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1. Introduction

Positron emission tomography (PET) is a well-established in vivo molecular imaging technique, both in research 
and in clinical practice. PET plays a key role in an increasing number of applications in different fields, such 
as oncology, neurology, functional studies, and drug development. Depending on the radio-tracer chosen, 
PET can provide a variety of functional and metabolic information. In modern PET scanners, these data are 
usually combined with the anatomical information obtained with an integrated computed tomography (CT) or 
magnetic resonance imaging (MRI) system.

Much research in PET instrumentation focuses on the development of high-performance detector technol-
ogy. The main challenge in the context of clinical PET is to obtain a precise estimation of the gamma-ray position 
of interaction, combined with high sensitivity, an excellent coincidence resolving time (CRT), and good energy 
resolution. An important innovation that could be introduced in clinical scanners is the capability of estimating 
the depth of interaction (DOI) of gamma rays inside the detectors, without compromising on other performance 
parameters. This additional information would allow scanners to achieve a higher and more homogeneous  
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Abstract
Recently, a monolithic scintillator detector for time-of-flight (TOF)/depth-of-interaction (DOI) 
positron emission tomography (PET) was developed. It has a detector spatial resolution of ~1.7 mm 
full-width-at-half-maximum (FWHM), a coincidence resolving time (CRT) of ~215 ps FWHM, 
and ~4.7 mm FWHM DOI resolution. Here, we demonstrate, for the first time, the imaging 
performance of this detector in a 70 cm diameter PET geometry. We built a tomographic setup 
representative of a whole-body clinical scanner, comprising two coaxially rotating arms, each 
carrying a detector module, and a central, rotating phantom table. The fully automated setup 
sequentially acquires all possible lines of response (LORs) of a complete detector ring, using a step-
and-shoot acquisition approach. The modules contained 2  ×  2 detectors, each detector consisting 
of a 32 mm  ×  32 mm  ×  22 mm LYSO crystal and a digital silicon photomultiplier (dSiPM) array. 
The system spatial resolution was assessed using a Na-22 point source at different radial distances 
in the field-of-view (FOV). Using 2D filtered back projection (2D FBP, non-TOF), tangential and 
radial spatial resolutions of ~2.9 mm FWHM were obtained at the center of the FOV. The use of 
DOI information resulted in almost uniform spatial resolution throughout the FOV up to a radial 
distance of 25 cm, where the radial and tangential resolution are ~3.3 mm FWHM and ~4.7 mm 
FWHM, respectively, whereas without DOI the resolution deteriorates to ~9 mm FWHM. Additional 
measurements were performed with a Na-22 filled Derenzo-like phantom at different locations 
within the FOV. Images reconstructed with a TOF maximum-likelihood expectation-maximization 
(TOF ML-EM) algorithm show that the system is able to clearly resolve 3 mm diameter hot rods up 
to 25 cm radial distance. The excellent and uniform spatial resolution, combined with an energy 
resolution of 10.2% FWHM and a CRT of ~212 ps FWHM, indicates a great potential for monolithic 
scintillators as practical high-performance detectors in TOF/DOI-PET systems.
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spatial resolution throughout the field of view (FOV) (Surti et al 2013, Thoen et al 2013). At present, benefits 
of DOI estimation have been experimentally demonstrated only in preclinical PET scanners or demonstrators 
(González et al 2016, Lee et al 2017), whereas there are no results available for PET scanners or demonstrators 
having ring dimensions compatible with clinical applications.

Current clinical whole-body scanners are usually built with detectors based on segmented scintillator-crystal 
matrices whose pixels typically have edge dimensions of 4–5 mm and a thickness of 20–30 mm. These crystal 
arrays are read out using either light sharing techniques or one-to-one coupling, by means of arrays of pho-
tomultiplier tubes (PMTs), position sensitive PMTs (PS-PMTs), or arrays of silicon photomultipliers (SiPMs). 
In state-of-the-art clinical scanners these detectors typically achieve a CRT of 300–350 ps full-width-at-half-
maximum (FWHM) and an energy resolution of about 10.5%–11% FWHM, but none of them provides DOI 
estimation (Vandenberghe et al 2016).

Prototype pixelated scintillation detectors with improved performance compared to the clinical state-of-the-
art have been presented in literature. These detectors are typically based on smaller crystals (~2 mm pixels) (Mar-
cinkowski et al 2014, Lee and Lee 2015, Wong et al 2015), while numerous designs have been proposed to obtain 
DOI estimation. For instance, 3D crystal arrays (Yamaya et al 2011), stacked matrices made of different materials 
with different decay times (phoswich) (Schmall et al 2015, Chen-Ming 2017), phosphor-coated crystals with 
pulse-shape classification (Kwon et al 2016), light sharing techniques that encode the DOI in the width of the reg-
istered light distribution (Lee and Lee 2015), and crystals with double-sided-readout (DSR) (Seifert and Schaart 
2014, Kang et al 2015). Often, such improvements come at the expense of other key performance parameters, 
such as time resolution and energy resolution, and/or result in increased cost and complexity.

An interesting alternative to pixelated detectors is represented by monolithic scintillator detectors, in which 
a continuous scintillator (typically a cuboidal crystal) is coupled to an array of photosensors. Monolithic scin-
tillator detectors have shown an excellent combination of spatial resolution, coincidence resolving time, and 
detection efficiency (Seifert et al 2012, 2013, van Dam et al 2013). For example, our group has recently presented 
a detector based on a 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystal and a digital photon counter (DPC) array 
which achieved a x-y spatial resolution ~1.7 mm FWHM/~1.6 mm mean absolute error (MAE), a DOI resolu-
tion ~3.7 mm FWHM/~2.2 mm MAE, and a CRT of ~215 ps FWHM (Borghi et al 2016). Also, new methods have 
been proposed to increase the efficiency of the calibration procedures and of the time and position estimation 
algorithms (Borghi et al 2015), which had previously been considered a limitation for the practical application of 
this technology.

Thus, monolithic detectors are becoming a serious option for clinical TOF/DOI-PET scanners. Nevertheless, 
monolithic and pixelated scintillator detectors have inherently different responses and it is not possible to simply 
compare e.g. the FWHM spatial resolution of a monolithic detector with the crystal pitch of a pixelated detector 
(Tabacchini et al 2017). Hence, realistic tomographic image acquisition measurements are warranted to assess 
the performance of monolithic scintillator detectors at the full-scanner level.

In this work we aim to experimentally predict the imaging performance of a 70 cm diameter whole-body 
TOF/DOI-PET scanner based on monolithic scintillator crystals coupled to DPC arrays using a new tomo-
graphic setup, which has been developed to perform full PET acquisitions using only two detector modules. The 
setup comprises two rotating arms, each one carrying a detector module, as well as a central rotating phantom 
table. The setup can be used to sequentially acquire all possible combinations of detector modules of a complete 
PET ring, using a step-and-shoot acquisition procedure. A detailed description of the detector modules and of 
the experimental setup is presented in section 2, while the time, energy, and spatial resolution obtained in the 
tomographic experiments are reported in section 3.

2. Methods

2.1. Module design and sensor settings
The two PET modules used in this work are based on DPC3200-22-44-M22 sensor modules produced by Philips 
Digital Photon Counting (PDPC) (figure 1). Each module hosts 2  ×  2 digital silicon photomultiplier (dSiPM) 
arrays (model DPC3200-22-44) at a distance of ~0.5 mm one from each other and dedicated readout electronics. 
The DPC arrays measure 32.6 mm  ×  32.6 mm and are composed of 4  ×  4 independent sensors (dies) at a pitch 
of 8 mm. Each die is subdivided into four pixels and is equipped with an on-silicon integrated TDC system. When 
a die acquires a light signal, it registers the intensity of the light on each pixel, i.e. the exact number of fired single 
photon avalanche photodiodes (SPADs), and a single timestamp. Therefore, DPC arrays can provide an 8  ×  8 
pixel light distribution and 16 timestamps when read out fully. More detailed descriptions of the DPC array 
working principle can be found in Frach et al (2009), Frach et al (2010), Schaart et al (2016) and Schulze (2014b). 
The modules were controlled and read out by a field-programmable gate array (FPGA) based electronic board 
and a computer software provided by PDPC.

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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Eight monolithic scintillator detectors based on 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystals (Crystal Pho-
tonics, Sanford, USA) and DPC3200-22-44 arrays were assembled to fully populate the modules. The lateral faces 
of the crystals were covered with a specular reflector foil (Vikuiti ESR, 3M), while the top faces were covered with 
Teflon tape. The crystals were permanently glued to the photosensors using UV-curing glue (DELO Photobond 
4436).

The sensor settings (Schulze 2014a) were optimized to maximize the timing performance and the sensitivity 
for monolithic scintillator detectors operated at reduced temperatures (−20°/−15°). On all sensors, the noisi-
est 10% of the SPADs were disabled. The trigger threshold was set at the first photon interacting on a die (DPC 
notation: MT  =  1), the validation interval was set to 40 ns, the validation threshold setting required at least one 
photon per pixel to validate an event on a die (DPC notation: 0x7F:AND) and the integration interval equaled 
165 ns. Considering also the readout and reset time (680 ns), DPC sensors have a total dead time per acquired 
event  <1 µs. However, the bandwidth of current DPC sensor tile is artificially limited by the event storage 
memory available on the tile FPGA: the present sensor tile can handle a maximum of about 120 kcps per chip, 
i.e. each monolithic crystal detector used in this work has a maximum theoretical count rate of ~120 kcps. The 
neighbor logic was activated so that all dies on a sensor were acquired every time that one of the dies registered 
a validated event.

A hardware gating signal was defined between the modules using the FPGA electronic board to register only 
the events occurring within a coincidence window of ~100 ns. This broad coincidence pre-selection requirement 
was imposed with the sole purpose of reducing the single-event rate registered on the sensors and to minimize 
the amount of data to be transferred to the data acquisition computer through a USB 2.0 connection (Schulze 
2014a). A more accurate coincidence selection was performed during the offline analysis (see section 2.3).

2.2. Time and position estimators for monolithic scintillator detectors
Monolithic scintillator detectors require individual calibration and optimized estimation algorithms to achieve 
their best spatial and timing performance. In Borghi et al (2015, 2016), new calibration methods were presented 
that made it possible to fully characterize the response of a detector in few hours using fan-beam and flood 
irradiations. In the same papers, several modifications to the statistical estimators for the position-, energy-, and 
time-of-interaction were introduced to accelerate these estimators and make them practically applicable. The 
same methods and estimators were used in the present work to calibrate the detectors on the PET modules and to 
process the acquired data.

In particular, for x, y position estimation an accelerated version of the k-nearest neighbor (k-NN) method was 
used, which requires the acquisition of a reference dataset for each single detector using a fan-beam irradiation. 
The same datasets were used to calculate the look-up-tables (LUTs) needed to correct for the position-dependent 
energy response of the detectors and to estimate the DOI. The spatial sampling used to estimate the position of 
interaction inside the crystal was 0.25 mm  ×  0.25 mm  ×  1 mm in the x, y and DOI direction, respectively.

A separate calibration dataset, acquired by means of a simple flood irradiation, was used to calibrate the 
maximum likelihood interaction estimation method (MLITE), the statistical method used to estimate the time 
of interaction (van Dam et al 2013).

Figure 1. Photograph of a DPC3200-22-44-M22 detector module partly assembled using 32 mm  ×  32 mm  ×  22 mm LYSO:Ce 
crystals.

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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A short description of the calibration procedures and estimators is given in appendix. In particular, the small 
adaptations that were necessary to adjust the methods to the measurement conditions used in this work are high-
lighted there. For a complete description of the methods, the reader is referred to the papers cited.

2.3. Tomographic setup
A new setup was designed and built to perform complete tomographic acquisitions using only two detector 
modules (figure 2). This setup is constructed such that PET scans with different axial extents and with the 
modules at different radial positions can be acquired. The setup achieves a module positioning accuracy  ⩽0.2–
0.3 mm even at the largest radii, thus preventing image artifacts or degradations in the imaging performance that 
might otherwise occur from inaccurate mechanical precision.

The setup is based on a precision goniometer originally developed for an x-ray diffractometer (Bruker) with 
two coaxially rotating stages capable of a full rotation. The rotational accuracy is  <0.01° and each rotating stage is 
equipped with a mechanical arm. On each arm, two perpendicular, custom-made linear stages driven by stepper 
motors are used to support and move a PET module, such that its radial position r and height z can be adjusted. 
The range of the r and z linear stages are 450 mm and 250 mm, respectively. The positioning accuracy of both 
stages is  <0.05 mm. At the center of the goniometer, an additional rotating stage (accuracy ~0.05°) is mounted, 
so that the central platform onto which the sources are placed can be rotated. All stages make use of closed-loop 
control. A dedicated control unit based on a CNC protocol was developed that interfaces with a PC, allowing the 
experimenter to easily control the setup (Berkelaar MRT, Delft).

Precise alignment of the modules was obtained by means of fine-adjustment mechanisms that allow correc-
tion of the unavoidable small inaccuracies that occur when large machineries are assembled. Alignment was per-
formed using a 3D measuring arm (Romer Absolute Arm, 6 axis) that could determine the spatial position of the 
various components with a precision of  <0.02 mm. The detector modules are mounted using a high-precision 
docking system that defines their position accurately even if they are removed and re-mounted.

The setup also includes a two-stage cooling system designed to control the temperature of the DPC sensors 
and to dissipate the heat produced by the detectors during operation. The first cooling stage is a liquid cooling 
machine (Integral XT 150, LAUDA) used to stabilize the temperature of a cooling plate at the back of each mod-
ule at ~15 °C. The second cooling stage consists of high-power Peltier elements mounted in between the cooling 
plates and the modules, which can cool the modules down to about  −20 °C. The modules and Peltier elements 
are enclosed by insulating foam boxes purged with dry nitrogen to avoid condensation of moisture.

Complete tomographic acquisition are performed acquiring all module pair positions (or views) that are 
measured in a full 3D PET ring, i.e. all module pair positions that define LORs that intersect the FOV. For a given 
module pair position, possible LORs include all lines connecting all the points on the surface of the detectors of 
one module with all the points on the surface of the detectors of the other module. A given view can be obtained 

Figure 2. Technical drawing (isometric projection) of the tomographic setup.

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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by moving either the arms, the central plate, or both. For each view a measurement of the same time duration 
has to be registered. A LabVIEW program was developed to perform such acquisition sequences in a completely 
automated way. No angular constraints are applied on the possible LORs, so tomographic measurements are 
performed in full 3D PET mode. Coincidences are saved in list mode.

For the tomographic acquisitions performed in this work, the inner diameter (module-to-module maxi-
mum distance) of the system was set to 70 cm, thus representing a whole-body clinical scanner made of 32 mod-
ules. The FOV has a diameter of 50 cm and an axial extent of 6.5 cm, corresponding to the size of a single detector 
module. A representation of the PET ring emulated with the tomographic setup is shown in figure 3.

Coincidence events were selected offline, using a 4 ns wide software coincidence window and an energy win-
dow corresponding with the full-width-at-ten-maximum (FWTM) of the uncorrected 511 keV photopeaks of 
the different detectors, which on average corresponds to a ~100 keV wide energy window (see appendix, sec-
tion A.1).

2.4. System characterization
2.4.1. Energy resolution and coincidence resolving time
The energy resolution and CRT of the tomographic setup were determined from a complete tomographic 
acquisition of a 22Na point source (~3 MBq) placed at the center of the FOV. The energy resolution was calculated 
by creating, for each of the 8 detectors, a calibrated spectrum corrected for the position-dependent detector 
response (see appendix) and summing the obtained spectra. Detector calibration was performed as a simple 
linear calibration using only the 511 keV photopeak as a calibration point. The single-detector and overall energy 
resolutions were determined with Gaussian fits.

A system TOF-difference spectrum was obtained by calculating the differences between the detector times-
tamps for all coincidences acquired during the measurement. Detector timestamps were corrected for die and 
tile electronic skews, which were determined as described in appendix. No further correction to align the spectra 
obtained at the different combinations of module positions was performed. The system CRT was determined 
with a Gaussian fit of the spectrum.

2.4.2. Spatial resolution measurements with point sources
Complete tomographic acquisitions of a single 22Na point source (Ø 0.5 mm, ~3 MBq) were performed at 
different positions along the x-axis of the scanner, from the center of the FOV up to a radial offset of 25 cm, at a 
pitch of 5 cm. A scan time of ~3 min per module position was used at each radial offset, which resulted in a total 
number of 4.5 to 5.5 million coincidences per scan, depending on the source position.

The images were reconstructed projecting all the LORs on a single plane and using 2D filtered back projection 
without considering TOF information (2D FBP, non-TOF), with pixel dimensions of 0.5 mm  ×  0.5 mm, with 
no smoothing or apodization. The LORs were rebinned with an angular sampling of 0.5° and a radial sampling 

Figure 3. Representation of the PET ring emulated with the tomographic setup. The scanner is composed of a single ring of 32 
modules. Each module has an active area of ~65 mm  ×  65 mm. The inner diameter of the scanner is 70 cm (module-to-module 
distance), while the angular distance between modules is 11.25°. The FOV has a diameter of 50 cm and an axial extent of 6.5 cm.

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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of 0.25 mm. The radial and tangential resolutions were defined as the FWHM of a line profile across the recon-
structed point sources in the two directions, respectively. The FWHMs were calculated using spline interpolation 
of the 1D line profiles through the point sources. In order to investigate the accuracy and the impact of DOI esti-
mation, images were reconstructed both with and without DOI information incorporated in the reconstruction. 
In case no DOI estimation was used, the center of the crystal was used as a fixed value for the DOI.

2.4.3. Spatial resolution measurements with Derenzo-like phantom
A custom, Derenzo-like resolution phantom was built using PMMA (polymethyl methacrylate) plastic to 
qualitatively assess the spatial resolution and the imaging performance of the PET scanner (figure 4). The hot-
rod insert of the phantom has a diameter of 10 cm, a height of 7 cm and is subdivided into six sectors, with rod 
diameters of 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 5.0 mm, and 7.0 mm. The distance between the centers of adjacent 
rods within each sector always equals twice the rod diameter. A total activity of ~20 MBq of 22Na was used to 
prepare the homogeneous aqueous solution with which the phantom was filled. Considering the total volume of 
solution, which is partly outside the hot rods, the estimated activity concentration was ~150–200 kBq cm−3.

The phantom was scanned at three radial distances from the center of the FOV, viz. 0 cm, 15 cm and 20 cm. At 
each radial distance, the scan time at each module position equaled ~40 min, which resulted in a total number of 
~50 million coincidence events for each complete tomographic scan.

Image reconstruction was performed using a list-mode 3D TOF maximum-likelihood expectation-maximiza-
tion (TOF ML-EM) algorithm (Vandenberghe et al 2000) with a voxel size of 1 mm  ×  1 mm  ×  1 mm. Siddon ray 
tracing was used to calculate the elements of the system matrix (Siddon 1985). No resolution modelling was used 
for image reconstruction. Normalization, scatter and random correction were not applied, since normalization and 
random correction are not expected to have an influence on spatial resolution, whereas scatter correction has only 
a minor effect on the tails of the measured activity distribution. Attenuation correction was applied using an ana-
lytical model of the phantom, of which the geometry, composition and position inside the scanner are accurately 
known. Attenuation correction was part of the image reconstruction, no prior correction was performed on the 
measured data. A sensitivity map (in the image space) was calculated by backprojecting LORs on the image matrix. 
In order to calculate the sensitivity map in the image space, a number of 10 000 LORs were randomly sampled for 
each monolithic detector pair and backprojected on the image matrix, i.e. the end-points of each LOR were ran-
domly sampled in the (continuous) volume of each crystal. All images were obtained with 10 EM iterations, since 
additional iterations did not provide any significant visual improvement. As only the transaxial resolution is of 
interest for this measurement, the 50 central image slices were averaged in order to increase count statistics.

All images were reconstructed twice, once using the estimated DOI and once using the center of the crystal as 
a fixed DOI value.

3. Results and discussion

3.1. Energy resolution and coincidence resolving time
The energy resolutions of the single detectors are reported in table 1. All of them lie between 10.6% FWHM and 
10.1% FWHM, except for the resolution of detector 1 on module 1, which is slightly worse. An overall system 

Figure 4. Technical drawings of the Derenzo-like resolution phantom: isometric projection of the entire phantom (left) and top-
view of the of the hot-rod insert (right).

Phys. Med. Biol. 63 (2018) 155006 (13pp)



7

G Borghi et al

resolution of 10.2% FWHM is found, which is competitive with state-of-the-art detectors used in commercial 

scanners based on pixelated scintillators.
For comparison, the recent GE Healthcare Signa TOF-PET/MRI scanner, which is based on analog SiPMs, 

has an energy resolution of 10.3% (Levin et al 2016). For the Philips Vereos TOF-PET/CT scanner, which is 
based on arrays of 4 mm  ×  4 mm LYSO:Ce crystals coupled to the same DPC sensors as used in this work, an 
energy resolution of 11.1% FWHM has been reported (Miller et al 2015). Similar values have been reported for 
other prototype detectors and scanners based on pixelated crystals coupled to DPC sensors (Degenhardt et al 
2012, Marcinkowski et al 2014, Schug et al 2015) or PMTs (Wong et al 2015), which achieved energy resolutions 
between 10.7% FWHM and 11.4% FWHM. The slightly improved energy resolution of monolithic scintillator 
detectors compared to pixelated detector, when the same type of photosensor is used, can be explained by the 
more efficient light collection process due to the favorable aspect ratio of monolithic crystals.

In previous work on a prototype monolithic detector (similar to the ones used in this work) we reported 
an even better value for the energy resolution, viz. less than 10% FWHM (Borghi et al 2016). The difference 
can probably be explained by the higher percentage of DPC cells disabled in the present work (10% instead of 
5%) and by the slightly larger sensor temperature fluctuations observed during operation (~1 °C instead of  
0.1 °C–0.2 °C).

A system CRT of ~212 ps FWHM was obtained using the MLITE method discussed in section 2.2. Figure 5 
shows the corresponding time difference histogram. This result is consistent with the CRT values that were meas-
ured independently with 8 different couples of monolithic crystals (see section 4 in appendix), which were all 
between 210 ps FWHM and 220 ps FWHM.

For comparison, CRTs of ~315 ps FWHM and of 385 ps FWHM have been reported recently for the Vereos 
TOF-PET/CT scanner (Miller et al 2015) and for the Signa TOF-PET/MRI scanner (GE) Levin et al (2016), 
respectively. For research scanners, a CRT of ~266 ps FWHM was measured by Degenhardt et al (2012) on a 
prototype PET scanner based on DPC sensors and one-to-one coupled 4 mm  ×  4 mm  ×  22 mm LYSO:Ce crys-
tals. In Schug et al (2015), a CRT of ~213 ps FWHM was reported for a prototype small-diameter scanner based 
on DPC sensors and 4 mm  ×  4 mm crystals with a thickness of only 10 mm. This comparison indicates that 
monolithic scintillator detectors can achieve better timing performance than segmented crystals of equal thick-
ness, due to the favorable light collection conditions and the possibility to correct for the influence of the optical 
transport of the scintillation photons within the crystal, using techniques such as MLITE (van Dam et al 2013).

Finally, the same data used to calculate the CRT with MLITE were used to determine the CRT that could be 
achieved using a simple, analytical method to estimate the time of interaction, viz. using the average of the first 
two valid timestamps (van Dam et al 2013). This approach provides a CRT of ~233 ps FWHM, indicating that it 
is possible to achieve excellent timing performance even without MLITE. It is noted that this result furthermore 
implies that the skew correction based on a simple flood irradiation of the detectors (see section A.4) works very 
well, as this analytical approach is expected to be rather sensitive to any remaining skews.

3.2. Spatial resolution
3.2.1. Spatial resolution with point sources
The radial and tangential spatial resolutions measured with point sources and 2D FBP at different radial offsets 
are reported in table 2 and figure 6 (red squares). A spatial resolution of ~2.9 mm FWHM is measured at the 
center of the FOV, while very little degradation is observed at radial distances of up to 25 cm, where the radial 
and tangential resolutions become ~3.3 mm FWHM and ~4.7 mm FWHM, respectively. Such a homogeneous 
spatial resolution across the entire FOV shows that monolithic scintillator detectors can accurately estimate the 
DOI.

For comparison, when the same datasets are reconstructed using no DOI information, the spatial resolution 
rapidly deteriorates as the point source is moved away from the center of the FOV (figure 6, black circles). At a 
radial distance of 25 cm, the radial and tangential resolutions become ~8.6 mm FWHM and ~9.0 mm FWHM, 
respectively.

The spatial resolution of our system outperforms the resolution reported for all currently available whole-
body clinical scanners. For instance, radial and tangential spatial resolutions of 4.44 mm FWHM and 4.10 mm 
FWHM at 1 cm and of 8.44 mm FWHM and 5.23 mm FWHM at 20 cm were recently reported for the Signa TOF-
PET/MRI scanner (Grant et al 2016). Similar results were reported for the Vereos TOF-PET/CT scanner, which 
achieves a transverse spatial resolution of 4.11 mm FWHM at 1 cm and of 5.79 mm FWHM at 20 cm, respectively 
(Miller et al 2015).

Table 1. Single-detector and scanner energy resolution with position-dependent energy response correction.

Module/detector M1/D1 M1/D2 M1/D3 M1/D4 M2/D1 M2/D2 M2/D3 M2/D4 Total

Energy res. (% FWHM) 11.1 10.2 10.1 10.1 10.6 10.3 10.3 10.1 10.2

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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To our knowledge, a spatial resolution of about 3 mm FWHM in a whole-body clinical PET system has so far 
only been achieved by Wong et al (2015), who built a prototype scanner based on small LYSO:Ce crystals (2.35 
mm  ×  2.35 mm  ×  15.2 mm) coupled to PMTs. With this scanner an impressive resolution of ~2.9 mm FWHM 
and ~3.7 mm FWHM was measured at the center of the FOV and at 24 cm radial distance, respectively. The rela-
tively small influence of DOI in this system can be attributed to its relatively thin (15.2 mm) crystals and relatively 
large scanner diameter (~87 cm). Unfortunately, both of these factors tend to reduce system sensitivity.

3.2.2. Derenzo-like phantom images
The TOF ML-EM reconstructed image of the Derenzo-like phantom acquired with the phantom positioned at 
the center of the FOV is shown in figure 7. All rods with a diameter of  ⩾3 mm are clearly distinguishable, while 
most of the rods in the 2.5 mm sector can be recognized.

-500 0 500
Time difference (ps)

0

0.2

0.4

0.6
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1.2
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 u
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CRT (point source center FOV)

MLITE spectrum
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Figure 5. Timing histogram containing all coincidences obtained at all detector positions in a full tomographic acquisition of a ~3 
MBq 22Na point source at the center of the FOV. Timestamps were derived using the MLITE method (van Dam et al 2013, Borghi 
et al 2016).

Table 2. Spatial resolution in the radial and tangential directions at different radial distances, with and without using the DOI information 
in the FBP reconstruction of the 22Na point source images.

Radial position

Radial resolution (mm FWHM) Tangential resolution (mm FWHM)

DOI No DOI DOI No DOI

0 cm 2.9 3.1 2.9 3.1

5 cm 3.0 3.4 3.2 3.3

10 cm 3.0 4.4 3.4 3.6

15 cm 3.2 5.4 3.5 4.1

20 cm 3.2 7.0 4.0 4.9

25 cm 3.3 8.8 4.7 9.0

Figure 6. Radial (left) and tangential (right) spatial resolution as a function of the radial distance of the point source, with (black 
circles) and without (red squares) using the DOI information in the FBP reconstruction of the 22Na point source images. The lines 
connecting the symbols are only included to guide the eye.

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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Because of the accurate DOI information provided by the monolithic scintillator detectors, essentially the 
same results are obtained when the phantom is imaged at different positions throughout the FOV. Specifically, 
when the phantom is positioned with its center at 15 cm radial offset (figure 8), the image looks quite similar to 
figure 7. Even when the phantom is positioned at 20 cm radial offset (figure 9), in which case the smallest rods are 
located at radial distances of up to ~25 cm, little degradation of image quality is observed. For a visual impression 
of the benefit of including DOI information in the reconstruction process, figures 7, 8 and 9 show also images 
of the Derenzo-like phantom reconstructed without (right) DOI correction. As expected, a comparison of the 
images with and without DOI information demonstrates that DOI information is more important to improve 
image quality at larger radial distances in the FOV. When the phantom is positioned at the center of the FOV there 
are no noticeable differences between the DOI and non-DOI images. However, when the phantom is positioned 
at 15 or 20 cm radial offset only the sectors with the rods having a diameter  >  4 mm can be resolved.

The excellent quality of the images obtained with the Derenzo-like phantom confirms the outstanding spatial 
resolution of the tomographic system measured with the point sources and the capability of the system to main-
tain an almost uniform spatial resolution throughout the whole FOV thanks to the DOI information. However, 
a direct comparison between the two results cannot be made, since point-source spatial resolution cannot be  
reliably estimated using ML-EM reconstruction (Gong et al 2016).

4. Conclusions

Two complete PET modules, each containing four 32 mm  ×  32 mm  ×  22 mm LYSO:Ce crystals read out 
by digital photon counter arrays, were assembled and fully calibrated. The modules were installed on the two 
rotating arms of an experimental setup capable of acquiring all LORs of a complete tomographic PET acquisition 
in a step-and-shoot approach. The system was used to emulate a 70 cm diameter PET ring based on monolithic 
scintillator detectors and to experimentally estimate its energy resolution, timing performance and spatial 
resolution.

An average energy resolution of ~10.2% FWHM and a CRT of ~212 ps FWHM were obtained. A spatial 
resolution of ~2.9 mm FWHM was measured at the center of the FOV, using a single 22Na point source and 2D 
FBP reconstruction. The resolution remained almost constant throughout the FOV because of the accurate DOI 
estimation of the detectors. At the largest radial distance tested (25 cm), the resolution increased to only 3.3 mm 
FWHM and 4.7 mm FWHM in the radial and tangential direction, respectively.

Furthermore, PET acquisitions of a Derenzo-like phantom were performed and reconstructed using a TOF 
ML-EM algorithm. The results show that the tomographic setup is able to clearly resolve 3 mm hot rods up to a 
radial distance of ~25 cm.

We emphasize that no resolution modelling was used in the reconstruction of any of the images presented in 
this work. Future research will include investigating the potential benefit of modelling the detector response in 
the image reconstruction. Future work should also include a detailed study of the count-rate capabilities of the 
detector, which could not be performed with the current experimental setup because of the limitations of the 
readout electronics. Nevertheless, due to the short dead time of DPC sensors (<1 µs per event) and the band-
width of the DPC-sensor array (>100 kcps), we do not expect count-rate limitations for monolithic detectors in 
realistic whole-body clinical PET acquisition conditions.

Figure 7. TOF ML-EM reconstructed image of the Derenzo-like phantom at the center of the FOV. DOI information is used in 
the reconstruction of the left-hand image and discarded in the right-hand image. The diameter of the rods in the different sectors 
is 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 5.0 mm, and 7.0 mm. The pixel intensity values obtained from image reconstruction were 
normalized from 0 to 1. The image was obtained with 10 EM iterations. The 50 central image slices were averaged in order to increase 
count statistics.

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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In conclusion, we built a proof-of-concept tomographic setup to investigate, for the first time, the imaging 
performance of 32 mm  ×  32 mm  ×  22 mm LYSO:Ce monolithic scintillator detectors developed at our lab in 
a 70 cm diameter TOF/DOI-PET geometry. These results are particularly meaningful because no group has yet 
shown tomographic images experimentally obtained with thick monolithic detectors in a tomographic setup 
having a diameter compatible with clinical applications. Moreover, to the best of our knowledge, these are the 
first experimental results (obtained either with monolithic or with pixelated detectors) that show how DOI 
information can improve the spatial resolution of a clinical PET scanner at large radial distances. The results 
obtained demonstrate the excellent potential of monolithic scintillator detectors as a practical high-performance 
detector for clinical TOF/DOI-PET.
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Appendix. Time and position estimation methods and detector calibration procedures

All calibration measurements were performed in a dedicated setup built in a climate chamber (Weiss WT 450/70), 
which was cooled to about  −20 °C, resulting in a sensor temperature of about  −17°/−16° C during operation. 
All measurements were acquired selecting one detector on one module for calibration and using one detector on 

Figure 8. TOF ML-EM reconstructed images of the Derenzo-like phantom with its center positioned at 15 cm radial distance, such 
that the smallest rods are located at radial distances of up to ~20 cm. DOI information is used in the reconstruction of the left-hand 
image and discarded in the right-hand image. The diameter of the rods in the different sectors is 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 
5.0 mm, and 7.0 mm. The pixel intensity values obtained from image reconstruction were normalized from 0 to 1. The image was 
obtained with 10 EM iterations. The 50 central image slices were averaged in order to increase count statistics.

Figure 9. TOF ML-EM reconstructed images of the Derenzo-like phantom with its center positioned at 20 cm radial distance, such 
that the smallest rods are located at radial distances of up to ~25 cm. DOI information is used in the reconstruction of the left-hand 
image and discarded in the right-hand image. The diameter of the rods in the different sectors is 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 
5.0 mm, and 7.0 mm. The pixel intensity values obtained from image reconstruction were normalized from 0 to 1. The image was 
obtained with 10 EM iterations. The 50 central image slices were averaged in order to increase count statistics.

Phys. Med. Biol. 63 (2018) 155006 (13pp)
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the other module as a reference. The module containing the detector to be calibrated was assembled on a pair of 
perpendicular stages driven by stepper motors (Physics Instruments, M-403.42S stages with C-663 controllers) 
which were used to correctly position it and move it when necessary.

A.1. Data pre-processing
A few pre-processing operations were performed for all measurements done in this work, both the calibration 
measurements reported in this section and the characterization measurements described in section 2.4.

The first step consisted of selecting only the events in which no pixel values or time stamps were missing and 
for which the total (uncorrected) deposited energy fell within the full-width-at-ten-maximum (FWTM) of the 
511 keV photopeak. Before applying any energy correction, the mean energy resolution of the detectors (which 
have practically Gaussian photopeaks) is 10.6% (minimum is 10.3%, maximum is 12%), therefore on average 
the FWTM is ~19.3% (min ~18.8%, max 21.9%), which corresponds to an energy window ~100 keV wide (min 
~96 keV, max ~112 keV).

The second step consisted of correcting the values of all light distributions for possible non-uniformities 
in the DPC array response which could be due to small defects in crystal wrapping or in the optical coupling 
between the crystals and the sensor. The homogeneity correction maps used for this operation were calculated 
with the method reported in Borghi et al (2016) using the fan-beam irradiation measurement described in sec-
tion A.2.

A.2. Spatial response calibration and position estimation algorithms
An accelerated version of the k-nearest neighbor (k-NN) classification algorithm (Borghi et al 2016) was used 
for estimating the x-y position of interaction of each gamma ray inside the PET detectors. The basic idea of this 
method is to first perform a rapid but coarse pre-estimation of the 3D position of interaction of an incident 
gamma ray by using analytical parameters of the light distributions and calibrated LUTs. For this purpose we used 
(i) the center of gravity (COG) of the light distribution for the x and y position and (ii) the sum of the squared 
pixel intensities for the DOI. Once a pre-estimated position is obtained, a more accurate estimation is obtained 
by running the k-NN 1D algorithm on a subset of the reference dataset composed of only reference events whose 
pre-estimated positions of interactions are close to the pre-estimated positon of the unknown event. Since the 
k-NN algorithm is run on a significantly smaller subset of the training dataset, the overall computational time is 
greatly reduced. The same method used for DOI pre-estimation was also used for the final estimation of the DOI, 
except that the x-y coordinates estimated with the k-NN algorithm were used to build the LUT and to calculate 
the DOI (van Dam et al 2011).

The acquisition of training (or reference) events for position estimation was performed by irradiating the 
crystals of the detectors with a narrow fan beam of annihilation photons at precise x or y positions, while uni-
formly irradiating the crystals along the other direction (Borghi et al 2015). The fan beam was obtained using 
a 22Na source (Ø 0.5 mm, ~3 MBq, IDB Holland BV) and a 80 mm tungsten slit collimator with a slit width of 
about 0.5 mm. For each detector, two datasets of reference events were acquired, one collected along a series of 
equally spaced positions (0.25 mm pitch) on the x axis (x-subset) and the other one on the y axis (y-subset). At 
each position, 12 800 full-energy events were collected. These datasets were used to calibrate the pre-positioning 
LUTs and as x- or y-reference datasets for the accelerated 1D k-NN algorithm. An estimation of the distribution 
of the x-y-z positions of interaction of the calibration events inside the crystals, which is needed to calculate the 
position pre-estimation LUTs and the LUT for the final DOI estimation, was obtained with Monte Carlo simula-
tions performed using GATE (Jan et al 2004).

A.3. Energy response calibration
Monolithic scintillator detectors can have small variations in their energy response depending on the position 
of interaction of the gamma rays inside the crystal. An energy correction LUT was therefore calculated for each 
detector (Borghi et al 2016) by subdividing the crystal into 2 mm  ×  2 mm  ×  5.5 mm ‘voxels’ and determining 
a correction factor for each voxel. This correction factor was equal to the ratio between the 511 keV photopeak 
position of the total energy spectrum and the photopeak position of the spectrum obtained for that voxel. For 
this calibration procedure, the same datasets acquired with fan-beam irradiation for x, y position estimation 
were used.

A.4. Electronic skew estimation and MLITE calibration
Detector calibration for the MLITE algorithm (van Dam et al 2013, Borghi et al 2016) consisted of two steps. 
First, the electronic time skews between the different dies on each sensor were estimated. Then, the probability 
distributions of the first photon detection delays (i.e. the delays between the time of interaction of the gamma-
ray and the time of detection of the first visible photon interacting on a die) for a grid of positions inside the 
crystal and for each die were determined. For this purpose, a flood irradiation was acquired for each crystal using 
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a 22Na point source (~3 MBq). The monolithic crystal to be calibrated was placed at a distance of about 390 mm 
from the source while the distance of the reference monolithic crystal was about 60 mm, so that the coincidence 
event would be localized in a region of the reference detector smaller than a die. About 20 million coincidence 
events were acquired for each detector to be calibrated and their position of interaction inside the detectors was 
estimated using the methods described in section A.2.

The die skews were estimated for each single detector using all events registered during the flood irradiation. 
To estimate the die skew between two vertically, horizontally or diagonally adjacent dies, all the events interact-
ing in the 8  ×  8 mm2 region in between the dies and at a DOI between 0 mm and 10 mm (from the crystal top 
face) were selected. The differences of the timestamps acquired by the two dies were then calculated and used to 
estimate their probability distribution function with kernel density estimation (KDE). The mode of the distribu-
tion was then considered an estimation of the skew. Using the relative time distances between adjacent dies, time 
skews of all dies with respect to a single die were then calculated.

To determine the accuracy of this skew-estimation method, it was tested on a detector similar to the detec-
tors used in this work for which the values of the die skews measured with a laser were available (Borghi et al 
2016). The test showed that the average difference between the values obtained with the new method and the 
values measured with a laser was smaller than 20 ps (i.e. the width of the TDC bins of the DPC sensors), while 
the maximum differences were smaller than 40–50 ps. This result shows that the new method provides excellent 
estimation and its accuracy can be considered comparable with the accuracy achievable performing a measure-
ment with a laser.

To estimate the detector FPDDs, four million reference events were selected for each detector among the 
events acquired during the flood irradiations. The events were selected so that their estimated position of inter-
action in the reference detector was above the die on which the flood irradiation was electronically collimated 
and their estimated DOI was comprised between 0 mm and 6 mm (from the crystal top face). The reference 
timestamps were calculated as the average of the first two timestamps registered on the reference detector and 
were used to estimate the FPDDs of the sensor being calibrated, following the procedure described in Borghi 
et al (2016). Using this procedure it was possible to avoid the use of small, fast reference detectors for the MLITE 
calibration.

To estimate the electronic skews in between tiles and modules, an additional measurement was necessary. 
First, all detectors of one module were measured in coincidence with a single detector of the other module using 
an un-collimated 22Na point source placed exactly in the center between them (~20 cm distance from each detec-
tor). The same measurement was repeated after inverting the modules. One million events per detector combina-
tion were acquired and the resulting time spectra were calculated. The position of the timing spectra acquired for 
all eight combinations were used to calculate the skews between detectors.
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