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ABSTRACT 

 

Disruptions in public transport networks often lead to partial capacity reductions rather than complete 

closures. This study aims to move beyond the vulnerability analysis of complete failures by 

investigating the impacts of a range of capacity reductions on public transport network performance. 

The relation between network performance and the degradation of line or link capacities is 

investigated by establishing a vulnerability curve and related metrics. The analysis framework is 

applied to a full-scan analysis of planned temporary line-level capacity reductions and an analysis of 

unplanned link-level capacity reductions on the most central segments in the multi-modal rapid public 

transport network of Stockholm, Sweden. The impacts of capacity reductions are assessed using a non-

equilibrium dynamic public transport operations and assignment model. The non-linear properties of 

on-board crowding, denied boarding, network effects and route choice result in non-trivial, generally 

convex, relations which carry implications on disruption planning and real-time management. 

 

 

Keywords: Network vulnerability; Disruption; Capacity; Public transport. 
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1. Introduction and Literature Review 

 

One of the biggest challenges facing growing urban areas is the increasing demand for all modes of 

transport, causing congestion, crowding, noise and emissions to rise. A shift of travel from low-

capacity personal cars to high-capacity public transport is generally seen as one of the most important 

means of meeting this challenge (e.g., European Council, 2006). A significant barrier towards this goal, 

however, is the perceived unreliability of public transport services (Friman et al., 2001; Beirão and 

Sarsfield Cabral, 2007). Public transport systems are subject to disruptions of its services that may 

result in degraded system performance. Some disruptions are unplanned and unexpected (e.g., 

technical failures in vehicles or infrastructure and accidents), while others are planned (e.g., capacity 

reductions due to construction work or repairs) or at least known some time in advance (e.g., crew 

strikes). Due to rigid constraints in terms of line operations, timetables, vehicle and personnel stock 

etc., service disruptions in public transport networks (PTN) are prone to have wide and sustained 

implications.  

 

The impact for travellers of service disruptions in terms of delays and inconvenience depends on the 

availability of alternative travel options, i.e., the amount of redundant capacity in the PTN. When 

capacity utilisation is increased, redundancy is often reduced, and the system becomes more 

vulnerable (Goldberg, 1975). As public transport passenger volumes increase, the systems are thus at 

risk of becoming less reliable and more sensitive to service disturbances, which may inhibit the 

willingness of further travellers to shift from private to public transport. Thus, increasing reliability 

and robustness of the PTN is an important aspect for policy, planning, as well as operations. 

 

Until recently, relatively little research has been devoted to public transport vulnerability analysis 

compared to road networks (Mattsson and Jenelius, 2015). Most existing studies have analysed PTN 

vulnerability by investigating the impacts of network topology on link or node failure (e.g., 

Angeloudis and Fisk, 2006; Colak, 2010; von Ferber et al., 2012). The impact of random and targeted 

attacks on system performance has been assessed through their implications on network centrality 

measures, and by analysing the process of disintegration into isolated components. Berche et al. (2009) 

considered two different graph representations of PTN, where nodes correspond to stations and node 

failure means that no traffic can pass or stop at the station, respectively. Li and Kim (2014, p. 8) 

introduced the robustness concept survivability, operationalized as a combination of system 

connectivity loss and passenger flow loss when one or more hub stations are disrupted. In an 

application to the Beijing subway, they concluded that its survivability after the disruption of one hub 

is quite good, but that the network may be quite vulnerable to informed attacks disrupting two or more 

hubs. 

 

Rodríguez-Núñez and García-Palomares (2014) characterized the importance of links in a subway 

system, assuming that link travel times and an OD travel demand matrix are known and that travellers 

choose the fastest route in the network to reach their destinations. The closure of a link can have two 

distinctly different outcomes: (1) the network is separated into two isolated components, or (2) some 

travellers have to make a detour to reach their destinations. Following Jenelius et al. (2006), they 

define the importance of a link in case (1) as the unsatisfied demand, i.e., the number of trips that 

cannot be carried out, and in case (2) as the increase in average travel time assuming that affected 

travellers make the fastest possible detour. De-Los-Santos et al. (2012) perform a similar network scan 

evaluation while also considering the case of a replacement service for the closed link.  

 

Cats and Jenelius (2014) introduced a dynamic, stochastic and multimodal notion of PTN vulnerability, 

accounting for interactions between supply and demand and the accumulated effect of disruption on 

system performance. Candidate critical links were then identified by extending the measures of 

betweenness centrality and link importance to a dynamic-stochastic setting from the perspectives of 

both operators and passengers. The criticality of a link was evaluated as the reduction in welfare 

(considering travel time, number of transfers, etc.) due to a capacity reduction of the link. The authors 

also studied the mitigating impact of real-time information provision, and found that it may have a 

significant positive influence, although counter-examples due to cascading effects were also found. 
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Cats and Jenelius (2015) proposed a methodology for identifying the alternative lines where capacity 

increases are the most effective for reducing the impacts when critical links are disrupted, while 

Jenelius and Cats (2015) studied the value of new links for the robustness and redundancy of the 

network compared to traditional welfare benefits such as travel time savings in normal conditions. 

 

In general, public vulnerability has been analysed based on the impact of complete link failures. Such 

analysis may be appropriate for disruptions caused by, e.g., infrastructure breakdown or signal system 

failure. However, most disruptions do not amount to complete failures but are caused by partial 

reductions in service capacity; examples include reductions in capacity due to infrastructure failures, 

maintenance, construction works or traffic incidents, and reduced service frequency due to vehicle 

failures or as a way of managing reduced infrastructural capacity. In order to better understand the 

system characteristics and the impacts of disruptions, robustness analysis should hence not only 

consider system performance in case of extreme failures but also investigate the impact of moderate 

disturbances. Such partial capacity reductions are also prone to occur more frequently than complete 

failures and may thus amount to substantial impacts and costs overall. 

 

The importance of analysing partial capacity reductions was also raised by Sullivan et al. (2010) with 

respect to road transport networks. The authors introduced a robustness evaluation method based on 

different link-based capacity-disruption values for identifying and ranking the most critical links and 

quantifying network robustness in a transport network. Studies on artificial and real networks showed 

that the criticality ranking of links is sensitive to the level of capacity reduction. Further, a convex 

relationship was found between the relative link capacity reduction and the associated relative 

decrease in the network robustness metric. Nagurney and Qiang (2007) theoretically studied the 

performance of transport networks subject to user equilibrium demand patterns under varying degrees 

of link capacity reductions in terms of the relative decrease of a network efficiency measure. 

Burgholzer et al. (2013) proposed using microscopic traffic simulation to study the impact of 

disruptions in multimodal transport networks. Disruption impacts were evaluated in terms of five 

network performance indicators. In a case study on the Austrian multimodal network, disruptions were 

simulated for a set of pre-selected relevant links under different scenarios regarding time-of-day, 

duration and level of capacity reduction.  

 

The impact of partial capacity reductions has also been considered from a stochastic perspective. Chen 

et al. (1999) proposed a measure of capacity reliability, defined as the probability that the network can 

accommodate a certain required level of travel demand given that the links are subject to random 

capacity degradations. The authors used a Monte Carlo simulation procedure to evaluate the capacity 

reliability of a network.  Other studies have focused on the reliability of travel times; Chen et al. (2002) 

define travel time reliability as the probability that the travel time between a given OD pair is below a 

certain threshold relative to the nominal travel time when link capacities are randomly degraded.  Thus, 

reliability analysis does not consider network performance under specific levels of capacity reductions, 

but rather the probability of the network performing adequately when link capacities vary randomly. 

 

The aim of this study is to analyse the relation between the extent of capacity reduction and its 

consequences on PTN performance, thereby filling an important gap in the knowledge about PTN 

vulnerability. Further, many service disruptions in practice, such as vehicle breakdowns and cancelled 

trips, do not affect a specific network link but rather a public transport line operating in the network. 

Cats et al. (2011) demonstrated that disruptions at the link and line levels may lead to distinctly 

different flow distribution patterns. The primary objective of this study is thus to examine how system 

capability of withstanding link and line disruptions varies for partial capacity reductions. A full-scan 

analysis of planned line capacity reductions is performed for the case study multimodal network of the 

rapid public transport system of Stockholm, Sweden. In addition, an analysis of unplanned capacity 

reductions on the most central network segments is conducted. For every disrupted network element, a 

sequence of scenarios with varying degree of capacity reduction is simulated. The general relation 

between the level of capacity reduction and the total disruption impacts is then assessed using novel 

vulnerability metrics. 
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The analysis consists of simulating disruption scenarios using the same dynamic public transport 

operations and assignment tool as used by Cats and Jenelius (2014), which represents individual 

vehicles and passengers. The model enforces strict on-board capacity constraints. It hence facilitates 

the analysis of upstream, downstream and horizontal cascading effects. The disruption of a link or line 

causes a redistribution of passenger flows in the network using a probabilistic and en-route choice 

model.  

 

The paper is organized as follows. Section 2 discusses the features of partial line capacity reductions 

and conceptualizes the relation between capacity reduction and the impact on network performance. 

Section 3 presents the case study application and the scenario design used to carry out the experiments. 

Section 4 presents the scenario results and the proposed vulnerability metrics, and Section 5 concludes 

the paper with a discussion of the practical implications of the results and suggestions for future 

research directions.  

 

2. Vulnerability Analysis of Partial Capacity Reductions 

 

In this section, the relation between capacity reduction and the impact on network performance is first 

conceptualized. Network performance, capacity reductions and robustness metrics are then defined 

and operationalized. Finally, the simulation tool used for modelling network flows and the effects of 

disruptions is described. 

 

2.1 The Vulnerability Curve 

A partial reduction in service capacity on an important link or line may lead to a substantial deviation 

from the normal state of operations and deterioration of system functionality. The non-linear 

properties of network effects, traffic dynamics and route choice may result in a non-trivial relation 

between the magnitude of the failure and its consequences on network performance. This is 

particularly true for systems that operate close to capacity, as many urban public transport systems do, 

since the impact of capacity reduction depends on the availability of redundant on-board capacity and 

alternative paths. 

 

One way of characterizing vulnerable systems is that the negative impacts increase disproportionally 

to the magnitude of capacity reductions (Taleb 2014). In this study, vulnerability is therefore 

conceived in terms of the extent to which network performance deteriorates in response to a reduction 

in the capacity of a certain network element. It is thus necessary to establish a metric of network 

performance, a metric of reduction in element functionality, and a vulnerability measure that quantifies 

the relation between the former two metrics. Alternative possible relations between network 

performance and network element capacity are illustrated in Figure 1 with capacity (or reduction 

thereof) on the x-axis and network performance (or reduction thereof) on the y-axis. The nominal 

capacity value is denoted by 𝑐0, and 𝑤0 is the corresponding network performance level. Figure 1(a) 

illustrates linear, convex and concave functions between the capacity of certain network element and 

the respective network performance. Under most realistic circumstances, it can be reasonably assumed 

that a decrease in the functionality of a network element will result in a decrease in network 

performance. The undisrupted case of normal operations, (𝑐0, 𝑤0) , is used as a reference when 

constructing Figure 1(b) which is denominated the vulnerability curve.  

 

The rate of network performance deterioration may remain unchanged for the entire range – from full 

functionality to full closure - of network element degradation, resulting in a linear vulnerability curve. 

Alternatively, a convex relation suggests that the network is vulnerable to a disruption on the network 

element since a single extreme failure will result in greater damage than two half-sized failures. In 

contrast, if the vulnerability curve is characterized by a concave form, then network performance is 

susceptible to small disturbances but the marginal effect of more adverse capacity reductions 

diminishes.  
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Figure 1. An illustration of possible relations between capacity and network performance (A) and 

when assessed in comparison to the base case of normal operations (B)  

 

2.2 Network Performance  

PTN can be represented by a combination of physical and service layers. The physical PTN is defined 

by a directed graph 𝐺(𝑆, 𝐸), where the node set 𝑆 represents stops and rail stations (all called stops 

here for simplicity), and the link set 𝐸 ⊆ 𝑆 × 𝑆  represents direct connections between stops. The 

service layer superimposes lines on the physical network. Each link 𝑒 ∈ 𝐸 may be serviced by one or 

several public transport lines. A line 𝑙 ∈ 𝐿 is defined by a sequence of stops 𝑙 = (𝑠𝑙,1, 𝑠𝑙,2, … , 𝑠𝑙,|𝑙|), 

where 𝐿 is the set of all lines, and 𝑠𝑙,1 and 𝑠𝑙,|𝑙| are the origin and destination terminals, respectively. 

We let 𝑒 ∈ 𝑙 denote that link 𝑒 belongs to line 𝑙, implying that 𝑒 = (𝑠𝑙,𝑖, 𝑠𝑙,𝑖+1) for some 𝑖. Each link 𝑒 

is thus associated with a set of lines 𝐿𝑒 = {𝑙 ∈ 𝐿|𝑒 ∈ 𝑙} that traverse the link. 

 

Travel demand is connected to the network using a set of origin-destination (OD) nodes, 𝑆𝑂𝐷. The set 

of travellers from origin 𝑜 ∈ 𝑆𝑂𝐷 to downstream destination 𝑑 ∈ 𝑆𝑂𝐷 on a given time period is denoted 

𝑁𝑜𝑑. The number of travellers may be stochastic to represent day-to-day variations.  

 

Network performance is assessed in this study in terms of total traveller welfare. The welfare of each 

individual traveller is evaluated as the generalized travel cost that is experienced on a given scenario. 

Let δ = 0 denote a scenario with no disruption. A disruption scenario involving disrupted network 

element δ with a reduced capacity of 𝑥 can then be summarized as the pair (𝛿, 𝑥). The generalized cost 

function of traveller 𝑛 on a given scenario, 𝑤𝑛(𝛿, 𝑥), is a combination of four factors: in-vehicle time, 

waiting time, walking time and number of transfers. Using value of time estimates, the total passenger 

welfare in monetary terms is obtained by summing over the experienced generalized travel costs 

across the population of travellers: 

 

𝑤(𝛿, 𝑥) = 𝐸[∑ ∑ ∑ 𝑤𝑛(𝛿, 𝑥)𝑛∈𝑁𝑜𝑑𝑑∈𝑆𝑂𝐷𝑜∈𝑆𝑂𝐷
]  (1) 

 

The impact of service disruption on network performance is thus defined as the difference in total 

welfare between the disruption scenario, 𝑤(𝛿, 𝑥), and the baseline scenario, denoted 𝑤(0,0), 

 

∆𝑤(𝛿, 𝑥) = 𝑤(𝛿, 𝑥) − 𝑤(0,0)  (2) 
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2.3 Capacity Reductions 

Capacity is defined in this study as the number of transport units that are planned to traverse a certain 

network element under normal conditions. The planned capacity of link 𝑒 is defined by the planned 

frequencies of the lines that traverse it, 

 

𝑓𝑒 = ∑ 𝑓𝑙𝑙∈𝐿𝑒
    ∀𝑒 ∈ 𝐸    (3) 

 

where 𝑓𝑙 is the planned frequency, i.e., capacity, of line 𝑙. Each 𝑙 ∈ 𝐿 is assigned with a certain base 

case frequency, 𝑓𝑙
0. The extent of reduction in network element capacity can be then defined as 

 

𝑥𝛿 =
𝑓𝛿

0−𝑓𝛿
𝑎

𝑓𝛿
0    ∀𝛿 ∈ 𝐸 ∪ 𝐿    (4) 

where 𝑓𝛿
𝑎 is the service frequency during the disruption period on service element 𝛿. For example, 

maintenance work may enforce a lower maximum speed on a certain track, thus resulting with a lower 

planned frequency. A traffic accident might lead to reduced throughput and therefore fewer vehicles 

will be able to traverse the affected link. Note that 𝑥𝛿 ∈ [0,1] with the lower bound corresponding to 

normal operations and the upper bound value implying a complete breakdown of the network element 

under consideration.  

 

2.4 Vulnerability Metrics 

The aforementioned vulnerability curve (Figure 1b) is used for assessing network vulnerability to 

disruptions on a given network element. The accumulated effect over the entire range of capacity 

reductions – from minor disturbances to a complete breakdown - can be measured by the integral over 

the vulnerability curve, 

 

  𝑉𝛿 = ∫ ∆𝑤(𝛿, 𝑥)
1

0
𝑑𝑥   (5) 

 

This metric allows comparing network vulnerability to disruptions on different network elements in 

absolute terms. In order to evaluate the sensitivity of network performance to the range of capacity 

reductions, 𝑉𝛿 is standardized using the impact of complete failure for each network element: 

 

  �̂�𝛿 = 1 −
∫ ∆𝑤(𝛿,𝑥)

1

0
𝑑𝑥

∆𝑤(𝛿,1)
    (6) 

 

The dominator is the performance deterioration under the most adverse capacity reduction, i.e., 𝑥 = 1, 

which is expected to be the most severe performance deterioration. 1 − �̂�𝛿  corresponds to the area 

covered by the vulnerability curve, 𝑉𝛿 , relative to the rectangle with upper-left corner 𝑥 = 1  and 

∆𝑤(𝛿, 1). This metric conveys information on the form of the vulnerability curve. A linear function 

will result in �̂�𝛿 = 0.5 whereas �̂�𝛿 > 0.5 if the vulnerability curve is convex and �̂�𝛿 < 0.5  if it is 

concave.  

 

While the abovementioned metrics provide a single vulnerability index based on the vulnerability 

curve, the sensitivity of network performance to local changes in the capacity of network element 𝛿 

can be measured in terms of marginal vulnerability   
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𝑣𝛿(𝑥) =
𝜕[∆𝑤(𝛿,𝑥)]

𝜕𝑥
   (7) 

 

The first derivative is informative when comparing for example the negative (or positive) effect of 

equivalent marginal capacity reductions (restorations) on different network elements.  

 

2.5 Simulation-based Assignment Model 
The evaluation of service disruptions requires a dynamic tool that can represent service supply 

dynamics and passengers response to such events. BusMezzo, a dynamic public transport operations 

and assignment tool is used in this study as the evaluation tool. The model fulfils the desired 

requirements as it represents individual vehicles and passengers including service uncertainties and 

passengers’ en-route decisions. A description of the supply representation is available in Toledo et al. 

(2010), and the relevant demand representation is presented in Cats et al. (2011) and Cats et al. (2016). 

Cats and Jenelius (2014) detail the modelling of service disruptions and related spill-over effects in 

BusMezzo. Therefore, only a brief presentation of the most relevant model features is therefore given 

hereunder.  

 

Vehicle travel times are composed of running, queuing, dwelling and recovery times. The former are 

determined by a speed-density relationship in a joint car and public transport mesoscopic traffic 

simulation model. Queuing times at intersections are obtained from stochastic turning movement 

servers. Dwell times are based on flow-dependent functions, while recovery times depend on vehicle 

scheduling and dispatching. Different public transport modes have different vehicle types, capacities, 

operating speeds and control strategies. Furthermore, they exercise a varying level of interaction with 

other vehicles (e.g., busses in mixed traffic, bus lanes, underground), which results in different 

characteristics in terms of traffic regimes and travel time variability.  

 

Passenger travel times are composed of access, wait, on-board, transfer and egress times. First, a non-

compensatory rule-based choice-set generation model produces a set of alternative paths for each OD 

pair. Each element in the path alternative is a set, or hyper-path, created by grouping those public 

transport lines that provide an equivalent connection between a given pair of stops or several public 

transport stops which are connected by the same public transport lines. Second, each passenger 

undertakes a series of dynamic path decisions based on the expected travel attributes associated with 

alternative travel decisions. All travel decisions are modelled within the framework of discrete random 

utility models. Travellers’ decisions are triggered and influenced by how the public transport service 

evolves and their ability to carry out their decisions depends on service availability and vehicle 

capacity constraints.  

 

Each decision is defined by the need to choose the next path element (stop, vehicle or walking link). 

The utility of each travel alternative is calculated by taking the logsum over the utilities of all the 

corresponding path alternatives. The utility that traveller 𝑛 associates with a certain path alternative 𝑎 

is defined as 

 

𝑣𝑎,𝑛(𝑡) = 𝛽𝑤𝑎𝑖𝑡𝑡𝑎,𝑛
𝑤𝑎𝑖𝑡(𝑡) + 𝛽𝑖𝑣𝑡𝑡𝑎,𝑛

𝑖𝑣𝑡(𝑡) + 𝛽𝑤𝑎𝑙𝑘𝑡𝑎,𝑛
𝑤𝑎𝑙𝑘 + 𝛽𝑡𝑟𝑎𝑛𝑠𝑡𝑟𝑎𝑛𝑠𝑎          (8) 

 

where 𝑡𝑎,𝑛
wait(𝑡)  and 𝑡𝑎,𝑛

ivt (𝑡)  are the time-dependent anticipated waiting time and in-vehicle time, 

respectively. 𝑡𝑎,𝑛
walk is the expected walking time and trans𝑎 is the number of transfers involved with 

the path alternative. The 𝛽’s are the corresponding coefficients. Travel expectations depend on the 

information available to each passenger.  

 

Two types of disruption scenarios are considered in this study: planned line-level disruptions and 

unplanned link-level disruptions. A disruption at the line level is modelled as a reduction in the 

planned service frequency, while a disruption at the link level is captured by restricting its availability 

through the incoming flow accordingly. Whether the disruption is planned or not carries important 

consequences for travellers’ information and thus rerouting possibilities, as discussed in Cats and 

Jenelius (2014). The effect on capacity reduction of different types of initiating disruptive events 
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depends on local infrastructure availability, operational constraints, fleet management, policy and 

regulations and is considered exogenous to the model. The simulation model allows specifying the 

fraction of network element functionality, 1 − 𝑥𝛿, for each network element.  

 

3. Application 

 

In this section, the case study PTN is first described including the details of the travel attributes 

included in the network performance metric, followed by a detailed account of the scenario design. 

 

3.1 Case Study Description 

The Stockholm PTN representation in this study includes the seven metro lines, four inner-city bus 

lines and the light rail transit line. Figure 2 presents the network graph where nodes correspond to 

either stops or transfer hubs and links to line segments. The metro is characterized by a radial and 

diametrical structure and constitutes the backbone of the network. The metro lines are clustered into 

three trunks identified by their colour: blue (lines 10-11), red (13-14) and green (17-19). The trunk bus 

lines provide high coverage in the inner city while the light rail line functions as an orbital service 

connecting major interchange stations strategically located along the southern and western edges of the 

inner city. 

 

The case study network was simulated for the morning peak period (6:00-9:00). The twelve lines 

included in the case study serve 437 stops with approximately 700 vehicle runs performed by more 

than 200 vehicles during the morning peak period. Each public transport mode is simulated with 

distinct vehicle types, vehicle capacities, operating speeds, traffic regimes (mixed traffic, dedicated 

lane, or separate right-of-way), dwell time functions and control strategies. These sets of operational 

attributes yield different levels of reliability and capacity depending on service design and right-of-

way. Given that all lines in the case study network operate at high frequencies, travellers are assumed 

to depart randomly from their origins without consulting timetables. 

 

Approximately 125,000 passenger trips are generated during the morning peak hour (07:00-08:00), 

allowing for network warm-up and clearing periods. Passengers travel between more than 4,500 

different origin-destination pairs. The total demand for public transport services is considered inelastic, 

assuming that limited-scale temporary service reductions do not have implications on other trip 

decisions such as mode and destination choices, which may or may not be feasible responses in a real 

situation but are challenging to model. Empirical evidence from unplanned network disruptions shows 

that the most common responses by individuals are changes in departure time and route choice. To a 

lesser extent people cancel or consolidate (mainly non-work) trips, whereas people are relatively 

reluctant to change travel mode (see Zhu et al. (2010) and references therein). Thus, this assumption 

should be relatively realistic; some bias may be introduced, however, if the availability of alternatives 

varies significantly among the scenarios. The demand matrix was generated based on the regional 

travel demand model. The master choice set includes more than 615,000 alternative hyperpaths.  
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Figure 2. The Stockholm rapid public transport network consisting of seven metro lines (10-11,13-

14,17-19), an orbital light rail line (22) and four trunk bus lines (1-4), based on BusMezzo graphical 

user interface. 

 

Passengers are assumed to have perfect knowledge of the planned service in terms of lines and 

planned frequencies. In the scenarios involving planned line capacity reductions, they are fully aware 

of the disruption and its implications on planned service frequency. However, uncertainty will result in 

discrepancies between the planned service and the actual provisioned service. In addition, the 

simulation reflects the availability of real-time information displays at all stops in the case study 

network. This information is generated in BusMezzo based on the prediction scheme that is used in 

practice in Stockholm (Cats et al., 2011). Consequently, since service conditions as well as real-time 

information are subject to uncertainty, the availability of real-time information at stops does not 

correspond to perfect information (Cats and Gkioulou, 2015). In order to model information provision 

as realistically as possible, the duration of the disruption in the scenarios involving unplanned link 

capacity reductions is assumed unknown and its duration insufficient to disseminate disruption-

specific information.  

 

The coefficients of the utility function specified in Eq. (8) were estimated based on a stated-preference 

survey on public transport route choice decisions (Cats 2011). The coefficients of the utility function 

were estimated to be 𝛽𝑎
𝑤𝑎𝑖𝑡 = −0.07, 𝛽𝑎

𝑤𝑎𝑙𝑘 = −0.07, 𝛽𝑎
𝑖𝑣𝑡 = −0.04, and 𝛽𝑎

𝑡𝑟𝑎𝑛𝑠 = −0.334 . This 

reflects a ratio of 1.75 between in-vehicle and waiting or walking times and a transfer penalty 

equivalent to approximately eight in-vehicle minutes. These values are consistent with findings from 

previous estimates of transit route choice models (Wardman and Whelan 2011). 
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Network performance is assessed by aggregating over experienced generalized travel costs. The 

generalized travel cost for each traveller 𝑛 in scenario (𝛿, 𝑥) is: 

 

𝑤𝑛(𝛿, 𝑥) =
𝛽𝑤𝑎𝑖𝑡𝑡𝑛

𝑤𝑎𝑖𝑡(𝛿, 𝑥) + 𝛽𝑤𝑎𝑖𝑡𝛽𝑑𝑒𝑙𝑎𝑦𝑡𝑛
𝑑𝑒𝑛𝑖𝑒𝑑(𝛿, 𝑥) + 𝛽𝑖𝑣𝑡𝛽𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝑡𝑛

𝑖𝑣𝑡(𝛿, 𝑥) + 𝛽𝑤𝑎𝑙𝑘𝑡𝑛
𝑤𝑎𝑙𝑘(𝛿, 𝑥) +

𝛽𝑡𝑟𝑎𝑛𝑠𝑡𝑟𝑎𝑛𝑠𝑛(𝛿, 𝑥)      (9) 

 

Where 𝑡𝑛
wait, 𝑡𝑛

denied, 𝑡𝑛
ivt, 𝑡𝑛

walk  and 𝑡𝑟𝑎𝑛𝑠𝑛  are the experienced (initial) waiting times, excessive 

waiting time due to denied boarding, in-vehicle time, walking time and the number of transfers, 

respectively. The value-of-time coefficients 𝛽wait, 𝛽ivt, 𝛽walk and 𝛽trans take the same values as in 

the dynamic path choice model. Compared with the path choice utility function, the experienced cost 

function includes two additional components: (i) the disutility imposed by denied boarding is 

unpredictable and is estimated as equivalent to the value of delay time, setting 𝛽𝑑𝑒𝑙𝑎𝑦 = 3.5  as 

proposed by Cats et al. (2016); (ii) the disutility imposed by on-board crowding is accounted for by 

multiplying 𝛽𝑖𝑣𝑡  with the in-vehicle multipliers, 𝛽𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔 , adopted from the meta-analysis by 

Wardman and Whelan (2011). Each path leg is assigned with the respective multiplier based on the 

on-board load factor and whether the traveller could sit or had to stand. These two additional 

components are not included in the choice utility function because it is assumed that no a-priori 

expectations or real-time information can be used in anticipating their values in non-equilibrium 

disruption conditions.  

 

A non-equilibrium passenger assignment was performed in BusMezzo in order to evaluate the impacts 

of various capacity reduction scenarios. Following the initial choice-set generation, passengers were 

generated following a Poisson arrival process for each origin-destination pair. Passengers’ dynamic 

path choice decisions are then triggered by simulation events as described in Section 2.5. The value of 

time coefficients reported above were used as the central values in modelling all passengers’ decisions. 

Notwithstanding, passengers’ sensitivity towards performing transfers, on-board discomfort or 

excessive waiting time is expected to significantly influence disruption impacts, albeit it will not 

change fundamentally the shape that characterizes the relation between capacity reduction and 

network performance. Network loads and passenger experience resulting from the interaction between 

supply and demand are recorded throughout the simulation and are made available in a series of output 

files. The results reported for the case study scenarios described in the following section are based on 

the aggregation of individual passenger travel times, which are determined by the time that elapsed 

between simulation events. The open-source simulation tool is programmed in C++ and is available 

online along with the case study input files. 

 

3.2 Scenario Design 

Two sets of disruption scenarios were simulated and compared to the reference case of normal 

operations: planned line disruptions and unplanned segment disruptions. In both sets of disruption 

scenarios, disruption conditions were considered during the entire simulation period.  

 

3.2.1 Planned Line Capacity Reductions  

A full-scan approach was taken in simulating line disruption scenarios. A partial capacity reduction 

was therefore simulated independently for each line in the network. Since vehicle capacity normally 

remains unaffected, capacity reduction was conceived in terms of a bi-directional reduction in service 

frequency with a corresponding reduction in line capacity. Passengers are fully aware of the planned 

disruption and its implications on planned service frequency. Such a disruption could be caused by for 

example construction or maintenance works or a limited strike.  

 

Table 1 provides summary information for each line. The information was extracted from the annual 

statistical report of the regional transport administration and passenger counts. With the exception of 

the light rail transit, line 22, all other lines operate with a frequency of 12 departures per hour (planned 

headway of 5 min). As could be expected, the metro lines, and in particular lines 13-14 (red) and 17-

19 (green), carry the largest passenger volumes. Among the trunk bus lines, line 4 is the busiest line in 
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Stockholm, surpassing the number of passengers served by the light rail transit. The trunk bus lines 

have slight variations in route length and number of stops for the two service directions depending of 

route layout and service alignment.  

 

For each line, service frequency was incrementally reduced by 25%. Frequency reduction was 

considered uniform over the simulation period. Hence, each line was simulated with 𝑥𝑙 ∈
{0.25,0.50,0.75}. This implies frequencies of 9, 6 and 3 departures per hour or headways of 6.67, 10 

and 20 minutes, respectively, for all lines except for line 22 (Table 1). The corresponding values for 

the latter are 6, 4 and 2 departures per hour or headways of 10, 15 and 30 minutes. By offering 

services on all lines in all scenarios, network integrity was sustained, avoiding the issue of 

disconnected travellers that are unable to execute their trips.  

 

Table 1. Key characteristics of case study lines 

Line Mode Frequency 

[departures/hour] 

𝑓𝑙
0 

Length [km] Number of 

stops 

Peak hour ridership  

[passengers]  

1 Trunk bus 12 10.7-10.9 32-33    7000 

2 Trunk bus 12 7.8-7.9 22-23    4500 

3 Trunk bus 12 9.4-9.7 25-26    6000 

4 Trunk bus 12 12.1-12.6 29-31 11,000 

10 Metro 12 14.3 14 
20,500 

11 Metro 12 15.0 12 

13 Metro 12 26.7 25 
49,000 

14 Metro 12 19.1 19 

17 Metro 12 19.0 24 

60,000 18 Metro 12 26.2 23 

19 Metro 12 28.4 35 

22 Light rail train 8 11.5 17    8000 

 

The aforementioned scenario design results in 37 scenarios: the base case scenario (100% capacity on 

all lines) and three capacity reduction scenarios (25%, 50% and 75%) for each of the 12 lines included 

in this case study network. Each of the disruption scenarios is denoted by the disrupted line and the 

percentage of capacity reduction (e.g., L1-25%).  

 

3.2.2 Unplanned Segment Capacity Reductions  

Unplanned link disruptions were simulated for a set of the most central links, where link centrality is 

assessed based on passenger loads under normal operations. This is equivalent to a probabilistic 

passenger betweenness centrality measure as shown in Cats and Jenelius (2014), who identified the 

five most central segments for the case study network, shown in Table 2. A segment is defined as a 

sequence of consecutive links which have similar passenger load levels and where there is no other 

link along the line that has a higher passenger load. The locations of disrupted segments are displayed 

in Figure 3. All five of the most central segments are served by two or three metro lines connecting 

transfer hubs in the Stockholm PTN. The busiest segments are the two metro corridors that enter the 

inner-city from the south (D1) and south-west (D2), followed by two metro corridors that enter the 

inner-city from the north-west (D3 and D4).  

 

Table 2. Key characteristics of case study segments 

# Start station- 

End station 

Line(s) Direction Frequency 

[vehicles/hour] 

𝑓𝑒
0 

Number of 

stations  

Peak hour 

ridership  

[passengers]  

D1 Gullmarsplan – 

Hötorget 

L17-L19 North 36 7 27,186 

D2 Liljeholmen - 

Centralen 

L13-L14 North 24 7 18,363 
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D3 Alvik –  

Centralen 

L17-L19 South 36 9 14,785 

D4 Fridhemsplan - 

Centralen 

L10-L11 South 24 3 11,510 

D5 Centralen - 

Hornstull 

L13-L14 South 24 6 10,508 

 

 

  

 

Figure 3. The Stockholm case study network (left) and the five unplanned segment capacity reduction 

segments (D1-D5) 

 

Passengers’ ability to adjust their travel choices in case of an unplanned disruption depends on 

information availability. Passengers’ choices in the dynamic assignment model are based on their 

expectations concerning downstream conditions. These expectations rely on the planned service (i.e., 

network topology, service frequencies and scheduled travel times) unless real-time information is 

available. In the latter case, passengers can adjust their expectations concerning downstream 

conditions based on the information available to them. It is assumed that information is used to its full 

extent, thus passengers utilize real-time information whenever available. As mentioned in Section 3.1, 

real-time information is available at all stops in the case study network. Real-time information 

concerning next vehicle arrival time is generated in the simulation using industry standard (Cats and 

Loutos 2016) and is not necessarily accurate, i.e. not equivalent to perfect information. Vehicle delays 

are reflected in the real-time information provisioned, but information on disruption duration is not 

incorporated since realistically the duration of a short unplanned disruption is not known a-priori and 

its duration is insufficient to disseminate disruption-specific information. In addition, elapsed waiting 

time that significantly exceeds the expected time serves as an additional source of information and 

leads to the reconsideration of the last stop choice.     

 

Each of the selected segments was simulated under three levels of capacity reduction: 𝑥𝑒 ∈
{0.25, 0.5,0.75}. The scenario design results in 16 scenarios: the base case scenario (100% capacity on 

all links) and three capacity reduction scenarios (25%, 50% and 75%) for each of the five most central 

segments in the network. Each scenario is denoted by the disrupted segment and the capacity reduction 

(e.g. D1-25%). 

 

3.2.3 Vulnerability Metrics 

The proposed vulnerability metrics were calculated for both line and segment disruptions. The 

accumulated vulnerability of each line, 𝑉𝑙  ∀𝑙 ∈ 𝐿, and segment disruptions D1-D5 was calculated 

based on scenario results and linear interpolation between the considered levels of capacity reduction. 
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A complete failure scenario, 𝑥 = 1, whether planned or unplanned, may result in a disconnected 

network and thus unsatisfied demand. Network performance measures and thereof the vulnerability 

metrics will be highly sensitive to how unsatisfied demand is included in the generalized travel cost 

function. Since this study focuses on investigating network deterioration behavior for the range of 

partial capacity scenarios, the boundary case of a complete failure is omitted in this case study. In the 

absence of information concerning complete breakdowns, the integral in Eq. 5 is restricted to the range 

𝑥 ∈ [0,0.75] . Similarly, the standardized vulnerability metric (Eq. 6) is adjusted to  �̂�𝛿 = 1 −

∫ ∆𝑤(𝛿, 𝑥)
0.75

0
𝑑𝑥 ∆𝑤(𝛿, 0.75)⁄ .  

 

4. Analysis and Results 

 

Each scenario was evaluated based on 10 simulation replications. This number of replications yielded 

a maximum allowable error of less than 1% for the average passenger travel time. The execution time 

for a single run was less than 1 min on a standard PC. The simulation generates a series of output files 

including the paths that were taken by each traveller and the corresponding travel time components. 

Passenger travel times are thus calculated based on the disaggregate demand representation and the 

time difference between simulation events.  

 

4.1 Planned Line Capacity Reductions 
4.1.1 Disruption Impacts 

The results for each disruption scenario are summarized in Table 3. The average nominal travel time in 

the case study network is 1,529 seconds (25.5 minutes) under nominal operations while the 

generalized travel time is equivalent to 2,395 seconds (39.3 minutes). As expected, passenger travel 

times and travel costs increase with increasing capacity reductions. The increase in generalized travel 

time is driven by longer waiting times, higher on-board crowding, increase in denied boarding and 

increased number of transfers, as well as longer in-vehicle times. The average nominal travel time 

increases by 6.75% to 1,632 seconds (27.2 minutes) in the worst-case scenario which is caused by a 75% 

capacity reduction on metro line 14. The same scenario is also the worst in terms of generalized travel 

time, which increases by 22% to 2,919 seconds (48.7 minutes). 

 

Scenarios were evaluated based on their societal costs as measured by their impact on total passenger 

welfare. Based on the Swedish value of time, the total passenger welfare in the peak morning hour 

amounts to a loss of 9.33 million SEK under normal operations, which means 75 SEK per passenger 

(9.80 SEK worth approximately 1 € as of November 2016). The welfare change is presented in the 

two last columns of Table 3 in absolute monetary terms and as a percentage relative to the baseline 

scenario without disruption. The general trend is that increasing capacity reductions yield increasing 

societal costs. The magnitude of the disruption impact varies from negligible to 1.885 million SEK (15 

SEK per passenger), depending on the capacity reduction and the disrupted line. The societal costs for 

the entire network increase by 7-20% in the case of a 75% decrease in the frequency of a single metro 

line. Since all metro lines in Stockholm are grouped into trunks (Figure 2), a shortage of capacity on 

one line can be substituted by one or several other metro lines on the high-demand stations along the 

common corridor.    

 

Table 3. Passenger travel time and relative welfare change for each line disruption scenario 

Scenario Average 

nominal 

travel time 

[sec] 

 

𝑡̅𝑤𝑎𝑙𝑘 + 𝑡̅𝑤𝑎𝑖𝑡

+ 𝑡̅𝑖𝑣𝑡 

Average 

generalized 

travel time 

[sec] 

 

�̅�(𝛿, 𝑥)/𝛽ivt 

Total 

passenger 

welfare 

[𝟏𝟎𝟓 SEK] 

 

𝑤(𝛿, 𝑥) 

Disruption 

impact 

[𝟏𝟎𝟓 SEK] 

 

 

∆𝑤(𝛿, 𝑥) 

Relative change 

in welfare 

[%] 

 

 

∆𝑤(𝛿, 𝑥) 𝑤(0,0)⁄  

No disruption  1 529 2 395 -93.3   

L1-25% 1 534 2 433 -94.5 -1.2 1.3 

L1-50% 1 545 2 493 -96.5 -3.3 3.5 
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L1-75% 1 557 2 578 -99.3 -6.0 6.4 

L2-25% 1 539 2 466 -95.6 -2.3 2.3 

L2-50% 1 538 2 475 -95.9 -2.6 2.6 

L2-75% 1 542 2 506 -96.9 -3.6 3.6 

L3-25% 1 541 2 411 -93.9 -0.6 0.7 

L3-50% 1 578 2 469 -96.2 -2.9 3.1 

L3-75% 1 598 2 669 -103.9 -10.7 11.4 

L4-25% 1 535 1 440 -94.7 -1.5 1.6 

L4-50% 1 543 2 539 -98.0 -4.7 5.0 

L4-75% 1 545 2 621 -100.5 -7.2 7.7 

L10-25% 1 595 2 450 -95.3 -2.0 2.2 

L10-50% 1 558 2 467 -95.9 -2.6 2.8 

L10-75% 1 542 2 561 -99.6 -6.3 6.8 

L11-25% 1 546 2 401 -93.4 -0.1 0.1 

L11-50% 1 560  2 463 -95.8 -2.6 2.8 

L11-75% 1 589 2 616 -101.1 -7.9 8.4 

L13-25% 1 547 2 516 -97.7 -4.4 4.7 

L13-50% 1 567 2 537 -98.9 -5.7 6.1 

L13-75% 1 619 2 801 -108.7 -15.4 16.5 

L14-25% 1 550 2 505 -97.3 -4.0 4.3 

L14-50% 1 564 2 571 -99.9 -6.7 7.1 

L14-75% 1 632  2 919 -112.1 -18.9 20.2 

L17-25% 1 522 2 298 -93.5 -0.2 0.2 

L17-50% 1 539 2 406 -93.8 -0.5 0.5 

L17-75% 1 610 2 759 -106.1 -12.9 13.8 

L18-25% 1 543 2 509 -97.4 -4.1 4.4 

L18-50% 1 544 2 533 -98.4 -5.1 5.4 

L18-75% 1 561 2 611 -101.5 -8.2 8.8 

L19-25% 1 535 2 439 -94.8 -1.6 1.7 

L19-50% 1 554 2 560 -99.6 -6.3 6.8 

L19-75% 1 609 2 881 -111.0 -17.7 19.0 

L22-25% 1 541 2 447 -95.0 -1.7 1.8 

L22-50% 1 548 2 511 -97.1 -3.8 4.1 

L22-75% 1 550 2 521 -97.4 -4.1 4.4 

 

Figure 4 (top) shows for each line the societal costs inflicted by a given capacity reduction, 

corresponding to the fifth column in Table 3. The undisrupted case serves as the benchmark for all 

disruption scenarios. Disruptions on the Red (L13-L14) and Green (L17-L19) metro lines have 

particularly adverse effects, although Line 18 results in moderate societal costs due to the relatively 

low demand levels on the south branch which it serves exclusively. Capacity reductions on metro lines 

13 and 14, which jointly form the north-east to south-west trunk, consistently result in highly negative 

effects on network performance.  

 

There is a pronounced increase in the slope of the vulnerability curve for increasing capacity 

reductions, albeit the extent of this trend varies considerably for different lines. For example, 

frequency reductions of 25%, 50% and 75% on metro line 19 result in societal costs of 156, 635 and 

1771 thousand SEK during the morning peak hour, respectively. A marginal capacity decrease of 25% 

thus results in a three times higher marginal increase in time losses of approximately three times more 

when moving from the first increment to the second increments (25% and 50%, respectively). This can 

be partially attributed to unexpected on-board crowding conditions in case of disruptions. Moreover, a 

further reduction of 25% induces marginal losses that are 2.4 times greater than the previous increment. 

This disproportional effect is also apparent for other lines. Thus, the relation between a planned 

reduction in line capacity and the increase in societal cost generally follows a convex function. 
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Network topology and travel patterns result in a non-trivial relation between capacity reduction and its 

impact on various lines. Line ridership (Table 1) is not necessarily a good predictor of the 

consequences of disruptions. Whilst the deterioration in network performance corresponds reasonably 

well to passenger loads for low to moderate capacity reductions, this relation is weaker when severe 

capacity reductions occur. A dramatic planned reduction in line frequency is more likely to lead to 

rerouting effects. However, the extent of the latter and their consequences depend on network 

topology, redundancy and the saturation of alternative routes. This is for example evident in the case 

of the trunk bus lines. A reduction of 25 or 50% in the frequency of line 3 is less adverse than 

equivalent reductions in the frequencies of lines 1 and 4. In contrast, a reduction of 75% yields 

significantly greater losses in passenger welfare, exceeding even those of some metro lines, due to the 

lack of or inferiority of alternative routes for many key locations served by this line. Compared to line 

3, lines 1 and 4 have greater overlap with other lines and the availability of attractive metro 

alternatives from major stations. Similarly, network performance is more robust to a disruption on one 

of the green metro lines (17-19) than to a corresponding disruption on one of the red lines (13-14), 

even though the green lines serve more passengers. The availability of two additional lines rather than 

one additional line on the trunk sections make the system less vulnerable to a disruption on one of the 

green lines.  

 

The bottom part of Figure 4 depicts the vulnerability curve when aggregated by mode – metro, trunk 

bus lines and light rail. By aggregating the welfare losses, more general trends can be observed as 

different modes serve different functions in the Stockholm PTN. Across all metro lines, a marginal 

capacity decrease of 25% results in approximately the same reduction in total welfare for the first two 

increments (25% and 50%). In contrast, a further reduction of 25% induces marginal losses that are 

4.4 times greater than the previous increments. A considerably more modest increase in the marginal 

effect of capacity reductions was found for the trunk bus lines with the last increment inducing a 

welfare increase of twice the size of the preceding increment. Network performance is more robust to 

increasing frequency reductions on trunk bus lines and in particular the light rail line due to higher 

network density and redundancy in the network core (Figure 2) which allow mitigating the effects of 

reduced capacity by rerouting.  
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Figure 4. Relation between line capacity reduction and change in total passenger welfare, per line (top) 

and aggregated by mode (bottom) 

 

4.1.2 Vulnerability Metrics 

The accumulated and standardized vulnerability metrics for each line are presented in Table 4. 

Stockholm PTN is most vulnerable to disruptions on metro lines 13 and 14 which together constitute 

the Red line, followed by line 19. When considering the vulnerability curve as a whole, bus line 4 is 

more critical than bus line 3 even though line 3 induces a greater impact in case of a severe capacity 

reduction.  

 

For most of the case study lines, the vulnerability curve follows a convex relation with �̂�𝛿 > 0.5 as 

could be observed in Figure 4. Lines 3, 11 and 17 have particularly convex functions as disruption 

impacts grow disproportionally in response to growing capacity reductions. In contrast, the concave 

vulnerability curves of lines 2 and 22 suggest that network performance is susceptible to small 

disruptions but that the marginal deterioration decreases for increasing capacity reductions.  

 

Table 4. Vulnerability metrics per line 

Line  Accumulated vulnerability   

𝑽𝜹 [𝟏𝟎𝟓 SEK] 

Standardized vulnerability 

𝑽�̂� [%] 

1 2.5 58 

2 2.3 38 

3 2.9 72 

4 3.3 55 

10 2.6 59 

11 2.2 72 

13 5.9 62 

14 6.7 65 

17 2.4 82 

18 4.4 46 

19 5.6 68 

22 2.5 39 

 

4.2 Unplanned Segment Capacity Reductions 
4.2.1 Disruption Impacts 

Table 5 presents the nominal and generalized travel time as well as the total passenger welfare of each 

of the unplanned segment-level capacity reduction scenarios. The absolute and relative changes in 
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welfare compared to normal operations are also displayed in the last two columns. Larger capacity 

reductions on the disrupted segments result in decreasing network performance in terms of total 

welfare losses. As could be expected, the scenario resulting in the greatest time losses is D1-75% 

where the average nominal and generalized travel times increase by 20% and 45% to 1,835 seconds 

(30.6 minutes) and 3,483 seconds (58.1 minutes), respectively.  

 

The costs inflicted by unplanned partial disruptions on the selected central segments are significantly 

higher than the costs associated with planned reductions at the line-level. Disruption costs are 

estimated between 1.16-2.47 million SEK in the case of a 25% capacity reduction and rise to 1.94-4.15 

million SEK when segment capacity is reduced by 75%. The latter costs correspond to 21-45% of the 

total passenger welfare in case of normal operations or 16-33 SEK per passenger. While segment 

disruptions are confined to a subsection of a line, all of the central segments refer to infrastructure (i.e. 

rail tracks) that is used by two or three lines. Moreover, since the disruption is unplanned and 

passengers do not have full information concerning the disruption, they experience longer travel times 

as a consequence.  

 

Table 5. Passenger travel time and relative welfare change for each segment disruption scenario 

Scenario Average 

nominal 

travel time 

[sec] 

 

𝑡walk + 𝑡wait

+ 𝑡ivt 

Average 

generalized 

travel time 

[sec] 

 

�̅�(𝛿, 𝑥)/𝛽ivt 

Total 

passenger 

welfare 

[𝟏𝟎𝟓 SEK] 

 

𝑤(𝛿, 𝑥) 

Disruption 

impact 

[𝟏𝟎𝟓 SEK] 

 

 

∆𝑤(𝛿, 𝑥) 

Relative change 

in welfare 

[%] 

 

 

∆𝑤(𝛿, 𝑥) 𝑤(0,0)⁄  

No disruption 1 529 2 395 -93.3   

D1-25% 1 667 3 115 -117.5 -24.2 25.9 

D1-50% 1 700 3 243 -121.8 -28.5 30.6 

D1-75% 1 835 3 483 -131.7 -38.4 41.2 

D2-25% 1 658 3 141 -117.9 -24.7 26.4 

D2-50% 1 683  3 175 -119.5 -26.2 28.1 

D2-75% 1 749 3 310 -124.7 -31.5 33.7 

D3-25% 1 600 2 801 -107.0 -13.8 14.8 

D3-50% 1 633 2 948 -112.5 -19.2 20.6 

D3-75% 1 774 3 586 -134.8 -41.5 44.5 

D4-25% 1 617 2 728 -104.9 -11.6 12.5 

D4-50% 1 653 2 828 -108.8 -15.5 16.6 

D4-75% 1 730 2 980 -114.9 -21.7 23.2 

D5-25% 1 618 2 837 -108.2 -14.9 16.0 

D5-50% 1 652 2 891 -110.2 -17.0 18.2 

D5-75% 1 677 2 949 -112.7 -19.4 20.8 

 

The vulnerability curves of all disrupted segments are plotted in Figure 5. Unlike planned line-level 

frequency reductions, unplanned capacity reductions on central segments exercise a super-linear 

relation. In general, the greatest marginal decrease in network performance is caused by a 25% 

decrease in segment capacity (equivalent to a loss of 12-26% of total welfare), followed by a 

substantially smaller effect (2-6%) and a still considerably lower pace of deterioration (3-11%) in the 

last two increments. The only exception to this trend is D3 where the increase from 50% to 75% 

capacity reductions leads to a dramatic increase in disruption costs, exceeding all other disruptions. A 

closer investigation reveals that this exception is attributed to network topology and the residual 

capacity on the disrupted segments as well as alternative routes. Only D2 and D3 involve segments 

that extend beyond the inner-city trunk bus lines network and can thus be substituted only by the light 

rail line. Since D3 starts at the north-western end of the light rail line, rerouting results in greater on-

board crowding and even denied boarding. 
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Figure 5. Relation between segment capacity reduction and change in total passenger welfare 

  

The increase in generalized travel time and disruption costs is primarily driven by increases in 

generalized in-vehicle time (i.e. accounting for on-board crowding) and generalized waiting time (i.e. 

accounting for experienced delay in case of denied boarding). In-vehicle times increase due to delays 

for passengers on-board a vehicle that queues upstream of the disrupted segment, as well as due to 

increased on-board crowding. Passenger rerouting can lead to a spill-over of negative congestion 

externalities. The step-wise function of the in-vehicle time multiplier coefficient defines a sub-linear 

relation between the load factor and the seated and standing in-vehicle multipliers, and implies that 

discomfort grows more rapidly at higher saturation levels. This is accelerated by the fact that 

increasing load factors result in a higher share of standees, which experience lower comfort. Waiting 

time increases are caused by lower frequency on the disrupted segment and knock-down effects 

leading also to poorer service reliability. Moreover, if passenger flows exceed available capacity, 

passengers experience denied boarding which is perceived more negatively than initial waiting time. 

  

The relations between these dominating travel time components and capacity reductions were further 

investigated and are displayed in Figure 6. In the undisrupted case, the generalized travel time consists 

of an average of 1,155 seconds of in-vehicle time and 310 seconds of waiting time, on average. In 

general, both travel time components increase by a similar magnitude when capacity is reduced by 25% 

or 50%, whereas different disruptions manifest different trends when capacity decreases by 75%. 

Increases in waiting times dominate in case denied boarding becomes prevalent on either the disrupted 

or alternative routes, as happens in D3 and D4. In the latter case, only waiting times increase because 

capacity constraints were already binding. In the remaining disruption scenarios (D1, D2 and D5), in-

vehicle time remains the dominating factor in the increase of disruption cost as there is sufficient but 

strained residual capacity on alternative routes. 
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Figure 6. Relation between segment capacity reduction and change in in-vehicle times (solid) and 

weighted waiting (dashed)  

 

4.2.2 Vulnerability Metrics 

The vulnerability metrics for the most central segments are summarized in Table 6. When considering 

network vulnerability under the range of capacity reductions, segment criticality closely follows 

segment centrality in terms of the overall disruption impact as measured by the accumulated 

vulnerability, although not without exceptions (D4 vs. D5). The accumulated vulnerability against 

unplanned disruptions on D1 is almost double the combined value of independent planned disruptions 

of metro lines 17-19 (Table 5). This difference stems from: (a) line disruptions are planned and allow 

travellers to adapt accordingly; (b) the conjoint effect of simultaneous service degradation is the case 

of segment disruptions, whereas each line disruption is considered in isolation, hence allowing the 

remaining lines to partially act as alternatives on parallel sections.   

  

For most of the central segments, with the exception of D3, the vulnerability curve follows a concave 

relation with �̂�𝛿 < 0.5 . These results suggest that network performance is highly sensitive to 

reductions in capacity on these segments, with minor reductions resulting in a large impact that does 

not increase at the same rate for larger disruptions. However, the extent of this relation depends on the 

availability of alternative paths and their residual capacity which determine the impact of rerouting 

passengers on on-board crowding and the prevalence of denied boarding. In the case of D3, poor local 

redundancy and residual capacity results in a convex vulnerability curve.   

 

Table 6. Vulnerability metrics per segment disruption 

Segment Accumulated vulnerability   

𝑽𝜹 [𝟏𝟎𝟓 SEK] 

Standardized vulnerability 

�̂�𝜹 [%] 

D1 24.0 38 

D2 22.2 29 

D3 17.9 57 

D4 12.7 42 

D5 13.9 29 
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5. Conclusion and discussion 

 

The relation between network performance and the degradation of line or link capacities were 

investigated in this study by establishing a vulnerability curve. The impacts of capacity reductions 

were assessed using a non-equilibrium dynamic public transport operations and assignment model. By 

doing so, this study goes beyond the conventional topological analysis of complete link failures. 

Changes in network performance were examined in terms of total generalized passenger travel costs 

which were obtained from the agent-based model. Vulnerability metrics were then calculated for each 

line and critical segment in the Stockholm rapid PTN. The analysis performed in this study can 

support tactical planning of disruption management and planning mitigation strategies involving 

resource allocation and information provision. Model computational time (i.e. simulating the case 

study network in BusMezzo in less than a minute) allows for testing a large number of scenarios as 

part of the tactical planning process. 

 

The case study shows that reduced line frequency may have several effects due to increased passenger 

loads. Larger numbers of boarding and alighting passengers lead to delays, which induce uneven 

headways between vehicles and further delays; if vehicles are full there will also be denied boarding. 

Reduced line frequency may also induce passengers to switch to less direct or otherwise normally less 

attractive lines, causing increased congestion and the associated negative effects on those lines. The 

influence of such secondary effects increases with increasing levels of capacity reduction. 

 

Under link-level capacity reductions, vehicles queue upstream of the disrupted link and on-board 

passengers are restrained. Passengers waiting further downstream will experience longer waiting times 

and may reroute to less direct or longer paths. Passenger rerouting may trigger spill-over effects due to 

an increase in on-board crowding on alternative paths, which in some cases may even result in denied 

boarding. Spill-over effects may be reinforced by supply availability and deterioration in service 

reliability. 

 

The results suggest that the case study network is relatively robust to partial planned line disruptions 

compared to unplanned segment closures. Unplanned disruptions caused by infrastructure degradation, 

technical and mechanical failures, traffic incidents and even intentional attacks are typically confined 

in space. Even though the initial disruption is limited to a segment rather than an entire line, the results 

indicate that such disruptions can be more disruptive than planned line-level capacity reductions. 

 

For planned disruptions, the relation between capacity reduction and the societal costs it induces can 

support system operators when undertaking disruption management strategies. In particular, the 

vulnerability curve could support the planning of temporary disruptions. A convex relation indicates 

that it is advisable to plan for long and small rather than short and large capacity reductions. However, 

the vulnerability curve pattern varies for different lines depending on network topology and saturation 

levels. The results of this study could thus be used by public transport agencies and operators for 

assessing the need for replacement services to substitute reduced capacity on a disrupted service. The 

benefits from increasing the capacity of replacement services can be quantified for individual lines 

based on the extent of service frequency reduction.   

 

For unplanned disruptions, the vulnerability metrics can help evaluate and prioritize alternative 

mitigation measures designed to reduce the impacts. In case of concave relations, a given amount of 

resources will be better allocated to relieve a small capacity reduction than restoring a higher capacity 

reduction on an equivalent segment. For example, increasing segment capacity from 75% to 100% of 

the original levels will obtain substantially greater benefits than using the same resources (e.g., rolling 

stock, crew) to recover capacity from 50% to 75%. 

 

Thus, the analysis suggests that policy makers and service operators should devote disproportional 

attention to major capacity reductions in case of planned line disruptions because such disruptions lead 

to disproportional consequences and societal costs. In contrast, small unplanned capacity reductions on 

critical segments should be prioritized in real-time deployment of mitigation measures because a twice 
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as large capacity reduction is likely to result in less than twice as much delay. However, in both line- 

and segment-level disruptions exceptions to these rules were also observed. 

 

Further research will investigate whether the patterns observed for the case study network can be 

generalized. It is postulated that these patterns will prevail also for other networks in other cities but 

the extent of these effects might vary considerably. In fact, significant differences were already 

evident in this case study network for different modes and lines. By establishing vulnerability curves 

for various PTN, their relation to network and flow properties can be further explored. A sensitivity 

analysis of the utility function coefficients will allow examining whether the relation between capacity 

reduction and network performance that was found in this study varies when different passenger 

preferences are assumed. A larger number of capacity reduction scenarios will allow estimating the 

statistical properties of various vulnerability curves and compute marginal vulnerability values. A full-

scan of link disruptions will allow classifying links based on their vulnerability curves. Link attributes 

such as network centrality indicators and capacity utilization are expected to be among the 

determinants of the vulnerability curves. Finally, the approach proposed in this study can be used also 

for analysing network resilience by varying the disruption duration and analysing the rapidity of 

network recovery. 
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