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Abstract

Objective

Bioactive oxidised lipids (oxylipins) are important signalling mediators, capable of modulat-

ing the inflammatory state of the joint and anticipated to be of importance in joint homeosta-

sis and status of osteoarthritis. The aim of this study was to quantify oxylipin levels in

plasma and synovial fluid from rats with experimentally induced osteoarthritis to investigate

the potential role of oxylipins as a marker in the disease process of early osteoarthritis.

Design

Forty rats were randomly allocated to a standard or high-fat diet group. After 12 weeks, local

cartilage damage was induced in one knee joint in 14 rats of each diet group. The remaining

6 rats per group served as controls. At week 24, samples were collected. Oxylipin levels

were quantified by liquid chromatography–mass spectrometry.

Results

Overall, 31 lipid-derived inflammatory mediators were detected in fasted plasma and syno-

vial fluid. Principal component analysis identified four distinct clusters associated with histo-

pathological changes. Diet induced differences were evident for 13 individual plasma

oxylipins, as well as 5,6-EET in synovial fluid. Surgical-model induced differences were evi-

dent for three oxylipins in synovial fluid (15-HETE, 8,9-DHET and 17R-ResolvinD1) with a

different response in lipid concentrations for synovial fluid and plasma.

Conclusions

We demonstrate the quantification of oxidised lipids in rat plasma and synovial fluid in a

model of early experimental osteoarthritis. Oxylipins in the synovial fluid that were altered as
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consequence of the surgically induced osteoarthritis were not represented in the plasma.

Our findings suggest differential roles of the oxylipins in the local versus peripheral

compartment.

Introduction

The presence of (low-grade) inflammation in osteoarthritis(OA) is well-known and is consid-

ered of relevance in the pathophysiological process of OA[1]. Many patients with OA have

signs of mild inflammation such as local warmth, pain and joint effusion[2, 3]. Synovial

inflammation can be present in early, as well as late, phases of OA, and is associated with syno-

vial-related molecules released into biological fluids[4]. Previously, we demonstrated that sys-

temic metabolic and subsequent inflammatory mediators, combined with a mild surgical

trigger of local cartilage damage in the rat contribute to the progression of OA[5]. One of the

characteristics of the induced metabolic dysregulation in this model is dyslipidaemia, which is

also linked to clinical OA pathophysiology[6, 7]. In this model the progression of joint degen-

eration was driven mainly by the systemic and local inflammatory responses, as demonstrated

by enhanced synovitis, osteophytosis and increased recruitment of macrophage lineage (CD68

expressing) cells[5]. Thus, this model mimics key aspects of the health status of human OA

synovial joints, including increased inflammatory status and changes in synovial fluid lipid

profiles [8, 9]. Indeed, there is evidence for altered lipid metabolism contributing to OA

pathology via promotion of inflammation, apoptosis, and angiogenesis[10]. Oxidised lipids

(oxylipins) are important signalling mediators capable of modulating the inflammatory state

of a joint and might have an important role in the OA pathogenesis[1]. Polyunsaturated fatty

acids are classified as n-3 (omega-3) or n-6 (omega-6).[11] Oxylipins can origin from linolenic

acid (octadecanoids), a n-6 fatty acid, and arachidonic acid which is a product of its elonga-

tion/desaturation producing eicosanoids.[12–14] Another origin of oxylipins is n-3 unsatu-

rated fatty acids synthesized from α-linolenic acid, including eicosapentaenoic- (EPA) and

docosahexaenoic-acid (DHA).[12, 15] These omega-3 fatty acids have proven to be beneficial

in modulating the inflammatory processes.[15, 16] Specifically, bioactive eicosanoid oxylipins,

have a crucial role in modulating physiological processes in both homeostatic and inflamma-

tory conditions[17–19]. Eicosanoids are 20-carbon fatty acid derivatives, produced from

arachidonic acid[20]. The production of pro-inflammatory and/or anti-inflammatory eicosa-

noids, that include prostaglandins, thromboxanes, leukotrienes, and lipoxins, as well as other

bioactive lipids, increases during inflammation[21–24]. During inflammation, eicosanoids

regulate cytokine production, antibody formation, cell proliferation, migration, and antigen

presentation but also control the tissue repair process[22]. Bioactive eicosanoid oxylipins are

considered a quantitative readout relating to the inflammatory and oxidative stress status, and

so may provide an early diagnostic and prognostic biomarker of disease[25]. However, due to

the potent biological signalling activity of enzymatically oxidised lipids, the active mediators

are short-lived in systemic circulation where they are actively metabolised prior to excretion

[26]. Plasma levels of bioactive oxylipins as a representative of the OA situation might there-

fore not be the most suitable approach to study the lipid profile in the process of OA. The local

lipid profile from joint tissues is more likely a better representative of the current OA status of

the joint. As the metabolite concentrations in synovial fluid can directly reflect the joint

homeostatic conditions that are related to biological processes of articular cartilage and other

joint tissues, possibly already in the early stages of the disease[27, 28]. In humans with
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symptomatic knee OA changes in systemic levels of lipids have are associated with OA[29],

and in end-stage OA patients, altered lipid levels and increased levels of pro-inflammatory

cytokines have been detected in synovial fluid samples[30]. Potential alterations that may

occur at onset or during early phases of OA may be more relevant to understand disease pro-

gression, before the joint is fully degenerated. At the moment, a validated biochemical bio-

marker to detect molecular events related to early disease activity in OA, either of systemic or

local origin, is still lacking[31].

The aim of the current study was to identify the potential role of systemic and local inflam-

mation in the OA disease process and to test if systemic oxylipin levels reflect the local status

in synovial fluid. Therefore, we quantified the bioactive oxylipin levels in plasma and synovial

fluid in an experimental rat model of early OA, with local cartilage damage in addition to a

high-fat diet induced metabolic dysregulation.

Methods

Animal model

Forty Wistar rats (12 weeks old, male, Charles-River, Sulzfeld, Germany), housed two per cage

in a 12:12 light-dark cycle, were randomly divided in two groups: twenty rats were fed a high-

fat diet (HFD; 60% of the kcal contained fat: D12492i, USA) while the other rats received a

standard diet (9% of the kcal contained fat: 801730, SDS, Essex, UK) with access to food pellets

and tap water ad libitum. After 12 weeks, cartilage damage was induced, under general anes-

thesia, on the femoral condyles by placement of five grooves without damaging the underlying

subchondral bone, in one knee joint according to the rat groove model[32] in 14 rats of each

diet group. Analgesia (Buprenorphine) was provided until 24 hours after surgery and all ani-

mals were immediately allowed to move freely.The remaining 6 rats in each group served as

control group without sham surgery for each diet. Sham surgery was not performed as previ-

ous work demonstrated no difference in synovial inflammation or cartilage degeneration 12

weeks after sham surgery compared to non-operated control joints[33]. The study design is

based on our published methods combining a HF diet and the rat groove model of OA[5]. At

endpoint rats were euthanized in their home cage using carbon dioxide and dead was con-

firmed by respiratory arrest together with fixed and dilated pupils. Joint degeneration was

assessed as previously described using the OARSI histopathology score specifically for rats

according the guidelines[34]. The total OARSI score is based upon the sum of the following

sub sections: cartilage matrix loss width (0–2), cartilage degeneration (0–5), cartilage degener-

ation width (0–4), osteophytes (0–4), calcified cartilage and subchondral bone damage (0–5)

and synovial membrane inflammation (0–4).The study was approved by the Utrecht Univer-

sity Medical Ethical Committee for animal studies (DEC 2013.III.12.086) and ARRIVE guide-

lines were fully complied.

Sample collection

At week 24, all rats were fasted for 6 hours and subsequently blood was collected via the lateral

tail vein. Blood samples were centrifuged at 3000 RCF for 15 minutes and plasma was stored at

−80˚C until analysed. Subsequently rats were euthanized by carbon dioxide and the synovial

fluid of the experimental knee joints collected immediately afterwards. To collect the synovial

fluid, first the skin of the hind paw was removed and the M.quadriceps was dissected following

the quadriceps reversing approach[35]. With the knee in flexion an Ahlstrom 226 filtration

paper of 3mm section (PerkinElmer, USA) was introduced in the knee joint for maximum

absorption of the synovial fluid as previously described [36–38] preventing contact with
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surrounding tissues. Subsequently, the absorbed synovial fluid on the filter papers were placed

in a 2ml Eppendorf tube and directly snap frozen and stored at -80˚C upon analysis.

Extraction of samples

Internal standards (10 μl of PGF2a-EA-d4 (2.49 μM), 10 μl of AA-d8 (1 μM), 10 μl of

PGD2-d4 (1 μM), 10 μl of 15-HETE-d8 (7.6 μM) were added to each sample or blank sample

(0.4 ml water), along with 2 μl of formic acid (98% v/v) and 5 μl of an antioxidant butylhydrox-

ytoluene (BHT). Samples were homogenised in micro centrifuge tubes with the addition of

900 μl of ethanol, followed by a slow vortex stage (10 min) and centrifuged (13000 g, 10 min,

4˚C). The supernatants were transferred to glass tubes and diluted by the addition of 3ml

water. The diluted supernatants were loaded to the Strata-X polymeric SPE column (200mg/6

ml, Phenomenex, Macclesfield, UK) that had been preconditioned with 100% ethanol (2ml)

and 25% ethanol (4 ml). The SPE cartridge then washed with distilled water (10 ml) and 25%

ethanol (5 ml). The eicosanoids were eluted from the column with ethyl acetate containing

0.0002%BHT (5 ml) and were dried in centrifugal evaporator. The samples were reconstituted

in 100% ethanol (100 μl) and 20 μl was injected for LC-MS/MS analysis.

LC-MS/MS method

Concentrations of 34 oxylipins (see S1 Table) were quantified by liquid chromatography–mass

spectrometry (LS-MS/MS) using a validated quantitative method based on that described by

Wong et al.[21]. Lipids not included in [21] were measured using the following LC-MS/MS

settings (precursor / product ions / collision energy): 17R resolvin D1 (375.3 / 141.0 / 22),

6-ketoPGF1a (369.1 / 162.8 / 36), resolvin D2 (375.3 / 175.0 / 30), 17-HDoHE (343.1 / 343.1 /

9). The HPLC system used was a Shimadzu series 10AD VP LC system (Shimadzu, Columbia,

MD, USA) and the MS system used was an Applied Biosystem MDS SCIEX 4000 Q-Trap

hybrid triple-quadrupole–linear ion trap mass spectrometer (Applied Biosystem, Foster City,

CA, USA) equipped with an electrospray ionisation (ESI) interface. Quantification of the

eicosanoids was calculated using fully extracted calibration standards for each of the analytes.

Before quantification of lipid-derived inflammatory mediators of rat synovial fluid, blank filter

papers were stained with equivalent concentrations of calibration standards (100pM, 500pM,

1nM, 2.5 nM, 5nM, 10nM) and were compared with actual standard calibration curves. Quan-

tification was performed using Analyst 1.4.1. Identification of each compound in plasma sam-

ples was confirmed by LC retention times of each standard and precursor and product ion m/z
ratios.

Statistical analysis

First a principal component analysis (PCA) was performed on all analytes from synovial tissue

and plasma together. Subsequently, data of all analytes were normalised and the z-scores were

presented as mean with standard deviation. To test for the differences between the four differ-

ent study groups for the selected clusters, a 1-way ANOVA with a Bonferroni correction was

used. To evaluate the effect of HF diet and groove surgery on the normalised average data for

each cluster of lipids an independent samples t-test was performed.

Potential associations of lipids within the selected clusters, formed by PCA, with the histo-

logical joint degeneration, as determined by the OARSI score[34], were determined with a lin-

ear regression analysis. The outcome is presented as regression coefficient (B) for linear

regression with 95% confidence interval. In parallel, to relate the selected clusters (as formed

by PCA) with the individual components of the histological OARSI-score; synovial membrane

inflammation, osteophyte formation, and cartilage degeneration, a logistic regression analysis

Lipid profiling in experimental osteoarthritis
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was used. Data are presented as odds ratios (OR) with 95% confidence intervals. All individual

lipid data from serum and synovial fluid are separately presented as absolute mean value with

standard deviation distinguished by the type of diet or the performed surgical procedure. To

evaluate the effect of HF diet feeding and groove surgery on each individual lipid an indepen-

dent samples t-test was performed. Finally, the correlation between the individual lipids and

the histological OARSI-score was performed by a Pearson correlation (SPSS statistics 21, SPSS

inc., Chicago, IL, USA). For all tests p values<0.05 were considered statistically significant.

Results

Association of systemic and local lipids with histological joint degeneration

Overall 31 of 34 oxylipins could be detected in rat fasted plasma and synovial fluid (obtained

on filter papers). PCA identified four different clusters, ranging from 7–17 individual oxylipins

(Table 1). The individual oxylipins within each cluster were strongly associated. The clusters

differentiated clearly between lipids from local and systemic origin; cluster 1 and 2 only con-

taining lipids from the synovial fluid and cluster 3 and 4 only lipids from plasma. When con-

sidering the effect of HF diet (with and without groove surgery), a statistical significant

increase in averaged normalised lipid value of cluster 3 was observed, compared to the stan-

dard diet fed rats (with and without groove surgery; z-score of 0,22 ± 0,62 vs. -0,29 ± 0,52;

p = 0.013, Fig 1A). All other clusters did not show a difference between the HF diet and the

standard diet fed rats. Also, no differences were observed in rats with mechanical induced car-

tilage damage (grooves) compared to non-surgically damaged rats for all clusters (Fig 1B).

Looking at the association of the normalized lipid values within the different clusters for the

total joint degeneration (independent of the four groups), as determined by the total OARSI

histopathology score, using linear regression analysis, cluster 1 and cluster 3 showed a non-sig-

nificant positive association with the total joint degeneration score. Indicating that increased

histological joint degeneration is association with increased lipid concentrations, from local

and systemic origin (Table 2). The other two clusters (cluster 2 and 4) showed a negative trend

Table 1. Selected clusters of oxylipins as defined by the principal component analysis.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

5-HETE (SF) 8,9-DHET (SF) 5-HETE (P) 8,9-DHET (P)

8-HETE (SF) 5-HPETE (SF) 8-HETE (P) 11,12-DHET (P)

9-HETE (SF) 12-HPETE(SF) 9-HETE (P) 5-HPETE (P)

11-HETE (SF) 9-HODE (SF) 11-HETE (P) 12-HPETE (P)

12-HETE (SF) 13-HODE(SF) 12-HETE (P) 9-HODE (P)

19-HETE (SF) 9-OxoODE (SF) 15-HETE (P) 13-HODE (P)

8,9-EET (SF) 13-OxoODE (SF) 16-HETE (P) 13-OxoODE (P)

11,12-EET (SF) 17-HDoHE (SF) 19-HETE (P) 17-HDoHE (P)

14,15-EET (SF) AA (SF) 8,9-EET (P) AA (P)

TXB2 (SF) 11,12-EET (P)

PGD2 (SF) 14,15-EET (P)

6-KetoPGF1a (SF) TXB2 (P)

ResolvinD1 (SF) PGD2 (P)

PGF2 (SF)

ResolvinD117R (SF)

Overview off all individual lipids within the selected clusters as defined by the principal component analysis. Two clusters contain solely oxylipins originating from the

synovial fluid (SF) filter papers (Cluster 1 and 2), whereas the other two groups contain lipids originating from plasma samples (P; Cluster 3 and 4).

https://doi.org/10.1371/journal.pone.0196308.t001
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with the histological OARSI score (Table 2). When considering the association of the four clus-

ters with the individual parameters of the histological OARSI score (logistic regression analy-

sis), the association was in line with the total OARSI score (Table 2). A statistically significant

positive association between systemic oxylipins in cluster 3 and the local synovial membrane

inflammation (OR 54,78 [2.6–1170.9]; p = 0.010, Table 2) was found. The synovial fluid lipids

in cluster 2 showed a statistically significant negative association with cartilage degeneration

(OR 0.004 [0.0–0.5]; p = 0.024, Table 2).

Plasma and synovial fluid lipid profiles

Of the 31 detected lipids, 13 lipids present in the fasted plasma were significantly different

between the HF diet and the standard diet group, independent for the performed groove sur-

gery (9-HETE; p = 0.002, 11-HETE; p = 0.005, 12-HETE; p = 0.033, 5,6-EET; p = 0.044,

8,9-EET; p = 0.048, 11,12-EET; p = 0.015, 14,15-EET; p = 0.014, 11,12-DHET; p = 0.001,

9-HODE; p = 0.002, 13-HODE; p = 0.031, 17-HDoHE; p = 0.007, TXB2; p = 0.002 and AA;

p = 0.0001; see Table 3 and Fig 2A). Whereas, only one lipid (5,6-EET; p = 0.023) present in

Fig 1. Overview of lipids within the selected clusters. Overview of normalised values for all lipids within the selected clusters for individual animals. The difference

between the standard diet rats compared to the high-fat diet rats are presented above (A). The individual animals indicated by a red symbol are rats with groove surgery

for each dietary group. The differences between rats with groove surgery compared to the non-operated rats are shown below (B). The blue symbols indicate rats on a

high-fat diet. P-value was determined by the independent samples t-test.

https://doi.org/10.1371/journal.pone.0196308.g001

Table 2. The outcome of logistic regression analysis.

Total OARSI score Synovial membrane inflammation Cartilage degeneration Osteofyt formation

Cluster 1 (Local) B = 0,50 [-0,9–1,9]; p = 0,464 OR = 1,38 [0,3–5,6]; p = 0,650 OR = 2,33 [0,3–18,5]; p = 0,423 OR = 1,63 [0,4–6,7]; p = 0,498

Cluster 2 (Local) B = -0,67 [-2,4–1,0]; p = 0,417 OR = 1,17 [0,2–6,1]; p = 0,855 OR = 0,004 [0,0–0,5]; p = 0,024 OR = 0,50 [0,1–4,2]; p = 0,521

Cluster 3 (Systemic) B = 0,86 [-0,6–2,4]; p = 0,248 OR = 54,78 [2,6–1170,9]; p = 0,010 OR = 3,94 [0,5–30,3]; p = 0,188 OR = 1,88 [0,5–7,7]; p = 0,381

Cluster 4 (Systemic) B = -1,1 [-2,5–0,3]; p = 0,124 OR = 0,24 [0,1–1,2]; p = 0,084 OR = 0,28 [0,1–1,7]; p = 0,170 OR = 0,35 [0,1–1,4]; p = 0,127

The outcome of logistic regression analysis from selected clusters in relation to selected individual histological parameters (Synovial membrane inflammation,

Osteophyte formation and Cartilage degeneration) is shown. Data is presented as odds ratio (OR) with 95% confidence interval. In the right column outcome of linear

regression analysis with histological joint degeneration score (total OARSI score) is shown. Data is presented as regression coefficient (B) with 95% confidence interval

for the total OARSI score.

https://doi.org/10.1371/journal.pone.0196308.t002
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the synovial fluid was higher in the HF diet group, compared to standard diet group, indepen-

dent of groove surgery. Local cartilage damage following groove surgery had an effect on indi-

vidual lipid values in the synovial fluid only, not fasted plasma, independent of diet. In total,

levels of three oxylipins in the synovial fluid (15-HETE; p = 0.016, 8,9-DHET; p = 0.051 and

ResolvinD117R; p = 0.006) were significantly different in the rats with groove surgery, com-

pared to the non-surgically damaged rats (Table 3 and Fig 2B). Fig 3 shows the significantly

changed oxylipins in plasma and synovial fluid mapped onto the main arachidonic acid (AA),

docosahexaenoic acid (DHA) and linoleic acid (LA) metabolic pathways. The pattern of oxyli-

pins changes, is shown to be linked with the activity of key enzymes such as cytochrome P450

Table 3. Overview of all determined individual oxylipins.

Systemic (pmol/mL) Local (pmol/sample)

Lipid Standard HF Control Groove Standard HF Control Groove

5-HETE 5,6 ± 2,5 6,9 ± 3,0 6,9 ± 3,7 6,1 ± 2,5 132 ± 51,1 174 ± 78,2 148 ± 61,4 154,6 ± 72,2

8-HETE 1,5 ± 0,8 2,2 ± 1,3 2,1 ± 1,8 1,8 ± 0,8 61,6 ± 30,1 90,4 ± 59,0 68,3 ± 33,4 79,1 ± 53,6

9-HETE 0,5 ± 0,4 1,2 ± 0,7 0,9 ± 0,8 0,9 ± 0,6 69,6 ± 37,0 68,0 ± 36,8 56,7 ± 36,9 74,1 ± 35,6

11-HETE 1,4 ± 0,6 2,2 ± 1,0 2,1 ± 1,3 1,8 ± 0,8 919 ± 862 1534 ± 1351 1279 ± 1198 1205 ± 1167

12-HETE 14,0 ± 9,1 22,6 ± 13,4 22,3 ± 15,5 17,6 ± 11,1 473 ± 444 1333 ± 1997 579 ± 618 1035 ± 1720

15-HETE 0,5 ± 0,3 0,7 ± 0,4 0,7 ± 0,4 0,6 ± 0,3 32,0 ± 12,4 40,3 ± 13,2 46,8 ± 14,2 32,2 ± 10,8

16-HETE 0,4 ± 0,2 0,4 ± 0,1 0,4 ± 0,1 0,4 ± 0,1 22,4 ± 17,3 30,5 ± 18,0 30,3 ± 22,9 24,7 ± 15,0

19-HETE 2,7 ± 1,3 2,1 ± 0,6 2,8 ± 1,4 2,2 ± 0,8 1081 ± 288 1059 ± 290 1032 ± 334 1085 ± 269

20-HETE 198 ± 183 285 ± 214 207 ± 128 246 ± 222 41,9 ± 30,6 34,1 ± 33,1 35,5 ± 38,4 38,2 ± 30,4

5,6-EET 1,9 ± 1,6 3,3 ± 2,4 2,6 ± 1,7 2,7 ± 2,3 89,3 ± 62,6 278 ± 226 118 ± 100 250 ± 227

8,9-EET 1,5 ± 0,8 2,2 ± 1,3 2,1 ± 1,7 1,8 ± 0,8 68,5 ± 34,2 98,0 ± 61,5 72,6 ± 41,5 87,6 ± 55,0

11,12-EET 1,5 ± 0,6 2,2 ± 1,1 2,2 ± 1,4 1,8 ± 0,7 884 ± 898 1554 ± 1431 1297± 1270 1187 ± 1231

14,15-EET 1,1 ± 0,5 1,8 ± 1,0 1,6 ± 1,4 1,5 ± 0,7 643 ± 542 1527 ± 2139 807 ± 680 1198 ± 1852

5,6-DHET 0,8 ± 0,4 0,6 ± 0,2 0,8 ± 0,3 0,7 ± 0,3 nd nd nd nd

8,9-DHET 0,3 ± 0,1 0,3 ± 0,1 0,3 ± 0,1 0,3 ± 0,1 94,2 ± 34,2 96,4 ± 39,4 118,3 ± 47,5 85,6 ± 26,2

11,12-DHET 1,2 ± 0,5 0,6 ± 0,2 0,9 ± 0,6 0,8 ± 0,4 nd nd nd nd

14,15-DHET 1,5 ± 0,6 1,2 ± 0,3 1,5 ± 0,6 1,3 ± 0,4 28,7 ± 19,7 38,6 ± 33,1 47,3 ± 34,4 26,3 ± 19,9

5-HPETE 3,1 ± 1,5 3,9 ± 2,6 3,2 ± 1,8 3,6 ± 2,3 136 ± 114 229 ± 195 207 ± 167 174 ± 167

12-HPETE 2,2 ± 1,3 3,0 ± 2,0 2,5 ± 1,8 2,7 ± 1,8 308 ± 107 428 ± 256 325 ± 139 174 ± 167

9-HODE 21,3 ± 9,4 11,6 ± 5,2 16,2 ± 7,9 15,8 ± 9,2 3,5 ± 3,5 3,2 ± 2,1 3,7 ± 3,1 3,2 ± 2,8

13-HODE 45,0 ± 19,8 31,2 ± 13,8 39,5 ± 15,2 36,4 ± 19,0 6,1 ± 6,3 5,7 ± 4,2 6,9 ± 5,9 5,5 ± 5,1

9-OxoODE 25,1 ± 11,3 23,4 ± 17,8 21,6 ± 10,9 25,0 ± 16,4 2755 ± 5202 1137 ± 964 1998 ± 1094 1849 ± 4383

13-OxoODE 34,1 ± 16,3 30,3 ± 23,0 29,9 ± 17,3 32,7 ± 21,3 2,8 ± 5,2 1,4 ± 1,2 2,3 ± 1,4 2,0 ± 4,4

17-HDoHE 9,5 ± 6,9 3,8 ± 2,1 7,0 ± 5,9 6,2 ± 5,5 2,9 ± 1,9 2,7 ± 1,4 2,9 ± 1,9 2,8 ± 1,5

AA 456 ± 73 600 ± 76 538 ± 91 536 ± 109 61,2 ± 28,2 84,4 ± 59,8 76,2 ± 34,8 71,4 ± 52,5

ResolvinD117R 65,5 ± 26,5 70,1 ± 12,8 65,1 ± 26,0 69,1 ± 18,2 97,7 ± 4,1 110,8 ± 17,1 98,9 ± 5,5 109,9 ± 15,1

TXB2 0,6 ± 0,6 2,1 ± 1,5 1,6 ± 1,0 1,0 ± 1,0 1,5 ± 2,5 3,2 ± 4,5 2,8 ± 3,3 2,2 ± 3,9

PGD2 0,3 ± 0,1 0,4 ± 0,4 0,4 ± 0,3 0,3 ± 0,3 1,4 ± 1,9 2,2 ± 2,1 2,1 ± 2,7 1,7 ± 1,7

6-KetoPGF1a 0,3 ± 0,2 0,2 ± 0,1 0,3 ± 0,1 0,3 ± 0,1 0,3 ± 0,1 0,3 ± 0,1 0,3 ± 0,2 0,3 ± 0,1

ResolvinD2 2,9 ± 2,5 2,2 ± 1,3 3,0 ± 2,0 2,4 ± 1,9 0,2 ± 0,1 0,2 ± 0,1 0,2 ± 0,1 0,2 ± 0,1

PGF2 nd nd nd nd 1,4 ± 2,3 2,0 ± 1,4 2,4 ± 2,8 1,5 ± 1,4

Overview of all determined individual oxylipins for both plasma (systemic) and synovial fluid (local) samples of rats receiving high fat (HF; n = 20) compared to

standard diet fed rats (Standard; n = 20) and the rats with groove surgery (Groove; n = 28) compared to rats without groove surgery (Control; n = 14). Data is presented

as mean with the standard deviation of each individual lipid, nd = not detectable. The dark grey highlighted boxes indicates a statistical significant difference (p<0.05)

and the light grey boxes indicates a trend compared to the control group (p<0.1) as tested by the independent samples t-test.

https://doi.org/10.1371/journal.pone.0196308.t003
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(CYP), soluble epoxide hydrolyse (encoded by EPHX2 gene) and arachidonate 5-lipoxygenase

(encoded by ALOX5 gene).

Of the individual lipids, there was a correlation with the histological outcome for four lipids

in the plasma (9-HODE; r = -0.416, p = 0.014, 13-HODE; r = -0.426, p = 0.012, 17-HDoHE;

r = -0.406, p = 0.019 and AA; r = 0540, p = 0.001). Two lipids in the synovial fluid were corre-

lated with the histological joint degeneration (12-HETE; r = 0.330, p = 0.043 and 12-HPETE;

r = 0.321, p = 0.05).

The diol/epoxy-ratios were also studied and the high-fat diet resulted in a statistically signif-

icant decreased in all diol/epoxy-ratios studied systemically in plasma samples (5,6-DHET/

5,6-EET-ratio; p = 0.0049,8,9-DHET/8,9-EET-ratio; p = 0.0016, 11,12-DHET/11,12-EET-ratio;

p<0.0001 and 14,15-DHET/14,15-EET-ratio; p<0.0001). When groove surgery is applied in

Fig 2. Overview of all statistical significant different individual lipids. Overview of all statistical significant different individual lipids originating from plasma

(systemic, A) and synovial fluid (local, B), as determined by the independent samples t-test. Data is presented as an absolute value of the lipid for each individual animal.

The individual animals indicated by a red symbol are rats with groove surgery for each dietary group and the blue symbols indicate rats on a high-fat diet.

https://doi.org/10.1371/journal.pone.0196308.g002
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high-fat diet fed rats also all diol/epoxy-ratios decreased compared to rats with groove surgery

in addition to a standard diet (5,6; p = 0.0174, 8,9; p = 0.0298, 11,12; p<0.0001 and 14,15-;

p = 0.0023). Looking at the local levels of diol/epoxy-ratios from synovial fluid samples, we

didn’t see an effect of the high-fat diet compared to the standard diet in all levels. Also groove

surgery in addition to a high-fat diet did not result in different diol/epoxy-ratios. In line

with the individual oxylipins, a different expression was seen in the peripheral and local

compartment.

Fig 3. Representative pathway of all studied lipids. Pathways representing a selection of the most important studied oxylipins in

plasma (A) and synovial fluid (B), mapped onto the main arachidonic acid (AA), docosahexaenoic acid (DHA) and linoleic acid (LA)

metabolic pathways, corresponding to the observed changes in Fig 2. The green boxes represents statistical significant higher values in

control situation compared to the HF diet (A) or groove surgery (B), and red boxes for statistical significant higher oxylipin values in

the HF diet (A) or groove surgery (B) compared to their control situation.

https://doi.org/10.1371/journal.pone.0196308.g003
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Discussion

The present study profiled oxylipin levels in both synovial fluid and plasma from a rat OA

model, combining mechanically induced cartilage damage with a HF diet, using a highly sensi-

tive LS-MS/MS method. Multiple clusters of oxylipins, as determined by PCA, were associated

with histopathological changes by logistic regression analysis. Whereas, 4 local (5,6-EET,

15-HETE, 8,9-DHET and 17R-ResolvinD1) and 13 systemic oxylipins were clearly altered

in this OA model as a result of groove surgery, HF diet feeding or a combination of both

induced triggers. With distinct differences in synovial fluid and plasma concentrations of indi-

vidual oxylipins, suggesting differential roles of the oxylipins in the local versus peripheral

compartment.

Focusing on the individual lipids in the synovial fluid we observed a statistically significant

decrease of 15-HETE levels in the synovial fluid of grooved knee joints compared to non-sur-

gically damaged joints. 15-HETE is known to be secreted by adipocytes[39], but how this lipid

is related in the process of OA is currently unknown. In mice, the absence of 15-HETE resulted

in accelerated joint swelling and has an anti-inflammatory role[40]. On the other hand,

increased levels of 15-HETE are present in knee joints of MIA induced rats[21], and a positive

association of 15-HETE with incidence of human symptomatic knee OA is observed[29].

Besides 15-HETE, local changes were also observed for, 8,9-DHET, a pro-inflammatory lipid,

17R-Resolvin D1, a mediator of inflammatory responses, and 5,6-EET, which has a known

role in pain mechanisms[41–43]. These altered lipid values were only observed in synovial

fluid and not in plasma, except for 5,6-EET which is the only lipid increased in both the local

and peripheral compartment. Moreover, the 13 plasma lipids that were sensitive to the HF diet

in plasma were not reflected in the synovial fluid. This data suggest differential roles for oxyli-

pins in the local versus peripheral compartment.

When looking at group level rather than looking at the individual lipid values, a strong posi-

tive association is detected between systemic oxylipins and the histological synovitis-score.

This implies a direct effect of systemic circulating pro-inflammatory lipids on the local inflam-

matory state of the joint. On the other hand, the cluster with identical lipids from local origin

did not show an association with knee joint synovitis. Another cluster of lipids originating

from synovial fluid, showed a negative association with histological cartilage degeneration,

indicative for a protective effect of these lipids on the articular cartilage. Previously we showed

that osteophyte formation was an inflammatory driven process, in the selected model[5]. How-

ever, in the present study no association with osteophytes was observed in selected clusters of

systemic and local lipids.

To better understand the complex inter-relationship between the different disease mecha-

nisms involved in OA, animal models can help to elucidate the complex mechanistic aspects of

OA[32, 44]. The advantage of using synovial fluid samples is that it is in direct contact with the

tissues of the knee joint and likely contain more specific biomarkers that reflect the primary

joint related degeneration pathways[45]. However, for humans the availability of synovial fluid

from healthy but also early-OA patients is limited[28] and challenging due to the difficulty of

defining early-OA[46]. Comparative lipidomic analysis of synovial fluid in a canine model of

OA and human early-OA revealed that the lipid profiles of dogs often reflect those of humans

[8]. Whether also small animal models of OA reflect the human disease with respect to lipid

profiles, is currently unknown. In a model of HF diet induced obesity with destabilization of

the medial meniscus in mice, an association was found between serum and synovial fluid lipid

levels with histological OA and synovitis[47]. Although these data are in line with previous

studies using a HF diet in rats with changed systemic lipid values[48, 49], disadvantage of

destabilizing the meniscus is permanent joint instability and joint inflammation making the
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translation to the human OA situation questionable. This model could potentially be used to

test medical interventions. Specifically the Cytochrome P450 system could be an interesting

target to focus on, this system constitute a major metabolic pathway for arachidonic acid.[50]

Besides, there is evidence that blocking of CYP enzymes with N-methylsulfonyl-6-(2-propar-

gyloxyphenyl) hexanamide (MS-PPOH) represent a therapeutic target.[51] As prolonged

MS-PPOH delivery result in attenuated effects in pulmonary hypertension[52], antidiuretic

effects[53], and decreased coronary reactive hyperemia after ischemia due to inhibition of

EETs synthesis.[54] This makes MS-PPOH a potential beneficial therapy for this model, where

we can study the oxylipin profiles to better understand the metabolic changes associated with

the inhibition of CYP epoxygenases.

During the initial phase of inflammatory responses in symptomatic knee OA, cyclooxygen-

ase-2 is significantly up-regulated and acts on arachidonic acid to produce oxylipin mediators,

specifically prostaglandins, prostacyclins, and thromboxanes[55, 56]. Oxylipins of both the

cyclooxygenase and lipoxygenase pathways have been produced in sufficient quantities by

joint tissues to be reflected in plasma in patients with symptomatic knee OA, indicating an

increased arachidonic acid metabolism in OA[29]. Also local levels of endocannabinoid lipids

in human synovial fluid and the infrapatellar fat pad in relation to OA have previously been

reported[21]. In the current study increased plasma dihydroxyeicosatrienoic acids (DHETs)

levels and decreased corresponding epoxyeicosatrienoic acids (EETs) levels were observed.

EETs are very unstable metabolites, it’s rapidly hydrolyzed by soluble epoxide hydrolase to the

less biologically active but more stable metabolites DHETs and EETs might reflect the state of

inflammation.[57] This indicates that the observed decreased plasma diol/epoxy-ratios might

be involved in the inflammatory reaction as seen in this OA model.

Besides regulating inflammation, oxylipins are also important mediators of inflammatory

pain[56]. Especially the role of resolvin receptors in pain behaviour have been studied[58].

Inhibitory effects of a precursor of resolvin D1, 17(R)-HDoHE, were observed on established

OA pain in rats[58], which is corroborated in our study showing decreased levels of systemic

17(R)-HDoHE in rats with a HF diet. In our study, pain-related outcome measures were not

performed and therefore further research needs to support this.

Local molecular biomarkers from the knee joint in small animals are limited by the small

volume and difficult accessibility of the synovial joints and therefore often not taken into

account[37, 59]. Often blood plasma samples are used as a representative of general inflamma-

tory status with maybe some by-product that originates from the joint fluid. As such blood

plasma oxylipins may be useful as biomarkers that can elucidate joint condition. The present

study for the first time profiled local lipids originating from solely synovial fluid in rat knee

joints. To access the synovial fluid, we selected the Whatman paper recovery method as previ-

ously designed for animals with small volumes of synovial fluid[36–38]. This specific and sen-

sitive quantitative assessment method has the capacity to study pathway profiling of selected

inflammatory related oxylipins, thereby providing a useful tool for the observation of biologi-

cal differences and a readout for inflammation and oxidative stress in (experimental) early-

OA. However, the statistical results have to be interpreted with caution as this experimental

study had an exploratory nature and group size was not specifically designed for this research

question. Irrespectively, specific changes in lipids related to inflammation as a consequence of

a HF diet and induction of local cartilage damage by groove surgery could already be demon-

strated and although the association between the selected histological outcome parameters and

oxylipins do not necessarily reflect a causal relationship, they warrant further investigation of

the role of the eicosanoid system in early OA mechanisms.

Here we present for the first time that it is possible to quantify (mainly eicosanoid) oxyli-

pins in rat synovial fluid in an early experimental model of OA with local cartilage damage in
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addition to a HF diet induced metabolic dysregulation. It was demonstrated that both local

and systemic bioactive oxylipins are responsive in early stages of the osteoarthritic process

especially in the inflammatory responses involved and that local and systemic responses are

not directly related. The HF diet induced metabolic dysregulation mainly influenced the sys-

temic oxylipins of the fasted plasma. Whereas the mechanically induced cartilage damage with

groove surgery had the most effect on the local oxylipins originating from the synovial fluid.

Further understanding of the mechanisms by which the selected lipids play a role in the pro-

cess of (early-)OA is necessary for its potential role as biomarker of disease.
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