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Abstract: We show how passivity-based control by interconnection and damping assignment
(IDA-PBC) can be used as a design procedure to derive distributed control laws for undirected
connected networks of underactuated and fully-actuated heterogeneous mechanical systems.
With or without leaders, agents are able to reach a stationary formation in the coordinate
of interest, even if each agent has different dynamics, provided that each agent satisfies
three matching conditions for cooperation. If these are satisfied, we show how existing single-
system IDA-PBC solutions can be used to construct distributed control laws, thereby enabling
distributed control design for a large class of applications. The procedure is illustrated for a
network of flexible-joint robots and a network of heterogeneous inverted pendulum-cart systems.

Keywords: Distributed control, consensus, synchronization, mechanical systems, underactuated
systems, passivity-based control by interconnection and damping assignment (IDA-PBC)

1. INTRODUCTION

In a network of cooperative mechanical systems, a typical
control objective is to synchronize a subset of generalized
coordinates between all systems in the network. More
generally, the goal can be to obtain a formation in the
coordinates of interest, either with one or more leaders
that steer the formation towards a prescribed setpoint, or
without leaders, such that the formation comes to rest at
an arbitrary point. Each agent (system) uses a control law
both to stabilize its own state and to contribute to the
formation group objective, relying only on its own state
information and information received from its neighbors in
the network. Passivity-based control is a well-established
control method for networks of fully-actuated nonlinear
mechanical systems (see Chopra and Spong (2006); Arcak
(2007); Ren and Cao (2011)), but few results are directly
applicable if one or more agents are underactuated.

In this paper we show that passivity-based control by
interconnection and damping assignment (IDA-PBC), in-
troduced by Ortega et al. (2002), can be used to derive dis-
tributed control laws for networks of both underactuated
and fully-actuated heterogeneous mechanical systems. If
the communication network is undirected and connected,
the agents are able to reach a stationary formation in the
generalized coordinate of interest, with or without leaders.
Additionally, if an IDA-PBC solution is known for each
individual agent, we show that under certain conditions
independent of the network topology, this solution can be
used to construct the distributed control laws.

An early result for the synchronization of a simplified class
of underactuated mechanical systems was given by Nair
and Leonard (2008), to which our work has parallels by
virtue of the close relationship between IDA-PBC and
controlled Lagrangians (see Blankenstein et al. (2002)).

The current work extends the synchronization objective
to a formation objective, it generalizes the application
from networks of homogeneous agents to networks of het-
erogeneous agents, and it extends the leaderless result to
networks with leaders that have fixed reference coordinates
to steer the group to a desired configuration.

An IDA-PBC approach was used to stabilize synchro-
nization error dynamics in Zhu et al. (2012). While their
method reduces the synchronization recovery time after a
disturbance on a subsystem, the network must be a ring
graph and the result is not a distributed control method,
as all agents require knowledge of the absolute reference. A
distributed synchronization result for networks of flexible-
joint robots was presented by Nuño et al. (2014), which we
show to be a special case of the presented distributed IDA-
PBC method, and which can be extended to formations to
allow non-identical robotic arm poses.

Sections 2 and 3 briefly review the single-agent IDA-PBC
problem and Sections 4 and 5 review the necessary con-
cepts from distributed control and graph theory. Section 6
formalizes the distributed IDA-PBC problem, while sec-
tions 7–9 give a constructive solution of the problem by
providing sufficient conditions for each agent to facilitate
cooperation in a network. Section 10 applies the proposed
method to networks of flexible-joint robots and networks
of heterogeneous systems of underactuation degree one.

2. IDA-PBC FOR A SINGLE MECHANICAL SYSTEM

This section reviews the method of passivity-based control
by interconnection and damping assignment (IDA-PBC)
when applied to a single mechanical system, as summa-
rized by Acosta et al. (2005). The frictionless, open-loop
dynamics of a mechanical system with coordinates q ∈ Rn,
momenta p ∈ Rn, input τ ∈ Rm, and output y ∈ Rm are
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chosen such that the desired Hamiltonian Hd is locally
minimal at the desired equilibrium:

q∗ = argminVd(q). (7)

The damping matrix satisfies Kv > 0m and the matrix
J = −J�∈ Rn×n is free. (We use “J” instead of the com-
monly used “J2” to avoid confusion with other subscripts.)
The setpoint (q∗,0 ) is an asymptotically stable equilib-
rium of the dynamics (4), where the main argument is
that Hd (6) is positive definite near the setpoint and its
time derivative along (4) equals d

dtHd = −y�
d Kvyd ≤ 0.

The complete proof is summarized in Acosta et al. (2005).

The desired dynamics (4)–(6) are obtained by setting them
equal to (1)–(3) and solving for τ (q,p), which gives the
single-agent IDA-PBC feedback law as

τ =
(
F�F

)−1
F�

(
∂H

∂q
−MdM

−1∂Hd

∂q
+ JM−1

d p

)
−Kvyd.

(8)

For underactuated systems, this law yields the dynamics
(4)–(6) only if the kinetic energy matching equation

F⊥ ∂

∂q

(
p�M−1p

)
− F⊥MdM

−1 ∂

∂q

(
p�M−1

d p
)

+ 2F⊥JM−1
d p = 0 , (9)

and the potential energy matching equation

F⊥
(
∂Vi

∂q
−MdM

−1∂Vd

∂q

)
= 0 , (10)

both hold, for the annihilator F⊥ with F⊥F = 0(n−m)×m.
In fully-actuated systems F is full rank and (8) yields
(4)–(6) without the need to satisfy matching conditions.

While setpoint tracking primarily requires potential en-
ergy shaping of Vd to satisfy the minimality condition (7),
it is usually also necessary to shape the kinetic energy
through Md and assign gyroscopic forces through J, in

order to satisfy the matching conditions (9), (10). Solving
this problem is challenging in general. (See Ortega et al.
(2017) for an historic overview and recent developments.)
Constructive solutions have been given for special classes
of mechanical systems, such as those with only one degree
of underactuation in Acosta et al. (2005).

3. DESIRED POTENTIAL ENERGY STRUCTURE

An agent in the network has two non-conflicting control
objectives, each pertaining to a subset of its generalized
coordinates, partitioned as q = (x,θ) ∈ Rn. The coordi-
nates x ∈ R� are to be controlled in cooperation with other
agents in the network, while θ ∈ Rn−� are controlled by
each agent individually. Before considering a network of
systems, we consider how these control goals appear in
the single-agent solution, where the goal is to reach the
setpoint q∗ = (x∗,θ∗), for prescribed values x∗ and θ∗.

In some IDA-PBC solutions, the objectives to reach x∗

and θ∗ can be alternatively represented using a new co-
ordinate z(q) = z(x,θ) ∈ R�, chosen such that achieving
θ = θ∗ and z = z∗ also implies that x = x∗. The choice
of z ensures that the control signal to stabilize z does not
violate the matching conditions, which is crucial for ex-
pressing interaction forces between agents in the network
later on. Specifically, we use existing IDA-PBC solutions
in which the desired potential energy can be written as

Vd(q) = Vs(q) + Vc(z(q)), (11)

where z(q) ∈ R�, � ≤ m, and the cooperation potential Vc

is free in z as long as Vd remains positive definite around
the setpoint q∗. Then we can write its gradient as

∂Vd

∂q
=

∂Vs

∂q
+Ψ

∂Vc

∂z
, (12)

where ∂Vc

∂z depends only on z and Ψ depends only on q:

Ψ(q) =

[
∂z1
∂q

· · · ∂z�
∂q

]
∈ Rn×�. (13)

In solutions of the form (11), the potential energy condi-
tion (10) is implicitly split up in two matching conditions:

F⊥
(
∂V

∂q
−MdM

−1∂Vs

∂q

)
= 0 , (14)

F⊥MdM
−1Ψ = 0(n−m)×�. (15)

Although requiring (14), (15) to hold is more conservative
than (10), it ensures that Vc(·) is free in z, which is crucial
in our solution of the distributed IDA-PBC problem.

The term Vs stabilizes the coordinates θ to their fixed
setpoint θ∗, subject to matching condition (14), while Vc

steers the coordinates x to the desired setpoint, subject to
matching condition (15). For example, in a pendulum-cart
system where q = [x θ]� and z(x, θ) ∈ R, Vs stabilizes the
pendulum angle θ at 0 while Vc makes the cart position x
converge to the setpoint x∗ by steering z(x, θ) to z(x∗, 0).

Examples of IDA-PBC solutions of the form (11)–(15)
with explicit descriptions of z(q) are given in Acosta
et al. (2005) and Ryalat and Laila (2016) for systems of
underactuation degree one, but solutions are not limited to
this class. For example, a fully-actuated point mass with
q ∈ R3 might use the term Vs(q) to stabilize θ = [q1 q3]

�

at θ∗ = [q∗1 q∗3 ]
� and use Vc(z(q)) to steer q2 to q∗2 . In this

case, n = m = 3, � = 1, and z(q) = x = q2 ∈ R.
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4. NETWORKS OF MECHANICAL SYSTEMS

4.1 Uncontrolled Network Dynamics

Consider a network of N agents, where each agent has the
dynamics (1)–(3), given explicitly for each agent i as

[
q̇i
ṗi

]
=

[
0ni Ini

−Ini 0ni

]



∂Hi

∂qi

∂Hi

∂pi


+

[
0ni×mi

Fi

]
τ i, (16)

yi = F�
i M

−1
i pi, (17)

Hi =
1
2p

�
i M

−1
i pi + Vi. (18)

As before, qi ∈ Rni , pi ∈ Rni , τ i ∈ Rmi , Fi(qi) ∈ Rni×mi ,

Mi(qi) = M�
i (qi) > 0ni

, and mi ≤ ni. The dimensions ni

and mi may be different for each agent. The dynamics of
all agents can be written as one simple mechanical system:

[
˙̄q
˙̄p

]
=

[
0n̄ In̄
−In̄ 0n̄

]



∂H̄

∂q̄

∂H̄

∂p̄


+

[
0n̄×m̄

F̄

]
τ̄ , (19)

ȳ = F̄�M̄
−1
p̄, (20)

H̄ = 1
2 p̄

�M̄
−1
p̄+ V̄ , (21)

where the corresponding network terms are given by

n̄ =
N∑
i=1

ni, m̄ =

N∑
i=1

mi, V̄ =

N∑
i=1

Vi,

q̄ =

[
q1...
qN

]
, p̄ =

[
p1...
pN

]
, τ̄ =

[
τ 1
...

τN

]
, (22)

ȳ =

[
y1...
yN

]
, M̄ =

[
M1. . .

MN

]
, F̄ =

[
F1. . .

FN

]
.

There is no physical contact between the systems, but
interaction arises due to their control signals. Generally,
the control law τ i of agent i can be a function of its own
state and of information it receives from other agents.

4.2 Modeling Communication on Graphs

Communication between agents can be modeled using
properties from graph theory (see Ren and Cao (2011)).
Each agent i is a node of a graph. Agent i can send
information to agent j if there exists an edge (i, j) between
nodes i and j with a weight Aij > 0. In this paper we
consider only undirected graphs, where information flow is
bidirectional: if the edge (i, j) exists then (j, i) also exists,
andAij = Aji > 0. In this case agent i and j are neighbors.
Self edges are not allowed: Aii = 0. If there are no edges
between nodes i and j then Aij = Aji = 0 and the two
agents cannot exchange information.

An edge sequence of the form (i, k), (k, j), . . . , (z, y), (y, a)
is called a path. A graph is connected if there is a path
between every pair of nodes. The graph can be compactly
described by the Laplacian matrix L ∈ RN×N , defined

by Lii =
∑N

j=1 Aij and Lij = −Aij if i �= j. If the
graph is connected, then L has one zero eigenvalue and
its remaining eigenvalues are positive, such that L ≥ 0N .

4.3 Local and Group Objectives

The overall objective is to have each agent i stabilize
its own coordinates θi ∈ Rni−� at θ∗

i while achieving a
desired stationary formation between the agents in the
coordinates xi ∈ R�. As in the single-agent case, the latter
objective can be represented as a formation in zi ∈ R�. A
formation is a configuration where each pair of neighboring
agents i and j reaches a desired difference r∗ij = z∗

j − z∗
i .

We show that this can be accomplished if each agent
communicates only the variable zi with its neighbors.

An agent can be a leader or a follower. If agent i is a
follower, it knows only the desired inter-agent differences
r∗ij and we define Bi = 0. One or more leaders may also
know their target z∗

i , compatible with the distances r∗ij , in
which case Bi > 0. Denoting B = diag(B1, . . . ,BN ), then
L+B>0N for a connected graph with at least one leader
(Ren and Cao (2011)). In summary, the objectives become:

lim
t→∞

||q̇i(t)|| = 0 ∀ i = 1, . . . , N, (23)

lim
t→∞

||θi(t)− θ∗
i || = 0 ∀ i = 1, . . . , N, (24)

lim
t→∞

||zi(t)− zj(t) + r∗ij || = 0 ∀ i, j | Aij > 0, (25)

lim
t→∞

||zi(t)− z∗
i || = 0 ∀ i | Bi > 0. (26)

The corresponding desired equilibrium is denoted q̄∗. If
there is at least one leader, the formation must come to
standstill at a unique point compatible with the targets z∗

i .
If there are no leaders, the formation comes to standstill
at an arbitrary point. If all r∗ij are zero, then the forma-
tion goal simplifies to synchronization, sometimes called
consensus or agreement, again with or without leaders.

5. TOP-DOWN DISTRIBUTED CONTROL

Typical passivity-based distributed control methods follow
bottom-up design approaches, which consider how pas-
sive systems can be interconnected to preserve passivity.
Weighted sums of the energy functions of each system are
used as candidate Lyapunov functions in order to assess
closed-loop stability (Chopra and Spong (2006); Arcak
(2007); Ren and Cao (2011)). This approach is especially
successful for networks of fully-actuated systems like robot
manipulators, where internal control laws render each sys-
tem passive with respect to an output that ensures syn-
chronization of both generalized coordinates and velocities
between systems. This approach does not easily generalize
to underactuated systems, complicating the procedure of
finding internal control laws and stable interconnections.

This paper uses a top-down approach instead, starting
from a class of stable desired dynamics for the whole net-
work, and deriving the distributed control laws and inter-
connection conditions to preserve stability. Any remaining
degrees of freedom can be used to address the transient
response of the network and its subsystems. This ap-
proach is well-suited for networks of fully-actuated and un-
deractuated systems, and combinations thereof. Whereas
choosing a desired class of dynamics may appear more
restrictive than allowing arbitrary dynamics and Lyapunov
functions, the structure of the solution reveals both the
potential force and damping mechanisms commonly found
in a bottom-up approach, but also non-trivial gyroscopic
coupling forces while preserving stability.
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There is no physical contact between the systems, but
interaction arises due to their control signals. Generally,
the control law τ i of agent i can be a function of its own
state and of information it receives from other agents.

4.2 Modeling Communication on Graphs

Communication between agents can be modeled using
properties from graph theory (see Ren and Cao (2011)).
Each agent i is a node of a graph. Agent i can send
information to agent j if there exists an edge (i, j) between
nodes i and j with a weight Aij > 0. In this paper we
consider only undirected graphs, where information flow is
bidirectional: if the edge (i, j) exists then (j, i) also exists,
andAij = Aji > 0. In this case agent i and j are neighbors.
Self edges are not allowed: Aii = 0. If there are no edges
between nodes i and j then Aij = Aji = 0 and the two
agents cannot exchange information.

An edge sequence of the form (i, k), (k, j), . . . , (z, y), (y, a)
is called a path. A graph is connected if there is a path
between every pair of nodes. The graph can be compactly
described by the Laplacian matrix L ∈ RN×N , defined

by Lii =
∑N

j=1 Aij and Lij = −Aij if i �= j. If the
graph is connected, then L has one zero eigenvalue and
its remaining eigenvalues are positive, such that L ≥ 0N .

4.3 Local and Group Objectives

The overall objective is to have each agent i stabilize
its own coordinates θi ∈ Rni−� at θ∗

i while achieving a
desired stationary formation between the agents in the
coordinates xi ∈ R�. As in the single-agent case, the latter
objective can be represented as a formation in zi ∈ R�. A
formation is a configuration where each pair of neighboring
agents i and j reaches a desired difference r∗ij = z∗

j − z∗
i .

We show that this can be accomplished if each agent
communicates only the variable zi with its neighbors.

An agent can be a leader or a follower. If agent i is a
follower, it knows only the desired inter-agent differences
r∗ij and we define Bi = 0. One or more leaders may also
know their target z∗

i , compatible with the distances r∗ij , in
which case Bi > 0. Denoting B = diag(B1, . . . ,BN ), then
L+B>0N for a connected graph with at least one leader
(Ren and Cao (2011)). In summary, the objectives become:

lim
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||q̇i(t)|| = 0 ∀ i = 1, . . . , N, (23)
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The corresponding desired equilibrium is denoted q̄∗. If
there is at least one leader, the formation must come to
standstill at a unique point compatible with the targets z∗

i .
If there are no leaders, the formation comes to standstill
at an arbitrary point. If all r∗ij are zero, then the forma-
tion goal simplifies to synchronization, sometimes called
consensus or agreement, again with or without leaders.

5. TOP-DOWN DISTRIBUTED CONTROL

Typical passivity-based distributed control methods follow
bottom-up design approaches, which consider how pas-
sive systems can be interconnected to preserve passivity.
Weighted sums of the energy functions of each system are
used as candidate Lyapunov functions in order to assess
closed-loop stability (Chopra and Spong (2006); Arcak
(2007); Ren and Cao (2011)). This approach is especially
successful for networks of fully-actuated systems like robot
manipulators, where internal control laws render each sys-
tem passive with respect to an output that ensures syn-
chronization of both generalized coordinates and velocities
between systems. This approach does not easily generalize
to underactuated systems, complicating the procedure of
finding internal control laws and stable interconnections.

This paper uses a top-down approach instead, starting
from a class of stable desired dynamics for the whole net-
work, and deriving the distributed control laws and inter-
connection conditions to preserve stability. Any remaining
degrees of freedom can be used to address the transient
response of the network and its subsystems. This ap-
proach is well-suited for networks of fully-actuated and un-
deractuated systems, and combinations thereof. Whereas
choosing a desired class of dynamics may appear more
restrictive than allowing arbitrary dynamics and Lyapunov
functions, the structure of the solution reveals both the
potential force and damping mechanisms commonly found
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6. DISTRIBUTED IDA-PBC PROBLEM

As in the single-agent case, the IDA-PBC strategy defines
the control τ̄ that changes the uncontrolled network dy-
namics (19)–(21) into the asymptotically stable dynamics

[
˙̄q
˙̄p

]
=

[
0n̄ M̄

−1
M̄d

−M̄dM̄
−1

J̄− F̄K̄vF̄
�

]



∂H̄d

∂q̄

∂H̄d

∂p̄


 , (27)

ȳd = F̄�∂H̄d

∂p̄
= F̄�M̄

−1
d p̄, (28)

H̄d = 1
2 p̄

�M̄
−1
d p̄+ V̄d, (29)

where M̄d > 0n̄, V̄d ∈ R, J̄ = −J̄�∈ Rn̄×n̄ and K̄v > 0 are
to be designed to address the control objectives (23)–(26)
and the transient response. Similar to (7), we now require

q̄∗ = argmin V̄d(q̄). (30)

The desired dynamics are obtained using the IDA-PBC
control law (8) applied to the network of systems, giving

τ̄ =
(
F̄�F̄

)−1
F̄�

(
∂H̄

∂q̄
− M̄dM̄

−1∂H̄d

∂q̄
+ J̄M̄

−1
d p̄

)
− K̄vȳd

(31)
if the distributed kinetic energy matching condition

F̄⊥ ∂

∂q̄

(
p̄�M̄

−1
p̄
)
− F̄⊥M̄dM̄

−1 ∂

∂q̄

(
p̄�M̄

−1
d p̄

)

+ 2F̄⊥J̄M̄
−1
d p̄= 0 , (32)

and the distributed potential energy matching condition

F̄⊥
(
∂V̄

∂q̄
− M̄dM̄

−1∂V̄d

∂q̄

)
= 0 , (33)

both hold.

7. SUFFICIENT CONDITIONS FOR COOPERATION

Despite the large degree of freedom in choosing the
stability-preserving interconnection mechanisms, we show
that for systems of the class (11)–(15) it is sufficient to
shape the potential energy of the interconnections to ob-
tain the desired group objectives (25), (26). The internal
objectives (23), (24) can be addressed by choosing

F̄⊥ =


F

⊥
1 . . .

F⊥
N


 , M̄d =

[
Md,1. . .

Md,N

]
,

J̄ =

[
J1. . .

JN

]
, K̄v =

[
Kv,1. . .

Kv,N

]
, (34)

where F⊥
i (qi), Md,i(qi), Ji(qi,pi) and Kv,i are taken from

single-agent IDA-PBC solutions. Substituting these into
matching condition (32) yields

F⊥
i

∂

∂qi

(
p�
i M

−1
i pi

)
− F⊥

i Md,iM
−1
i

∂

∂qi

(
p�
i M

−1
d,ipi

)

+2F⊥
i JiM

−1
d,ipi = 0 ∀ i = 1, . . . , N, (35)

which are N separate matching conditions, each identical
to the single-agent kinetic energy matching condition (9),
and solved if each agent has a known IDA-PBC solution.
Likewise, inserting the choices (34) into the networked
potential energy matching condition (33) yields

F⊥
i

(
∂Vi

∂qi

−Md,iM
−1
i

∂V̄d

∂qi

)
= 0 ∀ i = 1, . . . , N. (36)

This condition is not trivially solved because the desired
potential energy V̄d(q) depends on the coordinates of all
agents. We propose a desired potential energy of the form

V̄d(q̄) = V̄c(z1(q1), . . . ,zN (qN )) +

N∑
i=1

Vs,i(qi), (37)

where the Vs,i(qi) are equal to the internal stabilization
component in the single-agent potential energy (11), while
V̄c is a free function in the zi(qi) ∈ R� variables of all
agents. In order to show that (37) solves (36) we first write

∂V̄c

∂qi

= Ψi
∂V̄c

∂zi
, (38)

in which

Ψi(qi) =

[
∂z1,i

∂qi

· · · ∂z�,i

∂qi

]
∈ Rni×�, (39)

where zk,i is the k-th element of the vector zi, each of
which depends only on qi. Then (36) becomes

F⊥
i

(
∂Vi

∂qi

−Md,iM
−1
i

∂Vs,i

∂qi

−Md,iM
−1
i Ψi

∂V̄c

∂zi

)
= 0

∀ i = 1, . . . , N. (40)

Consequently, if each agent satisfies the separated poten-
tial energy matching conditions (14) and (15), that is

F⊥
i

(
∂Vi

∂qi

−Md,iM
−1
i

∂Vs,i

∂qi

)
= 0 ∀ i = 1, . . . , N, (41)

F⊥
i Md,iM

−1
i Ψi = 0(ni−mi)×� ∀ i = 1, . . . , N, (42)

then through (40) and (36), the distributed potential
energy matching condition (33) holds.

Therefore, the original network dynamics (19)–(21) and
the desired dynamics (27)–(29) match independently of
the network topology for the choices (34), (37), provided
each agent satisfies the matching conditions (9), (14), (15).
Because the conditions are local to each agent, no com-
munication is required to guarantee matching, enhancing
robustness against communication delays or switching net-
work topologies. Matching still holds if the agents are het-
erogeneous, whether they have different parameter values,
different dynamics, or a different number of coordinates.

8. COUPLING THROUGH POTENTIAL ENERGY

The potential energy of the network V̄d (37) must be min-
imal (30) when the local and group objectives (23)–(26)
are achieved. Although the matching conditions are decou-
pled, the systems are coupled through the free cooperative
potential energy function V̄c in (37), which through the
control law (31) gives rise to control forces that steer the
systems towards their cooperative goal (25), (26).

One possible coupling energy V̄c is the squared sum of the
deviation from the control goals (25), (26), which gives

V̄c(z̄) =
1

4

N∑
i=1

N∑
j=1

Aij ||zi − zj + r∗ij ||2

+
1

2

N∑
i=1

Bi||zi − z∗
i ||2. (43)

Its gradient with respect to the zi variables is given by
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∂V̄c

∂zi
= Bi(zi − z∗

i ) +

N∑
j=1

Aij(zi − zj + r∗ij). (44)

For appropriate constants c1 ∈ RN� and c0 ∈ R, the
potential (43) can be written as the quadratic form

V̄c =
1
2 z̄

�(L̄+ B̄)z̄ + c�1 z̄ + c0, (45)

with L̄ = L ⊗ I� and B̄ = B ⊗ I�, where ⊗ denotes
the Kronecker product. The eigenvalues of (L̄ + B̄) are
equal to those of (L + B), each value with multiplicity
� (Bellman (1960)). Hence, if the graph is connected and
there is at least one leader, L̄ + B̄ > 0N�, such that the
coupling potential energy (43) is positive definite around
its unique minimum satisfying (25), (26). If there are no
leaders, L̄ + B̄ = L̄ ≥ 0N� and (43) is positive semi-
definite around a range of minima, all satisfying (25), (26).
The total potential energy (37) attains a minimum if
additionally (24) is satisfied, relying on the single-agent
solutions. Finally, the total energy (29) attains a minimum
if (23) is also satisfied, when all agents are stationary.

9. DISTRIBUTED CONTROL LAW

The control laws for each agent are derived from (31) by
substituting the previously made choices given in (34):

τ i =
(
F�

i Fi

)−1
F�

i

(
∂Hi

∂qi

−Md,iM
−1
i

∂H̄d

∂qi

+ JiM
−1
d,ipi

)

−Kv,iyd,i, (46)

where yd,i = F�
i M

−1
d,ipi as in (5). In order to proceed

substituting the coupling potential V̄c (37), we first write

∂H̄d

∂qi

=
1

2

∂

∂qi

(
p�
i M

−1
d,ipi

)
+

∂Vs,i

∂qi

+Ψi
∂V̄c

∂zi
, (47)

at which point the quadratic potential energy gradient (44)
is substituted to obtain the control law

τ i = σi −Φi
∂V̄c

∂zi
−Kv,iyd,i

= σi +Φi


Bi(z

∗
i − zi) +

N∑
j=1

Aij(zj − zi − r∗ij)




−Kv,iyd,i, (48)

where

σi(qi,pi) =
(
F�

i Fi

)−1
F�

i

(
∂Hi

∂qi

+ JiM
−1
d,ipi

)
(49)

−
(
F�

i Fi

)−1
F�

i Md,iM
−1
i

∂

∂qi

(
1

2
p�
i M

−1
d,ipi + Vs,i

)

is equivalent to single-agent IDA-PBC control except for
the cooperative component of the potential energy and

Φi(qi) =
(
F�

i Fi

)−1
F�

i Md,iM
−1
i Ψi ∈ Rmi×� (50)

is an input matrix that ensures that the potential coupling
forces (44) do not violate the matching conditions.

The resulting distributed control law (48) has a stabiliza-
tion term σi(qi,pi) ∈ Rmi and a damping term −Kv,iyd,i,
each depending only on local information, and a coupling
term −Φi(qi)∂V̄c/∂zi that depends on both local informa-
tion and information zj received from neighboring agents.

10. CASE STUDIES

10.1 Cooperative Flexible-Joint Manipulators

After using an internal control law to compensate for grav-
ity (see Nuño et al. (2014)), the dynamics of a flexible-joint
robot i with joint angles αi ∈ Rm, motor angles δi ∈ Rm,
mass matrix Ni(αi) > 0m, motor inertia Λi > 0m, joint
stiffness Ci>0m, ni = 2mi = 2m, are as (16)–(18) with

qi =

[
αi

δi

]
, F =

[
0m

Im

]
,

Mi =

[
Ni 0m

0m Λi

]
, Vi=

1

2
(δi −αi)

�Ci(δi −αi). (51)

The single-agent IDA-PBC solution steers x = α to the
target α∗ and steers θ = δ − α to θ∗ = 0 without
kinetic energy shaping (Md = M and J=0n), while
using potential energy shaping only to add energy that
steers the motor angles to the desired joint locations:
Vd = V + 1

2 (z − z∗)�P(z − z∗) where z = δ and P > 0m,
which is minimal at the target z∗ = δ∗, θ∗ = 0 .

For a network of flexible-joint robots, we obtain

zi = δi = F�qi, Md,i = Mi, Ji = 0n, (52)

and � = m, which gives, from (39) and (50),

Ψi = F, Φi = (F�F)−1F�Md,iMiΨi = Im. (53)

For the potential energy we choose Vs,i = Vi such that
from (49), σi = 0 . Then it is easy to verify that the
matching conditions (35), (41), (42) hold and that with
V̄c as in (43), the control law for each robot (48) becomes

τ i = Bi(δ
∗
i − δi)+

N∑
j=1

Aij(δj − δi − r∗ij)−Kv,iδ̇i, (54)

where δ̇i = F�
i M

−1
i pi are the motor velocities. When

r∗ij = 0 , the control law is identical to the non-delayed
case given in Nuño et al. (2014), showing how the proposed
method systematically gives results without searching ex-
tensively for a Lyapunov function to prove its stability.
Choosing nonzero r∗ij generalizes the result to allow dis-
tinct arm poses, facilitating cooperative object grasping.

10.2 Underactuation-Degree One Systems

The conditions for cooperation are also satisfied by the
single-agent solution for a class of mechanical systems of
underactuation degree one (m = n − 1), given by Acosta
et al. (2005). We refer to the original paper for the precise
definitions and assumptions; here we focus primarily on
the steps needed for the extension to distributed IDA-
PBC. A key assumption is that certain terms, including
F, depend on only one coordinate, here taken to be qn.
Acosta et al. (2005) give a constructive procedure to find
Md and J to satisfy (9), and give a desired potential energy
of the form (11), where Vs(q) is explicitly given as

Vs(qn) =

∫ qn

0

s(µ)

γn(µ)
dµ, s(qn) = F⊥∂V

∂q
,

γ(qn) = [γ1 · · · γn]
�= M−1Md

(
F⊥)�. (55)

This satisfies (14) since, by substituting (55) into (14):

F⊥∂V

∂q
− F⊥MdM

−1en
s

γn
= s− γ�en

s

γn
= 0, (56)
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∂V̄c

∂zi
= Bi(zi − z∗

i ) +

N∑
j=1

Aij(zi − zj + r∗ij). (44)

For appropriate constants c1 ∈ RN� and c0 ∈ R, the
potential (43) can be written as the quadratic form

V̄c =
1
2 z̄

�(L̄+ B̄)z̄ + c�1 z̄ + c0, (45)

with L̄ = L ⊗ I� and B̄ = B ⊗ I�, where ⊗ denotes
the Kronecker product. The eigenvalues of (L̄ + B̄) are
equal to those of (L + B), each value with multiplicity
� (Bellman (1960)). Hence, if the graph is connected and
there is at least one leader, L̄ + B̄ > 0N�, such that the
coupling potential energy (43) is positive definite around
its unique minimum satisfying (25), (26). If there are no
leaders, L̄ + B̄ = L̄ ≥ 0N� and (43) is positive semi-
definite around a range of minima, all satisfying (25), (26).
The total potential energy (37) attains a minimum if
additionally (24) is satisfied, relying on the single-agent
solutions. Finally, the total energy (29) attains a minimum
if (23) is also satisfied, when all agents are stationary.

9. DISTRIBUTED CONTROL LAW

The control laws for each agent are derived from (31) by
substituting the previously made choices given in (34):

τ i =
(
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i Fi

)−1
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i
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∂Hi

∂qi

−Md,iM
−1
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∂H̄d

∂qi

+ JiM
−1
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)

−Kv,iyd,i, (46)

where yd,i = F�
i M

−1
d,ipi as in (5). In order to proceed

substituting the coupling potential V̄c (37), we first write
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=
1
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(
p�
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−1
d,ipi

)
+

∂Vs,i

∂qi

+Ψi
∂V̄c

∂zi
, (47)

at which point the quadratic potential energy gradient (44)
is substituted to obtain the control law

τ i = σi −Φi
∂V̄c

∂zi
−Kv,iyd,i

= σi +Φi


Bi(z

∗
i − zi) +

N∑
j=1

Aij(zj − zi − r∗ij)




−Kv,iyd,i, (48)

where

σi(qi,pi) =
(
F�

i Fi

)−1
F�
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(
∂Hi

∂qi

+ JiM
−1
d,ipi

)
(49)

−
(
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)−1
F�

i Md,iM
−1
i

∂

∂qi

(
1

2
p�
i M

−1
d,ipi + Vs,i

)

is equivalent to single-agent IDA-PBC control except for
the cooperative component of the potential energy and

Φi(qi) =
(
F�

i Fi

)−1
F�

i Md,iM
−1
i Ψi ∈ Rmi×� (50)

is an input matrix that ensures that the potential coupling
forces (44) do not violate the matching conditions.

The resulting distributed control law (48) has a stabiliza-
tion term σi(qi,pi) ∈ Rmi and a damping term −Kv,iyd,i,
each depending only on local information, and a coupling
term −Φi(qi)∂V̄c/∂zi that depends on both local informa-
tion and information zj received from neighboring agents.

10. CASE STUDIES

10.1 Cooperative Flexible-Joint Manipulators

After using an internal control law to compensate for grav-
ity (see Nuño et al. (2014)), the dynamics of a flexible-joint
robot i with joint angles αi ∈ Rm, motor angles δi ∈ Rm,
mass matrix Ni(αi) > 0m, motor inertia Λi > 0m, joint
stiffness Ci>0m, ni = 2mi = 2m, are as (16)–(18) with

qi =

[
αi

δi

]
, F =

[
0m

Im

]
,

Mi =

[
Ni 0m

0m Λi

]
, Vi=

1

2
(δi −αi)

�Ci(δi −αi). (51)

The single-agent IDA-PBC solution steers x = α to the
target α∗ and steers θ = δ − α to θ∗ = 0 without
kinetic energy shaping (Md = M and J=0n), while
using potential energy shaping only to add energy that
steers the motor angles to the desired joint locations:
Vd = V + 1

2 (z − z∗)�P(z − z∗) where z = δ and P > 0m,
which is minimal at the target z∗ = δ∗, θ∗ = 0 .

For a network of flexible-joint robots, we obtain

zi = δi = F�qi, Md,i = Mi, Ji = 0n, (52)

and � = m, which gives, from (39) and (50),

Ψi = F, Φi = (F�F)−1F�Md,iMiΨi = Im. (53)

For the potential energy we choose Vs,i = Vi such that
from (49), σi = 0 . Then it is easy to verify that the
matching conditions (35), (41), (42) hold and that with
V̄c as in (43), the control law for each robot (48) becomes

τ i = Bi(δ
∗
i − δi)+

N∑
j=1

Aij(δj − δi − r∗ij)−Kv,iδ̇i, (54)

where δ̇i = F�
i M

−1
i pi are the motor velocities. When

r∗ij = 0 , the control law is identical to the non-delayed
case given in Nuño et al. (2014), showing how the proposed
method systematically gives results without searching ex-
tensively for a Lyapunov function to prove its stability.
Choosing nonzero r∗ij generalizes the result to allow dis-
tinct arm poses, facilitating cooperative object grasping.

10.2 Underactuation-Degree One Systems

The conditions for cooperation are also satisfied by the
single-agent solution for a class of mechanical systems of
underactuation degree one (m = n − 1), given by Acosta
et al. (2005). We refer to the original paper for the precise
definitions and assumptions; here we focus primarily on
the steps needed for the extension to distributed IDA-
PBC. A key assumption is that certain terms, including
F, depend on only one coordinate, here taken to be qn.
Acosta et al. (2005) give a constructive procedure to find
Md and J to satisfy (9), and give a desired potential energy
of the form (11), where Vs(q) is explicitly given as

Vs(qn) =

∫ qn

0

s(µ)

γn(µ)
dµ, s(qn) = F⊥∂V

∂q
,

γ(qn) = [γ1 · · · γn]
�= M−1Md

(
F⊥)�. (55)

This satisfies (14) since, by substituting (55) into (14):

F⊥∂V

∂q
− F⊥MdM

−1en
s

γn
= s− γ�en

s

γn
= 0, (56)
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where ek ∈ Rn is a vector of zeros except its k-th entry
is 1. The elements of z ∈ R�, are, for j = 1, . . . �, � = m:

zj = qj −
∫ qn
0

γj(µ)
γn(µ)

dµ, (57)

which leads to a Ψ matrix (13) given by

Ψ = [e1 · · · em]− γ−1
n [γ1en · · · γmen] , (58)

which in turn solves condition (15) because

F⊥MdM
−1Ψ = γ�Ψ = 01×m. (59)

Consequently, all systems considered by Acosta et al.
(2005) satisfy the conditions for cooperation (9), (14), (15).

To illustrate the results that can be obtained with the
distributed IDA-PBC approach, Fig. 1 shows a simulation
of a network consisting of two inverted pendulum-cart
systems with different bob lengths l, cooperating with
a fully-actuated point mass, all translating on a parallel
track, to obtain a formation in the horizontal direction.
Each system uses the control law (48), where for the
pendulum-cart systems the terms Fi, Mi, Ji, Vi, Md,i are
taken from the worked example in Acosta et al. (2005),
while the point mass has q3 = z3 = x3 ∈ R, Vs,3 = 0,
Md,3 = M3 > 0, and F3 = 1 1 . More practical examples
demonstrating formations of flexible-joint manipulators
and unmanned areal vehicles are given in Valk (2018).
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Fig. 1. Two inverted pendulums (1, 2) and a point mass (3)
exchange information (dashed arrows) to achieve a
formation with 0.5m between each vehicle position
xi, where the leader (3) tracks the position x∗

3 = 2m.

11. CONCLUSION

We have presented a systematic procedure that yields
stable, distributed control laws for undirected networks
of heterogeneous underactuated and fully-actuated me-
chanical systems, achieving stationary formations in the
generalized coordinates of interest when each system has
a known IDA-PBC solution.

As future work, we aim to generalize the objective to task-
space formations, and generalize the agent coupling mech-
anisms beyond the proposed potential energy method. The
matrix J̄ can be used to distribute energy between agents
without affecting the stability of the group objective (van
der Schaft and Jeltsema (2014)). Another generalization
is to exchange passive outputs between agents to relax
1 Simulation details, parameters, and the source code are available
at https://github.com/laurensvalk/underactuated-systems.

the damping conditions for individual agents. We also
aim to account for communication time delays as done
for the special case in Nuño et al. (2014), and account
for time-varying group references (Fujimoto et al. (2003)).
Finally, we are currently establishing the relation with
schemes such as Chopra and Spong (2006), opening up
generalizations to directed communication graphs.
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