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Experimental investigation of flutter boundary with 
controlled vibration levels
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Faculty of Aerospace Engineering, Delft University of Technology, The 
Netherlands b
Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Israel

Abstract

The first experimental application of the Parametric Flutter Margin method
for identification of aeroelastic instabilities is presented. The experiment was
performed in two steps using a two degree-of-freedom wing segment mounted
in the wind tunnel. First, the reference flutter and divergence conditions were
found by increasing the free-stream velocity until the observed response di-
verged. Then, the system was stabilized according to the Parametric Flutter
Margin methodology, and the flutter and divergence conditions of the original
test model were identified positively while being in a stable regime demonstrat-
ing excellent agreement with the reference instability conditions. Although the
new experimental methodology is not model based, the results were compared
with a theoretical model showing good agreement as well. The acquired data
demonstrates both the accuracy of the Parametric Flutter Margin method as
well as its capability to test for aeroelastic instabilities, both flutter and diver-
gence, in stable and predictable testing conditions.

Keywords: Aeroelasticity, Parametric Flutter Margin, Flutter, Divergence,
Characterisation, Wind tunnel Experiment

Nomenclature

[A(iω)] = PFM system matrix

{Bf} = Distribution vector, {Bf} = [1, xs]
T

C(k) = Theodorsen function

C0 = Airfoil centre of gravity
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[Cf (iω)] = Acceleration sensor, [Cf (iω)] = −ω2[1, xs]

Cs = Location of the stabilising mass

Fih = Force measured by the impedance head

Fs = External excitation force

H(ω; v0) = Frequency response function

J0 = Airfoil moment of inertia around C0

L = Lift

M0 = Constant torque applied in divergence test

Mc/4 = Aerodynamic moment about point Q

P = Airfoil hinge point

Q = Quarter-chord point

Yf (ω) = Gain function

a = Non-dimensional location of P , P = (1 + a)b

a1, a2 = Acceleration measured by Accelerometer 1 and 2

aih = Acceleration measured by the impedance head

as = Acceleration of the stabilising mass

b = Airfoil semi-chord, b = c/2

c = Airfoil chord length

dh = Heave damping

dθ = Pitch damping

e0 = Non-dimensional location of C0, C0 = (1 + e0)b

es = Non-dimensional location of Cs, Cs = (1 + es)b

h = Heave DOF

hLVDT = Heave DOF measured by the LVDT

k = Reduced frequency, k = ωb/v0

kh = Heave stiffness

ks = Stiffness of the extensional spring

kθ = Pitch stiffness
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ksθ = Stabilising torsional stiffness

m∗ = Support mechanism mass

m0 = Airfoil mass

r = Dimensionless radius of gyration about P , r2 = (J0+m0x
2
0b

2)/(m0b
2)

rp = Pulley radius

rsp = Pulley radius in divergence test for stabilisation stiffness

rp1 = Pulley radius in divergence test with wind-on conditions

t = Time

uf = Excitation input

v0 = Freestream velocity

vd = Divergence speed

vf = Flutter speed

x0 = Eccentricity of the airfoil section, x0 = e0 − a

xs = Eccentricity of the stabilising mass, xs = es − a

yf = Acceleration in heave DOF at Cs

ζ(iω) = Vector of DOFs, ζ(iω) = [ξ, θ]T

ηθ = Normalised damping coefficient of the pitch DOF, ηθ = dθ/(m0b
2)

ηξ = Normalised damping coefficient of the heave DOF, ηξ = dh/(m0b)

θ = Non-dimensional pitch DOF

θRV DT = Pitch DOF measured by RVDT

θs = Pitch DOF deflection due to M0

µ∗ = Support to section mass ratio, µ∗ = m∗/m0

µs = Stabilising to section mass ratio, µs = ms/m0

ξ = Non-dimensional heave DOF , ξ = h/b

ρ = Air density

Φf (ω) = Phase function

χθ = Force in the pitch DOF

χξ = Force in the heave DOF
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ωpco = Phase cross-over frequency

ωθ = Circular frequency of the pitch DOF, ωθ =
√

kθ/J0 +m0x2
0b

2

ωξ = Circular frequency of the heave DOF, ωξ =
√

kh/m0

A = Wing aspect ratio

ARMA = Autoregressive moving average

CG = Centre of gravity

DOF = Degree of freedom

FFT = Fast Fourier transform

FRF = Frequency response function

LVDT = Linear variable differential transformer

PFM = Parametric flutter margin

RVDT = Rotary variable differential transformer

SDOF = Single degree of freedom
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1. Introduction

F
light testing, used to prove that the aircraft flight envelope is flutter free,
is a risky task. The flutter boundary is cautiously approached by gradually

increasing the flight speed until the flight envelope is reached or a damping coef-
ficient reaches the 3% threshold[1]. Meanwhile, the aircraft response to various
sources of excitation like atmospheric turbulence or control surface deflections is
continuously monitored and analysed. In some cases, such as explosive flutter,
damping might suddenly rapidly decrease. Hence flutter might be encountered
by accident causing severe damage to the aircraft. Consequently, such tests are
accompanied by numerous numerical analyses, wind tunnel and ground test-
ing to avoid bringing the tested aircraft too close to the flutter boundary by
accident[1].

Various flight-test data-analysis methods are available for application in on-
and off-line manner to identify the flutter conditions. Among others: damping
extrapolation[2], envelope function[3], the Zimmerman-Weissenburger flutter
margin[4], the model-based flutterometer method[5], and using a discrete-time
autoregressive moving average (ARMA) model[6]. Operating at flutter condi-
tions might have catastrophic results. Therefore, all the approaches rely, in one
way or another, on extrapolation to predict the flutter conditions while stay-
ing at safe flying conditions, which makes the tests expensive, time-consuming
and risky. On the contrary, the recently developed Parametric Flutter Margin
(PFM) method[7] is based on analysing frequency-response functions (FRFs) at
and beyond the nominal flutter onset conditions, but with the system modified
such that it is actually stable. This allows us to identify flutter positively with-
out exceeding the pre-determined safe vibration levels. It is anticipated that the
PFM methodology will be very instrumental in the design of future flutter-test
campaigns improving their safety and reduce the time and effort required to
ensure that the flight envelope is indeed flutter free.

Karpel and Roizner[8] proposed a novel method for finding the flutter bound-
ary experimentally based on their numerical PFM method[7]. The experimental
PFM mitigates some of the deficiencies of the currently established methods,
namely the need to approach the flutter boundary cautiously, and the fact that
the flutter boundary is never positively identified unless erroneously encoun-
tered. The PFM method is based on the idea that the stability point of an
aeroelastic system can be offset by adding a stabilising element. In the case of
wing flutter, such a stabilising element could be an added mass at the leading
edge of the wing tip. Such an augmented system is then subjected to har-
monic excitation to obtain the FRF of the stabilising element, for instance,
the acceleration of the added mass which is then analysed for gain margin at
phase-cross-over (pco) frequency. The flutter boundary of the original system
excluding the added stabilising mass is reached when the gain margin of the
stabilising element equals 0dB. The FRF analysis is repeated at various flight
conditions to obtain the gain margin vs flight speed characteristics. The flutter
speed is read from the graph at 0dB. Details on the theoretical foundation of the
PFM method and its formulation are provided in Roizner and Karpel[7] while
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the key equations and their application related to this experiment are outlined
in this paper.

It is worth pointing out that the PFM method allows for the flutter bound-
ary identification of the original system excluding the added mass while the
augmented system remains stable. This greatly reduces the risk of such experi-
mental efforts.

The contribution to the state of the art of this paper is a proof of concept and
validation of the proposed PFM method using a typical wing section with pitch
and plunge degrees of freedom (DOF) mounted in the wind tunnel. The paper
is organized as follows: in Sec. 2 the mathematical formulation of the 2DOF
aeroelastic system along with its PFM implementation related to the experiment
is presented, Sec. 3 describes the experimental setup and the testing procedure.
The results are shown in Sec. 4, and the conclusions of this work are given in
Sec. 5.

2. Theoretical Model of the Aeroelastic System

The mathematical formulation of the 2DOF airfoil along with its PFM im-
plementation relevant to this experiment is presented in this section. The math-
ematical model had three main purposes. First, to configure the experimental
setup to obtain the aeroelastic instability at a velocity within the wind tunnel
capabilities. Second, to size and position the stabilizing weight such that the
flutter velocity would increase by at least 15%, and the third purpose was the
comparison with the experimental results. It has to be stressed, however, that
the experimental PFM method or its results do not depend on the application
of this mathematical model. The experimental PFM method is not model-
based and does not require any mathematical model of the aeroelastic system
to identify the nominal flutter conditions if they exist in the test velocity range.

First, the governing equations of motion are presented, followed by the pre-
sentation of the PFM methodology.

2.1. Equation of Motion

The experimental aeroelastic system was modelled using a typical section
with pitch and heave DOFs as depicted in Fig. 1. The airfoil of chord length
2b, mass m0 and moment of inertia J0 expressed around the centre of gravity
at C0 is hinged at the point P . Additionally, m∗ represents all the additional
support mass, such as the mass of the pitching mechanism, supported by the
leaf springs governing the heaving motion. This mass is involved in the heave
motion only and does not contribute to the overall moment of inertia involved
in the pitching motion. Stiffness and damping characteristics of the pitch and
heave DOFs are presented by kθ and dθ, and kh and dh, respectively. Lift L, and
aerodynamic moment Mc/4 are assumed to act at the quarter-chord point Q.
The external excitation force Fs is applied at the same location as the stabilising
mass, at point Cs. The points P , C0 and Cs are expressed in terms of the airfoil
half chord b and non-dimensional parameters a, e0 and es which can assume
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values between [-1, 1], with -1 being the airfoil leading edge and 1 the airfoil
trailing edge. The response of the wing section to L, Fs, and Mc/4 is governed
by the following equation of motion:

[

1 + µ∗ x0

x0 r2

]{

ξ̈

θ̈

}

+

[

ηξ 0
0 ηθ

]{

ξ̇

θ̇

}

+

[

ω2
ξ 0

0 r2ω2
θ

]{

ξ
θ

}

=

{

χξ

χθ

}

(1)

where ξ = h/b and θ represent dimensionless heave and pitch DOFs. x0 = e0−a
is the eccentricity parameter of the airfoil section. r2 = (J0 +m0x

2
0b

2)/(m0b
2)

represents the dimensionless radius of gyration of the wing section about the
pivot point P . µ∗ = m∗/m0 is the ratio between the support mass and the
section mass. ηξ = dh/(m0b) and ηθ = dθ/(m0b

2), ωξ =
√

kh/m0 and ωθ =
√

kθ/(J0 +m0x2
θb

2) are the normalised damping coefficients and the circular
frequencies of the heave and pitch DOF, respectively. Finally, χξ and χθ are
the forces of the corresponding DOFs given as:

χξ =
1

m0b
(−L+ Fs)

χθ =
1

m0b2
(

Mc/4 + (1/2 + a) bL+ xsbFs

)

(2)

where xs = es − a is the eccentricity parameter of the stabilising mass. The
relative thickness of the sections airfoil is 12%, the excitation force Fs = F̂se

iωt

is harmonic, hence unsteady thin-airfoil theory and harmonic motion of the
section are valid assumptions. Consequently, L and Mc/4 can be expressed
using the Theodorsen theory [9] as:

L = 2πρv∞b2C(k)

(

ξ̇ +
v0
b
θ +

(

1

2
− a

)

θ̇

)

+ πρb3
(

ξ̈ +
v0
b
θ̇ − aθ̈

)

Mc/4 = −πρb4
(

1

2
ξ̈ +

v0
b
θ̇ +

(

1

8
−

a

2

)

θ̈

) (3)

where C(k) represents the Theodorsen function, k the reduced frequency, v0 the
airstream velocity and ρ the air density.

2.2. Parametric Flutter Margin Method

The implementation of the PFM method [7] for identifying flutter of the
2DOF airfoil using a stabilizing mass is outlined in this subsection. The flutter
equation is obtained by transforming Eq. 1 to frequency domain (FD) and
setting the external excitation to zero. Accordingly, Eq. 1 becomes:

[

A(iω)
] {

ζ(iω)
}

=
{

0
}

(4)

where ζ(iω) = [ξ, θ]
T
. The system matrix [A(iω)] contains the structural mass,

damping and stiffness matrices, and the frequency-depended aerodynamic co-
efficient matrix. Flutter conditions are defined mathematically as the flight
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Figure 1: Typical section with pitch and heave DOF

parameters at which Eq. 4 yields a non-trivial solution. Accordingly, com-
mon flutter methods such as the p-k[10] and k-methods[11] search for flutter by
zeroing the system matrix determinant |A(iω)| = 0.

The PFM procedure, on the other hand, searches for the flutter boundary
using FRFs obtained by the excitation introduced in the right side of Eq. 4.
However, the response of the original system approaches infinity at the stability
boundary. Hence, FRFs are calculated with [A(iω)] modified to include the
effect of a stabilizing parameter and to avoid the numerical issues of dealing
with the infinite response of the original system. In our case, a mass represented
by µs = ms/m0 located at Cs is used as a stabilizing element. The flutter
conditions are found by measuring the acceleration at Cs, represented by yf .
The equation of motion with the added stabilizing element is:

[

A(iω) + µs {Bf} [Cf (iω)]
] {

ζ(iω)
}

=
{

Bf

}

uf(iω)

y(iω) =
[

Cf (iω)
] {

ζ(iω)
} (5)

where uf is the excitation input, which represents the amplitude of the excitation

applied at Cs, distributed to the system through {Bf} = [1, xs]
T
, and [Cf (iω)] =

−ω2[1, xs] defines the acceleration sensor. For a given uf(iω) one can solve Eq.
5 for {ζ(iω)} and yf (iω) at all stable flight points of the stabilised aeroelastic
system, including at the nominal flutter point of the original system which is
now stable. Furthermore, the flight conditions and the excitation frequency for
which the complex equation

uf(iωf ) = µsyf (iωf ) (6)

is satisfied must reflect the flutter-onset conditions because the added terms
vanish and Eq. 5 reduces back to the homogeneous Eq. 4. The calculated
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{ζ(iωf)} is the non-trivial solution of Eq. 4, namely the flutter mode. At other
velocity points, where yf (iω) and uf (iω) are of the same phase, but Eq. 6 is
not satisfied, the ratio µsyf (iω)/uf(iω) defines the flutter margin with respect
to µs.

The PFM flutter analysis starts with calculating yf(iω) in response to uf(iω).
To find the flutter onset conditions, in which Eq. 6 is satisfied in both magni-
tude and phase, response functions are first generated at various velocities at
constant altitude. Bode plots are then generated in terms of real-valued gain
and phase functions:

Yf (ω) = 20 log |µsyf (iω)/uf(iω)|

Φf (ω) = ∠ (µsyf (iω)/uf(iω))
(7)

These plots are then used for calculating the phase cross-over gains Yf (ωpco),
where ωpco is a phase-cross-over frequency at which Φf (ωpco) = 360deg. The
original system would be neutrally stable at the interpolated velocity vf where
Yf (ωpco) = 0dB. The corresponding flutter frequency and the complex flutter
mode of the original system equal to: ωf = ωpco and {ζf (iωpco)}, respectively.

3. Experiment

3.1. Experimental Setup

The experimental setup developed by Gjerek et al.[12] was used in this work
as it has a well-defined pitch and heave DOFs with the possibility to adjust
the stiffness of each DOF individually. In addition, other important parame-
ters governing the aeroelastic response of the airfoil, such as pitch axis, centre
of gravity location, mass and moment of inertia, can be varied. As a result,
various aeroelastic configurations can be easily studied, and the apparatus can
be tailored to meet the requirements of the wind tunnel and those of the PFM
method. The apparatus is shown in Fig. 2.

The heave mechanism consists of two pairs of cantilever leaf springs at the top
and bottom of the apparatus as shown in Fig. 2. The heave stiffness, kh, can be
adjusted by changing the length of the leaf springs. The heave mechanism also
supports the pitch mechanism, which governs the torsional stiffness and provides
support to the rigid airfoil. The pitch mechanism is shown in more detail in
Fig. 3a. Torsional stiffness is introduced by a pair of preloaded extension springs
attached to the pulley which is mounted on the axle of the rigid airfoil. Torsional
stiffness can be adjusted by changing the extensional springs or the diameter of
the pulley. Both mechanisms are placed outside the test section not to obstruct
the airflow.

The stabilising weight is mounted by a pair of aluminium rods attached to
the axle of the airfoil outside the test section as shown in Fig. 3b. The mass
of the stabilising weight as well as its distance from the rotational axis can be
adjusted to achieve sufficient increase of the flutter speed for safe application of
the PFM method.
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Rigid airfoil

Heave
mechanism

Pitch
mechanism

Motion
stopper

Figure 2: Experimental setup
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Pulley
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spring

LVDT

(a) Pitch mechanism

Impedance
head

Stabilising
mass

Accelerometer

(b) Stabilising mass with impedance head and accelerometer

Figure 3: Details of the experimental setup
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Table 1: Physical properties of the experimental setup

Parameter Unit Quantity

airfoil [−] NACA 0012
chordÖspan, 2bÖs [m2] 0.16Ö0.36

airfoil mass, m0 [kg] 0.622
heave mass, m∗ [kg] 0.441

moment of inertia, J0 [kgm2] 1.92 · 10−3

axis of rotation, (1 + a)b [m] 0.064
CG, (1 + e0)b [m] 0.067

heave stiffness, kh [N/m] 710
heave damping, Dh [Ns/m] 1.5
pitch stiffness, kθ [Nm/rad] 1.65, 3.14�

pitch damping, Dθ [Nms/rad] 0.0066, 0.0035�

� Values pertinent to Configurations 1 and 2, respec-
tively.

Both pitch and heave DOF were limited with physical motion stoppers which
allowed direct measurement of the flutter onset conditions by increasing the air
velocity in the wind tunnel until flutter was observed.

Based on the preliminary investigation two configurations were selected
which physical properties are summarised in Table 1. The listed physical prop-
erties are already updated to agree with the results from the system identifi-
cation tests. The main difference between the two selected configurations is
the torsional stiffness kθ, which significantly alters the flutter and divergence
boundary of the experimental setup. Torsional stiffness was set to 1.65Nm/rad
and 3.14Nm/rad for Configuration 1 and Configuration 2, respectively.

3.2. Instrumentation and Excitation

The aeroelastic response of the airfoil was monitored using displacement
and rotation sensors, an impedance head and a set of accelerometers. The
airfoil motion was measured using a linear and rotational variable differential
transformer, LVDT and RVDT, attached to the axle of the airfoil. Placement
of the sensors, their type and orientation are indicated in Fig. 4.

The PFM method requires to apply the force and to measure the resulting
acceleration of the system at the stabilising weight location. Accordingly, an
impedance head was used and mounted directly on the stabilising weight as
depicted in Fig. 3b. Therewith, the gain, Yf , and phase, Φf , as defined by
Eq. 7 can be measured directly. Redundant accelerometers, a1 and a2, were
mounted on the axle of the airfoil and on the other side of the stabilising weight
to provide control measurements.

Mass of the installed sensors has to be adequately accounted for. While the
mass of the sensors attached directly to the airfoil is negligible relative to the
airfoils mass, the mass of the sensors attached to the stabilising weight is not.
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(Midori MAC QP-2HC)

Figure 4: Instrumentation of the aeroelastic system

The impedance head and the control accelerometer with their pertinent cabling
contribute 40% to the overall stabilising mass. These masses were hence added
to the total stabilising mass used in the determination of the FRFs.

The excitation signal, uf (t), measured by the impedance head was an im-
pulsive force provided by a hit of a hammer.

3.3. Testing Procedure

Both of the selected configurations were tested for flutter while Configura-
tion 1 was also tested for divergence. Two tests were performed for each case:
using the conventional approach and the PFM method. This way, the aeroe-
lastic stability boundary obtained using the PFM method could be directly
compared to the flutter or divergence onset conditions observed on the original,
non-augmented aeroelastic system.

3.3.1. Flutter Test

Flutter properties of each configuration were investigated first by monitoring
the response of the original aeroelastic system to small perturbations while
slowly increasing the airstream velocity in the wind tunnel. The system was
excited manually by exerting a force impulse on the model such that both heave
and plunge DOF were excited simultaneously to overcome the initial friction.
The airstream velocity was increased until the flutter instability appeared.

In the next step, the aeroelastic system was augmented by adding the sta-
bilising mass. Again, the same procedure was applied to establish the flutter
properties of the augmented system and demonstrate that the augmented sys-
tem remains stable at the flutter conditions of the original system.

For applying the PFM methodology, FRFs at selected airstream velocities,
v0, were determined by recording the time signal of the excitation force and the
stabilising weights acceleration. The measured signals were converted to the
frequency domain using the Fast Fourier transform (FFT), and the FRF was
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calculated as:

H(ω; v0) =
msas(ω; v0)

Fs(ω; v0)
(8)

where as is the acceleration of the stabilising weight measured either by the
impedance head or the accelerometer a2 as depicted in Fig. 4. ms and Fs are
the mass of the stabilising weight and the external force as shown in Fig. 3. Fs

was applied directly to the stabilising weight and measured by the impedance
head.

After obtaining sufficient FRFs over a range of v0 the methodology out-
lined in Sec. 2.2 is used. The Bode plots are generated, and the experimental
phase-cross-over frequencies and corresponding gains for each v0 are determined.
These, in turn, can be plotted as a function of v0 which allows determining the
flutter velocity and frequency, which equal to the airstream velocity and phase-
cross-over frequency at which the phase-cross-over gain equals 0dB.

The excitation force can be applied in various ways, for example by using an
electromechanical shaker or an impedance hammer, as long as it contains suffi-
cient energy to excite the aeroelastic modes involved in the flutter mechanism.
In the current experiment, a regular hammer was used for excitation since it
did not constrain the motion of the aeroelastic system after applying the force.

3.3.2. Divergence Test

Similar to the flutter investigation, divergence was first determined in a
conventional way followed by the application of the PFM method.

Configuration 1 of the aeroelastic system was used. In addition, enough
stabilising mass was added to the aeroelastic system such that the divergence
would become critical and would occur before flutter. Again, the airstream
velocity was gradually increased, and the system response in terms of pitch and
heave displacement to a small perturbation was measured. An example of such a
measurement is shown below in Fig. 12a. The airstream velocity was increased
until a sharp increase in the measured displacements was observed.

The PFM method is performed as follows in the case of divergence test.
First, the aeroelastic system is stabilised by adding a stabilising torsional spring
of stiffness ksθ to the pitch DOF in order to offset the divergence onset to a higher
v0. Then a constant torque, M0, is applied to the pitch DOF and θ is measured
while v0 is increased. The original aeroelastic system diverges at vd when the
torsional deflection of the augmented aeroelastic system satisfies the following
condition:

θ(vd) = θs =
M0

ksθ

∣

∣

∣

∣

v0=0m/s

(9)

where θs represents the torsional deflection of the pitch DOF under the applied
torque M0 at wind-off conditions, v0 = 0m/s, if the torsional stiffness of the
aeroelastic system would equal to the torsional stiffness of the stabilising spring
only.
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Figure 5: Divergence setup
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The torsional stiffness, kθ, of the aeroelastic system is governed by the pulley-
spring mechanism, shown in Fig. 3a, as:

kθ = 2ksr
2
p (10)

where ks represents the stiffness of the extensional springs and rp represents
the pulley radius. Since a pulley can be easily exchanged, it was decided to
introduce the stabilising torsional stiffness ksθ by swapping the pulley in the
original aeroelastic system with a second pulley of a larger radius, rp1, such
that:

kθ1 = kθ + ksθ (11)

To be able to measure θs, a third pulley of radius rsp was machined such that

ksθ = 2ks(r
s
p)

2 (12)

As a result, the actual PFM divergence test was performed in the following
order. First, the pulley of radius rsp was installed and θs at M0 and v0 = 0m/s
was measured. Then the pulley of radius rp1 was installed and v0 was increased
until the condition expressed by Eq. 9 was met.

The torque M0 was applied by a force couple exerted by weights hanging
from the pulley as shown in Fig. 5a. A top view of the lever arm and the cable
attachment is shown in Fig. 5b.

4. Results and Discussion

Experimental results obtained during the wind tunnel campaign are pre-
sented and discussed in this section. System identification results are presented
first, followed by the conventional and the PFM flutter tests. The divergence
results are discussed at the end.

4.1. System Identification

A system identification test was performed as part of the flutter tests when
the aeroelastic system was fully assembled and mounted in the wind tunnel.
This way stiffness and damping properties could be determined in order to
update the theoretical model presented in Sec. 2.

System identification was performed by fitting a transfer function expressed
by Eq. 7 to the measured response. Results for both Configuration 1 and 2
are shown in Fig. 6. The identified properties are included in Table 1. In
general, good agreement between the measurements and the fitted response can
be observed, especially in the range of frequencies that are of interest from the
flutter investigation point of view, around 4.5Hz for Configuration 1 and 5.1Hz
for Configuration 2.
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Figure 6: System identification

4.2. Flutter

Flutter conditions were first identified for the original, non-augmented sys-
tem following the procedure outlined in Sec. 3.3.1. Heave and pitch response
to a small perturbation at two consecutive airstream velocities for the two in-
vestigated configurations are shown in Fig. 7. In the case of Configuration 1,
a converging response is observed at v0 = 15.2m/s and a diverging response
at v0 = 15.4m/s. Hence it was concluded that the flutter onset velocity of
Configuration 1 is 15.3m/s.

In the case of Configuration 2, a converging response is observed at v0 =
22.5m/s and a constant amplitude response at v0 = 22.7m/s, which indicates
that the damping is virtually zero and that the system is at the flutter boundary.
Hence it was concluded that the flutter onset velocity pertinent to Configuration
2 is at 22.7m/s.

Measurement of the FRFs of the Eq. 5 and the extraction of the associated
Bode plots defined by Eq. 7 lay at the heart of the PFM method. The Bode
plots of the measured FRFs at three different airstream velocities and for each
configuration are shown in Figs. 8a and 9a respectively. The experimental
results are shown as grey lines. Despite the fact that these results were obtained
by averaging over the response measured by both the impedance head and the
control accelerometer, a2, and over several excitation responses, one can still
observe some noise present in the signal which renders the determination of the
ωpco, and the corresponding gain, Yf (ωpco), more difficult. Therefore, it was
decided to fit a transfer function to the measurements as depicted by the full
lines in Figs. 8a and 9a over a selected range of frequencies around the ωpco.
Nevertheless, it is clear from the experimental result that once v0 exceeds the
flutter speed of the original system, Yf (ωpco) exceeds 0dB.
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Figure 7: Flutter response
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Figure 8: Frequency response: Configuration 1
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Figure 9: Frequency response: Configuration 2

A transfer function used for fitting was in the form of a transfer function
pertinent to a single degree of freedom (SDOF) harmonic oscillator with two
complex-conjugate poles. Therewith smooth continuous Bode plots were ob-
tained for the determination of ωpco and the associated Yf (ωpco). It is important
to understand that the transfer functions were used as a post-processing tool in
order to obtain smooth response close to ωpco, and were only required to match
the measured response in the neighbourhood of ωpco frequencies: around 4.5Hz
for Configuration 1 and around 5.1Hz for Configuration 2.

ωpco and Yf (ωpco) are determined in two steps by inspecting Fig. 8b for
Configuration 1 or Fig. 9b for Configuration 2. First, ωpco is defined by the
crossing of the Φf curve with 0deg line as indicated by the round markers in the
bottom zoom-in subplots of the two figures. Next, following the vertical dashed
line a crossing with the Yf curve is found which determines Yf (ωpco). The
corresponding crossings are marked by the round markers in the top subplots
of Fig. 8b and 9b. This procedure is repeated for every measured v0.

The extracted ωpco and Yf (ωpco) are collected in the parametric flutter mar-
gin plots (PFM plots) as a function of airstream velocity, v0. Yf (ωpco) gains
are expressed in terms of PFM, which essentially represent the gain margin rel-
ative to 0dB. The PFM plots pertinent to Configuration 1 and 2 are shown in
Figs. 10 and 11. Flutter conditions found by the conventional approach are also
indicated using square markers for the sake of comparison.

Flutter conditions are then found from the PFM plots. The flutter velocity,
vf , is determined by finding the crossing of the PFM line with the 0dB line.
The corresponding vf is indicated by the vertical dashed line in the top subplot
of Fig. 10 or 11. The flutter frequency, ωf is then found by following the dashed
line until a crossing with the ωpco curve in the bottom subplot of the two figures
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is reached.
Summary of all the flutter results is provided in Table 2. One can observe

that the agreement between all the methods, the conventional flutter test, the
PFM test, and theoretical PFM method, is very good in terms of flutter speed
and frequency. The observed difference in predicted flutter velocity between
the conventional and the PFM test is 6% in the case of Configuration 1 and
1% in the case of Configuration 2. The agreement is even better as far as the
predicted flutter frequency is concerned. In this case, the observed difference is
about 0.5% for both Configuration 1 and 2. Furthermore, the differences in the
case of the theoretical PFM model are of the same order of magnitude as those
observed in the comparison between the conventional flutter test and the PFM
test. Table 2 also provides a comparison of the measured and predicted flutter
modes which are presented as heave-normalised vectors [ζξf , ζθf ], pitch-to-heave
amplitude ratio, |ζθf |/|ζξf |, and the associated phase angle, ∠(ζθf/ζξf ).
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Figure 10: PFM plot: Configuration 1

By comparing the flutter modes obtained in the case of Configuration 1, one
can observe some significant differences in the presented results. The flutter
mode obtained by the PFM experiment contains less pitch component relative
to the conventional flutter experiment, ζθf is reduced by 24%. In addition,
the PFM experiment yields a larger phase lag of the pitch component relative
to the heave component. The difference relative to the conventional flutter
experiment is 35%. On the other hand, the numerical PFM method yields a
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flutter mode with an 11% larger pitch component in comparison to the flutter
mode obtained by the conventional flutter experiment. However, the phase lag
of ζθf is -29.3 deg which is similar to that obtained by the experimental PFM
method and is 30% larger than the phase lag observed during the conventional
flutter experiment.

The agreement between the different methods is very good in the case of
Configuration 2. The difference in the flutter mode is about 1%, while the
difference in the phase lag with respect to the conventional flutter experiment
is 4% for the experimental and 2% for the numerical PFM method.

4.3. Divergence

Divergence measurements using both the conventional approach and the
PFM method are presented in this section. Divergence was investigated only
for Configuration 1 of the aeroelastic system.

Fig. 12 shows the measurements obtained using the conventional approach,
as described in Sec. 3.3.2. A typical time record of the system response in heave
and pitch DOF due to small perturbation is shown in Fig. 12a. One can observe
that after the transient effects die out the system remains in a new equilibrium
position having increased heave and pitch displacement, h and θ. The difference
∆h and ∆θ was determined from the measurements and plotted against v0 as
shown in Fig. 12b. Both ∆h and ∆θ increase in magnitude with increasing v0.
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Table 2: Flutter results

Parameter Flutter PFM (exp.) PFM (theory)

Configuration 1

vf [m/s] 15.3 16.2 (1.06)� 15.2 (0.99)�

ωf [Hz] 4.54 4.56 (1.004) 4.57 (1.007)
[ζξf , ζθf ] [-] [1, 0.388 - i0.162] [1, 0.276 - i0.162] [1, 0.408 - i0.229]
|ζθf |/|ζξf | [-] 0.420 0.320 (0.76) 0.468 (1.11)

∠(ζθf/ζξf ) [deg] -22.6 -30.4 (1.35) -29.3 (1.30)

Configuration 2

vf [m/s] 22.7 23.0 (1.06) 21.2 (0.94)
ωf [Hz] 5.08 5.11 (1.004) 5.11 (1.006)

[ζξf , ζθf ] [-] [1, 0.389 - i0.144] [1, 0.394 - i0.139] [1, 0.385 - i0.146]
|ζθf |/|ζξf | [-] 0.415 0.418 (1.01) 0.412 (0.99)

∠(ζθf/ζξf) [deg] -20.3 -19.4 (0.96) -20.8 (1.02)

� relative to the results reported as Flutter.

Moreover, as the divergence speed is approached the slope of the ∆h and ∆θ
curves rapidly increases as well. Such a rapid increase, especially in the pitch
DOF is observed close to 19m/s. ∆θ increased more than three-fold due to a
speed increment of 0.2m/s. v0 = 19m/s is therefore considered to mark the
divergence onset velocity.
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Figure 12: Divergence measurement

The PFM results are presented in Fig. 13. A reference measurement used
to investigate the airfoil alignment with the airstream is shown by the circular
markers. The measured deflections are very small, less than 4% of those mea-

22



sured during the PFM experiment, indicated by the square markers, over the
entire range of the investigated airstream velocities. Hence, one can conclude
that the wing was well aligned with the airstream and that negligible deflections
due to the initial angle of attack can be expected.

Results pertaining to the PFM experiment are represented by the square
markers. Expectedly, as v0 is increased both ∆θ and ∆h increase as the wing
assumes new aeroelastic equilibrium. ∆θ reaches the value of θs defined by
Eq. 9, indicated by the dashed horizontal line labelled θs, at 19.4m/s, which
marks the divergence onset velocity. The divergence velocity obtained with the
conventional method is indicated by the dashed vertical line labeled vd for the
sake of comparison. The two methods show very good agreement, with the
difference of only 1%.

Numerical PFM results, depicted with diamond and triangular markers, are
also shown for the sake of comparison. Results marked with diamonds were
obtained using a numerical model assuming an infinite wing with a lift slope
CLα = 2π. Results marked with triangles were obtained by correcting the
CLα coefficient for the finite span effect. The improvement is significant. The
difference with respect to the experimental results is reduced from 9% to less
than a 1%.

The correction is based on the ∆h measurement from the PFM experiment
shown in the bottom plot of Fig. 13. In connection with the heave stiffness of the
aeroelastic system the lift generated by the wing can be estimated. The results
are shown in Fig. 14. The obtained results are compared to the theoretical
results obtained using CLα = 2π and CLα = 2π(1 + 2/A), with A = 2
representing the aspect ratio of the wing. It is clear that despite mounting the
end-plates on the wing, finite span effects are still present and have a significant
effect on the CLα.

5. Conclusion

A novel method for safe experimental identification of aeroelastic instabilities
based on Parametric Flutter Margins has been demonstrated by successfully
predicting flutter as well as divergence onset of a 2D aeroelastic model mounted
in the wind tunnel. Performing the PFM tests by adding stabilizing weight or
spring, the instability points are positively identified without risking the models
structural integrity.

Two different configurations of the aeroelastic model have been tested for
flutter. Very good to excellent agreement between the conventional flutter test
and the PFM method has been achieved. The difference in predicted flutter
velocity and flutter frequency were less than 6% and less than 0.4% respectively
for configuration 1. The observed differences were even smaller for configuration
2, less than 1% and less than 0.6%. Moreover, similar differences were observed
in the comparison with the theoretical PFM method.

The aeroelastic system in configuration 1 was also tested for divergence.
The conventional approach and the experimental PFM method show very good
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agreement with a difference of 1% only. The comparison between the conven-
tional approach and the theoretical PFM method initially resulted in a moderate
difference of 9% between the two methods. However, after the theoretical PFM
results were corrected for the finite wing effects, the agreement was significantly
improved. As a result, the observed difference was reduced to less than 1%.

A unique feature of the PFM method, that an instability boundary can be
safely crossed without risking the aeroelastic model, has been demonstrated as
well. This makes the performed test an important proof-of-concept milestone.

Due to its accuracy and unique properties, the PFM method marks an im-
portant contribution to the state of the art in testing for aeroelastic instabilities,
with significant potential for improvement in the safety of flutter flight tests.
Obviously, further wind-tunnel tests with more realistic 3D configurations and
pioneering PFM-based flutter flight tests are yet to be performed for obtaining
a newly established test procedure.
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