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Abstract

Lagrangian analysis is a powerful way to analyse the output of ocean cir-
culation models and other ocean velocity data such as from altimetry. In
the Lagrangian approach, large sets of virtual particles are integrated within
the three-dimensional, time-evolving velocity fields. Over several decades,
a variety of tools and methods for this purpose have emerged. Here, we
review the state of the art in the field of Lagrangian analysis of ocean velocity
data, starting from a fundamental kinematic framework and with a focus on
large-scale open ocean applications. Beyond the use of explicit velocity fields,
we consider the influence of unresolved physics and dynamics on particle
trajectories. We comprehensively list and discuss the tools currently avail-
able for tracking virtual particles. We then showcase some of the innovative
applications of trajectory data, and conclude with some open questions and
an outlook. The overall goal of this review paper is to reconcile some of
the different techniques and methods in Lagrangian ocean analysis, while
recognising the rich diversity of codes that have and continue to emerge, and
the challenges of the coming age of petascale computing.

Key words: Ocean circulation, Lagrangian analysis, Connectivity, Particle
tracking, Future modeling
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1. Introduction1

The ocean exhibits a huge range of dynamical motions, spanning scales2

from millimeters to thousands of kilometers. As seawater moves, each fluid3

particle carries tracers such as salt, nutrients, heat, as well as particulate4

matter such as plankton and marine debris. For various theoretical and5

practical applications, we are interested in how water moves between ocean6

regions. That is, we are interested in mapping out pathways of seawater7

motion, since the transport of seawater and its tracer content, as well as the8

pathways and timescales for that transport, are key facets in how the ocean9

plays a role in climate and marine ecology.10

1.1. Estimating pathways11

There are two general methods for estimating pathways in the ocean. One12

method makes use of tracers, such as the multitude of age tracers described13

by Mouchet et al. (2016) and references therein. Tracer studies are well suited14

for Eulerian methods, which make direct use of ocean velocity fields on their15

native grids.16

The second approach makes exclusive use of the Lagrangian perspective17

of fluid dynamics (e.g., Bennett, 2006). This method employs an ensemble of18

virtual (passive) Lagrangian particles of zero spatial extent whose trajectories19
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are determined by the velocity field.1 The velocity fields that are used to20

move the particles often come from OGCMs, although there are interesting21

application using observational-based velocities such as surface geostrophic22

velocities based on satellite altimetry (e.g. d’Ovidio et al., 2009; Klocker and23

Abernathey, 2014), or measured by high frequency (HF) radar (e.g. Ullman24

et al., 2006).25

Trajectories for virtual particles map out pathlines of the velocity field,26

often including the effect of subgrid scale diffusion. Statistics of the trajectories27

then define particle pathways and their associated time scales. By following28

the flow of virtual particles, and possibly assigning non-zero transports and29

other properties to them in post-processing, questions about pathways and30

flow connectivity can be addressed.31

This review focuses on Lagrangian analysis methods facilitated by virtual32

particles in the open ocean. We are partly motivated by the growing array33

of floating instruments in the ocean along with the improving Lagrangian34

simulation capabilities. There is a corresponding need to review the methods35

and foster new ideas for extracting information about the ocean circulation36

from the entangled trajectories of floats and/or simulated particles. We37

thus aim to summarize the state of the science in Lagrangian modelling and38

analysis, focussing on the large scale open ocean circulation, hoping to support39

a new generation of scientists contributing to the development and use of the40

methods.41

Our presentation is aimed at graduate students, though any large-scale42

oceanographer or mathematician with an interest in virtual particle analysis43

could use this paper as a starting point. In that sense, this paper is intended44

as an accompanying paper to Griffies et al. (2000), which provided an intro-45

duction to primitive equation ocean models and to Ådlandsvik et al. (2009),46

which gave an overview of Lagrangian modelling practice from a marine47

biology perspective.48

1.2. Overview of Lagrangian ocean analysis49

Observationalists have been tracking the ocean in a Lagrangian fashion50

since the very early ages of oceanography. Movements of the currents were51

documented using either ship drift or the drift of purposely built (subsurface)52

1Lagrangian particles are also sometimes called ‘e-floats’ by, for example, Bower et al.
(2009).
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Figure 1: Map of all the Southern Ocean observational Lagrangian surface drifters in the
NOAA GDP Data Set (Lumpkin and Pazos, 2007). Each drifter is geo-located every 6
hours and has a randomly assigned colour.

floats (e.g., Swift and Riser, 1994). Many observations remain inherently53

Lagrangian, such as the trajectories of surface drifters shown in Figure 154

(Lumpkin and Pazos, 2007), the subsurface Argo floats (Lebedev et al., 2007;55

Ollitrault and Rannou, 2013), and the tracking of fish larvae (Paris et al.,56

2013a) and turtle hatchlings (Scott et al., 2014).57

Lagrangian analysis through virtual particle tracking within OGCMs began58

in the 1980s, on small-scale structures, with studies on a theoretical box-model59

(Awaji et al., 1980) as well as a model that incorporated hydrographic data60

and realistic topography (Imasato et al., 1980). The Lagrangian framework61

of these small-scale examples was then applied to the velocity-field output62

of basin-scale, three-dimensional numerical experiments. Examples include63

regional deep ocean circulation (Fujio and Imasato, 1991), western boundary64

currents (Imasato and Qiu, 1987), fronts (Pavia and Cushman-Roisin, 1988)65

and gyre transport (Böning and Cox, 1988). Particle trajectories in global66

ocean circulation models, driven by global hydrographic and wind observations,67

were first achieved in the 1990s (Fujio et al., 1992; Döös, 1995; Drijfhout et al.,68

1996; Blanke and Raynaud, 1997).69

In recent years, more than 100 articles per year are published with the70

words ‘Lagrangian Ocean Modelling’ as the topic, according to the Web of71

Science. These papers include studies on the pathways of virtual particles72

that simulate sea water pathways, as well as explicit tracking of tracers such73
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as nutrients (e.g. Chenillat et al., 2015; Jönsson et al., 2011) and particulates74

such as larvae (e.g. Cowen et al., 2006; Paris et al., 2005; Teske et al., 2015;75

Cetina-Heredia et al., 2015; Phelps et al., 2015), plastics (e.g. Lebreton et al.,76

2012), microbes (e.g. Hellweger et al., 2014), planktic foraminifera (e.g. van77

Sebille et al., 2015), jellyfish (e.g. Dawson et al., 2005), icebergs (e.g. Marsh78

et al., 2015), surface drifters (e.g. Kjellsson and Döös, 2012b), oil droplets79

(e.g. Paris et al., 2012), eel (e.g. Baltazar-Soares et al., 2014), pumice (e.g.80

Jutzeler et al., 2014) and many more.81

The ocean circulation covers an enormous range of scales and regions. As82

said above, in this review we focus primarily on applications on the basin83

and global scales. However, it should be noted that there is also extensive84

Lagrangian analysis work done on smaller scales, such as in coastal zones and85

recently in the Gulf of Mexico through interest in dispersion of the DeepWater86

Horizon oil spill (e.g. Beron-Vera and LaCasce, 2016; Haza et al., 2016).87

The Lagrangian framework is not only used to analyse velocity fields by88

computing their integral curves, but also to directly solve for the trajectory89

by casting the equations of motion in a Lagrangian framework (Bennett,90

2006). Lagrangian methods are widely used in engineering, including Discrete91

Element Methods (e.g. Kruggel-Emden et al., 2008) and Smoothed Particle92

Hydrodynamics (e.g. Cummins et al., 2012). While advances in this field93

have been made in large scale oceanography, both for sub-components of94

ocean models (e.g. Bates et al., 2012) and for fully Lagrangian ocean models95

(Haertel and Randall, 2002; Haertel and Fedorov, 2012), this topic is not the96

focus of this review. Instead, we focus on Lagrangian diagnostic methods to97

identify oceanic pathways.98

The Lagrangian framework for analysing pathways is complementary to99

the analysis of tracers. One of the key differences is the computational cost.100

For each time step, movement of a Lagrangian particle takes only one set of101

computations. In contrast, the advection-diffusion of a tracer concentration102

takes N sets of computation, where N is the number of discrete ocean grid103

cells. While one Lagrangian particle trajectory does not allow for meaningful104

analysis of ocean pathways, this comparison does show that the computational105

scaling of the two methods is very different.106

Furthermore, the experimental design is different for tracer and particle107

experiments. Exclusive to particle experiments is that the entire trajectory108

history of the virtual particles can in principle be stored. This history allows109

for a posteriori analysis of ‘connectivity’ between different regions of the ocean110

(e.g., sections 4.5 and 4.6) and ‘conditional statistics’ (e.g. Koszalka et al.,111
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2013b; van Sebille et al., 2013, 2014; von Appen et al., 2014; Gary et al., 2014;112

Durgadoo et al., 2017), where subsets of particles can be analysed that obey113

certain conditions based on their properties. For example, in van Sebille et al.114

(2013), particles in the Southern Ocean were analysed for how often they115

looped around Antarctica in their journey from the Antarctic slope to the116

deep subtropical basins. Such an analysis would be hard to do with tracer117

fields, although the latter has its own advantages, including a more natural118

alignment with the treatment of advection and diffusion within models.119

Finally, another great advantage of Lagrangian particle experiments is120

that particles can be advected, at least in offline mode when velocity fields are121

stored, backwards in time. This reverse-time analysis allows one to investigate122

where water masses found within a model at a certain location come from.123

1.3. Structure of this paper124

This paper is structured as follows. In Section 2 we introduce a kinematic125

framework used for thinking about Lagrangian particles. In Section 3 we detail126

how to compute and interpret Lagrangian particles, including an overview127

of the available Lagrangian diagnostic tools. In Section 4, we highlight128

applications of how virtual particle trajectories can be analysed to reveal129

quantitative and qualitative information about the flow. In Section 5, we130

conclude the main part of the paper with future outlooks. A selection of131

appendices then provide examples and detailed discussion of topics introduced132

earlier in the paper, as well as brief descriptions of the different numerical133

codes introduced in Section 3.134

2. Kinematic framework135

We here introduce a kinematic framework to describe fluid motions. The136

ideas are fundamental to how we make use of both Eulerian and Lagrangian137

methods for analyzing ocean circulation. We make connections to Lagrangian138

analysis methods, though reserve algorithmic details for later sections.139

2.1. Lagrangian and Eulerian reference frames140

A Lagrangian kinematic approach is based on a description of the fluid in a141

reference frame that is moving with an infinitesimal fluid particle (equivalently142

a “fluid parcel”). Fluid motion is thus the accumulation of continuum particle143

motion. The fluid particle framework that forms the basis for Lagrangian144

kinematics offers a powerful conceptual picture of fluid motion (e.g., Salmon,145
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1998; Bennett, 2006), with this picture taken as the basis for Lagrangian146

methods of analysis.147

Eulerian kinematics is a complement to Lagrangian kinematics. The148

Eulerian approach is based on describing fluid motion in a reference frame149

that is fixed in space. Eulerian kinematics is the basis for most numerical150

ocean circulation models, in which the horizontal position of grid cells is151

held fixed in time2. Quite generally, the technical aim of Lagrangian ocean152

analysis is to estimate the trajectory of virtual fluid particles by making use153

of Eulerian fluid information, i.e., the velocity field.154

2.2. Trajectories or material pathlines155

The motion of a classical point particle is described by knowledge of its156

position vector, X(t), which provides the position of the particle at time157

t. As the particle moves, it traces out a curve in space referred to as a158

trajectory. When describing N discrete particles, we add a discrete label159

to each of the particle positions, X(n)(t). For continuum matter, such as160

seawater, the discrete label n becomes a continuous vector, X(a, t), with161

a = X(t = t0) a common (though not necessary) choice. In general, the label162

vector, a, is referred to as the material coordinate (e.g., Salmon, 1998), since163

this coordinate distinguishes between infinitesimal particles comprising the164

continuum.165

A fluid particle is conceived of as a microscopically large collection of166

many molecules, whose velocity is formally determined as a mass weighted167

mean of the velocity of the individual molecules (i.e., barycentric velocity168

as defined in Section II.2 of DeGroot and Mazur (1984) and Section 1.9 of169

Salmon (1998)). Alternatively, by making the continuum hypothesis, we170

dispense with molecular degrees of freedom, so that a particle is considered171

a macroscopically small material fluid volume, treated as a mathematical172

continuum and labelled by the material coordinate a. For an incompressible173

fluid, the fluid particle has constant volume; however, its constituents do174

not remain fixed, as they are generally exchanged with adjacent particles175

through mixing, thus changing the particle’s tracer content (e.g., water, salt,176

2The top and bottom faces of grid cells are generally moving, since the general vertical
coordinates defining these surfaces need not be static. For example, these cell faces may
be defined according to constant pressure, constant potential density, or constant rescaled
ocean depth.
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nutrients), as well as altering its heat, all the while maintaining a constant177

volume.178

The velocity of a fluid particle is the time derivative of the trajectory,179

computed with the material coordinate held fixed. The mathematical connec-180

tion between Lagrangian and Eulerian descriptions is enabled by equating the181

particle velocity crossing a point in space, X(a, t) = x, to the fluid velocity182

field at that point183 (
∂X(a, t)

∂t

)
a

= v(x, t) where X(a, t) = x. (1)

The relation (1) provides a starting point for Lagrangian fluid analysis. Note184

that the resulting fluid particle trajectories are sometimes called material185

pathlines in the fluid mechanics literature (e.g., Aris, 1962; Batchelor, 1967).186

2.3. The material time derivative without trajectories187

A kinematic description requires time changes of an arbitrary function, Ψ,188

evaluated along trajectories, Ψ[X(a, t), t]. Use of the chain rule leads to189

∂Ψ[X(a, t), t]

∂t
=

[(
∂

∂t

)
x

+ v[X(a, t), t] · ∇
]

Ψ[X(a, t), t]. (2)

Note that, when trajectories are dispensed with (as in the Eulerian descrip-190

tion), we recover the more succinct expression for the material time derivative191

DΨ(x, t)

Dt
=

(
∂

∂t
+ v(x, t) · ∇

)
Ψ(x, t), (3)

where all expressions on the right hand side are taken with respect to the fixed192

Eulerian reference frame.3 The symbol D is commonly used to distinguish193

the material time derivative from a more general time derivative that is not194

necessarily following a material fluid particle. To illustrate this formalism,195

consider Ψ(x, t) = x. In this case, the material time derivative is given by196

the velocity field at that point197

Dx

Dt
= v(x, t). (4)

3An alternative derivation of equation (3), which is arguably more straightforward
mathematically, dispenses with trajectories from the start, in which case we express the
total differential of a function as dΨ(x, t) = dt ∂tΨ + dx · ∇Ψ. Specifying the spatial
increment to correspond to movement of a fluid particle, dx = v(x, t) dt, leads to equation
(3). We prefer the derivation using particle trajectories, as it exposes the relation between
Lagrangian and Eulerian reference frames.
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2.4. Steady-state volume transport pathways defined by streamtubes198

Within Lagrangian Ocean Analysis, there is a long history of interpreting199

particle trajectories as streamtubes, and using this interpretation to compute200

volume transports (Döös, 1995; Blanke and Raynaud, 1997, see also section201

3.2.3). Formally, the equivalence between streamtubes and material pathways202

is only valid for steady-state flows (i.e. where the flow is constant in time).203

Originally, the streamtube calculations were indeed performed on time-mean,204

steady-state velocity fields, but they were soon extended to time-varying205

flows, for example by assuming piecewise steady flow (Blanke and Raynaud,206

1997, cf. Section 3.2.3). Over the last two decades, however, the approach has207

been widely used in studies of large-scale ocean transports (see e.g. section208

4.5), justifying a discussion of the mathematical underpinning of streamtubes209

for steady-state flows here in this review manuscript.210

The ocean is a nearly incompressible fluid. Thus, for this review we211

consider an incompressible (Boussinesq) fluid, which means that the velocity212

field is non-divergent213

∇ · v = 0. (5)

Consequently, the volume of a material fluid particle remains constant (i.e.,214

it is incompressible).215

A streamtube is a bundle of streamlines, so that streamtube sides are216

parallel to the velocity (see e.g. Figure 3.6 in Kundu et al., 2012)4. For a217

steady flow, streamlines are equivalent to material pathlines, in which case218

streamtubes are material tubes. It is for the steady case that we can make use219

of streamtubes to map out volume transport pathways in an incompressible220

fluid. We see this property by integrating the non-divergence constraint,221

equation (5), over the streamtube, and making use of Gauss’s Law. Doing so222

reveals that volume transport (volume per time) through the two streamtube223

ends balances exactly224 ∫
A1

v · n̂ dA+

∫
A2

v · n̂ dA = 0, (6)

where n̂ is the outward normal at the respective end, and dA the corresponding225

area. By construction, v · n̂ = 0 on the streamtube sides, so the sides do226

not contribute to the balance in equation (6). Hence, the volume transport227

4One may think of streamtubes as the “communication cable lines” within an incom-
pressible fluid, transmitting volume signals within a steady flow.
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entering one streamtube end equals to that leaving the other end. Furthermore,228

the area of the streamtube is inversely proportional to the local normal velocity.229

The transport constraint (6) holds regardless of whether there is diffusive230

tracer mixing in the Boussinesq fluid. It follows from the non-divergence231

property of the velocity field in an incompressible fluid. However, in the232

presence of diffusive tracer mixing, the actual material entering one end of233

the streamtube is not necessarily the same as the material exiting the other234

end (see also Section 2.5).235

The above properties make streamtubes useful for understanding the236

circulation in a steady incompressible fluid. In particular, they provide237

the mathematical basis for Lagrangian analysis methods that tag particles238

with volume transport (e.g. Eckart, 1948; Welander, 1955). The aggregated239

integral curves for such particles define a probability density function (PDF)240

for volume transport pathways. In the continuum and under the assumption241

of a steady flow field, volume transport pathways deduced from streamtubes242

are identical to pathways deduced from particle trajectories determined by243

time stepping equation (1).244

We can make use of the volume transport information carried by stream-245

tubes for Lagrangian analysis. To do so, define the starting point for a246

streamtube by assigning a volume transport to each particle. The assigned247

volume transport is directly proportional to the transport crossing the grid cell248

face where the particle is initialized. In principle, we can fill a non-divergent249

flow field without void between streamtubes. Consequently, we can compute250

streamtube derived volume transport pathways whether the flow is laminar251

or turbulent. However, turbulent flow generally requires more streamtubes252

to develop robust statistics for the transport pathways, and also requires253

that the flow is assumed piecewise steady (see also section 3.2.3), as for any254

transient flow, steady-state streamlines lose their equivalence to pathlines.255

2.5. An introduction to tracer transport pathways256

A finite-size material seawater parcel is comprised of fresh water and257

tracers of other matter, such as salts and biogeochemical components5. Tracer258

concentration, C, measures the mass of tracer per parcel mass. The velocity259

5Conservative temperature can also be considered as the concentration of heat in a
parcel. The reason is that, to a very good approximation, Conservative Temperature
satisfies a source-free tracer equation analogous to salinity (McDougall, 2003; Graham and
McDougall, 2013).
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considered in fluid mechanics is the barycentric velocity (section 2.2), so260

that the mass (or volume for a Boussinesq fluid) of a material fluid parcel261

is constant. However, the mass of each trace constituent is not materially262

constant, since tracers are exchanged between parcels through mixing in the263

presence of concentration gradients. Since the small-scale motions that govern264

this mixing are hardly ever resolved in OGCMs, the effect of tracer mixing265

has to be represented as (resolution-dependent) diffusive transports based on266

mean distributions.267

In Section 2.4, we defined volume transport pathways according to stream-268

tubes in a steady flow. Here, we introduce transport pathways defined by269

trace constituents. In the presence of diffusive tracer mixing, tracer and270

volume transport pathways are distinct. The machinery of stochastic differ-271

ential equations (SDEs) is required to compute tracer transport pathways,272

with details deferred to Section 3.3. Our purpose here is to anticipate that273

discussion by introducing various forms of the tracer concentration equation.274

In so doing, we also introduce the residual mean velocity.275

2.5.1. The tracer equation with subgrid scale transport276

Molecular diffusion as well as turbulent subgrid scale transport processes277

give rise to irreversible (diffusive) transport as well as reversible (advective278

or skew diffusive) transport. Mathematically, we express the subgrid scale279

tracer transport through a transport tensor, J . The corresponding tracer280

concentration equation takes the form6
281 (

∂

∂t
+ v · ∇

)
C = ∇ · (J · ∇C), (7)

where the transport tensor J has units of squared length per time. It is282

convenient to split the transport tensor into the sum of a symmetric and283

anti-symmetric tensor284

J = K + A. (8)

The symmetric tensor, K, has components satisfying7
285

Kij = Kji. (9)

6We assume a Boussinesq fluid when writing the tracer equation (7).
7We make use of Cartesian tensors throughout this review, with results generalizable to

arbitrary coordinates.
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This tensor corresponds to diffusion so long as it is positive definite. The286

anti-symmetric tensor, A, corresponds to skew diffusion or equivalently to287

advection (e.g., Middleton and Loder, 1989; Griffies, 1998).288

Given the decomposition of the transport tensor (8), we find it useful to289

write the tracer equation in the form290 (
∂

∂t
+ v† · ∇

)
C = ∇ · (K · ∇C), (10)

where291

v† = v + v∗ (11)

defines the residual-mean velocity and292

v∗j = −∂iAij (12)

is known as the eddy-induced velocity 8. Notably, the eddy-induced velocity293

is non-divergent due to the anti-symmetry property294

Aij = −Aji ⇒ ∇ · v∗ = 0. (13)

Consequently, the tracer equation (10) can be written in the flux-form295

∂C

∂t
+∇ · (v†C) = ∇ · (K · ∇C). (14)

Since both v and v† are divergence-free, one can define a streamtube in a296

steady-state flow according to either velocity field. The streamtubes defined by297

the residual mean velocity are often more relevant than those for the Eulerian298

time-mean velocity for ocean transport since the residual mean velocity299

v† incorporates information about subgrid scale eddy advective transport.300

Drijfhout et al. (2003), for example, explicitly calculated particle trajectories301

with both Eulerian mean and residual mean velocities and discussed the302

differences in (overturning) pathways. Particle trajectories using the Eulerian303

mean exhibit motions that cross mean isopycnal surfaces, whereas trajectories304

making use of the residual mean better respect the adiabatic nature of the305

meridional overturning flow.306

8Repeated indices are summed over their range.
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2.5.2. Introducing the Fokker-Planck equation307

Anticipating the discussion of Stochastic Differential Equations (SDEs) in308

Section 3.3.1, we manipulate the diffusive contribution in the tracer equation309

(14). The aim is to write the tracer concentration equation in the form310

of a Fokker-Planck equation (see equation (24)), which describes the time311

evolution of the probability density function of the tracer. For this purpose,312

we use the identity313

∂i (Kij ∂jC) = ∂i [∂j (Kij C)− C ∂j Kij] , (15)

so that314

∂C

∂t
+∇ · (vdrift C) = ∂ij (Kij C), (16)

where we introduced the drift velocity315

vdrift = v† +∇ ·K. (17)

The drift velocity generally has a non-zero divergence316

∇ · vdrift = ∂ijKij, (18)

since ∂ijKij does not generally vanish 9. Equation (16) is the tracer equation317

written in the form of a Fokker-Planck equation.318

Tracer transport pathways differ from volume transport pathways in the319

following ways. First, as already mentioned, the drift velocity vdrift is generally320

divergent. Hence, it is not useful to define steady-state “tracer streamtubes”321

in terms of vdrift. Second, even if ∇ ·K = 0 so that the drift velocity is322

divergent-free (e.g., isotropic diffusion with a constant diffusivity), tracer323

pathways are affected by diffusive mixing between fluid particles. To represent324

such diffusion in a Lagrangian trajectory calculation requires a stochastic noise325

term weighted by the diffusion tensor (Section 3.3). Therefore, whether one326

considers volume transport pathways or tracer transport pathways depends on327

the scientific question and the information available to address that question.328

9One notable case where ∇ · vdrift = 0 is isotropic diffusion with a constant diffusivity;
e.g., molecular diffusion. Molecular diffusion is generally not relevant for large-scale ocean
models, as models (and large-scale observations) do not resolve down to the Kolmogorov
scales. Hence, large-scale models make use of the far larger, and flow dependent, eddy
diffusivities.
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2.5.3. Using particles to track a tracer patch329

There is yet another way to consider tracer transport pathways using330

Lagrangian analysis. For this approach, we represent a patch of tracer as331

a collection of Lagrangian particles (e.g. Bennett, 2006; LaCasce, 2008). In332

this way, Lagrangian analysis can be used to study tracer dispersion (Rossi333

et al., 2013; Wang et al., 2016a). In principle, in the limit of infinite number334

of particles and knowledge of the velocity field to arbitrarily fine spatial and335

temporal resolution, the tracer dispersion from Lagrangian particles would336

have theoretically perfect resolution and controllable numerical diffusion. How337

achievable this is in real-world simulations remains an area of active research.338

A tracer patch can be represented by a cloud of particles. Each particle339

carries a portion of the total tracer content. Let c denote the tracer volume340

per particle. The corresponding Eulerian tracer concentration, C(x, t), can341

be written342

C(x, t) =
N∑
i=0

W (x− xi(t))ci, (19)

where N is the total number of particles, xi is the particle position, and W is343

a mapping kernel function (dimensions inverse volume) that maps the particle344

density to tracer density. The kernel function satisfies the normalization345

condition required to conserve volume346 ∫
Ω

W dx dy dz = 1, (20)

where Ω is the integral volume in three dimensions. The form of W has been347

extensively investigated in the Smoothed Particle Hydrodynamic approach348

(Monaghan, 1992). Different forms of W exist with different projection errors.349

3. Computing Lagrangian particle trajectories350

In this section we discuss technical aspects of Lagrangian modelling and351

analysis, focusing here on the computation of trajectories. We consider352

how trajectories of virtual Lagrangian particles can be used in mapping353

both volume transport pathways and tracer transport pathways (recall the354

distinction discussed in Section 2.5).355

3.1. Basic needs for Lagrangian trajectory calculations356

For volume transport pathways, one needs a non-divergent velocity field.357

A three-dimensional non-divergent velocity can be produced by sampling a358
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Boussinesq ocean model, thus offering a means to compute three-dimensional359

trajectories. To compute tracer transport trajectories, we need both a velocity360

field and a diffusion tensor. The diffusion tensor is a function of the often361

poorly known subgrid scale flow, and it is generally a complex function of362

the flow field. Consequently, the calculation of tracer transport pathways is363

somewhat less mature than volume transport pathways (though see Tables 1364

and 2).365

When using an ocean model, we distinguish between two techniques of366

Lagrangian integration. The first occurs online, whereby trajectories are367

computed each time step that the Eulerian model is updated. Examples of368

such online methods are available for volume transport pathways using the369

velocity field (see Section 3.5). In contrast, we know of no example of online370

tracer trajectory calculations making use of both the instantaneous velocity371

field and the diffusion tensor.372

The second method for Lagrangian analysis occurs through off-line trajec-373

tory calculations. Off-line methods make use of stored velocity fields sampled374

from the Eulerian model. Off-line trajectory calculations offer the ability to375

compute trajectories in a forward mode (from their starting point forward in376

time) or in a backward mode (from their ending point backward in time).377

As an alternative to velocities generated by OGCMs, we may use observation-378

based data from floats or drifters, which generally give a two dimensional379

surface velocity (e.g., Koszalka et al., 2011). We may also diagnose a surface380

geostrophic velocity by differentiating gridded satellite observations of the sea381

surface height (e.g., Klocker et al., 2012b). Notably, both surface drifter/float382

velocities and surface geostrophic velocities generally have a non-zero hori-383

zontal divergence (surface geostrophic velocities are non-divergent only on384

an f -plane), and the corresponding surface trajectories do therefore not map385

volume transport pathways. Nonetheless, the resulting surface trajectories do386

map preferred pathways of the surface flow, thus providing useful diagnostic387

information.388

Computation of particle trajectories using a velocity field requires essen-389

tially two operations: a way to integrate the trajectory equation (1) and a390

way to interpolate a gridded velocity field to an arbitrary point in space and391

time. In this section, we detail these aspects.392
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3.2. Temporal integration of the virtual particle trajectory equation393

When the nth virtual seawater particle is located at the point X(n)(t) = x,394

we can update its position by time stepping the velocity equation (1)395

X(t+ ∆t) = X(t) +

t+∆t∫
t

v(x(τ), τ) dτ, (21)

where we dropped the trajectory super-script n to simplify notation. Note396

that the integrand involves the Eulerian velocity field v(x, τ), which equals397

to the Lagrangian velocity dX(t)/dt when evaluated at X(t) = x. In398

some applications of Lagrangian analysis, there is an additional term on399

the right hand side of equation (21) that represents unresolved physics (see400

Section 3.3.2). We explore various flavours of this discrete time stepping (see401

also Figure 2) for estimating virtual particle trajectories, focussing on the402

most commonly used schemes. However, there are many more schemes than403

discussed here (e.g., Chu and Fan, 2014; Liu and Chua, 2016).404

In general, the accuracy of trajectories computed in OGCM fields de-405

pends on accuracy of the time stepping scheme, as well as accuracy of the406

interpolation scheme used to estimate velocity at the time and position of407

the particle (see Section 3.4). Note that the first three methods (explicit,408

implicit and analytical) discussed below all result in identical trajectories409

in the continuum. However, the trajectories differ in numerical implementa-410

tions due to algorithmic differences and truncation errors. For all methods,411

statistical significance of the diagnosed pathways is enhanced by increasing412

the number of deployed particles. As a rule of thumb, one has deployed a413

sufficient numbers of particles when the physical results of interest do not414

significantly change as the number of particles is increased (e.g., Jones et al.,415

2016).416

The maximum integration time in equation (21) is limited to the run time417

of a given model simulation. A number of oceanic processes, however, have418

time scales that exceed these run times (e.g., England, 1995; Stouffer, 2004;419

Danabasoglu, 2004). Using Lagrangian particles to temporally resolve for420

example the meridional overturning circulation (Blanke et al., 1999; Thomas421

et al., 2015b) or inter-basin connectivity (Blanke and Speich, 2002) can be422

difficult with many state of the art climate models. To address this problem,423

a commonly employed ad hoc method is to loop the model data in time such424

that the velocity and tracer fields are returned to the first time step once the425
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Vi,j-1 = 0

Vi,j = 2

Ui-1,j = 3 Ui,j = 1Ti,j

Interpolated velocity field
Analytical solution
Runge-Kutta solution

Figure 2: Illustration of time stepping solutions on an Arakawa C-grid with edges of
non-dimensional length=1. Velocities (u, v) across the four edges are given in numbers at
the magenta dots. The blue arrows are the linearly interpolated velocities within the grid.
Assume particles are released on the i− 1 (left) edge. The red lines are pathlines of the
analytical solution for these particles. The cyan piecewise linear lines are the solutions to
RK4 timestepping with dt = 0.1. The two types of integration lead to similar solutions.
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end has been reached (e.g., Döös et al., 2008; van Sebille et al., 2012; Thomas426

et al., 2015b). This approach thus permits particles to be advected for longer427

time scales than available from the raw data. However, particle looping can428

only work if the model has no drift in the velocity or tracer fields, that there429

are no large unphysical jumps in the fields between the end and the beginning430

of the model run, and that any unphysical jumps will have a small net effect431

on the particle pathways.432

3.2.1. Explicit time stepping methods433

One way to integrate equation (21) is to multiply the velocity at a point434

by a time step, ∆t, to estimate the displacement. This approach is known as435

the Euler method and is correct to first order in ∆t. Better accuracy of the436

trajectories can be obtained by using higher-order methods for the integration437

of Eq (21). One popular method is the 4th order Runge-Kutta scheme (e.g.,438

Butcher, 2016), where information of the (interpolated) velocity field at four439

increments between time steps tn and tn+1 is used.440

The fourth order Runge-Kutta method is a member of a family of inte-441

grators (Dormand and Prince, 1980). One interesting extension is adaptive442

timestepping through a RK45-method, where both a fourth order and a fifth443

order integration are performed. The extra computational cost of a fifth444

order computation is marginal when a fourth order is already performed. The445

difference, ∆X = |X5−X4|, between the fifth order and fourth order solution446

can be computed. If ∆X is larger than some (pre-chosen) threshold, the time447

step ∆t of equation (21) can adaptively be reduced for that particle. Doing448

so then leads to a straightforward implementation of adaptive timestepping449

using Runge-Kutta integrators. However, it is not a priori clear how the error450

thresholds for ∆X should be chosen.451

When working with stored velocity data, as when virtual particle tra-452

jectories are computed offline, temporal interpolation is usually required.453

Interpolation is needed because the interval between consecutive stored ve-454

locity fields is generally longer than the time step, ∆t, used to advance the455

particle trajectories in equation (21). This temporal interpolation of the456

velocity fields can be a large source of error, particularly when the interval457

with which velocity fields are stored becomes longer than a few days (e.g458

Valdivieso Da Costa and Blanke, 2004; Qin et al., 2014).459
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3.2.2. Time-implicit discrete integration schemes460

To determine volume transport pathways, the volume-preservation proper-461

ties of numerical integrators becomes an important consideration. Symplectic462

time integration schemes are one method used to maintain volume conser-463

vation for discrete methods. They can be mathematically shown to exactly464

conserve area in divergence-free 2D fields, meaning that the area bounded465

by a set of particles will stay constant over time in the absence of turbulent466

diffusion 10. Symplectic methods for Lagrangian particles in two dimensions467

take the same form as symplectic integrators for systems of point vortices, but468

now the velocity is prescribed (Marsden et al., 1999). The disadvantage of469

these methods is that they are generally implicit in time. Hence, they require470

iterative methods. For example, the implicit midpoint rule provides a sym-471

plectic integrator for the Lagrangian trajectory equation in two dimensions472

(McLachlan, 1999; Leimkuhler and Reich, 2004).473

In three dimensions, the concept of symplectic integrators must be ex-474

tended to Lie-Poisson integrators for 3D incompressible velocity fields (McLach-475

lan, 1999; Leimkuhler and Reich, 2004). Few 3D symplectic integrators are476

known, though the implicit midpoint rule is known to be such an integrator477

and preserves volume in three dimensions.478

3.2.3. An analytical discrete streamtube method479

Another volume-preserving method to integrate the trajectory equation480

(21) takes advantage of the discrete continuity equation. The resulting481

virtual particle trajectories respect the volume conservation property of482

an incompressible Boussinesq fluid, and thereby are particularly suited for483

experiments where the focus is on the advective component of the flow. In484

brief, this method analytically computes trajectories across grid cells by485

making use of the gridded velocity field located on grid cell faces. This486

approach approximates streamtubes through the use of volume conservation487

constraints introduced in Section 2.4. While these methods have their origin488

in applications with steady-state velocity fields, and the streamtube approach489

is formally only applicable to these cases, there is a large community using490

extended analytical discrete streamtube methods for time-varying flows too.491

10See Hairer et al. (2006) for a comprehensive description of symplectic time integration
schemes, and Leimkuhler and Reich (2004) for an introduction with applications targeted
at scientists and engineers.
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These applications typically achieve very similar results to the explicit time-492

stepping schemes.493

Algorithms following this approach calculate trajectories for a given steady-494

state velocity field through analytic computation of three-dimensional stream-495

tubes (Blanke and Raynaud, 1997). If the velocity fields are time-evolving, it496

is possible to sub-sample them into piecewise steady fields, which are only497

kept constant in time for a short time; this approach generally increases the498

computational cost. Another method by de Vries and Döös (2001) allows499

for analytical trajectories in a time-dependent case that accounts for flow500

changes across time steps. Döös et al. (2017) showed that the time-dependent501

trajectory solution is more accurate than the piecewise steady solution, espe-502

cially in eddying regions, and only at a very small additional computational503

cost (see also Appendix A.1.2).504

The analytical calculations are on the scale of a model grid cell for which505

components of the velocity field, or the volume transports, are typically506

expressed on a staggered C grid (Mesinger and Arakawa, 1976), i.e., are507

known over the six faces of the cell (see Figure 2).11 The analytical method is508

enabled by assuming that within a grid cell, the fluid velocity exhibits a linear509

variation of each velocity component along each corresponding direction, so510

that511

vsubgrid = (u(x), v(y), w(z)). (22)

These subgrid scale velocity components (u(x), v(y), w(z)) are linear functions512

of their arguments, with the precise form of these functions determined by the513

known velocity components on the cell faces. This form of the subgrid scale514

velocity then allows one to write analytical trajectory equations along the515

three axes across the grid cell. Analytic time integration of these equations516

binds each coordinate point (x, y, z) in a grid cell to time in the cell. Grid517

cell crossing times in each of the three directions are evaluated independently518

by imposing any of the six grid cell sides as a possible final position. The519

minimum crossing time specifies the actual crossing time, and hence the520

trajectory. This approach then allows for an accurate (within the confines of521

the basic assumption of equation (22)) calculation of the final position of a522

11This method can also be used for A-grid or B-grid stencils, so long as these grids offer
conservative volume transport components on tracer cell faces. The use of conservative
flux-based transport schemes is a basic property of any finite volume ocean model, regardless
the horizontal grid stencil.
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particle on the relevant exit side of the grid cell.523

This method for computing volume transport trajectories is both fast and524

self-consistent. It is fast because it only calculates particle positions on the525

edge of individual grid cells. It is self-consistent since it respects the local526

three-dimensional non-divergence of the Boussinesq flow both at the subgrid527

and the large scale. It therefore provides a judicious method to map volume528

transport pathways by realizing a discrete implementation of streamtubes529

introduced in Section 2.4.530

Streamtube-based volume transport is reversible, so that backward inte-531

grations can be performed to track the origin of a given volume. It is for these532

reasons that practitioners of discrete streamtube methods generally do not533

introduce diffusion (or stochastic noise) when computing particle trajectories.534

Rather, the method is focused on determining volume transport pathways535

defined from the resolved or the residual mean flow.536

3.3. Computing stochastic trajectories to simulate diffusion and unresolved537

physics538

As noted above, streamtubes track water volume in a steady-state flow.539

However, in many applications in oceanography, one is interested in tracking540

tracers such as heat, salt, or nutrients and how they are affected by subgrid541

scale diffusion and unresolved physics such as mixed layer processes and deep542

convection (e.g. van Sebille et al., 2013). Tracer concentrations can directly be543

computed from the spreading of a cloud of particles described by Stochastic544

Differential Equations (SDEs, see Section 2.5.2), where unresolved physics545

are represented by stochastic noise.546

Two main approaches can be distinguished in efforts to add diffusion to547

trajectories. One is to start with the tracer equation (16), where the eddy548

transport is parameterized in terms of the eddy-induced velocity and the549

appropriate form of the diffusivity tensor in order to derive the SDE for550

particle trajectories (Section 3.3.1). The second approach (Section 3.3.2) is to551

use an ‘ad hoc’ SDE where a Markov model is fit to observations from surface552

drifter trajectories or virtual particles in a much finer resolution velocity field.553

It remains an active area of research under which circumstances (e.g.554

underlying research question, spatial and temporal model data resolutions)555

and how exactly stochastic noise representing subgrid scale diffusion should556

be implemented (see also section 3.3.3).557
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3.3.1. Stochastic trajectories using the Fokker-Planck equation558

Here, we provide a brief introduction to the implementation of stochastic559

terms through the use of a Fokker-Planck Equation. The discussion here560

makes use of the more thorough discussions provided in the textbooks by561

Gardiner (1985), Jazwinski (1970), and Kloeden and Platen (1992), as well562

as the oceanographic review by Visser (2008). Advantages of this Lagrangian563

SDE approach over Eulerian tracer computations are that it can deal with564

steep concentration gradients and that tracer concentration can never become565

negative.566

A stochastic differential equation (SDE) for a general trajectory X(t) is567

given by568

dXi (t) = ai (t,X) dt+ σik (t,X) dWk(t), X (t0) = X0. (23)

In this equation, Xi (t) are components of the tracer trajectory vector X(t),569

and dXi (t) = Xi(t+dt)−Xi(t) is the stochastic particle displacement during570

the time interval [t, t+dt]. The term ai (t,X) is a deterministic drift, whereas571

σik (t,X) is related to a tracer diffusion tensor (see equations (25) and (26)572

below). Finally, Wk(t) is a Wiener process, or Brownian motion, modelling573

stochastic fluctuations that represent unresolved motions like eddies, waves574

or small-scale turbulence. The increment dWk (t) = Wk(t + dt) −Wk(t) is575

a Gaussian variable with zero mean and variance dt, with non-overlapping576

increments independent of each other. The stochastic model (23) is Markovian,577

which means that information on the probability density of the trajectory578

X(t) at time t is sufficient to make predictions at later times. Non-Markovian579

models require information at earlier times, which is generally impractical.580

The presence of the Wiener process means that integrating the equation using581

deterministic calculus does not produce a unique solution. We make use582

of ideas proposed by Itô, who developed a stochastic calculus to produce a583

unique solution of the SDE (23) 12.584

12The Itô calculus used here is but one mathematical approach for realizing a unique
solution to a SDE (e.g., Gardiner, 1985). Stratonovich and Itô-backward approaches offer
alternative stochastic integration methods, and they can also be used to derive stochastic
particle models (Gräwe et al., 2012; Shah et al., 2011; Spivakovskaya et al., 2007a,b).
We focus on the Itô calculus as it is well known to physicists, as is the corresponding
Fokker-Planck equation. Furthermore, the drift, ai (t,X), of an Itô SDE represents the
mean of the stochastic particle tracks. Finally, the well known Euler scheme (see equation
(28) below) is a straightforward numerical approximation of the Itô SDE, whereas this
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A cloud of particles will estimate the probability density P (t,x) for the585

stochastic tracer trajectories. Use of an Itô stochastic process X(t) ensures586

that the probability density function evolves according to the following Itô587

form of the Fokker-Planck or forward Kolmogorov equation588

∂P

∂t
= ∂i(ai P ) + ∂ij

(
bij P

)
P (t0,x) = P0(x),

(24)

with589

2 bij = σik σjk. (25)

We can relate the Fokker-Planck equation (24) to the Boussinesq form of the590

tracer equation (16), so that13
591

bij = Kij

ai = v†i + ∂jKij

P = C.

(26)

The corresponding SDE for the trajectory is given by592

dXi (t) =
(
v†i +

∂Kij

∂xj

)
dt+ σik (t,X) dWk(t),

X(t0) = X0.

(27)

It is through this connection that we can derive a stochastic Lagrangian593

model for any advection-diffusion tracer equation.594

Stochastic tracer trajectories can be generated numerically through discrete595

approximations to the Itô stochastic differential equation (Kloeden and Platen,596

1992). Discretizing the continuous stochastic differential equation (27) using597

the Euler scheme leads to598

Xi (t+ ∆t) = Xi (t) + (v†i + ∂jKij) ∆t+ σik (t,X) ∆Wk(t)

X(t0) = X0.
(28)

scheme cannot be used to discretize a Stratonovich or an Itô-backward SDE.
13The tensor elements σik (t,X) are not uniquely determined by the diffusion tensor

K. However, all choices consistent with the relation 2Kij = σik σjk result in statistically
identical diffusion processes.
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In this equation, ∆Wk(t) is a Gaussian random variable with zero mean599

and variance ∆t, generated via a random generator. The accuracy of the600

Euler scheme is O(∆t1/2) in the strong sense; i.e., for approximating the601

individual particle trajectories. When used to generate many trajectories602

in order to approximate the probability distribution, or equivalently the603

tracer concentration, then the Euler scheme is O(∆t) accurate; i.e. the Euler604

scheme is O(∆t) in the weak sense. More accurate numerical schemes have605

been developed, such as in Gräwe et al. (2012); Shah et al. (2011, 2013);606

Spivakovskaya et al. (2005, 2007a,b).607

There are methods to compute trajectories directly from a SDE for many608

applications (e.g., Kloeden and Platen, 1992). Trajectory computation di-609

rectly from SDEs is less mature in large-scale oceanography where it is often610

difficult to include a realistic diffusion tensor for subgrid scale tracer transport.611

Appendix B offers an example of tracer trajectories in the presence of an612

isopycnal diffusion tensor with a time-constant diffusivity. This application is613

nontrivial and a major advance in the Lagrangian tracer trajectory method.614

Unfortunately, it is not fully representative of modern parametrisations for615

global models, whereby the diffusivity is a function of space and time (Aber-616

nathey et al., 2013), and the diffusivity tensor may be anisotropic in the617

lateral directions as well as between lateral and vertical (Fox-Kemper et al.,618

2013).619

Even with a constant isopycnal diffusivity, sampling components of the620

3× 3 diffusion tensor for offline analysis is a nontrivial computational task,621

particularly in the presence of realistic temporal variability. Additional622

difficulty arises from time variations in the diapycnal diffusivity used for623

planetary boundary layer schemes. Consequently, the current generation624

of explicit SDEs for tracer trajectories are generally restricted to relatively625

coarse resolution models with rudimentary subgrid scale parametrisations626

(e.g., Shah et al., 2017), although efforts are underway to improve this.627

3.3.2. A hierarchy of Markov models for stochastic trajectories628

The second approach to adding the effects of diffusion and unresolved629

physics to particles is to ‘ad hoc’ find an SDE that matches the statistics - e.g.630

eddy decorrelation time scales and diffusivity - of the stochastic trajectories631

with either observations or particles simulated in finer-resolution models. This632

approach has been developed by Griffa (1996) and further by Berloff and633

McWilliams (2003) in the context of ocean models. See also Vallis (2006,634

sect 10.2) and LaCasce (2008) for discussion, and Veneziani et al. (2004) and635
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Koszalka et al. (2013a) for implementations.636

A hierarchy of Markov models is considered, whereby the stochastic637

term is added to either particle displacement (zeroth-order Markov model,638

corresponding to uncorrelated eddy velocity field), the particle velocity (first-639

order model, accounting for correlations of the velocity) or the particle640

accelerations. In most cases, the first-order model is found to best approximate641

the oceanic mesoscale turbulence introduced by coherent eddies.642

In the first-order Markov model (multiplicative noise), stochastic noise643

is used to modify the present position of a particle when updating to a new644

position, in which case the trajectory equation (21) can be written as645

X(t+ ∆t) = X(t) + (1 + ε)

t+∆t∫
t

v(x, τ) dτ, (29)

where ε is a random number. Notably, the application of noise in this manner646

does not ensure that X(t+ ∆t) results from time stepping a divergence-free647

velocity. For that purpose, we consider an alternative approach, whereby we648

introduce a stochastic divergence-free velocity649

X(t+ ∆t) = X(t) +

t+∆t∫
t

[v(x, τ) + vnoise(x, τ)] dτ. (30)

We can ensure ∇·vnoise = 0 by introducing a stochastic vector streamfunction,650

so that for each each grid cell we have651

vnoise(x) = ∇∧Ψnoise(x). (31)

Since the stochastic velocity remains non-divergent, this approach offers a652

realisation of stochastic streamtubes in steady-state flows. The choice of653

either equation (29) or equation (30) depends on the application and will be654

further discussed in Section 3.3.3.655

In the zeroth-order Markov model (additive, or random walk, noise), the656

stochastic noise is added to the particle positions, which is often applied in a657

rather simple form, by adding an extra term to the trajectory equation (21):658

X(t+ ∆t) = X(t) +

t+∆t∫
t

v(x, τ) dτ +R
√

2K∆t. (32)
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In this equation, R = N(0, 1) is a random number taken from the normal659

distribution with zero mean and unit variance, and K is a constant tracer660

diffusivity. A major limitation of this model is that, if the drift term is omitted,661

equation (32) will lead to artificial accumulation of particles in regions of662

low diffusivity, requiring an enhancement of the random walk model (Hunter663

et al., 1993; Visser, 1997; Ross and Sharples, 2004; Berloff and McWilliams,664

2002)665

A myriad of behaviours can be added to a random walk model for capturing666

the biological characteristic of Lagrangian particles. Examples include diurnal667

vertical migration, temperature dependent planktonic larval duration and time668

to settling competency. While it must be noted that enhanced complexity does669

not necessarily imply enhanced accuracy, studies have shown that even modest670

vertical migration velocities can significantly alter the dispersal patterns of671

propagules. For example a recirculation in the Western Irish Sea of northwest672

Europe, associated with summer stratification, retains surface drifters but673

does not retain vertically migrating organisms (Phelps et al., 2015).674

3.3.3. When and how to add stochastic terms?675

In the above, we have described a few methods to incorporate mixing676

through stochastic terms. However, exactly when and how to implement these677

terms is an open question. It will likely depend on the temporal and spatial678

resolution of the velocity fields, as well as the unresolved processes that the679

added stochastic components are intended to reproduce. In particular, the680

consideration should be whether mesoscale coherent eddies and attendant681

nonlocal transport properties (velocity correlations and steep Eulerian ve-682

locity spectra) are resolved by the ocean model velocity field underlying the683

Lagrangian simulations.684

If a velocity field is available at sufficiently high spatial and temporal685

resolution, adding a stochastic component may be unnecessary and high686

numbers of particles may suffice (Koszalka et al., 2013b). If the available687

velocity field does not resolve important eddy processes, a first-order or second-688

order Markov model may need to be used to account for a velocity correlations689

induced by the mesoscale eddy field (Griffa, 1996; Berloff and McWilliams,690

2002; LaCasce, 2008). The applicability of the stochastic simulations should691

in any case be verified against existing observations (Koszalka et al., 2013a)692

or high resolution model simulations, if available.693

It is also still open how the Fokker-Plank Equation approach (Section694

3.3.1) and the ad-hoc Markov model approach (Section 3.3.2) can be combined.695
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While the first approach is more mathematically rigorous, the second provides696

an insight into the properties of observed or simulated oceanic turbulence697

on different scales and in different regions, and may be useful in building698

future parameterizations of eddy induced transport in terms of Lagrangian699

stochastic parameterizations.700

We leave this discussion of diffusivity here, as the research and understand-701

ing of this issue is rapidly evolving, and strongly encourage the community to702

gain a better understanding in how best to implement diffusion and unresolved703

physics for Lagrangian particles.704

3.4. Spatial interpolation705

The trajectory equation (21) is defined on continuous velocity fields.706

However, all ocean models work with discretized grids, where velocities707

are only known on either vertices or edges of the grid cells (Griffies et al.,708

2000). Therefore, computing Lagrangian trajectories from ocean model709

data requires reconstruction of the continuous velocity field inside grid cells.710

Bilinear, trilinear, or spline interpolation are viable choices on structured711

grids. Interpolation on unstructured grids can be accomplished via methods712

derived from particle-based approaches, e.g., inverse-distance weighting or713

kernel-based convolutions, or unstructured extension of grid-based spatial714

interpolation, e.g., Wachspress interpolation (Gillette et al., 2012).715

On grids where velocities are defined on the corners of grids (e.g., Arakawa716

A and B), the reconstruction choices include weak-form reconstruction (Perot,717

2000), radial basis functions (Baudisch et al., 2006), or reconstruction via718

finite-element basis functions (Wang et al., 2011). On grids where velocities719

are known on the edges of grid cells (e.g., Arakawa C), this reconstruction is720

often done using simple linear interpolation, although more work needs to be721

done investigating what the errors are that arise from this.722

Horizontal interpolation on arbitrary simplexes from vertex-data is pro-723

vided by Wachspress interpolation (Gillette et al., 2012), which is a super-724

linear interpolation scheme for arbitrary simplexes. For triangles, Wachspress725

interpolation is equivalent to barycentric interpolation, which is commonly726

used on triangular meshes and readily available in scientific packages (e.g.,727

python-matplotlib). A primary benefit of this approach is that it provides a728

continuous interpolant, e.g., C0 continuous. Options for higher-order interpo-729

lation to obtain Cn (forn > 1) continuity are more complex and less common,730

particularly on arbitrary unstructured meshes.731
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Horizontal interpolation via Wachspress naturally keeps particles within732

the domain for no-slip conditions where the velocity is zero for boundary points733

on simplexes. Particles can be constrained to remain within the domain by734

maintaining CFL < 1, where CFL is the Courant-Friedrichs-Lewy condition735

(e.g., Durran, 1999). This implementation is intrinsically free of if-statements.736

However, free-slip boundary conditions require further adaptation.737

Vertical interpolation choices include linear and spline interpolants. Linear738

interpolation is a standard approach and is consistent within model accuracy,739

particularly for fine vertical resolution. Spline interpolation, however, allows740

representation of vertical curvature, but at the potential cost of artificial741

maxima and minima.742

Particle tracking can employ a spatially-decoupled advection strategy by743

splitting horizontal and vertical integration steps into sequential operations.744

The benefit of this approach is that it decouples unstructured interpolants745

in the horizontal from one-dimensional interpolation in the vertical and746

allows different particle behaviours to be employed. For example, vertical747

interpolation of velocities to specific potential density surfaces allows particles748

to be advected isopycnally and avoid diapycnal mixing that can occur with749

neutrally buoyant particle advection (Wolfram et al., 2015).750

3.5. Available tools751

As discussed throughout this section, it is in principle straightforward752

to compute Lagrangian particle trajectories by time stepping the trajectory753

equation (21). One merely needs to save the velocity field and update754

the trajectories using available software like Matlab or Python, invoking755

either rudimentary schemes or built-in functions such as the Matlab ode756

suite. Several research groups have developed their own virtual particle codes757

tailored to specific model output format, model grid and boundary conditions.758

Examples include a 3D Lagrangian Matlab code for the MITgcm used by759

Koszalka et al. (2013b) and von Appen et al. (2014) and a 2D Matlab code760

of The Nonlinear Dynamical Systems Group at ETH Zurich (Farazmand and761

Haller, 2012, http://georgehaller.com/software/software.html).762

However, significantly more effort is required to develop an analysis code763

that features a user-friendly interface and thus can be utilized across the mod-764

elling communities. Further work is needed to ensure that the code is efficient765

on data Input/Output. The suite of available tools can roughly be separated766

into two sets. First, there are large community based Lagrangian codes such767

as Ariane, TRACMASS, the Connectivity Modelling System (CMS), and768
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the new Parcels code. These are model-independent, run offline (i.e., on769

stored velocity data) and provide extensive control on particle behaviour. The770

second set includes Lagrangian codes tied to (and sometimes distributed with)771

specific models, such as MITgcm, HYCOM, NEMO, ROMS and MPAS-O.772

These model-specific codes can be run online (i.e., during the computation of773

the velocity data).774

Examples from both types of codes are discussed in appendix A. These775

codes are also summarised in Table 1 and 2. Notably, all of these codes776

employ either explicit or implicit time integration of volume transports and777

while some can incorporate additional random terms (Section 3.3.2), there778

are no community codes available for computing tracer trajectories through779

the SDE-based methods of section 3.3.1.780

4. Applications of Lagrangian particle trajectories781

For most applications, the raw particle trajectories output by Lagrangian782

analysis codes need to be further processed to help answer scientific questions.783

In this section, we overview ways in which Lagrangian particle trajectories784

can be used and analysed to improve our understanding of ocean circulation785

and dynamics.786

4.1. Dispersion and diffusivity787

The ensemble particle dispersion and its rate of change, the diffusivity,788

are the fundamental Lagrangian diagnostics of use for understanding tracer789

transport in oceanic flows. Particle trajectories can be used to diagnose eddy790

diffusivity via single, pair, and cluster techniques. The detailed theoretical791

and practical underpinnings of these techniques in the context of oceanic792

flows are summarized by LaCasce (2008); here we reiterate the main points.793

The single-particle diffusivity stems from the seminal work of Taylor794

(1921). It quantifies the ensemble-mean rate of particle dispersion from an795

initial location, so that we have796

κ(t) ≡ 1

2

d

dt
〈X2(t)〉 = 〈V (t) ·X(t)〉 =

∫ t

0

〈V (t) · V (τ)〉 dτ. (33)

In this equation, X(t) is the Lagrangian virtual particle trajectory, and797

V (t) = dX(t)/dt is the Lagrangian particle velocity.798
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The Taylor formulation pertains to homogeneous, stationary and isotropic799

flows, and is non-trivial to apply in practice. Different approaches to esti-800

mation of single-particle statistics for particles deployed in stationary and801

homogeneous Eulerian flows, with cautious notes on particle deployment802

strategies and transient behavior, are discussed by Davis (1982) in the context803

of numerical simulations. For modelled ocean flows of realistic complexity,804

the estimation of single-particle statistics must be further refined to account805

for non-stationarity and inhomogeneities of the underlying Eulerian field806

(Davis, 1983, 1985, 1987, 1991). Under the assumption that the velocity field807

is slowly-varying with respect to the time increment dt (in practice, dt can808

be the time step of a Lagrangian model) this assumption can be satisfied by809

segmentation of trajectories over a relevant time scale (e.g., seasonal cycle,810

the velocity decorrelation time scale), and segregation in space into locally811

homogeneous regions (Davis, 1991; Koszalka and LaCasce, 2010, see also sect.812

4.3).813

If the focus is on the transport by mesoscale turbulent flows (‘eddy814

diffusivity’), an appropriate technique for ‘the mean (or slowly-varying) flow815

removal’ must be applied to the Lagrangian velocity in equation (33) (e.g.,816

Berloff et al., 2002; Rypina et al., 2012; Lumpkin and Johnson, 2013). The817

Lagrangian transport anisotropy can be quantified by using the concept818

of tensor diffusivity (where equation (33) applies to the different velocity819

vector components) and projection of the flow in the along- and across-flow820

directions of maximum dispersion (Rypina et al., 2011, 2012; Fox-Kemper821

et al., 2013; Kamenkovich et al., 2015; Wolfram et al., 2015). In general,822

anisotropy of the Lagrangian transport arises from spatio-temporal patterns823

and velocity correlations due to eddies. A significant challenge is that the824

observed Lagrangian particle dispersion is often non-diffusive on long time825

scales (e.g., Rypina et al., 2012) due to persistent Lagrangian flow correlations.826

Double-particle statistics builds upon the works of Batchelor (1952) and827

Bennett (1987). The relative diffusivity (the time rate of the mean square828

pair separation) is829

κR(t) ≡ 1

2

d

dt
〈r2(t)〉 =

1

2

d

dt

〈∑
m 6=n

[
X(m)(t)−X(n)(t)

]2〉
, (34)

where the sum is over all pairs of particles (m,n). At times longer than830

the velocity decorrelation time scale, the pair particles move independently831

from one another, and the relative diffusivity is constant at twice the single832

34



particle diffusivity (LaCasce, 2008). Using the relative diffusivity rectifies833

the problem of the time-mean flow removal by measuring particle relative834

separation, though it will still be influenced by the mean flow shear. In835

practice, double-particle statistics are often implemented in terms of cluster836

or moment methods which are equivalent to double-particle statistics on the837

plane (LaCasce, 2008).838

The single- and double-particle diagnostics derived from simulated trajec-839

tories may be used for the following.840

• Quantifying the advection by the turbulent mesoscale flows (eddy dif-841

fusivity) in eddying models as a function of time and separation, for842

example for parameterisations of diffusive processes in models that do843

not resolve eddies (Poje et al., 2010).844

• Eddy diffusivity maps obtained by binning (see Section 4.3) quantify845

regional variability in eddy diffusivity and other derived statistics (eddy846

length, time scales; e.g., LaCasce et al., 2014; Griesel et al., 2014, 2015).847

• Investigating the nature of the oceanic turbulent transport. The relative848

diffusivity as a function of particle separation is related to the Eulerian849

kinetic energy spectra. Together with the FSLEs (see Section 4.2), the850

relative velocity diagnostics and the pair displacement PDFs can be851

used to check for consistency with quasigeostrophic turbulence, chaotic852

advection, and mean shear (LaCasce, 2008; Koszalka et al., 2009).853

4.2. Lagrangian Coherent Structures854

The ocean is full of eddies, jets and other coherent structures, which855

are visible in ocean tracers such as temperature or chlorophyll. The field856

of Lagrangian Coherent Structures (LCS) aims to identify the kinematic857

skeleton of such objects based on the Lagrangian trajectories of the fluid and858

to study the role of these structures in transport. Here we provide a very859

brief introduction and overview of the field and refer the interested reader to860

the more comprehensive review articles on the topic (e.g. Peacock and Dabiri,861

2010; Peacock and Haller, 2013; Haller, 2015).862

The most developed branch of LCS theory is concerned with identifying863

distinguished material surfaces which serve as the boundaries of coherent864

regions in unsteady flows. According to Haller (2015), a method for identifying865

such surfaces must (a) be objective (i.e. gives the same result in all observer866

35



Figure 3: Backward Finite Size Lyapunov Exponents for January 1 2013 computed as
in d’Ovidio et al. (2004), with initial separation distance of 0.01◦ and final separation
distance of 1◦. The FSLE have been computed using surface absolute geostrophic velocities
produced by Ssalto/Duacs and distributed by AVISO, with support from CNES (delayed
time, all satellite merged product). Ridges of FSLE (≥ 0.3) are overlaid on Multi-scale
Ultra-high Resolution (MUR) Sea Surface Temperature (http://mur.jpl.nasa.gov/), showing
good correspondence between the Lagrangian coherent structures and the distribution of
the surface tracer advected by the Agulhas current, the Agulhas retroflection and their
associated mesoscale activity.

reference frames), (b) be applicable over a finite time interval, (c) describe an867

actual material surface, and (d) converge with respect to spatial resolution.868

Many different LCS diagnostics have been developed to detect different869

types of structures. A starting point in many LCS identification methods,870

however, is the finite-time flow map F t
t0

(x0), which gives the positions at871

time t of particles initially located at x0 at time t0. The flow map can only872

be calculated by numerically advecting a large ensemble of closely spaced873

Lagrangian particles. From this flow map, one can compute the Cauchy Green874

Strain Tensor C(x0) = [∇F t
t0

(x0)]T∇F t
t0

(x0), which measures the magnitude875

of the growth in separation of infinitesimal perturbations in the initial position876

space. C is characterised by its eigenvalues λ and corresponding eigenvectors.877

The original diagnostic of LCSs is the Finite Time Lyapunov Exponent878

(FTLE). The FTLE is a measure of the exponential rate of separation of879

trajectories of infinitesimally close initial points over a finite-time interval880

and is given by881

FTLE(x0, t0, τ) =
1

τ
ln
√
λmax (35)

with λmax the maximum eigenvalue of C over the chosen finite integration882
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time τ = t− t0. Early applications of the FTLE were to distinguish regions of883

high and low predictability in chaotic flows (FTLE; Pierrehumbert and Yang,884

1993; Artale et al., 1997). Later, FTLE fields were applied to the identification885

of attracting and repelling transport barriers (Haller and Yuan, 2000; Lapeyre,886

2002). The ridges (i.e. curves of local maxima) of the FTLE field correspond887

with repelling LCS positions at t0; as regions of extreme local stretching,888

these structures represent material barriers which remain coherent under889

advection (unlike general material lines). Attracting LCSs, which represent890

the Lagrangian skeleton of tracer filaments, can similarly be obtained as ridges891

of the FTLE field calculated from a backward time integration. Haller and892

Sapsis (2011) review different strategies for calculating attracting and repelling893

LCSs from forward- and backward-time FTLEs. A related diagnostic is the894

Finite Size Lyapunov Exponent (FSLE; Aurell et al., 1997), which represents895

the time required for particle separation to reach a specified size (Figure 3).896

FSLEs have also been used widely for LCS identification and can be related to897

the statistics of turbulent dispersion (LaCasce, 2008). However, Karrasch and898

Haller (2013) proved that FSLE and FTLE ridges do not coincide in general899

and argued that FSLEs were less reliable for the identification of LCSs.900

The statistics of FTLE and FSLE based on flow maps constructed from901

Lagrangian particle trajectories have been applied to characterize regimes of902

dispersion and regional differences in mixing (Drijfhout et al., 2003; Waugh903

and Abraham, 2008; Haza et al., 2010; Lumpkin and Elipot, 2010; Schroeder904

et al., 2011; Poje et al., 2014). Instantaneous maps of FTLE and FSLE derived905

from satellite altimetric velocities have also been used to identify LCS positions906

in the ocean (d’Ovidio et al., 2004; Olascoaga et al., 2006; Lehahn et al.,907

2007; Beron Vera et al., 2008). Attracting LCS represent transport barriers,908

and indeed several studies have confirmed the tight correlation between909

the detected structures and fronts of advected tracers including sea surface910

temperature (Abraham and Bowen, 2002; d’Ovidio et al., 2009), chlorophyll911

concentrations (Lehahn et al., 2007), oxygen (Bettencourt et al., 2015), oil912

spills (Mezić et al., 2010), and even different dominant phytoplanktonic types913

(d’Ovidio et al., 2010).914

Not all coherent structures relevant for transport can reliably be deduced915

from the FTLE or FSLE fields. Over the past decade, LCS detection methods916

have developed increasing precision at discriminating different flavours of917

structure geometry, resulting in a proliferation of techniques (Haller, 2015).918

Haller and Beron-Vera (2012) used a variational approach to find the least-919

stretching material lines in the forward and backward flow maps; the initial920
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positions of these lines (called hyperbolic LCSs) can be identified as the921

geodesic curves of a Riemannian metric related to the Cauchy-Green strain922

tensor. Definitions of parabolic and elliptic LCSs, corresponding to jet cores923

and vortex boundaries, can similarly be made using the tools of differential924

geometry (Haller and Beron-Vera, 2013; Haller, 2015). Additional methods for925

vortex identification based on dynamic polar decomposition and Lagrangian-926

averaged vorticity deviation have recently been proposed (Haller, 2016; Haller927

et al., 2016), while yet a different class of methods identifies LCS based on a928

probabilistic transfer function (Froyland et al., 2007). A much needed critical929

comparison of different methods and their performance in different test cases930

was recently undertaken by Hadjighasem et al. (2017), which provides valuable931

practical advice for researchers wishing to implement these techniques.932

A central preoccupation of LCS techniques is the identification of coherent933

mesoscale eddies. Beron-Vera et al. (2013) used the elliptic LCS framework to934

identify materially coherent Agulhas rings, emphasizing the advantages over935

Eulerian eddy-identification methods, while Froyland et al. (2012) applied936

the transfer function method to the same region. Wang et al. (2016b) and937

Froyland et al. (2015) used the identified structures to study the transport,938

origin, and decay of Agulhas ring waters. Abernathey and Haller (2017) used939

the Lagrangian-averaged vorticity deviation method of Haller et al. (2016)940

to identify eddies in the eastern Pacific and quantify their role in meridional941

dispersion. These studies illustrate the value of LCS methods for questions of942

long-range material transport.943

4.3. Probability distributions944

A common way to visualize trajectory data is to bin particle positions into945

histograms. The result is a map of particle density which, when normalised by946

the total number of particle positions, yields a probability map. Alternatively947

we can produce probability maps by counting the visit of a particular particle948

only once per bin and then normalizing by the total number of particles949

(instead of the total number of particle positions, e.g., van Sebille et al., 2012;950

von Appen et al., 2014). Both methods offer a useful means to identify flow951

structure through particle pathways from a set of release points.952

Figure 4 illustrates the use of both methods for studying the flow re-953

sponsible for the spreading of particles originating in the Agulhas Current.954

Figure 4a shows the probability derived from the procedure described at955

first. Obviously, bins located within the areas of the Agulhas Current (AC),956

the Agulhas Return Current (ARC), and the Agulhas Ring corridor show957
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Figure 4: Lagrangian modelling approach to determine pathways of particles released in
the Agulhas Current at 32◦S (blue line extending east from Southeast Africa), based on
a set of 5-year long trajectories initialized in the year 2000 (some examples visualized
as black lines): a) Probability with that a 1◦x1◦ bin spanning the whole depth range is
occupied by a particle during the considered time span. The probability for each bin has
been obtained by counting the number of particles occupying this bin at each time step,
summing up this particle counts over the whole integration period and then dividing it by
the total number of recorded particle counts for all bins. Thus, the sum of the probabilities
of all bins yields 100%; b) Probability that a particle occupies a particular bin at least
once during the considered time span. In this case the probability for each bin has been
obtained by counting the number of different particles occupying this bin and dividing
by the total number of particles. Thus, the probability for each bin can range between
0 and 100%. The Lagrangian analysis was performed with the ARIANE tool using the
3D 5day-mean velocity fields from the high-resolution model INALT01 (Durgadoo et al.,
2013).
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the highest probabilities, highlighting the most probable spreading pathways958

along the major currents and via mesoscale eddies. But even between the959

AC and ARC there is a region with comparable particle position counts.960

Figure 4b reveals that this is not due to a particularly strong circulation961

feature transporting many particles, but rather due to the recirculation of962

fewer particles.963

One consideration in the choice of bin resolution is aliasing. If either the964

grid resolution is too fine or the period of particle position updates is too long,965

trajectories may pass through more than one histogram bin within a given966

output time step and thus may not be adequately accounted for. The density967

maps from binning can also be scaled to account for the residence time in968

bins and the time step of the Lagrangian simulation. One practice is to scale969

the particle density maps by the time step dt to obtain the density maps in970

units of days (e.g., Koszalka et al., 2011). Another is to scale the particle971

densities in bins with the integral Lagrangian time scale, TL, yielding particle972

distributions in bins in terms of the ‘number of independent observations’:973

Nind = N/
√
T/TL, where T is the total time (e.g., Koszalka and LaCasce,974

2010).975

Apart from using particle density maps to assess the water mass path-976

ways and connectivity, binning of particle positions and their corresponding977

properties allows the investigation of mean properties (temperature, density)978

and their changes along simulated trajectories (e.g., van Sebille et al., 2014).979

Binning Lagrangian velocities to test the Gaussianity of their distributions980

and other velocity statistics is yet another application (LaCasce, 2005). The981

binning is also used to construct maps of eddy diffusivity from particle sim-982

ulations in high resolution models (e.g., LaCasce et al., 2014; Griesel et al.,983

2014, 2015). Using binning to estimate spatially-dependent eddy diffusivities984

(‘pseudo-Eulerian eddy diffusivity maps’) and other parameters (maps of eddy985

time and length scales) has been widely used in observational Lagrangian986

analysis (Bauer et al., 2002; Koszalka et al., 2011; Rypina et al., 2012; Lump-987

kin and Johnson, 2013; Zhurbas, 2004), as well as in particle simulations in988

eddy–resolving models (e.g., Berloff et al., 2002; LaCasce et al., 2014; Griesel989

et al., 2014, 2015)990

Binning can be used to verify the spreading of Lagrangian particles by991

comparing the ensemble particle movement with large-scale distributions of992

either conserved quantities, such as potential vorticity, or a tracer field whose993

evolution is explicitly computed online in the OGCM (e.g., Gary et al., 2012)).994

Such evaluations can be statistically formalised using pointwise correlation995
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Figure 5: Example transit time distribution for particles released in the Agulhas Current
at 32◦S (blue lines in Figures 4 and 6, extending east from Southeast Africa) in the year
2000 and traced towards the GoodHope line (red line in Figure 6).The Lagrangian analysis
was performed with the ARIANE tool using the 3D 5day-mean velocity fields from the
high-resolution model INALT01 (Durgadoo et al., 2013).

between the binned histogram and the online tracer (Simons et al., 2013).996

Binning is not limited to spatial boxes as particles can be binned by997

virtually any variable that can be determined along a particle’s path: for998

example depth, time, density, temperature, salinity, etc. This sort of binning999

can be useful to highlight along-pathway water mass transformations (e.g.,1000

Koszalka et al., 2013b; Iudicone et al., 2011; Gary et al., 2014; van Sebille1001

et al., 2014). Particles can also be binned by the distance from the deployment1002

site. Such a distance metric can be redefined to account for the topographic1003

steering (Davis, 1998). Finally, an alternative to binning was proposed by1004

Koszalka and LaCasce (2010). Rather than grouping the Lagrangian data in1005

bins of fixed size, they grouped a fixed number of nearest-neighbor particle1006

positions together using a clustering algorithm.1007

4.4. Water mass ages and transit times1008

The ‘age’ of ocean water, or the time taken for water to transit between1009

defined regions or reservoirs, is a property of the flow that provides useful1010

understanding of the ocean circulation (Deleersnijder et al., 2001). Such a1011

metric can be easily derived from Lagrangian calculations by determining the1012

transit time of particles. Since the age of water can also be recovered from1013
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float trajectories or observations of chemical tracers (Fine et al., 2002; Waugh1014

et al., 2004), there is the possibility to use the age to evaluate model results1015

in comparison to observations. However, this comparison requires careful1016

interpretation (Khatiwala et al., 2001) and has been rare (e.g. Haines et al.,1017

1999).1018

The age of a parcel of ocean water, described by numerous particle trajec-1019

tories, is not unique, since different particles may transit between two regions1020

by distinct pathways, travelling for different lengths of time (Phelps et al.,1021

2013). As such, the age of ocean water is in fact a probability distribution:1022

the transit time distribution (TTD) that an individual particle might take to1023

travel between the two regions (Holzer and Hall, 2000; Deleersnijder et al.,1024

2001; Haine and Hall, 2002). Given a sufficient number of Lagrangian tra-1025

jectories, a TTD between two regions can be formed from a histogram of1026

the particle ages (see Figure 5 for an example in the Agulhas region). In1027

Lagrangian ocean analysis, the range, maximum or variance of this TTD is1028

used to understand the inherent timescales of the circulation (e.g. Rühs et al.,1029

2013). However, transit time distributions are highly sensitive to the spatial1030

scales resolved by the numerical model from which Lagrangian trajectories1031

are determined.1032

In Lagrangian analyses, the ‘age’ can be evaluated as the time since a1033

particle was last within the surface ocean (the ventilation timescale), in1034

which case it reveals the timescales on which the ocean interacts with the1035

atmosphere, and influences global climate. This method has been considered1036

for the global ocean (Blanke and Speich, 2002) as well as specific water1037

masses (Koch-Larrouy et al., 2010). In regional seas (with riverine forcing) an1038

analogue to ventilation with the atmosphere is freshwater age (Phelps et al.,1039

2013). One difficulty is that the ventilation timescale of deep ocean flows1040

(which can be on the order of thousands of years) often exceeds the length of1041

available OGCM output such that the velocity fields must to be ‘looped’ to1042

calculate the full TTD (see also section 3.2).1043

By considering the entry and exit of particles from an enclosed region,1044

transit times can be interpreted as a residence timescale. For a marginal sea1045

with one point of exchange, such as the Baltic Sea, this has been used as an1046

alternative to the classic box model approach (Döös et al., 2004; Jönsson et al.,1047

2004). Where there are multiple points of exchange, such as the Arctic Ocean,1048

the approach determines the timescales on which these gateways interact1049

(Lique et al., 2010).1050

Lagrangian transit times are also used to evaluate the timescales on1051
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which anomalies in a certain region would influence the flow downstream1052

(e.g., Speich et al., 2001; van Sebille et al., 2011; Rühs et al., 2013), or to1053

determine time-integrated properties of specific flows, such as the average1054

speed (Koszalka et al., 2013c) or the most rapid pathways (Gary et al., 2012).1055

4.5. Volume transport and Lagrangian streamfunctions1056

Among the first uses of basin-scale Lagrangian particle tracking was1057

to assess seawater volume transports between chosen sites in the ocean,1058

resulting in an effective way of quantifying Lagrangian connectivity. In these1059

applications, each particle is ‘tagged’ with a transport upon release, and1060

that transport is then conserved along the trajectory as per the streamtube1061

discussion in Section 2.4. We can construct volume transport pathways by1062

summing the transports of particles that connect two regions (see Figure 61063

for an illustrative example).1064

Just like in the Eulerian framework, the concept of volume conservation1065

(as in a Boussinesq fluid discussed in Section 2.4) can be used to ‘collapse’ the1066

full three-dimensional transport into a two-dimensional streamfunction. The1067

unique feature in Lagrangian streamfunctions is that they can be constructed1068

for only that part of the flow that connects the section where particles are1069

released and where they are received. This concept has been applied to1070

study for example the cold and warm water routes into the Atlantic (Speich1071

et al., 2001, 2002; Drijfhout et al., 2003), Agulhas leakage (Durgadoo et al.,1072

2017), the Pacific-to-Indian Ocean connectivity (van Sebille et al., 2014), the1073

Lagrangian decomposition of the Deacon Cell (Döös et al., 2008), and the1074

Atlantic MOC (Thomas et al., 2015b).1075

The concept of Lagrangian streamfunctions was introduced by Blanke1076

et al. (1999) and is closely tied to the analytical integration method (Section1077

3.2.3). Consider a domain with open boundaries, such as the Agulhas region1078

around South Africa. Trajectories are initialized along the boundaries of1079

a control volume (box in Figure 6), and traced until they again reach the1080

boundaries. Each trajectory is associated with a volume transport, and the1081

volume transport is recorded at each grid-wall crossing of a trajectory. This1082

method results in a non-divergent field of volume fluxes through all grid walls1083

that can be integrated to Lagrangian streamfunctions. It is to be noted that1084

this streamfunction represents the mean flow during the whole integration1085

period, i.e. ideally until all trajectories have left the box.1086

Both Döös et al. (2008) and Kjellsson and Döös (2012a) showed that the1087

total Lagrangian streamfunction is almost identical to the Eulerian stream-1088

43



Figure 6: Quantitative Lagrangian modelling approach to determine Agulhas Leakage: a)
Time series of the annual Agulhas Current (AC) transport at 32◦S, where particles were
released continuously proportional to the current volume transport, each particle associated
with a fraction of this transport; b) Snapshot (18-Apr-2000) of current speed at 450m
depth in the Agulhas region (colour shading, in cm/s), as well as the horizontal Lagrangian
streamfunction (contours, in Sv) for all trajectories initialized in the year 2000 and traced
along 3D streamlines towards the control sections (black and red lines); c) Time series of
annual Agulhas Leakage (AL) transport, obtained by considering for each release year only
the transports of those trajectories, that cross the approximated GoodHope section (red
lines) within 5 years. The Lagrangian analysis was performed with the ARIANE tool using
the 3D 5day-mean velocity fields from the high-resolution model INALT01 (Durgadoo
et al., 2013).
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function. One of the main differences is that the Lagrangian streamfunction1089

is based on trajectories with varying residence times ranging from hours1090

to months or even years, while Eulerian streamfunctions are snapshots or1091

time-averages.1092

4.6. Biological connectivity1093

Lagrangian particle trajectories can be used to study how water moves1094

around in the ocean. Additionally, Lagrangian particles can be interpreted as1095

passively drifting (biological) particulates. Many marine organisms reproduce1096

with larvae that are dispersed at the whim of the currents. Hydrodynamic1097

connectivity therefore has important implications for population dynamics1098

(e.g., Kool et al., 2013; Thomas et al., 2014). In particular, this connectivity1099

generally allows for longer dispersal and more rapid range expansion than is1100

observed in terrestrial species (Kinlan and Gaines, 2003), as well as directly1101

creating range limits (Gaylord and Gaines, 2000). Understanding these1102

processes and their implications is important for a range of management1103

objectives.1104

Transport models have provided insights in varied contexts including1105

the creation of robust networks of Marine Protected Areas (Gaines et al.,1106

2003; Berglund et al., 2012; Burgess et al., 2014), conservation of coral reefs1107

(Treml et al., 2008; Wood et al., 2013), sustainability of fisheries (Gilbert1108

et al., 2010), competition between biophysical and hydrodynamical controls on1109

larvae retention (Phelps et al., 2015), and spread of invasive species. Similar1110

models are frequently applied in coastal scenarios to understand the spread of1111

aquaculture parasites (Salama and Rabe, 2013) and invasive benthic organisms1112

(Brandt et al., 2008). It is important to note that horizontal resolution and1113

subgrid scale diffusivity of the underlying Eulerian flow field can be a key1114

for the distribution and time scales, as it was the case for the dispersion of1115

European glass eels (Blanke et al., 2012; Baltazar-Soares et al., 2014).1116

How these larvae interact with the water column depends on a range of1117

characteristics such as size, development rate and behaviour (McManus and1118

Woodson, 2012). Models investigating biological connectivity must therefore1119

account for these characteristics and many others (e.g., Visser, 2008; Paris1120

et al., 2013b), in addition to physical processes. ‘Behaviour’ such as orientation1121

and swimming in response to scent plumes released from suitable habitat1122

(Holstein et al., 2014; Staaterman and Paris, 2013) is often documented, as is1123

vertical migration (Lampert, 1989).1124
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Observations of microchemical markers, genetic microsatellite markers1125

and single nucleotide polymorphisms can provide information on realised1126

connectivity between spatially separated populations. They can provide a1127

direct comparison for Lagrangian tracking predictions (e.g., Pujolar et al.,1128

2013; Wilkins et al., 2013; Teske et al., 2015) in terms of population similarity,1129

and can provide evidence of biogeographic barriers (for example coral species1130

in the Gulf of Mexico; Sammarco et al., 2012). Recent work hints at the1131

possibility of applying such techniques to understand population connectivity1132

and evaluate predicted patterns at a global scale (e.g., Hellweger et al., 2014;1133

Villar et al., 2015; Jonsson and Watson, 2016).1134

5. Outlook1135

Lagrangian analysis provides a powerful tool to help interpret output from1136

OGCMs. This power will only increase as OGCMs enter ‘peta-scale’ territory.1137

In this final section, we offer outlooks on where we see new and exciting1138

opportunities and possibilities for the Lagrangian analysis of OGCMs.1139

5.1. The next generation of particle tools1140

A major challenge with particle tracking is obtaining performance for a1141

large number (order of billions) of particles. For small velocity data sets,1142

offline parallel particle tracking can be employed via a Single Instruction1143

Multiple Data (SIMD) approach, e.g., openMP or GPU-based implementa-1144

tions. However, Input/Output will remain a bottle-neck, with most codes1145

simply reading in the entire velocity field, even if the particles occupy only1146

a subregion of the domain. Recent advances in the NetCDF library toolkit,1147

however, mean that it is now feasible to read in only those parts of the grid1148

where there are particles, so that the number of Input/Output operations1149

could potentially be reduced by orders of magnitude. Implementation of these1150

new libraries, in combination with better memory management and efficient1151

use of tiered cache levels, will lead to vastly faster codes that also have smaller1152

memory footprints.1153

Nevertheless, for petabyte-scale velocity data sets such as those from grand1154

challenge climate simulations, online particle tracking is necessary to avoid1155

the unsustainable storage costs associated with offline particle tracking. The1156

challenge in this arena, however, is utilization of heterogeneous computer ar-1157

chitectures. Message-passing (MPI) between computational nodes is essential1158

and a hybrid approach utilising on-node openMP, GPU, or MIC threading1159
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will be required on next-generation architectures to obtain peak performance.1160

Task-based parallelism, if implemented for OGCMs, may provide at least1161

a partial solution. However, at present, no definitive framework or “best1162

practice” has been adopted.1163

Several OGCMs already have on-line particle diagnostics (see section A.2),1164

yet no general library for coupled Lagrangian particle tracking exists so far. As1165

a result, development efforts are disjoint and functionalities are often model-1166

specific. On the other hand, run-time integration with OGCMs requires close1167

coupling with grid data in order to reduce performance overheads, while the1168

variety of grid types makes finding a general abstraction difficult. Moreover,1169

such a library needs to provide parallel performance and scalability, as well1170

as an easily accessible API that allows it to be integrated with different types1171

of ocean models.1172

5.2. A case for standard tests of particle tools1173

Most of the Lagrangian particle tracking tools described in section 3.5 have1174

never been compared against each other, which makes it hard to assess their1175

skill and fidelity. While most codes are designed for very different purposes,1176

we propose to develop a set of test cases that we suggest code developers1177

to use when debugging codes. This set of test cases would then also serve1178

to highlight differences in explicit versus analytical time stepping codes, for1179

example, or differences between particle tracking on A, B and C grids. While1180

we envision the set to grow over time, the following would be a minimum1181

requirement.1182

A first set of tests to consider are those where analytical expressions are1183

known for trajectories.1184

1. Radial rotation with known period. This setup tests particle trajectories1185

in the simplest-possible flow, without time evolution.1186

2. Longitudinal shear dispersion flow in a pipe (e.g., Fischer et al., 2013)1187

to ensure that shear dispersion effects are properly represented.1188

3. Effective lateral diffusion due to an oscillating vertical shear flow (Bow-1189

den, 1965) to test particle trajectories in a time-evolving flow.1190

4. Steady-state flow around a peninsula (Ådlandsvik et al., 2009). This1191

setup tests particle trajectories in a domain with an obstacle, and can1192

be used to test how codes behave near land boundaries.1193
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5. Steady-state flow in a Stommel gyre and western boundary current1194

(Fabbroni, 2009) to test particle trajectories in a domain with large1195

gradients in flow speed.1196

6. Damped inertial oscillation on a geostrophic flow (Fabbroni, 2009; Döös1197

et al., 2013) to appropriately quantify sub-inertial motion, e.g., loopers.1198

7. For codes that include diffusivity, a simulation of Brownian motion with1199

a given Kh and Kv to test for sub-grid parameterizations of diffusivity.1200

A second set of tests can be considered that do not have an analytical solution,1201

but that test for speed and efficiency of the code in more realistic idealized1202

test cases corresponding to eddy resolving simulations, e.g., as are becoming1203

standard in modern climate models.1204

8. Zonally-periodic baroclinic channel (Ilıcak et al., 2012; Berloff et al.,1205

2009; Abernathey et al., 2013; Ringler et al., 2016; Wolfram and Ringler,1206

2017a,b) to explore unconstrained eddy and mean flow interactions, e.g.,1207

in an idealized Antarctic Circumpolar Current.1208

9. Eddying double-gyre flow (Shevchenko and Berloff, 2015; Wolfram et al.,1209

2015) to explore idealized eddying flows constrained within an ocean1210

basin.1211

Looking forward, a list such as this one might form the basis of a La-1212

grangian Model Intercomparison Project (LMIP), similar to that used in the1213

climate modelling community through the Coupled Model Intercomparison1214

Project (Eyring et al., 2015) or the Ocean Model Intercomparison Project1215

(Griffies et al., 2016). An LMIP could host the velocity fields and analytical1216

solutions of the set of test cases needed by particle model developers for1217

debugging purposes. To allow for use across a broad suite of analysis software,1218

we encourage developers of tools to make the trajectory data CF-compliant,1219

as stated at http://cfconventions.org/Data/cf-conventions/cf-conventions-1220

1.6/build/cf-conventions.html#discrete-sampling-geometries.1221

5.3. Whole-Earth System and Water Cycle Modelling1222

Beyond quantifying the pathways of seawater in the ocean, it is tantalis-1223

ing to consider whether Lagrangian methods could be used to track water1224

throughout the entire climate system. Such analysis could be used to quan-1225

tify coupled thermodynamic cycles (Laliberte et al., 2015; Kjellsson et al.,1226

48



eddy
stirring

abyssal
mixing

entrainment

ice shelf
basal melting

background mixing

evaporation

precipitation

condensation

cooling

AABW

NADW

SAMW/AAIW LSW/NPIW

heating

sea ice
freeze/melt

deep 
convection

SOUTH NORTH

Figure 7: Illustrating how water particles follow the water cycle in the Earth System. We
emphasize here the global ocean conveyor circulation in a pole-to-pole, meridional-vertical
plane, coupled to selected and idealized atmospheric circulation in the same plane, omitting
land for convenience [terrestrial processes such as evapo-transpiration, storage and runoff are
also part of the full water cycle]. Individual water particles are represented by color-coded
boxes, advected quickly/chaotically through the atmosphere, and slowly/steadily through
the ocean. Particles are stored on a wide range of timescales: in clouds (hours-days);
in sea ice (seasons-years); in the ocean (years-centuries); in ice sheets/shelves (centuries-
millennia). In the ocean, colour coding identifies selected water masses and advection
thereof: Antarctic Bottom Water (AABW); North Atlantic Deep Water (NADW); Labrador
Sea Water (LSW); Antarctic Intermediate Water (AAIW); North Pacific Intermediate
Water (NPIW); Subantarctic Mode Water (SAMW). In the atmosphere, colour-coding
distinguishes vapor and liquid phases. Highlighted processes involve phase change or
ocean-atmosphere exchange: ocean surface heating/cooling; evaporation; condensation;
precipitation; sea ice freezing/melting; ice shelf basal melting. Highlighted processes
internal to the ocean transform water particle density: deep convection; entrainment;
enhanced abyssal mixing; eddy stirring; weak background mixing.
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2014; Zika et al., 2012; Döös et al., 2012), geographical connectivity (Gimeno1227

et al., 2010), and the transport, dilution and fractionation of salt, nutrients1228

and oxygen (Figure 7). Here we will discuss such prospects including basic1229

requirements and challenges of such analysis.1230

One important reason for modelling the water cycle is the intensification1231

evident over recent decades in ocean salinity (Hosoda et al., 2009; Helm et al.,1232

2010; Durack et al., 2012). Central to this intensification are changes to moist1233

processes in the atmosphere (Held and Soden, 2006). However, based on1234

observed salinity and in CMIP5 simulations, the hydrological cycle intensifies1235

at around half the rate predicted from moist thermodynamics alone (Skliris1236

et al., 2016), while observations are currently inadequate for an accurate1237

quantification of changes in key processes (Hegerl et al., 2015), including1238

precipitation and evaporation over the oceans (Skliris et al., 2014). With a1239

Lagrangian description of the global water cycle in coupled climate models, it1240

will be possible to fully explore the full range of atmospheric processes that1241

are driving and retarding the observed intensification.1242

Another motivation is the possibility of tracing stable water isotopes1243

through the Earth system. Stable water isotopes are a cornerstone in paleo-1244

climate reconstructions, since their concentrations can be used to infer the1245

source of the water. For example, water vapour that has evaporated from the1246

ocean has low concentrations of heavy isotopes. Likewise, ice on Antarctica1247

also has very low concentrations of heavy isotopes, so it is likely that the ice1248

originates from evaporated water that precipitated over the continent (Gat,1249

1996). Hence, an observed decrease in heavy isotope concentrations in the1250

ocean could be due to either less evaporation, or advection of meltwater from1251

ice sheets or land (Roche, 2013). If we could trace the isotopic composition1252

of water as it moves between oceans, atmosphere, land and ice we could1253

reconstruct the hydrological cycles of past climates.1254

In general, if a Lagrangian code is to exchange particles between ocean and1255

other components of the earth system, it must first deal appropriately with1256

sources and sinks of water within the ocean itself. It is now common for ocean1257

models to have explicit water fluxes at the sea-surface due to evaporation,1258

precipitation and river run-off (Griffies et al., 2000). These sources and sinks1259

of water in the ocean should be accounted for in any Lagrangian framework1260

(e.g., with sources and sinks of particles) regardless of whether water is being1261

traced between components.1262

Secondly, for water to be consistently traced between components of the1263

climate system, water must be conserved between them. This is for example1264
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the case in some sea-ice and iceberg models which are integrated into ocean1265

modelling systems (Martin and Adcroft, 2010; Marsh et al., 2015, some of1266

which incidentally use a Lagrangian framework). However, challenges remain1267

in conserving water consistently between the ocean, atmosphere, terrestrial1268

hydrological systems (e.g. lakes, soil moisture, groundwater and irrigation)1269

and ice-sheets.1270

Tracking water within each component of the earth system other than1271

the ocean presents its own challenges. There is, for example, a rich history of1272

Lagrangian methods in meteorology (Stohl, 1998), some having evolved from1273

the oceanographic community (e.g. TRACMASS, see Kjellsson and Döös,1274

2012a). It is common for such methods to track air masses rather than water1275

itself. Water in the atmosphere comes in three phases: vapour, liquid and1276

ice, making the tracking of water challenging. However, robust methods are1277

in common use (see for example the FLEXPART model; Stohl and James,1278

2005; Gimeno et al., 2010).1279

Simulating the movement of water as Lagrangian particles between differ-1280

ent components of the earth system is further complicated by vast contrasts1281

in scale both in storage and transport rates between them. The atmosphere1282

for example holds 0.001% of all the water in the climate system while the1283

ocean holds 97%. In contrast, the cycle of evaporation and precipitation over1284

the globe amounts to approximately 16 Sv (i.e. multiplying global mean1285

precipitation of 2.7mm/day, Trenberth, 1998, by the area of the earth). So1286

while storage of water in the atmosphere is small relative to the ocean its1287

transport of water is equivalent to that of major ocean currents. Differences1288

in scales of motion and numerical description of these systems present great1289

technical challenges beyond the scope of this review.1290

6. Concluding remarks1291

In this review article, we have presented an extensive overview of the1292

state of the art in Lagrangian particle analysis. We focused on the use of1293

particles determined by integral curves of the velocity field and large-scale1294

open ocean applications. Based on the collective knowledge of the authors, we1295

have identified opportunities and issues for improvements of these methods as1296

we move towards a petascale age of computing. We hope that the guidance1297

provided here can provide a starting point for new users, as well as an impetus1298

for experienced users and developers of these codes.1299
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A. Community tools for Lagrangian Ocean Analysis1320

In this appendix, we provide further background to the different community1321

codes, both for offline and online particle tracking, listed in Tables 1 and 2.1322

A.1. Community-based offline 3D Lagrangian codes1323

A.1.1. Ariane1324

Ariane is a numerical diagnostic tool developed at the Laboratoire de1325

Physique des Océans (Brest, France). It is dedicated to the off-line computa-1326

tion of the advective component of 3D trajectories and subsequent volume1327

transport analyses in given velocity and tracer fields, most often obtained1328

from the numerical integration of an ocean general circulation model.1329

The trajectory integration scheme at the core of the Ariane calculations1330

(Blanke and Raynaud, 1997) dates back to 1992 (Speich, 1992). It takes full1331

advantage of the volume continuity equation expressed on a C-grid (Mesinger1332

and Arakawa, 1976). There are several advantages to the analytical calculation1333
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of streamlines on the model grid for successive time intervals, over which the1334

velocity is assumed to be steady-state (see section 3.2.3). The method only1335

calculates particle positions on the edge of grid cells, and it respects the local1336

three-dimensional non-divergence of the flow. Doing so makes the method1337

both fast and accurate in terms of truncation error relative to an RK4 code.1338

It offers flexibility too, in which backward integrations can be performed to1339

track the origin of a given volume. A trajectory scheme that respects the1340

continuity equation shows excellent capability for volume tracing, following1341

the streamtube perspective discussed in Section 2.4.1342

Following the methodology proposed by Döös (1995) and taken up by1343

Blanke and Raynaud (1997) to take advantage of such a scheme, water volume1344

transfers between selected control sections can be assessed with great accuracy.1345

They can be portrayed by means of Lagrangian streamfunctions, defined either1346

on a geographic plane (Blanke et al., 1999) or on other sets of coordinates1347

that include the model physical tracers (Blanke et al., 2006).1348

A.1.2. TRACMASS1349

The TRACMASS Lagrangian trajectory code was originally developed by1350

Döös (1995) and a thorough documentation was given by Döös et al. (2013)1351

and Döös et al. (2017). TRACMASS has been used to calculate trajectories1352

using velocity and tracer fields from a variety of ocean models. TRACMASS1353

has also been used to study the atmospheric Hadley and Ferrell Cells using1354

ERA-Interim as input (Kjellsson and Döös, 2012a). Hence, TRACMASS can1355

handle a wide variety of vertical grids and data formats.1356

TRACMASS solves the path of a trajectory through a grid box analytically1357

(see section 3.2.3) Trajectories are thus unique and if a trajectory is calculated1358

forward and then backward the solution will be the same up to numerical1359

noise due to round-off errors. There are two algorithms for calculating the1360

trajectories. The original from Döös (1995) uses velocities and tracers for1361

trajectory calculations that are assumed piecewise constant in time. Another1362

algorithm was developed by de Vries and Döös (2001) where time-dependence1363

was taken into account by linearly interpolating the velocities in both time1364

and space. Döös et al. (2017) showed that the time-interpolating scheme1365

resulted in much more accurate calculations than the piecewise time-constant1366

scheme.1367

TRACMASS trajectories have also been used to simulate the behaviour of1368

surface drifters (Kjellsson and Döös, 2012b; Nilsson et al., 2013). Comparing1369

the simulated drifter trajectories with observed surface-drifter trajectories1370
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has showed that coarse-resolution ocean models lack variability in the surface1371

currents, which is very likely due to the omission of stochastic noise to mimic1372

subgrid scale diffusion.1373

A.1.3. Octopus1374

Octopus is an offline particle tracking code first written to conduct offline1375

particle simulation using the Southern Ocean State Estimation (Mazloff et al.,1376

2010), which makes use of the MITgcm. The code was used to study tracer1377

evolution (Wang et al., 2016a) observed during the Diapycnal and Isopycnal1378

Mixing Experiment in the Southern Ocean (DIMES; Gille et al., 2007; Ledwell1379

et al., 2011). It was later used in simulating Argo floats as a component of1380

observational system planning for the Southern Ocean Carbon and Climate1381

Observations and Modeling project (SOCCOM, http://soccom.princeton.edu)1382

and in studies of watermass pathways in the Southern Ocean.1383

The interpolation scheme is linear in time and trilinear in space. The1384

RK4 scheme is used for time integration. The boundary condition is reflective1385

at the surface and solid walls. The model is currently written in Fortran1386

for structured C-grids. OpenMP is implemented for shared-memory parallel1387

calculation.1388

A.1.4. LAMTA software package1389

The LAgrangian Manifolds and Trajectories Analyser (LAMTA) consists1390

of a set of functions developed for gnu-octave and intended for the analysis1391

of two-dimensional velocity fields, in particular for oceanic current datasets.1392

The source code is freely available and distributed under a GPL license upon1393

direct request to the authors (d’Ovidio and Nencioli).1394

The package provides routines to compute particle trajectories and La-1395

grangian diagnostics based on user defined velocity fields (which include1396

analytical test cases, numerical model results and altimetry-based surface1397

geostrophic currents). The trajectories are computed using a Runge-Kutta1398

fourth order advection scheme (section 3.2.1). Particle advection can be1399

performed either forward or backward in time. The scheme applies bi-linear1400

interpolation of velocities in space and, if necessary, linear interpolation in1401

time. Lagrangian diagnostics include Finite Time/Size Lyapunov Exponents,1402

eddy retention, origin of water particles, age of a water particles from a given1403

bathymetry.1404

The package has been applied to investigate the relationship between1405

satellite-based Lagrangian coherent structures and ocean surface tracers in1406

54



the open ocean (d’Ovidio et al., 2004; Lehahn et al., 2007; d’Ovidio et al.,1407

2009), the retention of mesoscale structures (Smetacek et al., 2012; Martin1408

et al., 2013), the impact of horizontal advection in structuring ecological1409

niches (d’Ovidio et al., 2010) up to top predators (Cotté et al., 2011; De Monte1410

et al., 2012; Bon et al., 2015; Cotté et al., 2015) and for contextualizing1411

biodiversity genomic data Sunagawa et al. (2015). LAMTA has been recently1412

included in the SPASSO (Software Package for an Adaptive Satellite-based1413

Sampling for Ocean campaigns) software package14 developed to guide the1414

in-situ sampling strategy as well as the interpretation of collected observations1415

from (sub)mesoscale oriented field experiments. The package has been used1416

to support experiments in the NW Mediterranean (LATEX, e.g. Nencioli1417

et al., 2011, 2013), tropical North Atlantic (STRASSE, Reverdin et al., 2015)1418

and Southern Indian ocean: KEOPS2 (d’Ovidio et al., 2015) and LOHAFEX1419

(Martin et al., 2013). The code has also been integrated in the package used1420

by Cnes/AVISO to produce global maps of Lyapunov exponents and vectors1421

from altimetry data.1422

A.1.5. The Connectivity Modeling System (CMS)1423

The Connectivity Modelling System (CMS Paris et al., 2013b) is an open-1424

source Fortran toolbox, created at the University of Miami, for the multi-scale1425

tracking of biotic and abiotic particles in the ocean. The tool is inherently1426

multiscale, allowing for the seamless moving of particles between grids at1427

different resolutions.1428

The CMS has been used on velocity fields from OFES, HYCOM, NEMO,1429

MITgcm, UVic, ECCO2, SOSE, MOM and many other ocean models to1430

compute dispersion, connectivity and fate in applications including large scale1431

oceanography, marine reserve planning, and movement of marine biota all1432

across the world.1433

The CMS uses RK4 timestepping and tricubic interpolation and is designed1434

to be modular and probabilistic, meaning that it is relatively easy to add1435

additional ‘behaviours’ to the particles, with attributed randomly assigned1436

for a distribution of traits. Modules distributed with the code include random1437

walk diffusion, mortality, vertical migration, mixed layer mixing, and a1438

seascape module designed to generate a connectivity matrix output from the1439

source to the final destination of the particles.1440

14http://www.mio.univ-amu.fr/ doglioli/spasso.htm
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A.1.6. Other Biotic-particle models1441

While the CMS discussed above is also used for physical oceanogra-1442

phy applications, the code has been developed as a so-called Individual1443

Based Model (IBM), which serve predominantly biophysical applications.1444

Another widely-used example of an IBM is ICHTYOP (Lett et al., 2008,1445

http://www.ichthyop.org/). We will not cover IBMs in this discussion, as a1446

very good recent overview can be found in Lynch et al. (2014).1447

A.1.7. Parcels1448

Parcels is an experimental prototype code aimed at exploring novel ap-1449

proaches for Lagrangian tracking of virtual ocean tracer particles in the1450

petascale age. Parcels, which is currently under development, is designed1451

from the ground up to be efficient and fast for the next generation of ocean1452

circulation models. These ocean models are so big and massively parallel,1453

and they produce so much data, that in a few years we may face a situation1454

where many of the Lagrangian frameworks cannot be used on the latest data1455

any more (see also section 5.1).1456

The user interface of Parcels is written in python, while the computational1457

intensive integration is Just-In-Time (JIT) compiled into C. The code is formed1458

around a flexible and customisable API that allows rapid model development,1459

based on discrete time-stepping algorithms (section 3.2.1). It has a high-level1460

abstraction that hides complexities from the user (field sampling, efficient1461

loop scheduling, file I/O, etc.). This allows computer architecture experts to1462

optimise underlying methods without changing the high-level description of1463

the model.1464

A.2. Online tools within OGCMs1465

A.2.1. LIGHT within MPAS-O1466

The Los Alamos National Laboratory Model for Prediction Across Scales1467

Ocean (MPAS-O) (Ringler et al., 2013) is a fully unstructured C-grid ocean1468

model capable of multiscale ocean simulation that is part of the Energy Exas-1469

cale Earth System Model (E3SM), formerly known as Accelerated Climate1470

model for Energy (ACME). MPAS-O uses an online diagnostic particle track-1471

ing technique called LIGHT (Wolfram et al., 2015), for Lagrangian, in Situ,1472

Global, High-performance particle Tracking, which is integrated within the1473

MPAS framework and uses different particle advection modes corresponding1474

to different vertical interpolation schemes. For example, particles can be1475

advected along isopycnally-constrained trajectories. Time advancement uses a1476
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generalized Runge-Kutta sub-stepping scheme. Horizontal interpolation with1477

Wachspress interpolation (Gillette et al., 2012) occurs following reconstruction1478

of the full velocity vector via an inverse multi-quadratic radial basis function1479

approach (Baudisch et al., 2006). Particles are implemented in linked-lists on1480

each processor to conserve memory for large particle simulations and paral-1481

lelism is via MPI. Parallel communication occurs during the computational1482

step between spatially-adjacent processors for particles advecting from one1483

processor to another and global parallel communication is reserved for Input1484

and Output (I/O) tasks. Processor exchange lists for I/O may either be incre-1485

mentally updated or globally computed to minimize communication overhead1486

in different particle tracking configurations. LIGHT provides the capability1487

to advect the same number of particles as cells to obtain a complementary1488

Lagrangian description of the flow computed by the Eulerian prognostic solver1489

in MPAS-O. A version of MPAS-O that includes LIGHT will be available via1490

the public release of the U.S. Department of Energy’s Energy Exascale Earth1491

System Model (E3SM).1492

A.2.2. NEMO1493

NEMO (the Nucleus for European Modelling of the Ocean) model (Madec1494

and NEMO team, 2016) includes both Lagrangian floats (Madec, 2008) and1495

interactive icebergs, module ICB (both RK4). In addition to the online1496

icebergs option (NEMO-ICB; Marsh et al., 2015), icebergs can be forced in1497

offline mode (for tracking purposes) using the Stand-Alone Surface forced1498

(SAS) option, as SAS-ICB. In both NEMO-ICB and SAS-ICB, implementation1499

exploits available MPI parallelism.1500

A.2.3. MITgcm1501

The Massachusetts Institute of Technology General Circulation model1502

(MITgcm Marshall et al., 1997b,c) is a generalized level coordinate ocean1503

model with a wide range of configuration possibilities. The MITgcm in-1504

cludes a package for Lagrangian particle advection. The Lagrangian package,1505

named flt, is however poorly documented and not described in the liter-1506

ature. Nevertheless, this package provides a convenient way to integrate1507

Lagrangian analysis into existing MITgcm setups, thereby taking advantage1508

of the MPI parallelism of the model. Numerically, floats are advected using1509

RK4. A fixed memory buffer is allocated for floats on each tile, implying1510

that memory is wasted for sparse particle ensembles. Because of MITgcm’s1511

“offline mode” (Adcroft et al., 2014), which enables loading of velocity fields1512
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from files, MITgcm can be effectively used as a general-purpose Lagrangian1513

model. Numerous studies have employed this configuration for simulating1514

Lagrangian trajectories from satellite-derived geostrophic velocities (Klocker1515

et al., 2012b,a; Klocker and Abernathey, 2014) and three-dimensional model1516

output (Abernathey et al., 2013).1517

A.2.4. HYCOM1518

HYCOM (the HYbrid Coordinate Ocean Model) is a generalized (hybrid)1519

vertical coordinate ocean model (isopycnal, terrain following, and/or pressure).1520

It is isopycnal in the open stratified ocean, but reverts smoothly to a terrain-1521

following coordinate in shallow coastal regions, and to pressure coordinates1522

near the surface in the mixed layer (Bleck, 2002; Chassignet et al., 2003,1523

2006). HYCOM includes online code designed to follow numerical particles1524

during model run time (Halliwell and Garraffo, 2002; Wallcraft et al., 2009).1525

In addition to the ability to follow a fluid particle in three dimensions, one1526

can also release both isobaric and isopycnic floats. Isobaric floats remain at1527

prescribed pressure levels while isopycnic floats remain on prescribed density1528

surfaces.1529

Because of the generalized (or hybrid) vertical coordinate of HYCOM,1530

one has to be especially attentive when performing vertical and horizontal1531

interpolations/advections. The horizontal, vertical, and temporal interpola-1532

tion schemes used in HYCOM to advect the floats are adapted from Garraffo1533

et al. (2001a,b). Horizontal interpolation is performed using a sixteen-point1534

grid box surrounding the float when a sufficient number of good grid points1535

are available (bilinear interpolation otherwise). Vertical interpolation first1536

locates the bounding pressure interfaces and all properties are then linearly1537

interpolated to the float location. Temporal interpolation is performed using1538

RK4. Since the vertical velocity is not a prognostic variable in HYCOM, it is1539

diagnosed using the continuity equation (see Halliwell and Garraffo (2002)1540

and Wallcraft et al. (2009) for details on the implementation).1541

A.2.5. ROMS1542

ROMS (Regional Ocean Model System, https://www.myroms.org/) is1543

a free surface, hydrostatic primitive equations ocean model with terrain-1544

following vertical coordinates that allow differential stretching (Shchepetkin1545

and McWilliams, 2005; Haidvogel et al., 2008). It is an open source parallel1546

Fortran code coupled to several models including biogeochemestry, waves,1547

sediments, bio-optical and sea ice. It offers great flexibility for configura-1548
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tion and is widely used by the scientific community for a diverse range of1549

applications. ROMS includes a module called floats, which allows the1550

release and tracking of numerical particles during model run time. Passive1551

floats can be of 3 different types: neutral density 3D Lagrangian, isobaric1552

(remain at prescribed pressure level) or geopotential (remain at prescribed1553

depth). The numerical scheme used to time-step simulated floats trajectories1554

is a fourth-order Milne predictor and fourth-order Hamming corrector. It1555

is possible to add a random walk to the floats to simulate subgrid scale1556

vertical diffusion. The random walk component is implemented considering1557

spatially variable diffusivity following Hunter et al. (1993). Floats can either1558

reflect or ‘stick’ when they hit the surface/bottom boundaries. Clusters of1559

floats with user defined distributions can be released at specified locations.1560

It is possible to release particles multiple times, at defined time intervals1561

throughout the run. Recently new subroutines have been implemented to1562

allow for ‘biological floats’ that behave according to user defined parameters.1563

The complex biology of oyster larvae, including variable growth rates and1564

vertical swimming dependent on food, salinity, temperature and turbidity has1565

been implemented (Narvaez et al., 2012a,b), and is available with the latest1566

ROMS release.1567

B. Tracer trajectories with isopycnal diffusion1568

We here illustrate the stochastic differential equation discussion from1569

Section 3.3.1. We consider the calculation of Lagrangian tracer trajectories in1570

a 3D benchmark for diffusive tracer transport from Shah et al. (2011, 2013).1571

Note that in two dimensions, the approach is slightly different (see Appendix1572

C). For this purpose, let x and y denote the horizontal coordinates, while1573

z denotes the vertical coordinate and assume zero diapycnal diffusion. If1574

ρ is the potential density field (assume linear equation of state), then the1575

isopycnal diffusion tensor (Redi, 1982) reads1576

K =
KI

ρ2
x + ρ2

y + ρ2
z

ρ2
y + ρ2

z −ρxρy −ρxρz
−ρyρx ρ2

x + ρ2
z −ρyρz

−ρzρx −ρzρy ρ2
x + ρ2

y

 . (36)

Here KI represents the isopycnal diffusion coefficient and ρ is given by1577

ρ (x, y, z) = ρ0

[
1− N2z

g
+ αx sin (κxx) + αy sin (κyy)

]
. (37)
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Note that the vertical density gradient is assumed to be constant, but the1578

horizontal one is not, so that the isopycnal surfaces are not flat.1579

The concentration satisfies the following initial value problem:1580

∂C

∂t
=

∂

∂xi

(
Kij

∂C

∂xj

)
, t0 ≤ t ≤ T

C(x, t) = C0(x).

(38)

To solve this problem with the stochastic model given by equation (27), one1581

needs to decompose the diffusion tensor K in the form 2Kij = σik σjk. Using1582

a Cholesky decomposition method, the components of the matrix σ can be1583

determined. This decomposition leads to the following stochastic differential1584

equations describing the behaviour of the individual particles (note that due1585

to the use the of Cholesky decomposition, the components σxy, σxz and σyz of1586

the matrix σ are zero)1587

dX(t) = axdt+
√

2σxxdWx(t),

dY (t) = aydt+
√

2σyxdWx(t) +
√

2σyydWy(t),

dZ(t) = azdt+
√

2σzxdWx(t) +
√

2σzydWy(t),

X(t0) = X0, Y (t0) = Y0, Z(t0) = Z0,

(39)

where the drift coefficients ax, ay and az are given by1588

ax =
∂Kxx

∂x
+
∂Kxy

∂y
, ay =

∂Kyx

∂x
+
∂Kyy

∂y
and az =

∂Kzx

∂x
+
∂Kzy

∂y
. (40)

In Figure 8a results of a simulation are shown for parameter values that1589

are relevant for ocean transport problems (Shah et al., 2011, 2013). Here1590

the particles have been released at the origin (x, y, z) = (0, 0, 0), a point that1591

belongs to the isopycnal surface. The position vector [xj(t), yj(t), zj(t)], j =1592

1, 2 · · · J. of each particles is simulated by means of a Lagrangian scheme.1593

Because the diapycnal diffusion is zero, the particles should not leave the1594

isopycnal surface. However, numerical errors are unavoidable and their1595

magnitude can be estimated by means of a spurious diapycnal diffusivity. The1596

results presented in Figure 8b show that the higher order Milstein scheme1597

performs better than the Euler scheme.1598
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Figure 8: (a) Simulated position of Lagrangian particles at a certain time on the non-flat
isopycnal surface and (b) the spurious diapycnal diffusivity for different Lagrangian schemes.

C. Diffusion in two-dimensional models and associated Lagrangian1599

tracer trajectories1600

This review article deals with Lagrangian methods for large-scale open-1601

ocean applications in oceanography. This is why the theoretical developments1602

and the flows dealt with are essentially three-dimensional. There are, however,1603

difficulties inherent in one- or two-dimensional transport models, which cannot1604

be regarded as an idealisation or simplification of three-dimensional models.1605

Some aspect thereof are outlined below.1606

Let H, ui(i = 1, 2) and C be functions of the time and horizontal co-1607

ordinates representing the height of the water column, the depth-averaged1608

horizontal velocity and the depth-averaged concentration of a passive tracer,1609

respectively. Then, the continuity equation is1610

∂tH + ∂i(H ui) = 0 (41)

and the equation obeyed by the concentration reads (e.g. Vanderborght et al.,1611

2007)1612

∂t(H C) + ∂i(H C ui) = ∂i(HKij∂jC) (42)
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where the diffusivity tensor Kij is symmetric and positive definite. The1613

latter partial differential equation may be transformed into a Fokker-Planck1614

equation in which HC (rather than C) should be viewed as the unknown:1615

∂t(H C) + ∂i(H C udrift

i ) = ∂i∂j(Kij H C) (43)

where the drift velocity is (Heemink, 1990)1616

udrift

i = ui +H−1 ∂j(HKij) = ui + ∂i(Kij) +Kij H
−1 ∂jH. (44)

The first two terms on the right-hand-side of equation (44) are equivalent1617

to those used in three-dimensional models, whilst the last one is specific to1618

depth-integrated models.1619

If the last term in (44) is not taken into account in a Lagrangian model,1620

then particles might tend to concentrate into the shallowest areas, which clearly1621

is unphysical and may lead to erroneous conclusions (e.g. Spagnol et al., 2002).1622

A test case was designed by Deleersnijder (2015) that includes an analytical1623

solution for diffusion in a depth-varying domain, and implemented numerically1624

by Thomas et al. (2015a). This exact solution exhibits a somewhat counter-1625

intuitive behaviour, with the location of the maximum of the concentration1626

and the tracer patch centre of mass moving in opposite directions.1627

Somewhat similar developments are made when designing a one-dimensional,
cross section-averaged transport model. Such models are often used to simu-
late transport processes in elongated domains such as rivers or estuaries (e.g.
Everbecq et al., 2001; Hofmann et al., 2008). In this case all the variables
and parameters depend on time and the along-flow coordinate x. If S, u and
C denote the cross-sectional area, the cross-section-averaged velocity and the
cross-section-averaged concentration, respectively, then the one-dimensional
counterparts to equations (41)-(44) are

∂tS + ∂x(S u) = 0 (45a)

∂t(S C) + ∂x(S C u) = ∂x(S K ∂xC) (45b)

∂t(S C) + ∂x(S C udrift) = ∂x∂x(K S C) (45c)

where1628

udrift = u+ S−1 ∂x(SK) = u+ ∂xK +K S−1 ∂xS (46)

is the drift velocity, and K is the along-flow diffusivity.1629

In depth- and section-averaged models, the diffusion term is rarely meant1630

to represent turbulent diffusion per se. Instead, it is essentially the effect of1631
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shear dispersion (e.g. Young and Jones, 1991) that is to be parameterized, i.e.1632

the impact on the resolved (reduced-dimension) processes of the combined1633

effect of sheared-advection and turbulent diffusion in the transversal direction.1634

As a consequence, the diffusivity coefficients are often significantly larger than1635

those that would be used in a three-dimensional model of the same domain.1636
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Mezić, I., Loire, S., Fonoberov, V. A., and Hogan, P. (2010). A New Mixing2241

Diagnostic and Gulf Oil Spill Movement. Science, 330(6003):486–489.2242

Middleton, J. F. and Loder, J. W. (1989). Skew fluxes in polarized wave2243

fields. Journal of Physical Oceanography, 19:68–76.2244

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annu. Rev.2245

Astron. Astrophys., 30:543–574.2246

Mouchet, A., Cornaton, F., Deleersnijder, E., and Delhez, E. (2016). Partial2247

ages: diagnosing transport processes by means of multiple clocks. Ocean2248

Dynamics, 66:367–386.2249

82



Narvaez, D. A., Klinck, J. M., Powell, E. N., Hofmann, E. E., Wilkin, J., and2250

Haidvogel, D. B. (2012a). Circulation and behavior controls on dispersal of2251

eastern oyster (Crassostrea virginica) larvae in Delaware Bay. Journal of2252

Marine Research, 70(2-3):411–440.2253

Narvaez, D. A., Klinck, J. M., Powell, E. N., Hofmann, E. E., Wilkin, J.,2254

and Haidvogel, D. B. (2012b). Modeling the dispersal of eastern oyster2255

(Crassostrea virginica) larvae in Delaware Bay. Journal of Marine Research,2256

70(2-3):381–409.2257

Nencioli, F., d’Ovidio, F., Doglioli, A. M., and Petrenko, A. A. (2011). Surface2258

coastal circulation patterns by in-situ detection of Lagrangian coherent2259

structures. Geophys. Res. Lett., 38(17):L17604.2260

Nencioli, F., d’Ovidio, F., Doglioli, A. M., and Petrenko, A. A. (2013). In2261

situ estimates of submesoscale horizontal eddy diffusivity across an ocean2262

front. Journal of Geophysical Research: Oceans, 118(12):7066–7080.2263
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Piñones, A., Hofmann, E. E., Dinniman, M. S., and Klinck, J. M. (2011).2305

Lagrangian simulation of transport pathways and residence times along the2306

western Antarctic Peninsula. Deep Sea Research Part II: Topical Studies2307

in Oceanography, 58(1316):1524–1539.2308

Pierrehumbert, R. and Yang, H. (1993). Global chaotic mixing on isentropic2309

surfaces. Journal of the atmospheric sciences, 50(15):2462–2480.2310

84
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(2013). Deep-Sea Research I. Deep-Sea Research Part I-Oceanographic2348

Research Papers, 80(C):37–46.2349
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