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Abstract. The boundary element method (BEM) is widely used in fast numerical
solvers for concentrated elastic contact problems arising from the wheel-rail contact
in the railway industry. In this paper we extend the range of applicability of BEM
by computing the influence coefficients (ICs) numerically. These ICs represent the
Green’s function of the problem, i.e. the surface deformation due to unit loads. They
are not analytically available when the half-space is invalid, for instance in conformal
contact. An elastic model is proposed to compute these ICs numerically, by the finite
element method (FEM). We present a detailed investigation to find proper strategies
of FEM meshing and element types, considering accuracy and computational cost.
Moreover, the effects of computed ICs to contact solutions are examined for a Catta-
neo shift contact problem. The work in this paper provides a guidance to study fast
solvers for the conformal contact.

Keywords: influence coefficients, half-space approach, concentrated contact, the finite

element method, error propagation.

AMS Subject Classification: 65N30; 65M50; 65M15; 35Q74.

1 Introduction

Contact problems have a broad range of applicability in engineering fields,
such as wheel-rail contact in railway industry [15], investigation of friction and
wear [5, 26], rolling fatigue [7], ball bearing [9], etc. Such problems consider
elastic contact between two bodies. When they are pressed together, an elastic
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field of stress, strain and displacement arises in each body. A contact area is
formed where the two body surfaces coincide with each other. The stresses
exerted on each body consist of normal stress and tangential stress. In the so-
called normal contact problems, we solve for the contact area and the normal
stress on it. When the two bodies are brought into relative motion and the
relative velocity of the two surfaces is small, a creeping motion could be ob-
served which is largely caused by the elastic deformation at the contact patch.
In those parts of the contact area where the tangential stress is small, the sur-
faces of the two bodies stick to each other. Otherwise, local relative sliding
may occur. This is studied in so called tangential contact problems, where the
research question is to find the adhesion and slip areas, and the distribution of
tangential stresses.

Solving contact problems has been a continuous research topic, where John-
son [12] and Kalker [13] contributed to three-dimensional contact problems.
For more introduction of modern development, we refer to [25]. Numerical
approaches for contact problems have been developed, typically in two classi-
fications. One is the finite element method (FEM) [14, 17, 38], which is widely
used, especially for problems involving large deformation and nonlinear mate-
rials. The other is the boundary element method (BEM) [1, 13, 22], which is
applied for homogeneous material, under the assumption of small deformation
and deformation gradients. This method particularly suits the concentrated
contact problem well.

1.1 Strategies for solving concentrated contact problems

In concentrated contact problems, the contact area is considered flat since it is
small compared to the dimensions of the contacting bodies. Examples can be
found in Figures 1(a) and (b), where we depict the contact between the wheel
tread and rail crown, and between a wheel flange and rail gauge face. The
half-space approach is used, which approximates the contacting bodies as two
semi-infinite solids bounded by the contacting plane [13]. The BEM transforms
the three-dimensional (3D) boundary value problem to a two-dimensional (2D)
boundary integral problem. The integral gives the relation between displace-
ments and tractions. In the half-space approach, the corresponding Green’s
function is based on a solution by Boussinesq and Cerruti (see [12]). It is the
so-called influence function, which expresses the displacements at one point
caused by a load at another point on the half-space.

Solving such problems starts with the definition of the potential contact
area, which contains the true contact region. Usually rectangular elements
are placed in this 2D region, and piecewise constant functions are used to
represent the tractions to be solved. This results in influence coefficients (ICs)
from the influence function. Analytic coefficients are available [13], and have
been incorporated with solvers for concentrated contact, e.g. [13, 33,41].

1.2 Strategies for solving conformal contact problems

Conformal contact occurs when the rail and wheel are seriously worn so that
a curved and much larger surface comes into contact, as seen in Figure 1(c).
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Figure 1. Two types of contact problems in wheel-rail contact [19]: concentrated contact
in (a) and (b) with “flat contact areas”, and conformal contact in (c) with a “curved

contact area”.

Other applications can be found, for instance, journal-bearing contact [36],
microcontact printing [23], etc. The half-space approach is prohibited, since
its assumptions of a flat and small contact area are not valid in these cases.
The FEM is usually employed for such problems, e.g. in [6, 20, 31], due to its
general applicability.

However, since discretization by FEM covers whole contacting bodies, this
method can be computationally slow and memory intensive. Moreover, focusing
on the contact region, FEM often employs coarser meshes than BEM, which
implies less detailed information in the region of interest.

One idea of fast solvers for conformal contact problems here is to apply
the BEM, which means to only discretise the contact surface, and work on the
surface integral similar as in concentrated contact [19,35]. Those fast solvers for
concentrated contact can then also be applied. A difficulty is that the influence
function (and further the influence coefficients) is not theoretically known in
this case.

Therefore, the idea is to compute the influence function numerically by
FEM, resulting in ICs. This approach has been applied in lubrication problems
[8,16,37]. However, in the train’s wheel-rail contact, i.e. a dry contact, different
strategies of FEM meshing and element types are required. Furthermore, the
effect of these computed ICs to final solutions is also different. Studying these
two issues is an essential step for developing fast solvers for conformal contact
in the railway industry. This approach was developed by Li in [19], where the
rail was approximated by a quasi-quarter space with a distributed load and
the FEM was applied. However, that work did not present detailed strategies
for the mesh or element types. Moreover, there was no discussion of the error
propagation from ICs to contact solutions. The approach was extended by
Vollebregt [35], who computed influence coefficients on a 3D block caused by a
piecewise constant load. He presented an initial meshing strategy of hexahedron
elements, and a corresponding error propagation. The research is continued
in the present paper. We will provide a detailed guidance to determine the
mesh parameters for the hexahedron elements, and additional results on the
error propagation. We will also include new results by adding a bilinear load.
Another contribution is that prismatic elements will be investigated.

Math. Model. Anal., 21(1):119–141, 2016.
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1.3 Content and structure of this paper

This paper serves as a preparation for the research of fast numerical solvers for
conformal wheel-rail contact problems in the railway industry. In our earlier
work, we have developed efficient solvers for concentrated contact problems,
see [33,40,41]. Inspired by the use of the fast Fourier transform (FFT) technique
in [21,24,28], our solvers employ FFT techniques, and show excellent efficiency
from the point of computational time. This motivated us to extend the range
of applicability of these solvers to conformal contact problems.

We investigate the influence coefficients in a concentrated contact setting,
where analytic influence coefficients are known when a piecewise constant ap-
proximation is used as discretization of the tractions [12, 13]. Secondly, there
are analytic solutions such as the Hertz theory for normal contact [10] and
the Cattaneo theory for the tangential shift problem [3]. The corresponding
BEM results can provide a reference for studying conformal contact problems,
for which there are no analytic influence coefficients, neither analytic contact
solutions.

For conformal contact seen in Figure 1(c), one solves the displacements on
the curved contact region of the rail. The FEM is then employed. Prismatic
elements are generally applicable with their triangular faces on the curved
boundaries of the cross section of the rail. Regarding such application, pris-
matic elements are also investigated for the model in this paper, which solves
the displacements on a half-space.

In the model a unit load is applied on the region of one element, which
brings a jump at the edge of this element to its neighbors. This implies a
significant discontinuity in the traction boundary condition for the model as
well, and may disturb the FEM solution. An alternative is to impose a bilinear
load, which equals a “tent” shape at this region. Analytic investigation for this
test setting can be found in [4], however, the implicit expressions for influence
coefficients are difficult to process directly. A closed form solution is given
in [18], however, on a triangular mesh. This is not useful for our work, which
mainly focuses on rectangular meshes since these result in matrices of Toeplitz1

structure so that the fast Fourier transform (FFT) can be applied to accelerate
the corresponding matrix-vector products [33]. Therefore, numerical influence
coefficients computed with a bilinear load on rectangular meshes are of interest.

The structure of this paper is as follows. In Section 2, an elastic model is
built to compute influence coefficients. The results of this model are discussed
in Section 3 with three different FEM mesh settings, from which insight is
provided on the choice of meshing and element types, in view of accuracy
and computational cost. In Section 4, a specific contact problem is solved,
with numerical influence coefficients obtained by the recommended strategies.
Error propagation is investigated separately in normal and tangential contact
problems. The last section concludes this paper.

1 A Toeplitz matrix is the matrix with constant diagonals.
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2 An elastic model for computing influence coefficients

2.1 Influence coefficients on half-space

Influence coefficients are equivalent to displacements caused by a specific load.
Evaluating the displacements under a given load is a basic problem in elas-
ticity. It can be done by solving three elastic equations with some boundary
conditions. These equations, in a quasi-static case, read [11]:

1. Equilibrium equation:
σij,j + Fi = 0. (2.1)

2. Strain-displacement equation:

εi,j =
ui,j + uj,i

2
. (2.2)

3. Stress-strain equation (constitutive equation, or Hooke’s law):

σij = cijklεkl. (2.3)

In the above equations, subscripts i, j, k, l are related to the spatial coordinates
x, y, z. The Einstein summation convention is used when repeated subscripts
occur. Moreover, a comma means differentiation (i.e. σij,j =

∂σij

∂j ). Sym-
bols σ, ε, F, u denote stress, strain, body force per volume, and displacement,
respectively.

In the case of concentrated contact problems, an alternative way can be
used to obtain displacements. It is based on four assumptions. First of all, the
contacting region should be small compared to the dimensions of the contact-
ing bodies. Secondly, these contacting bodies should be of homogenous linear
elastic material. The third is small displacements and displacement gradients.
Fourthly, inertial effects are ignored, which is a quasi-static case.

These assumptions allow for the use of the half-space approach, which
approximates the two contacting bodies by two semi-infinite elastic bodies,
bounded by the contacting plane. Usually a Cartesian coordinate system
(O;x, y, z) is placed, with the origin at the center of the contact region, and
the z-direction pointing to the outward normal of one contacting body. A half-
space is at one side of the bounding plane and can be denoted by, for instance,
{(x, y, z)|z ≤ 0}.

We only consider one half-space here. Displacements at one point on this
half-space caused by a point load at another point were given as a function of
relative distance between these two points by Boussinesq and Cerruti (see [12]).
For instance, normal displacement uz at surface point (x, y) resulting from a
normal point load P at another surface point (ξ, η) is given by [13]:

uz(x, y) =
P

2πG

(1− ν)

ρ
, (2.4)

where G is shear modulus and ν is Poisson’s ratio. ρ =
√

(x− ξ)2 + (y − η)2

is the distance between points (x, y) and (ξ, η). We drop the z-component

Math. Model. Anal., 21(1):119–141, 2016.
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for point coordinates here since all points of interest are on the surface of the
half-space, i.e. z = 0.

This equation has a singularity point when ρ = 0, at the point where the
load is applied. This is not a serious problem since in practice the load is often
distributed on a finite region [2]. The displacement caused by a distributed
load can be obtained by integration of the displacement by the point load.
Replacing normal load P by pz(ξ, η)dξdη in equation (2.4) and integrating on
a certain contact area C, we obtain the relation between normal displacement
and pressure (normal traction):

uz(x, y) =

∫∫
C

Azz(x, y, ξ, η)pz(ξ, η)dξdη, (2.5)

where the kernel

Azz(x, y, ξ, η) =
(1− ν)

2πG

1

ρ
(2.6)

is called the influence function. It describes the influence of a unit normal
load at point (ξ, η) on the normal displacement at point (x, y). The value of
Azz(x, y, ξ, η) depends on the relative distance of these two points, rather than
their own locations. This means that:

Azz(x, y, ξ, η) = Azz(x− ξ, y − η).

Discretization is done by placing n := nx×ny rectangular elements on a po-
tential contact area which contains the real contact region. The corresponding
element sizes are δx and δy, respectively. A cell-centered mesh arrangement
is chosen. Using I, J ≤ n as element indices, a widely used approximation for
pressure pz is by piecewise constant function fJ(ξ, η):

pz(ξ, η) =

n∑
J=1

pJfJ(ξ, η), (2.7)

where fJ(ξ, η) = 1 for (ξ, η) on element J and fJ(ξ, η) = 0 elsewhere. Plugging
equation (2.7) into integral (2.5), we arrive at:

uz(xI , yI) =

n∑
J=1

[
pJ

∫∫
eJ

Azz(xI , yI , ξ, η)fJ(ξ, η)dξdη
]
, I = 1, ..., n, (2.8)

where eJ denotes element J . Eq. (2.8) leads to a linear relationship:

uz = Azzpz, pz,uz ∈ Rn, Azz ∈ Rn×n,

where matrix Azz contains all the influence coefficients (ICs) AzzIJ . Each of
them is defined by:

AzzIJ =

∫∫
eJ

Azz(xI , yI , ξ, η)fJ(ξ, η)dξdη, (2.9)

which results from integrating equation (2.5) on a single element eJ w.r.t. an
observation on element I. It indicates the physical meaning of the IC: AzzIJ is the
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normal displacement on element I, caused by a load fJ on element J . In this
case, the applied (normal) load fJ is a unit piecewise constant function, and
analytic solutions of integral (2.9) can be found in [13]. 2 Moreover, Eq. (2.9)
also implies that the value of the IC is related to the area of element eJ and
material parameters G, ν.

A similar derivation can be done for other ICs, such asAyx, the y-component
of displacement caused by a unit load in the x-direction.

2.2 Model

The model for computing the ICs is based on the contact problem to be solved.
Assume that the contact problem considers two bodies of homogeneous linearly
elastic material, with shear modulus G and Poisson’s ratio ν. Recall that
n = nx×ny rectangular elements are placed in the potential contact area, with
corresponding mesh sizes δx and δy.

This model is inspired by the fact that an IC is equivalent to the displace-
ment at one surface point resulting from a unit load at another surface point.
We have to deal with two issues. One is to approximate the semi-infinite half-
space, and the other is to provide a proper boundary value problem.

Figure 2. (a) The original 3D block for approximating the half-space. It occupies space of
[−L,L]× [−L,L]× [−L, 0] mm3. Due to the symmetry and anti-symmetry of displacements
on the top surface, we consider the left upper quarter (blue shadow), which is shown in (b).

To approximate the half-space which represents one contacting body, we
consider a block of size [−L,L] × [−L,L] × [−L, 0] mm3 in 3D space [35] (see
Figure 2(a)). This block is of the same material as the contacting body, and
L→∞ gives the half-space model. A unit load is applied at the center of the
top surface, and we solve for the resulting displacements on this surface, which
are the corresponding ICs. Due to the symmetry and anti-symmetry of the
displacements, the computational domain can be reduced to a quarter of the
block, [−L, 0]× [−L, 0]× [−L, 0], which is shown in Figure 2(b).

2 The analytic ICs are displacement differences of the two contacting bodies. When the
same material is adopted for the bodies, the IC divided by 2 leads to the displacement of
one body.

Math. Model. Anal., 21(1):119–141, 2016.



126 J. Zhao, E.A.H. Vollebregt and C.W. Oosterlee

Table 1. Boundary conditions at the front surface (x = 0), at the right surface (y = 0)
and at the top surface (z = 0) for different ICs. On the other three surfaces the boundary
condition is given by u = 0.

ICs
Front surface

(x = 0)
Right surface

(y = 0)
Top surface

(z = 0)

Axz , Ayz , Azz


ux = 0,
∂uy

∂x
= 0,

∂uz
∂x

= 0.


∂ux
∂y

= 0,

uy = 0,
∂uz
∂y

= 0.

σz = 1, (x, y) ∈ [−δx
2
, 0]× [−δy

2
, 0]

= 0, otherwise.

Axx, Ayx, Azx


∂ux
∂x

= 0,
uy = 0,
uz = 0.


∂ux
∂y

= 0,

uy = 0,
∂uz
∂y

= 0.

σx = 1, (x, y) ∈ [−δx
2
, 0]× [−δy

2
, 0]

= 0, otherwise.

Ayy , Axy , Azy


ux = 0,
∂uy

∂x
= 0,

∂uz
∂x

= 0.


ux = 0,
∂uy

∂y
= 0,

uz = 0.

σy = 1, (x, y) ∈ [−δx
2
, 0]× [−δy

2
, 0]

= 0, otherwise.

(0,0)

(-L,0)(-L,-L)

(0,-L)

L

hc

x

y

Figure 3. The top surface of the block in the model, for a 2× 2 contact grid with mesh
size hc = δx = δy.

Governing equations for this model are the basic equations in elasticity,
as given by equations (2.1)-(2.3). Boundary conditions can be different for
different ICs. Define displacement by u = (ux, uy, uz)

T , and stress by σ =
[σx, σy, σz]

T , then Table 1 gives boundary conditions at the front, right and
top surfaces of the block. At the other three surfaces the boundary condition
is given by u = 0.

We explain the boundary conditions on the top surface in Table 1. The top
surface of the block is shown in Figure 3. A 2 × 2 grid with hc = δx = δy
is used for the contact problem. Due to the cell-centered mesh, the ICs for
the center points of these four elements need to be computed. Since the value
of the IC depends only on the relative distance of a pair of points, we can
place the right-bottom element of the contact grid centered at the origin and
compute displacements for these four points w.r.t. the origin. Moreover, a
piecewise constant representation of tractions is employed, which implies that
a unit load is applied on the region of the center element (the shaded area in
Figure 3). Since we only consider a quarter of the block, the load in the model
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is only given on a quarter of the center element.
With governing equations (2.1)-(2.3) and boundary conditions, we can em-

ploy the finite element method (FEM) to solve for the displacements. In Fig-
ure 3, differently from the 2 × 2 contact grid, other meshes can be used when
solving this model by the FEM. (Be aware that the meshes for the contact
problem, and for the FEM model are different.) A linear interpolation tech-
nique is applied to convert the resulting displacements to the center points of
the contact mesh, which leads to the required coefficients.

Remark 1. When using a bilinear approximation of pressures, i.e. the applied
load is bilinear in the model, boundary conditions on the top surface z = 0 are
different. For instance, for the IC caused by a normal load, i.e. Axz, Ayz, Azz,
the condition reads [32]:

σz(x, y, 0) =

{
(1− |x|/δx)(1− |y|/δy), (x, y) ∈ [−δx, 0]× [−δy, 0],
0, otherwise.

For the IC caused by a load in x- or y-direction, one needs to replace the
left-hand side of this condition by σx(x, y, 0) or σy(x, y, 0), respectively.

3 Influence coefficients Azz by a piecewise constant load

We know the analytic ICs when pressures are represented by piecewise constant
functions [12, 13]. In this section, the model proposed in Section 2 is used to
compute the IC Azz, which is the normal displacement caused by a unit normal
load. The resulting IC value can be compared with the analytic IC. Tests in
this section aim at providing insight on mesh strategies and element types,
considering the accuracy and computational cost.

The contact problem which requires the numerical IC is defined as follows.
Consider a sphere pressed on a plane. Both bodies are of the same material,
with shear modulus and Poisson’s ratio G = 82000 N/mm2, ν = 0.28, respec-
tively. In this case, the analytic IC divided by 2 is the displacement on one
of the bodies. The potential contact area is [−4, 4] × [−4, 4] mm2. On this
area, four grids are placed: 10 × 10, 20 × 20, 40 × 40, 80 × 80, with mesh sizes
hc = 0.8, 0.4, 0.2, 0.1, respectively.

As a reminder, subscript c refers to the contact problem, subscript s in
the following refers to the model, which is solved by finite element package
SEPRAN [27]. For the solution of the FEM discretization, a conjugate gra-
dient method with an ILU preconditioner is employed with stopping criterion
||uk+1−uk||
||uk+1|| ≤ 10−6, where u is displacement and the superscripts are iteration

indices. To compare with the analytic IC on a certain contact grid, linear
interpolation is used. We define our target of approximation by:

|Azz0 − F zz0 |
|Azz0 |

< 0.01, (3.1)

where Azz0 is the analytic coefficient (divided by 2) at the origin, and its approx-
imation by the FEM is F zz0 . We examine the errors at the origin since here the
largest error occurs. The meshes that are recommended based on target (3.1)
result in satisfactory contact solutions (see Section 4).

Math. Model. Anal., 21(1):119–141, 2016.
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3.1 Mesh strategies

Remember that our FEM model needs to approximate the semi-infinite half-
space. Hence, the FEM mesh should be easily extended to a very large block
without involving too many elements. Since the displacements decrease outside
the loaded region, more elements can be used near the origin, and much fewer
elements far away from it.

Figure 4. Meshes generated by SEPRAN: (a) hexahedron Mesh1. (b) prismatic Mesh2
(where diagonal edges on top and right surfaces are a plotting artefact).

Regarding the type of elements, we first use the hexahedron element which
is easy to be generated for a 3D block. The corresponding mesh strategy is
called “Mesh1”, shown in Figure 4(a). The loaded region is covered by a small
cube [−l, 0] × [−l, 0] × [−l, 0]. Within this cube, a uniform mesh is used with
element size hs = l/m, where m is the number of elements in each direction.
Outside this cube, the element size increases by a factor f leaving the loaded
area. Moreover, edges that do not contain the small cube are divided uniformly
into m intervals. In this mesh, stretching factor f , cube size l and its element
size hs are to be determined, so that accurate numerical ICs result.

Another employed element is the prismatic element. As mentioned in Sec-
tion 1, in conformal contact, one computes ICs considering a load on the curved
contact surface of the rail, see Figure 1(c). The cross section of the rail has
curved boundaries, and it is well fitted by triangles. Moreover, the rail can be
regarded as infinitely long, so rectangles are used for the other surfaces. This
yields the prismatic elements.

Assuming that the front and back surfaces of the 3D block correspond to
the cross section of the rail in Figure 1(c), these two surfaces should consist of
the triangular faces of the prismatic elements, as shown in Figure 4(b). (One
may see that the top and right surfaces in this figure also show triangles. In
fact the diagonal line in each rectangle does not exist. This is just a plotting
issue.)

This prismatic mesh is called “Mesh2”, which also has the small cube con-
figuration with a uniform mesh to cover the loaded region. The mesh strategy
for the front and back surfaces is the same as the front surface of hexahedron
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Mesh1, except for using triangles instead of rectangles. The top surface can be
divided into four parts. One corresponds to the small cube. The second is a
rectangle along the x-direction, with its width equal to cube size l. Its element
size, along the x-direction, increases by a factor f outside the cube, but the ele-
ment size in the y-direction is always hs. This will result in extremely stretched
elements when the block size L gets large. The rectangle along the y-direction
has similar structure. In the fourth part of the top surface, the element size
increases in both directions. The right surface has a similar structure.

Next, we will test different mesh parameters on Mesh1 and Mesh2. Three
tests are defined in Table 2, w.r.t. hc, the element size of the grid for the contact
problem. TESTs 2 and 3 are based on a smaller cube near the origin than
TEST 1. Moreover, TEST 3 has a smaller stretching factor f than TEST 2.

Table 2. Settings of three tests.

Mesh parameters Cube size l Cube element size hs Stretching factor f

TEST 1 l/hc = 2.5 hc/hs = 4 f = 1.5
TEST 2 l/hc = 1 hc/hs = 4 f = 1.5
TEST 3 l/hc = 1 hc/hs = 4 f = 1.2

3.2 Azz on hexahedron Mesh1

We start by approximating the IC Azz for the 10 × 10 contact grid. Figure 5
shows results for TEST 1 using linear and quadratic elements, as block size L
increases. Linear elements fail to achieve the target accuracy (3.1), denoted by
the dashed line. However, quadratic elements exhibit very satisfactory conver-
gence. Therefore, quadratic elements will be employed in the subsequent tests.

8 16 32 64 128 256 512 1024
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Figure 5. TEST 1 on hexahedron Mesh1: relative errors at the origin, using linear and
quadratic elements. The dashed line is the target accuracy defined by Eq. (3.1).

Focusing on quadratic elements, the corresponding errors decrease as L is

Math. Model. Anal., 21(1):119–141, 2016.



130 J. Zhao, E.A.H. Vollebregt and C.W. Oosterlee

doubled, and they stabilize for L ≥ 512. The reason for this is that the error
consists of two parts. One is the error of the continuous model, where an
infinite domain is approximated using a finite block size L. The other part is
the finite element discretization, approximating the continuous solution on the
finite domain. When L is small, both types of error occur and the first part
is dominating. When L is larger, e.g. L ≥ 512, the first part is annihilated
and only the second part remains. Then it doesn’t help anymore to increase L
further.
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Figure 6. TEST 2 and TEST 3 on hexahedron Mesh1 for a 10× 10 contact grid. (a)
Relative error at the origin for different domain sizes L. The dashed line indicates the target

accuracy defined by equation (3.1). (b) Numbers of elements. (c) CPU time in seconds.

TEST 2 and TEST 3 use a smaller uniform cube, and the latter has a
smaller stretching factor than the former. Figure 6 shows the results of these
two tests. Since TEST 3 employs a finer mesh, it results in smaller errors than
TEST 2. At the same time, it requires more elements and thus CPU time. But
the cost is acceptable. Comparing with TEST 1, we observe that TEST 3 can
achieve similar errors, however at a lower cost (since it has a coarser mesh).

Moreover, the CPU time of TEST 3 shows an almost linear dependence on
L in Figure 6(c). This is due to the strategy to generate hexahedron Mesh1,
where the number of elements n is approximately linearly dependent on L,
as can be seen in Figure 6(b). The FEM discretization results in a linear
system with a sparse coefficient matrix, where the number of non-zero entries
in each row is much smaller than n. Remember that a conjugate gradient (CG)
method with an ILU preconditioner is applied to solve this system. The results
in Figure 6 (and Figure 7) indicate that the complexity of this algorithm is
O(n7/6) (consistent with the statement of [29]). For such a sparse matrix, the
total number of CG iterations is mildly depending on L. For instance, there
are 76, 78, 82, 85 CG iterations when L = 128, 256, 512, 1024, respectively.

We need to balance the accuracy and the computational cost. On the
one hand, a coarser grid yields cheaper solutions, for instance, using larger
stretching factors such as f = 2 and f = 2.5, or a smaller uniform cube
l/hc = 0.5. However, the corresponding accuracy may be unsatisfactory. A
finer grid gives rise to a better accuracy but is more expensive.

Figure 7 gives the results using TEST 3 on the 20× 20, 40× 40 and 80× 80
grids with hc halved. It can be seen from Figure 7(a) that all computations
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Figure 7. TEST 3 on hexahedron Mesh1, for 20× 20, 40× 40 and 80× 80 contact grids.
(a) Relative error at the origin for different domain sizes L. The dashed line indicates the
target accuracy defined by Eq. (3.1). (b) Numbers of elements. (c) CPU time in seconds.

reach the target accuracy when L/hc ≥ 80 is satisfied. Moreover, when L/hc is
the same for these three grids, the corresponding errors are also similar. In other
words, by shifting the line with red circles to the right, it will coincide with the
line with black stars. The same observation can be found in Figures 7(b) and
(c). The reason is that the parameters are determined based on the scaling
factors w.r.t. the mesh size of the contact problem hc. When L is fixed, a
finer contact grid requires computing using a finer FEM mesh. Therefore, the
corresponding error is smaller than that on a coarser contact grid, as seen in
Figure 7(a).

3.3 Azz on prismatic Mesh2
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Figure 8. Three tests on prismatic Mesh2 for 10× 10 contact grid. (a) Relative error at
the origin for different domain sizes L. The dashed line indicates the target accuracy

defined by Eq. (3.1). (b) Numbers of elements. (c) CPU time in seconds.

We only show results with prismatic elements for a 10×10 contact problem
in Figure 8. It can be found that TEST 3 leads to the smallest errors when L
increases. However, the corresponding cost is the highest (the CPU time with
L = 1024 is so high that we do not show it in this figure). The errors by TEST
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1 and TEST 2 are comparable. Since the latter requires fewer elements and
less CPU time, it is the better choice for prismatic elements on Mesh2.

A difference with the behavior for the hexahedron mesh observed in Figure 6
is that the errors at the origin with prismatic elements are decreasing less reg-
ularly when L increases, and stagnate at a higher level than when hexahedron
elements are used. This is attributed to the large stretching of the prismatic
elements when a large L value is used, which yields an ill-conditioned matrix
from the FEM discretization, and hence the results are spoiled to some extent.

3.4 Discussion on mesh strategies

Based on the above results, we conclude regarding the choices of the mesh
parameters in Table 3 for hexahedron Mesh1 and prismatic Mesh2. With these
parameters, target accuracy (3.1) can be achieved. We can see that the same
ranges apply for domain size L, cube size l and cube element size hs between
the hexahedron and the prismatic meshes. Stretching factor f is optimal in
different ranges. The optimal choices for Mesh1 and Mesh2 are TEST 3 and
TEST 2, respectively (See Table 2 for the definition of these two tests).

Table 3. Recommended mesh parameters for hexahedron Mesh1 and prismatic Mesh2.

Domain size L Cube size l Cube element size hs Stretching factor f Optimal

Mesh1 L
hc
≥ 80 1 ≤ l

hc
≤ 1.25 hc

hs
≥ 4 1 ≥ f ≥ 1.5 TEST 3

Mesh2 L
hc
≥ 80 1 ≤ l

hc
≤ 1.25 hc

hs
≥ 4 1.5 ≥ f ≥ 2 TEST 2

Other conclusions are as follows:

• Quadratic elements are preferable on both Mesh1 and Mesh2.

• The mesh parameters in Table 3 are also satisfactory for other contact
grids, such as the 20× 20, 40× 40, 80× 80 meshes.

• The errors become stable when L/hc ≥ 640 on Mesh1, and when L/hc ≥
160 on Mesh2.

• The same mesh strategies can be used to compute other ICs such as Axx,
Ayy, and Axy, using the corresponding boundary conditions as defined
in Table 1. Similar results are found for the numerical accuracy and the
computational time.

• The same mesh strategies are also applicable to compute ICs when
prescribing a unit bilinear load.

• Smaller errors can be attained with Mesh1 than with Mesh2, as described
in Section 3.3. A proper value of domain size L needs to be chosen for
the prismatic Mesh2.
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4 Error propagation in a Cattaneo shift problem

Errors in influence coefficients (ICs) can disturb the final solution of a contact
problem. To investigate this, a Cattaneo shift contact problem [3] is solved,
which involves a 3D frictional contact. It considers a sphere which is first
pressed and then tangentially shifted on a plane, so that partial slip on the
contact area may occur. The test problem was specified in Section 5.2.1.1
of [13] and in Section 5.1 of [34]. Both sphere and plane are of the same elastic
material, a quasi-identical case. In this case, the problem can be decoupled
into a normal and tangential contact problem, since the results of the latter do
not influence the former [13].

We solve these two subproblems separately in this section. Analytic and
numerical ICs are used in the solution procedure, and the contact solutions are
compared.

4.1 The normal contact problem

The normal contact problem is based on a normal force applied to the sphere on
the plane so that a contact area is formed due to the deformation. The sphere
and plane have the same shear modulus and Poisson’s ratio, G = 200 N/mm2

and ν = 0.42, respectively. The radii of the sphere are Rx = Ry = 50 mm. The
contact area is a circle with radius 1 mm. According to the Hertz theory [12],
the normal force is Fz = 9.1954 N , the approach, i.e., the maximal penetration,
is δ = 0.02 mm, and the maximal pressure is pmax = 4.3905 N .

In the numerical implementation, approach δ = 0.02 mm is prescribed.
The contact area and pressure on it are solved for. We show the results for
the normal force Fz, which is the integral of the pressure on the contact area.
Moreover, the errors in the maximal pressure pmax and in the contact area are
also analyzed. The potential contact area is set to [−1.2, 1.2]× [−1.2, 1.2] mm2.
The undeformed distance function reads h(x, y) = 1

2Rx
x2 + 1

2Ry
y2 − δ. The

algorithm NORM [13] is used, with stopping criterion chosen as

‖ d ‖rms
‖ h ‖rms

≤ 10−6,

where d is the defect of governing equation Azzpz + h = 0, and the root-mean
square norm is used.

Only IC Azz is required in this normal contact problem. Both analytic and
numerical ICs based on our model are employed in the numerical experiment.
Relative errors w.r.t. the Hertzian solutions are shown. For example, the error

in the normal force is defined by |F̄z−Fz|
Fz

, where F̄z and Fz are forces provided
by the numerical method and analytic solution, respectively.

We firstly examine the IC obtained by a unit piecewise constant load, then
the ICs by a bilinear load. The results are also compared.

4.1.1 Analytic ICs

First of all, we use the analytic ICs in this normal contact problem. Relative
errors in the normal force Fz, in the maximal pressure pmax and in the area
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of contact region are presented in Figure 9. It is found that the errors in the
normal force are already quite small. Errors in the maximal pressure show a
linear reduction when the grid is refined. The errors in the contact area are
the largest, which can be explained by the addition or removal of complete
elements in the numerical treatment where the contact area changes.
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Figure 9. Normal contact problem with analytic ICs: relative errors in the normal force
Fz , in the maximal pressure pmax and in the contact area. The horizontal axis shows the

number of element in each direction of contact grid nc × nc.

4.1.2 ICs by a piecewise constant load on hexahedron Mesh1

In this experiment numerically computed ICs on Mesh1 are used. Figure 10(a)
shows relative errors in the resulting normal force for three different discretiza-
tions of the contact problems: 10× 10, 40× 40 and 160× 160 grids. It can be
seen that these errors decrease as domain size L increases on the three grids.
Moreover, the errors using 40 × 40 and 160 × 160 grids are very similar, and
they are smaller than using the 10× 10 grid when L increases.
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Figure 10. Normal contact problem with ICs by a piecewise constant load on
hexahedron Mesh1: (a) errors in the normal force, (b) errors in the maximal pressure,

(c) errors in the contact area.

Figure 10(b) presents the relative errors in the maximal pressure pmax. As
L increases, the error for the 10 × 10 grid decreases until it stagnates, then it
increases and stabilizes. Such stagnation also occurs with the errors related to
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the 40×40 and 160×160 grids (the latter is not clearly shown since stagnation
is at L = 1024. If L is larger, the curve will increase again). However, it is
difficult to know beforehand the value of L for which the maximal pressure
stagnates. Moreover, when L reaches the largest value, i.e. L = 1024, the finer
the grid is, the smaller the resulting error.

Errors in the contact area are presented in Figure 10(c), where the finest
grid always yields the smallest errors for different values of L. Moreover, as L
increases, errors on these three grids reduce and then stagnate.

Based on the above discussion, we come to the conclusion that it is optimal
to choose L as large as possible on this mesh.

4.1.3 ICs by a piecewise constant load on prismatic Mesh2

ICs computed on prismatic Mesh2 are employed here. In Figure 11(a), errors
decrease as L increases, and then they increase when L gets larger. Using
40 × 40 and 160 × 160 grids results in smaller errors than the 10 × 10 grid.
Moreover, these two fine grids exhibit the same errors. This situation is the
same as when using the IC on Mesh1 in Figure 10(a).
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Figure 11. Normal contact problem with ICs by a piecewise constant load on prismatic
Mesh2: (a) errors in the normal force, (b) errors in the maximal pressure, (c) errors in the

contact area.

Figure 11(b) presents a stagnation in each curve for the error in the maximal
pressure pmax. Errors in the contact area in Figure 11(c) indicate that for a
fixed value of L, the finer the discretization, the smaller the error will be.

Notice that in Figure 11, the results on 40×40 and 160×160 grids are lacking
when L gets very large. The reason is that the ICs are not computed in this case.
In fact, highly distorted elements occur on Mesh2. As mentioned in Section 3.3,
large L values give rise to over-stretched elements and ill-conditioned FEM
matrices. Therefore, it is important to carefully find a proper value for L on
Mesh2, neither too large nor too small.

4.1.4 ICs by a bilinear load

Here, the ICs have been computed also with the bilinear load as described in
Remark 1. Since the analytic values cannot be accessed easily, no comparison
was made in Section 3 between analytic ICs and numerical ICs. However, it
is possible to use these ICs in the contact model and study the propagation
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of errors, as the above discussion for the ICs computed using the piecewise
constant load. The resulting figures are very similar to Figures 10 and 11, and
are therefore omitted for brevity.

4.1.5 Discussion on the normal contact problem

We compare the influence of all ICs on the normal contact problem. Numerical
ICs are obtained on Mesh1 with L = 1024 and on Mesh2 with L = 128. Relative
errors in the normal force are shown in Figure 12(a). We find that, on the one
hand, both piecewise constant and bilinear loads result in similar errors on a
very fine discretization. On the other hand, errors on Mesh1 are smaller than
those on Mesh2. For instance, on the finest 160× 160 grid, the former reaches
a relative error of 0.1% and the latter around 0.8%. Moreover, these numerical
ICs cannot yield normal forces as accurate as the analytic ICs, which results
in errors smaller than 10−6.
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Figure 12. Normal contact problem with different ICs: (a) errors in the normal force, (b)
errors in the maximal pressure, (c) errors in the contact area. Here, “PC” and “Bi” denote
piecewise constant and bilinear loads, respectively. The horizontal axis shows the number of

elements in each direction of contact grid nc × nc.

Figure 12(b) gives the errors in pmax, where the Mesh1 results in a similar
accuracy as using analytic ICs. These errors are again smaller than those on
Mesh2. Errors in the contact area are presented in Figure 12(c), where we
notice that the ICs based on a bilinear load on Mesh2 can even result in better
accuracy than the analytic ICs.

4.2 The tangential contact problem

In the tangential contact problem, the contacting sphere is shifted in the x-
direction by a tangential force Fx = (7/8)µFz. Here, µ = 0.4 is the friction
coefficient of Coulomb’s frictional law. The sphere sticks to the plane where
the tangential traction is small. Local sliding occurs when the traction reaches
the frictional traction bound. According to Cattaneo’s theory [3, 13, 34], the
adhesion area is a circle with radius θ = 0.5. In this case, the rigid shift of the
sphere is given by wx = 0.00817 mm.

In the implementation, we have prescribed the rigid shift wx = 0.00817 mm.
The tangential traction, the adhesion and slip areas are to be solved. Integra-
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tion of the tangential traction over the contact area yields tangential forces
Fx, Fy. The required ICs are Axx, Ayx, Ayy, Axy, where Ayx = (Axy)T . The
solver is the TangCG algorithm, proposed in [41]. The iterations of TangCG

terminate when
||pk+1

t −pk
t ||

||pk+1
t ||

< 10−6, where pt is the tangential traction consist-

ing of x- and y-components. The solution procedure starts with the computed
contact area and the corresponding pressures resulting from the normal contact
problem where the same strategies are used to compute the ICs for both the
normal and tangential contact problems. This means that, for instance, if Azz

for the normal contact problem is obtained by a bilinear load on Mesh1, this
strategy is also employed to compute Axx, Axy, Ayy for the tangential contact
problem.

We only compare tangential force Fx in this case. The analytic Cattaneo
solution for Fx is not completely relevant here, since it does not involve the
force in the lateral direction w.r.t. the shift direction. Therefore, rather than
using this solution as the reference for comparison, we use Fx = 3.2216 N ,
which is obtained by the TangCG algorithm with analytic ICs when hc → 0.
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Figure 13. Tangential contact problem: errors in tangential force Fx, with ICs by a
piecewise constant load on (a) hexahedron Mesh1 and on (b) prismatic Mesh2.

First, we use the ICs computed by a unit constant load on hexahedron
Mesh1, and the resulting errors in tangential force Fx are shown in Figure 13(a).
These errors decrease as domain size L increases. Errors on the 10 × 10 grid
sometimes are smaller than those on finer grids. This may due to the fact that
a finer grid requires a larger number of ICs and hence errors may accumulate
in the evaluation. Figure 13(b) presents errors when the ICs are computed on
prismatic Mesh2. As the domain size increases, these errors first are reduced,
and then increase again. The same observation can be found when the ICs are
obtained by a bilinear load, so we do not show the corresponding results here.

To compare these ICs, again we choose L = 1024 for Mesh1 and L = 128
for Mesh2. A piecewise constant load as well as a bilinear load are used.
Figure 14 shows the errors in tangential force Fx with the resulting ICs. Using
analytic IC yields a linear reduction of errors, and the numerical ICs obtained
by hexahedron Mesh1 give rise to smaller errors than those by prismatic Mesh2.
For instance, the former achieves around 0.03% and the latter possesses 0.17%
on the 160 × 160 grid. The piecewise constant load and bilinear load yield
similar results. However, we conclude that “engineering accuracy” can also be
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Figure 14. Tangential contact problem: errors in tangential force Fx with different ICs.
Here, “PC” and “Bi” denote piecewise constant and bilinear loads, respectively. The

horizontal axis shows the number of elements in each direction of contact grid nc × nc.

achieved on the prismatic Mesh2.

5 Conclusions

In this paper, we studied the numerical calculation of the influence coefficients
(ICs) that are used in fast solvers for concentrated contact problems. These
ICs are displacements caused by a unit load, either a piecewise constant load
or a bilinear load, depending on the representation of the unknown tractions.
To compute these ICs, an elastic model was provided, including governing
equations and boundary conditions for different ICs. The finite element method
is employed via package SEPRAN. Considering the accuracy and computational
cost, we recommend hexahedron Mesh1 and prismatic Mesh2, with their own
specific mesh parameters after several numerical tests. The former is easily
extended to a large computational domain that approximates the half-space.
The latter is more generally applicable, while a proper domain size needs to be
chosen carefully in order to prevent over-stretched elements.

The numerically computed ICs are incorporated into the solution procedure
of a Cattaneo shift problem, which is decoupled into a normal and a tangential
contact problem. The effects of these ICs on the contact solutions are discussed.
ICs obtained on hexahedron Mesh1 show better performance than those on
prismatic Mesh2. However, the prismatic mesh is favorable for engineering
applications. The performance does not differ much between ICs that are
computed by a piecewise constant load or a bilinear load. This means that
using piecewise constant and bilinear representations for unknowns result in
the same accuracy, in agreement with the corresponding statements in [13,32].

A different strategy for computing ICs would have been to use the adaptive
finite element method with a-posteriori error estimation (see e.g. [30, 39, 42]).
This will refine the mesh automatically in the vicinity of the loaded region,
where the most rapid variation of the solution occurs. The goal of such auto-
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matic refinement is to provide meshes that are quasi-optimal in some sense. The
benefit of designing the meshing strategy by hand is that the precise demands
of the application can be accounted for, such as the regular grid structure at
which the ICs are required. An interesting topic for further study is therefore to
compare the performance of adaptive FEM to the methods that are presented
here.

The work in this paper provides a guidance for developing fast solvers for
conformal contact problems. Similar model and meshing strategies can be used
there to compute ICs on curved domains. Similar errors in the ICs and similar
error propagation may be expected, such that meshing parameters may be
chosen along the lines of the results presented here.
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