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Abstract: Traditional imaging design methods can often be ineffective when designing 
aspheric systems because of the large number of optimization parameters and lack of a good 
starting point. They are often trapped in a poor local minimum and it can be highly time-
consuming to find a good solution in a bumpy design landscape. The simultaneous multiple 
surface (SMS) method can significantly shorten the time and effort needed to find a desired 
solution by providing a starting point to optimize close to a good local minimum. We 
investigate here two design examples and compare them with similar designs obtained via 
traditional design approaches, as well as global optimization. In the examples considered 
here, the SMS method combined with a shorter optimization leads to an optimal design. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Classic imaging design methods are based on aberration theory and multi-parametric 
optimization techniques [1–3]. With the development of precise manufacturing techniques, 
aspheric surfaces are no longer a luxury and therefore can be encountered quite often in 
modern designs. For optical systems with few mild aspheric surfaces described by a small 
polynomial order, the traditional techniques may provide many useful solutions. However, 
when more complex systems with many aspheric surfaces with a large number of free 
parameters are considered, the optimization approach can easily get trapped in a poor local 
minimum (e.g., M2 in Fig. 1(a)) when the starting point (S2 in Fig. 1(a)) is far from the good 
local minimum of interest (M1 in Fig. 1(a)). In such cases, the designer’s experience is often a 
crucial factor when trying to get out of a poor minimum in search for a good solution. For 
instance, optimization is initially constrained to a lower dimension subspace, by optimizing 
only the low order coefficients. When a local minimum in the constrained subspace is reached 
(e.g., M in Fig. 1(b)), the subspace dimension is increased by unfreezing some higher-order 
coefficients. In the larger dimension subspace, that design is no longer a minimum and 
optimization can progress again, as illustrated in Fig. 1(b). When the number of variables is 
large, this change of the parameter subspace dimension can be done in various ways. 
Depending on the experience of the designer, which and how many variables are chosen in 
each step to optimize the system can be very different. Different design strategies usually end 
up in different local minima. Several global optimization methods such as genetic algorithms 
[4], evolution strategies [5], particle swarm [6] and simulated annealing [7] have been 
adapted to different optical design problems to avoid getting trapped in a local minimum. 
However, these methods are based on generally applicable mathematical models, and 
designers understand little about the optical systems behind them. Another method known as 
saddle point construction (SPC) method uses a systematical approach to find solutions in the 
design landscape and helps to get out of bad local minima [8,9]. 
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Fig. 1. An illustration of an optical design landscape in 2D (a) and 3D (b). 

Alternatively, the Simultaneous Multiple Surfaces (SMS) method is a direct method that 
allows to find a better starting point (like S1 in Fig. 1(a)) [10,11] and progress with it with a 
single step optimization (varying all parameters). Even though SMS is capable of designing 
good aspheric imaging systems, there is no study comparing it directly with other design 
strategies and describing the characteristics of different methods. 

In this paper, we consider rotationally symmetric designs, for which SMS 2D is used [12]. 
SMS 2D may utilize rays in the meridian plane or skew rays [13], but in any case, obtaining a 
2D profile of the surfaces. The method involves simultaneous calculation of N optical 
surfaces using N one-parameter bundles of rays for which specific conditions are imposed. 
The number of ray bundles can be greater than the number of surfaces to design when the 
footprints of the design bundles do not occupy the full SMS surfaces, as demonstrated in [14–
16]. SMS also has a freeform version called SMS 3D. However, these cases are not discussed 
in this paper. 

We start by briefly describing the SMS method applied in this paper. Then the design 
obtained with SMS is used as a starting point, followed by a single-step optimization of all 
parameters. The final design is compared with other designs obtained using spherical starting 
point and single-step, two-steps, stepwise and global optimizations. Two designs are 
considered, a simple one and a slightly more difficult one, with a larger aperture and wider 
field. 

2. Starting point with the SMS method 

The standard SMS procedure for designing aspheric surfaces involves only meridian rays. It 
consists of two steps: selection of central segments of the surfaces and recursive generalized 
Cartesian oval calculation [13,17]. We will focus on SMS designs using only meridian rays. 
Skew rays are then controlled in a subsequent optimization. 

Here we study two designs that consist of four aspheric surfaces and use the SMS 2D 
using four meridian bundles. In this case, the four meridian ray bundles selected for the SMS 
design correspond to the rays emitted from four object points placed symmetrically about the 
optical axis at infinity. The image points are located in the same way at a finite distance to 
match the specified focal length. The field angles associated with the object points are 
selected so that their root mean square 2D (RMS2D) distribution curves (defined as the RMS 
spot diameter calculated using only meridian rays in the field) present a constant ripple over 
the field of view as shown in the right plot in Fig. 2 and explained in detail in [11]. 

Applying a standard SMS 2D procedure, for the design directions we simultaneously 
calculate the set of points and normals. SMS profiles are then fitted into a Forbes Qcon 
polynomial [18], which will be introduced into the CODE V software. This system is now 
ready to be optimized for the whole field of view, as in the example shown in Fig. 2. 
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Fig. 2. SMS 2D design introduced to CODE V after fitting the surfaces to Forbes Qcon 
polynomials. The change of the spot diameter through the fields is shown on the right side. 

Aperture stop in system 1 is positioned at the surface 2 of the first lens element (when 
counting from left to right, in Fig. 2). Since this study focuses on designing four surfaces 
using four ray bundles, in system 2 the aperture stop is placed in between the two lens 
elements (because other aperture stop positions lead to the use of more than four ray bundles, 
as mentioned in the introduction and given in [14–16]). 

3. Comparing the results of different design approaches 

Two lens systems were designed and optimized for monochromatic light (λ = 587.56 nm) 
using SMS method and other approaches mentioned in the introduction. Both lenses are made 
of PMMA (n = 1.4918 at the used wavelength) and have four aspheric surfaces in total. Their 
specifications are given in Table. 1. The object is located at infinity. System 1 has both a 
smaller field of view (FOV) and aperture, and system 2 has both a larger FOV and aperture. 

Table 1. System specifications 

 
Image 

F/Number 
Effective Focal Length 

(EFL) 
Maximum Half Field 

of View (MHFOV) 
Position of the 
Aperture Stop 

System 1 2.24 8.60 mm 7.50° At surface 2 

System 2 1.77 10.60 mm 11.25° 
Air-space between 

the two lenses 

Three design approaches are used for the comparison: 1) SMS design with a subsequent 
one-step optimization; 2) optimization from a spherical system and adding aspheric 
coefficients, either in one-step, two-steps or one-by-one (stepwise); 3) global optimization 
with Global Synthesis (GS) in CODE V. Since we do not intend to compare different global 
optimization algorithms in this paper, we choose for comparison with SMS only GS that is 
known to perform very well in comparison with other global optimization and search methods 
in lens design [19,20]. For comparison, the systems designed all use Qcon polynomials as the 
representation for the aspheric surface. The variables are the curvatures, conic constants and 
higher-order coefficients of the Qcon polynomials (up to the 12th order for system 1, and 16th 
order for system 2). The vertices are fixed in all cases. For non-GS optimization, we use the 
default CODE V transverse ray aberration merit function (MF). Two types of constraints are 
used. One is to constrain the effective focal length (EFL), and the other is to limit the 
normalization radii of the surfaces to a value exceeding the size of the surface aperture by 
5%. The local optimization is done within CODE V based on a damped least square method. 
Vignetting was readjusted every 20 cycles, since the surface shape may vary significantly 
during the optimization process. Iterations are stopped when the MF value drops to less than 
10-6% (convergence is then assumed). For GS optimization, the same MF and constraints are 
applied. However, vignetting can only be adjusted after the GS is finished. 
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Fig. 3. Flowchart for our different design approaches. 

The SMS 2D procedure enforces stigmatic imaging for meridian rays at a few discrete 
design fields. After the system is designed with SMS, it is imported into CODE V to be 
optimized for better performance throughout the whole field of view and the full pupil. The 
surface parameter of the two SMS constructed systems are given in the Appendix. The left 
flowchart in Fig. 3 shows the design flow with SMS. 

 

Fig. 4. The strategy for stepwise optimization. The blue shapes represent the optical surfaces. 
Each cross represents a freedom on the surface described by the Qcon polynomial. The blue 
arrows indicate how the freedoms are added step by step up to the highest order coefficients 
used for Qcon polynomial. 

The second approach is conventional and intuitive. We start with a good spherical system. 
This system is the only solution when spherical surfaces are used, and it is confirmed by GS 
of CODE V. Next, the aspheric coefficients are added as new variables. There are different 
strategies for adding variables to the system. The direct way is to free all the variables at once 
and optimize. For an optimization landscape with multiple minima, the optimized solutions 
will depend on the chosen starting point. Designers will not have control of the optimization 
route, and it is easy to get trapped in a poor local minimum. A common practice of 
experienced designers is adding variables step by step. In this paper, we apply three different 
strategies for adding new variables: a single-step optimization, a two-steps optimization, and 
an extensive stepwise approach. A two-steps approach is initiated by adding all the conic 
coefficients at once and then optimizing to a local minimum with conic surfaces. 
Subsequently, the higher-order coefficients of Qcon polynomial are added all together and 
optimized. The stepwise approach requires more steps by adding one freedom and then 
optimize each time: We start by freeing the conic constant on surface 1. After optimization, 
new freedom is added on the surface following the previous one, as shown in Fig. 4. Surface 
1 with higher-order coefficient follows after surface 4 with lower-order coefficient. In 
practice, one can add the freedom to the system in several ways, keeping in mind that on each 
surface, the coefficients should be added from low order to high order. Since it is not known 
which stepwise strategy will lead to a better solution, in this paper, we choose an easy 
stepwise strategy for demonstration. 

In addition to the two approaches mentioned above, a global optimization method based 
on CODE V’s GS is used for comparison as well. The proprietary algorithm of GS can help 

Surface 1 Surface 2 Surface 3 Surface 4

Conic constant

Qcon 4th order

Qcon nth order
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the designer to automatically explore the solution space and synthesize new configuration 
from (nearly) arbitrary starting point [21]. To apply GS, we use the spherical system 
mentioned above as a starting point. All the freedoms are added at once to the system. GS is 
executed with constraints on EFL and normalization radii. A time limit of two hours is set for 
the GS (i. e. GS stops after two hours if it is not finished). The resulting system with a 
reasonable system shape and the smallest MF value is chosen for the comparison. 

 

Fig. 5. System 1: the system shapes obtained using different design approaches. 

 

Fig. 6. RMS spot diameter distribution curves for different design approaches considered: 
complete curves (a); enlarged section (b). The RMS spot diameter values of the starting 
spherical system vary from 60 to 96 µm and are not presented in the graph. 

The designed results for system 1 are presented in Fig. 5. By examining the shapes of the 
surfaces, we observe two groups of systems: GS and one-step form one group; two-steps, 
stepwise and SMS + OPT form the other group. This is consistent with the two groups of 
RMS spot curves in Fig. 6. It indicates that solutions from five different strategies end in two 
different minima in the design space. 

In Fig. 6, we see that all five systems generated by different approaches show good 
performance with the maximum RMS spot diameter smaller than 1 μm at the field of 7.5°. 

The starting SMS system has relatively large RMS spot diameter when the field is 
increased. Since SMS 2D construction involves only meridional rays, RMS spot diameter is 
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zero for the design fields (2° and 6°) only for those meridional rays (SMS original 2D curve 
in Fig. 6). In Fig. 6, a minimum is observed at 2° for the SMS original curve, however, at 6° 
there is no obvious minimum. Since the RMS spot diameter of SMS original in Fig. 6 results 
both from meridional and skew rays, it is reasonable to expect that when the whole pupil is 
considered, skew rays start to have a larger influence on the spot diameter. The optimization 
of the SMS constructed system balances the spot diameter over the field with the 
consideration of the rays from the whole pupil. Except the SMS original and SMS original 2D 
curve, the curves in Fig. 6 form two groups, with GS and one-step forming one group, and 
SMS + OPT, two-steps and stepwise forming the other group, as expected from the system 
drawings shown in Fig. 5. The results from GS and one-step are slightly better than the other 
group. It can be observed that the curves of GS and one-step almost overlap. The same 
happens for two-steps and stepwise curves. The overlap of the curves indicates that the 
optimization strategies lead to the same local minimum in the optimization landscape. The 
curve of SMS + OPT only has a very small difference shown in field dependence of the RMS 
compared to the stepwise and two steps curves, which is practically considered as the same 
local minimum. Because of the smaller values of aperture and field considered here, we have 
many degrees of freedom, and it is easy to achieve diffraction limited performance. In this 
situation, several good minima exist in the solution space as illustrated in Fig. 7. Even though 
the designer still has no control during a one-step optimization, the chance for the 
optimization reaching a good minimum is higher than in a more difficult design problem. 

 

Fig. 7. An illustration of the design landscape for system 1. We have found three equally good 
local minima which form two groups. Solution A (MF 0.0301) forms the first group. Solution 
B (MF 0.0461) and Solution C (MF 0.0450) form the second group. 

Figure 8 shows the comparison of the efficiency of the strategies considered in this paper. 
The GS result is not included because of its very different approach compared to the others: 
instead of optimizing from one starting point, it searches for different starting points, applies 
local optimizations to them, and produces multiple solutions [21] We usually choose the 
system with the smallest merit function value and perform an extra local optimization to make 
sure it converges. In this case, we cannot easily use the number of optimization cycles to 
represent the efficiency of GS. Three solutions were generated with GS after two hours (Intel 
i5-3470 dual-core @3.20 GHz system). In comparison, it took around 30 seconds for a one-
step optimization to run 1000 cycles on the same computer. In Fig. 8, the starting points are 
shown at cycle 0. The two groups have their average MF values as 0.0454 and 0.0301(the MF 
value of the GS result is 0.0301). An MTF analysis shows that all five systems are diffraction 
limited at the wavelength used here. This is consistent with our statement that the design 
problem is easy and multiple equally good minima are present. Therefore, this example shows 
that in simple design problems like system 1 simple methods can easily lead to a good 
solution. 

System 1 has a relatively small pupil and field, which reduces the difficulty of the design. 
With the same approach, we used SMS to construct system 2, which has both a larger pupil 
and field of view. Figure 9 shows the five plots of the systems produced by five different 
optimization approaches. In contrast with the solutions of system 1 in Fig. 5, four different 
system shapes are obtained, where stepwise and SMS + OPT resulted in the same system 
shape. The operation with GS for system 2 was not as straightforward as that for system 1. 
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Fig. 8. Comparison of the efficiency of different design methods analyzed, evaluated as the 
merit function value versus the number of cycles performed. The merit function value of the 
resulting system from GS is 0.0301. 

Optimization with conic constants as variables ended with systems having an extremely 
large conic constant. Therefore, we first fixed the conic constant on all the surfaces to −1, and 
ran the GS which resulted in twelve solutions. After that, the conic constants on all the 
surfaces of the twelve systems were freed at once as variables. Subsequent local optimization, 
which is the same as the one used in the other four strategies, was applied to each of the 
twelve systems. The system with the smallest MF value was chosen as the final result. In Fig. 
10, the curves of RMS spot diameter can be again divided into two groups. One-step and two-
steps optimization generate poorer solutions than the rest of the approaches. SMS with 
optimization, stepwise optimization and GS obtain good solutions with close RMS 
dependence along the field (Fig. 10(b)). Consistent with the same system shape in Fig. 9, the 
RMS curves of SMS + OPT and stepwise in Fig. 10 almost overlap each other. On the other 
hand, the result of GS with a different system shape produces a different RMS curve, where 
the RMS spot diameter is bigger under 7.8° and smaller above 7.8°. 

 

Fig. 9. System 2: the system shapes obtained using different design approaches. 

Figure 11 shows the comparison of the efficiency of different methods. Stepwise needs a 
large number of optimization cycles (8100 cycles) to converge. With a similar merit function 
value, fewer optimization cycles are needed for SMS optimization. This shows the SMS 
constructed starting point is closer to the minimum in the optimization landscape. Both one-
step and two-steps optimization are trapped in poor solutions with MF values at least nine 
times of the best solution. 

From the two examples we studied, to design a simple system with small field and 
aperture, all approaches including a one-step optimization were able to obtain good solutions. 
However, when the field and aperture increased, simple strategies like one-step and two-step 

One-step Two-steps

SMS+OPT Stepwise GS
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started to fail by getting trapped in poor local minima as shown in the example of system 2. A 
stepwise approach leads to a good local minimum with a large number of optimization cycles. 
An SMS constructed starting point located closer to a good solution shows its advantage in 
both cases where fewer optimization cycles are needed to reach a good local minimum. 

 

Fig. 10. RMS spot diameter curves for second system using different design approaches: 
complete curves (a); enlarged section (b). The RMS spot diameter values of the starting 
spherical system vary from 124 to 142 µm from the center to the full field and are not shown in 
the graph. 

 

Fig. 11. Comparison of the efficiency of different design methods. The starting points are 
shown at zero cycles and are connected with the straight lines with the results obtained using 
different design methods. The merit function value of the GS result is 1.03. 
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4. Design landscape for aspheric systems 

In our examples, we have noticed that when the aspheric variables are not introduced, there is 
only one solution in the optimization landscape given the boundary condition, where rays can 
be traced. However, when aspheric coefficients are added, new minima start to appear. 

 

Fig. 12. Evolution of the minima with the change of aspheric coefficients (system 1). Four 
minima are found with conic surfaces. They become three minima when optimized with 
aspheric coefficient up to 12th order. All three are found with the different approaches we 
used. M1-P and M3-P are the two solutions previously found with the different 
approaches(Fig. 5). 

After adding the conic constant as a variable, multiple minima appear in the design 
landscape. We used GS of CODE V, in this case, to search for different solutions. For system 
1, we have found four minima (Fig. 12), and for system 2 three (Fig. 13). 

The following step included adding all other higher-order aspheric coefficients at once to 
locally optimize the systems from the conic minima. For system 1, four different minima in 
conic space converge to three minima. In Fig. 12, two of the three minima (M1-P, M3-P) are 
identical to the ones shown in Fig. 5, and M2-P was also found by the GS, which is not shown 
in Fig. 5. For system 2, three solutions result from the three conic minima. In Fig. 13, M1-P 
and M2-P are same as the results of the two-steps approach and the SMS with optimization 
respectively. M3-P is a poor local minimum which is not found by the approaches we used. 

 

Fig. 13. Evolution of the minima with the change of aspheric coefficients (system 2). Three 
minima are found with conic surfaces. Adding higher-order aspheric coefficients (up to 16th 
order) to these minima results in three different solutions. M1-P is the solutions found by the 
two-steps approach, and M2-P is the solution found by the SMS with optimization in Fig. 9. 

The results show the dynamic behavior of the optimization landscape. Namely, the 
number of minima may change depending on the number and type of variables used. In the 
two systems we have studied in this paper, the introduction of the conic surface creates new 
minima in the design landscape, and adding higher-order aspheric coefficient deepens the 
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original minima. For a simple system, adding higher-order aspheric coefficients does not 
complicate the landscape. With local optimization, the conic solutions lead to the good 
solutions with higher-order aspheric coefficients. In the case of system 2, where aperture and 
field are large, adding higher-order aspheric coefficients complicates the landscape by 
creating new local minima. That is the reason why simple strategies are trapped in poor local 
minima. In both cases, the SMS constructed starting points are already close to one of the 
good local minima in the landscape. Therefore, local optimizations with few optimization 
cycles lead to good solutions. 

5. Conclusions 

Two different optical systems comprising of two lenses were analyzed. In the analysis of the 
design landscape of the systems, we have observed that with aspherising the surfaces, new 
minima emerge into the landscape. In both examples, introducing lower order aspheric 
coefficients (conic constant) to all the surfaces brings new local minima into the landscape, 
and adding higher-order aspheric coefficients deepens the minima. In a simple design with 
both small aperture and field (system 1), adding higher-order coefficients does not complicate 
the landscape by creating new local minima. In contrast, for a different design with large 
aperture and field (system 2), higher-order aspheric coefficients introduce new local minima, 
where a design process can be trapped. 

We have compared SMS design approach with other design techniques to design and 
optimize the two systems. In the case of the simpler system (system 1) considered, all design 
techniques including a one-step optimization found solutions close to diffraction limit. 
Nevertheless, surface shapes of the final designs were different which suggested that their 
optimization paths ended in different basins of attractions. 

In the second design example (system 2) analyzed, SMS with posterior optimization, the 
stepwise approach and GS found optimal solutions. Carefully analyzing the three results 
obtained, we conjectured that they belong to two different minima. Since designing system 2 
is more demanding than system 1, less robust methods such as one-step optimization and two-
steps optimization did not lead to good minima. Despite that three approaches found good 
solutions, stepwise optimization usually takes the largest amount of optimization cycles. GS 
works well with the simple case. However, for system 2, effective constraints (in this case, 
fixed conic constant) and further optimizations are needed to be implemented into GS to get 
reasonable solutions. In practice, lens design problems are very different depending on the 
application and constraints. While we cannot guarantee that SMS will find good solutions in 
other design problems, the present results are encouraging. In both cases, SMS with posterior 
optimization can find good solutions, and we can see from Fig. 8 and Fig. 11 that in the two 
examples considered, SMS constructs good starting points which are close to the good 
solutions. It is our hope that with such comparative studies, we can provide the designers with 
insight into the characteristics of different methods. 

Appendix: system parameters of the SMS constructed systems of system 1 
and system 2 

In this appendix, we list in Table 2 and Table 3 the surface parameters in CODE V of the two 
SMS constructed systems. 

Table 2. Surface parameters in CODE V of system 1 constructed with SMS 

Surface 1 (Object) 2 3 (Stop) 4 5 6 (Image) 

Surface type Sphere 
Qcon 
Asphere 

Qcon 
Asphere 

Qcon 
Asphere 

Qcon 
Asphere 

Sphere 

Material  PMMA  PMMA   

Curvature 0.0000 −0.3142 −0.3424 −0.1874 −0.2925 0.0000 
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Thickness Infinity 2.50 4.50 2.00 9.00 0.00 

Normalized 
Radius 

 2.20 2.40 2.75 2.90  

K  −1.2937 −1.3707 −7.0733 −0.9741  

QC4  5.9543E-02 2.7731E-02 1.1610E-01 1.2458E-01  

QC6  9.8831E-03 2.8067E-03 −7.3253E-03 −9.2028E-03  

QC8  −4.3303E-04 2.6278E-04 8.3891E-04 9.1018E-04  

QC10  −6.7898E-05 2.8571E-05 −2.4930E-05 −1.9440E-05  

QC12  5.5475E-06 −1.7237E-05 6.7655E-06 9.0658E-06  

Table 3. Surface parameters in CODE V of system 2 constructed with SMS 

Surface 
1 
(Object) 

2 3 
4 
(Stop) 

5 6 
7 
(Image) 

Surface 
type 

Sphere 
Qcon 
Asphere 

Qcon 
Asphere 

Sphere 
Qcon 
Asphere 

Qcon 
Asphere 

Sphere 

Material  PMMA   PMMA   

Curvature 0.0000 −0.0823 −0.1386 0.0000 −0.0876 −0.2183 0.0000 

Thickness Infinity 3.00 2.00 2.50 2.50 10.00 0.00 

Normalize-
d Radius 

 3.70 3.40  3.50 3.70  

K  −9.2639 −5.7686  6.0225 −0.3232  

QC4  1.4285E-01 1.8381E-01  2.6624E-01 2.1069E-01  

QC6  2.8156E-02 4.0717E-02  1.2446E-02 9.0396E-03  

QC8  −1.6114E-
03 

3.0800E-03  3.4723E-03 2.4930E-03  

QC10  −1.4590E-
04 

7.4292E-04  5.4780E-04 4.6335E-04  

QC12  2.0759E-05 1.2620E-04  9.8619E-05 9.9287E-05  

QC14  −1.4991E-
06 

2.9401E-05  1.7711E-05 2.0624E-05  

QC16  −2.7096E-
06 

3.8057E-06  3.1363E-06 4.9458E-06  
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