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Summary

Continuous steel casting is an industrial process where turbulent liquid steel jets enter a thin
mould through a submerged nozzle. In the mould the steel is cooled, such that it solidifies.
The submerged jets can show self-sustained oscillatory behaviour, which has an impact on
the distribution of heat, the solidification of the steel and therefore the overall quality of the
steel. Oscillations of the liquid steel jets also influence the free surface in the mould, leading
to the unwanted inclusion of slag particles and again degraded quality of the steel. By the
application of an electromagnetic brake, the liquid steel flow can be controlled, jet oscillations
can be suppressed, and hence the quality of the steel product improved.

In this thesis we use numerical and analytical methods to study the flow dynamics of self-
sustained single and bifurcated submerged liquid jet oscillations in a liquid filled thin cavity
with and without a free surface. Furthermore we study the influence of electromagnetic forces
on single jets and free surface flows.

Firstly, we developed three-dimensional, time dependent flow simulation methods that com-
bine large eddy turbulence modelling with electromagnetic body forces and two different
approaches to free surface modelling, viz. Volume of Fluid (VOF) and Moving Mesh In-
terface Tracking (MMIT). Various aspects of these simulation codes were validated against
experimental flow and free surface data by Kalter (2015), obtained in a parallel PhD project
through Particle Image Velocimetry in a water model.

Secondly, to further validate the numerical simulation codes, we derived an analytical solu-
tion for a two-dimensional benchmark problem, consisting of a shallow cavity with a free
surface, where the flow is driven by an electromagnetic force and the free surface deforma-
tion is restored by both gravity and surface tension. Under specific constraints for the Reyn-
olds number, Hartmann number, capillary number, Bond number and cavity aspect ratio, we
analytically solve the details of the flow dynamics and the free surface deformation using
lubrication theory and matching of asymptotic expansions. With these solutions we demon-
strate the validity of both numerical models. Consecutively we use the numerical solutions to
evaluate the validity of the analytical solution when the constraints for which it was derived
are relaxed. In future research, the presented analytical solution and the information about
the range of the dimensionless numbers for which it is valid, can serve as a benchmark prob-

xi
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lem for newly developed numerical simulation codes for free surface magnetohydrodynamic
flows.

Thirdly, using the results of our three-dimensional computational simulations, we developed
a zero-dimensional, delay differential equation type model which quantitatively describes
the self-sustained oscillation of a jet in a thin cavity. Three terms in the zero-dimensional
model equation represent the three physical mechanisms that contribute to the self-sustained
oscillation, viz. (i) pressure driven oscillation growth, (ii) amplitude limitation by geometry
and (iii) delayed destruction of the recirculation zone. The zero-dimensional model equation
contains four model parameters, and we show that these parameters can be a priori calculated
from the Reynolds number (Re), the cavity width to nozzle diameter ratio (W/d), the inlet
velocity and the nozzle diameter. By comparing predictions from the zero-dimensional model
to data from our three-dimensional computational simulations as well as experimental data
by Kalter (2015), we show that the zero-dimensional model with a priori calculated model
parameters correctly predicts the frequency and waveform of the jet oscillation for a wide
range of Reynolds numbers and cavity width to nozzle diameter aspect ratios. In agreement
with our three-dimensional simulations, the zero-dimensional model predicts that for given
aspect ratio there is a critical Reynolds number below which the self-sustained oscillations
vanish.

Fourthly, we extended our zero-dimensional model to include the effect of a body force on
the self-sustained oscillations. In particular, the body force studied is an electromagnetic
force, originating from an externally applied magnetic field and an imposed electrical current
across the domain. Again, results from the zero-dimensional model are being compared to
experimental data by Kalter (2015) and data from our own three-dimensional computational
simulations. We show that the three physical mechanisms that contribute to the self-sustained
oscillation, and thus the form of the model equation, remain the same as in the absence of
electromagnetic body forces. The value of the four model parameters, however, now also
depends on an additional dimensionless number, viz. the (signed) Stuart number, representing
the ratio of electromagnetic body forces and inertial forces. We present closed relations to a
priori predict the value of the four model parameters as a function of the Reynolds number,
the Stuart number, the cavity width to nozzle diameter aspect ratio, the inlet velocity, and
the nozzle diameter. From both zero-dimensional model predictions and three-dimensional
computational simulations, we demonstrate that three flow regimes can be distinguished,
separated by the positive critical Stuart number and the negative critical Stuart number. In
between these two values, inertial forces are dominant. Outside this range, electromagnetic
forces are dominant, and either enhance or suppress oscillations.

Finally, using detailed spatio-temporally resolved flow and pressure data from our three-
dimensional model simulations, we demonstrate the validity of the pressure-based mechan-
ism for self-sustained jet oscillations in a thin cavity, as suggested earlier in literature (Hon-
eyands, Kalter). For both single and bifurcated jet arrangements, the jets deflect towards
the jet-induced bounded recirculation zones. The pressure deficit in the recirculation zone
deflects the jet further, leading to an increasing pressure deficit. This continues until the re-
circulation zone cannot grow any further due to geometrical restrictions and the jet reaches



Summary xiii

an extreme position. The liquid flow then escapes the recirculation zone, feeding a differ-
ent recirculation zone. For the single jet configuration this leads to the jet being deflected
to the opposite side. For the bifurcated jet configuration this leads to the opposite jet being
deflected.

We conclude this thesis with the main findings, and we describe how these main findings can
lead to the further understanding of self-sustained oscillations in a continuous steel casting
mould.





Samenvatting

Tijdens het continu gieten van staal wordt vloeibaar staal via een dompelpijp in een gietvorm
gegoten. De gietvorm wordt actief gekoeld, waardoor het staal langzaam stolt. De turbulente
jets die uit de dompelpijp stromen, kunnen zichzelf in stand houdend, oscillerend gedrag
vertonen. Dit gedrag heeft invloed op zowel de warmteverspreiding in de gietvorm als op het
staaloppervlak aan de bovenzijde van de gietvorm. Beide kunnen een negatief effect hebben
op de kwaliteit van het geproduceerde staal. De oscillaties van de jets kunnen beïnvloed
worden met behulp van een zogenaamde elektromagnetische rem, waardoor de kwaliteit van
het staal verbetert.

In dit proefschrift gebruiken we numerieke simulaties en wiskundige modellen om de vloei-
stofdynamische mechanismen achter de oscillaties van jets in gietvormen te ontrafelen. We
bestuderen zowel rechte als gesplitste dompelpijpen in een gietvorm met of zonder een vrij
oppervlak. Daarnaast bestuderen wij de invloed van elektromagnetische krachten hierop.

Ten eerste hebben wij simulatieprogramma’s ontwikkeld waarmee de driedimensionale, tijds-
afhankelijke, turbulente stroming in de gietvorm, onder invloed van elektromagnetische
krachten, gesimuleerd kan worden. We hebben daarin twee methodes geïmplementeerd voor
het numeriek simuleren van het vrije oppervlak: de Volume of Fluid (VOF) methode en de
Moving Mesh Interface Tracking (MMIT) methode. De simulatieprogramma’s zijn gevali-
deerd aan de hand van experimentele data over de vloeistofstroming en het gedrag van het
vrije oppervlak, zoals verkregen in een parallel promotieproject van Kalter (2015) met behulp
van Particale Image Velocimetry.

Ten tweede hebben wij om onze computersimulatieprogramma’s verder te kunnen valideren
een relevant tweedimensionaal magnetohydrodynamisch stromingsprobleem gedefinieerd dat
wij analytisch konden oplossen zodat we de oplossingen konden vergelijken met de resultaten
van de numerieke simulaties. Dit validatieprobleem bestaat uit de stroming in een ondiepe
laag vloeistof met een vrij oppervlak, welke vervormt ten gevolge van een opgelegde elektro-
magnetische kracht, de zwaartekracht en de oppervlaktespanning. Met behulp van lubrication
theory en matching of asymptotic expansions hebben wij de stroming in de vloeistoflaag en
de vervorming van het vrije oppervlak mathematisch bepaald voor kleine waardes van het
Reynolds getal, het Hartmann getal, het capillair getal, het Bond getal en de breedte-diepte

xv
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verhouding van de vloeistoflaag. Met deze mathematische oplossing hebben we de geldigheid
van de numerieke simulatiemethodes aangetoond. Omgekeerd hebben we daarna de nume-
rieke simulaties gebruikt om te onderzoeken in hoeverre de analytische oplossing ook voor
grotere waardes van de genoemde kentallen geldig blijft. Met deze kennis kan onze mathe-
matische oplossing in toekomstig onderzoek gebruikt worden voor de validatie van nieuwe
numerieke simulatiecodes magnetohydrodynamische vrije oppervlakte stromingen.

Ten derde hebben wij een nuldimensionaal model ontwikkeld dat zowel het optreden als de
frequenties en de golfvorm van de zichzelf in stand houdende jetoscillaties in een dunne
gietvorm kwantitatief voorspelt. Dit nuldimensionale model is geïnspireerd door de me-
chanismen die we hebben waargenomen in onze driedimensionale numerieke simulaties en
is mathematisch gebaseerd op een tijdsafhankelijke differentiaalvergelijking met een vertra-
gingsterm. De modelvergelijking bevat drie termen, die de drie stadia van de oscillatie be-
schrijven, namelijk (i) groei van de oscillatie ten gevolge van drukminima in de geïnduceerde
stromingsrecirculaties, (ii) demping en beperkte amplitude door de geometrische begrenzing
en (iii) vertraagde vernietiging van de recirculatiezone. Het model bevat vier modelconstan-
ten. Wij tonen aan dat deze vier constanten a priori kwantitatief kunnen worden bepaald uit
het Reynolds getal, de breedte van de gietvorm, de diameter van de gietpijp en de instroom-
snelheid van de jet. Op basis van vergelijkingen met experimentele data van Kalter (2015)
en resultaten van onze drie-dimensionale numerieke simulaties tonen wij aan dat het ontwik-
kelde nuldimensionale model de frequentie en golfvorm van de jetoscillatie correct voorspelt.
Bovendien voorspelt het nuldimensionale model correct dat er voor elke verhouding tussen
de breedte van de gietvorm en de diameter van de gietpijp een kritisch Reynolds getal bestaat,
waaronder de zichzelf in stand houdende oscillaties verdwijnen.

Ten vierde hebben wij het nuldimensionale model voor de jetoscillaties in een dunne gietvorm
uitgebreid naar de situatie waarin een elektromagnetische volumekracht, opgewekt door een
extern opgelegd magneetveld en een extern opgelegde elektrische stroom, werkzaam is op de
vloeistof. Weer vergelijken we de resultaten van het nuldimensionale model met experimen-
tele resultaten van Kalter (2015) en met de resultaten van onze driedimensionale simulaties.
We laten zien dat ook in aanwezigheid van elektromagnetische krachten dezelfde drie fysi-
sche mechanismen ten grondslag liggen aan de oscillaties. Echter, de vier model parameters
zijn nu afhankelijk van een extra dimensieloos kental, namelijk het Stuart getal. Het Stuart
getal is de verhouding tussen de elektromagnetische en de traagheidskrachten. Uit zowel de
resultaten van het nuldimensionale model, als de driedimensionale simulaties blijkt dat er
drie regimes in het stromingsgedrag optreden, gescheiden door een positief en een negatief
kritisch Stuart getal. Tussen beide waardes zijn de traagheidskrachten dominant. Voor grotere
absolute waardes van het Stuart getal hebben de elektromagnetische krachten de overhand,
waarbij de oscillaties respectievelijk onderdrukt of versterkt worden.

Ten slotte hebben wij de juistheid van het op druk gebaseerde mechanisme voor de zich-
zelf in stand houdende jet oscillatie in een dunne gietvorm, zoals eerder voorgesteld in de
literatuur (Honeyands, Kalter), aangetoond met behulp van de stroomsnelheid en druk uit
onze tijdsafhankelijke, driedimensionale simulaties. Zowel enkele als gesplitste jets buigen
af in de richting van de door de jet veroorzaakte recirculatiezone. Ten gevolge van het lo-
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kale drukminimum in het midden van deze recirculatie buigt de jet steeds verder af, leidend
tot een versterkt drukminimum. Dit zet zich voort totdat de recirculatiezone niet verder kan
groeien ten gevolge van de geometrische begrenzing, waardoor de jet een extremum bereikt.
De vloeistof stroomt dan weg uit de recirculatiezone, waarop een andere recirculatie in de
tegenoverliggende zijde van de holte wordt gevoed. Voor een enkele jet zal deze jet afbuigen
naar de andere zijde van de gietvorm, en voor een gesplitste jet zal de jet aan de andere zijde
afbuigen.

We sluiten dit proefschrift af met een beschouwing over hoe de belangrijkste bevindingen
gebruikt kunnen worden om te komen tot een beter begrip en een betere beheersing van
vloeistofoscillaties in gietvormen bij continu staalgieten.





1. Introduction

1.1 Background

In the current century, the world steel production was nearly doubled from 0.85× 109 metric
tons in 2001 to 1.5 × 109 metric tons in 2012. While the Dutch steel production, solely due
to the Tata Steel (formerly Corus) plant in IJmuiden, has increased by 14% in this period,
the production rate in China exploded with a 370% growth.21,22 The European steel market
is still recovering from the economic crisis in 2008 and not yet back to the production rate of
2007.

The casting of metal in the beginning of the twentieth century was a batch process, casting the
liquid metals in blocks. Already in 1887, the first idea for a continuous caster was patented.1

The basic concept never changed and is schematically depicted in Figure 1.1. The vertical,
water cooled mould is filled with metal and the solidified metal is extracted and cut at the
bottom. By the middle of the twentieth century this method was used and further developed,
mostly for copper and aluminium casting.

Steel casting was more difficult since the melting temperature is relatively high (∼ 1500◦C)
and the solidification is slow, because of the relatively low thermal conductivity. Innovations,
such as1

• the oscillating mould (1949) with negative strip time (1954),
• the bending of the steel strip with a liquid core into a horizontal position (1963),
• the submerged pipe to prevent nitrogen pick-up and re-oxidation (1965),
• the tundish and rotating tower (1968) (solving the problem of the liquid steel arriving

at the caster in batches) and
• the electromagnetic brake (EMBr) (Kawasaki in the early 80s), to reduce oscillations

and damp turbulence

were techniques that helped to improve the efficiency and quality of the produced steel. An
EMBr helps increasing the production rate and quality of steel.

1
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Submerged entry 

nozzle (SEN)
Free surface 

with slag layer

Liquid steel

Figure 1.1 Schematic representation of the continuous casting process (left 19), with the complete sys-
tem from ladle to solid strip. The liquid steel arrives at the system in batches, flows into the tundish
to make it a batch process, after which it is poured into the mould. (right, zoom-in) Mould of the
continuous casting process. The liquid steel enters the mould via the submerged entry nozzle (SEN).

1.2 Physical phenomena in steel casting

Continuous steel casting is a complex industrial process. Many different physical phenomena
are taking place in the steel casting process.1

1. Fluid mechanics is an important phenomenon in the steel casting process. The flow
is highly turbulent in the top of the caster near the jets emerging from the submerged
entry nozzle (SEN), and the fluid might relaminarize further down the mould. The flow
may induce large scale oscillations in the mould.5,7

2. A slag layer is present on top of the liquid. This slag layer prevents oxidation of the
liquid steel when in direct contact with air. Due to large velocities in the top of the
mould, the steel-slag interface can move violently, possibly leading to the inclusion of
the slag and other pollutants into the steel.4 Gravitational forces, and to a lesser degree
surface tension forces, play a key role in the behavior of this interface.

3. An electromagnetic break (EMBr) is an external magnetic field that is often applied to
the steel flow.3 The EMBr is installed in order to damp the flow and free surface os-
cillations. The magnetic field induces an electrical current and subsequently a Lorentz
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force, which may not only affect the large scale motions and free surface oscillations,
but also the turbulence and its isotropy.10

4. The solidification of the liquid steel starts at the boundaries to form a solid shell. This
solidified shell is lubricated by the slag layer to protect it from contact with the copper
mould. Flow oscillations and inclusions in the liquid steel largely determine the quality
of the solid steel product.1

5. The heat transfer from the liquid steel to the surroundings plays an important role in
the solidification process. The rate and uniformity of the heat transfer determine the
optimal thickness and uniformity of the solidified shell respectively, and thus ensure a
high quality of the solid steel.1

6. The thermomechanical behavior of the solidifying shell becomes relevant further down
the mould. As the steel cools down, it shrinks. This may create an isolating air gap
between the solid steel and the mould, highly reducing the heat transfer from the steel
to the surroundings.

7. The tapering of the mould, in order to compensate for thermomechanical shrinkage.1

8. The copper mould oscillates significantly in order to reduce the risk of the solidifying
shell to stick to the mould, despite the lubricating behaviour of the slag layer in between
steel and mould.1

9. The liquid core reduction, where the solidified shells on opposite sides of the caster are
pressed together, reduces the size of the liquid core and speeds up the solidification.1

10. Argon is injected into the mould, to prevent clogging of the small nozzle and to blow
out any pollutants residing in the caster.20

1.3 Research objectives

In this thesis we address, from a fundamental point of view, the first three of the physical
phenomena mentioned in section 1.2, namely (i) fluid flow and turbulence, (ii) the free surface
movement, and (iii) the influence of electromagnetic forcing on both. We will not address
the remainder of the aforementioned phenomena that play a role in practical continuous steel
casting.

In this thesis we use analytical methods and two- and three-dimensional Computational Fluid
Dynamics (CFD) simulations. Complementary, an experimental study is carried out.6 By an-
swering the research questions detailed in this section, we will unravel fundamental physical
aspects of the flow oscillations, free surface behavior and electromagnetic control that are
difficult to assess experimentally. Furthermore, we will work towards the development of an
Large Eddy Simulation (LES) based, Volume Of Fluid (VOF) free surface numerical simula-
tion code for magnetohydrodynamic (MHD) flows in the OpenFOAM framework, validated
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against water model experiments and applicable to the optimization of MHD flows in steel
casting.

1.3.1 Mechanism for self-sustained flow oscillations in a thin cavity

In thin slab continuous steel casting, the liquid steel is fed into a thin mould through a so-
called bifurcated (two-port) nozzle, as illustrated in Figure 1.1. The two jets may induce
large scale flow oscillations. It is known,7 that under certain conditions, the oscillations of
both jets in a bifurcated configuration align in anti-phase, in other words, both oscillators
are coupled. Honeyands and Herbertson 5 and Kalter et al. 7 hypothesized a mechanism for
these anti-symmetric oscillations. This mechanism is based on the pressure deficit in the
recirculation zones that form due to the confinement and both jets.

Large scale self-sustained oscillations are also found in more fundamental flow configura-
tions, such as a single jet in a confined cavity. Similar to the bifurcated jet, the proposed
physical mechanism behind these oscillations is based on the pressure deficit in the recircu-
lation zones that form due to the confinement.

The observation of these pressure deficits in oscillating recirculation zones is difficult to real-
ize experimentally, which makes the proof for these hypotheses difficult. Numerical simula-
tions on the other hand, can provide full space and time resolved fields of the velocity and
pressure throughout the domain. This leads us to the first research question

Can we prove the pressure based mechanism for self-sustained single and bifurcated jet os-
cillations in a thin cavity?

1.3.2 Prediction of large scale jet oscillations in a thin cavity

The occurence and frequency of the large scale self-sustained flow oscillations depend on the
geometry of the cavity and the flow properties. To obtain this dependence, parameter studies
can be carried out both numerically and experimentally, but in both approaches this will
require extensive effort. The ability for a priori prediction of the occurence and frequency
of these large scale oscillations would therefore be of great practical value. Simple, zero-
dimensional models can be found in literature, that describe various types of oscillations in
nature and technology.

This motivated us to address the question

How can jet oscillations in a confined cavity be represented by a simple, predictive model?

1.3.3 Electromagnetic flow control of jet oscillations in a thin cavity

Body forces can be used to enhance or suppress flow oscillations. In steel casting, for ex-
ample, electromagnetic forcing is widely used to suppress flow oscillations. The applicabil-
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ity of the developed predictive model becomes more apparent when this model additionally
incorporates body forces, such as the electromagnetic force. These electromagnetic body
forces can have a significant influence on fluid flows.8–11

This leads us to the research question

How can body forces, such as the electromagnetic force, be incorporated into a simple, pre-
dictive model for self-sustained flow oscillation in a confined cavity?

1.3.4 Magnetohydrodynamic free surface flow in a shallow cavity

The electromagnetic control of large scale oscillations also influences the behavior of the free
surface. This may, in principle, again be studied by numerical flow simulations. Even though
several authors have combined the physics of free surface flows and MHD in numerical sim-
ulations,12,14–18,23 their validation has been very limited. Also, for MHD free surface flows,
simple test problems, preferably with analytical solutions, are not encountered in literature.
Experiments2,13 are not generally suitable for verification, due to the difficulty of the proper
definition of boundary conditions. This leads us to the following research question

Can we devise a simple, analytically tractable benchmark problem for magnetohydrodynamic
free surface flow, including the relevant electromagnetic, surface tension and gravity forces?

From a numerical perspective, such a benchmark problem is a powerful tool for thorough
validation of computational methods. Algorithms that do not pass these tests, should not be
applied on more complicated configurations.

1.4 Funding of this PhD thesis

This thesis presents research that has been part of project 10488 funded by the Dutch Techno-
glogy Foundation (STW). Partners in this project were Tata Steel Europe, ABB and VorTech.
Furthermore, support was received from SURFsara for using the Lisa Compute Cluster, pro-
ject MP-235-12.

1.5 Outline

The outline of the thesis is as follows. In chapter 2 we present relevant details of the numerical
methods, as far as those are not addressed in the other chapters. The first research question
will be addressed in chapters 4 and 6. The second and third research question are addressed
in chapters 4 and 5 respectively. The fourth research question will be the subject of chapter
3. In chapter 7 we will discuss our main findings and discuss opportunities in potential future
research.
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2. Methods

2.1 Introduction

The numerical simulations performed in this thesis have been performed within the Open-
FOAM 18 framework. Several extensions have been implemented during the course of the
project. In this chapter we will more extensively describe parts of the numerical methods,
as far as they have not been addressed in the consecutive chapters. In section 2.2 we de-
scribe one-way coupled magnetohydrodynamics (MHD) and in section 2.3 we describe the
single phase one-way coupled MHD solver. In sections 2.4 and 2.5 implementation details
of the MHD free surface solvers are described, combining MHD with the Volume Of Fluid
(VOF) and Moving Mesh Interface Tracking (MMIT) method respectively. In section 2.6 a
description of the LES model is given and in section 2.7 relevant information on the boundary
condition in the LES model is presented.

2.2 One-way coupled magnetohydrodynamics

Magnetohydrodynamics describes the interaction between electromagnetic fields and fluid
flow and exists in different flavours. In liquid metal MHD, the induced magnetic field is
small in comparison to the imposed magnetic field. This one-way coupled MHD in which
the imposed magnetic field influences the flow, but the magnetic field is not influenced by the
flow, is described by conservation of mass, momentum and charge, which respectively reduce
to4

∇ ·u = 0, (2.1)
∂u

∂t
+ (u ·∇)u =

1

ρ
∇p+∇ · (ν∇u) +

1

ρ
fL, (2.2)

∇ · j = 0. (2.3)

9
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Here, u is the fluid velocity, ρ the fluid density, p the pressure, ν the kinematic viscosity of the
fluid, fL the Lorentz force and j the electrical current density. The Lorentz force is expressed
as

fL = j× b, (2.4)

where b is the externally imposed magnetic field. The electical current densiy is expressed
using Ohm’s law for a moving conducting fluid, as

j = σ (−∇φ+ u× b) , (2.5)

where σ is the electrical conductivity of the fluid and φ the electric potential.

The one-way coupled MHD approximation is valid when the magnetic Reynolds number
Rem = µσu0l � 1, where µ is the magnetic permability, u0 a characteristic velocity scale
and l a characteristic length scale.

2.3 One-way coupled magnetohydrodynamics solver

The numerical solver for one-way coupled MHD simulations used in this thesis (chapter 5),
which is also a basis for the free surface solvers as discussed below, is built on the pimpleFoam
solver and pre-dominantly based on Van Vliet 24 . The main addition to the native PISO
algorithm8,9 in OpenFOAM is the step where the equation for the electric potential, φ, is
solved.11 Combining conservation of charge and Ohm’s law (equations 2.3 and 2.5) leads,
for constant electrical conductivity, to the Poisson equation:

∇2φ = ∇ · (u× b) . (2.6)

In pimpleFoam, this Poisson equation is implemented within the OpenFOAM 2.1 framework
using the object oriented basis of the software. This results in equation 2.6 being solved in
each time-step. From φ, the current j is calculated (equation 2.5), and then the Lorentz force
fL (equation 2.4) is determined.

Furthermore, Van Vliet 24 implemented the four step projection method after Ni et al. 17 in
this numerical solver. This means that the terms u×b in equations 2.5 and 2.6 are evaluated
at grid cell face centers rather than grid cell centers. This is a conservative scheme, which
becomes especially important in higher Hartmann number (see equation 2.7) flows, as it
guarantees the balance between pressure and Lorentz force at the cell center.

We demonstrate validation of the numerical solver with laminar Hartmann flow.4 Hartmann
flow is the flow of a fluid with viscosity ν and electrical conductivity σ between two isolating
flat plates separated by a distance 2w, driven by a pressure gradient ∂p∂x , under the influence
of a transversal magnetic field b = bŷ, and optionally a spanwise electric field e = e0ẑ. With
u = u(y)x̂ the solution to this problem is

u(y)

u0
=

(
1− cosh

(
Ha yw

)

coshHa

)
, σb2u0 = −∂p

∂x
− σe0b, Ha = bw

√
σ

ρν
. (2.7)
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Figure 2.1 Analytical (solid lines) and numerical (symbols) solution for Poisseuile flow (Ha = 0) and
Hartmann flow (Ha = 10 and Ha = 100) at Re = 10.

For Re = 10, Figure 2.1 shows the numerical and analytical solutions for Ha = 0, Ha = 10
and Ha = 100.

2.4 Volume of fluid and magnetohydrodynamics

The Volume of Fluid (VOF) method for simulating two immiscible fluids is based on solving a
transport equation for an indicator function, which determines the separation between the two
fluids.7,20 The Continuum Surface Force (CSF) approach is used for implementation of the
interfacial tension force2 and an artificial compression velocity is introduced for maintaining
a sharp interface.26

The describing equations for two-phase VOF flows are the continuity equation (see equation
2.1) and the Navier-Stokes equations,2,7

∂ρui
∂t

+ uj
∂ρui
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ fi + γκ

∂α

∂xi
, (2.8)

where α is the indicator function, fi the body force, ρ and µ the phase averaged density and
viscosity (i.e. ρ = αρ1+(1−α)ρ2) and κ the curvature of the interface in the CSF approach,2

determined by

κ =
∂

∂xk




1∣∣∣∣
∂α

∂xj

∣∣∣∣

∂α

∂xk


 . (2.9)

and the transport equation for the indicator function α20

∂α

∂t
+

∂

∂xj
(αuj) +

∂

∂xj
(ur,iα (1− α)) = 0. (2.10)
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The indicator function equals 1 for the first fluid and 0 for the second fluid and is in the range
(0, 1) around the interface, as indicated in Figure 2.2. The third term includes the artificial
compression velocity, ur,i and is zero outside the interface region. This term can be derived
from the continuity equations for the fluid fractions in the two-fluid Euler approach, leading
to the relative velocity ur,i = u1,i − u2,i between both fluids.1 The term compressibility
does not refer to compression of the distinct fluids, but compression of the interface itself,
which can be seen as additional convection of the fluid fraction due to ur,i. For the theoret-
ical infinitesimally thin interface, the third term in equation 2.10 will vanish, leading to the
conventional VOF equation.

In the one-way coupled MHD-VOF solver, the body force fi is the Lorentz force (see equation
2.4), which is responsible for the interaction with the magnetic field. From conservation
of charge (equation 2.3) and the definition of the current density (equation 2.5), a Poisson
equation for the electric potential is derived:

∂

∂xi

(
σ
∂φ

∂xi

)
=

∂

∂xi
(σεijkujbk) . (2.11)

This equation differs from single phase MHD equations, as the electrical conductivty σ is
generally different across the fluids. σ is linearly interpolated between both fluids, which
means harmonic interpolation on the resistivity, i.e.

σ = ασ1 + (1− α)σ2 or
1

ρe
=

α

ρe,1
+

1− α
ρe,2

, with ρe =
1

σ
. (2.12)

We will use the VOF method for free surface flows, i.e., fluid 1 is the liquid, which is water,
salty water or another electrically conductive fluid, and fluid 2 is air.

2.5 MMIT Magnetohydrodynamics

The moving mesh interface tracking (MMIT) method is based on aligning a boundary of
the numerical mesh with the interface between two phases, as is shown in Figure 2.2. This
results in a sharp interface by definition and allows for the implementation of exact bound-
ary conditions at the interface. The approach as proposed by Muzaferija and Perić 16 and
the implementation by Tuković and Jasak 23 was used. A separate mesh is constructed for
each fluid phase. When the flow field changes in time, first the mesh on this boundary is up-
dated accordingly and second the interior mesh points are adjusted based on the free surface
movement.

The moving mesh interface tracking method introduces in addition to continuity and mo-
mentum equations the so called space conservation law, i.e.

d

dt

∫

V

dV −
∫

S

nius,idS = 0, (2.13)
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VOF MMIT

Figure 2.2 Schematical representation of the VOF (left) and MMIT (right) methods. The blue control
volumes indicate the liquid phase, and the white control volumes the gas phase.

where us,i is the velocity of the face S and ni the outward face normal. This velocity of
each face of every control volume V has to be accounted for in the integrated momentum
equations.16,23 in terms of an additional flux −ρus,jui.
For the interface, the boundary condition can be exactly imposed at the mesh boundary, e.g.
no mass should cross the boundary and the stresses at opposite sides of the interface should
match. Non-zero mass fluxes through the interface are corrected by moving the boundary.
This correction is used as a boundary condition in the Poisson equation for moving the interior
points in the domain by an amount di:

∂

∂xj

(
Γ
∂di
∂xj

)
= 0, (2.14)

where Γ is a diffusion parameter that is inversely proportional to the square of the distance to
the free surface.

For the implementation of the magnetohydrodynamic force, the Poisson equation for the
electric potential is solved (as described in section 2.4), and the Lorentz force calculated
and applied between mesh updates, which hence does not need further treatment. When the
second fluid is non-conducting, the boundary condition for the electric potential φ needs to
account for a non-zero Lorentz force, as the velocity is non-zero, hence

dφ

dn
= niεijkujbk, (2.15)

where ni is the surface normal vector of the interface, as defined by the mesh. This boundary
condition is schematically shown in Figure 2.3.

We will use the MMIT method for water-air free surface flows. Air, being the top-layer, has
a negligible influence on the free surface behavior. Therefore, the secondary mesh can be
omitted from the simulation domain.
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Figure 2.3 Control volume in the MMIT method, indicating the interface condition, as the flow normal
to the interface is zero. The definition of the current at boundaries of the control volume (gray arrows,
j), the face normal (n̂), the face normal component of the current (black arrows, jinin̂) and the resulting
Lorentz force (thick arrow, f ).

2.6 Dynamic Smagorinsky model

To account for the turbulence in the liquid flow, we apply the Large Eddy Simulation (LES)
approach. In LES, one decomposes the instantaneous velocity into a filtered velocity and a
residual velocity: Ui = ui + u′i. The filtered velocity, ui is the part of the velocity that can
be respresented by the mesh and can be solved for. The residual velocity u′i represents the
contribution of the smallest, subgrid-sized eddies which cannot be solved.19 We denote the
implicit filtering operation by (.).

After applying the filter on the Navier-Stokes equations (equation 2.2):

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj
− τRij

)
, (2.16)

where τRij is the residual stress, defined as

τRij = UiUj − uiuj . (2.17)

Furthermore, the anisotropic residual-stress tensor τ rij = τRij − 2
3k

rδij is used instead of the
residual-stress tensor, where kr = 1

2τ
R
ii is the residual kinetic energy. Now the isotropic part

is incorporated in the filtered pressure p = p+ 2
3k

r. The anisotropic residual-stress tensor is
the component of the filtered Navier-Stokes equations that needs to be modelled.
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The dynamic Smagorinsky model6,13 is an improved version of the standard Smagorinsky
model.21 In the standard Smagorinsky model, the residual stress is modelled as:

τ rij = −2νrSij , νr = (CS∆)
2 S, S =

(
2SijSij

)1/2
, Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

(2.18)
where νr is the eddy viscosity of the residual motions, S the characteristic rate of strain, Sij
the filtered rate of strain and CS is the Smagorinsky coefficient, a model parameter, typically
taking a value between 0.05 and 0.2.

In the dynamic Smagorinsky model, the Smagorinsky coefficient is not constant and based on
the local flow conditions. It has the advantage that it correctly handles differences in turbu-
lence intensities throughout the domain and intrinsically handles the damping of turbulence
towards the walls. Furthermore, it was shown to be effective in modelling the subgrid scales
in low magnetic Reynolds number MHD flows.12

The dynamic Smagorinsky model applies another filter, the test-filter. This filter is wider than
the original filter (often twice as wide) and denoted by (̃.). When the test filter of width ∆̃
is applied a smaller part of the turbulent spectrum is resolved, as compared to the originally
applied filter with width ∆. In the overlapping part of the spectrum, that is, the part smaller
than the double filter width, but larger than the original filter width, two different expressions
for the subgrid scale stress will provide a local, dynamic Smagorinsky coefficient.

The subgrid scale stress, τ rij follows from equations 2.18 and the subtest scale stress Tij is
calculated in a similar way on the wider test filter19

τ rij = −2cS∆2S Sij , Tij = −2cS∆̃2S̃ S̃ij , (2.19)

where cS = C2
S .

The contribution to the resolved stress tensor by the scales of motion in between the two filter
widths, Lij , can be shown to be

Lij = Tij − τ̃ rij = ũiuj − uiuj (2.20)

and also
Lij = −2cSMij , (2.21)

with
Mij = ∆2S̃ Sij − ∆̃2S̃ S̃ij . (2.22)

The difference between the two expressions is minimalized with a least squares method,
which will result in

cS =
1

2

LijMij

M2
ij

. (2.23)

A problem is that cS may become too large locally.13 Two possible solutions are (i) to apply
some (local) averaging or (ii) to truncate isolated large values of cS . We follow the approach
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for local averaging as outlined by,Zang et al. 27 which is the area weighted average of the
face-interpolated values of LijMij and M2

ij , which, on hexahedral cells for arbitrary variable
f becomes

〈f〉 =
1

2
f +

1

12

6∑

nb=1

fnb, (2.24)

with 〈.〉 denoting the averaging procedure, such that the local coefficient becomes

cS =
1

2

〈LijMij〉
〈M2

ij〉
. (2.25)

For the test-filter operation (̃.), we use the following filter, universally applicable for all kinds
of meshes

ũi =

∑
f Afuf,i∑
f Af

(2.26)

where uf,i is the face-interpolated value and Af is the face surface area. Please note that in
the remainder of this thesis we will omit in our notation the overline of the implicit filtering
operation, and denote ui by ui.

This dynamic Smagorinsky model is also applied in our free surface (VOF) simulations. This
is valid, because the Reynolds stresses are effectively weighted by the volume fraction α.14

2.7 Spalding’s Law

In wall-bounded Large Eddy Simulations, where, depending on the grid size and flow con-
ditions at the boundary, the boundary layer may or may not be fully resolved, a universal
velocity profile should be imposed as boundary condition in near-wall cells in terms of wall-
units y+ = yuτ/ν and u+ = u/uτ when y+ > 1. uτ is the friction velocity,

uτ =

√
(ν + νSGS)

∂u

∂n
, (2.27)

An example of such a universal wall function is Spalding’s law,5,15,22,25 which implicitly gives
u+ as a function of y+:

y+ = u+ +
1

E

[
eκu

+ −
(

1 + κu+ +
1

2
(κu+)2 +

1

6
(κu+)3

)]
, (2.28)

where E = 9.8 and κ = 0.41, which is a unification of the log law u+ = 1
κ ln (y+) +B and

the viscous profile u+ = y+.19 The shape of the universal Spalding’s law, the log law and
the viscous profile are shown in Figure 2.4.

A common approach for the implementation of wall functions is to calculate the friction velo-
city uτ (equation 2.27), calculate y+ from the wall-distance y, find u+ from the wall-function
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Figure 2.4 Spaldings law in wall-units (solid line), compared to the log law (long dash, with B = 5.2
and κ = 0.41) and the viscous layer (short dash).

(equation 2.28), calculate the wall-parallel velocity component u and impose that value at the
first grid cell near the wall,3 which in principle turns it into a slip velocity condition.

The implementation in OpenFOAM differs from the above, as the wall function is imposed
as a momentum source at the boundary.10 This is realized via the value of the sub-grid-
scale viscosity, νSGS at the wall. Physically, νSGS,w = 0, however, here a non-zero value
introduces a momentum flux in the discretized form of the Navier-Stokes equations. In the
context of the computational algoritm, it can be summarized as follows, with the superscript
n denoting the time step index:

1. The PISO algorithm is used to calculate uni , pn.

2. The LES model is applied to compute νnSGS .

3. For each boundary grid cell, uτ is calculated from uni and νnSGS,w.

4. An updated νSGS,w is determined

• For very small uτ , νSGS,w = 0, the wall region is fully resolved, and no further
steps are necessary.

• For larger uτ , equation 2.28, which is implicit in uτ via y+ and u+ is iteratively
solved for uτ .

5. νn+1
SGS,w is calculated from uτ via equation 2.27 and hence acts as a momentum source

in the next time-step, which repeats at step 1.
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3. Analytical solutions of one-way
coupled magnetohydrodynamic
free surface flow§

We study the flow in a two-dimensional layer of conductive liquid under the influence of
surface tension, gravity, and Lorentz forces due to imposed potential differences and trans-
verse magnetic fields, as a function of the Hartmann number, the Bond number, the Reynolds
number, the capillary number and the height-to-width ratio A. For aspect ratios A � 1
and Reynolds numbers Re ≤ A, lubrication theory is applied to determine the steady state
shape of the liquid surface to lowest order. Assuming low Hartmann (Ha ≤ O(1)), capillary
(Ca ≤ O(A4)), Bond (Bo ≤ O(A2)) numbers and contact angles close to 90◦, the flow de-
tails below the surface and the free surface elevation for the complete domain are determined
analytically using the method of matched asymptotic expansions. The amplitude of the free
surface deformation scales linearly with the capillary number and decreases with increasing
Bond number, while the shape of the free surface depends on the Bond number and the con-
tact angle condition. The strength of the flow scales linearly with the magnetic field gradient
and applied potential difference and vanishes for high aspect ratio layers (A → 0). The ana-
lytical model results are compared to numerical simulations using a finite volume moving
mesh interface tracking (MMIT) method and a volume of fluid (VOF) method, where the
Lorentz force is calculated from the equation for the electric potential. It is shown that the
analytical result for the free surface elevation is accurate within 0.4% for MMIT and 1.2%
for VOF when Ha2 ≤ 1, Ca ≤ A4, Bo ≤ A2, Re ≤ A and A ≤ 0.1. For A = 0.1, the
analytical solution remains accurate within 1% of the MMIT solution when either Ha2 is
increased to 400, Ca to 200A4 or Bo to 100A2.

§Parts of this chapter have been published as: Righolt, B. W., Kenjereš, S., Kalter, R., Tummers, M. J., and Kleijn, C.
R. Analytical solutions of one-way coupled magnetohydrodynamic free surface flow Applied Mathematical Model-
ling, 2015
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3.1 Introduction

Magnetohydrodynamic (MHD) free surface flow of a conductive liquid in a spatially non-
uniform magnetic field is relevant to various applications in e.g. metallurgy11,14,18,28 and
crystal growth processes, such as Czochralski and Bridgman growth.12,14,30

Wall-bounded single phase MHD flow of a conducting liquid in a magnetic field has been
the subject of many theoretical studies, e.g. pipe32 and duct17 flow in a uniform magnetic
field, convection in a non-uniform magnetic field1, buoyancy driven Darcy flow in a uniform
magnetic field5,9,26, and lubrication flow with injected currents.16 Free surface MHD flow
has been studied both theoretically and experimentally, e.g. driven by an imposed magnetic
field,21 by injected currents,19,25 or due to buoyancy.33

In this chapter we will study the one-way coupled magnetohydrodynamic (MHD) free surface
flow of a conductive fluid in a shallow, two-dimensional cavity subject to a differentially
applied electric potential in a spatially non-uniform magnetic field. The Lorentz force will
be the only driving force for the flow, while gravity and surface tension act as the restoring
forces for the free surface deformation. We will use the analytical methods of lubrication
theory and matched asymptotic expansions to determine the free surface elevation and flow
inside the cavity. This combination of methods has been used previously to study flows in
shallow cavities, for example in buoyancy driven single phase flow,7 and later for free surface
flow driven by a Marangoni force.29 It has also been used for single phase MHD flow13 and
free surface MHD flow in a uniform magnetic field2. The combination of a free surface and
a non-uniform magnetic field distinguishes our work from previous studies.

Our analytical solutions will subsequently be compared with numerical results from two finite
volume based free surface, one-way coupled Navier-Stokes MHD flow solvers. The free
surface is modelled using a moving mesh interface tracking (MMIT) method35 and a volume
of fluid (VOF) method. The electric potential in the one-way coupled MHD problem is
calculated from a Poisson equation.

The goal of this chapter is to (i) find asymptotic analytical solutions for the flow in a conduct-
ive layer of fluid influenced by Lorentz, gravity and surface tension forces, (ii) validate the
analytical solution and two different free surface MHD flow solvers against each other and
(iii) use the numerical solvers to explore the parameter space, in terms of Hartmann number,
capillary number, Bond number, Reynolds number and aspect ratio, for which the analyt-
ical solution is accurate. With the obtained knowledge about its accuracy and limitations,
the presented asymptotic analytical solutions may subsequently serve as a benchmark for the
validation of other numerical solvers for combined free surface and MHD flows.

This chapter is outlined as follows. The mathematical framework is presented in Section
3.2, this includes the derivation of the flow in the core, the free surface elevation and the
turning flow near the side walls. Section 3.3 introduces both numerical MHD free surface
flow solvers. In Section 3.3 we validate the numerical models and the analytical solution in
terms of the various dimensionless numbers.
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Figure 3.1 Schematic representation of the two-dimensional liquid layer, with a potential difference ∆φ
across the domain and an insulated bottom. The dash-dotted line is the undisturbed interface and the
solid line h(x) is the equilibrium surface position after application of a magnetic field in the direction
perpendicular to the xy-plane, where the relative field strength is indicated in the top.

3.2 Analytical derivation

We consider a two-dimensional, finite-size liquid layer of width l and initial height d, as
depicted in Figure 3.1. The aspect ratio A of the cavity is defined as A = d/l. The liquid has
an electrical conductivity σ, density ρ and kinematic viscosity ν. The fluid above the liquid
layer is assumed to have negligible electrical conductivity, density and viscosity. The surface
tension between the two phases is denoted by γ and the downward directed gravitational force
by g.

The left wall of the system is kept at a fixed electrical potential − 1
2∆φ, the right wall at 1

2∆φ
and the bottom wall is electrically insulated. A magnetic field b′/b0 = −(αz′/l)x̂ − (1 +
αx′/l)ẑ is imposed, which in the plane of interest, the z = 0 plane, gives a linearly increasing
magnetic field b′ = −b0 (1 + αx′/l) ẑ. The Lorentz force associated with this magnetic field
has a zero z-component in the z = 0 plane.

In equilibrium, a net current flows from the right to the left wall, which due to its interaction
with the magnetic field leads to a Lorentz force f ′ = j′ × b′. This causes a net downward
force on the conducting liquid, which is stronger at the right side than at the left side. This
will initiate a circulating flow inside the fluid that via pressure build-up deforms the interface.
Viscous, gravitational and surface tension forces act to oppose the Lorentz force.
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3.2.1 Conservation equations

The problem will be studied from the conservation equations for mass, momentum and cur-
rent, which, for an incompressible, non-Newtonian fluid, read

∇′ ·u′ = 0, (3.1)
∂u′

∂t′
+ (u′ ·∇′)u′ = −1

ρ
∇′p′ + ν∇′2u′ + 1

ρ
j′ × b′ + g′, (3.2)

∇′ · j′ = 0. (3.3)

In this set of equations, u′ is defined as the velocity u′ = u′x̂ + v′ŷ and g′ is defined as the
gravitational force g′ = −gŷ. The flow is not influencing the magnetic field, as the magnetic
Reynolds number Rem = σµu∗l � 1, with µ the magnetic permeability and u∗ the charac-
teristic velocity scale. Under these conditions, the current j′ can be deduced from Ohm’s law
for moving media via the electric potential φ and is defined as j′ = σ (−∇′φ′ + u′ × b′).8

3.2.2 Boundary conditions

The liquid layer is bounded by four boundaries.

Walls

The walls are located at x′ = − 1
2 l, x

′ = 1
2 l and y′ = 0, namely the left side wall, the right

side wall and the bottom wall. The boundary conditions here are straightforward

1. x′ = − 1
2 l: u

′ = v′ = 0 and φ′ = 1
2∆φ

2. x′ = 1
2 l: u

′ = v′ = 0 and φ′ = − 1
2∆φ

3. y′ = 0: u′ = v′ = 0 and φ′y′ = 0

Thus, the side walls are kept at a fixed potential, while the bottom wall is insulated. All walls
impose no-slip conditions for the fluid velocity.

Free surface

The free surface is located at y′ = h′(x′) and at this interface the kinematic condition holds.
Surface tension acts against surface deformation and no current will flow across the interface.
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Figure 3.2 The kinematic boundary condition can be derived from this figure.

Kinematic condition The kinematic boundary condition can be derived from the fact that
no fluid moves from the interface into the second fluid, in other words (or see Figure 3.2).

lim
∆x′→0

h′(x′ + ∆x′)− h′(x′)
∆x′

= h′x′ =
v′

u′
(3.4)

u′h′x′ = v′ (3.5)

Surface tension To describe the surface tension, the normal and tangential vectors at the
interface are defined (see Figure 3.3)

t̂ =
1

N
(1, h′x′) (3.6)

n̂ =
1

N
(−h′x′ , 1) (3.7)

N =
√

1 + h
′2
x′ . (3.8)

Furthermore, the stress tensor is defined as

S′ij = −p′δij + µ(u′i,j + u′j,i). (3.9)

Such that at the interface for constant surface tension γ

S′ijnjti = 0 (3.10)
S′ijnjni = γK. (3.11)

Figure 3.3 The normal and tangential vectors at the interface.
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The curvature K can be derived from K = ∇ ·n = n1x + n2y =
h′x′x′

N3
.

Evaluating the tangential component of Eq. 3.10 using the stress definition 3.9 gives

2h′x′(v
′
y′ − u′x′) + (1− h′2x′)(v′x′ + u′y′) = 0. (3.12)

And for the normal component (Eq. 3.11):

γ
h′x′x′

N3
=

1

N2

[
(−p′ + 2µu′x′)h

′2
x′ + (−p′ + 2µv′y′)− 2µ(u′y′ + v′x′)h

′
x′

]
(3.13)

Current boundary condition No current will flow across the interface, which results in
the last boundary condition, which includes the electric potential:

j′ini = 0, (3.14)

With ~j′ = (−φ′x′ + v′b′,−φ′y′ − u′b′) this gives:

φ′x′h
′
x′ − φ′y′ = b′(u′ + v′h′x′). (3.15)

Other constraints

Some other constraints can be derived for this system in steady state

• There is no net mass flow in the horizontal direction, thus

∫ h′(x′)

0

u′(x′, y′)dy′ = 0. (3.16)

• The total volume in the cavity is conserved, thus

∫ 1
2 l

− 1
2 l

h′(x′)dx′ = V = ld. (3.17)

• Finally the contact point behaviour at the three-phase point has to be described, which,
for a certain contact angle θ, reads

h′x′

(
±1

2

)
= ∓A−1 tan

(
θ − π

2

)
. (3.18)
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3.2.3 Lubrication theory

The mathematical formulation of the problem, does not have a simple, closed form solution
of the differential equations. The lubrication theory will be applied to the problem, such that
a solution can be derived for the centre of the domain, in the lowest order of the asymptotic
limit (infinitely thin layer). This solution will then be matched with the outer flow near the
walls.36

We will solve this problem in dimensionless, lubrication type variables,

x′ = lx, y′ = dy, h′ = dh, u′ = u∗u,

v′ = Au∗v, p′ =
µu∗l

d2
p, b′ = b0b, φ′ = (∆φ)φ. (3.19)

Here the non-primed variables are the lubrication type variables. x and y are the horizontal
and vertical coordinates respectively, h is the free surface elevation, u and v are the horizontal
and vertical velocity components, b is the perpendicular component of the magnetic field and
φ the electric potential. b0 is the magnetic field strength in the centre of the cavity (x = 0)
and the characteristic velocity u∗ is defined as

u∗ =
σ∆φb0αd

ρν
A, (3.20)

which follows from the balance between viscous and Lorentz forces.

The system is in a steady, two-dimensional motion. In lubrication variables the conservation
equations reduce to:

ux + vy = 0, (3.21)
ReA2 (uux + vuy) = −Apx +A3uxx +Auyy

− 1

α

(
φy +Ha2Aub

)
b, (3.22)

ReA3 (uvx + vvy) = −py +A4vxx +A2vyy

+A
1

α

(
φx −Ha2Avb

)
b−ABo

Ca
, (3.23)

A2φxx + φyy = Ha2
[
A3(vb)x −A(ub)y

]
. (3.24)

The subscripts denote derivatives with respect to the coordinate in the subscript.

In this context, the Reynolds number, Re, the Hartmann number, Ha, the Bond number, Bo
and the capillary number Ca, are defined as

Re =
u∗d

ν
, Ha2 =

σb20d
2α

ρν
, Bo =

ρgd2

γ
, Ca =

ρνu∗

γ
. (3.25)

In order to eliminate the pressure from the conservation equations, we introduce the stream
function ψ, which obeys the continuity equation (Equation 3.21)

u = ψy, v = −ψx, (3.26)
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such that a single equation in ψ remains instead of equations for the horizontal and vertical
momentum (Equations 3.22 and 3.23):

ReA2
[
ψyψxyy − ψxψyyy −A2 (ψxψxxy − ψyψxxx)

]

= Aψyyyy + 2A3ψxxyy +A5ψxxxx

− 1

α

[
φyyb+A2 (φxxb+ φxbx) +Ha2A

(
ψyyb

2 +A2ψxxb
2 + 2A2ψxbbx

)]
,

(3.27)

and for the charge conservation equation

A2φxx + φyy = −Ha2
(
A3ψxxb+A3ψxbx +Aψyyb

)
. (3.28)

The boundary conditions at the wall are straightforwardly transformed, while the free surface
boundary conditions are respectively transformed to

u′h′x′ = v′, (3.29)

2A2h′x′(v
′
y′ − u′x′) + (1−A2h

′2
x′)(u

′
y′ +A2v′x′) = 0, (3.30)

Ca−1A3h′x′x′(1 +A2h
′2
x′)
−3/2 = −p+ 2A2(1 +A2h

′2
x′)
−1 (3.31)[

v′y′ − h′x′u′y′ +A2h′x′(−v′x′ + h′x′u
′
x′
]
,

A2φ′x′h
′
x′ − φ′y′ = (Au′ +A3h′x′v

′)b′, (3.32)

where a third dimensionless group, Ca, the capillary number, is introduced

Ca =
µu∗

γ
. (3.33)

The modified pressure pm is introduced to eliminate the hydrostatic pressure from the Navier-
Stokes equation (Equation 3.23), such that

pm = p+A
Bo

Ca
(y − 1), (3.34)

and the boundary condition from Equation 3.31, results in

A3hxx(1 +A2h2
x)−3/2 = −Capm +ABo(h− 1) + 2A2(1 +A2h2

x)−1

[
−ψxy − hxψyy +A2hx(ψxx + hxψxy)

]
,

(3.35)

3.2.4 Core flow

The system of four equations is now reduced to a set of two equations with the stream function
ψ and the electric potential φ as unknowns. We will be looking for a solution where the flow
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is in the x-direction only in the lowest order near x = 0. To obtain the expression that is valid
in the region far away from the wall, the stream function will be expanded as

ψ =

∞∑

n=0

Anψn(x, y), (3.36)

where a similar expansion can be used for the pressure p, the electric potential φ and the
interface deformation h(x) =

∑∞
n=0A

nhn(x), where h0 = 1 is the undisturbed interface.

For the dimensionless parameters we will use the following asymptotic limits

Re = ReA, Ha2 = Ha2, (3.37)

where Re and Ha2 are both of order O(1). The presented solution strategies will be valid for
Re ≤ O(A) and Ha2 ≤ O(1).

To obtain the equation for the lowest order stream function ψ0, the assumptions in Equations
3.36 and 3.37 are substituted in Equations 3.32 and 3.27. By collecting all the terms in the
same n-th order in A, the equations for ψn and φn can be obtained to arbitrarily order. This
will give us

ψ0yyyy =
1

α

(
φ1yyb+Ha2ψ0yyb

2
)
, φ1yy +Ha2ψ0yyb = 0. (3.38)

It should be noted that the lowest order equation for the stream function contains higher
order terms of the electric potential, which can be eliminated by means of the higher order
equations of the electric potential, thus:

ψ0yyyy = 0, φ0yy = 0. (3.39)

The boundary conditions

ψ0 = ψ0y = φ0y = 0 on y = 0,
ψ0 = ψ0yy = φ0y = 0
h1xx = −Capm0 +Boh1 on y = 1 +Ah1,



 (3.40)

are obtained from no-slip and electrically insulating conditions, Equation 3.16 and by substi-
tuting the asymptotic expansions for the free surface, where the following asymptotic limit is
used (with Ca = O(1)):

Ca = CaA4, Bo = BoA2, (3.41)

thus Ca = O(A4) and Bo = O(A2). However, the derivation is also valid for Ca ≤ A4.
Bo can appear in the equations to any order, as it is competing with surface tension as the
restoring force. Using these assumptions, the surface tension and gravity force will turn out to
first act at the same order of magnitude of the asymptotic expansions. For smallerBo, surface
tension dominates the restoring force, while for larger Bond number gravity will dominate as
a restoring force.
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For ψ0 we will get ψ0 = 0, while for the solution of the lowest order electric potential, it
can be seen that the solution φ0 = x satisfies the Poisson equation for the electric potential
as well as the boundary conditions at the outer walls, the bottom wall and the free surface. It
follows that p0 = 0 and thus h1 = 0

This result has implications for the limiting case A = 0. In the case of an infinitely wide
or very thin layer, the zeroth order solution will be the only term remaining, as all terms of
O(A) and higher vanish. Thus, in this case, the electromagnetic forces will not cause flow
in the domain. In this paper we study bounded domains with 0 < A � 1, such that higher
order terms should be included. Progressing to the first order solution, we obtain

ψ1yyyy =
1

α

(
φ2yyb+Ha2ψ1yyb

2 + φ0xxb+ φ0xbx

)
, (3.42)

φ0xx + φ2yy = −Ha2ψ1yyb, (3.43)

which, with known b and φ0, simplifies to

ψ1yyyy =
1

α
φ0xbx = −1. (3.44)

Subject to the boundary conditions at the bottom wall and top free surface (Equations 3.29-
3.32)

ψ1 = ψ1y = 0 on y = 0,
ψ1 = ψ1yy = 0 on y = 1 +Ah1 +A2h2,

}
(3.45)

this gives

ψ1(x, y) = − 1

48
y2
(
2y2 − 5y + 3

)
. (3.46)

Reintroducing the pressure by means of Equations 3.22 and 3.23 allows to solve for the
pressure, which reads

pm1 = −1 + αx

α

(
y − 5

8

)
+ pref , (3.47)

where pref is the reference pressure.

The boundary condition at y = 1 +Ah1(x) +A2h2(x), based on the modified pressure pm1

reads, where pref is eliminated in favor of a different integration constant,

h2xxx = −Capm1x +Boh2x, (3.48)

h2xxx =
3

8
Ca+Boh2x. (3.49)

This third order differential equation in h2, gives the general solution

h2(x) =
1√
Bo

(
λ1e
√
Box + λ2e

−
√
Box

)
− 3Ca

8Bo
x+ λ3, (3.50)

with λ1, λ2 and λ3 constants that will follow from the matching condition with the boundary
layer flow and the other constraints.
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3.2.5 End wall flow

It follows from Equation 3.46 that the flow in the central part of the domain is strictly hori-
zontal (v = 0). This core flow solution breaks down near vertical side walls, where the liquid
has to change direction. To study this boundary layer behaviour, the stretching coordinates ξ
and η are introduced as

ξ =
x+ 1

2

Aν
, η = y. (3.51)

The origin of this coordinate system is located in the lower left corner of the shallow cavity.
It can easily be verified that for the derivative of an arbitrary function f , fy = fη and fx =
A−νfξ. Using this in Equation 3.27, results in

ReA2−ν (ψηψξηη − ψξψηηη −A2−3ν (ψξψξξη − ψηψξξξ)
)

= Aψηηηη + 2A3−2νψξξηη +A5−4νψξξξξ

− 1

α

[
φηηb+A2−2ν(φξξb+ φξbξ)+

Ha2
(
A(b2ψηη) +A3−2ν(bξψξb+ b2ψξξ + bψξbξ)

)]
.

(3.52)

It follows that there is a significant degeneration for ν = 1, such that ξ = A−1(x + 1
2 ).

Variables in terms of the stretched coordinates, thus the side wall solution, will be denoted
by a "˜" . The magnetic field b = −(1 + αx) is then expressed as b̃ = (−1 + 1

2α)−Aαξ =

b̃0 +Ab̃1 and the equation for the stream function becomes

ReA2
(
ψ̃yψ̃ξyy − ψ̃ξψ̃yyy − ψ̃ξψ̃ξξy + ψ̃yψ̃ξξξ

)

= A∇4ψ̃ − 1

α

[
b̃∇2φ̃+ b̃ξφ̃ξ +Ha2A

(
b̃2∇2ψ̃ + 2ψ̃ξ b̃ b̃ξ

)]
,

(3.53)

where the ∇ operator is defined in terms of the stretched coordinates ξ and η, giving the
Laplacian operator∇2 = ∂2

∂ξ2 + ∂2

∂η2 and the biharmonic operator∇4 = ∂2

∂ξ4 +2 ∂2

∂ξ2∂η2 + ∂2

∂η4 .
The conservation of current evolves, as a result of stretching, into

∇2φ̃ = −Ha2
αA
(
b̃∇2ψ̃ + b̃ξψ̃ξ

)
. (3.54)

Expanding the side wall stream function ψ̃ similar to the core flow ψ

ψ̃ =

∞∑

n=0

Anψ̃n(x, y), (3.55)

leads to an equation for the leading order stream function in the left wall boundary layer ψ̃0
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∇4ψ̃0 =
1

α

[
b̃0∇2φ̃1 + b̃1∇2φ̃0 + b̃1ξφ̃0ξ + b̃0ξφ̃1ξ +Ha2

(
b̃20∇2ψ̃0 + 2b̃0b̃0ξψ̃0ξ

)]
.

(3.56)
Simultaneously we obtain from the charge conservation equation

∇2φ̃0 = 0, (3.57)

∇2φ̃1 = −Ha2
(
b̃0∇2ψ̃0 + b̃0ξψ̃0ξ

)
, (3.58)

which, together with b̃0ξ = 0, reduces Equation 3.56 to

∇4ψ̃0 = 0. (3.59)

This has the solution ψ̃0 = 0, which agrees with the observation for the core flow. When the
contact angle boundary condition is limited to

tan(θ − 1
2π) = mA2, (3.60)

where m ≤ O(1) is a measure for the contact angle. The boundary condition for the free
surface gives h̃1ξξ = 0 and h̃1ξ(0) = 0. Thus, for the free surface deformation it is obtained
that h̃1 = 0.

It is observed that φ = x relates to φ̃0 = − 1
2 and φ̃1 = ξ, which is satisfying the above

problem. Using ψ̃0 = 0, the first order stream function ψ̃1 obeys

∇4ψ̃1 =
1

α

[
b̃0∇2φ̃2 + b̃1∇2φ̃1 + b̃1ξφ̃1ξ + b̃0ξφ̃2ξ

+ Ha2
(

2b̃0b̃1∇2ψ̃0 + b̃20∇2ψ̃1

)]
. (3.61)

Reducing this with relation ∇2φ̃2 = −Ha2
(
b̃1∇2ψ̃0 + b̃0∇2ψ̃1

)
from charge conservation

results in
∇4ψ̃1 =

1

α
b̃1ξφ̃1ξ = −1, (3.62)

which ultimately describes the change of flow direction in the boundary layer flow near the
left wall.

The walls at the side and bottom are no-slip, meaning ψ̃1 = ψ̃1y = 0 at the bottom and
ψ̃1 = ψ̃1ξ = 0 at the left wall. For the free surface ψ̃1 = 0 (from Equation 3.16), ψ̃1ξ = 0

(from Equation 3.5) and ψ̃1yy − ψ̃1ξξ = 0 (from Equations 3.12, 3.13 and 3.15), effectively
reducing at this order to ψ̃1 = ψ̃1yy = 0. The solution for ξ → ∞ should match with the
core flow solution (Equation 3.46).
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The derivation for the right wall flow can be obtained following the exact same arguments,
but with the stretching coordinate ζ = A−1( 1

2 − x), and leads to the same results as the left
wall. This will not be repeated here.

A final boundary condition for the top surface is obtained from Equation 3.31

h̃2ξξ = 0, (3.63)

Combining this with the contact angle boundary condition 3.18, h̃2ξ = m (and similarly for
the right wall) and the volume conserving property (Equation 3.17), this leads to a closed
expression for the free surface elevation that is valid over the full width of the liquid layer:

h2(x) =
1√
Bo


3Ca

8Bo

sinh
(√

Box
)

cosh
(

1
2

√
Bo
) −m

cosh
(√

Box
)

sinh
(

1
2

√
Bo
)


− 3Ca

8Bo
x+

2m

Bo
, (3.64)

From Equation 3.46 we see that the flow strength scales with a single dimensionless para-
meter, α, while the free surface elevation depends on Ca and Bo as well. This has as an
interesting consequence that, for example, the velocities in the liquid layer can be increased
at fixed free surface elevation, or vice versa.

In the absence of gravity, e.g. Bo = 0, Equation 3.49 would simplify to h2xxx = 3/8Ca,
with solution

h2 =
1

16
Ca

(
x3 − 3

4
x

)
−m

(
x2 − 1

12

)
, (3.65)

which is consistent with Equation 3.64, in the limit for Bo → 0. For decreasing influence
of surface tension, in other words, for increasing Ca, the linear term in Equation 3.64 will
become dominant. However, the limit Ca → ∞ does not exist, as close enough to the side
walls, surface tension is always significant.

Reducing Equation 3.65 to units carrying a dimension, gives

∆h′ = A2dh2 =
Cadα

16A2

(
x′3

l3
− 3

4

x′

l

)
=
σ∆φb0dlα

γ

(
x′3

l3
− 3

4

x′

l

)
, (3.66)

The horizontal velocity profile in dimensioned variables, follows from the stream function
for the core flow (Equation 3.46):

u′(y′) = − 1

48
Au∗

(
8
y′3

d3
− 15

y′2

d2
+ 6

y′

d

)
. (3.67)

3.2.6 Analytic solution for the end wall flow

The flow in the side wall is described by the biharmonic Equation 3.62

∇4ψ̃1 = −1. (3.68)
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With boundary conditions

ψ̃1 = 0, ψ̃1η = 0 on η = 0

ψ̃1 = 0, ψ̃1ηη − ψ̃1ξξ = 0, ψ̃ξ = 0 on η = 1

ψ̃1 = 0, ψ̃1ξ = 0 on ξ = 0

ψ̃1 = ψ1(η), ψ̃1ξ = 0 for ξ →∞.





(3.69)

We will now apply the transformation

χ(x, y) = ψ̃1 − ψ1(y). (3.70)

For clarity and staying in line with literature notation, we will now use x, y instead of ξ, η
and reduce the boundary conditions to:

χ = 0, χy = 0 on y = 0
χ = 0, χyy = 0 on y = 1
χ = f(y) = −ψ1(y), χx = 0 on x = 0
χ = 0, χx = 0 for x→∞.





(3.71)

The solution to Equation 3.70 can be found using the Laplace transform:

f(p, y) = L[χ(x, y)] =

∫ ∞

0

χ(x, y)e−pxdx, (3.72)

As a first step, Equation 3.70 is Laplace transformed

L[∇4χ] =
∂4f

∂y4
+ 2p2 ∂

2f

∂y2
+ p4f = p3χ(0, y)

+��
���:

0
p2χx(0, y) + pχxx(0, y) + χxxx(0, y) + 2


p∂

2χ

∂y2
(0, y) +

��
�
��
�*0

∂2χx
∂y2

(0, y)


 .

(3.73)

This reduces the differential equation in coordinates x and y to a differential equation in y
only. At x = 0 additional boundary conditions on χxx and χxxx are required by the above
formula. χ(0, y) is expanded in a sine series as follows

χ(0, y) =

∞∑

n=1

bn sin(nπy) with bn = 2

∫ 1

0

χ(0, y) sin(nπy)dy (3.74)

The unknown functions χxx and χxxx are expanded by the same means, thus

∂2χ

∂x2
(0, y) =

∞∑

n=1

cn sin(nπy)
∂3χ

∂x3
(0, y) =

∞∑

n=1

dn sin(nπy), (3.75)
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however, the coefficients cn and dn can not be determined at this point.

The ordinary differential equation for the function f(p, y) now becomes

∂4f

∂y4
+ 2p2 ∂

2f

∂y2
+ p4f =

∞∑

n=1

βn(p) sin(nπy) (3.76)

βn(p) =

(
p3 − 2pn2π2

)
bn + pcn + dn

(p2 − n2π2)
2 . (3.77)

The general solution of this differential equation is

f(p, y) = K1 sin(py) +K2 cos(py) +K3y sin(py) +K4y cos(py) +
∑

βn(p) sin(nπy).

(3.78)

The four boundary conditions on the two boundaries for y provide the integration constants
Ki

K1 =
∑

n

−βn(p)
nπ

p− cos p sin p
(3.79)

K2 = 0 (3.80)

K3 =
∑

n

βn(p) sin2 p
nπ

p− cos p sin p
(3.81)

K4 =
∑

n

βn(p) sin p cos p
nπ

p− cos p sin p
(3.82)

(3.83)

And thus

f(p, y) =
∑

n

βn(p)
[

sin(nπy)+

nπ

p− cos p sin p

(
− sin(py) + sin2 p sin(py)y + sin p cos p cos(py)y

) ] (3.84)

The inverse Laplace transform will in principle provide the stream function χ. It should
however be noted that the coefficient βn still contains unknowns cn and dn. The inverse
Laplace transform and the unknown coefficients can be found in the same solution step,
using complex analysis. The steps follow the procedure by Benthem 3 and is schematically
summarized in figure 3.4.

The inverse Laplace transformation is given by the Bromwich integral (see Kwok 20 and
Duffy 10 p61):

χ(x, y) =
1

2πi
lim
R→∞

∫ a+iR

a−iR
f(p, y)epxdp (3.85)
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Re

Im

Figure 3.4 The inverse Laplace transform is provided by the integral along the solid line. The path
integral is closed by adding the dashed, semi-circle, which integral is zero by Jordan’s lemma. The
residue theorem gives the integral for the poles (dark crosses) inside the closed path.

where a > 0. The contour integral can be closed with the left semi-circle, and by application
of Jordan’s lemma, this gives:

χ(x, y) =
1

2πi

∮

C

f(p, y)epxdp (3.86)

The integral can be evaluated by applying the Cauchy residue theorem

χ(x, y) =
∑

k

Res(f(pk, y)), (3.87)

where the summation is over the poles of f(p, y) inside the closed contour. It is observed
that the first pole is p = 0 and the subsequent poles are solutions of p − cos p sin p = 0 (or
2p− sin 2p = 0).

2p − sin(2p) = 0 has infinitely many complex solutions, which we will find numerically.
Therefor we will truncate the above infinite sums after the first P terms. There, we need to
find the poles inside the closed loop and thus the poles closest to the origin. To find the poles
of 2p − sin(2p) = 0 we will combine the search algorithm outlined by Meylan and Gross 22

with knowledge about the equation.

The algorithm is based on the fact that the anti-clockwise integral of the variation of the
argument along a closed loop is a measure for the amount of poles inside this closed loop. The
brute force algorithm is based on performing the closed loop integral on boxes and refining
the boxes until only one pole is counted inside. Newton’s method will then be used to find
a pole. If the starting point is outside the basin of attraction of the pole, another refinement
step will be performed. Applying the brute force method on the current problem is rather
expensive. The brute force method will be applied on a significantly reduced subset of the
complex numbers
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• If p is a pole, then are p∗, −p and −p∗ also poles of the equation. In other words,
finding the poles in the first quadrant is sufficient.

• Writing p = x+ ıy, we obtain

x = sinx cosh y, (3.88)
y = cosx sinh y. (3.89)

Which can be reduced to x2 = cosh2 y − y2 coth2 y, which is a monotonically in-
creasing function. In other words, if we find the pole in the first quadrant closest to the
origin, we know that each subsequent pole in the first quadrant has a larger real and
imaginary part than the current pole.

Using this algorithm, as many poles as desired can be found, while the found poles are also
the ones closest to the origin, which is necessary for the intended inverse Laplace transform.
In order to find the Laplace transform, we apply the residue theorem. The residue at p = 0 is
0, which follows from

Res(f(0, y)) = lim
p→0

pf(p, y) = 0. (3.90)

The residues at the other poles are depending on the unknown coefficients cn and dn. To
calculate the unknown quantity, we make us of

Res

(
g(p)

h(p)

)
=

g(p)

h′(p)
. (3.91)

For this problem, h(p) = p − sin p cos p and h′(p) = 2 sin2 p can be used. With the numer-
ically obtained poles and the above method for calculating the residue at pole pk, we find,
when including all prefactors

Res(f(pk, y)) = F (pk, y)

∞∑

n=1

nπβn(p) (3.92)

with

F (pk, y) =
− sin(pky) + sin2 pk sin(pky)y + sin pk cos pk cos(pky)y

2 sin2 pk
. (3.93)

The coefficient cn and dn are still undetermined, but we will choose them such, that the
residues for the poles with Re(pk) > 0 vanish for arbitrary y, in other words, for the specific
pole pk, this requires

P∑

n=1

nπ

(
p3
k − pkn2π2

)
bn + pkcn + dn

(p2
k − n2π2)

2 = 0, (3.94)

where the infinite sum is truncated after the first P terms. Considering the first P poles in
the first quadrant and obtaining the P in the fourth quadrant for free, this gives a set of 2P
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Figure 3.5 The velocity vector plot (left) in the left side wall region is depicted, which is derived from
the side wall stream function (Equation 3.95) for P = 2048. The flow is turning clockwise, while the
velocity at the left and bottom boundary is zero and the top boundary is a free surface. The streamline
plot (right) is determined for P = 8192 shows isocontours of the stream function in the region of the
lower left corner of the domain, demonstrating the existence of a counter-rotating eddy in the corner.

equations in 2P unknowns. In matrix notation this results in a full matrix of (2P )2 complex
components, which can be solved for cn and dn by Gauss elimination.

When the poles pk and coefficients cn and dn are known, Equation 3.87 provides the solution
to the problem.

χ(x, y) =

2P∑

k=1

P∑

n=1

nπβn(−pk)F (−pk, y)e−pkx, (3.95)

which can straightforwardly be transformed back to the streamfunction ψ̃1. It should be
noted that, the Gauss elimination is an O(P 3) algorithm, while the calculation of ψ̃1 is in
principle O(P 2), the prefactor for the latter calculation is rather large, based on the amount
of operations and the fact that is operated on a grid looping over x and y.

Figure 3.5 shows the currently obtained velocity field for P = 2048 and streamlines in the
region close to the corner for P = 8192. A counter-rotating eddy was found close to the
corner, as was predicted by Moffatt 23 . Such a counter-rotating eddy was not found in the
corner near the free surface.

Figure 3.6 shows the velocity magnitude along the line ξ = y, where a different number of
poles are included to calculate the stream function. It shows the convergence of the velocity
magnitude with an increasing number of poles. It can be seen that increasing the amount of
poles above 4 does not change the velocity profile beyond a distance of 0.1 from the corner,
while P = 1024 and P = 8192 are enough for an accurate velocity profile beyond a distance
of 0.01 and 0.002 respectively.

The minimum in this velocity profile is related to the centre of the eddy. Increasing the
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Figure 3.6 The velocity magnitude along the line ξ = y in Figure 3.5, which shows the effect of
increasing the amount of poles (see Equation 3.95) on the velocity magnitude for P = 4, P = 1024,
P = 8192 and P = 16384.

number of poles reveals a secondary minimum, which is an indication for the second eddy of
the infinite series of eddies in the corner, as predicted by Moffatt 23 .

3.2.7 Increased magnetic interaction

In the derivation of the free surface elevation (Equation 3.64), it was found that for the Hart-
mann number Ha = O(1), only O(A) flow is present. Suppose the square of the Hartmann
number increases by an order inA, thusHa2 = Ha2A−1. For this higher Hartmann number,
it can be shown that, again, ψ0 = 0 and the core flow ψ1, can be solved by

ψ1yyyy = −1, ψ1 = − 1

48
y2
(
2y2 − 5y + 3

)
, (3.96)

which would result in the general solution for h2 as given by Equation 3.50.

For the side wall solution, again ψ̃0 = 0 is found, however, at higher order

∇4ψ̃1 =
1

α

(
φ1ξ b̃1ξ +Ha2

αψ̃1ξ b̃0b̃1ξ

)
= −1−

(
1

2
α− 1

)
Ha2

αψ̃1ξ. (3.97)

which means that the analytical side wall solution from Section 3.2.5 is no longer valid for
Ha2 = O(A−1).

For Ha2 = O(A−2), the primary flow in the core region will no longer be one-dimensional,
as the equation for the core flow would read

ψ0yyyy =
1

α
Ha2ψ0xbbx = Ha2 (1 + αx)ψ0x. (3.98)
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3.3 Numerical modeling

The analytic solution to the liquid layer problem with a Lorentz force will be compared with
numerical solutions obtained from two different methods for evaluating free surface flows.
The first method is the moving mesh interface tracking (MMIT) method, where the mesh
aligns with the free surface. The second method is the volume of fluid (VOF) method, where
the free surface is tracked with a transport equation for the liquid fraction.

The numerical simulations are performed using the standard31 and extended34 OpenFOAM
software. Available solvers were extended with the one-way coupled MHD equations for both
methods, respectively interTrackFoam of distribution 1.6 extend and interFoam of distribution
2.1.

3.3.1 Moving mesh interface tracking method

The moving mesh interface tracking method is based on aligning a boundary of the numerical
mesh with the free surface. This results in a sharp interface by definition and allows for the
implementation of exact boundary conditions at the interface. The approach as proposed by
Muzaferija and Perić 24 and the implementation by Tuković and Jasak 35 was used.

The moving mesh interface tracking method introduces, in addition to continuity and mo-
mentum equations, the so called space conservation law, i.e.

d

dt′

∫

V ′
dV ′ −

∫

S′
n̂ ·vs

′dS′ = 0 (3.99)

where vs
′ is the velocity of the surface. This velocity of the surface of an arbitrary con-

trol volume V ′ has to be accounted for in the integrated mass and momentum conservation
equations.24,35

The boundary conditions from Section 3.2.2 do also apply for the numerical simulations,
e.g. no mass should cross the boundary and the stresses at opposite sides of the interface
should match. Non-zero mass fluxes through the free surface are corrected by moving the
boundary. This correction is used as a boundary condition in the Laplace equation for moving
the interior points in the domain by an amount d′:

∇′Γ ·∇′d′ = 0 (3.100)

where Γ is a diffusion parameter that is inversely proportional to the square of the distance to
the free surface.

Details of the numerical simulation

The simulations were performed on an initially square cell grid containing 20N × N cells,
representing the bottom layer only, with A = 0.05 and Re = A, Ha = 1, Ca = A4
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and Bo = A2. Figure 3.7(top) shows the vertical velocity component along a horizontal
line y = 0.5 for various N . The difference in maximum velocity obtained on a mesh with
N = 20, compared to N = 10 and N = 30 meshes was 0.5% and −0.05% respectively.
The convective term is discretized with a second order central differencing scheme, the time
derivative with a second order implicit method and the least squares method was used for
gradient calculation.

The numerical values for the material properties of the top phase are defined to be σ2/σ = 0,
ρ2/ρ = 0 and ν2/ν = 0, and are necessary for the boundary conditions, for example the
pressure in the gas phase is assumed to be constant. The zero conductivity constraint for
the top phase was implemented via the boundary condition for the electric potential at the
interface.

3.3.2 Volume of fluid method

The VOF method is based on solving a transport equation for an indicator function, which
determines the spatial distribution of the fractions of two immiscible fluids and consequently
the density of the liquid in the Navier-Stokes equations.15,27 The Continuum Surface Force
(CSF) approach is used for implementation of the interfacial tension force between the two
fluids6 and an artificial compression velocity is introduced for sharpening the resulting diffuse
interface between the two fluids.37

The describing equations for two-phase VOF flows are the continuity equation

∂vj
∂xj

= 0, (3.101)

where vi is the velocity vector, the Navier-Stokes equations,6,15

∂ρvi
∂t

+ vj
∂ρvi
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ fi + γκ

∂α

∂xi
, (3.102)

where α is the indicator function, fi the body force, ρ and µ the phase averaged density and
viscosity and κ the curvature of the interface in the CSF approach,6 determined by

κ =
∂

∂xk




1∣∣∣∣
∂α

∂xj

∣∣∣∣

∂α

∂xk


 . (3.103)

and the transport equation for the indicator function α27

∂α

∂t
+

∂

∂xj
(αvj) +

∂

∂xj
(vr,iα (1− α)) = 0. (3.104)

For the studied liquid-air flow, the indicator function equals 1 for the liquid phase and 0 for
the air phase and is in the range (0, 1) around the interface. The third term includes the



42 Chapter 3

artificial compression velocity, vr,i and is zero outside the interface region. This term can be
derived from the continuity equations for the phase fractions in the two-fluid Euler approach,
leading to the relative velocity vr,i = vl,i − vg,i between the liquid and the gas phase.4 The
term compressibility does not refer to compression of the distinct phases, but compression of
the interface itself, which can be seen as additional convection of the phase fraction due to
vr,i.

The body force fi is the Lorentz force,

fi = εijkjjbk. (3.105)

The magnetic field bi is externally applied and constant in time, whereas the current density
ji is calculated from the electric potential φ. From conservation of current

∂jj
∂xj

= 0 (3.106)

and the definition of the current density

ji = σ

(
− ∂φ
∂xi

+ εijkujbk

)
, (3.107)

an additional Poisson’s equation for the electric potential is introduced

∂

∂xi

(
σ
∂φ

∂xi

)
=

∂

∂xi
(σεijkujbk) , (3.108)

where the electrical conductivity σ is linearly interpolated between both phases, which means
harmonic interpolation on the resistivity.

Details of the numerical simulation

The simulations were performed on a square cell grid containing 20N × 3N cells, where
the bottom 20N × N cells were initially filled with the conductive fluid, and the remaining
part was filled with gas. For these simulations hence A = 0.05 and furthermore Re = A,
Ha = 1, Ca = A4 and Bo = A2. Figure 3.7(bottom) shows the vertical velocity component
along a horizontal line y = 0.5 for various N . The difference in maximum velocity obtained
on a mesh with N = 20, compared to N = 10 and N = 30 meshes was 6.6% and 0.2%
respectively. The time derivative is discretized using a second order implicit method, whereas
the convective and diffusive terms are discretized using a second order central differencing
scheme.

The values for σ2, ρ2 and ν2 are explicitly used during the simulation, and are non-zero to
avoid singularities in the problem. For the present simulations σ2/σ = 10−18, ρ2/ρ = 10−3

and ν2/ν = 10.
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Figure 3.7 The vertical velocity v along the horizontal line y = 0.5 for respectively N = 10, N = 20
and N = 30. (top) For the MMIT simulations, where the grid consists of 20N × N control volumes.
(bottom) For the VOF simulations where the grid consist of 20N × 3N control volumes, with the
bottom 20N ×N control volumes initially liquid filled.

3.4 Numerical results

3.4.1 Base case

For A = 0.1, Figure 3.8 compares the free surface elevation of the analytical results for the
first order deformation with the numerical results from both the MMIT and VOF method. For
Re = A, Ha = 1, Bo = A2 and Ca = A4, it can be seen that the analytical solution is in
good agreement with the numerically determined free surface elevations.

Figure 3.9 shows the pressure and horizontal velocity (from Equation 3.46 and 3.26) for the
vertical line x = 0. Again a good agreement is obtained between analytical results and
numerical simulations.

In Figure 3.10, both velocity components along the line y = 0.5 in the region close to the
wall are depicted. The analytic solution is obtained from Equation 3.95, with P = 1024. For
both velocity components and both simulation methods, it is seen that the velocity profiles
obtained from the numerical simulations accurately match the analytical expression for these
components.
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Figure 3.8 Elevation h of the free surface over the width of the domain for A = 0.1, Re = A,
Ha2 = 1, Bo = A2 and Ca = A4. The MMIT simulation (circles), the VOF simulation (squares) and
the first order analytic approximation (solid line) of Equation 3.64 are shown.
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Figure 3.9 Pressure p (left) and horizontal velocity u (right) for the line x = 0 for A = 0.1, Re = A,
Ha2 = 1, Bo = A2 and Ca = A4. The MMIT simulation (circles), the VOF simulation (squares) and
the first order analytic approximation (solid line) are shown.
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Figure 3.10 The horizontal (left) and vertical (right) velocity component along the line y = 0.5 for
A = 0.1, Re = A, Ha2 = 1, Bo = A2 and Ca = A4. The MMIT simulation (circles), the VOF
simulation (squares) and the first order analytic approximation of Equation 3.95 using P = 1024 (solid
line) are shown.
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Figure 3.11 Horizontal (left) and vertical (middle) velocity components (as Figure 3.10) and spanwise
velocity component (right), along the line y = 0.5 for A = 0.1, Re = A, Ha2 = 1, Bo = A2, Ca =
A4 and θ = 90◦, for the analytical solution (solid line), the two-dimensional numerical simulation (©),
and the numerical simulation for a cavity with z-dimension 100d (4), 10d (5) and d (♦).

3.4.2 Three-dimensionality of the flow

In this section we will numerically evaluate, using the MMIT method, the effect of bound-
ing walls in the third dimension on the two-dimensional flow in the z = 0-plane. In the
z = 0-plane, the Lorentz force has a zero component in the z-direction, therefore the three-
dimensionality of the magnetic field does not influence the equations for u and v in that plane
(Equations 3.22 and 3.23). By introducing walls to bound the domain in the z direction,
however, additional viscous shear from these walls can be expected. Figure 3.11 compares
the velocity components for increasing size w of the domain in the z-direction. This size was
consecutively increased from w = d, to w = d/A and to w = d/A2. For w = d, the ve-
locities in the xy-plane are significantly smaller than analytically derived, whereas the shape
of these velocity profiles has not changed. This is caused by the viscous shear from the walls
that bound the domain in the z-direction. When the extend of the domain in the z direction
increases, Figure 3.11 shows that the velocity profiles converge to the velocity profile from
the two-dimensional numerical simulation and the analytical solution, without generating a
significant velocity component in the spanwise direction. Therefore, for large enough domain
sizes in the third dimension, the presented two-dimensional analytical solution is valid for the
flow in the z = 0-plane of the formulated three-dimensional problem.

3.4.3 Increased deformation

Section 3.2.7 showed the difficulties in deriving the final solution for increasing Hartmann
number. In this section we will obtain numerical results for the surface elevation under higher
Hartmann number, as well as higher capillary number, Bond number, Reynolds number and
aspect ratio, in order to determine to what degree the analytic solution of Equation 3.64 holds.
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MMIT

Figure 3.12 shows the free surface elevation for a set of cases in which, starting fromA = 0.1,
θ = 90◦, Re = A, Ha2 = 1, Ca = A4, Bo = A2, either of the parameters Ha, Ca, Bo or
A is increased to large values for which the analytic solution is not expected to hold.

From Figure 3.12(a) it can be seen, that, even though the derivation for the free surface
elevation is valid for Ha2 ≤ O(1), the analytical solution using Ha2 = 1000 still closely
agrees with the numerical solution.

Also for capillary number increasing up to Ca = 1000A4, the numerical solution remains
close to the analytical expression, as can be seen from Figure 3.12(b), where both numerical
and analytical free surface elevations are scaled with the capillary number. We obtain this
results, even though from a comparison between the boundary condition used with the present
assumptions onCa (Equation 3.41) and the full boundary condition (Equation 3.13), it follow
that for increasing values of Ca the boundary condition gets increasingly complex. Figure
3.12(c) shows that for increasing Bo numbers, the free surface elevation quickly decreases,
as does the surface curvature in the core, in line with Equation 3.64. The analytical model fits
the numerical data well for increasing Bo. Finally, Figure 3.12(d) shows that for an aspect
ratio as large as A = 0.5, the analytically determined free surface elevation is still matching
the numerical result of the MMIT method very well.

VOF

Figure 3.13 shows what happens to the free surface elevation when increasing either Ha,
Ca, Bo and A using the VOF method. As for the MMIT method, it is seen that the analytical
expression for the free surface elevation is relatively accurate even for larger values of the
dimensionless parameters than assumed in deriving the analytical model. This is especially
so for Ha and Bo.

For large Ca = 1000A4, the free surface elevation starts to deviate visibly, whereas for
A ≥ 0.5, the simulations did not result in a converged steady state solution, which we have
also seen for Ha2 > 4000. As various of the properties are varied over many orders of
magnitude, challenges with numerical stability are not surprising. Further addressing these
issues is outside the scope of this chapter. We can however conclude that the MMIT method
is more robust in handling these parameter variations.
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Figure 3.12 The surface elevation h from the MMIT simulations (symbols), horizontally rescaled to
[−0.5, 0.5], where from A = 0.1, Ha2 = 1, Ca = A4, Bo = A2, either of the parameters Ha2 (a),
Ca (b) , Bo (c) and A (d) is varied. The solid line indicates the analytic solution (Equation 3.64)
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Figure 3.13 The surface elevation h from the VOF simulations (symbols), horizontally rescaled to
[−0.5, 0.5], where from A = 0.1, Ha2 = 1, Ca = A4, Bo = A2, either of the parameters Ha2 (a),
Ca (b) , Bo (c) and A (d) is varied. The solid line indicates the analytic solution (Equation 3.64)
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3.4.4 Error

The normalized root mean square distance between the derived analytical elevation (Equation
3.64) and the calculated profile is defined as

e[xi] =

∑
i

(
A2h(xiA)− yi

)2
∑
i (A2h(xiA))

2 with h(x) =
3

8

Ca

Bo




sinh
(√

Box
)

cosh
(

1
2

√
Bo
) 1√

Bo
− x




(3.109)

Figure 3.14 shows this normalized root mean square distance for either increasing Ha2, Ca,
Bo, A or Re and for both numerical approaches. This distance is a measure for the deviation
of the analytical result from the numerical simulation. It shows that the analytical solution
starts to deviate more than 1% from the numerical solution for Ha2 > 1000. For Ca >
1000A4 the analytical solution deviates more than 1% from the MMIT solution.

For the aspect ratio it is also concluded from Figure 3.14, that the analytical solution is within
1% from the free surface elevation obtained from the MMIT model for values of the aspect
ratioA up to 0.5. For Reynolds numbers increasing toRe = 1000A, the free surface elevation
obtained from the analytic model is within 1% from the free surface elevation obtained from
the MMIT method.

In general, it can be seen from Figure 3.14 that the VOF solution for the free surface elevation
always deviates more from the analytical solution than the MMIT solutions. In addition to
the numerical challenges mentioned above, it should be noted that the properties of the top
phase are non-zero in the VOF simulation, in contrast to the MMIT simulations and analytical
derivation.

3.5 Conclusions

In this chapter we have studied the flow and free surface elevation of a layer of conductive
liquid with height-to-width ratio A� 1, that is subject to a potential difference horizontally
across the domain and a traverse x-dependent magnetic field. It was shown that the surface
tension and gravity forces in combination with the unevenly distributed Lorentz forces on
the fluid induce a steady state flow, which scales linearly with conductivity, magnetic field
gradient and applied potential difference and which vanishes for infinitely long layers (A →
0), whereas the free surface deformation depends on the capillary number, the Bond number
and the contact angle condition.

Increasing pressure within the layer will cause the interface to deform. The profile of this
interface was derived analytically for Hartmann numbers up to O(1), capillary numbers up
to O(A4), Bond numbers up to O(A2) and Reynolds numbers up to O(A), while A � 1.
It was proven that to lowest order approximation, the surface elevation profile is a function
of the capillary number, the Bond number and the contact angle condition. The magnitude
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of the free surface displacement scales linearly with the capillary number and decreases with
increasing Bond number. The shape of the free surface is determined by both the Bond
number and the contact angle boundary condition.

Furthermore, the biharmonic equation for the stream function in the side wall region was
solved analytically, showing the turning of the flow and the presence of small eddies in the
corner regions.

The first order approximation of the analytic solution was compared to finite volume compu-
tational models for free surface flow simulation using either a moving mesh interface tracking
technique or a volume of fluid method to track the interface, in combination with a one-way
coupled MHD solver via the equation for the electric potential. The analytically derived
elevation and subsurface flow properties match the numerical simulations well.

The analytical solution presented in this paper is derived up to O(A). This means that the
lowest order neglected terms are of order O(A2). For small enough aspect ratio (A = 0.1)
these terms quickly reduce to values smaller than 1%. Indeed, the difference with the nu-
merically found solution is only 0.4% (MMIT) and 1.2% (VOF) for A = 0.1. We therefore
conclude that the contribution of the neglected higher order terms in the analytical solution,
for an aspect ratio of 0.1, is smaller than 1%.

From our numerical simulations we have observed that the MMIT method is more robust than
the VOF method. Using the MMIT simulations, it is observed, that for larger values of the
Hartmann number, capillary number, Bond number, Reynolds number and aspect ratio, where
the underlying assumptions of the analytic solution are no longer satisfied, the analytical
solution and numerical results match within 1%, for A = 0.1 and either Ha2 up to 400, Ca
up to 200A4 or Bo up to 100A2 and within 2% for A = 0.5.

Bibliography

[1] Alboussière, T., Garandet, J. P., and Moreau, R. Asymptotic analysis and symmetry in MHD convection.
Physics of Fluids, volume 8(8):pp. 2215–2226 (1996).

[2] Ben Hadid, H. and Henry, D. Numerical study of convection in the horizontal Bridgman configuration under
the action of a constant magnetic field. Part 2. Three-dimensional flow. Journal of Fluid Mechanics, volume
333:pp. 57–83 (1997).

[3] Benthem, J. A Laplace transfor method for the solution of semi-infinte and finite strip problems in stress
analysis. Quarterly Journal of Mechanics and Applied Mathemathics, volume 16(4):pp. 413–429 (1963).

[4] Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V., and Tropea, C. Drop impact onto a liquid layer
of finite thickness: Dynamics of the cavity evolution. Physical Review E, volume 79(3):p. 036306 (2009).

[5] Bian, W., Vasseur, P., and Bilgen, E. Effect Of An External Magnetic Field On Buoyancy-driven Flow In a
Shallow Porous Cavity. Numerical Heat Transfer, Part A: Applications, volume 29(6):pp. 625–638 (1996).

[6] Brackbill, J. U., Kothe, D. B., and Zemach, C. A continuum method for modeling surface tension. Journal of
Computational Physics, volume 100(2):pp. 335–354 (1992).

[7] Cormack, D., Stone, G., and Leal, L. The effect of upper surface conditions on convection in a shallow cavity



52 Chapter 3

with differentially heated end-walls. International Journal of Heat and Mass Transfer, volume 18(5):pp.
635–648 (1975).

[8] Davidson, P. A. An Introduction to Magnetohydrodynamics. Cambridge University Press, 1 edition (2001).

[9] Davoust, L., Cowley, M. D., Moreau, R., and Bolcato, R. Buoyancy-driven convection with a uniform mag-
netic field. Part 2. Experimental investigation. Journal of Fluid Mechanics, volume 400:pp. 59–90 (1999).

[10] Duffy, D. G. Transform methods for solving partial differential equations. CRC Press (1994).

[11] Fautrelle, Y. and Sneyd, A. D. Instability of a plane conducting free surface submitted to an alternating
magnetic field. Journal of Fluid Mechanics, volume 375:pp. 65–83 (1998).

[12] Garandet, J. and Alboussière, T. Bridgman growth: Modelling and experiments. Progress in Crystal Growth
and Characterization of Materials, volume 38(1):pp. 73–132 (1999).

[13] Garandet, J., Alboussiere, T., and Moreau, R. Buoyancy driven convection in a rectangular enclosure with
a transverse magnetic field. International Journal of Heat and Mass Transfer, volume 35(4):pp. 741–748
(1992).

[14] Gillon, P. Materials processing with high direct-current magnetic fields. JOM, volume 47(5):pp. 34–37
(1995).

[15] Hirt, C. and Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of
Computational Physics, volume 39(1):pp. 201–225 (1981).

[16] Hughes, W. F. and Elco, R. A. Magnetohydrodynamic lubrication flow between parallel rotating disks.
Journal of Fluid Mechanics, volume 13(01):pp. 21–32 (1962).

[17] Hunt, J. C. R. Magnetohydrodynamic Flow in Rectangular Ducts. Journal of Fluid Mechanics,
volume 21(04):pp. 577–590 (1965).

[18] Juel, A., Mullin, T., Ben Hadid, H., and Henry, D. Magnetohydrodynamic convection in molten gallium.
Journal of Fluid Mechanics, volume 378:pp. 97–118 (1999).

[19] Kharicha, A., Teplyakov, I., Ivochkin, Y., Wu, M., Ludwig, A., and Guseva, A. Experimental and numerical
analysis of free surface deformation in an electrically driven flow. Experimental Thermal and Fluid Science,
volume 62:pp. 192–201 (2015).

[20] Kwok, Y. K. Applied Complex Variables. Cambridge University Press, New York, 1 edition (2002).

[21] Lehnert, B. An Instability of Laminar Flow of Mercury Caused by an External Magnetic Field. Proceedings of
the Royal Society of London. Series A, Mathematical and Physical Sciences, volume 233(1194):pp. 299–302
(1955).

[22] Meylan, M. H. and Gross, L. A parallel algorithm to find the zeros of a complex analytic function. ANZIAM
Journal, volume 44(0):pp. E236—E254 (2003).

[23] Moffatt, H. K. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics,
volume 18(01):pp. 1–18 (1964).
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4. Dynamics of a single, oscillating
turbulent jet in a confined cav-
ity§

We demonstrate how the self-sustained oscillation of a confined jet in a thin cavity can be
quantitatively described by a zero-dimensional model of the delay differential equation type
with two a priori predicted model constants. This model describes the three phases in self-
sustained oscillations, viz.: (i) pressure driven growth of the oscillation, (ii) amplitude limit-
ation by geometry and (iii) delayed destruction of the recirculation zone. The two parameters
of the model are the growth rate of the jet angle by a pressure imbalance, and the delay time
for the destruction of this pressure imbalance. We present closed relations for both model con-
stants as a function of the jet Reynolds number Re, the inlet velocity vin, the cavity width W
and the cavity width over inlet diameter W/d and we demonstrate that these model constants
do not depend on other geometric ratios. The model and the obtained model constants have
been successfully validated against three dimensional Large Eddy Simulations, and planar
Particle Image Velocimetry measurements, for 1600 < Re ≤ 7100 and 20 ≤ W/d < 50.
The presented model inherently contains the transition to a non-oscillating mode for decreas-
ing Reynolds numbers or increasing W/d-ratios and allows for the quantitative prediction of
the corresponding critical Reynolds number and critical W/d.

4.1 Introduction

A fluid jet may demonstrate self-sustained oscillations when it is confined in both directions
perpendicular to its flow direction. This phenomenon has been observed for jet Reynolds
numbers ranging from Re = 1002,11,19,31 up to Re = 170, 000.20 The physical mechanism
for this oscillation is well understood for both laminar31 and turbulent10 jets. The dimen-

§Published as: Righolt, B. W., Kenjereš, S., Kalter, R., Tummers, M. J., and Kleijn, C. R., Dynamics of an oscillating
turbulent jet in a confined cavity. Physics of Fluids, 27:095107, 2015
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sions of the confining cavity are known to have an important influence on the presence and
frequencies of these oscillations. For very wide cavities, the domain becomes unbounded
in one direction, and the self-sustained oscillation disappears.18 A jet in such a wide cav-
ity shows meandering, self-similar behavior.13 For decreasing cavity width, the oscillation
frequency increases,14,18 until the cavity geometry approaches that of a sudden expansion,
where strong asymmetries and oscillations are present as well.4,6,7 A vast amount of fluidic
oscillators exist,10,19,23,25 which are for example found in backward facing steps, flows over
cavities24 and jets through orifices.22 The systems have in common that either implicitly or
explicitly a delayed feedback loop is present that triggers the oscillatory behavior.

Delayed feedback mechanisms are very common in nature and technology and can result in
oscillations of any type. Some of these mechanisms can be described by a delay differential
equation (DDE) with a single delay constant. The delay time between the uptake of oxygen in
the lungs and the reception in the brain stem plays a role in the arterialCO2 control system.16

In economics, the interplay between income and capital stock can be explained with a time
delay in investments.29. Another example is the large time-scale temperature oscillation on
the southern hemisphere, often referred to as El Niňo, with a delay time that is associated
with the transit time of Rossby and Kelvin waves across the Pacific ocean.3,28 DDE models
have also been proposed for the oscillation of the reattachment length in a confined jet flow31

or for convective rolls in a closed box.30 Although the physical mechanism active in each
of the above examples may be very different, they have all been successfully described with
DDE-type models.

The objective of the present study is (i) to develop a DDE-type model for the oscillations of
a turbulent jet in a confined cavity, which represents the physical phases of the oscillating
motion and (ii) to use this model to predict necessary conditions for the existence of self-
sustained oscillations depending on the jet Reynolds number Re, and cavity width to nozzle
diameter ratio W/d. We use both Large Eddy Simulations and experimental data to validate
our DDE model and its predictions.

The paper is outlined as follows. The confined jet configuration and numerical methods for
3D LES turbulent flow simulations are given in section 4.2, the experimental validation of
the numerical flow simulations is presented in section 4.3. In section 4.4 we present a zero-
dimensional DDE-type model for single jet oscillations in a confined cavity and in section
4.5 we discuss how the model parameters in the DDE model can be obtained from given flow
properties.

4.2 Methods

4.2.1 Description of setup

In this paper we study the flow in a cavity as depicted in Figure 4.1. This cavity has dimen-
sions height × width × thickness (H ×W × T ). A downward oriented square tube of inner
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Figure 4.1 Studied configuration of a single jet in a confined geometry. The cavity has dimensions
H ×W × T = 0.7× 0.3× 0.035 m3. The nozzle inner width is d = 0.01 m and is submerged by a
distance dn = 0.1 m. The definition of the instantaneous jet angle θ, which is calculated between the
nozzle exit and a line at a distance S downstream from the nozzle exit, and monitoring locations p1 and
p2 are indicated.

dimensions d is inserted centrally to a depth dn, which injects the fluid into the cavity with a
velocity vin. For H ×W × T = 0.7× 0.3× 0.035 m3, d = 0.01 m and dn = 0.1 m, the
flow of salt water in this configuration is essentially two-dimensional, as will be demonstrated
further in this paper by showing its insensitivity to the precise value of T , and to friction at the
front and back walls. The flow in this configuration was previously investigated experiment-
ally using planar particle imaging velocimetry by Kalter et al. 10 . The outflow was placed off
center, in order to allow for optical access. In the present study we use the same dimensions
H , T , d, dn, whereas the width W is varied between W/d = 10 and W/d = 100. For
the cases W/d ≥ 50 the height H was increased to H/W = 2.5. The top of the cavity
is a free surface and the working fluid has a density ρ = 1.1× 103 kgm−3 and viscosity
ν = 1.27× 10−6 m2s−1.

In Figure 4.1 the instantaneous jet angle θ is defined. The jet angle was determined by a least
squares fit of a straight line through the points xi = maxx(|v(yi)|), in other words, through
the x-coordinates of the locations of maximum velocity magnitude for every line y = yi in
the range (−dn − S) < yi < (−dn), where we set S equal to W . Figure 4.2 shows the
collections (xi, yi) and the resulting linear fit for three time instances in half a period of the
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Figure 4.2 The instantaneous jet angle is calculated from a least squares fit (blue line) through the points
of maximum velocity (red dots) per y-coordinate in the instantaneous velocity field obtained from the
numerical simulation (black vectors). Here shown for Re = 4700 and W/d = 30 at t = 64 s (left), a
quarter period later at t = 74 s and half a period later at t = 84 s.

oscillation.

4.2.2 Numerical fluid flow models

We consider the LES filtered, single phase, incompressible Navier-Stokes equations

∂vi
∂t

+ vj
∂vi
∂xj

=
∂

∂xj

[
(ν + νSGS)

(
∂vi
∂xj

+
∂vj
∂xi

)]
− 1

ρ

∂p

∂xi
, (4.1)

where vi is the velocity, ρ the fluid density, ν the laminar viscosity, νSGS the sub-grid-
scale viscosity from the LES model and p the pressure. We use the finite-volume based tool
OpenFOAM 2.134 to solve the discretized equations using the PISO scheme.8

The dynamic Smagorinsky model15 has been employed to calculate the sub-grid-scale vis-
cosity as νSGS = (C∆)

2 S, where ∆ is the local grid size, defined as ∆ = (∆x∆y∆z)
1/3

and S the characteristic rate of strain, S = (2SijSij)
1/2 and Sij = (∂vi/∂xj + ∂vj/∂xi) /2.

The Smagorinsky constant C is defined as C = 〈LijMij〉 /2
〈
M2
ij

〉
, with the resolved stress

tensor Lij = ṽivj − ṽiṽj and Mij = 2∆2S̃Sij − 2 (2∆)
2 S̃S̃ij , where ·̃ indicates the fil-
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tering operation. An important advantage of the dynamic Smagorinsky model for the studied
application is that it automatically handles the damping of turbulence towards the walls.

As recommended by Lilly 15 we use local averaging (indicated by < . >) of the Smagorinsky
coefficient in order to reduce computational instabilities, due to local small values ofM2

ij . We
follow the approach of Zang et al. 35 and apply averaging over three control volumes in every
direction, as well as clipping of the total viscosity ν + νSGS at 0, in order to partially allow
for backscatter, i.e. the transfer of energy to larger scales.15 For the studied applications, the
region where νSGS/ν < −0.5 occupies less than 1% of the total domain.

The equations are discretized on an orthogonal, rectangular mesh, consisting of 128× 275×
34 ≈ 1.1 × 106 grid cells. This being a sufficient grid resolution is demonstrated in Fig-
ure 4.3(bottom), which shows contours of the instantaneous νSGS/ν. The maximum value
νSGS/ν ≤ 10, and the domain averaged νSGS/ν = 0.1.

Temporal discretization is done using a second order fully implicit scheme,34 with a time step
corresponding to max(Co = u∆t/∆x) = 1. Within the distributed version of OpenFoam,
higher order explicit temporal discretization schemes are not available. Moreover, Vuorinen
et al. have shown that their implementation and application of a third and fourth Runge-Kutta
explicit temporal discretization within OpenFOAM led to a small efficiency gain only. The
convective and diffusive terms are spatially discretized using a second order central differen-
cing scheme.

The instantaneous value of y+ at the walls locally reaches values as low as y+ = 0.1 and
as high as y+ = 15. We therefore apply, at all solid wall boundaries, a universal velocity
profile called Spalding’s law,27 viz. y+ = u+ +1/E

[
exp(κu+)−

(
1+κu+ +1/2(κu+)2 +

1/6(κu+)3
)]

, with y+ = yuτ/ν, u+ = v/uτ , the friction velocity u2
τ = (ν + νSGS) dv/dn,

κ = 0.41 and E = 9.8.5,9,17,32 This law is valid for 0 ≤ y+ ≤ 300 and we therefore
generally apply it to all walls of the domain. For y+ < 10, which is the case for most parts
of the walls, Spalding’s law reduces to the laminar flow no-slip boundary condition. Indeed,
using a laminar flow boundary condition instead of Spalding’s law led to minor changes in
the flow behaviour only. This also indicates that our simulations are relatively insensitive to
the near-wall grid size.

For the inflow via the nozzle, a periodic inlet domain, of length 10d, was applied to guarantee
fully developed inflow conditions. The free liquid surface at y = 0 was modeled using a free
slip boundary condition.

4.3 Validation of the numerical method

We validate the numerical model for a jet of Re = vind/ν = 4700 in a confined cavity as
defined in Figure 4.1 using data from our previous experiments.10 In Figure 4.3 vectors of the
mean velocity and contours of the horizontal and vertical components of the mean velocity
are depicted, both for the present numerical simulation and for the experiment. In Figure
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Figure 4.4 (left) The vertical component of the mean velocity for Re = 4700 and W/d = 30 for the
lines y = −0.18 m, y = −0.28 m and y = −0.38 m, which is respectively 0.08 m, 0.18 m and
0.28 m below the nozzle exit for both the numerical simulation (solid red) and the experiments (dashed
blue and circles, Kalter et al. 10 ) (right) The turbulent kinetic energy obtained from the numerical sim-
ulations is shown for the same lines (red).

4.4 the vertical component of the mean velocity on three horizontal lines downstream from
the nozzle is depicted. These comparisons show a good agreement between numerical and
experimental mean velocities.

Figure 4.4 furthermore shows profiles of the turbulent kinetic energy obtained from the nu-
merical simulations, where at each distance a double peak is observed, which is related to the
long term oscillations of the jet in the cavity.

Figure 4.5 shows a time series of the jet angle for both the numerical simulations and the ex-
periments. The dominant frequency of oscillation was determined at f = 0.022± 0.001 Hz
for the simulations and f = 0.023± 0.002 Hz for the experiments. This leads to a Strouhal
number St = fW/vin of St = 0.011, which is in accordance with findings from literature.10



62 Chapter 4

-20

-10

0

10

20

0 50 100 150 200 250 300

θ
[◦

]

t [s]

Figure 4.5 Jet angle θ(t) from the numerical simulation (solid red line) and from the PIV measurements
(dashed blue line, from Kalter et al. 10 ) for Re = 4700 and W/d = 30.

4.4 Model for self-sustained oscillations of a jet in a con-
fined cavity

4.4.1 Physical mechanisms

The physical mechanism of the stable self-sustained oscillation of a single jet in a closed, thin
cavity has been described earlier to consist of three stages.10 Initially, the jet flows straight to
the bottom, forming two recirculation zones of equal size on both sides of the cavity. Then,
due to a small, random pressure difference across the jet, it will move towards one side of the
cavity (designated right in this section), after which the self-sustained oscillation is triggered.

In the first stage of the jet oscillation, the jet is oriented slightly to the right (θ < 0), which
causes the recirculation zone at the right to be slightly stronger, due to its smaller diameter
and higher velocities. This causes a larger pressure deficit in this recirculation zone, which
draws the jet further towards the side, hence again creating a larger pressure deficit and further
jet deflection.

Thus, the jet angle and pressure deficit in the recirculation zone are tightly coupled. We
confirm this by means of our LES simulations. The time dependency of both the jet angle
θ and the pressure difference ∆p across the jet, obtained from these simulations, is shown
in Figure 4.6(left) for Re = 4700, where ∆p was determined from the pressure difference,
∆p = p2 − p1 between the monitoring points p1 and p2, as defined in Figure 4.1 and θ is
defined to be positive for jet deflections to the left.

It is seen from Figure 4.6(left), that θ and ∆p oscillate with the same period T = 46 s.
The pressure signal is slightly ahead of the jet angle signal, especially during the sweeping
motion of the jet far from its extreme positions. The cross correlation function (see Figure
4.6(right)) of both signals shows a peak around ∆t = 2 s, which means that the jet angle
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Figure 4.6 (left) Time series of the pressure difference between monitoring point p1 and p2 (as defined
in Figure 4.1) (dashed blue) and a time series of the jet angle θ (solid red) for Re = 4700. The vertical
lines indicate the time instances for the snap shots in Figure 4.2. (right) Cross correlation function
between ∆p and θ.

follows the pressure difference with a small time delay of 2 s. At the extreme positions, other
effects take over, and the phase difference is not clearly visible anymore. These observations
and the found time delay were found to be rather insensitive to the choice of the location of
probe-points p1 and p2.

Next, in the second stage of the jet oscillation, the jet approaches the side wall and the recir-
culation zone can not shrink any further, because this would lead to a strongly non-circular re-
circulation zone with relatively high velocities, which becomes unphysical. At that moment,
the maximum jet deflection θmax is reached. Now the driving mechanism in the increasing
pressure deficit in the upper recirculation zone vanishes, and the driving motion for the jet
deflection therefore also vanishes.

With reference to Figure 4.2(right) we can estimate θmax. In the extreme right position of the
jet (θ = −θmax), a recirculation zone of diameter W/2 is present in the upper right corner,
and a second adjacent recirculation zone of diameter W lower in the cavity. Now, for the
angle θ between the vertical and the line connecting the nozzle exit with the tangent point
of the two recirculation zones, we find from simple geometrical considerations1 tan (θ) =(

3
2 +
√

2
)−1

, or θ ≈ 19◦.

Indeed, in our simulations, we find a constant θmax = 18◦ independent of Re for a wide
range of W/d. In Figure 4.7 both a time series and a phase averaged jet angle are shown
for Reynolds numbers between Re = 3150 and Re = 7100. The jet angle amplitude is
almost independent of Re. The oscillation frequency, however, differs significantly, with
periods increasing roughly inversely proportional with Re, from T = 31 s to T = 59 s
upon decreasing Re from 7100 to 3150. This is in accordance with the constant Strouhal
number behavior as determined by Kalter et al. 10 . In Figure 4.8, W/d is varied between 10
and 50. The frequency of oscillation increases with decreasing W/d, in correspondence with
findings of Lawson and Davidson 14 . It should be noted that W/d = 10 is the geometry ratio
previously studied by Villermaux and Hopfinger 31 . The amplitude θmax of the oscillation is
only weakly dependent on W/d for W/d ≥ 20.
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Finally, the third and final stage starts when the jet oscillation has reached its maximum de-
flection angle and the jet impinges on the side wall. This causes a division of flow between
an upper, strong recirculation zone and a downward directed flow along the wall. The down-
ward flow along the right wall starts to feed a recirculation zone in the lower left part of the
cavity. This new recirculation zone is visible in Figure 4.2(right). The diminishing flow rate
in the upper recirculation zone results in a smaller pressure deficit in the centre of the upper
recirculation zone. Simultaneously, the secondary recirculation zone lower in the cavity starts
to grow in strength. Less fluid is fed to the recirculation zone in the upper right part of the
cavity, which causes the pressure deficit inside the upper right recirculation zone to quickly
decrease. The jet will not remain in its extreme position, -θmax, but will move downward and
subsequently towards the left, with θ returning to 0, as follows from Figure 4.6. The decay
of the strong recirculation zone is associated with a delay time scale τ , which plays a crucial
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Figure 4.8 (left) Time series of the jet angle θ(t) and (right) phase average jet angle profile, with the
time-axis scaled by the period T , forRe = 4700 andW/d = 10 (dashed red),W/d = 20 (long-dashed
green), W/d = 30 (solid blue) and W/d = 50 (short-dashed turquoise), and T = 7.5 s, T = 22 s,
T = 43 s and T = 1.8× 102 s respectively.
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role in the self-sustained nature of the oscillation. As the jet crosses the vertical at θ = 0, the
first stage re-starts. This self-sustained oscillation repeats itself indefinitely.

4.4.2 Model description

In this section, we propose a zero-dimensional model for the self-sustained jet oscillation in
a confined cavity based on the relevant physical mechanisms. We start from the horizontal
component of the Navier-Stokes equations,

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= −1

ρ

∂p

∂x
+ ν

∂2ux
∂x2

+ ν
∂2ux
∂y2

. (4.2)

Neglecting the viscous terms in this equation due to the high Reynolds number of the flow,
we show that on the left hand side of this equation, the third term is dominant. Firstly, vx
is estimated from the jet oscillation, i.e. vx ∼ −S ∂θ∂t ∼ −SθmaxT , and vy is estimated from
vy ∼ vin. An order of magnitude analysis leads to

∂vx
∂t

vy
∂vx
∂y

∼
Sθmax
T 2

vin
Sθmax
T S

∼ S

vinT
,

vx
∂vx
∂x

vy
∂vx
∂y

∼
S2θ2max
T 2W

vin
Sθmax
T S

∼ S2θmax
vinTW

. (4.3)

Observing from Figure 4.2 that S ∼W and using the observation that St = W/(vinT )� 1,
we now find that

∂vx
∂t

vy
∂vx
∂y

∼ St� 1,
vx

∂vx
∂x

vy
∂vx
∂y

∼ St θmax � 1. (4.4)

From Equation 4.2 two leading terms remain:

vy
∂vx
∂y
∼ −1

ρ

dp

dx
, (4.5)

which can be rewritten using the above expressions for vx and vy , and recalling ∆p = p2−p1,
to

dθ

dt
∝ 1

ρvinW
∆p. (4.6)

From Figure 4.6 we observed that θ and ∆p are tightly coupled. Hence we may pose

∆p ∝ θ. (4.7)

Now, combining equations 4.6 and 4.7, we find that, during the growing stage of the jet
oscillation,

dθ

dt
= rθ, (4.8)

where r is the growth rate of the jet oscillation. This expression is not a sufficient description
for the time evolution of the jet behaviour, as it does not incorporate the maximum achievable
jet angle and consecutive decay of the upper recirculation zone.
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The maximum achievable jet angle acts as a damping mechanism on the self-excited jet os-
cillation, as it prevents unlimited growth of the jet angle. Hence, we introduce an obstruction
parameter, µ, and introduce a damping term in Equation 4.8,

d

dt
θ = (r − µθ2)θ. (4.9)

The third order of the damping term in θ is chosen as the lowest possible order which is (i)
higher than the order of the leading forcing term, and (ii) able to maintain symmetry of the
model equation. The equation now has three equilibrium points, namely θ = 0, which is
unstable, and θ = ±

√
r/µ, which are stable equilibria. Thus, the value of the obstruction

parameter µ is related to the growth rate parameter r and to the maximum deflection angle
θmax as µ = r/θ2

max. Later we show that the inclusion of the feedback term in the model, as
discussed below, leads to a small correction in µ.

As described above, the delay time τ is associated with the decay time of the strong recircu-
lation zone, eventually restoring the jet angle θ. This is represented in the model Equation
4.10 by the negative feedback term, with a feedback strength k, and k < r. The delay time τ
is of the order of the turnover time of the recirculation zone, which scales with W/vin. Later
we will show that it is also weakly dependent on Re.

This leads to the full model equation

d

dt
θ(t) = rθ(t)− µθ3(t)− kθ(t− τ), (4.10)

where r, µ, k and τ are the model parameters described above. This is an example of a
retarded delay differential equation12 and is also referred to as delayed-action oscillator. In
this form it is used for example in the description of the El Niňo oscillation.3,28 The three
terms on the right hand side of the equation can be associated with the three stages in the
oscillating motion as described above.

4.5 Determination of model parameters and its implica-
tions

We now discuss how the four model parameters r, µ, k and τ in Equation 4.10 can be pre-
dicted a priori, as a function of Re and W/d. From LES simulations at given W/d and
Re, we computationally determine the best fitting parameter set {r, µ, k, τ}, by applying the
Nelder-Mead simplex method21 on the phase-averaged jet angle. This procedure is further
outlined in appendix 4.A.

Figure 4.9 shows the phase-averaged jet angle from LES, for different Re and W/d, in con-
junction with the DDE model predictions, using the values of r, µ, k and τ as optimized and
indicated for each separate case. The thus obtained solutions of the model equation are in
good agreement with the jet angle from the LES simulation, except for the inflexion points
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Figure 4.9 Phase averaged jet angle profile from the LES simulations (solid red) and from the DDE
model (dashed blue), for four cases with different Reynolds numbers and cavity widths. The model
parameters r, µ, k and τ obtained from the fitting procedure are shown per figure.

observed in the LES simulation that are not reproduced by the DDE model and which are
probably due to higher order non-linear effects not taken into account in the model.

4.5.1 Reduced parameters

The non-linear delay model for a single jet in a confined cavity (Equation 4.10) contains four
constants, viz. r, µ, k and τ . In terms of a dimensionless time t′ = rt and a scaled jet angle
θ′ =

√
µ/rθ, the behavior of the model, however, is determined by only two independent

parameters, α = k/r and δ = rτ :

dθ′

dt′
= θ′ − θ′3 − αθ′(t′ − δ). (4.11)

Here α denotes the relative strength of the feedback mechanism compared to the growth rate,
and δ denotes the dimensionless delay time. Thus, as an alternative to r, µ, k, τ , the model
Equation 4.10 can also be defined in terms of α, δ, µ, τ . From a linear stability analysis of
Equation 4.11, its neutral curve δn can be derived,28

δn(α) = arccos

(
3α− 2

α

)(
α2 − (3α− 2)2

)− 1
2 . (4.12)

For δ < δn(α), the oscillations vanish. The behavior of Equation 4.11 for α < 1 is described
by Suarez and Schopf 28 . They showed that the shape of the oscillation is sinusoidal close to



68 Chapter 4

α

δ

Unstable

δ

Unstable

Re = 3150
Re = 4700 Re = 7100

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

Stable

W/d = 30

W/d = 20
W/d = 25

W/d = 30
W/d = 35

0 0.5 1 1.5 2 2.5 3

Stable

Re = 4,700

Figure 4.10 The neutral curve (Equation 4.12) of the reduced model (Equation 4.11), where the shaded
region depicts the region of stability, while the white region depicts the unstable modes. The parameter
values for Re = 3150 up to Re = 7100 and W/d = 30 (left) and for W/d = 20 up to W/d = 50 and
Re = 4700 (right) are depicted in this diagram. The error bars in these graphs indicate the accuracy in
the fit, see appendix 4.A for details.

the neutral curve δ = δn(α), while for δ ≥ 10, the oscillation reaches a block wave with a
period of oscillation of twice the delay time.

The jet oscillations studied in this paper, see Figures 4.7(right) and 4.8(right), are of a sinus-
oidal nature, leading to the expectation that apparently the parameters α and δ in Equation
4.11 should be close to the neutral curve. This is indeed the case. Combinations of α and δ
far above the critical curve were not observed for any studied combination of W/d and Re
and seem to be unphysical for the studied flows.

Figure 4.10 shows the neutral curve, Equation 4.12, in conjunction with the found optimal
values for α and δ for different sets of Re and W/d. Indeed, the best fit parameters all reside
on, or very close to, the neutral curve. In other words, the number of parameters in the model
can be reduced by one, to δ, µ, τ , by application of Equation 4.12 which relates δ to α. From
Figure 4.10, it is also observed that α, i.e. the relative strength of the feedback compared to
the initial growth rate, decreases for increasing Re, whereas α increases for increasing W/d.

The parameter set can be further reduced by using a relation between µ and θmax. Without the
feedback term it was derived that θmax =

√
r/µ. By including the feedback term however,

the maximum jet angle should be slightly corrected, as for α and δ close to the neutral curve,
it was found that θ′max =

√
2(1− α2), and thus

µ =
2r
(
1− α2

)

θ2
max

. (4.13)

Herewith it is demonstrated that the parameter set {r, µ, k, τ} can be reduced to {r, τ} by
making use of relations 4.12 and 4.13 with α = k/r and δ = rτ .
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Figure 4.11 Parity plot for r (left) and τ (right) following from the fit (horizontal axis) and the model
(vertical axis, equations 4.15), for different Re (red circles for W/d = 30 and green squares for
W/d = 20) and W/d (blue triangles for Re = 4700).

4.5.2 Parameter estimation

From dimensional arguments r and τ are expected to scale as

r = κ1
vin
W

f

(
Re,

W

d
,
H

d
,
dn
d
,
T

d

)
, τ = κ2

W

vin
g

(
Re,

W

d
,
H

d
,
dn
d
,
T

d

)
. (4.14)

From our LES simulations for varying Re (1600 < Re < 7100), W/d (20 ≤ W/d < 50),
T/d (3 ≤ T/d < 6), H/d (70 ≤ H/d ≤ 100) and dn/d (10 ≤ dn/d ≤ 25), we find that
f = f(Re,W/d) and g = g(Re,W/d), both being independent of T/d, H/d and dn/d for
the studied range.

From a consecutive fitting procedure of the parameters, we determined r and τ as a function
of vin, W , Re and W/d, as

r = κ1
vin
W

Re−
1
4

(
W

d

)− 1
2

, τ = κ2
W

vin
Re

5
9 , (4.15)

with κ1 = 5.9± 0.2 and κ2 = 0.13± 0.01.

Figure 4.11 compares the results of the fit with the model estimation for the parameters r
and τ (Equation 4.15), showing a good agreement of our model with the parameters obtained
from the LES simulations.
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Figure 4.12 Example model solutions (solid lines) and θ obtained from the numerical simulations
(symbols and dashed lines). Unless stated otherwise, T/d = 3.5, dn/d = 10, H/d = 70 (for W/d <
50) and H/d = 2.5W/d (for W/d ≥ 50) and ν = 1.0× 10−6 m2/s (a) Re = 4700 and W/d = 30,
(b) Re = 7100 and W/d = 20, (c) Re = 4700, W/d = 30, ν = 2.0× 10−6 m2/s and vin
changed accordingly to satisfy Re = 4700, (d) Re = 4700, W/d = 30, T/d = 5.0, (e) Re = 4700,
W/d = 30, H/d = 100, (f) Re = 4700, W/d = 30, dn/d = 25.

4.5.3 Model application

Validations of the presented model (Equation 4.10 with r, τ , µ, k obtained from equations
4.12, 4.13 and 4.15), are shown in Figure 4.12 for Re = 4700 and W/d = 30, and Re =
7100 and W/d = 20. The figure demonstrates the applicability of the present model for the
prediction of the jet angle oscillation in a confined cavity for liquids of different viscosity and
the independence of the model constants on T/d, H/d and dn/d for the studied ranges.

Of course, the frequency of an oscillating jet in a confined cavity for all Re and W/d may
simply be calculated from the observed constant Strouhal number, St = 0.011. However, for
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Figure 4.13 The jet angle θ(t) for (left) Re = 900 and W/d = 30, initialized with the oscillating flow
field for Re = 1600 and (right) Re = 4700 and W/d = 100, initialized with zero velocity in the
domain.

sufficiently wide cavities, these oscillations are not present.13,18 From Figure 4.10 it follows
that the system is stable for δ < 1. As δ = rτ , an approximate relation between the critical
Reynolds number and the width to nozzle diameter ratio can be found:

Recrit = κ3

(
W

d

) 18
11

, (4.16)

with κ3 = (κ1κ2)
−36/11

= 2.4± 0.7. This implies that

1. for certain W/d there is a Recrit, below which oscillations cease and
2. for certain Re, there is a (W/d)crit, above which oscillations cease.

The ceasing of the oscillations is demonstrated in Figure 4.13, which shows the jet angle for
Re = 900 and W/d = 30 and for Re = 4700 and W/d = 100. According to the above
Recrit, the oscillations of the jet angle should vanish for these conditions, and indeed, no
periodic jet oscillations are observed.

In table 4.1, we summarize, for the cases in Figures 4.12 and 4.13, r, τ , Recrit, (W/d)crit
as well as frequencies following from St = 0.011, the LES simulation, the experiments by
Kalter et al. and the DDE model. From this table, it also follows why the oscillations vanish.
The growth rate of the supposed jet angle oscillation becomes very weak, such that a possible
deflection of the jet does not get amplified significantly.

The stable and oscillating modes listed in table 4.1 are summarized in a flow stability diagram
in Figure 4.14 in conjunction with the critical curve (Equation 4.16).
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Table 4.1 For givenRe andW/d, r and τ (eq. 4.15) are calculated. Furthermore, using Equation 4.16,Recrit is calculated based onW/d. The last
four columns indicate the oscillation frequency, based on St = 0.011, the LES model, the experiments by Kalter et al. 10 and the zero-dimensional
model respectively. Unless stated otherwise, H/d = 70 (for W/d < 50) and H/d = 2.5W/d (for W/d ≥ 50), dn/d = 10, T/d = 3.5 and
ν = 1.27× 10−6 m2/s.

Re W/d r [s−1] τ [s] Recrit fSt [Hz] fLES [Hz] fexp [Hz] fmodel [Hz]
500 30 0.05 19.2 ∼ 900 0.0023 no oscillations Re ≤ Recrit
900 30 0.06 14.9 ∼ 900 0.0042 no oscillations Re ≤ Recrit

1600 30 0.11 11.6 ∼ 900 0.0073 0.0098± 0.004 0.0095
1600 50 0.09 11.8 ∼ 2000 0.0044 no oscillations Re ≤ Recrit
3150 20 0.35 5.71 ∼ 400 0.022 0.034± 0.003 0.032
3150 30 0.19 8.56 ∼ 900 0.015 0.017± 0.001 0.014 0.018
4700 20 0.48 4.75 ∼ 400 0.033 0.045± 0.002 0.042
4700 25 0.34 5.94 ∼ 600 0.026 0.032± 0.002 0.031
4700 30 0.26 7.11 ∼ 900 0.022 0.022± 0.001 0.022 0.024
4700 35 0.21 8.32 ∼ 1100 0.019 0.015± 0.002 0.019
4700 50 0.12 11.9 ∼ 2000 0.013 0.006± 0.002 0.011
4700 100 0.04 23.8 ∼ 6000 0.0066 no oscillations Re ≤ Recrit
7100 20 0.65 3.98 ∼ 400 0.050 0.059± 0.005 0.054
7100 30 0.35 5.98 ∼ 900 0.033 0.031± 0.002 0.035 0.031

10000 30 0.46 5.12 ∼ 900 0.047 0.042 0.039
4700 30 0.41 4.55 ∼ 900 0.034 0.035± 0.002 0.037 1

4700 30 0.26 7.11 ∼ 900 0.022 0.020± 0.003 0.024 2

4700 30 0.26 7.11 ∼ 900 0.022 0.021± 0.003 0.024 3

4700 30 0.26 7.11 ∼ 900 0.022 0.024± 0.004 0.024 4

1 ν = 2.0× 10−6 m2/s; 2 T/d = 5.0; 3H/d = 100; 4 dn/d = 25
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Figure 4.14 Flow stability as a function of Re and W/d for simulations (squares) and experiments
(circles). Oscillatory flows are indicated by open symbols, non-oscillating flow by closed symbols. The
critical Reynolds number predicted by the DDE model, with its uncertainty, is depicted by the solid
line and grey area respectively. Oscillatory flows are expected for Re > Recrit. For all symbols
T/d = 3.5, dn/d = 10 and ν = 1.27× 10−6 m2/s.

4.6 Conclusion

We studied the dynamics of the self-sustained oscillation of a turbulent jet in a confined
cavity. We presented a zero-dimensional DDE-type model that describes the oscillation of
the jet angle in such a system. The model includes the three consecutive phases of the jet
oscillation, which are the pressure driven growth of the oscillation, the limited amplitude due
to the confinement, and the delayed destruction of the pressure deficit in the recirculation
zone by a feedback loop. These phases are described by their respective terms in a delay
differential equation with four parameters. We showed that the dimensionless behavior of
the model can be properly represented by just two parameters, which are the growth rate of
the oscillation, r, and the delay time, τ , for the destruction of the strong recirculation zone
adjacent to the oscillating jet. Closed relations have been proposed for both parameters as
a function of the jet Reynolds number Re, the inlet velocity vin, the cavity width W and
the cavity width to nozzle diameter ratio W/d. For the studied ranges (3 < T/d < 6),
70 < H/d < 100, 10 < dn/d < 25) both model parameters are independent of these
geometry ratios.
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The model displays the correct oscillation behavior of the jet across the domain for ranges
of at least 1600 < Re < 7100 and 20 ≤ W/d < 50 when these are compared with three
dimensional Large Eddy Simulations. The model also describes that jet oscillations vanish
for Reynolds numbers below a critical value, and W/d above a critical value, which both
can be predicted a priori. As this model includes the prediction of stable modes, it can be of
interest for all kinds of industrial applications where the stabilization of oscillating flows is
relevant. This model also offers perspective for pressure dominated oscillations in multi-jet
configurations and more irregular oscillations, by additionally introducing two oscillators and
multiple delay terms, respectively.
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RungeâĂŞKutta projection methods for time dependent flows using OpenFOAMÂő. Computers & Fluids,
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4.A A posteriori determination of the model parameters

The proposed model (Equation 4.10) for the jet oscillation comprises four unknowns, the
growth factor r, the obstruction factor µ, the delay time τ and the delay strength k. These
parameters can be obtained from fitting the solution of Equation 4.10 with a realization of the
jet angle as a function of time. The fitting procedure for obtaining r, µ, k and τ is as follows
and is calculated using MATLAB-R2013b.

1. Calculation of the phase average of θ(t).

2. Loop over different sets {r, µ, k, τ} of initial conditions.

(a) Calculate phase of periodic solution by solving Equation 4.10 for one or more
sets of {r, µ, k, τ} using Matlab’s dde23 routine.26 This routine is able to
solve (systems of) non-linear differential delay equations of the form y′(t) =
f(t, y(t), y(t− τ)).

(b) Calculate the value of the cost function (Equation 4.17) for the solution.

(c) Apply the Nelder-Mead Simplex Method21 on the parameters and repeat from
step (a) until convergence is reached.

The determination of the parameters includes a loop over several sets of initial conditions,
since the minimum found by the Nelder-Mead method is not necessarily a global minimum.
From 10 different initial values, we select the solution with the lowest value of the cost
function.

4.A.1 Phase average

The phase average θ̃(t) is calculated from the time signal θ(t) by rescaling each period,
defined from positive zero-crossing to the next positive zero-crossing, to the dominant period,
and subsequent averaging of the phases, finally the phase average is rescaled to the mean peak
value. Thus

1. Determine ti, the i-th zero-crossing (where θ(t = ti) = 0).

2. Define the i-th phase, θi(t) from θ(t) between ti−1 < t < ti.
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3. Define the stretched phase θ∗i (t′) = θi

(
t−ti−1

Ti

)
with Ti = ti − ti−1.

4. Calculate the phase average θ̃∗(t′) = 1
N

∑N
i=1 θ

∗
i (t∗) and the mean amplitude θ∗ =

1
N

∑N
i=1 max θ∗i .

5. Rescale the phase average θ̃(t) = θ̃∗(t/T )
θ∗

max θ̃∗
.

4.A.2 Cost function

The cost function that is minimized in the Nelder-Mead method is defined as

f(θ, θ̃) = m1m2m3

∫ Tθ̃
0

(
θ̃ − θ

)2

dt
∫ Tθ̃

0
θ̃2dt

, (4.17)

which is the normalized root-mean-square distance between the phase-averaged θ̃ and the
calculated θ, multiplied by additional multipliers, m1, m2 and m3 in order to improve the
convergence rate of the algorithm, i.e.

• if the oscillation period Tθ is different from intended period: Tθ̃. m1 = 1 +

10
(

max
(
Tθ
Tθ̃
,
Tθ̃
Tθ

)
− 1
)

• if any of r, µ, k, δ − 1 or δ − δn(α) is negative: m2 =
∏

q∈{r,k,µ,δ,δ−δn(α)}
1− 100 min(0, q)

• if α > 1: m3 = 1 + 100(max(α, 1)− 1).

4.A.3 Error estimation

In order to quantify the error in our fitting procedure, we use a bootstrapping of resampling
residuals. If we denote the original phase-averaged signal by θi and the fit by θ∗i , then the
residual is defined as εi = θi − θ∗i . Now, the fitting procedure is repeatedly executed on
θ̂i = θ∗i + εj . The error in r, µ, k and τ is obtained as the standard deviation of the resulting
sets of parameter values. The error in α and δ is then straightforwardly obtained.

4.B Derivation of the maximum jet angle

In this appendix, we derive the maximum jet angle for an oscillating jet in a confined cavity.
When the jet is in an extreme right position, figure 4.15 is a schematic representation of the
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two recirculation zones: a recirculation zone with diameter W/2 in the upper right and a
second adjacent reicrculation zone of diameter W lower in the cavity.

The maximum jet angle is indicated with α, and can be calculated from (x1, y1), which is the
tangent point of both circles, i.e.

tanα =
|x1|
|y1|

(4.18)

Based on similar triangles (identified by the angle γ), it is found that

sin γ =
x1

W/2
=

W/4

3W/4
→ x1 =

W

6
. (4.19)

Now, the circle in the upper left has center ( 1
4 ,− 1

4 ) and radius W/4, hence

(
x− W

4

)2

+

(
y +

W

4

)2

=

(
W

4

)2

(4.20)

As (x1, y1) resides on this circle, and x1 is known, we find

y1 = −W
4
± W

6

√
2, (4.21)

and thus

tanα =
1
6

1
4 + 1

6

√
2

=
1

3
2 +
√

2
, (4.22)

which has been used in the paper.
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Figure 4.15 Schematic representation of two recirculation zones of diameter W and W/2. The origin
is located at the nozzle exit, and the maximum jet angle, α is observed as the angle between the vertical
and the line connecting the nozzle exit with the tangent point of the two circles.





5. Electromagnetic control of an
oscillating turbulent jet in a con-
fined cavity§

Control of self-sustained jet oscillations in confined cavities is of importance for many indus-
trial applications. It has been shown that the mechanism underlying these oscillations con-
sists of three stages: (i) growth of the oscillation, (ii) amplitude limitation and (iii) delayed
destruction of the recirculation zone bounding the jet. It has also been shown that oscillations
may be enhanced or suppressed by applying (e.g. electromagnetic) body forces.

In the current paper we study the influence of electromagnetic forces oriented aligned with or
opposite to the direction of the jet on the oscillation mechanism. The influence of the forcing
is found to depend on the Stuart number N in relation to a critical Stuart number Ncrit. We
demonstrate that for |N | < Ncrit, the oscillation mechanism is essentially unaltered, with
moderate modifications in the jet oscillation amplitude and frequency compared to N = 0.
For N > Ncrit, electromagnetic forcing leads to total suppression of the self-sustained os-
cillations. For N < Ncrit, electromagnetic forces dominate over inertia and lead to strongly
enhanced oscillations, which for N � −Ncrit become irregular.

As was earlier demonstrated for N = 0, the present paper shows that for −6Ncrit < N <
Ncrit the oscillatory behaviour, i.e. frequencies, oscillation amplitudes and wave shapes, can
be described quantitatively with a zero-dimensional model of the delay differential equation
(DDE) type, with model constants that can be a priori determined from the Reynolds and
Stuart number and geometric ratios.

§Submitted as: Righolt, B. W., Kenjereš, S., Kalter, R., Tummers, M. J., and Kleijn, C. R., Electromagnetic control
of an oscillating turbulent jet in a confined cavity.
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5.1 Introduction

In continuous steel casting, in which liquid steel from a tundish is injected into a thin mould
through an injection tube with tailored nozzle configuration,1,5 an even distribution of heat is
important in order to achieve uniform solidification and high quality steel.27,41 Flow turbu-
lence and large scale self-sustained flow oscillations12,13 may have a large detrimental impact
on the temperature distribution and steel quality.11 Both can be well controlled by means of
an electromagnetic brake (EMBr).6,7,14

Electromagnetic forcing of conductive fluids is achieved by the simultaneous application of
(induced or externally supplied) electric currents and external magnetic fields. This for-
cing can enhance or suppress self-sustained jet oscillations,13 enhance wall-heat transfer
by increased turbulent mixing,15,16 control flows near boundaries,3,29 in order to reduce
drag,26,30,31 or to control the boundary layer thickness,8,21 which influences flow separa-
tion.4,37

Although in many industrial applications complicated nozzle configurations with multiple in-
jected jets are commonly used,1,5 most of the relevant mechanisms determining flow stability
are also present, and can be studied more generically, in a single jet configuration.13,33 A
single jet injected into a thin confined cavity exhibits self-sustained oscillations above a crit-
ical Reynolds number, depending on the width to nozzle diameter ratio.28 These oscillations
are found in a large range of jet Reynolds numbers, i.e. 100 < Re < 170, 000.2,13,19,23,24,34

For given jet Reynolds number, increasing the cavity width leads to a decreasing oscillation
frequency,20 until the oscillation vanishes.22

In this paper we study the influence of electromagnetic body forces on single jet oscillations
in a confined cavity. We impose the Lorentz force as a body force to enhance and suppress
these oscillations. The objective of this paper is to (i) study the fundamental flow regimes
introduced by imposing an EMBr on a single jet oscillation, (ii) investigate the similarit-
ies between the self-sustained jet oscillation mechanism with and without application of an
EMBr, (iii) demonstrate that flow oscillations in thin cavities in the presence of EMBr for-
cing can be described by a zero-dimensional model of the Delay Differential Equation (DDE)
type.

The paper is outlined as follows. The electromagnetically controlled jet configuration, a de-
scription of the electromagnetic forcing and the numerical methods used to simulate these are
given in section 5.2, the physical mechanisms underneath the self-sustained oscillation in the
presence of an EMBr are discussed in section 5.3. Section 5.4 describes a zero-dimensional
model for electromagnetically controlled single jet oscillations in a confined cavity, and sec-
tion 5.5 discusses the details of the model parameters and demonstrates the applicability of
the model.
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5.2 Problem definition and methods

5.2.1 Description of the set-up

Figure 5.1 depicts the configuration of a thin liquid filled cavity that we study in this paper.
The cavity has dimensions H ×W × T = 0.7× 0.3× 0.035 m3 and was previously stud-
ied experimentally using planar particle imaging velocimetry (PIV)13, as well as numerically
for varying width W using Large Eddy Simulations (LES). In28 we also proposed a zero-
dimensional model that predicts the amplitude and frequency of self-sustained jet oscillations
in thin liquid filled cavities as a function of the jet Reynolds number and geometric ratios. A
square nozzle of size d = 0.01 m is submerged to a depth dn = 0.1 m underneath the free
liquid surface and injects the fluid with a velocity vin into the cavity. The electrically conduct-
ing fluid in the domain has density ρ = 1.1× 103 kgm−3, viscosity ν = 1.27× 10−6 m2s−1

and conductivity σ = 7.1 Sm−1. These properties correspond to the working fluid used in
the experiments of the previous studies.13

In the present work, we apply electromagnetic forcing as a body force for the control of the
jet motion. We follow the design by Kalter et al. 13 and place two electrodes on opposite sides
of the cavity, at a distance L below the nozzle exit with a potential difference ∆φ = φ1−φ2.
These electrodes are centered in the z-direction and have an area of A = 0.03× 0.03 m2.
A direct current I flows either from left to right (I > 0) or from right to left (I < 0)
between both electrodes. Furthermore, we place three magnets in the top of the domain, just
underneath the nozzle exit against the outside of the back wall. The magnets are aligned with
their centers at y = −0.15 m and z = −0.045 m and separated by a distance D = 0.08 m.
The poles of the magnets are facing in alternating direction. The directions of the resulting
Lorentz forces are also depicted in Figure 5.1 and can be flipped by changing the direction of
the electrical current. Later we will show that this leads to an enhancement or suppression of
the oscillations.

In Figure 5.1(left) we indicate the jet angle θ, which is defined from a least squares fit of a line
through the points (xi, yi) defined by xi = maxx (|v(yi)|) and (−dn − S) < yi < (−dn),
where we choose S = W . Furthermore, the two monitoring points, p1 and p2 are defined on
opposite sides of the jet.28

5.2.2 Dimensionless numbers

In this work we define the Reynolds number, Re, the Stuart number, N , and the Strouhal
number, St, as

Re =
vind

ν
, N =

BrefdI

ρAv2
in

, St =
fW

vin
, (5.1)

here, Bref is a reference magnetic field strength, that we will define later. f is the frequency
of the long term self-sustained oscillations. Note that N takes the sign of I , thus N > 0 for
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Figure 5.1 The z = 0-plane of the configuration of a single jet in a confined geometry with electromag-
netic forcing. The cavity dimension is H ×W × T = 0.7× 0.3× 0.035 m3 and a vertically oriented
square nozzle with inner diameter d = 0.01 m is submerged by dn = 0.1 m below the free liquid
surface. (left) The definition of the jet angle θ, defined in between y = −dn and y = −dn − S and
the monitoring positions p1 and p2, located at (±0.092 m, 0.4 m, 0 m), are indicated. (right) The loc-
ations of the magnets are indicated by rectangles with their respective orientation indicated with either
N or S. Electrodes on both sides, indicated with φ1 and φ2, generate a current through the system. The
Lorentz forces are indicated by the red arrows for I < 0 and by the blue arrows for I > 0.

I > 0 (which is the oscillation suppressing configuration) and N < 0 for I < 0 (which is the
oscillation enhancing configuration).

5.2.3 Magnetic field calculation

The imposed magnetic field was modelled based on the z-component of the magnetic field
as measured by Kalter et al. 13. We fit an analytical expression for the magnetic field of
block magnets36 to the reported z-component of the magnetic field, as indicated in Figure
5.2(bottom). Figure 5.2(top) shows the computationally imposed magnetic field in the z = 0-
plane, indicating its three-dimensional character. The reference magnetic field is defined as
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Figure 5.2 (top) Contours of the z-component of the imposed magnetic field and arrows of x and y
components of the magnetic field in the z = 0-plane, white rectangles indicate the positions of the
three magnets. (bottom) The z-component of the magnetic field for the numerical simulations (solid
line) and experiments 13 (symbols) at y = −0.15 m for three z-positions in the cavity: close to the back
wall (z/T = −1/2, blue, circles), in the center of the domain (z/T = 0, green, squares) and close to
the front wall (z/T = 1/2, red, triangles).

the magnetic field strength in this plane in the center of the central magnet, thus Bref =
0.15 T. The magnitude of the x and y components of the magnetic field in the z = 0-plane
is of the same order of magnitude as the z component of the magnetic field. The imposed
electric current leads to an electric potential as shown in Figure 5.3(top) and Lorentz forces as
shown in Figure 5.3(bottom) for I > 0. For I < 0, the electrical potential and consequently
the Lorentz force are reversed.

5.2.4 Flow simulations

The LES filtered, single phase, incompressible Navier-Stokes equations are solved in this
study:

∂vi
∂t

+ vj
∂vi
∂xj

(5.2)

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νSGS)

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ fi.

Here vi is the velocity, ρ the material density, ν the laminar viscosity, νSGS the sub-grid-scale
viscosity from the LES model, p the pressure and fi the Lorentz force. The Lorentz force is
calculated from the current ji and magnetic field bi as17

fi = εijkjjbk with ji =
σ

ρ

(
− ∂φ
∂xi

+ εijkujbk

)
, (5.3)
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where σ is the electrical conductivity of the fluid and φ is the electric potential, which is
obtained from solving the Poisson equation

∂2φ

∂x2
i

=
∂

∂xi
(εijkujbk) , (5.4)

We use the open source code OpenFOAM 2.138 based on the finite volume method to solve
the discretized equations using the PISO scheme.9 As a sub-grid-scale LES model we use
the dynamic Smagorinsky model, which is effective in modelling the subgrid scales in these
one-way coupled MHD flows.18 The discretization of the equations and the wall treatment
are in line with our previous publication.28

5.2.5 Validation

The numerical model is validated against experiments13 for a jet of Re = 4, 700 and elec-
tromagnetic forcing with N = 0.017 (I = 4 A) in the oscillation suppressing configuration.
Figures 5.4 and 5.5 show computed time averaged velocities compared to experimental data.
The comparisons show a good agreement in the mean velocity between the numerical and
experimental results. It is noted that the simulated and measured flow field are not fully sym-
metric due to the asymmetry in the outflow in the bottom of the domain (see Figure 5.1).
The numerical simulations also show a good agreement in the oscillation frequency for vari-
ous N , as we show in Figure 5.9, which also shows the N − St relation obtained from the
experiments.

5.3 Influence of electromagnetic forcing on self-sustained
oscillations

This section described the influence of the electromagnetic force on the mean velocity, oscil-
lation frequency, the pressure difference across the jet, the amplitude of the jet angle oscilla-
tion, and the flow regimes.

5.3.1 Mean velocity

For Re = 4, 700, we performed numerical simulations for various −0.075 < N < 0.015.
Figure 5.6 shows the corresponding mean velocity vector fields, which demonstrates that
the velocity field is strongly dependent on N , with the jet and recirculation zone strength
increasing for negative N and decreasing for positive N .

The scaling of the jet velocity with N can be determined from a vertical momentum balance
when considering a control volume of width ∆X centered around the magnet below the jet
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y = −0.38 m, for Re = 4, 700 in the oscillation suppressing (N = 0.017) configuration for both the
numerical simulation (red solid line) and the experiment 13 (symbols).

exit. This control volume is schematically depicted in Figure 5.7. The average strength of the
vertical component of the Lorentz force in this control volume is denoted by FL. The vertical
momentum balance then leads to

− ρd2v2
in + ρ∆XTv2

jet + FL = 0. (5.5)

The strength of the Lorentz force scales linearly with the current density (I/area) and the
magnetic field strength, hence we know that

FL ∝
IBref
area

. (5.6)

By rearranging Equation 5.5, using the definition of N (Equation 5.1) and the above scaling
of FL, we obtain

v2
jet

v2
in

∝ d2

T∆X
(1− cN) , (5.7)

where c is a positive constant which is solely dependent on geometrical properties of the
present configuration. We can now conclude that the square of the velocity in the jet is
linearly dependent on N , increasing for N < 0 and decreasing for N > 0. This is confirmed
by our numerical simulations, as shown in Figure 5.8.
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5.3.2 Oscillation frequency

Without electromagnetic forcing (N = 0), it is shown in13,28 that the jet oscillates with a
constant Strouhal number St = 0.011, and thus that f ∼ vin ∼ vjet‘ for fixed W .

For N > 0, the Lorentz force in the jet opposes the inflowing jet, leading to a lower jet
velocity. For small, but positive N , the electromagnetic braking is weak, and we confirm that
remains St = 0.011, as shown in Figure 5.9. The oscillation frequency does not change until
N > Ncrit, when the electromagnetic force becomes dominant over the inertial force and the
oscillations are completely suppressed.

For N < 0, the Lorentz force is directed in the same direction as the inflowing jet, leading to
increased vjet at fixed in. From Equation 5.7 and f ∼ vjet it may be expected that for large
negative N , St ∝

√
−N . This is indeed observed in the present numerical simulations (see

Figure 5.9) irrespective of Re in the range 3, 150 ≤ Re ≤ 7, 100, showing good agreement
with the experimentally observed proportionality of St with

√
−N .*

*Please note that in Kalter et al., the definition of the Stuart number and the calculation, are incorrect by a constant
factor 3.15. Here, we use the correct values.
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5.3.3 Pressure oscillations

We define the pressure difference across the jet as ∆p = p2 − p1 (see Figure 5.1). In our
earlier paper28 we have shown that the proportionality of ∆p and θ is a key property of the
self-sustained jet oscillation.28 We confirm with Figure 5.10 that this proportionality remains
present forN 6= 0. The pressure difference between the center and the edge of a recirculation
zone is proportional to the square of the tangential velocity near its edge.12 As the square of
the jet velocity is linearly dependent on N (see Equation 5.7) we also expect the amplitude
of the pressure oscillation, 〈∆p〉, to be linearly dependent on N . This is confirmed by our
numerical simulations, as shown Figure 5.11. This observation is independent of Re.

5.3.4 Jet angle amplitude

The amplitude of the jet angle oscillation, 〈θ〉, is also dependent on N , as we show in Figure
5.12. For N = 0, 〈θ〉 is the largest (〈θ〉 = 18◦), and can be obtained from geometrical
considerations.28

In the oscillation suppressing configuration (N > 0), the oscillations vanish for N > Ncrit,
whereas in the oscillation enhancing configuration (N < 0), 〈θ〉 reaches a constant value, i.e,
〈θ〉 = 12.5

◦
for N < −Ncrit. For |N | < Ncrit, 〈θ〉 roughly diminishes quadratically with

N , i.e.:

〈θ〉 = θmax − β
(

N

Ncrit

)2

, (5.8)

with θmax = 18◦ and β = 5.5◦. We determined Ncrit = 0.013. Both functions for 〈θ〉 are
indicated in Figure 5.12.

The physical reasoning behind this behavior of 〈θ〉 becomes apparent from Figure 5.6. In
the oscillation suppressing configuration (N > 0), the flow is pushed downward by the
magnets in the corners. This prevents the growth of the recirculation zones and hence limits
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〈θ〉. Conversely, in the oscillation enhancing configuration (N < 0), the recirculation zone
gets elongated (see Figure 5.6 for N = −0.008), which also leads to a reduced jet angle.
Increasing the current further (N < −Ncrit), leads to the flow mainly being driven by the
electromagnetic forcing, a approximately constant flow profile and hence constant 〈θ〉.

5.3.5 Flow regimes

We can now conclude that for varying N , three regimes can be distinguished, independent of
Re and separated by Ncrit = 0.013:

• For N > Ncrit, oscillations are suppressed.
• For −Ncrit < N < Ncrit, self-sustained oscillations by the jet are dominant. St

remains constant and has the same value as for N = 0. However, the jet amplitude
decreases quadratically with |N |.

• For N < −Ncrit, the Lorentz forces are dominant and control the oscillations in the
domain.

5.4 Zero-dimensional model of the jet oscillation

In this section, we describe a zero-dimensional DDE-type model, which quantitatively de-
scribes single jet oscillations, then we show how it can be applied to electromagnetically
forced single jet oscillations. Such a quantitative description can be used to predict the fre-
quency and waveform of jet oscillations, and is an alternative for experiments of full three-
dimensional numerical simulations.

5.4.1 Unforced flow (N = 0)

As we have shown earlier, the self-sustained oscillation of the jet, in the absence of electro-
magnetic forcing, can be explained from the transient behaviour of ∆p and θ.28 When the
jet is slightly oriented to one side (say, the right, θ < 0), the recirculation zone on the right
will be stronger, i.e., it has a smaller diameter and higher velocities. This leads to a larger
pressure deficit in the recirculation zone, deflecting the jet even further. The jet angle will
subsequently reach an extreme, as the jet impinges on the side wall and the recirculation zone
can not shrink any further. Subsequently, the fluid escapes the strong recirculation zone on
the right and feeds the recirculation zone on the left. The pressure deficit in the recirculation
zone on the right diminishes, and the jet angle will deflect to the left.

In28 we showed, from a horizontal momentum balance, that the growth of the jet angle during
the initial stage of the oscillation is proportional to the horizontal pressure difference over the
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jet
dθ

dt
∝ ∆p (5.9)

Furthermore, we have shown that ∆p ∼ θ, and hence

dθ

dt
= rθ, (5.10)

where r is the growth rate of the oscillation.

The maximum jet angle, 〈θ〉, that can be reached is constrained by the geometry. This acts as
a damping term on the oscillation, hence

dθ

dt
=
(
r − µθ2

)
θ, (5.11)

where µ is the obstruction parameter, related to 〈θ〉.
In the last stage of the oscillation, the strong recirculation quickly decays in a timescale τ ,
which is of the order of the turnover time of the recirculation zone. This leads to the full
model equation28

d

dt
θ(t) = rθ(t)− µθ3(t)− kθ(t− τ), (5.12)

where k is the decay rate for the destruction of the strong recirculation zone. Equation 4.10
is a zero-dimensional model, which is of the Delay Differential Equation (DDE) type. Its
model constants can be determined a priori as a function of inflow parameters and geometry
only.28

5.4.2 Electromagnetically forced flow (N 6= 0)

Here we argue that the general shape of model equation 5.12 remains valid for N 6= 0,
but with modified model parameters that will now also depend on N . We will discuss the
influence ofN 6= 0 on each of the three right-hand terms in Equation 5.12, viz. (i) the growth
term, (ii) the damping term, and (iii) the delayed decay term.

(i) Equation 5.9 remains true for N 6= 0 as the imposed Lorentz force in the present configur-
ation is dominantly vertical (see Figure 5.3). Furthermore, from Figure 5.10 we conclude that
∆p and θ remain proportional. Therefore, Equation 5.10 remains valid as well for N 6= 0.
Thus, the form of the growth term in Equation 5.12 remains unchanged. The constant of pro-
portionality, the growth rate r, is however influenced by the Lorentz force, as ∆p is highly
dependent on the electromagnetic forcing. We have shown in Figure 5.11 that 〈∆p〉 depends
linearly on N . Due to this dependence, we also expect r to be linearly dependent on N .

(ii) For each value of N , we find a specific value for the maximum jet deflection angle 〈θ〉.
For N = 0, only the geometry obstructs the motion of the jet angle, leading to 〈θ〉 = 18◦.28

In Figure 5.12 above, we have shown that the maximum jet angle depends quadratically on
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N for |N | < Ncrit. For N > Ncrit the oscillations vanish, and thus 〈θ〉 = 0, whereas for
N < −Ncrit, we have shown that the oscillation is enhanced mainly by the electromagnetic
forcing and the maximum jet angle is constant, 〈θ〉 = 12.5

◦
. For each N , the maximum jet

deflection can be accounted for through a damping term of the form of the second right-hand
term in Equation 4.10, with the model constant µ now being a function of N .

(iii) Since, for |N | < Ncrit the flow is dominated by inertial forces, the description of the os-
cillation by means of the delayed feedback mechanism28 still holds, with the model constant
being slightly dependent on N .

For N < −Ncrit, the electromagnetic forcing has a larger influence on the delay time. The
velocities in the domain quickly increase with decreasing N , leading to a shorter delay time
τ and larger influence of the feedback induced destruction of the recirculation zone pressure
minimum. We therefore expect both model constants k and τ in the delayed decay term to
strongly depend on N for N < −Ncrit.

5.5 Determination of the model parameters and its implic-
ations

For N = 0, the self-sustained jet oscillations in a thin, confined cavity can be described by
Equation 5.12, which contains four model parameters, r, µ, k and τ . These parameters can
be determined a priori based on Re, W/d, vin and W .28 In this section we will demonstrate
that the electromagnetic forcing can be incorporated with one additional parameter, viz. N .

5.5.1 Non-dimensional model

Model Equation 5.12 can be written in terms of the dimensionless time t′ = rt and jet angle
θ′ =

√
µ/rθ:28

dθ′

dt′
= θ′ − θ′3 − αθ′ (t′ − δ) . (5.13)

The variables α = k/r and δ = rτ denote the relative strength of the feedback mechanism
compared to the growth rate and the dimensionless delay time respectively. The neutral curve,
obtained from a linear stability analysis, is28,32

δn(α) = arccos

(
3α− 2

α

)(
α2 − (3α− 2)2

)− 1
2 . (5.14)

This critical curve separates the stable and oscillatory regimes of the model Equation 5.13.
For δ < δn(α), all modes are stable and no oscillations will be present. For δ > δn(α),
oscillatory modes will be sinusoidal of shape close to the neutral curve and approach block-
waves for δ ≥ 10.
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Figure 5.13 The phase averaged jet angle amplitude (solid red line) in conjunction with the model fit
(dashed blue line), for Re = 4, 700 and for N = −0.025 (top) and N = 0.008 (bottom).

5.5.2 Parameter fitting

From our numerical simulations for varying N , we calculate θ(t) and the phase average jet
angle amplitude. From a fitting procedure we determine the best fitting parameter set r, µ, k, τ
following the method outlined in.28

In Figure 5.13 we show the phase averaged jet angle amplitude together with the solution
of the DDE model for the fitted parameter set, for both N = −0.025 and N = 0.008. This
figure shows the good agreement between the zero-dimensional model solution and the actual
jet angle profile obtained from the LES simulations.

For N > Ncrit no oscillations are present, hence we cannot calculate a phase average, nor
determine α and δ from the numerical simulations. However, for N < Ncrit = 0.013 we
determine the parameters α and δ for −5Ncrit ≤ N ≤ Ncrit, 3, 150 ≤ Re ≤ 7, 100 and
W/d = 30.

We show the fitted parameters α and δ for this parameter set and the neutral curve δn (Equa-
tion 5.14) in Figure 5.14. From this stability diagram a clear distinction between the inertial
dominated and electromagnetically dominated regimes becomes apparent. For |N | < Ncrit
the jet oscillation itself is dominant, and we showed in our previous publication28, that the
parameters describing these oscillation are close to the neutral curve. And indeed, this
is observed in Figure 5.14. For N < −Ncrit, the parameters cluster together close to
(δ, α) = (1, 1). In other words, for N < −Ncrit the normalized behavior of the system
does not change. Although the parameters α and δ sparsely change over a variation in N , the
underlying variables r, µ, k and τ , will change significantly as we will later show.
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5.5.3 Parameter estimation

Without forcing the model parameters r and τ were found to be given by28

r = κ1
vin
W

Re−
1
4

(
W

d

)− 1
2

, τ = κ2
W

vin
Re

5
9 , (5.15)

with κ1 = 5.9 and κ2 = 0.13.

In Section 5.4.2 we anticipated that r decreases linearly with N . For N = 0, the present
model should reduce to the unforced model, hence we may pose

κ1(N) = κ1

(
1− λ1

N

Ncrit

)
, (5.16)

which thus consists of a contribution by the inertial force and a contribution by the magnetic
force. From our numerical simulations and fitted model parameters, we determine that λ1 =
0.49± 0.02.

For the delay time τ such a unified approach across both the inertially dominated and electro-
magnetically dominated regimes is not possible. For −Ncrit < N < 0 we expect a smaller
delay time, since fluid is accelerated in the recirculation zone, and for 0 < N < Ncrit the
fluid is decelerated and we expect the delay time to increase. Hence, for |N | < Ncrit

κ2(N) = κ2

(
1 + λ2

N

Ncrit

)
. (5.17)

From our numerical simulations and fitted parameters we find that λ2 = 0.58± 0.09.

For N < −Ncrit we use the above observation that δ remains close to constant, and hence
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we define
τ =

δmin
r

, (5.18)

with δmin = 1.13 the average value for δ observed in our simulations. Hence, with r from
Equations 5.15 and 5.16, τ can be determined.

For given N we now determine k from r, τ and δ. For |N | < Ncrit, the pair (α, δ) resides
close to the neutral curve δn(α) (Equation 5.14), which thus determines α. For N < −Ncrit,
we use the above observation from Figure 5.14 that α ≈ 0.99. From α we determine k = αr.

µ follows from the amplitude 〈θ′〉 of the dimensionless form of the DDE model equation
(Equation 5.13)28 and the behavior of 〈θ〉. For N = 0 we found 〈θ′〉 =

√
2 (1− α2). This

also holds for |N | < Ncrit. For N < −Ncrit, the parameters are no longer distributed along
the neutral curve, but given by α ≈ 0.99 and δ = 1.13 above. For this regime we find
〈θ′〉 = γ = 0.61.

µ =

{ 2r
(
1− α2

)

〈θ〉2 if |N | < Ncrit

γ2r

〈θ〉2 if N < −Ncrit
, (5.19)

Now, for given N , the model parameters r, µ, k and τ can be determined from Equations
5.15 and 5.16, Equation 5.19, k = αr and Equations 5.15, 5.17 and 5.18, respectively

5.5.4 Model application

Figure 5.15 compares the parameters obtained from the model presented in Equations 5.15-
5.19 with the parameters obtained from the fit of the phased-average jet oscillation profiles
from the numerical simulations. With this figure we confirm that the present model gives the
correct model parameters to determine the jet oscillation properties.

In table 5.1 we compare the frequencies obtained from the LES simulations and the presented
zero-dimensional model. The table demonstrates that our model correctly predicts the single
jet oscillation frequency along the range −6Ncrit ≤ N ≤ Ncrit, as is also indicated with
Figure 5.16. The deviation is only larger than 10% for the most extreme cases (N = Ncrit
and N = −6Ncrit), where the first is close to being damped and the latter enhanced, to such
an extend that the oscillations become irregular.

In Figure 4.12 we show the numerically obtained jet angle profile and the jet angle profile
obtained from the model for several combinations ofRe andN . The figure demonstrates that
the zero-dimensional DDE-type model can successfully be applied on the electromagnetic
forcing of a self-sustained oscillating jet, both in the inertia, as in the electromagnetic force
dominant regimes. For larger negative N (N = −0.075, bottom right in figure 4.12), the
forced flow shows irregular behavior, which is observed from the significant variation in
period and amplitude during the oscillation. This phenomenon due to the strong amplification
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Figure 5.15 Parity plot for r (top left), τ (top right), k (bottom left) and µ (bottom right) showing
the fitted parameter value (horizontal axis) compared to the parameter value obtained from the model
(Equations 5.15-5.19).

of the oscillation for large negative N is not described by the present model. For the other N
however, the presented model shows a good agreement in profile shape and frequency.

5.6 Conclusion

We studied the effect of an electromagnetic body force on self-sustained jet oscillations in
a confined cavity. Three flow regimes can be distinguished, that are separated by the crit-
ical Stuart number Ncrit: 1) for N > Ncrit, all inertia induced large scale oscillations are
suppressed by electromagnetic body forces, 2) for |N | < Ncrit, the jet inertia is dominant
compared to the electromagnetic force, but the latter influences the jet oscillation in amplitude
and frequency, 3) for N < −Ncrit, the electromagnetic forces dominate the flow and control
the flow oscillations. For the configuration studied in this paper we found Ncrit = 0.013.
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Table 5.1 This table compares the oscillation frequency obtained from the LES simulations and the
zero-dimensional model equation as a function of Re and N .

Re N fLES [Hz] fmodel [Hz]
3150 −0.075 0.069 0.078
3150 −0.038 0.046 0.049
3150 −0.019 0.034 0.035
3150 −0.005 0.022 0.020
3150 0 0.017 0.018
3150 0.005 0.015 0.014
3150 0.014 − −
4700 −0.051 0.080 0.080
4700 −0.034 0.068 0.063
4700 −0.026 0.059 0.054
4700 −0.017 0.048 0.045
4700 −0.009 0.035 0.031
4700 −0.004 0.029 0.028
4700 0 0.022 0.024
4700 0.004 0.020 0.020
4700 0.009 0.018 0.016
4700 0.011 0.018 0.014
4700 0.013 0.018 0.012
4700 0.015 − −
7100 −0.015 0.069 0.051
7100 −0.007 0.047 0.041
7100 −0.004 0.037 0.036
7100 0.0 0.028 0.031
7100 0.004 0.027 0.027
7100 0.007 0.028 0.023

We incorporated the effect of the electromagnetic forcing in a zero-dimensional DDE-type
model that describes the jet oscillation. The additional Lorentz force is included in the model
by the additional dependence on N . We have shown that this newly defined model correctly
represents the jet oscillation for the Reynolds number 3150 ≤ Re ≤ 7100 and −6Ncrit ≤
N ≤ Ncrit.
Although this paper only addresses a specific configuration of electromagnetic forcing, we
believe that the method can also be applied on different EMBr configurations and even dif-
ferent types of body forces. This means that one can expect to find three regimes, a jet inertia
dominated regime, an oscillation enhancing regime and an oscillation suppressing regime.
The effect of these forces on the zero-dimensional model for the jet oscillation will be de-
pendent on a dimensionless number describing the ratio of the imposed force and the inertial
force.
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For large negative N the oscillations are more irregular with respect to the deviation in the
amplitude between periods. The currently presented model does not include this irregularity
in the oscillation.

The forced single jet oscillation model also has potential for other types of forced single jet
flows, such as jets with a different density, or by application of acoustic forcing.10,25,35,39,40
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Table 5.2 The properties of the three magnets contributing to the magnetic field imposed in the numer-
ical simulations.

Magnet 1 Magnet 2 Magnet 3
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Bface −0.55 T 0.65 T −0.55 T
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5.A Electromagnetic field

The analytical expression for the imposed magnetic field, is based on the algebraic calcula-
tions by Votyakov et al.:

Bx(x, y, z) =
1

B0

∑

k=±1

∑

j=±1

∑

i=±1

(ijk) arctanh

[
y − jMy

r(i, j, k)

]
, (5.20)

By(x, y, z) =
1

B0

∑

k=±1

∑

j=±1

∑

i=±1

(ijk) arctanh

[
x− iMx

r(i, j, k)

]
, (5.21)

Bz(x, y, z) = − 1

B0

∑

k=±1

∑

j=±1

∑

i=±1

(ijk) arctan

[
(x− iMx) (y − jMy)

(z − kh) r(i, j, k)

]
.(5.22)

Here r(i, j, k) =
[
(x− iMx)2 + (y − jMy)2 + (z − kh)2

]1/2
and B0 is such that

Bz(0, 0, 0) = 1. This follows from an integral over the region Ω =
{|x| ≤Mx, |y| ≤My, h ≤ |z| ≤ ∞} of magnetic dipoles, i.e., two magnets of dimensions
2Mx × 2My separated by 2h, connected by a soft core.

In the present work, three magnets are positioned on one side of the cavity. Therefore, the
summation over k = +1 can be omitted from above summation, wheres the summation is
carried out over three separate magnets, with their origin in (xc, yc, zc) and certain magnitude.
The resulting properties for the magnets are summarized in table 5.2. As the magnets are
positioned on one side, the normalization of the magnetic field was handled with respect to
the face of the magnet, rather than the origin.







6. Dynamics of a bifurcated jet in
a confined cavity with a free sur-
face§

6.1 Introduction

A single fluid jet that is confined in the two directions perpendicular to the flow, may exhibit
self-sustained oscillations under specific conditions.10,15 Those jet oscillations are observed
for jet Reynolds numbers ranging from Re = 10013 up to Re = 170, 000.14 For one of the
spanwise directions sufficiently wide, as compared to the nozzle diameter (i.e. W/d ≥ 20),
the jet oscillation can be described by three stages, where the formation of recirculation zones
at both sides of the jet plays a major role. First, the jet is slightly deflected to, say, the right.
This feeds more flow to the recirculation zone on the right, which now becomes stronger,
with an increasing pressure deficit in the center of the recirculation. This causes a further jet
deflection to the right as it is limited by the geometry. Second the jet deflection reaches a
maximum amplitude and the pressure deficit does not decrease any further, which means that
the driving force of the jet deflection vanishes. Third, at the right wall, the downward flow
will increase, causing the growth of a recirculation zone at the left of the jet and a diminishing
pressure deficit at its right. This results in the jet moving towards the left. The process then
repeats.15

Self-sustained oscillations are also observed for situations in which a bifurcated jet is confined
in a thin cavity. A bifurcated jet originates from a nozzle with two ports (as schematically
depicted in Figure 6.1), hence resulting in two jets discharging into the cavity in more or less
opposite directions.

Such a confined bifurcated jet configuration is relevant in, for example, continuous steel

§Parts of this chapter published as: Righolt, B. W., Kenjereš, S., Kalter, R., Tummers, M. J., and Kleijn, C. R.
Numerical study of turbulent submerged bifurcated jets impingement and interactions with a free surface. In: 8th
International Symposium on Turbulence and Shear Flow Phenomena, TSFP Proceedings. 2013.
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casting. Two- or four-port nozzles are commonly used for the injection of hot, liquid steel
into the casting mould in order to obtain an optimal distribution of the fluid with respect to the
quality of the resulting solidified steel slab. Oscillations as described above are an unwanted
side-effect of the fluidic system under consideration.

Numerical simulations, sometimes coupled with water model experiments, are commonly
used to study the continuous steel casting process. Simulation studies generally apply various
simplifications, focussing on either cooling or solidification of the steel,11 the movement of
the free surface17,18,23 or the electromagnetic brake.4,5,19,21 Sometimes the focus is on the
pure flow mechanics only.3 As direct Numerical Simulations (DNS) are not computationally
feasible due to the high (> 10000) jet Reynolds numbers, such studies rely on RANS, T-
RANS and LES for the modelling of turbulence.

From water model experiments, Torres-Alonso et al. 17,18 report dynamic free surface dis-
tortions with a duration of 10 s and a frequency of 0.01 Hz. They numerically predict this
distortion using a Reynolds Stress Model. The origin of the distortion is found in the interac-
tion between both jets below the nozzle tips. The origin of the large period of the distortion is
the high Reynolds stresses at the boundary of the jet and the upper recirculation zones. The
frequency of the jet oscillations matches the frequency of the free surface oscillations.

Honeyands and Herbertson 9 and Kalter et al. 10 propose a mechanism for the self-sustained
oscillation of bifurcated jets in a thin cavity. Similar to the self-sustained oscillations of a
single jet in a cavity, the confinement of the liquid jets in both directions perpendicular to the
flow is an essential prerequisite for the oscillation to exist, leading to the necessary formation
of recirculation zones in the domain. The pressures in the recirculation zones play a role in the
proposed mechanism. Furthermore, the oscillations of the two jets will align in anti-phase,
due to the interaction between both sides of the domain.

The goal of the present work is to provide thorough proof for the mechanism of the self-
sustained oscillation in a bifurcated jet configuration in a thin cavity, as proposed by Honey-
ands and Herbertson 9 and Kalter et al. 10 by means of numerical simulations. These simula-
tions can provide detailed pressure fields, which are difficult to obtain experimentally.

6.2 Numerical method and validation

6.2.1 Description of the set-up

The model geometry, shown in Figure 6.1, consists of a thin cavity, with dimensions
0.65× 0.8× 0.035 m3 (= W × H × T = width×height×thickness). The cavity is filled
up to a height h = 0.7 m with water, with ρ = 1.0× 103 kg/m3 and kinematic viscosity
ν = 1.0× 10−6 m2/s. The water-air interfacial tension is σ = 0.07 N/m. The fluid emerges
from the nozzle through two vertical openings of inner dimensions d2 = 0.01× 0.01 m2

on opposite sides of the nozzle (see Figure 6.1). The nozzle submergence depth, which is
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Figure 6.1 The schematics of the setup considered in this paper is depicted. A top view (top) and side
view (bottom) of the cavity of dimensionW ×H×T = 0.8× 0.65× 0.035 m3 is shown. The nozzle
is submerged by dn = 0.125 m and has inner diameter 0.01 m and a wall thickness of 0.005 m. The
fluid depth h = 0.7 m. Furthermore, p1 and p2 indicate two monitoring points at x = ±0.175 m and
the gray angle indicates the jet angle.

the distance between the equilibrium water-air surface and inner bottom of the nozzle, is
dn = 0.125 m.

The Reynolds number is based on the average velocity, vin of each of the jets emerging from
the nozzle and the nozzle diameter as Rejet = vind/ν = 12, 500. The average velocity in
the inlet pipe is thus 2vin. A Cartesian coordinate system is defined as depicted in Figure 6.1,
where the origin is located in the center of the inlet pipe at the position of the equilibrium
free surface, where the x coordinate is along the width, the y coordinate along the height and
the z coordinate along the depth of the cavity.
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In this work, we solve the incompressible, two-phase (Volume Of Fluid), LES filtered Navier-
Stokes equations and the transport equation for the indicator function α,7,16,20

∂ρvi
∂t

+ vj
∂ρvi
∂xj

=
∂

∂xj

[
(µ+ µt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
− ∂p

∂xi
+ fi + γκ

∂α

∂xi
, (6.1)

∂α

∂t
+

∂

∂xj
(αvj) +

∂

∂xj
(vr,jα (1− α)) = 0. (6.2)

In these equations, α has value 1 in cells containing the liquid phase only and 0 for the gas
phase, whereas intermediate values ofα indicate the position of the free surface. Furthermore,
ρ = αρ1 + (1−α)ρ2 is the phase averaged density, µ the phase averaged dynamic viscosity,
µt the turbulent viscosity, vi the velocity, p the pressure, fi the gravitational force, σ the
surface tension between both phases and κ the curvature of the interface, which is calculated
as κ = ∇α/ |∇α|.2 The third term in the transport equation for α represents an interface
compression, which is intended to maintain the interface as sharp as possible.1,8

The turbulent viscosity µt is obtained from the dynamic Smagorinsky model, a Large Eddy
Simulation (LES) model.

µt
ρ

= νSGS = (C∆)
2 S, (6.3)

where ∆ is the local grid size, defined as ∆ = (∆x∆y∆z)
1/3. S is the characteristic rate

of strain S = (2SijSij)
1/2 with Sij = (∂vi/∂xj + ∂vj/∂xi) /2. C is the Smagorinsky

constant, C = 〈LijMij〉 /2
〈
M2
ij

〉
, with the resolved stress tensor Lij = ṽivj − ṽiṽj and

Mij = 2∆2S̃Sij − 2 (2∆)
2 S̃S̃ij , where ·̃ indicates the filtering operation.

To reduce computational instabilities due to local small values of M2
ij , we follow the recom-

mendation by Lilly 12 , and apply local averaging (〈.〉), using the approach by Zang et al. 22 ,
which means averaging over three control volumes in every direction, whereas the total vis-
cosity is clipped at ν + νSGS = 0.

The orthogonal, rectangular, uniform grid consists of 520 × 640 × 28 ≈ 9.4 × 106 con-
trol volumes. For time integration, a second order implicit scheme is used, with a time-
step obtained from the lowest of the Courant criterion max(Co = u∆t/∆x) = 0.6 or
max(Coα = u∆t/∆x) = 0.2 for regions where 0.01 < α < 0.99. The convective and
diffusive terms are discretized using a second order central differencing scheme.

As y+ at the walls might reach local peak values as high as y+ ≈ 40 and local mininum values
as low as y+ ≈ 0.01, we imposed the universal Spalding’s law as a boundary condition (see
section 2.7 for details). Furthermore, the inflow for the nozzle is a periodic domain of length
10d, which guarantees fully developed inflow conditions. The volumetric flow rate at the
outlet was fixed at a value equal to the volumetric flow rate at the inlet in order to maintain
the correct liquid level in the domain throughout the simulation.

The frequency of the self-sustained oscillations for the numerical simulation is fsim =
0.14 Hz, which is invariant under refining the mesh in the high-velocity regions by a factor
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2 in each direction, resulting in 13.6 × 106 control volumes. The numerically obtained fre-
quency is insensitive to ±10% changes in viscosity and changes only by about 0.01 Hz for
0.01 m changes in the nozzle depth. The frequency obtained from the experiment differs
about 35% from the numerically obtained frequency, fexp = 0.09 Hz.10 Despite this differ-
ence, we believe that our numerical simulation reflects the correct physics behind the oscilla-
tion mechanism. This believe stems from the good agreement with experiments when looking
at the time averaged and instantaneous flow patterns in Figures 6.2 and 6.3. Figure 6.2 shows
vectors of the time-averaged velocity in the upper right corner of the domain and contours
of the z-component of the vorticity, demonstrating a reasonable agreement between our ex-
periments and simulations. Furthermore, Figure 6.3 shows snapshots of the instanteneous
velocity distributions for both the numerical simulations and the experiments. When the time
axis is non-dimensionalized with the oscillation period, this figure shows a good agreement
between experiment and simulation during the different stages of the oscillation.

6.3 Oscillation mechanism free surface

Hypotheses for the mechanism behind self-sustained oscillations of a bifurcated jet flow in
a confined cavity have been proposed by Honeyands and Herbertson 9 and Kalter et al. 10 .
They describe the oscillation in four consecutive stages. These stages are depicted in Figure
6.3. In the next sections, we will describe these four stages, and provide detailed proof for
the mechanism based on numerical simulations.

6.3.1 Jet splitting

In the first stage (t/T = 0), the jet is oriented towards the right side, as can be seen from
Figure 6.3 (top). The jet impinges on the right wall, and splits into an upward flow, feeding
a recirculation zone at the upper right, and a downward directed flow. As can be seen from
this figure, the upper right recirculation zone is large, and at this point in time, also its center
is at its furthest right position. This can also be seen from Figure 6.4, where the x-coordinate
of the center of the recirculation zone is shown as a function of time, for both the numerical
simulation and the experiment. This center of the recirculation zone is determined from the
local maximum of the function Γ1(~x) proposed by Graftieaux et al. 6:

Γ1(~x) =
1

N

N∑

i=1

|(~x− ~xi)× ~u(~xi)|
|(~x− ~xi)||~u(~xi)|

, (6.4)

where the summation runs over N points ~xi within 4 mm of the point ~x.

The upper left Figure 6.3 also shows the pressure deficit in the recirculation zone, which
pulls the jet further upward. The minimum pressure in each of the four recirculation zones
is shown as a function of time in Figure 6.5. From this figure we observe that the pressure
deficit at the upper right is in a minimum in this stage of the oscillation around t/T = 0.
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Figure 6.2 Comparison between the mean velocity from the simulation (left) and the experiment (right)
in the z = 0-plane. (top) vectors of the mean velocity, (bottom) contours of the z-component of the
vorticity, ωz = ∂u
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6.3.2 Pressure deficit growth

In the second stage (t/T = 0.2), the jet moves further upward, reducing the space available
for the recirculation zone. As a result the velocities and pressure deficit in the recirculation
zone further increase. Also, the center of the recirculation zone moves to the left, i.e. towards
the nozzle. This horizontal movement of the recirculation zone centre is also shown in Figure
6.4. The development of the pressure deficit as a function of time is shown in Figure 6.5.
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to bottom) of the self-sustained oscillation, for the numerical simulation result in conjunction with
contours of the pressure (left) and for the experiment, obtained from PIV (right).
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Figure 6.4 The distance between the nozzle centerline and the center of the recirculation zone in the
z = 0-plane, for the numerical simulation (upper right recirculation zone (solid black), upper left
recirculation zone (dashed black)), for the experiment (upper right recirculation zone, symbols) and for
the numerical simulation with a fixed top wall (upper right (solid red), upper left (dashed red)).
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Figure 6.5 The difference between the ambient pressure p0 and the minimum pressure in each of the
four recirculation zones as a function of time for the free surface (top) and solid wall (bottom). The
time axis is in correspondence with the previous figures.
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Figure 6.6 Contours of the pressure p during four stages of the bifurcated jet oscillation for the full
width of the domain. The free surface position is indicated by a solid black line. In the figure, we
indicated the iso-contours for p = −80 Pa and p = −10 Pa.

6.3.3 Maximum pressure deficit and fluid overshoot

In the third stage (t/T = 0.5), the upper right recirculation zone reaches an extreme position
closest to the nozzle (see Figures 6.3 (third row) and 6.4), with the pressure deficit reaching
a maximum (Figure 6.5).

The pressure deficit in the center of the recirculation zone also affects the free surface. This
can be seen from Figure 6.6, which shows the pressure in the z = 0-plane in conjunction with
the position of the free surface. From Figure 6.6 (bottom left), it follows that the pressure
deficit in the recirculation zone causes a local minimum of the free surface elevation. In
probe location p1, the elevation shows a maximum in this stage as follows from Figure 6.7.

Simultaneously, a minimum pressure deficit is reached in the recirculation zone in the upper
left (see Figure 6.5 and 6.6), which is in the same state as the upper right recirculation zone
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Figure 6.7 The free surface elevation at the monitoring locations p1 (top) and p2 (bottom), as indicated
in Figure 6.1 as a function of time for the numerical simulation (lines) and the experiment (symbols).
The free surface elevation for the numerical simulation is obtained by averaging the free surface eleva-
tion in the z-direction.

during stage 1. From Figure 6.4, it follows that the system is in an anti-symmetric oscillation,
i.e. when the upper left recirculation zone moves towards the nozzle, the upper right recircu-
lation zone moves away from the nozzle and vice versa. This means that both recirculation
zones move towards the right (or left) simultaneously. Figure 6.7 demonstrates that the same
anti-symmetric oscillation is also visible in the elevation of the free surface on opposite sides
of the domain.

It was observed by Kalter et al. 10 , that the overshoot of fluid, from the left side of the cavity
to the right, or vice versa, through the gaps between the nozzle and the front and back wall,
plays an elementary role in this stage. We identify the mass flow through the gaps between
front and back wall in Figure 6.8. The mass flow is defined through the plane x = 0 and
y ≥ −0.15 m. It follows from this figure that, approximately halfway the period, the sign
of the mass flow changes direction when the recirculation zones are in extreme positions. In
other words, the cross flow through the gap between nozzle and front and back wall is in
the same direction as the movement of the recirculation zones, indicating the strong coupling
between both.
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Figure 6.8 The distance between the nozzle centerline and the center of the recirculation zone in the
z = 0-plane for a single period for the numerical simulation for the upper right recirculation zone (solid
black line), the upper left recirculation zone (dashed black line). The red line indicates the mass flow
rate (positive from left to right) through the gaps between the nozzle pipe and the front and back wall
(x = 0, y ≥ −0.13 m).

6.3.4 Pressure deficit decrease

In the fourth stage, the upper right recirculation zone collapses rapidly, aided by the liquid
overshoot from the left to the right which pushes the recirculation zone away from the nozzle.
As a result the pressure deficit in the upper right recirculation zone quickly decreases (see
Figure 6.5). The pressure deficit at the upper left as well as at the lower right increases (see
Figures 6.5 and 6.6). The jet now moves downwards and the recirculation zone moves away
from the nozzle, until it reaches the first stage and the process repeats.

6.4 Influence of a wall

It might be questioned whether the free surface is essential in maintaining the self-sustained
oscillation of the bifurcated jet flow. In this section we will show that the anti-symmetric
oscillation of the bifurcated jet configuration in a thin cavity is also present when a solid wall
is placed on top of the domain, thus suppressing the free surface oscillations. Therefore, the
free surface is not a requisite for the self-sustained oscillations to exist.

The occurrence of the self-sustained, anti-symmetric oscillation in the presence of a top wall
is readily confirmed from Figures 6.4 and 6.9, which show the distance between the nozzle
and the centres of the recirculation zones at the upper left and upper right of the domain, and
the pressure fields in the full domain respectively. From Figure 6.9 we can see the same four
stages as discussed for the case with a free surface. So, in general, the mechanism for the
self-sustained oscillation is the same with and without the presence of a free surface.



120 Chapter 6

Figure 6.9 Contours of the pressure p during the four stages of the bifurcated jet oscillation for a domain
without a free surface, but a fixed wall covering the top part of the domain. The iso-contours indicate
p = −70 Pa (solid) and p = −10 Pa (dashed).

However, comparing the self-sustained oscillations for the free surface cavity and the fixed
wall cavity, differences can be observed. The first difference can be observed from the com-
parison of Figures 6.6 and 6.9. We observe that, apart from the pressure deficits in the center
of the recirculation zone, there are local peaks in the pressure in the upper left and upper right
corner of the domain. For the fixed wall case, these peak pressures are higher than for the
free surface case, which can be explained by the fact the high pressure elevates the free sur-
face, therefore relieving the pressure a bit. This can be confirmed from Figure 6.6, where the
highest elevation is reached near both side walls, especially so when the pressure underneath
the free surface is relatively high. At the same time, the pressure minimum in the center of
the recirculation zone causes the free surface to lower, accelerate the fluid a bit more, thus
causing an even lower pressure minimum. This can be seen from Figure 6.6 (stage 1, left side
and stage 3 right side), where the minimum free surface elevation is located directly above
the center of the recirculation zone, where the pressure is lowest.
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A second difference can be related to the larger pressure gradients in the domain for the fixed
wall case and is observed from Figure 6.4, which shows the distances between the nozzle
and the center of each recirculation zone. It follows from this figure that the recirculation
zone moves significantly closer to the nozzle when a fixed wall is present at the top. The
larger pressure gradients in the top of the domain, eventually represented as a force on the
recirculation zone, explains this larger amplitude oscillation of the recirculation zone center.

6.5 Conclusion

In this chapter we have studied the oscillation mechanism of a bifurcated jet configuration
in a confined cavity by means of numerical simulations. The sideways oriented jets form
two strong recirculation zones in the upper left and upper right of the domain. The positions
and strengths of these recirculation zones oscillate in anti-phase causing an oscillation in
the free surface. In this chapter we have shown proof for a mechanism that explains the
presence of these self-sustained oscillations from the growing and shrinking pressure deficits
in these two recirculation zones. As the jet on one side of the cavity moves upwards, the
recirculation zone will move towards the nozzle, which simultaneously causes the pressure
deficit inside this recirculation zone to increase, until a maximum pressure deficit is reached
and the recirculation zone collapses.

The free surface elevation profiles follow the trend of the pressure differences across the
domain, which, for an unbound top of the domain, lowers the overall pressure gradient across
the domain, and therefore reduces the amplitude of the oscillation of the recirculation zone.

Although the overall characteristics of the oscillation do not differ much between free surface
or fixed wall, one should not conclude that the free surface can be omitted in numerical
simulations. Especially when the Reynolds number is increased, severe bubble entrainment
will start to occur above the recirculation zone center and free surface oscillation magnitudes
will increase.
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7. Conclusions and outlook

In this chapter, we discuss the answers to the research questions formulated in chapter 1 and
we discuss our main findings in a broader perspective, suggesting further research opportun-
ities.

7.1 General conclusions

7.1.1 Benchmark MHD free surface flow problem

In chapter 3 we have introduced a benchmark problem, which describes the free surface
elevation of a shallow layer of conductive fluid. For low height-to-width aspect ratios, we
have analytically derived the shape of the free surface under the influence of electromagnetic,
gravitational and surface tension forces. The analytical solution is given in terms of the
Reynolds number, the Hartmann number, the Bond number, the capillary number and the
cavity aspect ratio. By means of two different numerical free surface modelling techniques
we have demonstrated the range of applicability of the analytical solution in terms of the
relevant dimensionless parameters. This tractable benchmark problem can be considered as
a valuable tool for validating numerical methods for modelling magnetohydrodynamic free
surface flows.

7.1.2 Mechanism for self-sustained jet oscillations

Our numerical LES simulations described in chapters 4 and 6 have provided more detailed
insight in the role of the pressure in the large scale self-sustained oscillations found in thin
cavities for several jet configurations. For both single jet and bifurcated jet arrangements,
recirculation zones will form next to the turbulent jet. We have shown that deviations in the
jet angle can be attributed to the pressure deficit in the center of such a recirculation zone.
This pressure deficit induces jet deflection and at the same time increases with increasing
jet angle. This is a strong feedback loop, causing the jet to deflect to an extreme position
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with maximum pressure deficit in the recirculation zone. In the extreme position of the jet,
fluid escapes from the recirculation zone. The fluid escapes to the bottom of the domain
for single jet configurations and in a cross flow in bifurcated jet configurations. This leads
to a decreasing pressure deficit in the recirculation zone. As the driving force for the jet
deflection vanishes, it returns to the central state. In the single jet configuration the jet will
deflect towards the opposite side, whereas in the bifurcated jet configuration, the jet on the
opposite side will deflect. The process repeats indefinitely.

7.1.3 Model description of self-sustained jet oscillations

In chapter 4 we have described the self-sustained oscillation of a single jet in a confined
cavity by means of a Delay Differential Equation (DDE)-type model, which contains a term
for each of the three consecutive stages of the jet oscillation: (i) pressure deficit driven growth
of the oscillation, (ii) amplitude limitation by geometry and (iii) delayed destruction of the
recirculation zone:

∂θ

∂t
= rθ − µθ3 − kθ(t− τ). (7.1)

We have shown that with a proper parametrization for the model parameters r, µ, k and τ ,
this model predicts the jet oscillation characteristics as a function of the Reynolds number and
cavity width to nozzle diameter ratio (W/d). The model also determines a critical Reynolds
number for given W/d, below which self-sustained oscillations can not exist.

7.1.4 Electromagnetic forcing of single jet oscillations

We have demonstrated in chapter 5 that the zero-dimensional model for self-sustained single
jet oscillations in a confined cavity (Equation 7.1) does also predict the oscillations in elec-
tromagnetically forced flow oscillations, when the effect of the force is incorporated in the
model parameters. The effect of an electromagnetic body force on the self-sustained oscilla-
tions distinguishes three regimes: an oscillation enhancing regime, an oscillation suppressing
regime and a regime where the body force is of minor influence. The regimes are separated
by a critical Stuart number, Ncrit, that describes the ratio of the electromagnetic force and
the inertial terms. For the studied configuration, Ncrit = 0.013. When the oscillations are
enhanced, the body force causes an increase in pressure difference, and therefore also in the
growth rate r. Furthermore, due to the higher velocities, the delay time τ decreases.
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7.2 Research opportunities

7.2.1 Zero-dimensional models

The DDE model that was shown to represent the physics behind self-sustained oscillations of
a single jet in a confined cavity, both with and without electromagnetic forcing, offers many
further research possibilities.

Single jet

The zero dimensional model derived in this thesis for single jet oscillations, can for a specific
choice of the parameters r, µ, k and τ result in a constant non-zero solution (this can happen
for example when k is small). For the single jet oscillation, this means that the jet deflects
towards one side of the cavity, and then stays in this position. We have observed this in
numerical simulations for some cavity thicknesses outside the range of cavity thicknesses
studied in chapter 4. This suggests that except for the self-sustained oscillation regimes,
there may be two stationary regimes, a symmetric and a non-symmetric one.

Alternative body forces

In the present work we have focussed on a specific configuration of the Lorentz force
due to imposed magnetic fields and injected currents. We believe that the presented zero-
dimensional model will generally be useful when an imposed body force (not necessarily
electromagnetic) is in the same direction as the fluid jet. For these situations, namely, the
motivation behind the growing term in the model equation remains valid. When the working
fluid in the thin cavity is a liquid metal, an external magnetic field only, which leads to in-
duced currents, will be sufficient to suppress jet oscillations. As the electromagnetic force in
such a situation would also mainly be in the direction of the main jet, the model is expected
to remain useful.

7.2.2 Damping of oscillations

In this thesis we have outlined a method for benchmarking any free surface MHD flow solver.
The analytically solved benchmark problem can be extended with, for example, temperature1

or a Marangoni force.7 For larger deformations, it may be possible to obtain at least a partial
solution for the free surface deformation.6

In the benchmark problem, we have looked at steady state solutions of the deformed free sur-
face state of a shallow layer of conductive liquid. In the two-dimensional numerical simula-
tions, we have observed interesting phenomena during the transient phase towards the steady
state solution. For some conditions, the free surface monotonously moves to this state, while
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under other conditions the steady state is reached in a damped oscillating manner. The dis-
tinction between various damping modes can most likely be attributed to the balance between
viscous and magnetic forces, which is the Hartmann number. For the damping of jet oscil-
lations, we have only distinguished between oscillating and non-oscillating flows, however,
investigation of the transient phase towards the damping may give more insight in optimizing
the damping configurations.

7.2.3 Towards improved continuous steel casting

In this section we describe how the main findings and methodologies discussed in this thesis
can be applied for improving the continuous steel casting process.

Critical damping

Above, we observed that at a specific Hartmann number, critical damping of free surface
oscillation in the shallow cavity may occur. This is a situation with injected electrical currents
and an imposed magnetic field. This has a relevance in electromagnetic braking in liquids,
as it suggests that critical damping of an oscillation can occur. In other words, there is an
optimal magnetic field strength for damping of the oscillations. Increasing the magnetic field
strength above this optimum may therefore be less effective as an electromagnetic brake.

This insight may also be applied to the damping of the jet oscillations in single and bifurcated
jet geometries. In this thesis we did not distinguish between the several damped modes. It
is worth to investigate if the observation of critical damping also exists in terms of the Stuart
number (ratio of magnetic and inertial forces) for oscillating jets in thin cavities.

Zero-dimensional modelling

The zero-dimensional model describes the time evaluation of the single variable, θ, repres-
enting the angle of a single jet in a thin cavity. Realistic steel casting applications, however,
are multi-jet configurations. It is possible to devise a coupled system with two oscillators,
representing both jets in a bifurcated jet configuration. Such a system may look like

∂θ1

∂t
= rθ1 − µθ3

1 − k (θ1(t− δ)− θ2(t− δ)) , (7.2)

∂θ2

∂t
= rθ2 − µθ3

2 − k (θ2(t− δ)− θ1(t− δ)) . (7.3)

Here, θ1 and θ2 can represent the angles of both jets with respect to an axis. The first and
second term on the right side of the equation have a similar representation as for the single jet,
i.e. pressure driven oscillation growth and amplitude limitation by the geometry. The final
term represents the coupling of both jets with a delay time, which represents the pressure drop
by the overflow between both sides of the mould. Among the possible solutions of this set
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of model equations, one solution is the anti-symmetric oscillation of θ1 and θ2. This is what
we observed in the bifurcated jet geometries studied in this thesis. We may anticipate that a
similar stability criterion as for the single jet model exists. For the steel casting application,
however, lowering the fluid velocity or increasing the width of the mould are not the most
viable options for the suppression of large scale self-sustained oscillations.

Besides introducing electromagnetic forces, there is an additional route that is worth to invest-
igate with respect to suppressing of oscillations in a dual-jet model. These coupled oscillators
are a well-studied phenomenon,3–5 and popular in, for example, electrical systems. Interest-
ing phenomena in these coupled oscillators are amplitude death (AD)4,5 and oscillation death
(OD).2 For both AD and OD the oscillations cease, for AD to the same ground state (typ-
ically zero), and for OD to dissimilar states (typically non-zero). Delayed feedback may
be one reason for AD, but in typical steel casting applications, this does not seem to occur.
From these extensive studies on coupled oscillators, other routes that may lead to the ceasing
of oscillations are worth to investigate. One relevant opportunity is to investigate whether
asymmetries in a continuous caster design may influence the (ceasing of the) oscillation in a
beneficial way. Such a simplified model may provide substantial additional insight into the
self-sustained oscillation of bifurcated jets.

Three-dimensional simulations

In this thesis we have developed two numerical methods for three-dimensional free surface
flows subject to electromagnetic forcing. These numerical models have been demonstrated
only with imposed electrical currents, via the boundary conditions for the electric potential.
The methods, however, can also be applied for pure one-way coupled magnetohydrodynam-
ics, where only currents induced by the external magnetic field occur. These same numerical
methods can therefore be used for investigations of electromagnetic braking configurations
in continuous steel casting.
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