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ARTICLE

Memory effects can make the transmission
capability of a communication channel
uncomputable
David Elkouss 1 & David Pérez-García2,3

Most communication channels are subjected to noise. One of the goals of information theory

is to add redundancy in the transmission of information so that the information is transmitted

reliably and the amount of information transmitted through the channel is as large as pos-

sible. The maximum rate at which reliable transmission is possible is called the capacity. If the

channel does not keep memory of its past, the capacity is given by a simple optimization

problem and can be efficiently computed. The situation of channels with memory is less clear.

Here we show that for channels with memory the capacity cannot be computed to within

precision 1/5. Our result holds even if we consider one of the simplest families of such

channels—information-stable finite state machine channels—restrict the input and output of

the channel to 4 and 1 bit respectively and allow 6 bits of memory.
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The need to manipulate large amounts of information is one
of the main characteristics of our society. It is crucial to
protect the information against noise and errors in order to

ensure its reliable transmission and long-term storage. It is
important also to do so in the optimal way so that communica-
tion channels transmit and memories store trustworthily as much
information as possible. This problem motivated Shannon1,
already in 1948, to develop the theory of communications. The
natural problem that Shannon posed is, given a noisy commu-
nication channel, find the maximum rate of information it can
transmit with an arbitrarily small error.

In an ingenuity tour de force, he proved that for channels that
keep no memory of their past uses (called memoryless), this
quantity—the capacity of the channel—defined in such opera-
tional way, has a simple entropic expression. It coincides with the
maximization, on all inputs to the channel, of the so-called
mutual information between input and output in one single use of
the channel. This coding result was complemented years later by
the Blahut-Arimoto (BA) algorithm2,3, which allows to efficiently
approximate the capacity of any memoryless channel within any
desired precision.

The situation for channels with memory is less clear. Regarding
coding theorems, more and more general classes of channels were
successfully dealt with4–7 culminating in the generalized capacity
formula8. In this last work, Verdu and Han derived a general-
ization of Shannon’s coding theorem which essentially makes no
assumption regarding the structure of the channel. When it
comes to algorithms that approximate the capacity, despite con-
siderable effort, the situation is nowadays less successful. Even if
we restrict to the simplest case of channels with memory, the so-
called finite state machine channels (FSMCs), the problem
remains open. There is a rich literature dealing with particular
cases (see e.g. refs. 9–19). However, these results do not address
FSMCs in full generality or cannot guarantee the precision of the
result.

It is the main aim of this work to show that an algorithm that
computes approximately the capacity of an arbitrary FSMC
cannot exist. Since computable functions are exactly those that
can be computed by an algorithm, this is equivalent to show that
any function that approximates sufficiently the capacity of any
FSMC must necessarily be uncomputable.

Results
Main statements. Aiming at an impossibility result, the simpler
the family of channels we consider, the stronger the result. This is
why we consider FSMCs. The same result hence holds true for
any more general family of channels with memory.

In order to be precise, an FSMC with n possible input symbols
(the number of possible output symbols will be always 2) and m
possible states in the memory is determined by9 a set of
conditional probability assignments. The set of conditional
probability assignments pðy; sjx; s′Þ describes the probability of
output symbol y and transition to state s in the memory if the
FSMC is in state s′ and gets x as input. Moreover, we will only
consider FSMCs in which the initial state is fixed and known to
the sender and receiver. We denote the initial state by s0.

To avoid problems of approximating p(y, s|x, s′) we will only
consider FSMCs for which the probability assignments p(y, s|x, s′)
are rational numbers. Moreover, we will only consider FSMCs for
which p(y, s|x, s′) are in product form p(y|x, s′) p(s|x, s′) and
which are information stable. Information stable channels are one
of the simplest classes of channels with memory. For these
channels the capacity is given by the limit of the mutual
information rate20 and it is not necessary to consider the most
general capacity formula8.

Our main result can then be stated as
Main Result 1: Any function that on input the set of probability

assignments {p(y|x, s′), p(s|x, s′)}s, y, x, s′ of an information stable
FSMC N with 10 input symbols and 62 states, outputs a rational
number c so that the capacity of N verifies

CðNÞ � cj j � 1
5
; ð1Þ

must be uncomputable.
It is obvious that the same result then holds for n input

symbols and m states as long as n ≥ 10 and m ≥ 62. For example,
taking n= 16 and m= 64 we get a channel with 4 bits of input, 1
bit of output and 6 bits of memory.

Indeed, we will prove something slightly stronger. Let us recall
that a decision problem can be cast as a function with values in {0,
1}, where 1 stands for accept and 0 for reject. When the associated
function is uncomputable, the decision problem is called
undecidable.

Fix a rational number λ∈ (0, 1]. We will give explicitly a
subfamily Sλ of FSMCs (information stable and with rational
conditional probability assignments in product form) with 10
input symbols and 62 states, with the additional property that all
channels N 2 Sλ have capacity ≥λ or ≤λ/2.

Main Result 2: It is undecidable to know whether N 2 Sλ,
given by its set of probability assignments {p(y|x, s′), p(s|x, s′)}s, y,
x, s′, has capacity ≥λ or ≤ λ/2.

It is clear that if we consider our Main Result 2 for S1 we get
Main Result 1. That is, if we could approximate the capacity
within error 1/5 then, given a channel from S1 for which we
know its capacity is ≤1/2 or ≥1, we could decide which is the case.
However, we know by Main Result 2 that the problem is
undecidable.

Proof sketch. The idea behind our proof is to construct a family
of channels such that the capacity of a channel in the family is
related to some property of a probabilistic finite automaton
(PFA). Our construction is indirect, we first give a map form
PFAs to FSMCs; then we define the channel family as the set of
FSMCs that are the image of a PFA via this map. The important
property of this map, proved in Theorem 1, is that the capacity of
a channel in the image set is given by the value of its preimage
PFA (see the PFA section). We now sketch the structure of the
proof and point to the appropriate sections for further detail.

FSMCs, defined in Supplementary Note 2, are controlled by a
finite state machine. The state of the finite state machine
determines the (memoryless) channel that is applied to the input.
Then depending both on the input and the current state it
transitions probabilistically to the next state. A PFA is a finite
state machine that transitions probabilistically from state to state
depending on the current state and the input (see Fig. 1). Hence,
it is possible to identify the finite state machine controlling an
FSMC with a PFA.

A concrete input into a PFA, that is a sequence of input
symbols, is accepted if after reading the input the PFA ends in a
subset of the states called accepting states, otherwise the input is
rejected. Informally, the value of a PFA is the maximum
probability of ending in an accepting state. It turns out that
many decision problems related to the value cannot be solved.
Notably, given some value λ∈ (0, 1) and a PFA A it is
undecidable to know if the value of A is greater than λ21–23.
Here, we use a recent proof of this result by Hirvensalo24, see
Theorem 1 in Supplementary Note 6B. In order to prove a result
about approximations, we amplify this result about decision
problems with a very original PFA construction by Gimbert and
Oualhadj25, which is the key ingredient in our proof, see
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Lemma 2 in Supplementary Note 6A. With this construction, it is
possible to embed any PFA A into a larger PFA Bλ (with λ∈ [0,
1/2]) such that: the value of Bλ is ≤λ if and only if the value of A
is ≤1/2 and the value of Bλ is 2λ if and only if the value ofA is >1/
2. Joining both arguments, we conclude that the value of a PFA
cannot be approximated with arbitrary precision, since it is
undecidable to know whether the value of a PFA is smaller than λ
or equal to 2λ.

To go from there to Main Result 2 it is enough to construct for
any PFA A a channel VA so that the capacity of VA equals the
value of A. The idea for that is very natural:

Consider a channel with two input registers. The first one is
used to control the PFA. The second one corresponds to the data
to be transmitted. If the PFA is in an accepting state the channel
outputs the contents of the second input register, that is, it
behaves as a noiseless channel. Otherwise it is only noise, i.e. it
outputs uniformly at random a symbol from the output alphabet.

Intuitively, this map should already have the property that the
capacity of VA equals the value of A. However, without an
additional gadget, we cannot conclude this. Let us see with an
example why it does not suffice. Consider for instance a PFA that
transitions from the initial state to an accepting state with
probability 1/2 and with probability 1/2 to some other state.
Moreover, suppose that these two states are final in the sense that
the PFA cannot leave them once reached. Such a PFA would have
value 1/2. However, the capacity of the associated channel would
be zero because the error probability of any code would always be
greater than 1/4. In order to solve this problem we concatenate
the map with a function γð�Þ from PFAs to PFAs that adds to the
PFA a reset and a freeze symbols. The reset symbol takes the PFA
back to the initial state while the freeze symbol keeps the state of
the PFA unchanged. We prove in Lemma 3 in Supplementary
Note 6C that the value of an automaton A does not change under

this map, i.e. the value of A equals the value of γðAÞ. But, for
PFAs with the additional reset and freeze symbols we can show
the desired result that the capacity of the channel VγðAÞ equals the
value of the automaton A. This is our main technical result,
proved in Theorem 1.

The intuition between the equality of the capacity of channel
VA and the value of A, valA, is as follows. For any δ > 0 there
exists a word with value greater than valA � δ. By feeding this
word into the control register, the channel will transition into a
final state with probability at least valA � δ. The state of the
channel can then be frozen making the mutual information rate
tend to valA � δ. However, this rate might not be achievable. In
order to show achievability then, we induce a memoryless
channel by choosing for the control input a periodic sequence
that ends with a reset symbol. More concretely, for δ > 0, the
sequence consists of: a word with a value larger than valA � δ, a
number of freeze symbols that guarantee an information rate
larger than valA � 2δ and a reset symbol. In the other direction,
one would not expect a capacity larger than valA. The reason is
that the channel outputs a symbol uniformly at random when it is
in a non-final state and this happens with probability at least
1� valA.

Finally, note that at this point we do not know yet that the
channel is information stable. Indeed, the proof of this fact
(Corollary 1 in Supplementary Note 5) will use crucially Theorem
1.

Formal statements of the main results. So far we have intro-
duced the notion of uncomputable functions as those that cannot
be computed with an algorithm (similarly the notion of unde-
cidable problems). In order to make this definition, and hence the
Main Results, mathematically rigorous, we have to recall the
definition of a Turing Machine (TM) as the formal definition of
what an algorithm is. For more details one can consult for
instance26,27.

A TM represents a machine with a finite set of states that can
read from and write to an infinitely long memory in the form of a
tape. The tape is divided into cells that can hold a single symbol
from a finite alphabet. Initially, the tape contains some arbitrary
but finite string that we call the input followed by an infinite
sequence of blank symbols. The operation of the machine is
controlled by a head that sits on top of a cell of the tape. The head
operates as follows: it reads the symbol below it; then, depending
on the symbol and the current state it writes a symbol, moves left
or right and transitions to a new state. The set of states includes
the halting state. The TM halts after it transitions to the halting
state. The output of the TM consists of the, possibly empty, string
of symbols starting from the leftmost non-blank symbol to the
rightmost non-blank symbol.

Formally, a TM is defined by a triple M= (Q,Σ,δ) where Q
represents the finite set of states including an initial and a halting
state, Σ is the finite set of symbols that a cell may contain and it
includes the blank symbol and δ : ðQ ´ΣÞ7!ðQ ´Σ ´ fL;RgÞ is
the transition function.

A configuration is a complete description of the status of a TM.
It consists of the current state, the contents of the tape and the
position of the head. In the initial configuration, the tape contains
the input string and the head of the TM is in the initial state and
situated on top of the leftmost cell of the input. Once the initial
configuration is fixed a TM evolves deterministically and may or
may not eventually halt.

Let us fix n= 10, m= 62. In order to specify an FSMC with n
input symbols and m states, it is enough to give N= nm(2+m)
= 39,680 rational numbers corresponding to the conditional
probability assignments. It is very easy to construct an injective

Fig. 1 A noisy Rubik cube solver as an example of a probabilistic finite
automaton (PFA). This PFA has as many states as different Rubik cube
configurations. It begins in some predefined state and can be manipulated
with four different buttons or input alphabet symbols: {a, b, id, rt}. A Rubik
cube can be solved by combinations of only two sequences of rotations36.
The press of the buttons a, b will, with some probability, implement one of
these two sequences and with the complementary probability apply a
random rotation. The buttons id, rt will make the state of the Rubik cube
either stay idle or bring it back to the initial state. The accepting state is the
solved configuration of the cube. The value of this automaton would be the
maximum probability of taking the initial configuration to the solved
configuration by pressing a sequence of buttons (Credit: Francisco García
Moro)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03428-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1149 | DOI: 10.1038/s41467-018-03428-0 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


map σð�Þ from vectors of N positive rational numbers to the
natural numbers (see Supplementary Note 3), which then can be
transformed into a valid input of a TM. For instance, it would be
transformed into a string of zeroes and ones if Σ= {0, 1, #}. Main
Results 1 and 2 can be then respectively restated as:

Main Result 1: There does not exist any TM that halts on all
inputs of the form σ(N) for N 2 S1 and outputs a rational
number c such that the capacity of N verifies

CðNÞ � cj j � 1
5
: ð2Þ

Main Result 2: There does not exist any TM that halts on all
inputs of the form σ(N) for N 2 Sλ and outputs 1 if the capacity
of N ≥ λ and 0 if the capacity of N ≤ λ/2.

Discussion
We have proven that no algorithm can exist that approximates
the capacity for all information stable FSMCs to any desired
precision.

Our construction builds directly on top of several strong
undecidability results of PFAs. Recent developments underlying
these results suggest that it should be possible to reduce the
dimensions of our construction28. It is an interesting problem to
find the minimal dimensions for which uncomputability holds.

It is important to notice also that the channels appearing in our
construction have long-term memory. Combined with the known
results for memoryless channels, this suggests the existence of a
tradeoff between the time-scale of the memory of a channel and
the efficiency to compute its capacity. Giving precise quantitative
bounds in this direction is an interesting open question.

It is also worth exploring other problems that could be attacked
with similar techniques. The proof technique can be extended to
the capacities of quantum channels with memory implying an
even stronger inapproximability result in that case. We will make
the explicit analysis in a forthcoming paper. Similar long-term
memory effects appear in other interesting situations, associated
with other entropic quantities. One paradigmatic example is
cryptography, where in order to analyse the security of the
sequential use of a device, one needs to assume the worst case-
scenario in which the adversary keeps memory of its past uses.
Both in the classical and in the quantum case, the techniques of
this paper could provide insights on the difficulty to provide
optimal results in cryptographic settings.

Furthermore, our result connects with recent work regarding
the different capacities of memoryless quantum channels29,30,
showing some evidence that these capacities might be uncom-
putable. Also, memoryless zero error capacities, both classical and
quantum, are known to have highly non-trivial behaviour31–35.
Unfortunately, the techniques used here exploit directly the
memory of the channel and hence cannot be directly applied to
the memoryless capacities. The question is however of unques-
tionable interest.

Methods
Notation. We denote random variables by capital letters X, Y,..., sets and PFA—see
below for the definition—by calligraphic capital letters X ;Y; :::, channels by capital
bold face letters X, Y,..., and instances of random variables by lower case letters x,
y,.... We denote vectors with the same convention, whenever confusion might arise
a superscript indicates the number of components of the vector and a subscript the
concrete component: Xn= (X1, X2,..., Xn) or xn= (x1, x2,..., xn). We indicate a
consecutive subset of n components of the vector with subscript notation [a, a+ n
−1]: x[a, a+n−1]= (xa, xa+1,..., xa+n−2, xa+n−1).

A vector is called a probability vector if all its entries are non-negative and add
up to one. A matrix is called a stochastic matrix if all its columns are probability
vectors. A stochastic matrix takes probability vectors to probability vectors (see
Supplementary Note 1 for examples).

Probabilistic finite automata. A PFA consists of a finite set of inputs and a finite
set of states. One of these states is the initial state and a subset of the states are
accepting states.

The action of the PFA is defined by the transition probabilities from one state to
another as a function of the input symbols. A word is a sequence of symbols. After
a word is fed to a PFA in the initial state, the PFA will transition from state to state
and will end up in an accepting state with some probability. We call this probability
the accepting probability of a word. Intuitively, we can understand a PFA as a
machine with noisy knobs, the input symbols, and the input word is a sequence of
knobs that tries to steer the machine into some desired state. See Fig. 1 for an
example and Supplementary Note 1 for a formal definition.

Given some PFA, we denote by valA the supremum of the acceptance
probabilities over all input words:

valA ¼ sup
w

valðA;wÞ; ð3Þ

where valðA;wÞ denotes the value of w when input into the PFA A and the
optimization runs over all words of finite length.

We consider two types of PFAs that we name as freezable and resettable.
We call a PFA a freezable PFA if one of the transition matrices is equal to the

identity matrix X id. The reason is that for such a PFA reading the symbol
corresponding to the identity leaves the state probabilities unchanged. Let u be any
probability vector, then

u ¼ X idu: ð4Þ

We call a PFA a resettable PFA if one of the transition matrices, X rt , takes the
state back to the initial state. Let u be any probability vector, then

v ¼ X rtu: ð5Þ

We let γ be a map from PFAs to PFAs such that for all PFA A, γðAÞ is freezable
and resettable. More concretely:

Definition 1. Given a PFA A ¼ fQ;W;X ; v;Fg,we define γðAÞ ¼
fQ;W ∪ fid; rtg;X ∪ fX id;X rtg; v;Fg as an automaton that extends A with the
two additional input symbols id and rtand the corresponding matrices X id and X rt

as given by (4) and (5).
The key lemma we will need about PFAs, essentially due to Gimbert and

Oualhadj25, is the fact that their value cannot be approximated within a constant
error. Let us give the precise statement. The complete proof can be found in
Supplementary Note 6. Fix a rational number λ ∈ (0, 1].

Lemma 1. One can give explicitly a subfamily T λ of rational freezable and resettable
PFA with alphabet size 5 and 62 states with the following properties:

(i) valA is either ≥λ or ≤λ/2 for all A 2 T λ .
(ii) It is undecidable to know which is the case.

The definition of T λ will be given in Supplementary Note 6, Eq. (85).

The family Sλ and the proof of Main Result 2. Given a freezable and resettable
PFA A we define the channel VA as follows. The input alphabet of the channel
takes values in f0; 1g ´W, which we identify with two different input registers: a
data input and a control input. The data input is transmitted to the output:
noiselessly if A is in an accepting state or, if A in any other state, the channel
outputs uniformly at random an element of the output alphabet. More concretely,
the output of the channel is defined by the following conditional probability:

pðynjxn; sn�1Þ ¼

1
2 if sn�1=2F
1 if sn�1 2 F and yn ¼ xn
0 else

8
><

>:
ð6Þ

The control input is fed to A, which begins in the initial state, and the state
transition probabilities are dictated by the PFA:

pðsnjcn; sn�1Þ ¼ πsn ;X cnπsn�1h i: ð7Þ

We connect the properties of PFA with the capacity of FSMCs in the next
Theorem:

Theorem 1. The capacity of VA is given by

CðVAÞ ¼ valA: ð8Þ

We defer the proof to Supplementary Note 4.
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The family Sλ in Main Result 2 is defined simply as

Sλ ¼ fVA : A 2 T λg:

with T λ the family introduced in Lemma 1 and defined in Supplementary Note 6,
Eq. (85).

Main Result 2 is then a trivial consequence of Lemma 1 and Theorem 1.
Furthermore one can leverage Theorem 1 to show that all the channels in Sλ are

information stable:

Corollary 1. Given VA 2 Sλ , VA is information stable.
The proof will be given in Supplementary Note 5.

Data availability. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.
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