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This account proceeds by succinctly reiterating some of
the main results in [5], [7], with some technicalities being
presented in the appendix. Illustrative numerical experiments
concerning (non-)uniform, linear arrays will then be elabo-
rately discussed. The account will end with conclusions.

II. RADIATION OF ARRAY ANTENNAS COMPOSED OF
PULSED ELECTRIC-CURRENT EXCITED ELEMENTS

A. Examined configuration
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Fig. 1. Investigated configuration. (a) Antenna array composed of identical,
translationally shifted elements; (b) rhombic antenna (reference) element; its
geometric parameters are the opening angle αR and the side length LR; two
element orientations are considered: either n0·iz=0 or n0·iz=1.

The array antenna consists of N+1, N = 0, 1, 2 . . . , iden-
tical, mutually translationally shifted, pulsed electric-current
excited elements (Fig. 1.a). Position in the configuration is
specified by the position vector x ∈ R

3. The time coordinate
is t ∈ R. The elments’ reference points are rn, n = 1, . . . , N .
The array radiates into free space, with electric permittivity
ε0, magnetic permeability μ0 and corresponding wavespeed
c0 = (ε0μ0)

−½. The array is taken to consist of rhombic wire
antennas, the considered (reference) element being shown in
Fig. 1.b. The elements’ Kirchhoff circuit ports are excited with
electric currents IGn (t). More configurational details are given
in [5], [7].

Abstract—The pulsed-field excited array antenna performance 
is studied via full time-domain instruments. The directional 
distribution of radiated energy and the directional (system) 
fidelity factor are employed as performance metrics. Illustrative 
numerical experiments highlight the expedient radiation features 
that are specific to pulse-train excited, linear array antennas. 
The analysis provides an expedient reference for estimating the 
detectability of the signals radiated by pulse-train excited array 
antennas, as needed in ultra-high rate wireless digital transfer.

I. INTRODUCTION

Signal integrity is conditional for recovering the received 
binary values in wireless digital transfer [1]. Ensuring this fea-
ture in future ultra-high rate digital communication systems is 
carried out by means of increasingly sophisticated design pro-
cedures requiring, among others, an accurate characterisation 
of the received signals. In this respect, electromagnetic (EM) 
models can opportunely predict the system’s performance 
under certain simple, but relevant conditions, thus providing 
expedient best-case estimators. Since [2] conjectured that dig-
ital signal transfer is best supported by pulsed electromagnetic 
(EM) field transfer, such models are most adequately built via 
time-domain (TD) instruments.

Wireless digital transfer requires transmitting and receiving 
trains of pulses. All pulses in EM models should then have 
analytical expressions characterised by generally accepted pa-
rameters [3], [4], and be sent at regular intervals, this inducing 
a pulse repetition rate. These pulse-trains undergo alterations 
during the transmitter → receiver transfer, and the wireless 
digital transfer’s reliability hinges on minimising or, at least, 
accurately predicting these temporal alterations. Moreover, for 
increasing the energy of the received signals and, thus, improv-
ing their detection in background noise, wireless systems often 
resort to energy focusing by means of array antennas on the 
transmit and/or receive side. The element spreading also affects 
the received signatures via constructive/destructive interference 
caused by the different path lengths involved.

This work analyses the performance of transmitting pulsed-
field array antennas. The directional distribution of radiated 
energy is evaluated by means of the instruments introduced 
in [5]. The quality of the radiated field signatures is studied 
via the system’s fidelity factor [6], its scope being extended 
as directional signal fidelity factor for also accounting for the 
array antenna’s beam-steering properties. In [7] this metric was 
restricted to a subsystem of the transmission chain, namely the 
array configuration. However, in this study preference is given 
to a full-system interpretation of the fidelity factor (as defined 
in, e.g., [8]) with the reference signal being taken as the electric 
current injected at the Kirchhoff port of the reference element 
of the array. Like in [7], the hereby employed directional signal 
fidelity factor is a purely directional quantity.
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B. The radiated field

As demonstrated in [5], [7], the TD radiated EM field is
expressed in the far-field region [9, pp. 762–768] as

{A,E,H}(x, t) =
{A∞,E∞,H∞}(ξ, t− |x|c−1

0 )

4π|x|
[
1 +O(|x|−1)

]
as |x| → ∞ (1)

with O as the reference center and ξ = x/|x| as the unit vector
in the direction of observation. Here, {A,E,H}(x, t) are the
electric-current potential, and the electric and the magnetic
field strengths, respectively, their corresponding far-field radi-
ation characteristics {A∞,E∞,H∞}(ξ, t) being interrelated
by [9, Eqs. (26.3-13) and (26.3-16)]

E∞ = −μ0[∂tA
∞ − ξ(ξ·∂tA∞)] (2)

H∞ = −c−1
0 ξ×∂tA

∞. (3)

For the considered array, A∞ is obtained by superposition

A∞ =
N∑

n=0

A∞
n , (4)

with A∞
n following via time convolutions of IGn (t) = IG0 (t−

Tn) (Tn = time delays) and configurational quantities. Con-
structive interference of the element contributions occurs if

Tn = c−1
0 ξst·rn, for n = 1, 2, 3, . . . , N (5)

the resulting ξst specifying the direction of the main beam
(’direction of steering’).

C. Array performance metrics

1) The area density of radiated energy: The energy W rad

radiated by the array is expressed as

W rad =

∫
ξ·ξ=1

Φrad(ξ)·ξ dΩ, (6)

in which Φrad(ξ) is the area density of radiated energy in the
direction ξ. For free space radiation, it is found that [5]

Φrad(ξ) =
Z0

16π2 c20
ξ

∫
t∈R

[
∂t (ξ×A∞) · ∂t (ξ×A∞)

]
dt

(7)
with Z0 = (μ0/ε0)

½ denoting the free space electromagnetic
wave impedance. The area density of radiated energy is
examined via polar diagrams of the normalised area density
of radiated energy

DdB(ξ) = 10 log10

[
Φrad(ξ)·ξ/4πW rad

]
. (8)

2) The directional signal fidelity factor: The analysis of
the system’s fidelity factor starts from the expression [8]

F (Ssys, Sref) = max
τ

∫ ∞

t=−∞

Ssys(t)

‖Ssys(t)‖
Sref(t− τ)

‖Sref(t)‖
dt (9)

in which Ssys and Sref are scalar signals and the maximum
of the normalised cross-correlation integral is obtained em-
pirically. Henceforth, Ssys(t) is taken to be representative for
the far-field EM radiation in the direction ξ, namely E∞

z (ξ)
for array antennas with n0·iz = 0 type elements and E∞

y (ξ)

for those with n0·iz = 1 type elements (see Fig. 1.b). The
reference signal Sref(t) is taken as the second time derivative
of the current injected at the Kirchhoff port of the reference
element (see Appendix B). With these choices, the resulting
signal fidelity factor is a purely directional quantity termed
directional signal fidelity factor

Ff(ξ) = max
τ

∫ ∞

t=−∞

Ey,z(ξ, t)

‖Ey,z(ξ, t)‖
∂2
t I

G
0 (t− τ)

‖∂2
t I

G
0 (t)‖

dt. (10)

Only the positive Ff(ξ) are considered in this work, with
negative cross-correlations yielding a zero fidelity factor. From
a practical point of view, this choice assumes a receiving
system capable of discriminating between a ‘positive’ and a
‘negative’ incoming signal, this offering additional spatial fil-
tering capabilities. When such a discrimination is not possible,
the absolute value of the numerator must be taken in (10).

III. ILLUSTRATIVE NUMERICAL EXPERIMENTS

The performance of pulse-train excited array antennas is
now examined by using the metrics introduced in Section II-C.

A. Excitation electric current shapes

The shapes of the electric currents IGn (t) exciting the
Kirchhoff circuit ports of the array elements are taken as short
trains of monocycle (dtPE) pulses. Their expression follows
from the normalised power exponential (PE) pulse [3] of pulse
rise time tr > 0 and pulse rising power ν > 1 (with ν being
confined to integer values in this study) as

dtPE(t) = trN(ν) ∂tPE(t)

= N(ν)
(
t′ν−1 − t′ν exp [−ν (t′ − 1)]H(t) (11)

where t′ = t/tr, N(ν) = ν−½
[
ν½/(ν½ − 1)

]ν−1
exp(−ν½)

ensures a unit amplitude for dtPE and H(·) is the Heaviside
unit step function. The electric current injected at the Kirchhoff
port of the reference element in the array is then taken as

IG0 (t) =

M∑
m=0

I0 dtPE(t+mRr) (12)

with I0 being the electric current amplitude and Rr the
pulse repetition rate. The current excitations of the remaining
elements are time delayed according to (5).

The expressions of the EM field quantities in Section II-B
were established in [5], [7] based on a quasi-static regime
operation assumption. To enforce this, the side lengths are
taken as LR = c0tw/20, with the pulse time width tw being
derived in line with [3, Eq. (23)] as

tw =

∫ tr

0

dtPE(t)dt = trN(ν)

∫ tr

0

∂tPE(t)dt = trN(ν). (13)

B. Single element experiments

The case of isolated rhombic antennas is firstly investi-
gated. The directional diagrams, not included in this paper for
brevity, evidence the ‘doughnut’ shaped DdB(ξ) pattern that is
characteristic for dipoles, with the nulls in the direction perpen-
dicular to the rhomb’s plane, and a Ff(ξ) that is approximately
one in all directions, except in the ones corresponding to the
radiation nulls.



C. Uniform linear array experiments
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Fig. 2. DdB(ξ) pattern for a uniform, linear array consisting of 8 rhombic
antennas; excitation: a train of 5 dtPE pulses with a Rr pulse repetition rate;
inter-element spacing: c0Rr/2; broadside beam steering.
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Fig. 3. Fidelity factor pattern for the array examined in Fig. 2.

The case of uniform linear array antennas consisting of
8 elements is now studied. The elements are located at
rn = zUn iz , in which zUn = n (Kc0Rr/2) , n = 0, 1, 2, . . . , 7,
and K � 1 is a scaling factor. DdB(ξ) patterns are given
in Fig. 2 for broadside beam steering and K = 1 (see [7] for
beam scanning experiments). The main beam is clearly visible.
The largest sidelobes correspond to constructive interference
of delayed elementary contributions from a part of the array
elements, as also observed in [10]. There are, also, sidelobes
that are not related to correspondences between the pulse repe-
tition rate and element locations, such as those pointing in the
iz − direction in Fig. 2.a. Such lobes have also been observed
in the patterns reported in [5] for single-pulse excitations.

The Ff(ξ) patters are shown in Fig. 3. These plots evidence
that the fidelity factor is, practically, one in the main beam
and drops rapidly outside it. Moreover, Ff(ξ) = 0 in the
half-space where, due to field symmetry, the radiated field has
opposite direction. It can then be inferred that accounting for
the signal’s fidelity increases the spatial selectivity offered by
the array’s focusing (with an additional gain of about 3dB).
This is important for ultra-high rate digital transfer, from both
effectiveness and communication security points of view.

D. Non-uniform linear array experiments

The last study concerns non-uniform, linear array antennas
synthesised according to the placement strategy in [11]. Firstly,
for consistency with the uniform linear array experiment, an
arrays consisting of 8 elements and having the same length is
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Fig. 4. DdB(ξ) pattern for a linear array consisting of 8 rhombic antennas;
excitation: a train of 5 dtPE pulses with a Rr pulse repetition rate; CDS
placement yielding a 7 c0Rr/2 array length; broadside beam steering.
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Fig. 5. Fidelity factor pattern for the array examined in Fig. 4.

considered. Its elements are placed at rn = zCDS
n iz, in which

zCDS
n = {0, 10, 12, 13, 18, 27, 34, 38}/38 (7 c0Rr/2) (14)

follow from the by 12 shifted, modulo 57, cyclic permutation
of the {57, 8, 1} Cyclic Difference Set (CDS) [12]. The broad-
side DdB(ξ) patterns are given in Fig. 4. These plots evidence
a remarkable difference with respect to those in Fig. 2, namely
the practical absence of (high) sidelobes – a feature following
from the two-valued autocorrelation property of CDS’s at the
core of the design strategy in [11]. The Ff(ξ) patterns (see
Fig. 5) preserve the main features of those in Fig. 3. There is
a slight fidelity factor increase of Ff(ξ) in the sidelobes, this
diminishing the combined directivity↔fidelity gain.

Finally, the performance of a similarly CDS-synthesised
linear array with a total length of 70 c0Rr/2 is examined.
Despite the huge interelement spacing, no high sidelobes are
present in the DdB(ξ) patern (Fig. 6). This unique feature,
a direct consequence of the conjunction between the two-
valued autocorrelation of the element locations and the pulse-
train finiteness, renders pulsed-field array antennas superior
to time-harmonic arrays in which case the high sidelobes
(actually, grating lobes) free operation is only obtained up to
a maximum inter-element spacing. The Ff(ξ) pattern (Fig. 7)
is also extremely opportune.

IV. CONCLUSIONS

The performance of pulsed-field excited array antennas
was studied via full time-domain instruments. The directional
distribution of radiated energy and the directional (system)
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Fig. 6. DdB(ξ) pattern for a linear array consisting of 8 rhombic antennas;
excitation: a train of 5 dtPE pulses with a Rr pulse repetition rate; CDS
placement yielding a 70 c0Rr/2 array length; broadside beam steering.
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Fig. 7. Fidelity factor pattern for the array examined in Fig. 6.

fidelity factor were employed as expedient performance met-
rics. The study demonstrated that accounting for the signal’s
fidelity improves the spatial selectivity offered by the arrays’
intrinsic focusing properties, with up to 3dB additional gain
being achievable. The analysis of non-uniform, linear array
antennas with extreme lengths has demonstrated their ability
to generate narrow beams without the onset of high sidelobes.
The highlighted performance is expedient, via energy focusing,
for enhancing the detectability of signals in background noise
and, via increased spatial selectivity, for improved commu-
nication security, making pulsed-field excited array antennas
highly opportune for ultra-high rate wireless digital transfer.

APPENDIX

A. The TD field radiated by array antennas consisting of
rhombic elements

For evaluating the EM field radiated by the array antennas
considered in this paper, it is observed that A∞

n in (4)
correspond to fields radiated by straight wire segments of
length LR. Let such a segment be oriented from the point
with position vector xP to the point with position vector xQ,
let τPQ = (xQ−xP)/LR, and let In(t) be the electric current
carried by it. The A∞

n is then expressed as [5]

∂tA
∞
n,⊥(ξ, t) = (τPQLR) ∂tIn(t+ TP) (15)

in case ξ·τPQ = 0 or as

∂tA
∞
n, �⊥(ξ, t) = (τPQLR)

In (t+ TQ)− In (t+ TP)
(ξ·τPQ) c−1

0 LR

(16)

in case ξ·τPQ �= 0, with TP,Q = c−1
0 ξ·xP,Q. Note that for

deriving (15) and (16) it was assumed that In(t) has a linear
spatial variation along the wire segment, this being consistent
with the choice LR � c0tw (see Section II-A).

B. The reference signal for fidelity factor evaluation

To identify the reference signal Sref(t) in (9), (16) is
written as

∂tA
∞
n, �⊥(ξ, t) = ∂tA

∞
n,⊥(ξ, t)

+ (τPQLR)
(ξ·τPQ) c−1

0 LR

2
∂2
t In (t+ TP)

+ (τPQLR) O
[
(ξ·τPQ) c−1

0 LR

]3
(17)

where use was made of the fact that c−1
0 LR � tw and O is

the Landau order notation [9, p. 1019]. Since the sides in each
rhombic antenna form a closed contour, the terms ∂tA

∞
n,⊥(ξ, t)

will cancel out. By now invoking the results in Section II-B,
the thought for reference signal is then taken as the second
order time derivative of the current injected at the Kirchhoff
port of the reference element in the array, as given in (12).
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