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BDC-decomposition for global influence analysis
Franco Blanchini a and Giulia Giordano b

Abstract—In biochemical networks, the steady-state input-
output influence is the sign of the output steady-state variation
due to a persistent positive input perturbation; if the sign
does not depend on the value of the strictly positive system
parameters, the influence is structural. As recently shown for
small perturbations, when the linearised system approximation
is valid, steady-state input-output influences can be structurally
assessed, for biochemical networks with m unknown parameters,
by means of a vertex algorithm with complexity 2m. This paper
shows that the structural input-output influence of a biochemical
network is a global property, which does not require any
small-perturbation assumption. It also shows that, using a new
algorithm, the complexity can be reduced down to 2m−n, where
n is the system order, thus drastically reducing the computation
time. Finally, when the uncertain parameters belong to known
intervals, non-conservative bounds are given for the steady-state
ratio between output and input, allowing for sensitivity analysis.

Index Terms—Biomolecular systems, Network analysis and
control, Systems biology

I. INTRODUCTION

WHEN modelling and analysing biomolecular systems
with a mathematical approach, a big challenge is to

deal with the huge uncertainties and variability in their param-
eters. Still, biological systems show an extraordinarily robust
behaviour [1], [23]: crucial qualitative behaviours are always
preserved, regardless of parameter values, due to the system
structure (the topology of the system interaction graph).

Assessing whether all the systems with a given structure
share a relevant structural property [4], [7], [16] helps ex-
plain how biological networks in nature preserve fundamen-
tal behaviours in the most diverse environmental conditions
by design, independent of parameter values [4], [23], [27],
[30], and also enables the rational design of robust artificial
biomolecular networks in synthetic biology [9].

This paper focuses on the investigation of structurally signed
input-output influences among the dynamic components of
a biological network [17], [18], [19], [20], [21]. When a
persistent positive input is applied to the system, the steady-
state variation of the output variable can be either positive,
negative, or zero: the influence is structural if the sign of
the variation is independent of parameter values, while it is
sign-indeterminate otherwise. The structural influence matrix
can be built, whose (i, j) entry is the structural sign of the
steady-state variation of the ith variable, when an additive
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degli Studi di Udine, 33100 Udine, Italy. blanchini@uniud.it

b Delft Center for Systems and Control, Delft University of Technology,
2628 CD Delft, The Netherlands. g.giordano@tudelft.nl

input is applied to the jth system equation. The influence
matrix is traditionally employed in the ecological literature
to understand communities of interacting species: a persistent
perturbation is applied to a species in the community, to assess
how the density of the various species changes at the new equi-
librium [11], [12] (see also [18] and the references therein).
This type of study was recently applied also to biomolecular
systems, leading to novel approaches to assess signed steady-
state sensitivities [29]. Research efforts are currently devoted
to efficiently compute input-output influences [8], [25], [26].

Structural influence analysis enables us to predict steady-
state behaviours that arise, regardless of the specific parameter
values, in view of the system structure (when it is correctly
known); while, given an uncertain ‘conjectured’ structure, the
disagreement between structural predictions and experimental
data allows for model falsification [17], [2].

To this aim, an algorithm was proposed in [21] to struc-
turally compute steady-state input-output influences, and the
steady-state influence matrix, for systems that are affine in
both input and output, under the assumption of small input
perturbations. The approach resorts to a linearised analysis
and exploits the system local BDC-decomposition [5], [6].

In this paper, conversely, we consider a wide class of
systems admitting a global BDC-decomposition and we as-
sess the structural steady-state input-output influence globally,
without assuming small signals and a linearised system. Our
decomposition is suitable to describe generic systems, not
necessarily affine in the input and the output. The main
contributions are the following.
• A new algorithm is proposed to structurally compute

global steady-state input-output influences, whose com-
plexity is 2m−n for a system with m unknown parameters
and n state variables; in particular for large-scale sys-
tems, frequently encountered in the biological literature,
this is a considerable improvement with respect to the
complexity 2m of the algorithm proposed in [21].

• When an influence is structurally zero, a test is proposed
to discriminate between perfect adaptation (the output
eventually goes back to the pre-perturbation value, after a
non-trivial transient [1], [9], [30]) and the case in which
the output is not influenced by the input, because the
overall transfer function is zero.

• Also, when the uncertain parameters are subject to known
interval bounds, a quantitative result provides the maxi-
mum and minimum output variations for a given input,
enabling sensitivity analysis.

As shown in the concluding examples, our methods are able
to reveal the structurally signed steady-state behaviours of
biomolecular networks studied in the literature, and to identify
proper perfect adaptation phenomena.
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II. PROBLEM SETUP

Consider a nonlinear dynamical system of the form

ẋ(t) = Sf(x(t), u(t)) (1)
y(t) = Rh(x(t)) (2)

with state x ∈ Rn, input u ∈ Rq and output y ∈ Rp, where
the “stoichiometric” matrix S ∈ Zn×r and the output matrix
R ∈ Rp×l represent the known network structure, while f and
h are unknown vector functions of size r and l respectively.

Assumption 1: There exist two convex sets X ⊆ Rn and
U ⊆ Rq , with non-empty interior int{X} and int{U}, such
that f : X × U → Rr and for all constant inputs ū ∈ int{U}
there exists a unique steady state x̄ ∈ int{X}, which is
asymptotically stable. �
For biological systems typically X = Rn

≥0 and U = Rm
≥0,

and we are interested in the effect of perturbations around a
stable positive steady-state. We assume that, upon an input
perturbation from ū to ū+ v̄, the steady-state condition varies
from x̄ to x̄+ z̄, leading to a steady-state output variation from
ȳ to ȳ + w̄:{

0 = Sf(x̄, ū)
ȳ = Rh(x̄)

⇒
{

0 = Sf(x̄+ z̄, ū+ v̄)
ȳ + w̄ = Rh(x̄+ z̄)

(3)

If v̄j 6= 0 and v̄k = 0 for k 6= j, the (i, j) steady-state input-
output influence is defined as

Σij =
sign[w̄i]

sign[v̄j ]

and the (i, j) steady-state input-output sensitivity as

Θij =
w̄i

v̄j
,

for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. All these quantities,
for a given model, depend on v̄. If the model is known,
standard software can determine the values of these quantities.
However, we wish to structurally determine Σij or give bounds
for Θij , when matrices S and R (describing the system
structure) are given, while our knowledge of f and h is purely
qualitative, based on the following assumptions.

Assumption 2: Monotonicity. All the component functions
of f and h are continuously differentiable and all their partial
derivatives are sign-definite (either positive or negative). �

Assumption 3: Nonsingularity. The Jacobian ∂f/∂x is
nonsingular, and in particular det[−∂f/∂x] > 0, for all
(x, u) ∈ int{X} × int{U}. �
Stability is not our main concern here and is assumed; note that
the positivity of det[−∂f/∂x] computed at the equilibrium is
a necessary condition for local stability.

We begin by introducing some preliminary results (more
details are in the Supplementary Information file). The first
generalises the formula in [22, Exercise 3.23] (see also [16]).

Lemma 1: Given any continuously differentiable function
ϕ(ξ), defined on a convex set Ξ with non-empty interior, and
two points ξ1, ξ2 ∈ Ξ, we have

ϕ(ξ2) − ϕ(ξ1) =

[∫ 1

0

∂ϕ

∂ξ
(ξ1 + σ(ξ2 − ξ1))dσ

]
(ξ2 − ξ1). �

The second result extends the BDC-decomposition intro-
duced in [5], [6], [21].

Lemma 2: The Jacobians of Sf and Rh evaluated at any
point (x, u) ∈ X × U can be written as

Jf = [BDx(x, u)C EDu(x, u)F ] , Jh = HDy(x)L,

where B ∈ Zn×mx , C ∈ Zmx×n, E ∈ Zn×mu , F ∈
Zmu×q , H ∈ Zp×my , L ∈ Zmy×n are constant matrices,
while Dx(x, u) ∈ Rmx×mx , Du(x, u) ∈ Rmu×mu and
Dy(x) ∈ Rmy×my are positive-definite diagonal matrices,
whose diagonal carries the absolute values of all the partial
derivatives of f with respect to x (Dx), of f with respect to
u (Du) and of h with respect to x (Dy). �

Matrices B and E are formed by (possibly repeated)
columns of S, while H is formed by (possibly repeated)
columns of R. Matrices C, F and L have in their ith row a
±1 in the position corresponding to the argument with respect
to which the ith derivative is taken (+1 if the derivative is
strictly positive, −1 if it is strictly negative), and 0 elsewhere.

Example 1: Consider the biochemical reaction network

A+B
gab−−⇀↽−−
ĝc

C, A+ C
gac−−⇀ ∅, A ga−⇀ ∅, B gb−⇀ ∅, C gc−⇀ ∅,

∅ ua−⇀ A, ∅ ub−⇀ B, ∅ uc−⇀ C

Species concentrations are denoted with the corresponding
lowercase letters and evolve according to equations (1)–(2),
where x =

[
a b c

]>
,

S =

−1 0 0 −1 −1 1 1 0 0
0 −1 0 0 −1 1 0 1 0
0 0 −1 −1 1 −1 0 0 1


f(x, u) = [ga(a) gb(b) gc(c) gac(a, c) gab(a, b) ĝc(c) ua ub uc]

>,

where the g functions (reaction rates) have strictly positive
partial derivatives in each argument, R is the identity matrix
and h(x) = x. The system Jacobian with respect to x is
J(x) = BDx(x)C, with

B =

−1 0 0 −1 −1 −1 −1 1
0 −1 0 0 0 −1 −1 1
0 0 −1 −1 −1 1 1 −1

 ,
C =

 1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 1

> ,
Dx = diag{α, β, γ, δ, ε, ζ, η, θ} � 0,

where α = ∂ga/∂a, β = ∂gb/∂b, γ = ∂gc/∂c, δ = ∂gac/∂a,
ε = ∂gac/∂c, ζ = ∂gab/∂a, η = ∂gab/∂b, θ = ∂ĝc/∂c. The
system Jacobian with respect to u and the Jacobian of Rh are
constant, hence Du and Dy are identity matrices. �

Define the shifted variables z(t) = x(t)−x̄, v(t) = u(t)−ū
and w(t) = y(t)− ȳ. From Lemma 2 we have the local BDC-
decomposition: the linearised system at (x̄, ū) is

ż(t) = BDxCz(t) + EDuFv(t) (4)
w(t) = HDyLz(t) (5)

where the diagonal matrices Dx = Dx(x̄, ū), Du = Du(x̄, ū)
and Dy = Dy(x̄) are constant. In view of Lemma 1, we also
have the global BDC-decomposition:

ż(t) = B∆x(z, v)Cz(t) + E∆u(z, v)Fv(t) (6)
w(t) = H∆y(z)Lz(t) (7)



where ∆x, ∆u and ∆y are diagonal matrices with entries

∆k(z, v) =

∫ 1

0

Dk (x̄+ σz, ū+ σv) dσ.

System (6)–(7) is an equivalent representation of (1)–(2).
If bounds d−k ≤ Dk ≤ d+

k are available, they hold as well
for ∆k(z, v), which is the average of Dk(x, u) on the segment
originating in (x̄, ū) and ending in (x̄+ z, ū+ v).

III. STRUCTURAL INFLUENCE ANALYSIS

Definition 1: Given a constant input perturbation v̄j 6= 0
(v̄k = 0 for k 6= j), leading to a steady-state variation w̄i

of the ith output, the (i, j) steady-state input-output influence
Σij = sign[w̄i/v̄j ] is structurally positive (‘+’), negative (‘−’)
or zero (‘0’) if it is positive, negative or zero for all possible
choices of the diagonal entries ∆k of the diagonal positive
definite matrices ∆x, ∆u and ∆y , while it is indeterminate
(‘?’) if its sign depends on the ∆k. Hence, structurally,

Σij ∈ {+,−, 0, ?}. �

We assume, without restriction, that u and y are scalars, so
that the input perturbation and the output steady-state variation
are v̄, w̄ ∈ R. If q > 1 and/or p > 1, all the q · p input-output
pairs can be considered separately to compose the structural
steady-state influence matrix Σ = [Σij ]. Define the function

φ(∆)
.
= det

[
−B∆xC −E∆uF
H∆yL 0

]
= det[B̂∆Ĉ], (8)

where ∆
.
= diag{∆x,∆u,∆y} and

B̂
.
=

[
B E 0
0 0 H

]
, Ĉ

.
=

−C 0
0 −F
L 0

 ,
and the function

ψ(∆)
.
= det[−B∆xC]. (9)

Theorem 1: Given system (1)–(2) under Assumptions 2
and 3, consider the input ū ∈ int{U} along with the corre-
sponding equilibrium state x̄ ∈ int{X} and output ȳ. Then,
the equilibrium value x̄ is unique, as required in Assumption 1.
Moreover, let ū + v̄ ∈ int{U} be an input perturbation
corresponding to the new equilibrium state x̄ + z̄ ∈ int{X}
(again unique) and output ȳ+ w̄. Then, the steady-state input-
output influence is structurally positive (negative, zero) if and
only if

φ(∆) > (<,=) 0

for all ∆ � 0. It is sign-indeterminate otherwise. �
Proof: Uniqueness of the steady state x̄ (as any other

steady state x̄ + z̄) can be proved with the argument in [6]:
if v = 0, equation (6) at steady-state becomes 0 = B∆xCz,
hence z = 0 (namely, x = x̄) is a steady state. If x = x̄ + z̃
were another steady-state, we would have 0 = B∆xCz̃, which
is impossible since ψ(∆) = det[−B∆xC] 6= 0 in view of
Assumption 3. To prove the second part of the theorem, the
steady-state conditions for (6)–(7) can be written as[

−B∆xC 0
H∆yL 1

] [
z̄

(−w̄)

]
=

[
−E∆uF (−v̄)

0

]

for some unknown positive diagonal matrices ∆x, ∆u, ∆y . If
we apply Cramer’s rule to derive −w̄ as a function of −v̄,
adjusting the sign we get

w̄ =

det

[
−B∆xC −E∆uF
H∆yL 0

]
det

[
−B∆xC 0
H∆yL 1

] v̄ =
φ(∆)

ψ(∆)
v̄. (10)

Since ψ(∆) > 0 (Assumption 3), the proof is concluded.

IV. CHECKING THE STRUCTURAL SIGN OF φ REQUIRES
COMPUTING 2m−n DETERMINANTS

Here, we consider the problem of determining the structural
sign of φ(∆) = det[B̂∆Ĉ], or of ψ(∆) = det[−B∆xC]
(which boils down to the same problem).

According to [21], we can check the sign of function φ(∆)
for all diagonal matrices ∆ = diag{∆1,∆2, . . . ,∆m} � 0
by computing the function only at a finite number of points.
Consider the set of binary strings of length m,

Km = {k = (k1, k2, . . . km), ki ∈ {0, 1}}, (11)

associated with the vertices of the unit hyper-cube
0 ≤ ∆i ≤ 1, i = 1, 2 . . . ,m.

Then, we have the following vertex algorithm [21]:
1) φ(∆) > 0 for all ∆ � 0 iff φ(k1, k2, . . . , km) ≥ 0 for

all k ∈ Km and φ(1, 1, . . . , 1) > 0.
2) φ(∆) < 0 for all ∆ � 0 iff φ(k1, k2, . . . , km) ≤ 0 for

all k ∈ Km and φ(1, 1, . . . , 1) < 0.
3) φ(∆) = 0 for all ∆ � 0 iff φ(k1, k2, . . . , km) = 0 for

all k ∈ Km.
4) φ(∆) is not sign determined iff it has different signs for

two choices of k ∈ Km.
Example 2: For the biochemical reaction network in Ex-

ample 1, the vertex algorithm allows us to check that
det[−B∆xC] > 0 structurally. To assess the steady-state
influence Σij of the input j ∈ {1, 2, 3} on the output
i ∈ {1, 2, 3} we need to check the sign of

φ(∆) = det


ζ + δ + α η −θ + ε −E1

ζ η + β −θ −E2

−ζ + δ −η θ + ε+ γ −E3

H1 H2 H3 0

 ,
where only Ej and Hi are equal to 1, while the other entries of
the input column vector and of the output row vector are zero.
By considering all the 9 input-output pairs we can compose
the structural steady-state influence matrix

Σ = [Σij ] =

+ − ?
− + +
? + +

 . �

In general, to assess the structural sign of an input-output
influence, the algorithm requires computing 2m determinants.
We show here that, for a significant class of networks, this
complexity can be reduced to 2m−n. To explain the idea that
we will formalise next, consider the problem of checking the
sign of det[−B∆xC] for the network in Example 1. To reduce
complexity, we can divide all columns by one of the free
parameters and check the sign of



ψ′(δ′, ε′, ζ′, η′, θ′) = det

ζ′ + δ′ + 1 −η′ −θ′ + ε′

ζ′ η′ + 1 −θ′
−ζ′ + δ′ −η′ θ′ + ε′ + 1

 , (12)

where the parameters are now 5 (δ′ = δ/α, ε′ = ε/γ, ζ ′ =
ζ/α, η′ = η/β, θ′ = θ/γ) instead of 8. For large-scale sys-
tems, the reduction in computational complexity is noteworthy.

However, a technical problems arises: it is impossible to
apply the vertex algorithm proposed in [21] to the polynomial
ψ′. To explain this key point, let us introduce some definitions.

Definition 2: A function ϕ(∆) is multi-affine if it is affine
in each argument. �

Definition 3: A function ϕ(∆) is homogeneous of degree d
if ϕ(k∆) = kdϕ(∆). In particular, a polynomial is homoge-
neous if all its nonzero terms have the same degree d. �
Function ϕ(α, β, γ) = 1+α+β−αβ+αβγ is multi-affine, but
not homogeneous. The following proposition from [3] holds.

Proposition 1: A multi-affine function ϕ(∆) defined on a
hyper-rectangle ∆−i ≤ ∆i ≤ ∆+

i reaches its minimum and its
maximum on the vertices of the hyper-rectangle. �

The algorithm in [21] relies on the above proposition and
on the possibility to restrict the analysis to the unit hyper-
cube, since the original polynomials φ(∆) and ψ(∆) are
multi-affine and homogeneous. Yet, the new polynomials φ′

and ψ′ obtained by dividing each column by one of the
free parameters are multi-affine, but not homogeneous, hence
the vertex algorithm described above cannot be applied. For
example, ϕ(α, β, γ) = 1 + α + β − αβ + αβγ is positive on
all the vertices of the hyper-cube α, β, γ ∈ {0, 1}, but it is not
positive for all α, β, γ > 0. Therefore, we cannot look at the
unit hyper-cube and we need to face a new problem.

Problem: Given the multi-affine, possibly non-
homogeneous, polynomial ϕ(∆), check if ϕ(∆) always
has the same sign for all ∆ � 0 by computing ϕ(∆) at a
finite number of points.

Consider a multi-affine polynomial ϕ(∆) depending on m
variables: ∆1, . . . ,∆m. Given k ∈ Km, as in (11), and a real
number M > 0, we define Mk as the string whose elements
are Mki ∈ {0,M}. Given two strings h, k ∈ Km, h ≤ k
means that hi ≤ ki for all i = 1, . . . ,m (e.g., (1, 0, 0, 1) ≤
(1, 0, 1, 1)). Then, we can write

ϕ(∆) =
∑

k∈Km

ϕk ∆k1
1 ∆k2

2 . . .∆km
m (13)

and define the polynomial of a single variable M

ϕ(Mk)
.
=
∑
h≤k

ϕh M
h1+h2+···+hm .

The following theorem plays an important role.
Theorem 2: Given the multi-affine polynomial ϕ(∆), with

∆ = diag{∆1, . . . ,∆m}, these statements are equivalent:
i) ϕ(∆) ≥ 0 for all ∆ � 0.
ii) ϕk ≥ 0 for all k ∈ Km.
iii) ϕ(Mk) ≥ 0 for all k ∈ Km and M ≥ 0.
iv) The leading coefficient (associated with the highest

power) of ϕ(Mk) is nonnegative for all k ∈ Km and
M ≥ 0. �

Remark 1: Statements iii) and iv) would not be equivalent
for a single polynomial, but they are equivalent if we consider
all possible choices of k. �

Proof: Obviously i ⇒ ii) ⇒ iii) ⇒ iv).
iii)⇒ i): function ϕ(∆) is multi-affine, hence on the domain

0 ≤ ∆i ≤M it reaches its extrema at the vertices, according
to Proposition 1. So ϕ(∆) is nonnegative in the whole domain
iff its value at all the vertices ϕ(Mk) is nonnegative.

iv ⇒ ii): it follows from the fact that each coefficient ϕk

in (13) becomes leading for a proper choice of k, by taking k
with ones only corresponding to the variables in the monomial
associated with the coefficient ϕk, and zero elsewhere.

Then, based on the theorem, we can devise an algorithm
with reduced complexity that solves the problem for a signif-
icant class of systems satisfying the following assumption.

Assumption 4: Each row of matrix C has a single nonzero
entry, equal either to +1 or to −1. �
The new matrix Ψ obtained from B∆xC after reducing the
number of parameters by column-wise division has columns
of the form

Ψ•j = Vj0 + ∆̂1Vj1 + · · ·+ ∆̂m−nVj,m−n, (14)

where Vji are constant column vectors with integer entries,
while ∆̂i are the rescaled free parameters, which are m−n in
total. Let us denote by Ψ(k) the matrix obtained by choosing
∆̂ = diag{k}, for some k ∈ Km−n.

The leading coefficients are determined as follows.
Procedure 1: Computation of the leading coefficients.
• For all k ∈ Km−n, consider matrix Ψ(k), whose column

Ψ
(k)
•j is formed as follows.

– If, corresponding to string k, all parameters ∆̂i ap-
pearing in the jth column are zero, then Ψ

(k)
•j = Vj0.

– If, corresponding to string k, at least one parameter
appearing in the jth column is ∆̂i = M , then Ψ

(k)
•j =

∆̂1

M Vj1 + · · ·+ ∆̂m−n

M Vj,m−n (i.e., Vj0 is neglected).
• Then, the leading coefficient is computed as det[Ψ(k)]. �
For instance, consider the polynomial in (12), with δ′ = M ,

ε′ = 0, ζ ′ = M , η′ = 0, θ′ = M , hence k = (1, 0, 1, 0, 1).
The leading coefficient, associated with the term M2, is

det[Ψ(k)] = det

1 + 1 + 0 −0 −1 + 0
1 0 + 1 −1

−1 + 1 −0 1 + 0 + 0

 .
Based on Theorem 2 and on the above observations, the next
result can be proved.

Proposition 2: For the multi-affine polynomial ϕ(∆), with
∆ = diag{∆1, . . . ,∆m−n}, the following statements hold.

i) ϕ(∆) ≥ 0 (resp. ϕ(∆) ≤ 0) iff all the leading coefficients
computed with Procedure 1 are nonnegative (nonpositive).
Strict inequality (> or <) requires that at least one leading
coefficient is strictly positive or negative.

ii) ϕ(∆) ≡ 0 iff all the leading coefficients are zero.
iii) The number of leading coefficients is 2m−n. �
Remark 2: The complexity depends on m − n, the dif-

ference between the number of free parameters and of state
variables, which is expected to be relatively small even for



large networks. This strongly reduces the computational effort.
�

V. PERFECT ADAPTATION VERSUS DISCONNECTION

Perfect adaptation [1], [9] occurs when a persistent input
perturbation is applied to the system and, after a non-trivial
transient, the output asymptotically gets back to its pre-
perturbation value: hence, the steady-state influence is zero.
This phenomenon is often observed in biological systems,
including bacterial chemotaxis [30], calcium homeostasis [14],
osmoregulation [24], and cell sensory systems [28]. Yet, the
influence is zero also if the input-output transfer function is
identically zero (disconnection), typically due to a lack of
reachability or of observability. Perfect adaptation reveals the
ability to maintain biological homeostasis, while disconnec-
tion is not considered adaptation. To structurally distinguish
between the two different phenomena (cf. Section VII-A), note
that φ(∆) is the numerator of the transfer function

φ(∆, s) = det

[
sI −B∆xC −E∆uF
H∆yL 0

]
(15)

computed at s = 0. If φ(∆) = 0, the influence is zero. We can
structurally assess whether the whole polynomial is identically
zero, in view of the following result.

Proposition 3: The polynomial φ(∆, s) in (15) is struc-
turally zero iff it is zero, for all possible choices of ∆ � 0,
for at least n+ 1 different choices of s: s1, s2, . . . , sn+1. �
The vertex algorithm allows to check if φ(∆, sk) = 0 for all
∆ � 0, and thus to discriminate between perfect adaptation
and input-output disconnection (i.e., φ(∆, sk) = 0 not only
when sk = 0, but also for other n choices of sk).

VI. INPUT-OUTPUT SENSITIVITY ANALYSIS

We can adopt a more quantitative approach to give robust
bounds on the quantity Θ = y/u, without requiring it to be
sign definite. Assume that ∆ is bounded in a hyper-rectangle

∆ ∈ R = {∆ : ∆−i ≤ ∆i ≤ ∆+
i , i = 1, 2, . . .m},

where ∆−i and ∆+
i are known. We define the vertex set

V =
{

∆ : ∆i ∈ {∆−i ,∆
+
i }, i = 1, 2, . . .m

}
.

In view of (10), we need bounds for the ratio φ(∆)/ψ(∆).
Theorem 3: Assume ψ(∆) 6= 0 for all ∆ ∈ R. Then, for

all φ(∆)/ψ(∆) with ∆ ∈ R, we have

min
∆∈V

φ(∆)

ψ(∆)
≤ φ(∆)

ψ(∆)
≤ max

∆∈V

φ(∆)

ψ(∆)
.

The bounds are tight (the true minimum and maximum). �
Proof: For the upper bound (the proof for the lower

bound is identical), we have that φ(∆)/ψ(∆) ≤ µ iff
ρ(∆, µ) = φ(∆) − µψ(∆) ≤ 0, for all ∆ ∈ R. Since the
functions φ(∆) and ψ(∆) are multi-affine, the condition is
equivalent to ρ(∆, µ) ≤ 0 for all ∆ ∈ V , in turn equivalent to
φ(∆)/ψ(∆) ≤ µ for all ∆ ∈ V .
To apply the theorem, we need to compute the function value
at 2m points, corresponding to all the vertices.

Example 3: Consider again the network of Example 1.
Assume that, for all parameters, 1 ≤ ∆i ≤ 10. The matrix

Θ = [Θij ] obtained by considering all input-output pairs has
element-wise lower and upper bounds given by [0.034, 0.78] [−1.35,−0.0008] [−0.70, 0.25]

[−0.67,−0.0045] [0.055, 0.95] [0.0045, 0.67]
[−0.70, 0.25] [0.0008, 1.35] [0.034, 0.78]

 ,
fully consistent with the influence matrix Σ, since only the

entries (1, 3) and (3, 1) have bounds with opposite signs. �

VII. BIOLOGICAL EXAMPLES

A. An enzyme-driven biomolecular network

In the biomolecular network in [10, pp. 208-209], the
enzyme A catalyses the conversion of substrates B and C into
the product P , by means of the formation of the intermediate
complexes D, E and F : the chemical reactions are

A+B
gab−−⇀↽−−
gd

D, A+ C
gac−−⇀↽−−
ge

E, C +D
gcd−−⇀↽−−
gf

F
ĝf−−⇀↽−−
gbe

B + E,

F
g̃f−⇀ A+ P, ∅ ub−⇀ B

gb−⇀ ∅, ∅ uc−⇀ C
gc−⇀ ∅, P gp−⇀ ∅.

If we also consider the additional reactions ∅ ua−⇀ A
ga−⇀ ∅,

the associated system of differential equations is

ȧ =−gab(a, b) + gd(d) − gac(a, c) + ge(e) + g̃f (f) − ga(a) + ua

ḃ =−gab(a, b) + gd(d) − gbe(b, e) + ĝf (f) − gb(b) + ub

ċ =−gac(a, c) + ge(e) − gcd(c, d) + gf (f) − gc(c) + uc

ḋ = gab(a, b) − gd(d) − gcd(c, d) + gf (f)

ė = gac(a, c) − ge(e) − gbe(b, e) + ĝf (f)

ḟ = gbe(b, e) + gcd(c, d) − gf (f) − ĝf (f) − g̃f (f)

ṗ = g̃f (f) − gp(p)

The system has n = 7 state variables and matrix S ∈ Z7×16,
since there are 13 reaction-rate functions, which have strictly
positive derivative in each argument and are zero iff at
least one argument is zero, and 3 external inputs, ua, ub
and uc. The unique equilibrium is positive, hence, if it is
stable, Assumption 1 is satisfied in the positive orthants. The
Supplementary Information file reports the system BDC-
decomposition, where Dx has 17 positive diagonal entries.
The algorithm reveals that det[−B∆xC] > 0, for all ∆x � 0.
The influence matrix is

Σ =



+ 0 0 + + + 0
− + − ? − ? 0
− − + − ? ? 0
? + ? ? ? ? 0
? ? + ? ? ? 0
+ + + + + + 0
+ + + + + + +


(16)

and 35 out of 49 entries are structurally signed. Of them,
8 are zero. To distinguish between perfect adaptation and
disconnection (cf. Section V, Proposition 3), we compute
the numerator of the corresponding transfer functions at 7
different points: the first six 0 entries of column Σ•7 are due to
disconnection (the variables a to f are not affected by an input
applied to the equation of p, also during the transient), while
the 0 entries Σ12 and Σ13 reveal actual perfect adaptation.

The novel algorithm significantly reduces the computational
complexity: to structurally assess Σij , it is enough to compute
217−7 = 210 = 1024 determinants, instead of 217 = 131072.
The sensitivity analysis, reported in the Supplementary Infor-
mation file, shows full consistency with the signed matrix Σ.



B. mRNA-protein dynamics in a multicellular network
A multicellular network of repressilators (genetic oscilla-

tors, [13]) coupled by quorum sensing is discussed in [15].
Each repressilator involves three genes (X1, X2 and X3), each
expressing a protein (X4, X5 and X6 respectively) that inhibits
the transcription of another gene, in a negative feedback
loop. Coupling through quorum sensing is enabled by cell-
to-cell communication based on the autoinducer (X7, a small
molecule able to diffuse through the cell membrane), synthe-
sised thanks to protein X4, that activates the transcription of
gene X3. The system describing mRNA and protein evolution
in each of the cells is [15], [10, pp. 314–315]:

ẋ1 = −αx1 + g6(x6)

ẋ3 = −γx3 + g5(x5) + g7(x7)

ẋ5 = −εx5 + ρx2

ẋ2 = −βx2 + g4(x4)

ẋ4 = −δx4 + πx1

ẋ6 = −φx6 + σx3

ẋ7 = τx4 − ωx7 + η(u7 − x7)

where g4, g5, g6 are decreasing Hill-type functions, g7 is
an increasing Michaelis-Menten function, and u7 denotes the
average extracellular concentration of the autoinducer. The
system has n = 7 state variables and S ∈ Z7×17, due to the
presence of 16 reaction-rate functions and 1 external input,
u7. The unique equilibrium is positive, hence, if it is stable,
Assumption 1 is satisfied in the positive orthants. The system
admits a BDC-decomposition where Dx has 16 positive
diagonal entries, as reported in the Supplementary Information
file. Also in this case, det[−B∆xC] > 0 structurally, for all
possible ∆x � 0. The steady-state influence matrix is

Σ =



+ + − − + − −
− + + − − + +
+ − + + − − +
+ + − + + − −
− + + − + + +
+ − + + − + +
+ + − + + − +


. (17)

All the entries of the influence matrix are structurally signed
(either positive or negative), regardless of the chosen param-
eters. The new algorithm requires to compute 216−7 = 29 =
512 determinants, instead of 216 = 65536. The Supplementary
Information file reports the input-output sensitivities, fully
consistent with the influence matrix Σ.

VIII. CONCLUSIONS

The global BDC-decomposition has enabled us to struc-
turally assess signed steady-state input-output influences as
global properties, through a novel algorithm with high compu-
tational efficiency. When an influence is structurally zero, we
have given a criterion to discriminate between perfect adap-
tation and disconnection (identically zero transfer function).
We have provided tight bounds for input-output sensitivities,
when the uncertain parameters have known bounds. Our
algorithm, applied to biomolecular systems from the literature,
has revealed signed behaviours that exclusively rely on the
system structure.
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BDC-decomposition for global influence analysis — Supplementary Material

Franco Blanchini and Giulia Giordano

Summary:
In this Supplementary Information file, we provide additional details on the BDC-decomposition and we report some
examples of influence analysis for real biomolecular systems, to showcase the proposed approach. All the necessary
theory is reported, proved and thoroughly discussed in the main paper [3]. The examples broadly discussed here are
complementary to the material in the example section of [3].

1 Local and global BDC-decomposition: an overview

In this section, we summarise fundamental information on the local and global BDC-decomposition [1, 2, 6, 11],
including a detailed explanation of the computation of the BDC matrices.

Consider a nonlinear system of the form

ẋ(t) = Sf(x(t)) + f0, (1)

where x ∈ D ⊆ Rn, S ∈ Zn×r can be regarded as the stoichiometric or flow matrix of the system, f : D ⊆ Rn → Rr
is a vector of continuously differentiable functions with sign-definite partial derivatives, D is an open, convex domain,
and f0 ∈ Rn is a constant vector. The equilibrium point x̄ is such that Sf(x̄) + f0 = 0.

This class of models includes any chemical reaction network, or any phenomenological biomolecular model (e.g.,
gene regulatory models, signalling networks, etc.) that can be written as an equivalent chemical reaction network; also
models typically used in ecology and population dynamics can be rewritten as in (1). In these cases, D = Rn≥0.

Definition 1 System (1) admits a BDC-decomposition iff, for any x ∈ D, the system Jacobian J(x) = ∂(Sf)/∂x
can be written as the positive linear combination of rank-one matrices, namely

J(x) =

q∑
h=1

BhDh(x)C>h =

q∑
h=1

RhDh(x), (2)

where Bh and C>h are column and row vectors, respectively, so that Rh = [BhC
>
h ] are constant rank-one matrices (a

rank-one matrix Rh can always be written as the product of a column vector Bh and a row vector C>h ), while Dh(x),
h = 1, . . . , q, are positive scalar functions depending on x. �

In a compact form, J(x) = BD(x)C, where D(x) is a diagonal matrix with positive diagonal entries Dh(x), B is the
matrix formed by the columns Bh and C is the matrix formed by the rows C>h .

The above definition holds for any x in the domain D, hence, in particular, for any equilibrium point x̄ ∈ D.
Systems of the form (1) always admit a BDC-decomposition, as shown in [6, 11]. Matrices B and C can be built

systematically, based on matrix S and on qualitative information about f(·).

Proposition 1 Any system in the class (1) admits a BDC-decomposition, J(x) = BD(x)C, according to Definition 1.

Proof sketch The statement is proved constructively in [6, 11]: equation (1) is rewritten as ẋ =
∑s
j=1 Sj fj(x) + f0,

where Sj is the jth column of matrix S. The corresponding Jacobian is J(x) =
∑s
j=1 Sj

[
∂fj
∂x1

∂fj
∂x2

. . .
∂fj
∂xn

]
.

Denoting by D1(x), D2(x), . . . , Dq(x) the absolute values of all the non-zero partial derivatives, it can be written
J(x) =

∑q
h=1BhDh(x)C>h , where

• Dh(x) =
∣∣∣∂fj∂xi

∣∣∣ for some i and j;

• Bh = Sj , the column of S associated with fj ;

• C>h has a single non-zero entry in the ith position, equal to the sign of
∂fj
∂xi

.

�
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Example 1 Consider the chemical reaction network ∅ a0−⇀ A, ∅ b0−⇀ B, A+B
gab(a, b)−−−−−⇀↽−−−−−
gc(c)

C, A+C
gac(a, c)−−−−−⇀ ∅, B gb(b)−−−⇀ ∅,

corresponding to the system 
ȧ = a0 − gab(a, b)− gac(a, c) + gc(c),

ḃ = b0 − gab(a, b)− gb(b) + gc(c),

ċ = gab(a, b)− gac(a, c)− gc(c),

which can be rewritten as in model (1) by setting x =
[
a b c

]>
,

S =

 −1 1 −1 0
−1 1 0 −1

1 −1 −1 0

 , f(x) =


gab(a, b)
gc(c)

gac(a, c)
gb(b)

 , f0 =

 a0

b0
0

 .
Denoting the positive partial derivatives as α = ∂gab(a,b)

∂a , β = ∂gab(a,b)
∂b , γ = ∂gc(c)

∂c , δ = ∂gac(a,c)
∂a , ε = ∂gac(a,c)

∂c ,

ζ = ∂gb(b)
∂b , the Jacobian matrix and its BDC-decomposition are

J =

 −(α+ δ) −β γ − ε
−α −(β + ζ) γ
α− δ β −(γ + ε)

 =

 −1 −1 1 −1 −1 0
−1 −1 1 0 0 −1

1 1 −1 −1 −1 0


︸ ︷︷ ︸

=B

diag{α, β, γ, δ, ε, ζ}︸ ︷︷ ︸
=D


1 0 0
0 1 0
0 0 1
1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

=C

.

To compute the BDC-decomposition, an order must be chosen for the positive partial derivatives. Then, since the first

derivative is α = ∂gab(a,b)
∂a , the first column of B corresponds to S1, associated with the reaction rate function gab(·, ·),

and the first row of C has a 1 entry in the first position, corresponding to variable a; and so on. Note that columns
S1 and S3 are repeated twice in B because gab(·, ·) and gac(·, ·) have two arguments. �

Although the BDC-decomposition has an obvious connection with the system Jacobian, it is not just a local prop-
erty, or a linearisation: based on a simple but powerful integral formula, it can be shown that the BDC-decomposition
associated with a system is not only a local, but also a global property.

Generalising a result in [12, p. 108, Exercise 3.23], we can show the following.

Proposition 2 Given a continuously differentiable function g(x), g : D ⊂ Rn → Rn, where D is a convex domain
with non-empty interior,

g(x2)− g(x1) =

(∫ 1

0

∂g

∂x
(σ(x2 − x1) + x1)dσ

)
(x2 − x1), ∀x1, x2 ∈ D. (3)

Proof Denoting by ϕ(σ)
.
= g(σ(x2 − x1) + x1) for 0 ≤ σ ≤ 1, since

dϕ

dσ
(σ) =

∂g

∂x
(σ(x2 − x1) + x1)

d(σ(x2 − x1) + x1)

dσ
=
∂g

∂x
(σ(x2 − x1) + x1)(x2 − x1),

we have

g(x2)− g(x1) = ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(σ)dσ =

∫ 1

0

∂g

∂x
(σ(x2 − x1) + x1)dσ (x2 − x1).

�
Consider system (1) (ẋ(t) = Sf(x(t)) + f0), with x ∈ D open and convex, along with the equilibrium condition

0 = Sf(x̄) + f0. Denoting z
.
= x− x̄ and subtracting the two equations yields the shifted system

ż = S[f(z + x̄)− f(x̄)]. (4)
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Since the system admits a BDC-decomposition, for any fixed equilibrium x̄ we can consider z = x− x̄ and the system
can be equivalently rewritten (not linearised) as

ż = [B∆(z)C]z. (5)

In fact, an immediate application of the integral formula (3) to the right-hand side of system (4) provides

ż =

[∫ 1

0

J(σz + x̄)dσ

]
z.

In view of the local BDC-decomposition, equivalently

ż =

[
B

(∫ 1

0

D(σz + x̄)dσ

)
C

]
z =

[
B

(∫ 1

0

diag

{
∂fi(σz + x̄)

∂xj

}
dσ

)
C

]
z.

Therefore,

∆(z) =

∫ 1

0

D(σz + x̄)dσ =

∫ 1

0

diag

{
∂fi(σz + x̄)

∂xj

}
dσ = diag

{∫ 1

0

∂fi(σz + x̄)

∂xj
dσ

}
= diag {Γij(z)} , (6)

where Γij(z) =
∫ 1

0
∂fi(σz+x̄)

∂xj
dσ. Due to the monotonicity of the functions fi(·), whose integral is computed on a non-zero

interval, Γij(z) is strictly positive and admits a maximum and a minimum in any closed and bounded domain:

0 < ν ≤ νij ≤ Γij(z) ≤ µij ≤ µ.

Hence, a system admits a global BDC-representation (5) if and only if it admits a local BDC-decomposition (2).

Proposition 3 [6] Consider a nonlinear system (1) admitting equilibrium x̄. The system can be equivalently written
in the form ż = B∆(z)Cz, where z = x− x̄, if and only if it admits a BDC-decomposition, according to Definition 1.

Proof If J(x) = BD(x)C for any x in the domain, denoting z = x− x̄, J(z) = BD(z)C for any z. Then, integration
exploiting the integral formula (3) entails the result, as discussed above. Conversely, if system (1) is equivalent to
ż = B∆(z)Cz, then linearisation immediately provides J(z) = BD(z)C, hence J(x) = BD(x)C. �

2 Influence analysis for biomolecular networks

Given a dynamical system

ẋ(t) = Sf(x(t), u(t)) (7)

y(t) = Rh(x(t)) (8)

with state x ∈ Rn, scalar input u and scalar output y, suppose that the system is initially resting at the equilibrium
(x̄, ū), corresponding to the steady-state output ȳ, and then a persistent input perturbation v̄ drives the system to the
new equilibrium (x̄ + z̄, ū + v̄), corresponding to the new steady-state output ȳ + w̄. The steady-state input-output
influence is the sign of the output steady-state variation w̄ due to the persistent positive input perturbation v̄:

sign[w̄]

sign[v̄]
.

We call the influence structural (or structurally signed) if the sign does not depend on the value of the system
parameters; the influence is sign-indeterminate otherwise.

The analysis of structurally signed input-output influences [6, 11] is relevant to many biological applications, and
can provide interesting insight into the robust steady-state behaviour of systems both in ecology (see [8] and the
discussion therein on the study of responses to press perturbation, a traditional approach to the study of ecological
systems) and in biochemical and biomolecular systems (see [7, 9, 10]).

This section discusses in detail the steady-state input-output influence analysis for two examples of biomolecular
networks, where the approach proposed in [3] reveals structurally signed influences that capture the inherent robustness
of the system behaviour, regardless of parameter values.
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This extraordinary robustness, enabling a consistent signed behaviour in spite of parameter variations, is guaranteed
by the system structure only, namely, by the “wiring” of the interactions among the interconnected species in the
biological network (along with some qualitative properties of the individual dynamics, such as the monotonicity of the
involved reaction rate functions).

The tool we introduce in [3] to capture the system structure and conduct a global influence analysis (without
requiring any assumption on the magnitude of the input perturbation and without considering a linearised system
approximation) is the global BDC-decomposition for systems with inputs and outputs. For the efficient computation
of structurally signed steady-state input output influences, we employ the novel algorithm presented in [3]: to determine
each input-output influence, the algorithm requires the computation of 2m−n determinants, where m is the number of
unknown parameters and n is the order of the dynamical system. In particular for large-scale systems, where n is large
and of the same order of magnitude of m, this is a significant reduction of the computational burden with respect to
the vertex algorithm introduced for the first time in [11], which requires the computation of 2m determinants.

Also, when the uncertain system parameters are known to belong to given intervals, based on the vertex algorithm
proposed in [3], we can give non-conservative upper and lower bounds for the input-output steady-state sensitivity

w̄

v̄
.

2.1 An enzyme-driven biomolecular network

We first consider the enzyme-driven biomolecular network described in [4, pp. 208-209]. In this biochemical reaction
network, the enzyme A catalyses the conversion of substrates B and C into the product P , by means of the formation
of the intermediate complexes D, E and F . The involved chemical reactions are the following:

A+B
gab−−⇀↽−−
gd

D, A+ C
gac−−⇀↽−−
ge

E, C +D
gcd−−⇀↽−−
gf

F
ĝf−−⇀↽−−
gbe

B + E, F
g̃f−⇀ A+ P,

∅ ub−⇀ B
gb−⇀ ∅, ∅ uc−⇀ C

gc−⇀ ∅, P gp−⇀ ∅.

We also consider an additional self-degradation A
ga−⇀ ∅ and production ∅ ua−⇀ A.

We denote species concentrations with the corresponding lowercase letter. Then, the associated system of differ-
ential equations, which describes the time evolution of species concentrations, is

ȧ = −gab(a, b) + gd(d)− gac(a, c) + ge(e) + g̃f (f)− ga(a) + ua

ḃ = −gab(a, b) + gd(d)− gbe(b, e) + ĝf (f)− gb(b) + ub

ċ = −gac(a, c) + ge(e)− gcd(c, d) + gf (f)− gc(c) + uc

ḋ = gab(a, b)− gd(d)− gcd(c, d) + gf (f)

ė = gac(a, c)− ge(e)− gbe(b, e) + ĝf (f)

ḟ = gbe(b, e) + gcd(c, d)− gf (f)− ĝf (f)− g̃f (f)

ṗ = g̃f (f)− gp(p)

If we take the ith state variable as the system output, we can rewrite the system in the form (7)–(8), where

x =
[
a b c d e f p

]> ∈ R7 (7 state variables) and u =
[
ua ub uc

]> ∈ R3 (3 inputs), while matrix S ∈ Z7×16

is

S =



−1 1 −1 1 1 0 0 0 0 0 0 −1 0 1 0 0
−1 1 0 0 0 1 −1 0 −1 0 0 0 0 0 1 0
0 0 −1 1 0 0 0 −1 0 1 −1 0 0 0 0 1
1 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0
0 0 1 −1 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 1 1 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0


and vector f(x, u) includes 13 reaction-rate functions, whose derivatives are all strictly positive in each argument, and
3 external inputs, ua, ub and uc:

f(x, u) = [gab(a, b) gd(d) gac(a, c) ge(e) g̃f (f) ĝf (f) gb(b) gcd(c, d) gbe(b, e) gf (f) gc(c) ga(a) gp(p) ua ub uc]
>.
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Moreover,
R = Vi,

where Vi denotes the row vector with 7 entries, whose ith entry is 1, while the others are zero, and

h(x) = x.

Therefore, we have n = 7 state variables and m = 17 unknown (but positive) parameters, corresponding to all the
(nonzero) positive partial derivatives of the reaction-rate functions included in the vector function f(x, u).

All the considered reaction-rate functions are assumed to be zero when at least one of the arguments is zero. Then,
since ua > 0, ub > 0 and uc > 0, the unique equilibrium is positive. Indeed, at the equilibrium, from the first three
equations ā > 0, b̄ > 0 and c̄ > 0, from the fourth equation d̄ > 0, from the fifth equation ē > 0, from the sixth
equation f̄ > 0 and from the last equation p̄ > 0. Hence, if this equilibrium is asymptotically stable, [3, Assumption
1] is satisfied, with X = R7

≥0 and U = R3
≥0.

This system admits a global BDC-decomposition, as discussed in [3]: matrix B ∈ Z7×17 is

B =



−1 −1 1 −1 −1 1 1 0 0 0 0 0 0 0 0 −1 0
−1 −1 1 0 0 0 0 1 −1 0 −1 −1 0 0 0 0 0
0 0 0 −1 −1 1 0 0 0 −1 0 0 −1 1 −1 0 0
1 1 −1 0 0 0 0 0 0 −1 0 0 −1 1 0 0 0
0 0 0 1 1 −1 0 1 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 1 1 1 1 −1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1


,

the diagonal matrix Dx includes 17 positive diagonal entries,

Dx = diag{α, β, γ, δ, ε, ζ, η, θ, κ, λ, µ, ν, ξ, π, ρ, σ, τ},

corresponding to the partial derivatives α = ∂gab/∂a, β = ∂gab/∂b, γ = ∂gd/∂d, δ = ∂gac/∂a, ε = ∂gac/∂c, ζ = ∂ge/∂e,
η = ∂g̃f/∂f , θ = ∂ĝf/∂f , κ = ∂gb/∂b, λ = ∂gcd/∂c, µ = ∂gbe/∂b, ν = ∂gbe/∂e, ξ = ∂gcd/∂d, π = ∂gf/∂f , ρ = ∂gc/∂c,
σ = ∂ga/∂a, τ = ∂gp/∂p, matrices C ∈ Z17×7 and E ∈ Z7×3 are

C =



1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



>

, E =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


,

matrices Du and F are constant and both correspond to the 3×3 identity matrix, matrix H is actually a 7-dimensional
row vector, equal to R = Vi, while both Dy and L are 7× 7 identity matrices.

The vertex algorithm reveals that ψ(∆) = det[−B∆xC] > 0 structurally, for all possible ∆ � 0: this is a necessary
condition for stability of the system linearisation around the equilibrium point.

Since there are 3 inputs, we can consider each of them separately. If we consider input ub (hence, we take the
second column of matrix E∆uF ) and output y = x1 = a, the corresponding expression for φ(∆) is

φab(∆) = det

[
−B∆xC (−E∆uF )•2
H∆yL 0

]

= det



−α̂− δ̂ − σ̂ −β̂ −ε̂ γ̂ ζ̂ η̂ 0 0

−α̂ −β̂ − κ̂− µ̂ 0 γ̂ −ν̂ θ̂ 0 1

−δ̂ 0 −ε̂− λ̂− ρ̂ −ξ̂ ζ̂ π̂ 0 0

α̂ β̂ −λ̂ −γ̂ − ξ̂ 0 π̂ 0 0

δ̂ −µ̂ ε̂ 0 −ν̂ − ζ̂ θ̂ 0 0

0 µ̂ λ̂ ξ̂ ν̂ −η̂ − π̂ − θ̂ 0 0
0 0 0 0 0 η̂ −τ̂ 0
1 0 0 0 0 0 0 0


,
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where the diagonal entries of ∆x (the Greek letters with the hat) represent the integral of the positive parameters in
Dx, as discussed in [3].

If we consider all possible input-output pairs (including additive inputs to all the state equations, not only ua, ub
and uc), the steady-state influence matrix is

Σ =



+ 0 0 + + + 0
− + − ? − ? 0
− − + − ? ? 0
? + ? ? ? ? 0
? ? + ? ? ? 0
+ + + + + + 0
+ + + + + + +


,

where columns Σ•1 , Σ•2 and Σ•3 show the influences on each state component, taken as the system output, due to
ua, ub and uc, respectively. Interestingly, 35 out of 49 entries of the influence matrix are structurally signed.

There are 8 influence matrix entries equal to zero. The test proposed in [3] allows us to understand, for each of
these entries, if this is due to perfect adaptation, or if the transfer function is identically zero (due to a lack of either
reachability or observability). In particular, computing the numerator of the transfer function

φ(∆, s) = det

[
sI −B∆xC (−E∆uF )•j
H∆yL 0

]
(where j depends on the choice of the input) for 7 different nonzero values of s enables us to check that φ(∆, s) is
identically zero for the first six entries of column Σ•7 (indeed, the variables a to f are not reachable by an additive
input applied to the equation of p), while it is not identically zero for entries Σ12 and Σ13, corresponding to actual
perfect adaptation.

The novel algorithm we have employed provides a global result for influence analysis and significantly reduces
the computational complexity: to structurally assess each of the signed influences, it has been enough to compute
2m−n = 217−7 = 210 = 1024 determinants, instead of 2m = 217 = 131072 (as required by the vertex algorithm in [11]).

With the methods introduced in [3], we can also perform an input-output sensitivity analysis based on an efficient
vertex algorithm. When the uncertain diagonal entries ∆k of matrix ∆ are bounded as 1 ≤ ∆k ≤ 10, the algorithm
provides the following lower and upper bounds for the steady-state input-output sensitivities:

[0.1, 1] [0, 0] [0, 0] [0.1, 1] [0.1, 1] [0.1, 1] [0, 0]
[−8.58,−0.0001] [0.038, 0.99] [−0.9341,−0.0001] [−8.49, 0.99] [−9.0601,−0.001] [−8.5751, 0.9] [0, 0]
[−8.58,−0.0001] [−0.93,−0.0001] [0.038, 0.99] [−9.06,−0.0010] [−8.49, 0.99] [−8.58, 0.90] [0, 0]
[−6.97, 16.63] [0.0051, 7.7] [−4.99, 2.82] [−5.83, 17.64] [−7.84, 17.25] [−6.87, 17.43] [0, 0]
[−6.97, 16.63] [−4.99, 2.82] [0.0051, 7.7] [−7.84, 17.25] [−5.83, 17.64] [−6.87, 17.43] [0, 0]
[0.0001, 12.42] [0.0001, 0.9] [0.0001, 0.9] [0.001, 13.17] [0.001, 13.17] [0.04, 13.30] [0, 0]

[0, 13.99] [0.0001, 0.94] [0.0001, 0.94] [0.0007, 14.76] [0.0007, 14.76] [0.0063, 14.91] [0.1, 1]


,

which are fully consistent with the signed influence matrix Σ. In fact, the lower and upper bounds have a different
sign only when the corresponding entry of the steady-state influence matrix is Σij =?.

2.2 Individual mRNA-protein dynamics in a multicellular network

In this section, we consider the synthetic multicellular network of repressilators coupled by quorum sensing that is
discussed in [5]. Each repressilator involves three genes (X1, X2 and X3), each expressing a protein (X4, X5 and
X6 respectively) that inhibits the transcription of another gene, in a negative feedback loop. The coupling through
quorum sensing is enabled by cell-to-cell communication based on the autoinducer (X7, a small molecule able to diffuse
through the cell membrane). The autoinducer is synthesised due to the action of protein X4, and in turn activates the
transcription of gene X3.

The dynamics of mRNA and protein evolution in each of the cells is therefore described by the system of ordinary
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differential equations [5], [4, pp. 314–315]:

ẋ1 = −αx1 + g6(x6)

ẋ2 = −βx2 + g4(x4)

ẋ3 = −γx3 + g5(x5) + g7(x7)

ẋ4 = −δx4 + πx1

ẋ5 = −εx5 + ρx2

ẋ6 = −φx6 + σx3

ẋ7 = τx4 − ωx7 + η(u7 − x7)

where g4, g5, g6 are decreasing Hill-type functions,

g4(x4) =
κp,4

κa,4 + x
κH,4

4

, g5(x5) =
κp,5

κa,5 + x
κH,5

5

, g6(x6) =
κp,6

κa,6 + x
κH,6

6

,

g7 is an increasing Michaelis-Menten function,

g7(x7) =
κp,7x7

κa,7 + x7
,

and u7 denotes the average extracellular concentration of the autoinducer.
If we take the ith state variable as the system output, we can rewrite the system in the form (7)–(8), where

x =
[
x1 x2 x3 x4 x5 x6 x7

]> ∈ R7 (7 state variables) and u = u7 ∈ R (a single input), while matrix
S ∈ Z7×17 is

S =



−1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 −1 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 1


and vector f(x, u) includes 16 reaction-rate functions, whose derivatives are either strictly positive or strictly negative
in each argument, and 1 external input, u7:

f(x, u) = [αx1 βx2 γx3 δx4 εx5 φx6 ωx7 ηx7 g6(x6) g4(x4) g5(x5) g7(x7) πx1 ρx2 σx3 τx4 ηu7]>.

Also,
R = Vi,

where Vi denotes the row vector with 7 entries, whose ith entry is 1, while the others are zero, and

h(x) = x.

Therefore, the system has n = 7 state variables and m = 16 unknown (but positive) parameters, corresponding to
the absolute values of all the (nonzero) partial derivatives of the functions included in f(x, u).

Since u7 > 0, the unique equilibrium is positive. Indeed, at the equilibrium, from the last equation it must be
x̄7 > 0; then from the third equation x̄3 > 0, from the sixth equation x̄6 > 0, from the first equation x̄1 > 0, from the
fourth equation x̄4 > 0, from the second equation x̄2 > 0 and from the fifth equation x̄5 > 0. Hence, under asymptotic
stability assumptions, [3, Assumption 1] is satisfied, with X = R7

≥0 and U = R≥0.

The system admits a global BDC-decomposition where matrix B ∈ Z7×16 is

B =



−1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1


,
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the diagonal matrix Dx includes 16 positive diagonal entries,

Dx = {α, β, γ, δ, ε, φ, ω, η, κ, λ, µ, ν, π, ρ, σ, τ} � 0,

corresponding to the absolute values of the partial derivatives, where κ = −∂g6/∂x6 > 0, λ = −∂g4/∂x4 > 0,
µ = −∂g5/∂x5 > 0, ν = ∂g7/∂x7 > 0, matrix C ∈ Z16×7 is

C =



1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0



>

,

matrix E is actually a 7-dimensional column vector

E =
[
0 0 0 0 0 0 1

]>
,

matrix Du and matrix F are actually scalars, Du = η and F = 1, matrix H is actually a 7-dimensional row vector,
equal to R = Vi, while both Dy and L are 7× 7 identity matrices.

The proposed algorithm reveals that, also in this case, ψ(∆) = det[−B∆xC] > 0 structurally, for all possible
∆x � 0 (which is necessary for the linearised system to be stable).

If we consider output y = x3, the corresponding expression for φ(∆) is

φ37(∆) = det

[
−B∆xC −E∆uF
H∆yL 0

]
= det



−α̂ 0 0 0 0 −κ̂ 0 0

0 −β̂ 0 −λ̂ 0 0 0 0
0 0 −γ̂ 0 −µ̂ 0 ν̂ 0

π̂ 0 0 −δ̂ 0 0 0 0
0 ρ̂ 0 0 −ε̂ 0 0 0

0 0 σ̂ 0 0 −φ̂ 0 0
0 0 0 τ̂ 0 0 −ω̂ − η̂ η̂
0 0 1 0 0 0 0 0


,

where the diagonal entries of ∆x (the Greek letters with the hat) represent the integral of the positive parameters in
Dx, as discussed in [3].

We can consider all possible input-output pairs (including additive inputs to all the state equations, not only u7).
Then, the steady-state influence matrix is

Σ =



+ + − − + − −
− + + − − + +
+ − + + − − +
+ + − + + − −
− + + − + + +
+ − + + − + +
+ + − + + − +


,

where column Σ•7 shows the influence on each state component, taken as the system output, due to input u7.
Quite surprisingly, all the entries of the influence matrix are structurally signed (either positive or negative),

regardless of the chosen parameters.
The influence analysis results achieved are global. Also, to assess the structural sign of each input-output influence,

the new algorithm has required to compute 2m−n = 216−7 = 29 = 512 determinants, instead of 2m = 216 = 65536 (as
required by the vertex algorithm in [11]). Thus, the computational complexity is significantly reduced.

An efficient vertex algorithm allows us to perform a robust input-output sensitivity analysis, when the uncertain
diagonal entries of matrix ∆ are subject to known upper and lower bounds. In particular, if 1 ≤ ∆k ≤ 10, the
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algorithm provides the following lower and upper bounds for the steady-state input-output sensitivities:

[0, 1] [0, 9.99] [−62.5,−0.0001] [−1, 0] [0.0001, 86.96] [−9.94, 0] [−9.78, 0]
[−90.50, 0] [0.0001, 1] [0, 9.43] [−9.99, 0] [−1, 0] [0.0001, 86.96] [0, 8.32]

[0.0001, 9.99] [−90.91, 0] [0, 1] [0.0004, 90.98] [−9.99, 0] [−1, 0] [0, 4.98]
[0, 9.94] [0, 1] [−16.39,−0.0001] [0, 1] [0, 9.43] [−62.5,−0.0001] [−1, 0]

[−90.83, 0] [0.0005, 9.99] [0, 1] [−90.91, 0] [0.0001, 1] [0, 9.99] [0, 4.76]
[0, 1] [−90.83, 0] [0, 9.94] [0.0001, 9.99] [−90.5, 0] [0, 1] [0, 33.3]

[0, 33.3] [0, 4.76] [−1, 0] [0, 4.98] [0, 8.32] [−9.78, 0] [0.0001, 0.5]


.

The achieved upper and lower bounds are fully consistent with the signed influence matrix Σ: in fact, lower and upper
bounds for each entry never have a different sign, consistently with the fact that Σ is fully sign-definite.
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