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Continuous coal mining systems containing
multiple excavators producing multiple
products of raw materials are highly complex
and exhibit strong interdependencies between
constituents. A network of conveyor belts is
used for transportation of the extracted
materials to different waste dumps or the coal
stockpile. 

Optimal decision-making in short-term
planning and production control are impacted
mainly by geological uncertainty associated
with incomplete knowledge of the coal deposit
represented in the reserve block model. These
uncertainties cause deviations from expected
process performance. For more robust
decision-making, understanding the impacts of
these stochastic elements plays a key role.

Techniques of stochastic process
simulation, whether discrete, continuous, or
combined (Kelton and Law 2000), provide a
powerful tool for measuring the performance

indicators of a complex system. In the past few
years there has been significant development
in the applications of process simulation in the
mining industry. Panagiotou (1983) described
the application of the simulation program
SIMPTOL for opencast lignite mines that use
bucket wheel excavators (BWEs), conveyors,
and stackers. The main objective was to select
and match the equipment to fit material
characteristics while meeting production
requirements and mine profiles.
Michalakopoulos et al. (2005) presented a
simulation model of an excavation system at a
multi-level terrace mine using the GPSS/H
simulation language. The principal model
output variables are production and arrival
rate of product and waste at the transfer point.
Michalakopoulos et al. (2015) utilized Arena
simulation software for the simulation of the
Kardia Field mine in Greece. Validation of the
results illustrates an acceptable agreement
with the actual data. Fioroni et al. (2007) used
discrete tools for simulation of continuous
behaviour for modelling the conveyor belt
network of a large steelmaking company. The
authors proposed a modelling approach to the
flow process that uses portions of materials
and treats them as discrete entities in
simulation modelling. The results
demonstrated that this technique was valid
and successful. Salama et al. (2014) used a
combination of discrete event simulation and
mixed integer programming (MIP) as a tool to
improve decision-making in underground
mining. The proposed method uses the
simulation approach to evaluate the operating
costs of different haulage system scenarios
and obtains the cash flows for input into the
MIP model. 

The effect of geological uncertainty on
achieving short-term targets: a
quantitative approach using stochastic
process simulation
by M. Soleymani Shishvan* and J. Benndorf*

Continuous mining systems containing multiple excavators producing
multiple products of raw materials are highly complex, exhibiting strong
interdependency between constituents. Furthermore, random variables
govern the system, which causes uncertainty in the supply of raw materials:
uncertainty in knowledge about the reserve, the quantity demanded by the
customers, and the breakdown of equipment. This paper presents a
stochastic-based mine process simulator capturing different sources of
uncertainties. It aims to quantify the effect of geological uncertainty and its
impacts on the ability to deliver contractually defined quantities and qualities
of coal, and on the system efficiency in terms of utilization of major
equipment. Two different areas of research are combined: geostatistical
simulation for capturing geological uncertainty, and stochastic process
simulation to predict the performance and reliability of a large continuous
mining system. 

The process of modelling and simulation in this specific production
environment is discussed in detail. Problem specification and a new
integrated simulation approach are presented. A case study in a large coal
mine is used to demonstrate the impacts and evaluate the results in terms of
reaching optimal production control decisions to increase average equipment
utilization and control coal quality and quantity. The new approach is
expected to lead to more robust decisions, improved efficiencies, and better
coal quality management.
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The effect of geological uncertainty on achieving short-term targets

The reviewed literature demonstrates that the stochastic
process simulation is a potent method for measuring the key
performance indicators (KPIs) in continuous mining systems.
However, the investigation of the impacts of geological
uncertainty in the performance of continuous mining systems
is still seen as a major gap. This paper presents a stochastic-
based mine process simulator focusing on the effects of
geological uncertainty to predict the mine process
performance and reliability. The following section specifies
the problem of stochastic simulation of continuous mining
systems. Thereafter, the procedure for a new integrated
simulation approach is discussed. In this study, a discrete-
continuous methodology is proposed and Arena simulation
software (Rockwell Automation Technologies Inc. 2012) is
used for modelling. As a case study, a completely known
data-set is analysed and the results presented.

In general, continuous coal mining systems contain parallel
production lines that begin with excavators, followed by
material transport by conveyor belts and distribution at the
mass distribution centre where material is divided into two
destinations, namely, the coal bunker and the waste
materials dump. Waste materials are dumped by spreaders at
the dump while lignite is stacked by the stacker in the
stockpile yard. The reclaimer and a network of conveyor belts
are used for loading lignite into railway wagons. Finally, the
product is despatched to customers (mostly power plants)
based on their daily demands.

The problem considered here is to quantify the effect of
geological uncertainty and its impact on the ability to deliver
contractually defined coal quantities and qualities, and on the
system efficiency in terms of utilization of major equipment.
The KPIs of the system are defined as the ability to meet coal
quality and quantity targets and the utilization of the system.
The parameters of the KPIs to be evaluated for each
simulation replication are presented in Table I. More details
about the mathematical formulation of evaluation function
and parameters are discussed in Shishvan and Benndorf
(2014). 

As an example, Figure 1 shows a scatter plot that
illustrates the relationship between two ash contents
measured on the same samples. It appears from this figure
that as the variable on the vertical scale (ash content
measured in the laboratory) changes, the variable on the
horizontal scale (ash content based on the estimated model)

seems to vary randomly within a relatively small range
without tending to increase or decrease significantly. It can be
seen that the reality (laboratory measurements) shows a
significant higher fluctuation compared to the estimated
model. There is a weak relationship between two variables,
with a correlation coefficient of 0.182 in the scatter plot.
These observations give rise the question ’where do these
fluctuations come from?’ which is investigated in this paper.

When using interpolated reserve models as a basis for mine
planning, a smoothing effect is to be expected. This is due to
the nature of spatial interpolators, which are often designed
to minimize the estimation errors. Alternatively, conditional
simulation methods in geostatistics have been developed to
quantify variability and uncertainty associated with the
geology (Chiles and Delfiner, 2012). These techniques result
in a set of equally probable scenarios defining the spatial
distribution of attributes within a deposit (realizations),
which capture in-situ variability as found in the data. Local
differences between these realizations can be used for
mapping uncertainty. The applicability to multi-seam coal
deposits was demonstrated by Benndorf (2013a, 2013b). 

On the other hand, the process simulation model of the
continuous mining system is intended to reproduce the
operational behaviour in a real opencast coal mine. The
extraction and conveying of lignite and waste are emulated in
a combined discrete-continuous stochastic environment. This
allows incorporation of uncertainty associated with the
geological block model. It allows the re-creation of the

�
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Objective Evaluation of aggregated KPIs of each simulation replication based on the pre-defined short-term planning targets

KPIs •  J1 - coal quality: should be between defined lower and upper limits, otherwise penalties should be applied
•  J2 - coal quantity: should be between defined lower and upper limits, otherwise penalties should be applied
•  J3 - utilization: average utilization of the system can be derived from the average utilization of excavators

Decision variables •  Task schedules: different alternatives for short-term plans (daily/weekly/monthly)
•  Extraction sequences: sequence of extracting mining blocks for each excavator
•  Extraction rate of excavators in the different time spans
•  Stockpile management: the quality and the quantity of coal needed in the stock yard influences other decision

variables

Constraints •  Each block can be mined just once
•  The conveyor belt can be moved further along only if all the blocks in one pass are mined out



deterministic and/or random occurrences of events such as
operating stoppages caused by unavailability of spreaders or
conveyor belts, equipment failures, and preventive and
corrective maintenance activities. 

Dowd and Dare-Bryan (2005) explored the general
concepts of the integration of the geostatistical simulation
within the entire design and production cycle. The authors
illustrated these concepts with particular reference to blast
modelling. This paper aims to combine the two simulation
concepts, namely geostatistical simulation for capturing
geological uncertainty and stochastic process simulation, to
predict the performance and reliability of a large continuous
mining system. Figure 2 shows the integrated simulation
approach. 

In this approach, realizations based on conditional
simulation and an interpolated model using kriging are
considered as input for the mine process simulator. The
kriged model is used for comparison. The software selected to
implement the integrated simulation approach is Rockwell
ARENA 14.5, which permits close reproduction of the
behaviour of complex real systems with complicated decision
logic. The software offers intuitive flowcharting support to
the modelling, control over the flow of entities in the system,
custom statistics, user-defined expressions, and interfacing
with external databases and spreadsheets (Kelton and Law
2000). The output of the simulator is the set of values for
each KPI. At this stage, penalties are applied when deviating
from production targets. The KPIs are summarized in an
evaluation function, which results in a probability distri-
bution when multiple replications are evaluated (Figure 2).  

The objective of this study is to illustrate the effect of
geological uncertainty on the performance of a complex
continuous mining system. To analyse the performance of the
proposed approach, the case study is presented in a
completely known and fully controllable environment. In this
regard, the Walker Lake data-set as a completely known
environment is chosen (Isaaks and Srivastava 1989). The
real value block model (complete Walker Lake data-set), an
average-type estimated block model using ordinary kriging,
and 20 conditionally simulated realizations using sequential
Gaussian simulation of the deposit are used as different
replications for building the simulation experiments.

Figure 3 schematically shows a typical opencast mine.
The mining operation uses six BWEs at six benches.
Extracted material is transported by conveyor belts to the
mass distribution centre. Here, destinations are determined
based on the type of materials and the excavator from which
they were derived. Finally, waste materials are conveyed to
spreader no. 1 or 2 and the coal to the stockpile yard. 

The block model is divided into six equal areas and each
area is assigned to one excavator (Figure 4). 

The major steps in simulation modelling are as follows: 

� The first step is to define appropriate entities. Entities
are the block portions to be extracted in each period

� The second step is to assign block attributes. As an
entity enters the system its attributes, consisting of
block coordinates (x, y, and z), block tonnage, block
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type, quality parameters, and destination, are assigned.
These attributes are read from the geological block
model 

� Subsequently, the entity is placed in a queue for
extraction by the excavator as a resource module 

� Each entity has a delay based on operating time, after
which it is released 

� At the final step, variables such as total waste tonnage
and ore tonnage entering the system are calculated.

A capacity constraint is implemented to prevent overflow
of loose material on the conveyor belt that is connected to the
coal bunker.  Based on the maximum amount of coal that can
be on the belt, a constraint of 6000 m3/h is considered for
coal. When the production rate exceeds these limits, the
model starts to identify the excavators that are producing
coal. The excavator that corresponds to the minimum
production rate is set to standby.

Decision variables of this case consist of:

� Task schedule—working schedule for a time horizon of
7 days is given in Table II. This mine operates 24 hours
per day in three working shifts. As an example, in
Table II, the number 110 shows that the corresponding
equipment is available for first and second shifts and is
not available for the third shift 

� Extraction sequence—in this case, considered to be a
constant (from one side of bench to the other side)
without any movement of excavators during the
excavation

� Extraction rate of excavators—in this case, assumed 
to be equal to the theoretical capacity of excavators
(Table III) 

� Stockpile management—in this case, if the stockpile for
a specific coal type is full, the excavator(s) that
produces that type of coal should be idled until
stockpile space is available. 

Tables III summarize the general information and
technical parameters that are used for the simulation model
building.

The results of 22 different block models (simulation
replications, r): real, estimated, and 20 realizations are
analysed in the specified time horizon (one week, in this
case, i.e., 168 hours). The total extracted coal tonnages for
the different scenarios are presented in Figure 5. The system
simulation based on the estimated model shows significantly
less coal (10%) than the average of the 20 realizations. On
the other hand, the real model shows a very similar value to
the average value of the 20 realizations. Clearly, the
estimated model underestimates coal production for the
defined schedule. This is due mainly to ignoring in situ
variability and geological uncertainty. The capability of
conditional simulation to quantify geological uncertainty
improves the prediction of system performance.

Note that the application of average-type estimated
models does not always lead to underestimation. Depending
on local geological conditions, these techniques may also lead
to an overestimation.

Figure 6 presents the average ash content of extracted
coal for the real model (light grey), the estimated model
(black), the realizations (dark grey), and the average of

simulation (red line). The ash contents of all realizations
substantially exceed the value predicted by the estimated
deposit model. The average is again similar to the real value.
Relying on the estimated model would indicate a biased and
over-optimistic ash content. 

In this study three KPIs are measured and penalties are
applied for not meeting the coal quality target (Figure 7a),
quantity targets (Figure 7b), and equipment utilization target
(Figure 8a). The values in Figure 7 are calculated based on
parameters specified in Table IV. The costs of deviation from
the targets (the penalties) in this study are one unit for one
ton of coal. Hence, these penalties can be interpreted as
percentage and tonnage of deviation from the targets.  

�
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Excavator 1 111 001 111 111 111 111 111
Excavator 2 111 111 111 001 111 111 111
Excavator 3 111 011 111 001 111 111 111
Excavator 4 111 111 111 111 111 111 111
Excavator 5 111 111 001 111 111 111 111
Excavator 6 111 110 110 111 111 111 111
Spreader 1 111 111 111 001 111 111 111
Spreader 2 111 001 111 111 111 111 111
Conveyor belts 111 111 111 111 111 111 111

Excavator 1 4 900 152
Excavator 2 4 900 152
Excavator 3 3 770 144
Excavator 4 1 400 168
Excavator 5 3 770 152
Excavator 6 740 152
Spreader 1 10 000 152
Spreader 2 10 000 152
Conveyor belts 6 000 168



Figure 7b also indicates that, for example, realization 1
will lead to an underproduction of 40 kt of coal. To account
for this uncertainty the stockpile inventory should be at least
40 kt before the start of the week to accommodate potential
deviations from target and secure a sufficient supply to
customers. Figure 8 demonstrates the average utilization of
the system for different realizations and shows box plots of
the utilization of each excavator. Evidently, geological
uncertainty and variability have a significant impact on the
measured KPIs. 

Figure 9 shows the ash content of a week’s production to
be delivered by rail to the power plants. The results reveal
that predictions based on the estimated model (black line)
and the reality (dark grey line) are not well correlated. This
means that the prediction based on an interpolated model has
limits. When considering the conditional simulation model,
there are 20 realizations (light grey cloud) and the average of
the realizations (red line), which is the stochastic prediction.
Comparing these with the reality, the red line generally
follows the true ash content very well. Deviations are in the
expected range of deviations, which are mapped by the
shadow range (realization cloud). 
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Previous examples illustrated that stochastic system
simulation is a valid and powerful tool for exploring the effect
of geological uncertainty on the expected performance of
complex continuous mining systems. It provides the mine
planning engineer with a valuable tool to foresee critical
situations affecting the continuous supply of raw material to
customers and the system performance.

Continuous mining systems require large investments and
have high operational costs. Decisions in daily scheduling are
impacted by uncertainties such as incomplete knowledge
about the deposit, which can have a significant impact of
actual production performance. This contribution has
proposed a simulation-based framework where the method of
geostatistical simulation has been integrated with mine
system simulation to account for the effects of geological
uncertainty. Results show that such an approach provides the
mine planning engineer with a valuable tool to foresee critical
situations affecting the continuous supply of raw material to
customers and the system performance.

Future research will be carried out to extend the system
simulation to also to capture stochastic downtime behaviours
and stochastic demand. For optimal control decisions, the
simulation approach will be integrated to a simulation-based
framework for optimization of short-term mine planning and
operations control (Benndorf, 2014; Benndorf et al., 2014). 
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