition level as well as for extrapolating the fields between the different
depth levels. We will now investigate the sensitivity of the MDL decomposition
scheme to errors in the velocity model. We therefore consider the same acquisition
geometry as described for the homogeneous example above, but now with a velocity
model that experiences a horizontal gradient from −20% velocity error to +20%
velocity error with respect to the homogeneous P- and S-wave velocities (see Figure
6.7). The resulting two-way data is presented in Figure 6.8. We apply MC and
MDL decomposition using the homogeneous velocities. In this way, the effects of
using erroneous velocities on both the MC and MDL decomposition scheme are
investigated.

The results of both decomposition schemes are displayed in Figure 6.9. In black,
the results of MC decomposition using an erroneous velocity at the depth level of
decomposition are displayed. In red, dashed, the results are displayed of applying
MDL decomposition with erroneous velocities at the depth level of decomposition
as well as for the extrapolation operators. We can observe that the downgoing
P- and S- fields are correctly resolved and equally-well in terms of both phase and
amplitude. The upgoing P- and S- fields show leakage of downgoing energy (indicated
by the arrows), but again the amount of leakage is comparable for the MC and MDL
decomposition schemes. However, please note that it is crucial to have properly dealt
with the notch problems (due to e.g. notch filters), or that the distance over which
extrapolation takes place is small enough to avoid notches that overlap with the
data bandwidth. If this is namely not the case, the undesired notch effects on the
decomposition results will become more pronounced when using incorrect velocity
models.

Since we are here effectively considering a laterally varying medium, which is a
realistic scenario for (near-surface) land data, we know that theoretically the applied
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Figure 6.8: Original shot records registered at depth level x3;B = 5 m, for the velocity model with
velocity variations of -20% to +20% with respect to the homogeneous velocities. (a) Two-way data
−τ13 (b) Two-way data −τ33 (c) Two-way data v1 (d) Two-way data v3
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Figure 6.9: Comparison between the MC decomposition results in black and the MDL decom-
position results in red (dashed) for the velocity model with velocity variations of -20% to +20%
with respect to the homogeneous velocities. (a) Downgoing P-waves (b) Downgoing S-waves (c)
Upgoing P-waves (d) Upgoing S-waves
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horizontal wavenumber-frequency decomposition approach is not valid. We predict
that the leakage (for both decomposition schemes) can be avoided when carrying
out the field decomposition in the space-frequency domain (e.g. Grimbergen et al.
(1998)).

For the MDL decomposition, we have carried out a damped least-squares inver-
sion of the customized composition matrix S̃, using a Tikhonov regularization with
damping factor of 1 · 10−4 of the maximum amplitude of S̃S̃†.

6.1.6 MC-MDL Acoustic Decomposition applied to a Field
Land Data Set

Theory of the MC-MDL Decomposition

Following the MC decomposition procedure, up- and downgoing one-way fields can
be obtained by inverting the forward problem of equation (6.2). In the MDL de-
composition scheme, the decomposition problem is treated slightly different. We
have seen that using field extrapolation operators, we can express the one-way fields
at one depth level in terms of the observed fields at multiple levels. The synthetic
elastodynamic examples have shown that the MDL up/down decomposition obtains
correct one-way fields in both amplitude and phase. However, as discussed in Ap-
pendix A for acoustic fields, the MDL inversion can suffer from notches at certain
frequencies. The MC decomposition scheme does not suffer from these notches, but
might suffer from different sensor characteristics (Schalkwijk et al., 2003) or the fact
that differently recorded field quantities might not be of similar quality due to dif-
ferent noise levels (Burnstad et al., 2012). The success of the MDL decomposition
scheme on synthetic data combined with the discussion of the notch problems, has
led to the idea of combining the MC decomposition scheme with the MDL decom-
position schemes (MC-MDL), thereby combining the best of both worlds. We will
investigate this idea by applying it to an acoustic representation of a real land data
set recorded in Annerveen, the Netherlands. Here, the aim is to perform up/down
field separation at depth level x3;B .

We start by looking at the decomposition problem as an inverse problem. Using
equation (6.2) as the basic equation, we try to improve the decomposition with an
additional inversion constraint: the free-surface condition from the MDL decomposi-
tion scheme, where depth level x3;A coincides with the free surface. This corresponds
to the Annerveen acquisition geometry, where x3;A = 0 m and x3;B = 50 m. This
leads to the following overdetermined inverse problem: q̃1;B

q̃2;B

0

 =

 L̃+
1;B L̃−1;B

L̃+
2;B L̃−2;B

L̃+
1;AF̃+ L̃−1;AW̃−

( p̃+
B

p̃−B

)
. (6.30)

For our field data example, we will consider scalar versions of equation (6.2), referred
to as the MC decomposition problem, and equation (6.30), referred to as the MC-
MDL decomposition problem. Here, q̃1 = p̃, the acoustic pressure field, and q̃2 = ṽ3,
the vertical component of the particle velocity (see also Appendix A for an extensive
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discussion on acoustic MDL field decomposition). The flux-normalized scalars L̃±1
and L̃±2 , as well as the scalar field extrapolation operators W̃− and F̃+, are taken
as defined in Wapenaar (1998). For clarity, the subscripts A and B have been
added in equation (6.30). However, as discussed earlier, we assume that the medium
between depth levels x3;A and x3;B is homogeneous. Although the distance between
x3;A and x3;B is only 50 m, and taking into account the near-surface geology of
this specific part of the Netherlands, this seems a valid assumption. Due to this
assumption we can omit the subscripts of the composition submatrices. As can be
observed, the added row in equation (6.30) overdetermines the inverse problem, but
does not require additionally recorded fields. The added equation makes use of the
Dirichlet free-surface boundary condition, that is, the pressure at the free surface
equals zero. We will now investigate whether this overdetermined inverse problem
improves the decomposition results of the Annerveen data set. The inverse problem
will be solved in the least-squares sense. Again, other approaches, like sparsity
promotion (Van der Neut & Herrmann, 2012), could also be considered. For both
the MC and MC-MDL decomposition, we have carried out a damped least-squares
inversion of the (customized) composition matrix S̃, using a Tikhonov regularization
with damping factor of 1e−4 of the maximum amplitude of S̃S̃†.

Up/Down Decomposition Results of the Annerveen data set

The data have been acquired on land in Annerveen, located in the North of the
Netherlands. One receiver array consisting of 96 receivers with a spacing of 11.75
m was buried at 50 m depth. In addition, 144 shots were fired at 4 m depth with a
source spacing of 11.75 m, alternating positions with respect to the receiver positions.
The receivers have registered both the pressure and vertical component particle
velocity fields.

Several initial data processing steps need to be performed, before we carry out the
field decomposition. We use standard filtering techniques to filter out the surface-
waves. In addition, all dead traces are removed. Since we are dealing with a pseudo-
2D data set, we correct the amplitudes by multiplying with the square root of time.
In addition, the data show quite a variety in amplitudes for different shots. There-
fore, we carry out a shot normalization, where we normalize the shotgathers with
the power of each shot. Since the MC-MDL decomposition scheme assumes depth
level x3;A to be coinciding with the free surface of the Earth, and depth level x3;B

corresponding to the receiver level at 50 m depth, one can directly notice that our
source in this configuration is located between the two depth levels. The theory does
not account for this configuration. This has to do with the fact that in the derivation
of the field extrapolation operators (Wapenaar, 1998), it is assumed that no sources
are located between the depth levels. However, by removing the incident fields from
the data set (i.e. direct field and direct source ghost), the MC-MDL decomposition
can still be applied to the remaining reflected data set. We remove these direct fields
by applying a time gate, which has been selected by visual inspection (Figure 6.10).

We carry out the visual inspection looking at an average over 10 adjacent common-
source gathers. The underlying assumption of this approach is that the Earth is lat-
erally invariant over the distance of these 10 shots, which is a reasonable assumption
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Figure 6.10: Average over 10 common-source gathers. The black line represents the start of the
Hanning taper, separating incident fields from reflected fields, and has a taper length of 10 samples
downwards. The black arrows indicate a strong upgoing reflection and its receiver side ghost. We
make use of our knowledge of polarity reversal between the two data sets to estimate the P-wave
velocity. (a) Pressure data p (b) Vertical component particle velocity data v3
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Figure 6.11: Two-way reflected data. The boxes represent selected windows for data calibration.
The black box is used for calibrating p̃ and ṽ3 in MC decomposition. The black and the dark green
box are used for up/down calibration in the MDL decomposition scheme. (a) Pressure data p (b)
Vertical component particle velocity data v3
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considering the area of interest.
The crucial parameter for our acoustic MC-MDL decomposition that needs to be

determined, is the P-wave velocity in the layer between depth levels x3;A and x3;B .
The P-wave velocity determines, via the vertical wavenumber k3, the forward and
inverse extrapolation operators W̃− and F̃+, respectively. Furthermore, the P-wave
velocity is an important constituent in the composition matrix L̃ (Wapenaar, 1998).
Here, we determine the P-wave velocity by looking at the arrival time difference
between a strong upgoing reflection and its receiver side ghost. To identify these
two events, we make use of the two individual pressure and particle velocity data sets,
and exploit our knowledge about polarity reversal of registered events. Effectively,
this means that p and v3 have opposite polarity for the first upgoing reflection, but
identical polarities for the later arriving receiver side ghost. This can be clearly
observed in Figure 6.10, indicated by the two arrows. Based on the zero-offset time
difference between those two events and knowing the propagation pathlength (2 x
50 = 100 m), the P-wave velocity can be estimated. Our best estimate of the P-wave
velocity is cP = 1639 m/s. Exact knowledge of the density is not required, since
it appears as a scalar that occurs in each element of the composition matrix. To
precondition the inversion, we scale composition matrix element L̃2 from Wapenaar
(1998) with the impedance (with the density taken as 1 kg/m3), resulting in a
better-posed inverse problem.

We start with the MC field decomposition, according to equation (6.2). Since
both the pressure and particle velocity data are involved simultaneously in the MC
decomposition schemes, we want to make sure that the sensors are correctly calib-
rated. Therefore, we focus on a clear event in the two-way recorded data set and
select a data window around this event. We select the top, black box, as indicated in
Figure 6.11. The event in this data window is a purely upgoing event. We therefore
want to minimize the downgoing energy in this data window. We use a least-squares
minimization subtraction algorithm to find the correct scaling factor between the
pressure and particle velocity data that minimizes the downgoing energy and scale
the data accordingly. We now carry out the MC decomposition, resulting in the
decomposed flux-normalized one-way fields shown in Figures 6.12(a) and 6.12(b).

Next, we focus on the MC-MDL decomposition. Looking at row 3 of equation
(6.30), we observe that the following relation must hold at the free surface

L̃+
1 F̃

+p̃+
B = −L̃−1 W̃−p̃−B . (6.31)

This equation also holds for an individual event. We enforce equation (6.31) to
hold by selecting a certain upgoing event and its corresponding downgoing event,
indicated with the two boxes in Figure 6.11. The term L̃+

1 p̃
+
B then corresponds

to the selected downgoing event in the two-way pressure data set, illustrated by
the dark green boxes in Figure 6.11, and L̃−1 p̃

−
B to the selected upgoing event in

the two-way pressure data set, indicated by the black boxes in Figure 6.11. We
will propagate the two-way data set, including the selected upgoing event, forwards
(in the propagation direction) to the free surface using W̃−. Secondly, we will
propagate the two-way data set, including the selected downgoing event, backwards
(against the propagation direction) to the free surface. Here, equation (6.31) must
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Figure 6.12: Comparison of the decomposition results of the Annerveen land data set (a) MC
decomposed upgoing fields (b) MC decomposed downgoing fields (c) MC-MDL decomposed upgoing
fields (d) MC-MDL decomposed downgoing fields.

hold. We now calibrate the two shifted two-way events at the free surface with
each other, using a least-squares minimization subtraction algorithm on the selected
event. A similar minimization problem has been defined for the vertical component
particle velocity field. Both minimization problems are solved for simultaneously.
We then apply this calibration factor to the composition matrix element containing
F̃+, corresponding to the downgoing fields (see equation (6.30)). The overall weight
of the extra equation in the inversion can be further tuned according to preference.

We are now all set to carry out the MC-MDL field decomposition. The decom-
position is carried out by least-squares in version of equation (6.30).

Figures 6.12(a) and 6.12(b) display the up- and downgoing MC decomposed
fields. The results of the overdetermined MC-MDL decomposition problem are
shown in Figures 6.12(c) and 6.12(d). What can be clearly observed is that by
adding the extra constraint to the inversion (the third row in the composition mat-
rix of equation (6.30)), we have improved the decomposition results, especially for
the downgoing fields (compare Figures 6.12(b) and 6.12(d)). In addition, it can be
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observed that the MC decomposition result has vertical ‘white’ bands at certain
offsets, corresponding to dead or noisy traces in the two-way recorded data. Our
MC-MDL decomposition result does not show these ‘white’ bands so strongly. This
is explainable due to the applied field extrapolation operators in the wavenumber-
frequency domain, implicitly yielding an interpolation between the traces.

6.1.7 Discussion

We have shown that the MDL decomposition scheme correctly decomposes different
kinds of fields. However, the MDL scheme might suffer from invertibility issues due
to the presence of notches. The notch problems have been investigated more closely
for an acoustic example (Appendix A). We have shown that notch filters can be
designed such that the MDL field decomposition for the acoustic case can still be
carried out using only pressure or particle velocity recordings. Similar notch filters
might be required for the other field phenomena treated in the appendices. The
notch filters remove certain (notch) frequencies from the data. Which frequencies
are missing depends on which data set is used for the decomposition. Since, for
the acoustic case, the pressure and vertical component particle velocity data are
complementary to each other, combining the two data sets will result again in full-
bandwidth decomposed fields.

A way to avoid suffering from notches in the frequency spectrum of the data is
to carry out deghosting in the space-time domain. Using single-component meas-
urements only (e.g. only pressure data), Beasley et al. (2013b,a) show that by using
the wave equation to simulate up- and down-going wavefield propagation between
the receiver level and the water surface, wavefield separation can be achieved. In
addition, Robertsson & Amundsen (2014) show that by using finite-difference mod-
eling to predict ghosts from upgoing waves (after removal of the direct wave) and by
instantaneously injecting these predicted ghosts, destructive interference takes place
with the recorded ghosts. In this way, successful deghosting in the space-time domain
is achieved, without suffering from notches. Furthermore, Amundsen & Robertsson
(2014) present a similar method for deghosting in the space-time domain that relies
on multi-component recordings. An important challenge of these space-time domain
decomposition approaches based on wave propagation is the fact that they require
unaliased data and hence fine receiver sampling (Beasley et al., 2013b). For 3D
deghosting this fine sampling is also required in the cross-line direction. In order
for the method to work, the water velocity, receiver depth and receiver positions
must be known. However, these are mainly challenges that also hold for most other
deghosting procedures (including our MDL decomposition scheme). If one would
like to apply a similar space-time domain approach to land data, the fact that the
velocities are required to be known might be problematic, and one should carefully
investigate the sensitivity of this method to the use of incorrect velocity models.
The same holds for the MDL decomposition scheme, for which we investigated the
velocity sensitivity in Synthetic Elastodynamic Example 2.

As we discussed in Appendix A, we can straightforwardly add the pressure and
vertical component particle velocity data (with some calibration factor) to obtain
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the full-frequency spectrum decomposed fields. Alternatively, one might for example
prefer to combine the two data sets in a very late stage. One possible way would be
via multidimensional deconvolution (Wapenaar et al., 2008b). The multidimensional
deconvolution method can be useful for e.g. surface- and sea bottom-related multiple
elimination (Wapenaar & Verschuur, 1996; Amundsen, 1999). Via multidimensional
deconvolution, that makes use of upgoing and downgoing (flux-normalized) fields,
the reflection response of the medium below a certain depth level can be obtained,
as if the medium above this depth level was homogeneous. The multidimensional
deconvolution procedure can be applied to different types of fields (Amundsen &
Holvik, 2004; Holvik & Amundsen, 2005; Van der Neut et al., 2010; Wapenaar et al.,
2008b). Instead of adding the pressure and vertical component particle velocity data
to obtain full-frequency spectrum decomposed fields, we can alternatively combine
these two data sets smoothly at the stage of multidimensional deconvolution, thereby
exploiting the benefit of treating the two data sets separately until a very late stage
of the imaging workflow. Despite the problem of the notches, one of the benefits
of applying MDL decomposition based on either pressure or vertical component
particle velocity data independently (for the acoustic case), is that sensor calibration
(as is needed for MC decomposition) is not required. Combining these two data
sets in the stage of multidimensional deconvolution also avoids the need of sensor
calibration, since the same sensor calibration functions act on both the up- and
downgoing fields. Therefore, they will occur at both the left- and right-hand side of
the multidimensional deconvolution equations to be solved and will drop out of the
equations automatically.

The MDL decomposition scheme makes use of recordings at multiple depth levels.
So far, we have shown land data examples, where recordings in a horizontal borehole
(or recordings using a high-density of vertical boreholes) on land were used. More
generally speaking, the MDL scheme needs recordings at multiple depth levels, ap-
plicable to any medium. One can think of combining for example marine (dual)
streamer data with Ocean-Bottom Node (OBN) data.

6.1.8 Conclusions

Applying field decomposition to a real data set is often quite challenging. The multi-
component (MC) field decomposition scheme makes use of differently recorded field
components, for example both pressure (p) and vertical component particle velocity
(v3) data in a purely acoustic case. In practice, recordings can be obscured by differ-
ent sensor characteristics, requiring calibration with an unknown calibration factor.
In addition, not all field quantities required for MC field decomposition might be
available and they may not always be of similar quality due to different noise levels.
Especially, when dealing with more complex field phenomena (e.g. elastodynamic or
seismo-electromagnetic fields), the MC field up/down decomposition requires meas-
uring many different field quantities.

We have presented a multi-depth-level (MDL) field decomposition scheme for
land acquisition that is inspired by marine acquisition designs that make use of
recordings at multiple depth levels for successful field decomposition. Our MDL



6.1. Unified Multi-Depth-Level field decomposition 273

decomposition approach makes use of configurations with field quantity information
on multiple depth levels, for example two horizontal boreholes that are closely sep-
arated from each other, or a combination of a single receiver array just below a free
surface, thereby exploiting the natural (Dirichlet) free-surface boundary conditions.

We have theoretically described the MDL decomposition approach in a unified
form, showing that in principle it can be applied to different kinds of fields in dissipat-
ive, inhomogeneous, anisotropic media, like for example acoustic fields, electromag-
netic fields, elastodynamic systems, poroelastic fields and seismo-electromagnetic
fields. The theoretical details of decomposing each of these types of fields, for later-
ally invariant media at the depth level of decomposition, are given in the Appendices
A-E.

Assuming that the medium is laterally invariant at the depth level of decompos-
ition allows us to carry out the MDL decomposition in the horizontal wavenumber-
frequency domain. We have illustrated the MDL decomposition scheme using two
synthetic elastodynamic modeling examples. We have first demonstrated that the
MDL decomposition scheme leads to correctly retrieved power flux-normalized one-
way fields, for both P- and S-waves, using only particle velocity recordings at two
depth levels. Secondly, we showed that when we have particle velocity recordings at
one depth level, in combination with the free-surface Dirichlet boundary condition
of zero-traction, we can correctly decompose the data into one-way fields as well.
Comparison with MC obtained decomposed fields shows a perfect match in both
amplitude and phase for both cases.

We have additionally tested the effects of using erroneous velocities on both the
MC and MDL decomposition schemes. For the considered example, we observed that
the downgoing P- and S- fields are correctly and equally-well resolved in terms of
both phase and amplitude. The upgoing P- and S- fields show leakage of downgoing
energy, but the amount of leakage is comparable for the MC and MDL decomposition
schemes. Please note that it is crucial to have properly dealt with possible notch
problems. Otherwise, the undesired notch effects on the decomposition results will
become more pronounced when using incorrect velocity models.

We have shown that the MDL decomposition scheme is fully customizable to the
acquisition geometry and measured field quantities under consideration. Care must
be taken that the customized composition matrix to be inverted is always of suffi-
cient rank. However, depending on the acquisition design and wave velocities under
consideration, notches may occur at certain frequencies, causing the customizable
MDL composition matrix to become uninvertible. Additional notch filters are then
required.

The success of the MDL decomposition scheme on the synthetic elastodynamic
data, combined with the problem of the notches, has led to the idea of combining
the MC and MDL decomposition schemes. The decomposition problem is in prin-
ciple an inverse problem. By adding an extra equation of the MDL decomposition
scheme to the MC composition matrix, we can overdetermine the inverse problem
and hereby better constrain the inversion. Since this equation makes use of the
Dirichlet free-surface boundary condition, where for the acoustic case the pressure
at the free surface equals zero, we do not require additionally recorded fields for
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this extra inversion constraint. Comparison of the results of this overdetermined
MC-MDL decomposition scheme with the results of the conventional MC field de-
composition, clearly showed improvements in the obtained one-way flux-normalized
fields, especially for the downgoing fields.
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Appendix

6.1.A Acoustic Field Decomposition, Notches and Filters

In this appendix we closely investigate the notch patterns for an acoustic case and
show that acoustic MDL decomposition can also be carried out using only pressure or
vertical component particle velocity data, in combination with notch filters. We use a
scalar version of equation (6.2) as the basic starting equation for field decomposition,
where we take q̃1 = p̃ and q̃2 = ṽ3. Here, p̃ corresponds to the acoustic pressure
field and ṽ3 denotes the vertical component particle velocity field. We will focus
on single horizontal downhole sensor arrays combined with a free-surface constraint,
which corresponds to the acquisition geometry of our present field data example.
Let us consider two scalar versions of equation (6.29), where level x3;A coincides
with the free surface and level x3;B is located at some arbitrary shallow depth level,
measuring either pressure or vertical component particle velocity fields. We locate
the source for example at the free surface. This leads to(

p̃+
B

p̃−B

)
=

(
L̃+

1 F̃
+ L̃−1 W̃

−

L̃+
1 L̃−1

)−1(
q̃1,A

q̃1,B

)
= S̃−1

p

(
q̃1,A

q̃1,B

)
,

(6.32)

where, as defined above, q̃1 = p̃ and to(
p̃+
B

p̃−B

)
=

(
L̃+

1 F̃
+ L̃−1 W̃

−

L̃+
2 L̃−2

)−1(
q̃1,A

q̃2,B

)
= S̃−1

v3

(
q̃1,A

q̃2,B

)
,

(6.33)

where q̃2 = ṽ3. As can be seen, the same downgoing and upgoing decomposed fields
at depth level x3;B can be obtained in two independent ways. We can either apply

the inverse of the MDL composition matrix, S̃−1
p , to a zero value of the pressure

field at level x3;A combined with a measured pressure field at x3;B (equation (6.32)),

or apply the inverse S̃−1
v3 to a zero pressure field at level x3;A combined with a

measured vertical particle velocity at level x3;B (equation (6.33)). Here, L̃1
±

and

L̃2
±

are again taken as defined in Wapenaar (1998). However, notches occuring at
certain notch frequencies, can cause the S̃ matrix to become uninvertible. In both our
elastodynamic synthetic examples, the distance was small enough, to avoid suffering
from notches when solving the inverse problem. However, for certain distances,
notches will occur at certain frequencies overlapping with the data band. In these
cases, additional notch filters are required in order to be able to invert the MDL
composition matrices correctly. In our field data example we combined MC with
MDL decomposition, such that we did not suffer from the notches. Alternatively,
the following approach could be taken.

From a mathematical point of view, we expect the notches to occur in those
situations where the determinant of the composition matrix to be inverted, S̃p;v3 ,
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becomes zero (or close to zero). By evaluating when the determinant becomes zero
(or close to zero), we can analytically obtain information about the specific notch
frequency patterns at which the matrix becomes uninvertible (or poorly invertible).
Starting from equation (6.32) we can determine the notch patterns for the pressure
data. We can see that in case of a zero-determinant, the following equation holds

L̃+
1 L̃
−
1

[
F̃+ − W̃−

]
= 0. (6.34)

Besides the zero-solutions for L̃±1 (or for L̃±2 in case of equation (6.33)), the term
in between the square brackets can be zero. Considering propagating waves, we can
apply equation (6.24) leading to

L̃+
1 L̃
−
1

[(
W̃−

)∗
− W̃−

]
= 0. (6.35)

Rewriting the term in the square brackets using Euler’s formula, yields the following
relation describing the notch patterns(

W̃−
)∗
− W̃− = −2j={W̃−}

= −2j sin (−k3|x3;B − x3;A|) = 0.
(6.36)

When we start from equation (6.33), we can obtain the notch patterns for the ver-
tical component particle velocity data in a similar way. We can use the following
properties L̃−1 = L̃+

1 and L̃−2 = −L̃+
2 . This leads to the following zero-determinant

condition

L̃±1 L̃
+
2

[
−F̃+ − W̃−

]
= 0. (6.37)

Considering propagating waves, we can again apply equation (6.24) leading to

L̃+,−
1 L̃+

2

[
−
(
W̃−

)∗
− W̃−

]
= 0. (6.38)

Rewriting the term in the square brackets using Euler’s formula, yields the following
relation describing the notch patterns

−
(
W̃−

)∗
− W̃− = −2<{W̃−}

= −2 cos (−k3|x3;B − x3;A|) = 0.
(6.39)

We can clearly observe that the notch patterns for the pressure and vertical com-
ponent particle velocity data follow a complementary trigonometric pattern (sine
or cosine) with identical argument. This complementary pattern has been widely
exploited for marine/OBC deghosting procedures (e.g. Day et al. (2013)).

As an alternative approach, as known from inverse theory, the condition num-
bers can provide us with information about the invertibility of a certain matrix.
The condition number represents the ratio between the largest and smallest singu-
lar value of the matrix. High condition numbers indicate that the matrix is poorly
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Figure 6.13: Wavenumber-frequency domain plots indicating the invertibility of the matrices S̃p
and S̃v3 . The plots show the inverse of the condition numbers for (a) the pressure field data (b)
the vertical component particle velocity data.

conditioned and therefore difficult to invert (Van der Neut et al. (2013)). Investigat-
ing the invertibility of S̃p,v3 by looking at 1/(Condition Number), clearly shows us
the locations of the notches for both the pressure and vertical component particle
velocity data (see Figures 6.13(a) and 6.13(b), respectively). Since we here display
the inverse of the condition numbers, low values correspond to the notch frequencies
for that specific type of data. One can see that the two types of data are indeed
complementary to each other. In other words, where a notch occurs for the pressure
data at a certain frequency-wavenumber combination, the particle velocity field can
provide the data and vice versa.

We have designed two filters that follow these notch patterns and are also comple-
mentary to each other. To exploit the fact that the filters should be complementary
to each other, we have used sin2(a) + cos2(a) = 1. In this way we try to find a
certain a that matches the notch patterns, such that a maximum contribution is
given to the maximum amplitudes in the inverse condition number plots (corres-
ponding to low condition numbers and good matrix invertibility) and a minimum
contribution is given to the minimum amplitudes in the inverse condition number
plots. Using the analytical solutions of equations (6.36) and (6.39), we have found
that a = k3(x3;B − x3;A) exactly follows the moveout patterns in the wavenumber-
frequency plots. The notch filters are therefore taken as wp = sin2(k3(x3;B − x3;A))
and wv3 = 1 − wp, for the pressure field and vertical component particle velocity
field data, respectively (see Figure 6.14).

Applying these filters to the MDL decomposition matrices S̃−1
p,v3 , avoids suffer-

ing from the notches in the MDL decomposition. In this way, the acoustic field
up/down decomposition can be carried out using either solely pressure recordings at
x3;B combined with a free-surface, zero-pressure constraint or solely vertical compon-
ent particle velocity recordings at x3;B combined with a free-surface, zero-pressure
constraint (equations (6.32) and (6.33), respectively). The MDL decomposition res-
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Figure 6.14: Designed notch filters to deal with the notch frequencies and hence overcoming the
invertibility issues of S̃p and S̃v3 . (a) Notch filter for the pressure field data. (b) Notch filter for
the vertical component particle velocity data.

ults obtained by using either solely pressure field data or solely vertical component
particle velocity data are presented in Figures 6.15 and 6.16, respectively.

Since we have applied specific notch filters to each of the two data sets, certain
frequencies are missing in the resulting decomposed data. Which frequencies are
missing depends on which data set is used for the decomposition. However, since
the pressure field data and particle velocity field data are complementary to each
other, combining them will result again in full-frequency spectrum decomposed fields.
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Figure 6.15: MDL decomposition results of the Annerveen data set using only pressure recordings
at x3;B combined with a free-surface, zero-pressure constraint and after applying the designed
notch filter. (a) MDL upgoing fields using only pressure field data and a free-surface zero-pressure
constraint. (b) MDL downgoing fields using only pressure field data and a free-surface zero-
pressure constraint.
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Figure 6.16: MDL decomposition results of the Annerveen data set using only vertical component
particle velocity data at x3;B combined with a free-surface, zero-pressure constraint and after
applying the designed notch filter. (a) MDL upgoing fields using only vertical component particle
velocity field data and a free-surface zero-pressure constraint. (b) MDL downgoing fields using
only vertical component particle velocity data and a free-surface zero-pressure constraint.

Combining these two data sets can be performed at various stages.
A straightforward way of combining pressure and particle velocity data is to add

them. This addition can be designed in any desired way. One can for example
normalize the two data sets by the norm of the energy of each data set, before
adding them up. The underlying assumption is then that the total energy in the
two data sets should be identical. The result of this addition is shown in Figure
6.17. Comparing Figures 6.15, 6.16 and 6.17 with the MC or MC-MDL results of
Figure 6.12, again shows that similar results can be obtained by using only pressure
or vertical component particle velocity data.

Despite the drawback of the notches, the introduced independency between the
pressure and vertical component particle velocity recordings has an additional be-
nefit. As is well-known for field data, differently recorded field quantities can have
different receiver signatures superimposed. Each receiver modifies the recorded field
via a specific transfer function when converting it to a voltage (El Allouche (2011)).
Since we can treat certain field quantities separately in the MDL decomposition
scheme (p̃ and ṽz for the acoustic case), a compensation for these sensor character-
istics is not required. The same transfer functions act on both the up- and downgoing
fields.

6.1.B Electromagnetic Field Decomposition

We start by capturing the electromagnetic problem in the format of equation (6.1).
When considering a medium that is invariant in two directions, it can be useful
to decouple the total 3D system into two independent electromagnetic propagation
modes: the transverse electric (TE) mode and the transverse magnetic (TM) mode,
resulting in mode field vectors (Nabighian, 1987). In 2D (when defining line sources
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Figure 6.17: Summed MDL decomposition results of the Annerveen data set using only pressure
recordings at x3;B or vertical component particle velocity recordings at x3;B (a) Upgoing fields,
by summing Figures 6.15(a) and 6.16(a). (b) Downgoing fields, by summing Figures 6.15(b) and
6.16(b).

in the crossline (x2−) direction), the mode separation occurs naturally. Since the
eigenvectors of the full electromagnetic system in laterally invariant media are well-
known (Slob, 2009), we here skip the theory of mode separation and directly describe
how to apply the MDL field decomposition scheme to arbitrary subsurface geomet-
ries, just like the acoustic and elastodynamic systems treated in this section.

Following Slob (2009), we might define the electromagnetic field vector q̃ in this
case as:

q̃ =

(
q̃1

q̃2

)
=


Ẽ1

Ẽ2

H̃2

−H̃1

 . (6.40)

The whole electromagnetic system is described if we know four out of the six
existing electromagnetic field quantities (Ẽi and H̃i). Recordings in a horizontal
borehole result in recordings on a ‘line’. Let us take the x1-direction as the direction
of our borehole, and refer to this direction as the inline direction. Not all components
of the electric field can be measured in a borehole. In the above described case, only
the inline electric field (Ẽ1) can be measured in the borehole. Using coils, we can
additionally measure

jωB̃3 = −ẼH = jωµ0µRH̃3, (6.41)

jωB̃α = jωµ0µRH̃α, (6.42)

where the subscript α can take the values 1 and 2. Here, B̃k (with k =1,2 or 3)
denotes the different field components of the averaged magnetic flux density. The
coils can directly measure the time derivative of these magnetic flux densities. In
addition, for Earth materials the relative magnetic permeability µR ≈ 1 and the
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magnetic permeability for vacuum µ0 is a known constant. The quantity ẼH denotes
the TE mode gradient of the electric field, which can be composed from the rotation
of the horizontal component electric field quantities Ẽ1 and Ẽ2 via,

ẼH = −jk1Ẽ2 + jk2Ẽ1. (6.43)

At depth, the TE mode gradient of the electric field is proportional to the vertical
component magnetic field H̃3. We see that we can measure at least four compon-
ents in an x1-oriented borehole, where the magnetic fields are directly measured
with coils and the electric fields (Ẽ1) with electrodes. In the space-frequency do-
main, a few electrodes in the x2-direction might be sufficient to measure the spatial
derivative in the x2-direction of the inline electric field in the x1-direction (space-
frequency version of equation (6.43)). Since we also know jωB̂3 (space-frequency
version of equation (6.41)), we can calculate the derivative of Ê2 in the x1-direction
using the space-frequency versions of equations (6.41) and (6.43). Together with the
space-frequency version of equation (6.42), we have access to the required four elec-
tromagnetic components of our field vector. However, in the horizontal wavenumber-
frequency domain, we encounter some practical issues. Suppose we can measure the
spatial derivative of Ê1 in the x2-direction. Transforming this field to the horizontal
wavenumber-frequency domain to determine jk2Ẽ1 requires much more spatial meas-
urements in the x2-direction. This is practically impossible since we typically only
have one borehole with limited borehole size in the x2-direction. Hence, for an x1-
oriented borehole, we can only transform to the k1-domain. Equation (6.43) shows
that we then need to measure Ẽ2, which is practically also impossible due to limited
borehole size in this direction.

The system can still be solved in the horizontal wavenumber-frequency domain,
in case of a purely 2D situation. In this case mode separation occurs naturally. The
TE-mode field vector then reads

q̃H =

(
q̃H1
q̃H2

)
=

(
Ẽ2

−H̃1

)
, (6.44)

the TM-mode field vector consists of

q̃V =

(
q̃V1
q̃V2

)
=

(
Ẽ1

H̃2

)
, (6.45)

Now, no gradients are required to obtain the necessary fields. When we have an
acquisition geometry where the sources are located directly above an x1-oriented
borehole, Ẽ2 and H̃1 are zero in the (x1, x3) plane, leaving us with only a TM -mode
electromagnetic system, which is the desired mode in electromagnetic acquisition for
hydrocarbon exploration.

When using these 2D field vectors for the MDL decomposition, it can be easily
seen that sufficient field quantities are measurable to carry out field decomposition.
The composition matrix L̃ belonging to these 2D field vectors can be easily derived
from the 3D version as presented in Slob (2009). The MDL theory in this section
was presented in the horizontal wavenumber-frequency domain. When rewriting the
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system in terms of operators, the same MDL scheme can be applied in the space-
frequency domain for laterally varying media at the level of decomposition. An
example of how to apply these spatial operators for the electromagnetic case can be
found in Van Stralen (1997).

From the presented MDL decomposition scheme we know that we either need
to measure q̃1 or q̃2. Depending on the acquisition geometry, we either look at
multiple depth level recordings or a single level recording combined with free-surface
constraints. None of the presented field quantities in either q̃H,V1 or q̃H,V2 have
a zero-value free-surface boundary constraint. Hence, in order to apply the MDL
decomposition scheme to electromagnetic phenomena, we need recordings at at least
two depth levels. Whether the borehole is fluid filled or whether the receivers are
buried in the subsurface does not make a difference for the electromagnetic case, since
all tangential field components are continuous at a horizontal fluid-solid interface
(Nabighian, 1987). However, the borehole wall should be non-metallic.

6.1.C Elastodynamic Field Decomposition

In the elastodynamic case, we organize the two-way field vector as follows

q̃ =

(
q̃1

q̃2

)
=


−τ̃13

−τ̃23

−τ̃33

ṽ1

ṽ2

ṽ3

 . (6.46)

Hence, q̃1 = −τ̃ 3 and q̃2 = ṽ. Since the eigenvectors for arbitrary, laterally invariant
subsurface geometries are well-known for the elastodynamic system, we will here not
consider the mode separation in independent SH and P-SV propagation modes. Our
synthetic elastodynamic examples were based on 2D modeling. In this case, all x2-
directed field quantities in q̃ and corresponding eigenvector elements in L̃ decouple
(and do not exist in our 2D example). In equation (6.46), we have organized the
field quantities in such a way that the field quantities that are likely to be measured
(the particle velocity in q̃2) are separated from the ones that are unlikely to be
measured (traction components acting on a horizontal plane in q̃1). Alternatively,
we can organize the field quantities in such a way that the system matrix Ã obtains
an anti-blockdiagonal symmetry for isotropic media (Ursin, 1983):

q̃ =

(
q̃1

q̃2

)
=


ṽ3

−τ̃13

−τ̃23

−τ̃33

ṽ1

ṽ2

 . (6.47)

Once the eigenvectors are known for a certain arrangement of the field vector (for
example the arrangement of equation (6.46)), one can easily reorganize the field
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quantities and eigenvector matrix elements using permutation matrices (Wapenaar
& Berkhout, 1989).

For laterally varying media at the level of decomposition, all expressions need
to be evaluated in the space-frequency domain, and the use of pseudo-differential
operators is required. An example of how to properly use these operators is given
in e.g. Grimbergen et al. (1998) or Wapenaar et al. (2008b), for a 3D acoustic
and electromagnetic case, with 2D numerical examples. Elastodynamically, the
derivation becomes already much more tedious (Wapenaar & Grimbergen, 1996).
In addition, coding everything numerically correct in the space-frequency domain
might introduce new challenges. In the space-frequency domain we need to be
able to determine the derivative in the x2-direction (when considering a borehole
in the x1-direction), just like for the electromagnetic case discussed previously. Also
for pseudo-differential operators, a two-point measurement might not be sufficient
to determine these derivatives. Therefore, multiple parallel boreholes (x1-oriented
boreholes parallel in the x2-direction) might be required. A high-density of vertical
boreholes (e.g. Bakulin et al. (2012b), Bakulin et al. (2012a)) might be of use here
as well. A practical solution might be to assume the medium is purely 2D and hence
has no variations in the x2-direction.

6.1.D Seismo-electromagnetic and Poroelastic Field Decom-
position

Seismoelectric phenomena deal with the coupling that occurs between seismic and
electromagnetic fields, when those fields propagate through a fluid-filled porous me-
dium. The governing equations as derived by Pride (1994), show that this complex
physical phenomenon can be described by Biot’s poroelasticity equations coupled
to Maxwell’s electromagnetic equations via a coupling coefficient L̂. The theory as
derived by Pride (1994) holds for fluid-saturated porous media, which we will focus
on in this appendix. Recently, the theory has been extended to partially saturated
porous media (Warden et al., 2013). Since the necessary changes for this extension
do not directly affect the eigenvectors of the seismo-electromagnetic system, the
theory as presented in this appendix can still be applied.

One can capture the seismo-electromagnetic phenomenon in the form of equation
(6.1) (Haartsen & Pride, 1997). When considering a medium that is invariant in
two directions, the total system can be separated into two independent propagation
modes SH-TE and P-SV-TM. In 2D, this mode separation occurs naturally. The full,
mode-coupled eigenvector sets of the seismo-electromagnetic system for any arbitrary
subsurface geometry are not known yet. We here focus on the known eigenvectors
for the mode separated seismo-electromagnetic system (Pride & Haartsen, 1996;
Haartsen & Pride, 1997; Grobbe & Slob, 2013). In the SH-TE mode, the horizontally
polarized shear waves are coupled to the transverse electric fields, whereas in the P-
SV-TM propagation mode the pressure waves (fast and slow) are coupled to the
transverse magnetic fields via the vertically polarized shear waves. Here, Pfast
describes the fast compressional wave (the P-wave in the elastodynamic system)
and Pslow describes the diffusive Biot slow compressional field (associated with an
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out-of-phase pore-fluid movement compared to the porous material (Kelder, 1998)).
Starting with equation (6.2), the field vector q̃ can be organized in different

ways. We can follow the order of the field quantities as presented by Haartsen &
Pride (1997). Alternatively, we here follow the system as used by Grobbe & Slob
(2013). The two main differences with the scheme of Haartsen & Pride (1997) are
that Grobbe & Slob (2013) have power flux-normalized their derived eigenvectors
and in addition have adjusted the system to correctly model situations where the
seismo-electromagnetic coupling coefficient is set to zero (i.e. when the poroelastic
system decouples from the electromagnetic system). In addition, Grobbe & Slob
(2013) make use of an opposite definition of the Fourier Transform (the same one as
is used in this section) compared to Haartsen & Pride (1997) and they use particle
velocity field vectors instead of displacement vectors.

We can treat the two modes separately in equations (6.1) and (6.2). The field
vectors for both the SH-TE (superscript H) and P-SV-TM (superscript V) modes
then read

q̃H =

(
q̃H1
q̃H2

)
=


ṽs,Hnorm
ẼHnorm
τ̃ b,Hnorm
−H̃H

norm

 (6.48)

and

q̃V =

(
q̃V1
q̃V2

)
=



ṽs3
w̃3

τ̃ b,Vnorm
H̃V
norm

τ̃ b33

−p̃f
ṽs,Vnorm
ẼVnorm


. (6.49)

The superscript (H or V) indicates that certain field quantities are mode-quantities.
This means that the two modes need to be combined in 3D to obtain the true physical
field quantities. We have normalized the field quantities of the SH-TE and P-SV-TM
mode with a factor −jκ, such that at the left-hand side and right-hand side of the
equation the same physical quantities are written. The different mode-quantities are
then defined as follows

ṽs,Hnorm =
k1

κ
ṽs2 −

k2

κ
ṽs1, (6.50)

τ̃ b,Hnorm =
k1

κ
τ̃ b23 −

k2

κ
τ̃ b13, (6.51)

ẼHnorm =
k1

κ
Ẽ2 −

k2

κ
Ẽ1, (6.52)

H̃H
norm =

k1

κ
H̃1 +

k2

κ
H̃2, (6.53)
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ṽs,Vnorm =
k1

κ
ṽs1 +

k2

κ
ṽs2, (6.54)

τ̃ b,Vnorm =
k1

κ
τ̃ b13 +

k2

κ
τ̃ b23, (6.55)

ẼVnorm =
k1

κ
Ẽ1 +

k2

κ
Ẽ2, (6.56)

H̃V
norm =

k1

κ
H̃2 −

k2

κ
H̃1. (6.57)

This normalization additionally aims to obtain a certain symmetry in the P-SV-TM
system matrix ÃV that helps to determine the power flux-normalized eigenvectors
of the composition matrix L̃V . In the above, ṽsi (with i = 1,2 or 3) denote the phase-
averaged solid particle velocity field components, w̃3 the vertical component of the
Biot filtration velocity, p̃f the phase-averaged fluid pressure, τ̃ bi3 the bulk-averaged
stress components in the x3-direction, and Ẽα and H̃α the horizontal components
of the electric field and magnetic field, respectively (with α= 1 or 2).

We know that for MC field decomposition all field quantities in q̃ must be meas-
ured. For seismo-electromagnetics, a large number of field quantities needs to be
measured. In reality, not all field quantities can be measured (e.g. certain stress
field components or the filtration velocity are not measurable). They also might
be obscured by different sensor characteristics or noise levels. Finally, requiring to
measure many different quantities in the field makes the operation financially and
practically unfavourable.

From equations (6.28) and (6.29), we know that the MDL scheme is customizable.
We can select those field quantities that are easily measurable in reality, or that are
well-defined by certain boundary conditions. We thereby need to take care that the
customized composition matrix is of sufficient rank and notch problems are properly
taken care of.

We focus on a single horizontal sensor array at depth level x3;B and x3;A coincid-
ing with the free surface. If we make use of the dynamic boundary conditions (Aki &
Richards, 1980), this implies that all stress components go to zero at the free surface:
τ̃ b;H,V = 0 and p̃f = 0. Constraining the stress implies that the particle velocity
fields (kinematic boundary conditions) are then ‘free’ variables. In addition, at the
free surface, continuity of the horizontal components of the electromagnetic field
quantities holds. We can carry out MDL decomposition by having measurements
of either q̃1 or q̃2 at x3;B , with the field quantity subvector at x3;A being equal
to zero. In the case of the SH-TE system, this means that we need at least two
field quantities equal to zero and have two measured quantities. For the P-SV-TM
system, we need four field quantities equal to zero and four measured quantities.

For Controlled Source Electromagnetics (CSEM), the TM-mode magnetic field
H̃V can be taken zero at the Earth’s surface under the diffusive field approximation
(Nabighian, 1987). Looking at the P-SV-TM system, we can now see that we have
four quantities that are zero at the free surface (the stress quantities, pore-fluid
pressure and the P-SV-TM mode magnetic field). At the measurement level x3;B ,
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we then need to select 4 quantities that we can measure, for example ṽs3, ẼVnorm, p̃f ,
H̃V
norm or ṽs,Vnorm. Two of those quantities are directly measurable in the borehole

ṽs3 and p̃f . From the electromagnetic scenario we concluded that due to limited
borehole dimensions, we can only transform to the k1-domain (for an x1-oriented
borehole). So all combined mode quantities in the horizontal wavenumber-frequency
domain are hard to obtain since they all require an additional transformation to the
k2-domain. A difference between the mode electric fields and for example the mode
particle velocity fields is that the Ẽ2 component is additionally not measurable in
an x1-directed borehole due to the limited borehole size, whereas both the ṽs1 and
ṽs2 particle velocity components are measurable.

When we carry out the field decomposition in the space-frequency domain, we
can determine the spatial derivatives with respect to the x1- and possibly also with
respect to the x2-directions. We can then obtain the four required field quantities
to carry out the MDL decomposition: v̂s3 and p̂f v̂s,Vnorm and ĤV

norm. However, for
this we need to be able to derive correct pseudo-differential operators, which will be
extremely tedious for this complex physical phenomenon.

It is good to be aware that certain seismo-electromagnetic source-receiver com-
binations (for example looking at a horizontal electric field in the x1-direction Ẽ1

due to a vertical seismic bulk force source f̃ b3), are purely described by the P-SV-TM
propagation mode (Grobbe & Slob, 2013). Hence, for these recorded source-receiver
combinations, MDL decomposition according to the P-SV-TM mode only is suffi-
cient.

For the SH-TE case, we see that only the stress field τ̃ b,H is zero at the free
surface. The second required quantity at x3;A should then be measured. So, we

can place for example a vertical magnetic coil at the free surface and measure ẼH .
Combining surface and buried measurements is for practical purposes not so at-
tractive, since surface measurements suffer too much from low fidelity, significant
noise (e.g. surface waves or power line noise) and low repeatability. However, when
x3;A coincides with the Earth’s surface, we are for our measurements not limited in
any horizontal spatial direction. At depth level x3;B we can then select two field
quantities we would like to measure to solve the MDL decomposition problem for
the SH-TE mode. Since ẼH is directly measurable (equation (6.41)) this is a logical
choice. However, when trying to obtain the mode quantities H̃H and ṽH , the same
issues are encountered as discussed above for the P-SV-TM case. Luckily, as dis-
cussed in the other appendices, we can still solve the seismo-electromagnetic MDL
decomposition problem in the horizontal wavenumber-frequency domain in case of
a purely 2D situation.

When we look at the dual depth horizontal sensor arrays, we can select the
desired measurable field quantities for each mode at both depth levels x3;A and x3;B

and adjust the composition matrix S̃ accordingly. The issues in obtaining certain
field quantities due to limited borehole size now play a role at both depth levels.

Sometimes the mode splitting into SH-TE and P-SV-TM propagation modes
might not be useful or even not applicable, for example when we are considering
anisotropic media or in non-layered Earth systems. Alternatively, we can take the
field vector as defined in Wapenaar & Fokkema (2004), where all physical field
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quantities are directly present. However, this system is probably redundant and
the decomposition problem might be solvable with less field quantities (compar-
able to the electromagnetic case of Appendix B). Theoretically, we can describe the
field decomposition starting from equation (6.2). However, the composition matrix
L̃ consisting of the eigenvectors of the full non-mode separated system of seismo-
electromagnetic equations is not yet derived. Furthermore, the equations should
be explicitly extended for anisotropic media. Nevertheless, if we assume that we
know the corresponding eigenvectors of the system of equations, we can select de-
sired measured field quantities and carry out MDL decomposition according to the
presented scheme. In this case we do not suffer from separate modes and mode
quantities that need to be combined via spatial derivatives and hence also not from
issues when transforming to the horizontal wavenumber-frequency domain.

The poroelastic system can be considered as a special case of the seismo-
electromagnetic system. If the seismo-electromagnetic coupling coefficient L̂ is equal
to zero, there is no coupling between the poroelastic system and the electromagnetic
system. In this case, we can treat the electromagnetic system and the poroelastic
system separately (Grobbe et al., 2014).

We can obtain the mode-separated poroelastic field vectors directly from the
seismo-electromagnetic field vectors by omitting the electromagnetic field quantit-
ies from equations (6.48) and (6.49) and keeping the order of the mechanical field
quantities the same.

So, starting from the seismo-electromagnetic eigenvectors used by Grobbe & Slob
(2013), removing the columns belonging to the TE and TM mode electromagnetic
fields and putting the coupling coefficient to zero, results in the poroelastic eigen-
vectors corresponding to this poroelastic field vector ordening. Alternatively, Jocker
et al. (2004) derive and present the poroelastic eigenvectors for a 2D scenario. As
discussed earlier, when we have line recordings in a borehole, this results effectively
in a 2.5D or 2D scenario. For the 2.5D scenario, we again encounter the same is-
sues in obtaining the mode quantities due to the limited size of a borehole. In 2D,
the mode separation in SH and P-SV modes occurs naturally, assuming line sources
in the x2-direction. In 2D the MDL decomposition problem is straightforwardly
solvable, similar to the scenarios discussed for seismo-electromagnetic fields.

Alternatively to mode separation, the full poroelastic system and correspond-
ing eigenvectors for arbitrary subsurface geometries can be used. However, to our
knowledge, the eigenvector system forming the composition matrix for 3D poroelastic
fields is not yet published. If these eigenvectors are known, we can select desired
measured field quantities. Measurements of four field quantities, e.g. three com-
ponent particle velocity recordings in combination with pore fluid pressure measure-
ments, would be sufficient to solve the MDL decomposition problem for poroelastic
fields.
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6.2 Towards Inversion:
Electromagnetic and seismo-electromagnetic
sensitivity analysis using resolution functionsii

6.2.1 Abstract

We explore the use of resolution functions for the sensitivity analysis of the coupled
seismo-electromagnetic system, which is a multi-parameter problem. Using this res-
olution function analysis, we aim to provide a fast method to determine whether
seismo-electromagnetic signals are sensitive to certain subsurface parameters of in-
terest. We here present a first step in this direction. We start by explaining the
theory of resolution functions using a seismo-electromagnetic example. We define
the seismo-electromagnetic resolution function for inversion for a bulk density per-
turbation. We compute this resolution function as the least-squares solution to the
normal equation. The synthetic data and Green’s functions required to construct
the resolution function are computed with our seismo-EM layer-code. We demon-
strate the effectiveness of this method by first carrying out a purely electromagnetic
sensitivity analysis for a point perturbation in conductivity, located in an isotropic
homogeneous half-space. These results are compared with literature results based
on analytical homogeneous space Green’s function expressions. The result using
the seismo-EM layer-code modeling is nearly identical to the literature result. The
position of the scatterer is correctly resolved. We continue by investigating the elec-
tromagnetic sensitivity to point scatterers in a layered background medium, located
above and below highly conductive layers. Again, the resolution function is cap-
able of correctly mapping the scatterer when it is above as well as below a layer
of increased conductivity. Having a scatterer below this highly conductive layer
leads to a lower resolution. We finalize by presenting the results of the fully-coupled
seismo-electromagnetic senstivity analysis for a bulk density contrast for a specific
source-receiver combination, using single-frequency multi-component line data. We
show that the coupled seismo-electromagnetic system is sensitive to a perturbation
in bulk density and that the position of the perturbation can be correctly recovered.
This paves the way for studying the seismo-electromagnetic sensitivity for other me-
dium parameters, such as the seismo-electromagnetic coupling coefficient, as well as
for other source-receiver combinations.

6.2.2 Introduction

Several studies have already shown that the seismo-electromagnetic method can
provide supplemental information about porosity, permeability, and pore-fluid prop-
erties such as viscosity (Haines & Pride, 2006; Revil et al., 2007). This offers potential
to use seismo-electromagnetic signals for detecting and monitoring e.g. gas-water

iiThis section has been published as an extended abstract paper at the EAGE Conference &
Exhibition (Maas et al., 2015), and as a conference paper at the Japan Geoscience Union Meeting
(Grobbe et al., 2015). Note that additions have been made, and changes have been introduced to
make the text consistent with the other chapters of this thesis.
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and oil-water contacts (Smeulders et al., 2014). It can also offer useful applications
in the field of hydrology/hydrogeophysics, e.g. for characterizing and monitoring
aquifers (Dupuis et al., 2007). Furthermore, seismo-electromagnetic signals might
provide information on the near-borehole flow properties by the use of well-logging
techniques (Zhu & Toksöz, 2005). We can observe that these medium parameters
(e.g. porosity, permeability, and viscosity) are explicitly present in the governing
equations describing the seismo-electromagnetic phenomenon (Section 2.1). The big
question is, how sensitive is the seismo-electromagnetic system actually to these
parameters?

Since the seismo-electromagnetic effect is determined by a combination of many
subsurface parameters which are often mutually related, inversion of seismo-
electromagnetic data for each of these parameters individually is costly. Therefore,
performing a sensitivity analysis prior to inversion is crucial. It can, for example,
focus on acquisition design or investigate time-lapse perturbations and more import-
antly, show whether the measured fields are actually sensitive to the parameter of
interest. Applying a quasi-static electromagnetic approach helps to simplify the sys-
tem, which can be beneficial to further develop the seismo-electromagnetic method
towards imaging and inversion (Jardani et al., 2010; Mahardika et al., 2012; Sava
& Revil, 2012; Revil et al., 2015). We here present a first step towards resolution
function analysis, aiming to provide a low-cost, fast method for determining the
sensitivity of seismo-electromagnetic signals to certain subsurface parameters.

We start by presenting the theory of resolution functions using a specific seismo-
electromagnetic example: we derive the resolution function for inversion for a bulk
density contrast, for a specific seismo-electromagnetic source-receiver combination.
Afterwards, we illustrate the sensitivity analysis by comparing an EM parameter
sensitivity analysis for a point perturbation in conductivity using seismo-EM layer-
code data, with literature results based on analytical homogeneous space Green’s
function expressions. We follow-up by investigating the EM sensitivity to point
scatterers above and below highly conductive layers. We then present the results
of the fully-coupled seismo-electromagnetic senstivity analysis for a bulk density
contrast, using single-frequency multi-component line data.

6.2.3 Theory: seismo-electromagnetic resolution function for
bulk density contrast

Let us start by defining a large background (or incident) domain D, in which the
smaller scattering domain Ds is embedded (Ds ⊂ D). The background model is
known throughout D (including Ds), whereas the actual scattering parameters in
the scattering domain are unknown (see Figure 6.18). The scattering domain is
in most cases inconvenient or inaccessible for direct measurements, and is often an
area of interest such as a hydrocarbon reservoir. The objective of inverse scattering
problems is to gather information about the scattering domain from observations
outside of that domain (Oristaglio & Blok, 1995). The incident domain is associated
with the incident field: the field that is present in the entire domain if the scattering
domain has no contrast with the background domain. The scattered field is the field
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resulting from the interaction between the incident field, the contrast in medium
parameters between the incident and scattered domain and the total wavefield inside
the scattering domain. The incident field and the scattered field together form the
total field (Fokkema & Van den Berg, 1993):

û(x, ω) = ûi(x, ω) + ûs(x, ω), (6.58)

where û(x, ω) is the total field, ûi(x, ω) denotes the incident field, and ûs(x, ω) rep-
resents the scattered field. The sources of the total wavefield are located outside
the scattering domain, but inside the background domain. In a situation where the
scattering has the same parameters as the background domain, the sources remain
present and therefore form the sources of the incident field (Fokkema & Van den
Berg, 1993). We assume that we know the medium parameters of the background
domain, and hence we know the incident wavefield, which can be expressed as a back-
ground Green’s function. We extend the boundary ∂D of the background domain
to infinity, for which, in the case that both reciprocity states A and B are causal
in time (applying to physical wavefields), the far-field solutions for the wave equa-
tions apply, resulting in a vanishing surface integral contribution in the reciprocity
expression (based on Gauss’ theorem) (Fokkema & Van den Berg, 1993; De Hoop,
1995).

Expressing the scattered wavefield in terms of an integral equation, we can write
equation (6.58) in general terms as

û(x, ω) = ûi(x, ω) +

ˆ
Ds
Ĝ0(x,x′, ω)χ(x′, ω)û(x′, ω)d3x′, x 6∈ Ds, (6.59)

where Ĝ0(x,x′, ω) is the incident field expressed as a background Green’s function,
χ(x′, ω) represents the scattering contrast, and û(x′, ω) is the total field in the
scattering domain. Since the scattering contrast as well as the total field in the
scattering domain are both unknowns, we have an underdetermined problem. We
need an additional constraint on the total field in the scattering domain. We can
define the same equation as (6.59), but now for the condition that x ∈ Ds. We can
substitute this equation in equation (6.59) and solve it iteratively, using a Neumann
series expansion (Born, 1926). If we consider first order scattering only (single
scattering from each point in the scattering domain), we select the first two terms of
this expansion: the incident field and first order scattering term, to approximate the
total field û(x, ω). Using this so-called Born approximation, the total field may be
defined in the space-frequency domain as the following integral equation (Oristaglio
& Blok, 1995; Maas, 2014)

û(1)(x, ω) = ûi(x, ω) +

ˆ
Ds
Ĝ0(x,x′, ω)χ(x′, ω)ûi(x′, ω)d3x′, (6.60)

where, û(1) denotes that it is the first order approximation of û, and where we can
observe that the total field in the scattering domain is approximated by the incident
field (see also Figure 6.18).

Let us now consider a specific seismo-electromagnetic case, for the total particle
velocity field due to an electric current source Ĝvejs (xr,xs, ω), with a scattering
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D
Ds ∂Ds

∂D −→ ∞

Figure 6.18: Schematic illustration of the incident (background) domain and the scattering do-
main and their boundaries. The black-dashed scattering path corresponds to the Born approx-
imation, where the incident field is scattered once by each point in the object. The red-dotted
scattering path corresponds to second-order scattering in the Neumann series. Figure is adapted
from (Oristaglio & Blok, 1995; Maas, 2014).

domain containing a spatially-dependent bulk density contrast function χρ(x) =
(ρ̂bA − ρ̂bB), where A represents the incident reciprocity state and B represents the
true state. Using the Born approximation, we can express the total field as the
following integral equation:

Ĝvejs (xr,xs, ω) = Ĝve;ijs (xr,xs, ω) +

ˆ
Ds

[
χρ (x) D̂js (xr,xs,x, ω)

]
d3x. (6.61)

Equation (6.61) holds for a fixed pair of source- and receiver-locations xs and xr,
respectively. It shows that the total field is the sum of the incident field and scattered
field, which consists of the contribution of all scatterers x within the scattering
domain Ds. When we would express the equations in terms of the underlying defined
reciprocity states A (incident state) and B (true state), then xs = xB and xr =
xA (Maas, 2014). In equation (6.61), Ĝvejs denotes the first order Green’s field for
the j-component of the particle velocity field generated by the s-component of an
electric current source. The additional superscript i indicates the Green function
describes an incident field. All Green’s functions together form a three-by-three
Green’s function matrix. Furthermore, the two-way wavefield operator is defined as

D̂js (xr,xs,x, ω) = jωĜvf ;i
jm (xr,x, ω) Ĝve;ims (x,xs, ω) , (6.62)

where Ĝvf ;i
jm is the incident Green’s particle velocity field generated by a bulk-force

source. Resolving for the contrast function is our goal, the resulting expression is the
resolution function for a bulk density contrast. Since we are dealing with a linearized
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inverse problem, the contrast cannot be too large with respect to the background
model, since otherwise the higher order scattering terms cannot be neglected (Born
& Wolf, 1980; Habashy et al., 1993; Wapenaar et al., 2010).

To obtain the desired expression for the resolution function, it is assumed that
the inverse two-way wavefield operator D̂kr (xr,xs,x, ω) (note the different use of
D) satisfies Fourier orthogonality and is defined as follows

ˆ ∞
ω=−∞

ˆ
xr∈R2

ˆ
xs∈R2

D̂rk
(
xr,xs,xI , ω

)
D̂rp (xr,xs,x, ω) d2xsd2xrdω = δkpδ(x−xI).

(6.63)

If a possible image location xI coincides with a true scattering location x then the
resolution function will show an image in that location only, when considering a
perfect solution with infinite bandwidth. However, in case of limited bandwidth,
smearing around that scattering location will occur, and instead, the resolution
function will highlight a volume in which the scatterer is likely to be located.

Alternative definitions of the inverse two-way wavefield operator are also possible:

ˆ ∞
ω=−∞

ˆ
xr∈R2

ˆ
xs∈R2

D̂rp
(
xr,xs,xI , ω

)
D̂rp (xr,xs,x, ω) d2xsd2xrdω = δ(x−xI),

(6.64)

or
ˆ ∞
ω=−∞

ˆ
xr∈R2

ˆ
xs∈R2

D̂RP
(
xr,xs,xI , ω

)
D̂RP (xr,xs,x, ω) d2xsd2xrdω = δ(x−xI),

(6.65)

where for equation (6.65) the Einstein summation convention does not hold, indic-
ated by the capitalized subscripts.

In this study, we choose (6.63) as the definition for the inverse two-way wavefield
operator. This choice allows for studying the separate sensitivities of different source-
receiver components, whereas equation (6.64) implicitly sums over all source-receiver
components, which might lead to enhanced resolution. Equation (6.65) can be used
to study the sensitivity using single component data, for example in situations where
not all source-receiver components are available. Applying the inverse operator
of equation (6.63) to both the left- and right-hand side of the expression for the
scattered field (equation (6.61) without the incident field), we obtain a resolution
function for inversion for a bulk density point perturbation:

χρ;Inv
(
xI
)
δkp =

ˆ ∞
ω=−∞

ˆ
xr∈R2

ˆ
xs∈R2

D̂rk
(
xr,xs,xI , ω

)
Ĝve;srp (xr,xs, ω) d2xsd2xrdω.

(6.66)

Note that Ĝve;srp (xr,xs, ω) is the scattered particle velocity field due to an electric
current source, under the Born approximation. Let us now briefly discuss how
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we properly deal with the amount of data involved. More details can be found
in Maas (2014). To calculate the seismo-electromagnetic resolution function, we
are dealing with modeled results of two seismo-electromagnetic source-receiver type
combinations. This already increases the size of the problem significantly, compared
to for example the purely electromagnetic scenario (Slob & Mulder, 2011). We
use a data matrix to describe the two-way field operator, which consists of data
submatrices. These data submatrices consist of the amount of sources (actual shots)
times receivers (actual recording devices) as the number of rows, and the amount of
possible image locations (amount of x1 times x3) as the number of columns. For the

seismo-electromagnetic system under consideration, the two-way field operator, D̂ in
matrix notation, contains all source-side and receiver-side multicomponent field data
for all possible image locations xI , and consists of nine data submatrices, arranged
as

D̂ =

 D̂11 D̂12 D̂13

D̂21 D̂22 D̂23

D̂31 D̂32 D̂33

 , (6.67)

Each data submatrix is computed according to equation (6.62). For example, the

data submatrix D̂11 is filled with

D̂11 (xr,xs,x, ω) = jω
(
Ĝvf ;i

11 Ĝve;i11 + Ĝvf ;i
12 Ĝve;i21 + Ĝvf ;i

13 Ĝve;i31

)
, (6.68)

for all sources and receivers and all possible image locations. Here, we have applied
the Einstein summation convention. This single data submatrix has exactly the
same size as the data matrix for the EM problem (Slob & Mulder, 2011). However,
the EM problem consists of single component data, whereas this specific seismo-
electromagnetic sub-data matrix consists of several field components. Note that
if we would have chosen the definition of equation (6.64) as the definition for our
inverse two-way wavefield operator, we would arrange the data submatrices (still
having the amount of sources (actual shots) times receivers as the number of rows,
and the amount of possible image locations (amount of x1 times x3) as the number
of columns) in equation (6.67) in one column below each other, resulting in a 9 times
1 data vector consisting of data submatrices. Choosing the definition of equation
(6.65) would result in a data matrix D̂ consisting of one data submatrix.

We can define D̂
†

as the complex conjugate transpose of D̂, where the super-
script dagger denotes complex conjugation and transposition. Note that in this way,
the transposition and complex conjugation applies to the matrix as a whole. The
scattered data matrix Ŝ contains the true scattered data, computed for a known bulk
density point perturbation at the true scattering location x. We define this scattered
data matrix in a similar way as the two-way field operator, where now each data
submatrix is a vector of size (number of sources times number of receivers) times 1.
As a result, the resolution function data matrix consists of data submatrices (there-
fore the bold face symbol) having size (amount of image locations x1 times amount
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of image locations x3) times 1, arranged as:

χρ;Inv =

 χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 . (6.69)

Each data submatrix of the resolution function data matrix χρ;Inv that we solve for,
represents one seismo-electromagnetic sensitivity function for the entire investigated
area. The diagonal elements represent three estimates of the resolution function. The
off-diagonal elements should theoretically be equal to zero. Note that if we would
have chosen the definition of equation (6.64) as the definition for our inverse two-
way wavefield operator, the resulting resolution function data matrix χρ;Inv would
consist of a single data submatrix, representing the resolution function that we are
after, which would be based upon all source-receiver component data. This could
possibly offer a better resolution than the three resolution estimates of equation
(6.69). Alternatively, if we would have chosen equation (6.65) as the definition
for our inverse two-way wavefield operator, the resulting resolution function data
matrix χρ;Inv would also consist of a single data submatrix, but now based upon
single-component data.

Following Slob & Mulder (2011), we compute the formal resolution function by
expressing the scattering problem as the normal equation for a linear inverse problem
for subsurface scatterers. as (Maas, 2014):

D̂
†
D̂χρ;Inv = D̂

†
Ŝ. (6.70)

Note that the matrix multiplications yield implicit summation over all sources and
receivers. Additionally, we could choose to apply a summation over different fre-
quencies as well (Slob & Mulder, 2011). In our seismo-electromagnetic examples, we
only consider single-frequency data.

The regularized least-squares solution of 6.70 then reads

χρ;Inv =
(
D̂
†
D̂ + εI

)−1

D̂
†
Ŝ, (6.71)

where I is the identity matrix and ε the regularization parameter.

6.2.4 Numerical Results

We now present the results of three sensitivity analysis scenarios: a purely EM
scenario with a single conductivity scatterer in an isotropic homogeneous background
medium, a purely EM scenario with a single conductivity scatterer in a layered
background medium containing a highly conductive layer, and a coupled seismo-
electromagnetic scenario for a single bulk density contrast function in an isotropic
homogeneous background medium. The line acquisition geometry used for these
experiments consists of 201 sources located at the surface with a horizontal source
spacing of 25 m, combined with a line of 41 receivers, located 50 m below the surface
with a horizontal receiver spacing of 250 m. For the EM scenarios, these sources
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and receivers are x1-directed electric current sources and electrodes, whereas for
the seismo-electromagnetic scenario we use three-component electric current sources,
three-component bulk-force sources, and three-component particle velocity receivers.
The investigated area is centrally located in the (x1, x3)-plane directly below the
acquisition line and has a total offset of 3000 m and a depth coverage of up to
1600 m (see Figure 6.20 for the geometry). We use our seismo-EM layer-code to
generate the synthetic data used to resolve for the contrast functions. We model an
isotropic homogeneous half-space, or a layered-Earth model, computing the multi-
component response to a unit-impulse source for all source-side and receiver-side
fields. For the purely EM scenario, the seismo-electromagnetic coupling coefficient
is chosen equal to zero. Our seismo-EM layer-code generates 3D data cubes. From
these data cubes, we select the vertical cross-section through our line-acquisition
geometry, corresponding with the sensitivity analysis study-area. This might result
in amplitude differences, for example when comparing with purely 2D homogeneous
space solutions. The EM resolution functions are calculated for a single frequency
of 0.5 Hz, the seismo-electromagnetic resolution functions for a single frequency of
30 Hz.

To test our sensitivity analysis resolution function-approach, we first investigate
the scalar resolution function for a conductivity point perturbation for a purely EM
scenario, as derived by Slob & Mulder (2011). Figure 6.19-a shows the EM resolution
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Figure 6.19: EM resolution functions for inversion, (a) from Green’s function solutions, and (b)
obtained using seismo-EM layer-code data for a single frequency of 0.5 Hz. The white ‘plus’- sign
indicates the true location of the conductivity point perturbation (−500, 500) m.

function for inversion where both the two-way field operator as well as the data
were computed through the use of explicit analytical homogeneous-space Green’s
function solutions (Slob & Mulder, 2011). Figure 6.19-b presents the resolution
function for the case where both the two-way field operator as well as the data
have been computed using our seismo-EM forward modelling layer-code, assuming
that there is no coupling between mechanical waves and electromagnetic fields. We
observe that in both cases the resolution function is capable of correctly mapping
the conductivity perturbation, where the horizontal location and depth location are
equally well resolved. We also observe that both approaches deliver nearly identical
results. This provides a solid basis for extending the sensitivity analysis to the fully
coupled seismo-electromagnetic system. In addition, it allows us to explore more
complex cases for which deriving explicit analytical solutions is more challenging,
like a layered-Earth scenario.

Figure 6.20 presents the geometry used for the EM sensitivity analysis in a layered
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Figure 6.20: Geometry of the layered-Earth model containing a highly conductive layer. We try
to resolve the EM resolution functions for a conductivity point perturbation in this model.
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Figure 6.21: EM resolution function for a conductivity point perturbation at (−500, 500) m,
located above the highly conductive layer in the layered background medium, for a single frequency
of 0.5 Hz.
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Figure 6.22: EM resolution function for a conductivity point perturbation at (a) (−500, 1000) m,
and (b) (−500, 1300) m, both located below the highly conductive layer in the layered background
medium, for a single frequency of 0.5 Hz.

background medium. Figure 6.21 shows the EM sensitivity analysis for a conduct-
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ivity perturbation above a layer of increased conductivity. We observe that the
resolution function maps the position of the scatterer correctly. Figures 6.23a and
6.23b present the results of the sensitivity analysis for scatterers located at two depth
levels below the layer of increased conductivity. We now observe that, although the
EM resolution function more or less correctly maps the perturbations, the resolu-
tion has clearly deteriorated, especially for the deepest located scatterer. This is
probably related to the fact that the highly conductive layer above the scatterers
strongly reflects the incident field back towards the surface, decreasing the amount
of transmitted energy that is available to illuminate the scatterers below.

Let us now look at the results of the coupled seismo-electromagnetic sensitivity
analysis for a bulk density perturbation located at (−500, 500) m in a homogen-
eous background medium. Figures 6.23-a and 6.23-c show the diagonal element
χρ22, whereas figures 6.23-b and 6.23-d present the off-diagonal element χρ31 of the
seismo-electromagnetic contrast function matrix. This result was computed accord-
ing to equation (6.71) where the regularization parameter ε was chosen by using the

maximum of the approximate Hessian (D̂
†
D̂) and multiplying it with an arbitrary

small number (10−5), resulting in ε = 9.3 · 10−33. We can observe that the diagonal
element χρ22 clearly resolves the density perturbation at the correct location. At the
same time, it can be seen that the off-diagonal elements show resolution patterns
with amplitudes that are generally one order smaller than the diagonal elements of
the contrast function matrix. Based on equation (6.66) this is to be expected: in an
ideal case, the diagonal terms show a clear point-response whereas the off-diagonal
terms should be zero.
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Figure 6.23: Seismo-electromagnetic resolution function for a density perturbation at (−500, 500)
m as indicated by the white circle. (a) and (c) diagonal element χρ22, (b) and (d) off-diagonal
element χρ31. (a) and (b) are displayed according to true amplitude, whereas (c) and (d) are
displayed on a logarithmic scale.
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6.2.5 Conclusions

We have carried out two electromagnetic and one seismo-electromagnetic sensitiv-
ity analysis, using three examples. To model the data, we have used our seismo-
EM layer-code, either without seismo-electromagnetic coupling, for the purely EM
scenario, or with seismo-electromagnetic coupling. We have tested our approach
on an example using single-component, single-frequency electromagnetic line-data
for a conductivity point perturbation in a homogeneous isotropic half-space back-
ground medium. We successfully validated this result by comparing it with the
literature results based on explicit analytical homogeneous-space Green’s function
solutions. We then used the seismo-EM layer-code to study the EM resolution func-
tions in a layered background medium containing a highly conductive layer. We
have shown that the single-component electromagnetic data still provide the ne-
cessary resolution to resolve a point conductivity scatterer, located either above or
below a highly conductive layer. However, when the scatterers are located below the
highly conductive layer, the resolution severely decreases. Finally, for the case of
multi-component coupled seismo-electromagnetic data in a homogeneous isotropic
half-space background model, we have successfully computed a resolution function
for a single point perturbation in bulk density. We can conclude that the coupled
seismo-electromagnetic system is sensitive to this perturbation and that its position
can be correctly recovered. This paves the way to study the seismo-electromagnetic
sensitivity to contrasts in for example the seismo-electromagnetic coupling coeffi-
cient, the medium permeability, or the pore-fluid viscosity.

6.3 Discussion on potential seismo-electromagnetic
applications

In the previous chapter, I have presented a field decomposition scheme exploiting re-
cordings at multiple depth levels, which can provide us with an effective way to carry-
out seismo-electromagnetic field decomposition (into up- and downgoing waves and
field types), using a limited amount of measured field quantities. I have also presen-
ted an effective way of studying the seismo-electromagnetic sensitivity to certain
medium parameters, using resolution functions, which can provide us with crucial
information when making the step towards coupled seismo-electromagnetic inver-
sion. Here, I briefly discuss some potential applications of seismo-electromagnetic
phenomena, not yet discussed in the introduction of this thesis. It is well-known
that the main limitation of seismo-electromagnetic applications in the field, is the
weak signal strength of the fields. It is also known, that the further away we record
from the target, the weaker the recorded signals are, due to attenuation and geo-
metrical spreading effects. It therefore makes sense, not only to investigate seismo-
electromagnetic applications for surface acquisition scenarios, but to also focus on
borehole applications. Nice borehole laboratory experiments have been carried out
by Zhu et al. (2000); Zhu & Toksöz (2005). In the study of Dupuis & Butler (2006),
the results suggest that coseismic effects have potential as a porosity/permeability
logging tool in borehole environments. Due to the seismo-electromagnetic sensitivity
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to permeability, a useful borehole application could be to map the permeability close
around the well, with the purpose of determining where to optimally perforate the
well-casings for optimal flow conditions, instead of more or less randomly perforate
the casings.

Recently, studies showing the existence of seismo-electromagnetic evanescent
fields at solid-porous interfaces have been reported (Ren et al., 2012a). I have car-
ried out preliminary experiments, modeling fluid/porous medium transitions, where
similar evanescent fields can be observed. Considering the fact that most bore-
holes are containing a borehole fluid, it is possible to visualize the transition from
inside the borehole to the surrounding rock formations as a fluid/porous medium
transition. One application could be to deploy for example acoustic sources and
electrode-receivers in the borehole, and exploit the evanescent field recordings from
the fluid/porous medium transition, using these signals to infer medium property
information from the formations surrounding the borehole. With every application,
we need to remember that theoretical aspects and the physical practice in the field
often differ from each other. For example, theoretically unexpected shear waves are
routinely measured in fluid-filled boreholes (Cheng & Toksöz, 1981). In addition,
fluid-filled boreholes can modify the responses as for example formulated by Peng
et al. (2003). We always need to keep in mind that in reality, the situation is far
more complex.

The fundamental interferometric principles, as illustrated in Chapter 5, have of
course a wide-variety of useful applications. One only needs to think of the successes
of interferometric principles applied to purely seismic and purely electromagnetic sig-
nals (Curtis et al., 2006; Vasconcelos et al., 2008; Hunziker et al., 2012). As an ex-
ample, we can try to apply correlation-based interferometry to (passive) recordings,
trying to stack over long periods of time, in an attempt to improve the signal-to-
noise ratio of the seismo-electromagnetic fields. Another application is related to
recordings in boreholes, either configurations of (high-density) vertical boreholes or
horizontal borehole configurations. The virtual source method (Bakulin & Calvert,
2006; Mehta et al., 2007c; Van der Neut et al., 2010), exploits downhole record-
ings, allowing imaging below a complex overburden due to redatuming. The virtual
source method also enables sensitive reservoir monitoring below a complex, time-
variant near-surface that is not achievable with surface 4D seismic or conventional
4D vertical seismic profiling VSP (Bakulin & Calvert, 2006). This repeatability is
very interesting for seismo-electromagnetic signals as well, due to the high sensitiv-
ity of the seismo-electromagnetic converted fields to for example oil/water contacts.
Also, changes in for example permeability during production could be monitored.
An additional advantage is that we redatum the surface sources to the receiver loca-
tions in the boreholes, resulting in source-receiver paths that are closer to the target
zone of interest. I schematically illustrate this interferometric redatuming for the
seismo-electromagnetic method in Figure 6.24.

Seismo-electromagnetic signals are not only useful for borehole applications. In
situations with complex near-surface geology, unresolved velocity anomalies in the
near-surface sections of the velocity models degrade deeper imaging (Jones, 2012).
Full-waveform inversion is nowadays a useful, but computationally expensive, tech-
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Figure 6.24: Schematic configuration for applying the virtual source method to the seismo-
electromagnetic system. Cross-correlation of electric (Ex) and acoustic signals (vz) from active
sources located at the surface (a) or passive sources located in the bulk (c) results in the electro-
magnetic response of an acoustic source (fz) generating a seismo-electromagnetic field (b).

nique to resolve small-scall near-surface velocity anomalies. As is known, the seismo-
electromagnetic signals suffer from weak signal strength. However, for near-surface
applications, the sources and receivers are close to the target zone of interest, en-
hancing the probability of clearly recording the coupled signals. Since the seismo-
electromagnetic signals are sensitive to a wide-variety of medium paremeters, and
deal with different wave and field types at the same time, they have a great potential
to assist in high-definition near-surface velocity model building and characterization.
I have shown already that seismo-electromagnetic signals have a high sensitivity to
thin-bed geological settings, being able to sense the presence of beds that are thin-
ner than the conventional seismic definition of a thin-bed predicts (Section 4.7).
In addition, the direct sensitivity to permeability can assist in characterizing frac-
ture networks in for example complex near-surface settings. A recent study by
Zhu et al. (2015) on samples with anisotropic permeability proves that the seismo-
electromagnetic conversion is related to permeability in the frequency range of their
measurements. They show that the seismo-electromagnetic amplitudes are correl-
ated with permeability, where larger seismo-electromagnetic amplitudes are occuring
for larger permeability values. These are encouraging results since it opens the pos-
sibility of determining the permeability of a formation from seismo-electromagnetic
measurements. Having this sensitivity to permeability, the seismo-electromagnetic
signals could also be user for detection of microcracks, for example as a method for
developing Earthquake early-warning systems, or when studying induced seismicity
(Fujinawa & Noda, 2016).

Thusfar, I have looked into borehole applications, near-surface applications, and
the earlier discussed hydrogeophysical applications such as mapping of aquifers, mon-
itoring of groundwater contamination, or monitoring salt water-fresh water contacts
at (drinking) water pumping wells in coastal areas (see Cooper (1959) for an illus-
tration of this problem).

However, coupled seismo-electromagnetic signals also have potential applications
in other fields of science, where an interaction between a porous framework and
moving pore-fluids occurs. I can think of interesting applications in for example the
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field of medical imaging. For seismo-electromagnetic phenomena to occur, we need
a system of a porous solid, and a pore-fluid. A great example of such a system is
bone tissue. Bone represents a porous tissue containing a fluid phase, a solid matrix,
and cells (Knothe Tate, 2003; Steck et al., 2003). Seismo-electromagnetic (imaging)
techniques could be applied to the fluid flow that occurs in the bone, providing
sensitivity to a wide-variety of medium and pore-fluid properties. Additionally, it
might be applicable for studying bone marrow as well, which plays a role in many
physiological processes, such as leukemia, or sickle cell anemia (Vogler III & Murphy,
1988).
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

The key aim of this thesis was two-fold:

1. Increase our theoretical and physical understanding of the seismo-electromagnetic
phenomenon by analytically-based numerical modeling.

2. Investigate the potential of seismo-electromagnetic interferometry.

In light of these research targets, I can conclude the following from my work. I
have carefully derived and presented the governing system of seismo-electromagnetic
equations, and captured this system in a compact matrix-vector notation of the
two-way wave equation. I have incorporated all possible source-types in the start-
ing equations, providing a complete theoretical framework based on the underlying
assumptions of Pride’s theory. I have discussed an alternative description based on
the assumptions of Revil as well. I have focused mainly on the implications that
different assumptions have for the formulations of the dynamic coupling coefficient,
the dynamic permeability, and the complex conductivity. These different formula-
tions can both be incorporated in my theoretical description. I have successfully
developed an analytically-based, layered-Earth electromagneto-seismic and seismo-
electromagnetic modeling code in a combined Fortran/C programming language,
referred to as ESSEMOD, which is capable of modeling all possible source-receiver
combinations.

Eigenvector sets form the basis of this layered-Earth modeling code. I have suc-
cessfully normalized the eigenvector sets known from the literature with respect to
power-flux. Due to observed numerical instabilities and inaccuracies, I have effect-
ively derived an alternative power-flux normalized eigenvector set (referred to as the
GST set), straight from the seismo-electromagnetic system matrices. The proced-
ure used can in principle be applied to derive any desired eigenvector set, starting
from the system matrices and the eigenvalue matrices. Numerical stability tests have
proven that flux-normalizing the eigenvector sets stabilizes the numerical results and
improves numerical accuracy. My newly derived GST eigenvector set overall results

303
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in the best numerical performance. Using a two-halfspace model, I have validated
my modeling results when using three different eigenvector sets (literature set, flux-
normalized literature set, and the GST set). I conclude that each eigenvector set
generates identical results for all the major events in the model under consideration.
I also prove that the numerical differences between the different eigenvector sets
have obvious implications on finding small amplitude signals when there are also
strong signals in the data. Especially, later arriving, weak events are masked by
numerical noise using the literature sets, whereas these events are correctly modeled
with the GST set. When there is no seismo-electromagnetic coupling, the literature
eigenvector sets model the purely poroelastic and purely electromagnetic systems
incorrectly, whereas the GST set correctly models the decoupled scenarios. Further-
more, I can conclude that as soon as there is little coupling between the mechanical
and electromagnetic fields, for example at low porosity values or high electrolyte
concentrations, the modeling results of the GST set compared to the literature sets
behave differently. The GST set remains stable at all times and models all events
correctly and clean, whereas the literature sets show clearly numerical noise levels
that are of similar amplitude as the weak events in the data, making a distinction
between noise and physical weak events impossible.

I have presented an effective way of deriving explicit homogeneous space Green’s
function solutions for the seismo-electromagnetic system, which have been used to
successfully validate the results of ESSEMOD in a homogeneous medium. I conclude
that ESSEMOD correctly models the fields in a homogeneous space.

To model the propagation/diffusion of the waves/fields through a layered-Earth
model, I have developed a Global Reflection Scheme. I also incorporated different
boundary conditions, enabling modeling of porous medium configurations, porous
medium configurations in combination with a free-surface, and fluid/porous me-
dium/fluid configurations to resemble typical seismo-electromagnetic laboratory ex-
periments. Several reciprocity tests have proven that the Global Reflection Scheme
consistently models configurations where sources are located either above or be-
low the receiver level. I can also conclude from comparisons with a purely elec-
tromagnetic modeling code, that ESSEMOD correctly models configurations with
fluid/porous medium/fluid transitions. My comparison with an independently de-
veloped coupled seismo-electromagnetic modeling code shows that the results of
ESSEMOD match almost perfectly in terms of both phase and relative amplitude
with the results of this independently developed code. The absolute amplitudes
of the two codes differ by a constant factor of four, which should be further in-
vestigated. I theoretically show how to effectively combine the two propagation
modes of the seismo-electromagnetic system (SH-TE and P-SV-TM) in the final
stage of the algorithm of ESSEMOD. To transform the modeling results in a com-
putationally effective manner from the horizontal wavenumber-frequency domain
to the space-frequency domain, I have derived for all source-receiver combinations
explicit Fourier-Bessel transformations.

My seismo-electromagnetic feasibility studies have provided a better insight in
what amplitudes to expect for different modeling scenarios and for different source-
receiver combinations. The source-receiver combinations that yield the strongest



7.1. Conclusions 305

converted signals are Eq
i

1 and H
fb1
2 . Especially the Eq

i

1 combination seems to gen-
erate measurable responses even with acquisition geometries that approach surface-
to-surface acquisition. The depth of the receivers plays an important role in the
signal measurability of the seismo-electromagnetic fields. The closer the receivers
are located to the target, the higher the signal strengths, especially of the seismo-
electromagnetic converted fields (interface responses). However, when located too
close to the target depth, the coseismic reflected fields arrive at more or less the
same time as the one-way seismic traveltime interface responses, thereby masking
the weaker interface response fields. The electromagnetic-to-seismic conversions do
not suffer from these interferences, for these acquisition scenarios.

I have studied the potential of natural signal enhancements in thin-bed geolo-
gical settings. Using numerical seismo-electromagnetic wave propagation experi-
ments through packages of thin-beds, I have shown that thin-bed geological settings
can improve the signal strength of the seismo-electromagnetic interface response
fields. Increasing amounts of thin-beds of can cause the shear-wave related interface
response strength to increase or decrease. Both the thickness of the thin-beds as well
as the amount of thin-beds play a role in whether or not the multiples vanish in the
record. I can distinguish two limits of bed thickness: an upper and lower limit. The
upper limit of bed thickness determines whether the individual layers are still recog-
nized or not. When beds are thinner than this limit, the package of thin-beds starts
acting like an ‘effective’ medium and the multiples vanish from the record. The
lower limit of bed thickness determines the border from whereon further thinning
does not affect the seismo-electromagnetic IR signal strength anymore, because the
bed thickness is below the sensitive resolution of the seismo-electromagnetic fields.
Whether the thin-beds result in an effective strengthening or weakening of the signal,
seems to be determined by the contrast in seismo-electromagnetic coupling coeffi-
cients between the different thin-beds. My oil/water contact modeling experiments
where the oil layer is gradually thinned prove that the seismo-electromagnetic signal
has a very high sensitivity to oil-water contacts: an oil layer with 20% water satur-
ation and of 0.2 m thickness, a thickness of about 1

350 of the dominant wavelength
of the shear wave generating this response, is still slightly recognized. This is a
clear indicator of the high seismo-electromagnetic sensitivity for different saturating
fluids.

To study the potential of seismo-electromagnetic interferometry, I have first
presented an effective way of deriving explicit homogeneous space Green’s function
expressions for the 2D SH-TE propagation mode, using power-flux normalized eigen-
vectors. The theory for interferometric retrieval of 2D SH-TE seismo-EM Green’s
functions was also presented. Using both a circular source configuration and a line
source configuration, I have shown that it is possible to correctly retrieve the dy-
namic seismo-EM 2D SH-TE response in a homogeneous medium, using seismic
boundary sources only. This was demonstrated for two source-receiver combina-
tions: an electric field and a magnetic field due to a seismic source, using explicit
homogeneous space Green’s function solutions. The volume source contributions
account for the losses in the acausal part of the retrieved response as well as the
instantaneous source-converted EM field. Using ESSEMOD data, I have shown that
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we can also correctly retrieve the direct shear wave-related causal coseismic field in
a homogeneous medium, in both phase and amplitude. To obtain a perfect match in
absolute amplitudes, a single linear scaling factor was required. Finally, the interfer-
ometric experiments in a model containing a single interface at 800 m depth prove
that it is possible to correctly retrieve all 2D SH-TE causal seismic-related direct
and reflected coseismic fields, as well as interface response fields, by cross-correlation
interferometry, using seismic boundary sources only.

I have presented a multi-depth-level (MDL) field decomposition scheme for land
acquisition that is inspired by marine acquisition designs that makes use of recordings
at multiple depth levels for successful field decomposition. My MDL decomposition
approach makes use of configurations with field quantity information on multiple
depth levels, for example two horizontal boreholes that are closely separated from
each other, or a combination of a single receiver array just below a free surface,
thereby exploiting the natural (Dirichlet) free-surface boundary conditions. In this
way, field decomposition can be carried out using a smaller amount of different field
quantities than in the case of the classical multi-component (MC) decomposition.
This is especially useful for decomposition of seismo-electromagnetic signals, where
theoretically many different field quantities should be measured. My tests on a syn-
thetic elastodynamic data set, have shown that the MDL decomposition scheme leads
to correctly retrieved power flux-normalized one-way fields, for both P- and S-waves,
using only particle velocity recordings at two depth levels. Secondly, I showed that
when having particle velocity recordings at one depth level, in combination with the
free-surface Dirichlet boundary condition of zero-traction, it is possible to correctly
decompose the data into one-way fields as well. I have additionally tested the effects
of using erroneous velocities on both the MC and MDL decomposition schemes. For
the considered example, I observed that the downgoing P- and S- fields are correctly
and equally-well resolved in terms of both phase and amplitude. The upgoing P- and
S- fields show leakage of downgoing energy, but the amount of leakage is comparable
for the MC and MDL decomposition schemes. The MDL decomposition scheme
is fully customizable to the acquisition geometry and measured field quantities un-
der consideration. Depending on the acquisition design and wave velocities under
consideration, notches may occur at certain frequencies, causing the customizable
MDL composition matrix to become uninvertible. Additional notch filters are then
required. I also presented a way of combining the MC and MDL decomposition
schemes: by adding an extra equation of the MDL decomposition scheme to the MC
composition matrix, it is possible to overdetermine the inverse problem and hereby
better constrain the inversion. I have tested this approach on a field data set, clearly
showing improvements in the obtained one-way flux-normalized fields, compared to
the results obtained using an MC decomposition scheme.

Finally, moving towards inversion, I have carried out two electromagnetic and one
seismo-electromagnetic sensitivity analysis, using three examples modeled with ES-
SEMOD. I have tested the approach on an example using single-component, single-
frequency electromagnetic line-data for a conductivity point perturbation in a homo-
geneous isotropic half-space background medium. I successfully validated this result
by comparing it with the literature results based on explicit analytical homogeneous-
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space Green’s function solutions. I then used ESSEMOD to study the EM resolution
functions in a layered background medium containing a highly conductive layer. I
have shown that the single-component electromagnetic data still provide the ne-
cessary resolution to resolve a point conductivity scatterer, located either above or
below a highly conductive layer. However, when the scatterers are located below the
highly conductive layer, the resolution severely decreases. Finally, for the case of
multi-component coupled seismo-electromagnetic data in a homogeneous isotropic
half-space background model, I have successfully computed a resolution function for
a single point perturbation in bulk density. I can conclude that the coupled seismo-
electromagnetic system is sensitive to this perturbation and that its position can be
correctly recovered.

7.2 Outlook

The coupled seismo-electromagnetic phenomenon is an extremely interesting phys-
ical phenomenon, with a lot of proven and potential applications. However, more
than 20-years have passed since Pride (1994) formulated the theoretical framework
to describe the seismo-electromagnetic phenomenon, which forms one of the import-
ant pillars on which many present-day seismo-electromagnetic research leans. The
research has focused on understanding the method, its potential applications, and
trying to apply the method as a geophysical technique in the field. The major chal-
lenge of the method is the very weak signal strength of the converted fields that we
are after. In my opinion, if you cannot measure the fields, or the fields are masked
by noise levels, the method is practically useless.

So it should be our top-priority to find a solution for the challenge of non-
measurability of seismo-electromagnetic signals that are too weak. I believe that
in order to make the method a true success for a wide variety of applications, it is
required to first come up with an idea to really boost the seismo-electromagnetic
conversion, such that more of the converted signals lie in the dynamic range of the
geophones (Ongkiehong & Huizer, 1987; Barzilai et al., 1998; Mougenot, 2004). In
addition, successful laboratory and mainly also field experiments need to be carried
out to test the method and bring seismo-electromagnetics to the next level. In Sec-
tion 6.3, I have highlighted a few promising applications of seismo-electromagnetic
phenomena. Especially borehole applications are offering a great potential, and part
of the research should focus in that direction.

Once the signals are measurable by the physical devices, studies to improve the
signal-to-noise ratio of the signals, as well as additional data processing and filtering
techniques, can come into play. As an example, stacking active and passive sources
via the principle of interferometry over long periods of time could potentially enhance
the signal-to-noise ratio of the converted fields.

Additionally, it is still unclear how sensitive the seismo-electromagnetic conver-
sion is to high-value parameters like permeability and porosity, and also for which
parameters we can actually invert. I believe that in the future, due to better meas-
uring devices, as well as more control on the source-side of the acquisition scenarios,
we will be increasingly capable of obtaining clear seismo-electromagnetic signals in
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our records. The big question is then, what is the optimal information that we can
retrieve from these signals, and what are the optimal scientific areas to apply this
method effectively? For exploration, monitoring, Earthquake early-warning systems,
hydrogeophysics, or perhaps medical imaging? In my view, future research on the
seismo-electromagnetic phenomenon should mainly focus on the above mentioned
aspects.
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Zhu, Z., & Toksöz, M. N. 2005. Seismoelectric and seismomagnetic measurements
in fractured borehole models. Geophysics, 70, F45–F51.
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Summary

Coupled Poroelastic Waves and Electromagnetic
Fields in Layered Media

Theory, Modeling, and Interferometric Synthesis

In this thesis, I study coupled poroelastic waves and electromagnetic fields in
layered media. The focus is two-fold:

1. Increase the theoretical and physical understanding of the seismo-
electromagnetic phenomenon by analytically-based numerical modeling.

2. Investigate the potential of seismo-electromagnetic interferometry.

After presenting the governing equations that form the basis of the theoretical frame-
work, I capture this system into a matrix-vector representation of the wave equation.
I first use literature eigenvector sets, which I normalize with respect to power-flux.
I then derive new, alternative power-flux normalized eigenvector sets that I prove
to be numerically more stable and accurate. The eigenvector sets form the basis
of the analytically-based numerical modeling code ‘ESSEMOD’ that I developed to
model seismo-electromagnetic wave/field propagation/diffusion in layered-Earth me-
dia. The alternative eigenvector set models scenarios with no seismo-electromagnetic
coupling correctly, where the literature eigenvector sets fail. In addition, the altern-
ative set properly deals with scenarios where both small amplitude signals and large
amplitude signals occur in the record, whereas the literature eigenvector sets result
in noise levels masking the small events. The same holds for scenarios with a small
seismo-electromagnetic coupling coefficient. I design an effective global reflection
scheme that properly describes the primary and multiple reflections in the models.
I implement the correct boundary conditions to account for scenarios with a free-
surface, and also for scenarios containing fluid/porous medium/fluid transitions. To
transform all the seismo-electromagnetic source-receiver combinations in a numer-
ically effective way back from the horizontal wavenumber-frequency domain to the
space-frequency domain, I derive and implement explicit Fourier-Bessel transforma-
tions.

I then validate the developed modeling code in numerous ways. First of all, I com-
pare the results of seismo-EM layer-code modeling in a homogeneous medium with
explicit homogeneous space Green’s function expressions. This comparison provides
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a clear validation that the layer-code models the dynamic responses in homogeneous
scenarios correctly. Next, I check numerical consistency by carrying out reciprocity
checks. I study homogeneous space models, models containing a free-surface and
models with interfaces. As a next step, I validate the modeling results of seismo-EM
layer-code modeling for typical seismo-electromagnetic laboratory configurations,
i.e. models containing fluid/porous medium/fluid transitions. I first compare the
purely electromagnetic part of the seismo-EM layer-code with an independently de-
veloped purely electromagnetic layered-Earth code. The results match perfectly in
both phase and amplitude for full transmission and pure reflection experiments, as
well as for a combination of both. I then carry out a seismo-electromagnetic recipro-
city test for a fluid halfspace overlying a porous medium halfspace, proving that the
coupled poroelastic and electromagnetic fields are modeled consistently and yield
the expected results. As a final validation step, I compare ESSEMOD with an in-
dependently developed seismo-electromagnetic layered-Earth modeling code. The
results display an almost perfect match in both phase and relative amplitudes, and
a constant amplitude correction factor of 4 needs to be applied to let the absolute
amplitudes match.

I then carry out a small feasibility test to study the potential of the seismo-
electromagnetic effect for exploration purposes. I investigate different source-receiver
combinations for the same model, and focus on the signal strength recorded at dif-
ferent distances from the target depth level. I conclude that for the source-receiver
combinations studied, the electric field due to a volume injection monopole source,
as well as the magnetic field due to a seismic bulk force source, yield the strongest
converted signals. The receiver-distance from the target of interest plays an im-
portant role in the signal measurability. The closer the receivers to the target, the
higher the signal strengths. However, when the receivers are located too close to the
target, the coseismic reflected fields can mask the interface response fields that we
are mainly interested in.

Next, I study if nature itself can help us to overcome the very low signal-to-
noise ratio of seismo-electromagnetic converted fields, by investigating the effects of
thin-bed geological structures on the seismo-electromagnetic signal. To investigate
the effects of bed-thinning on the seismo-electromagnetic interference patterns, I
numerically simulate seismo-electromagnetic wave propagation through horizontally
layered media with different amounts and thicknesses of thin-beds. I demonstrate
seismo-electromagnetic sensitivity to changes in medium parameters on a spatial
scale much smaller than the seismic resolution. By simulating moving oil/water
contacts during production, where the oil layer is gradually being thinned, seismo-
electromagnetic signals are proven very sensitive to oil/water contacts.

I now explore the application of interferometric techniques to the seismo-
electromagnetic system, which might eventually lead to an improved signal-to-noise
ratio of the weak converted fields. I derive the theory for interferometric retrieval of
2D SH-TE seismo-electromagnetic Green’s functions. Using both a circular source
configuration and a line source configuration, I show that it is possible to correctly
retrieve the dynamic seismo-electromagnetic 2D SH-TE response in a homogeneous
medium, using seismic boundary sources only. Using seismo-EM layer-code data, I
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then show that it is also possible to correctly retrieve the direct shear wave-related
causal coseismic field in a homogeneous medium, in both phase and amplitude.
To obtain a perfect match in absolute amplitudes, I apply a single linear scaling
factor. I finally carry out interferometric experiments in a model containing a single
interface at 800 m depth, proving that it is possible to correctly retrieve all 2D SH-
TE causal seismic-related direct and reflected coseismic fields, as well as interface
response fields, by cross-correlation interferometry, using seismic boundary sources
only. These results are promising for the application of 3D seismo-electromagnetic
interferometry using seismo-EM layer-code modeling, and later on, in the field.

Next, I present an alternative way to effectively decompose fields into their up-
and downgoing components and different field types, using recordings at multiple
depth levels. I present the theory of this MDL decomposition scheme, followed by
successful decomposition of synthetic elastodynamic data sets. I additionally study
the implications of laterally-varying media on the horizontal wavenumber-frequency
domain MDL decomposition scheme. I demonstrate successful decomposition, us-
ing an acoustic approximation and applying a combined multi-component / MDL
decomposition approach, of a field data set recorded in Annerveen, in the North of
the Netherlands. I address how to effectively use the MDL decomposition scheme in
a unified fashion, applied to all wave phenomena including seismo-electromagnetic
phenomena.

I then make a step towards seismo-electromagnetic inversion, presenting an ef-
fective way to carry out a seismo-electromagnetic sensitivity analysis using resolution
functions. I start by explaining the theory of resolution functions using a seismo-
electromagnetic example. I define the seismo-electromagnetic resolution function
for inversion for a bulk density perturbation. I demonstrate the effectiveness of
this method by first carrying out a purely electromagnetic sensitivity analysis for a
point perturbation in conductivity, located in an isotropic homogeneous half-space.
These results are compared with literature results based on analytical homogen-
eous space Green’s function expressions. The result using the seismo-EM layer-code
is nearly identical to the literature result. The position of the scatterer is cor-
rectly resolved. At the end of this section, I present the results of the fully-coupled
seismo-electromagnetic senstivity analysis for a bulk density contrast for a specific
source-receiver combination, using single-frequency multi-component line data. I
show that the coupled seismo-electromagnetic system is sensitive to a perturbation
in bulk density and that the position of the perturbation can be correctly recovered.

I finalize this thesis by discussing potential seismo-electromagnetic applications,
as well as by providing a brief outlook for future research.



Samenvatting

Gekoppelde Poroelastische Golven en
Elektromagnetische Velden in Gelaagde Media

Theorie, Modellering, en Interferometrische Synthese

In dit proefschrift onderzoek ik gekoppelde poroelastische golven en elektromag-
netische velden in gelaagde media. Het doel van het onderzoek is twee-ledig:

1. Het vergroten van het theoretische en fysische begrip van het seismo-
elektromagnetische fenomeen door gebruik te maken van analytisch-gebaseerde
numerieke modellering.

2. Het onderzoeken van de potentie van seismo-elektromagnetische interferomet-
rie.

Nadat ik de systeem vergelijkingen heb gepresenteerd die de basis vormen voor het
theoretische raamwerk, beschrijf ik dit systeem door middel van een matrix-vector
representatie van de golfvergelijking. Ik maak eerst gebruik van eigenvector sets uit
de literatuur, op welke ik een power-flux normalisatie toepas. Daarna leid ik nieuwe,
alternatieve power-flux genormaliseerde eigenvector sets af, waarvan ik bewijs dat
ze numeriek stabieler en preciezer zijn. De eigenvector sets vormen de basis voor de
analytisch-gebaseerde numerieke modelleringscode ‘ESSEMOD’, welke ik ontwikkeld
heb om seismo-elektromagnetische golf propagatie / veld diffusie te modelleren in
gelaagde-Aarde modellen. Scenario’s waar geen seismo-elektromagnetische koppel-
ing optreedt, worden correct gemodelleerd door de alternatieve eigenvector sets, daar
waar de eigenvector sets uit de literatuur te kort schieten.

Situaties waar in de opnames zowel signalen van kleine amplitude als signalen van
grote amplitude voorkomen, worden op een correcte manier gemodelleerd door de al-
ternatieve eigenvector set, terwijl de literatuur eigenvector sets resultaten opleveren
waar de kleine amplitude signalen worden bedekt door de ruis niveaus. Hetzelfde
geldt voor scenario’s met een kleine seismo-elektromagnetische koppelingscoëfficient.
Ik ontwikkel een effectief globaal reflectie schema, dat zowel de primaire reflecties
als de meervoudige reflecties in de modellen op een correcte manier beschrijft. Om
scenario’s met een vrij-oppervlak te beschrijven, alsmede scenario’s die overgangen
bevatten in de vorm vloeistof / poreus medium / vloeistof, heb ik de juiste randvoor-
waarden gëımplementeerd. Ik leid expliciete Fourier-Bessel transformaties af en im-
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plementeer deze in de gelaagde-Aarde code, om alle seismo-elektromagnetische bron-
ontvanger combinaties op een numeriek gezien effectieve manier te transformeren van
het horizontale golfgetal-frequentie domein naar het ruimte-frequentie domein.

Vervolgens valideer ik de ontwikkelde modelleringscode op verscheidene manieren.
Allereerst vergelijk ik de resultaten van ESSEMOD voor een homogeen medium met
expliciete homogene-ruimte Greense functie uitdrukkingen. Deze vergelijking toont
aan dat de gelaagde-Aarde modelleringscode de dynamische velden in homogene
situaties correct modelleert. Vervolgens controleer ik de numerieke consistentie door
het uitvoeren van reciprociteitstesten. Ik bestudeer homogene modellen, modellen
met een vrij-oppervlak en modellen met lagen. Daarna valideer ik de modeller-
ingsresultaten van de gelaagde-Aarde code voor typische seismo-elektromagnetische
laboratorium configuraties, dat wil zeggen, voor modellen die overgangen bevat-
ten in de vorm vloeistof / poreus medium / vloeistof. Ik vergelijk allereerst het
pure elektromagnetische deel van de seismo-EM gelaagde-Aarde code met een on-
afhankelijk ontwikkelde, pure elektromagnetische gelaagde-Aarde code. De res-
ultaten komen perfect overeen in zowel fase als amplitude, voor volledige trans-
missie en pure reflectie experimenten, alsmede voor een combinatie van die twee
experimenten. Vervolgens voer ik een seismo-elektromagnetische reciprociteitstest
uit voor een vloeistof halfruimte boven een halfruimte bestaande uit een poreus me-
dium, waarmee ik bewijs dat de gekoppelde poroelastische en elektromagnetische
velden consistent gemodelleerd worden en de verwachtte resultaten opleveren. Als
laatste validatie stap, vergelijk ik ESSEMOD met een onafhankelijk ontwikkelde
seismo-elektromagnetische gelaagde-Aarde modelleringscode. De resultaten laten
een bijna perfecte overeenstemming in zowel fase als relatieve amplitude zien, en
tonen ook aan dat een constante amplitude correctie factor van 4 nodig is om de
absolute amplitudes met elkaar te laten overeenstemmen.

Hierna voer ik een kleine test uit om de potentie van het seismo-elektromagnetische
effect voor exploratie doeleinden te bestuderen. Ik onderzoek verschillende bron-
ontvanger combinaties voor hetzelfde model, en richt mijn aandacht op de signaal-
sterkte zoals die wordt gemeten op verschillende afstanden van de diepte van het
gebied van interesse. Ik concludeer dat, van de bron-ontvanger combinaties die ik
bestudeerd heb, het elektrische veld ten gevolge van een volume-injectie monopool
bron, alsmede het magnetische veld ten gevolge van een seismische bulk krachtbron,
de sterkste geconverteerde signalen opleveren. De ontvanger afstand tot het gebied
van interesse speelt een belangrijke rol bij de signaal meetbaarheid. Echter, als de
ontvangers te dicht bij het gebied van interesse geplaatst worden, worden de velden
die gegenereerd worden door de laag-contrasten, en die onze prioriteit hebben, bedekt
door de coseismische gereflecteerde velden.

Daarna bestudeer ik of de natuur zelf kan helpen om het probleem van de zwakke
signaal-ruis verhouding van de seismo-elektromagnetisch geconverteerde velden op
te lossen. Ik doe dit door de effecten van geologische structuren, die bestaan
uit pakketten van dunne-lagen, op de seismo-elektromagnetische signalen te on-
derzoeken. Om de effecten van dunner-wordende lagen op de seismo-
elektromagnetische interferentie patronen te bestuderen, simuleer ik seismo-
elektromagnetische golf propagatie door horizontaal-gelaagde media die verschil-
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lende aantallen en diktes aan dunne lagen bevatten. Ik demonstreer dat de seismo-
elektromagnetische signalen een gevoeligheid voor veranderingen in de medium ei-
genschappen hebben op een spatiële schaal die veel kleiner is dan de seismische
resolutie. Ik bewijs dat seismo-elektromagnetische signalen erg gevoelig zijn voor
olie/water contacten, door bewegende olie/water contacten ten gevolge van pro-
ductie te simuleren, waarbij de olie laag langzaam dunner wordt.

Vervolgens bestudeer ik de toepassing van interferometrische technieken op het
seismo-elektromagnetische systeem, wat uiteindelijk mogelijkerwijs kan leiden tot
een verbeterde signaal-ruis verhouding van de zwakke, geconverteerde velden. Ik leid
de theorie af voor het verkrijgen van 2D SH-TE seismo-elektromagnetische Greense
functies via interferometrie. Door gebruik te maken van zowel een bron configur-
atie op een cirkel, alsmede een bron configuratie op een lijn, laat ik zien dat de
dynamische seismo-elektromagnetische 2D SH-TE signalen correct kunnen worden
verkregen in een homogeen medium, door slechts gebruik te maken van seismische
bronnen. Vervolgens, door gebruik te maken van data gegenereerd met de seismo-
EM gelaagde-Aarde code, laat ik zien dat wederom het directe schuifgolf-gerelateerde
causale coseismische veld in een homogeen medium correct kan worden verkregen, in
termen van zowel fase als amplitude. Om een perfecte overeenstemming te verkrijgen
in termen van absolute amplitude, wordt een enkele lineaire schalingsfactor toege-
past. Hierna, voer ik interferometrische experimenten uit in een model dat een
enkel contrast bevat op 800 m diepte, waarmee ik bewijs dat alle 2D SH-TE causale
seismisch-gerelateerde directe en gereflecteerde coseismische velden door middel van
interferometrie door kruiscorrelatie kunnen worden verkregen, alsmede de geconver-
teerde velden die gerelateerd zijn aan het contrast. Hiervoor hoeft slechts gebruik
gemaakt te worden van seismische bronnen. Deze resultaten zijn veelbelovend voor
de toepassing van 3D seismo-elektromagnetische interferometrie op data gegenereerd
door de seismo-EM gelaagde-Aarde code, en later, op veld data.

Ik presenteer vervolgens een alternatieve manier om velden op een effectieve
manier te scheiden in hun op- en neergaande componenten en in de verschillende
veld-types, waarbij ik gebruik maak van opnames op verschillende diepte niveaus.
Ik beschrijf de theorie van dit MDL decompositie schema, gevolgd door een demon-
stratie van een succesvolle decompositie van synthetische, elastodynamische data
sets. Ik bestudeer ook de effecten van lateraal-variërende media op ons MDL decom-
positie schema welke geformuleerd is in het horizontale golfgetal-frequentie domein.
Ik laat een succesvolle decompositie zien van een veld data set die is verkregen in
Annerveen, in het noorden van Nederland. Hierbij maak ik gebruik van een akoes-
tische benadering en een gecombineerd multi-componenten / MDL decompositie
schema. Ik beschrijf ook hoe het MDL decompositie schema op een effectieve en
uniforme manier te gebruiken, dat wil zeggen dat het schema toepasbaar is op alle
golf fenomenen, inclusief het seismo-elektromagnetische fenomeen.

Hierna maak ik een stap in de richting van seismo-elektromagnetische inversie,
waar ik een effectieve manier demonstreer om een seismo-elektromagnetische gevoe-
ligheidsstudie uit te voeren, gebruikmakend van resolutiefuncties. Ik begin met een
uitleg van de resolutiefunctie theorie, gebruikmakend van een seismo-
elektromagnetisch voorbeeld. Ik definieer een seismo-elektromagnetische resolutie-
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functie voor inversie voor een perturbatie in de bulk-dichtheid van het medium. Ik
demonstreer de effectiviteit van deze methode door allereerst een pure elektromag-
netische gevoeligheidsanalyse uit te voeren voor een puntperturbatie in conductiv-
iteit, die zich in een isotrope, homogene halfruimte bevindt. Deze resultaten vergelijk
ik met resultaten uit de literatuur die gebaseerd zijn op analytische homogene-ruimte
Greense functie uitdrukkingen. De resultaten die zijn gebaseerd op de seismo-EM
gelaagde-Aarde code zijn vrijwel identiek aan de resultaten uit de literatuur. De
positie van de verstrooiier wordt correct bepaald. Aan het einde van dit hoofdstuk,
presenteer ik de resultaten voor de volledig gekoppelde seismo-elektromagnetische
gevoeligheidsanalyse voor een contrast in de bulk dichtheid. Ik laat dit zien voor
een specifieke bron-ontvanger combinatie, gebruikmakend van multi-componenten
lijn data voor een enkele frequentie. Ik toon aan dat het gekoppelde seismo-
elektromagnetische systeem gevoelig is voor een verstoring in de bulk dichtheid, en
dat de positie van de perturbatie correct bepaald kan worden.

Ik eindig dit proefschrift met een beschrijving van mogelijke seismo-
elektromagnetische toepassingen, alsmede met een korte vooruitblik op toekomstig
onderzoek.
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for organizing wonderful science days and great coordination of outreach activities.
Furthermore, I want to thank Joost van Meel and Guus Lohlefink for continuous and
effective computational hardware support. Guus, I still remember how you tried to
help me out remotely, late in the evening, while I was sitting in my hotelroom in
Vienna, and you were persistently trying to add the hotel IP-address to the safe list
of our cluster, in order for me to be able to still run some modeling experiments.
Your support was indispensable for this work.

Besides my colleagues at Delft University of Technology, colleagues from all over
the world have contributed to this thesis. I want to highlight a few of these precious
people here. First of all, my sincerest gratitude goes out to André Revil. André,
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