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RESEARCH

Towards the use of diffuse reflectance 
spectroscopy for real-time in vivo detection 
of breast cancer during surgery
Lisanne L. de Boer1*, Torre M. Bydlon2, Frederieke van Duijnhoven1, Marie‑Jeanne T. F. D. Vranken Peeters1, 
Claudette E. Loo3, Gonneke A. O. Winter‑Warnars3, Joyce Sanders4, Henricus J. C. M. Sterenborg1,5, 
Benno H. W. Hendriks2,6 and Theo J. M. Ruers1,7

Abstract 

Background: Breast cancer surgeons struggle with differentiating healthy tissue from cancer at the resection margin 
during surgery. We report on the feasibility of using diffuse reflectance spectroscopy (DRS) for real‑time in vivo tissue 
characterization.

Methods: Evaluating feasibility of the technology requires a setting in which measurements, imaging and pathology 
have the best possible correlation. For this purpose an optical biopsy needle was used that had integrated optical 
fibers at the tip of the needle. This approach enabled the best possible correlation between optical measurement vol‑
ume and tissue histology. With this optical biopsy needle we acquired real‑time DRS data of normal tissue and tumor 
tissue in 27 patients that underwent an ultrasound guided breast biopsy procedure. Five additional patients were 
measured in continuous mode in which we obtained DRS measurements along the entire biopsy needle trajectory. 
We developed and compared three different support vector machine based classification models to classify the DRS 
measurements.

Results: With DRS malignant tissue could be discriminated from healthy tissue. The classification model that was 
based on eight selected wavelengths had the highest accuracy and Matthews Correlation Coefficient (MCC) of 0.93 
and 0.87, respectively. In three patients that were measured in continuous mode and had malignant tissue in their 
biopsy specimen, a clear transition was seen in the classified DRS measurements going from healthy tissue to tumor 
tissue. This transition was not seen in the other two continuously measured patients that had benign tissue in their 
biopsy specimen.

Conclusions: It was concluded that DRS is feasible for integration in a surgical tool that could assist the breast sur‑
geon in detecting positive resection margins during breast surgery.
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Background
The current primary treatment of breast cancer includes 
a multimodal approach with a combination of surgery 
and radiotherapy, and depending on the subtype and 
the extent of the disease, systemic treatment. Optimal 
surgical treatment is achieved when all tumor tissue is 
resected, and thus histopathological evaluation of the 
resection specimen reveals no tumor positive margins. 
However, resecting too much healthy tissue compro-
mises cosmetic outcome. Since tumor positive resec-
tion margins are associated with a higher recurrence 
rate, these patients require additional treatment with 
boost radiotherapy or re-excision surgery [1, 2]. Along 
with the impact of additional treatment on healthcare 
budgets, both boost radiotherapy and secondary surgery 
impair cosmetic outcomes [3], increase morbidity [4, 5] 
and can affect quality of life [6–8]. The surgeon is thus 
balancing between completely resecting the tumor and, 
sparing as much healthy tissue as possible [9]. Perform-
ing surgery while doing justice to both is difficult since 
visually recognizing tumor tissue on the surgical margin 
is extremely challenging. In addition, all currently avail-
able intra-operative margin assessment techniques have 
their own pitfalls, such as reduced sensitivity, require-
ment of skilled personnel, are labor-intensive, and can be 
operator dependent [10–12]. Therefore, breast surgeons 
are in need of a robust margin assessment tool that can 
assist them real-time in defining the optimal resection 
plane to ensure clear margins, and will also help them to 
minimize the resected specimen volume [13–18].

Diffuse reflectance spectroscopy (DRS), a light-based 
technology, has shown promising results for discrimi-
nating normal breast tissue from tumor tissue and may 
address the need for a margin assessment device [19–22]. 
The principle behind DRS is that light interacts with 
tissue through scattering and absorption. The absorp-
tion is related to the chemical composition of the tissue 
whereas the scattering is related to the subcellular mor-
phology. The reflected light, detected after tissue interac-
tion, has an altered spectrum compared to the incoming 
light. Thus, the diffuse reflectance spectrum represents 
aspects of the composition and subcellular morphology 
of the measured tissue. Ultimately, incorporating DRS 
technology in instruments, such as a surgical knife, could 
potentially provide the surgeon with additional informa-
tion that reflects the histopathology of the tissue at the 
resection margin. The surgeon can use this information 
as guidance to determining the optimal resection place 
for excising a breast tumor.

There have been some publications on the feasibil-
ity of DRS for breast biopsy and surgery applications 
[23–26]. However, many of these publications struggled 
with correlating the exact tissue volume measured by 

DRS in vivo to the proper location in the histopathology 
slides processed post-operatively. This is an important 
factor as the ‘gold standard’ for the evaluation of surgi-
cal margins is microscopic assessment by a pathologist. 
Thus, a mismatch between the optical measurements and 
the histopathology hampers the development of robust 
classification algorithms and validation of the technol-
ogy. For the purpose of developing a reliable database of 
DRS measurements we developed a special biopsy nee-
dle with embedded optical fibers [27]. This tool enables 
DRS measurements and subsequent biopsy of the same 
tissue volume as measured spectroscopically. Although 
it is tempting to see this study as an attempt to perform 
spectroscopy guided biopsy, this was explicitly not the 
purpose of this study. The robust dataset gathered in this 
setting can be used for developing classification models 
and validating DRS technology for tissue characteriza-
tion. The paper describes how we developed and tested 
three predictive classification models, based on different 
types of input data, to accurately classify the DRS meas-
urements. Furthermore, we investigated the feasibility 
of acquiring in  vivo DRS measurements and classifying 
these. To this end, DRS measurements were performed 
continuously along an entire needle trajectory during 
ultrasound guided breast biopsy procedures, and classi-
fied based on a classification model.

Methods
Study design
Patients suspected of having breast cancer (after palpa-
tion, X-ray and US-imaging) that required diagnostic 
biopsies were asked to participate in this observational 
study that was approved by the Institutional Review 
Board of the Netherlands Cancer Institute. Written 
informed consent was obtained from all patients prior to 
the biopsy procedure. Patients with suspected sensitivity 
to light (e.g. patient who have had photodynamic therapy) 
were excluded, as well as patients that had received prior 
chemotherapy, endocrine therapy or radiation therapy 
recently (i.e. within 5 years). Patients were also excluded 
with breast implants and those that needed a stereotactic 
breast biopsy. In all patients, a biopsy was obtained after 
the last measurement in tumor tissue. The biopsy speci-
men was colored with pathology ink on the distal side to 
indicate which side had been in contact with the fibers 
during measurements. The biopsy specimens were used 
for diagnostic assessment and to confirm histopathol-
ogy of the tumor measurement location by evaluating 
the first 2 mm of the side of the biopsy specimen that had 
been in contact with the optical fibers. Patients were only 
included when the pathology results of the lesion (includ-
ing the other diagnostic biopsy specimens) indicated the 
lesion was an invasive breast tumor.



Page 3 of 14de Boer et al. J Transl Med          (2018) 16:367 

Spectrometers and optical biopsy needle
DRS measurements were obtained with a specially 
designed optical biopsy needle (Fig.  1). This optical 
biopsy needle, which had integrated optical fibers, com-
bined the ability to measure DRS spectra with biopsy 
functionality [27]. The 14G optical biopsy needle had 
one 100 μm fiber for illumination and two 200 μm fibers 
for collecting the light (Invivo); with a 20 mm cavity for 
the tissue biopsy. The collecting fibers were placed next 
to each other, and the distance between the illuminating 
and collecting fibers was 1.36  mm, which resulted in a 
penetration depth of approximately 1–2  mm. The opti-
cal biopsy needle was attached to two spectrometers that 
resolved light in the visual wavelength range (DU420A-
BRDD, Andor Technology) and the NIR wavelength 
range (DU492A-1.7, Andor Technology). After measur-
ing, the spectra of the two spectrometers were stitched 
together, to form a continuous spectrum between 400 
and 1600  nm [28]. In the full spectrum and selected 
wavelengths classification models the first 100  nm was 
removed since this wavelength range was highly affected 
by noise which may influence the machine learning algo-
rithms that were used for the development of the models.

DRS point measurements
In 27 patients, measurements were acquired in a point-
based manner, thus the measurement needle was first 
held still in normal tissue, and subsequently in the breast 
tumor where a biopsy was taken. At each measure-
ment location, three DRS measurements (10 spectra per 
measurement) were acquired and averaged. Performing 
a single measurement took approximately 10  s. In this 
measurement time a total of 30 high quality DRS spec-
tra were obtained over the full wavelength range which 
is necessary for building a database that can be used for 

classification model development. During the time the 
DRS measurements were obtained an US-image was 
made with the needle tip in view. These US-images were 
evaluated by a radiologist to confirm correct position-
ing of the needle in either normal breast tissue or tumor 
tissue.

DRS continuous measurements
In five additional patients, DRS measurements were 
obtained in a continuous mode. Here the measurements 
were obtained along the entire needle trajectory start-
ing in the normal tissue, continuing through the transi-
tion zone of normal-tumor, and ending in the tumor. To 
enable real-time acquisition of the data adjustments were 
made to the settings to increase the acquisition rate. The 
framerate in continuous mode was approximately one 
spectrum per second. The integration time was set to 
0.35  s for all measurements along the needle trajectory. 
Prior to measuring the clocks of the US device and the 
laptop controlling the DRS set-up were synchronized 
thus allowing the US-images to be registered to the DRS 
measurements. At one location at a distance from the 
tumor, and at the final measurement location (also the 
location of the biopsy specimen) the needle was kept still 
to ensure sufficient data of both healthy tissue and tumor 
tissue (similar to the point measurements). At these loca-
tions, 10 DRS measurements were acquired, as well as an 
US-image.

Pre‑processing point measurements
At each point measurement location three spectra were 
obtained which were averaged to calculate a mean spec-
trum of each measurement location. Subsequently all 
spectra were normalized with the standard normal vari-
ate (SNV) method [29]. Outlier detection was performed 

a

b

c

d

eOptical fibers

Optical fibers
Fig. 1 Biopsy needle with integrated optical fibers. a In the initial phase the tissue is in contact with the fibers. b When the release button is pressed 
the cutting mechanism extends forward while the fibers retract. The tissue can now enter the biopsy cavity. c When pressing the release button 
further the outer stylet will extend forward, thereby cutting the tissue in the biopsy cavity from its surrounding. d Photograph of the biopsy needle 
with extended inner stylet, with the cutting mechanism protruded similar to situation b. e Example of an H&E stained slide of the biopsy specimen. 
The side of the specimen that was not in contact with the fibers (in this case the left side) is marked with red pathology ink directly after retrieving 
the biopsy specimen from the cavity
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to ensure that the classification models were developed 
with reliable data [30]. A cut-off of 3 times the standard 
deviation was chosen as threshold.

Development of classification models
For development of the first classification models only 
the point-based measurements were used as for these 
measurement US images and histopathology provided 
information on the nature of the tissue in front of the 
needle during a measurement. For the continuous data 
this information was not available for each measurement 
in the trajectory.

To ensure a balanced dataset, only patients which had 
both the normal and tumor measurement available after 
outlier detection were used. All classification models 
were constructed with perClass (Academic version 5.0, 
PR Sys design) in Matlab (2015a, the MathWorks). Fig-
ure  2 depicts a schematic flowchart of the approach to 
build the classification models.

Fit parameter classification models
The input for the first classification model was opti-
cal fit parameter data. To calculate these fit parameters 
from the measured DRS spectra, the measurements were 
quantified using an analytical fit model based on diffu-
sion theory. This can be considered as a feature reduc-
tion method in which the measured spectra is translated 
into chemically or physiologically meaningful param-
eters [31]. In order to do so, the fit model required the 
absorption spectra of substances present in tissue, 
including: blood, fat, water, β-carotene, collagen, and bil-
irubin. The fit then optimized the parameters in such a 
way that the modelled spectrum matched the measured 
spectrum. The optical fit parameters generated by the 
fit model were: amount of blood (%), oxygen saturation 
 (StO2), total amount of fat plus water, fraction of fat, scat-
tering at 800 nm, α and b (from the formula describing 
the reduced scattering, µ′

s = α�−b ) amount of bilirubin, 
fraction of Mie scattering (in relation to the total scatter-
ing), amount of β-Carotene, and amount of collagen. The 
amount of water was calculated from the optical param-
eters describing the total amount of fat and water and 
the fat fraction. The amount of water together with the 
amount of fat allowed deriving the ratio between fat and 
water for each measurement location [21, 28].

Different combinations of fit parameters were used as 
input for this classification model. To limit the required 
computational effort, these combinations were formed 
by combining fit parameters that had shown the ability 
to discriminate between normal and tumor tissue previ-
ously, i.e. blood,  StO2, scattering at 800 nm, fraction Mie 
scattering, β-carotene, collagen and, the ratio between fat 
and water (F/W-ratio). With these seven fit parameters 

combinations (c) were made that consisted of either one 
or multiple fit parameters with one combination includ-
ing all seven fit parameters (c = 127, c =

∑
7

k=1

n!

((n−k)!k!)
 ) 

with n the number of fit parameters to choose from, 
and k the amount of elements in the combination). As 
the F/W-ratio previously proved to be an excellent dis-
criminator [21, 32], only fit parameter combinations that 
included the F/W-ratio were used as input for the first 
classification model. The final set of combinations con-
sisted of 64 possibilities.

Full spectrum classification model
The input for the second classification model was the 
full wavelength spectrum without any feature reduction. 
Thus, each wavelength between 500 and 1600 nm (i.e. the 
full spectrum) was used as input to the model, resulting 
in 1100 features for the classification model.

Selected wavelengths classification model
The input for the third classification model consisted of 
a limited number of wavelengths. The selection of these 
wavelengths was based on the results of a two-sided 
Wilcoxon rank sum test (alpha = 0.05). All normal and 
all tumor measurements were used in the test. For each 
wavelength the Wilcoxon rank sum test assess whether 
two samples of observations (in this case the normal 
measurements and the tumor measurements) are from 
the same distribution. This statistical test was used to 
identify wavelength regions that were significantly differ-
ent between the normal and tumor spectra (mean p value 
below 0.05). In each of these regions, the wavelength with 
the lowest p-value was selected as a wavelength for the 
selected wavelengths model.

Classifier
A linear support vector machine (SVM) formed the clas-
sifier in the classification model [33, 34]. This machine 
learning technique constructed an optimal separating 
linear hyperplane between two classes in a higher dimen-
sional space by creating the biggest margin between 
measurements of two classes.

Bootstrap sampling and cross‑validation
To avoid selection bias, a bootstrapping technique was 
used to randomly select 17 subsets of (not necessarily dif-
ferent) patients as training data for model development. 
On average, both the normal and tumor measurements 
of 11.9 (± 1.3) unique patients were used as training data 
in each of the 100 iterations. The remaining patients that 
were not selected for training were used for testing the 
model. Subsequently the SVM was optimized with a five-
fold cross validation of the training data to find the opti-
mum for the regularization parameter C. The unseen test 
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Classification model
SVM linear classifier

parameter C

Train datasetValidation dataset

Performance
Sensitivity
Specificity
Accuracy

Point data (n = 21 patients)

Test dataset

Input data for
classification models:
1. fit parameters
2. full spectrum
(3. selected wavelengts)

Classification model
Optimized SVM linear classifier

5-fold Cross validation

Cross validation (100x)

Bootstrap sampling 
17 sets of normal and 
tumor measurements 
of patients

Fig. 2 Schematic overview of training and testing of the classification model. In the inner loop the SVM is optimized (fivefold cross validation), this 
optimized model is subsequently used with the test dataset. The outer loop is performed 100 times. The sensitivity, specificity and accuracy are 
averaged over all iterations
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data was then classified with the optimized SVM model. 
This process was performed a hundred times in order to 
test generalizability of the classification model. Measure-
ments provided to the classification model were classi-
fied as either ‘normal’ or ‘tumor’. With this binary output 
the sensitivity, specificity, and accuracy in each bootstrap 
iteration was calculated for discriminating normal meas-
urements from tumor measurements. By averaging these 
model performance parameters over the 100 iterations 
the mean sensitivity, mean specificity, mean accuracy, 
and mean Matthews Correlation Coefficient (MCC) were 
determined, and these were used to compare the per-
formance of different classification models. Besides the 
binary output, the classification models could also gen-
erate the probability of a measurement being either ‘nor-
mal’ or ‘tumor’.

Classification of continuous data
The continuous data was preprocessed, by normalizing 
it using the SNV method. Spectra were not averaged and 
no outlier detection was performed. Along the needle 
trajectory, US-images were captured of the biopsy nee-
dle while it was positioned in healthy tissue during the 
first measurement, and when the needle was at the final 
measurement location, targeting to be in the tumor. For 
the classification of the continuous data, all point meas-
urements were used to build another three classification 
models with the different input data (i.e. fit parameter, 
full spectrum, and selected wavelengths) (Fig.  3). No 
measurements of the continuously acquired data were 
used in the development of any of the models, they were 
only provided to the classification model to be classified. 
Therefore these needle trajectory measurements were 
not labeled based on US-imaging or pathology.

Results
In total 32 patients were measured and had unambiguous 
pathology results. Of these patients, 27 formed the point 
measurement dataset and 5 the continuous dataset. From 
the 27 point-based measurement patients, in one patient 
the biopsy specimen was absent and two patients had 
biopsy specimens that were clearly damaged during pro-
cessing of the tissue. In these three cases careful evalua-
tion of the US images by a radiologist revealed that the 
needle tip was certainly placed a few millimeters inside 
the tumor and therefore these patients were still included 
in the analysis. Four patients were excluded from the 
analysis because (1) the side of the biopsy specimen that 
had been in contact with the fibers during the measure-
ment consisted of healthy tissue over the extent of a few 
millimeters and (2) according to the radiologist the nee-
dle was moved between the measurement and biopsy. No 
patients were excluded because the tumor was too close 

to the skin, thus prohibiting the acquisition of measure-
ments of healthy tissue.

In the procedure of outlier detection, two measure-
ment locations were detected. An explanation for the 
first outlier might be that the needle tip was in a pool 
of blood during the normal measurements, which was 
confirmed by the high blood content according to the fit 
parameters. As for the second outlier, the histopathol-
ogy of this measurement location showed benign tissue 
in the biopsy specimen. The patients to which these loca-
tions belonged were also excluded to ensure a balanced 
dataset.

Thus, in total 6 patients were excluded from the point 
measurement dataset. The remaining 21 patients, in 
whom point measurements were obtained, were included 
for further analysis. The patient characteristics of both 
patient datasets seem similar and are summarized in 
Table 1.

Classification models based on fit parameters
In total 64 classification models that were based on com-
binations of fit parameters were built. The two fit param-
eter combinations that generated the two classification 
models with the highest accuracies are listed in Table 2. 
The fit parameter combination of F/W-ratio and collagen 
was the combination that resulted in the classification 
model with the best performance, with a mean accu-
racy, sensitivity, specificity and MCC of 0.85 (0.16), 0.72 
(0.33), 0.99 (0.03), and 0.74 (0.30), respectively. The sec-
ond best performing classification model was based on 
the F/W-ratio alone, which had a slightly lower sensitiv-
ity compared with the combination of the F/W-ratio and 
collagen.

Classification model based on full spectrum
The mean accuracy, sensitivity, specificity, and MCC of 
the model based on the full spectrum were 0.92 (0.06), 
0.94 (0.10), 0.89 (0.11), and 0.84 (0.12), respectively 
(Table 2). Compared to the fit parameter model, the full 
spectrum model had a better accuracy, sensitivity, and 
MCC, whereas the specificity of the fit parameter model 
was better. This indicates that the full spectrum classifi-
cation model is useful for detecting all tumor tissue at the 
cost of classifying some normal tissue as tumor. With the 
fit parameter classification model, less normal tissue will 
be incorrectly classified as tumor, but also, less tumor tis-
sue will be detected.

Classification model based on selected wavelengths
A third classification model was developed using a 
selection of wavelengths that were significantly differ-
ent between normal and tumor spectra according to the 
Wilcoxon rank sum test (alpha = 0.05). Figure  4 shows 
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the results of the Wilcoxon rank sum test. The grey 
parts of the graph represent wavelength areas in which 
the p-value was lower than 0.05. From these areas the 
wavelength with the lowest p-value was selected for the 

selected wavelengths model (vertical dashed lines). The 
selected wavelengths were: 501  nm, 916  nm, 973  nm, 
1145 nm, 1211 nm, 1371 nm, 1424 nm, and 1597 nm.

Classification model
SVM linear classifier

parameter C

Train datasetValidation dataset

Input data for 
classification models:
1. fit parameters
2. full spectrum 
3. selected wavelengths

Classification model
Optimized SVM linear classifier

5-fold cross validation

Continuous data (n = 5 patients)
Test dataset

Classified continuous data
Probabilities

Point data (n = 21 patients)

Fig. 3 Schematic overview of the classification model development with point measurements to classify continuous measurements. Again, either 
the fit parameters data, full spectrum data or, selected wavelengths data is used as input for the classification model development
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The classification model based on these wavelengths 
was tested similarly to the models based on the fit 
parameters and the full spectrum. The mean accuracy, 
sensitivity, specificity, and MCC of this model was 0.93 
(0.06), 0.95 (0.07), 0.91 (0.14), and 0.87 (0.11), respec-
tively (Table 2). Compared to the fit parameter model this 
model has improved mean sensitivity, but reduced speci-
ficity. Despite the decrease in mean specificity, the mean 
accuracy and MCC of the selected wavelengths model is 
higher in comparison to the fit parameter model.

The classification model after feature selection also 
outperforms the full spectrum model as the mean accu-
racy, sensitivity and specificity are slightly higher. The 
MCC of the classification model based on a selection of 
wavelengths was the highest with the lowest standard 
deviation compared to the other models.

To ensure the improvement of model performance was 
related to the actual wavelengths in the set of selected 

Table 1 Patient characteristics of  point measurements 
dataset and continuous measurements dataset

a The histopathology was based on the histopathology of all biopsy specimens 
taken in that patient

Patient characteristics Point 
measurements 
(n = 21)

Continuous 
measurements 
(n = 5)

Mean age (std) 53.4 year (12.1) 60.6 year (10.2)

Menopausal status

 Premenopausal 8 1

 Perimenopausal 2 0

 Postmenopausal 10 4

 Unknown 1 0

Mean tumor size (US imaging) (std) 25.5 mm (11.1) 37.2 mm (25.1)

Cancer  typea

 Invasive ductal carcinoma 19 3

 Invasive lobular carcinoma 2 1

 Mucinous adenocarcinoma 0 1

Table 2 Performance (mean accuracy, sensitivity, specificity and MCC with standard deviations) of classification models

Type of data used as input 
for the model

Mean accuracy (std) Mean sensitivity (std) Mean specificity (std) Mean MCC (std)

Fit parameters

 F/W‑ratio and collagen 0.85 (0.16) 0.72 (0.33) 0.99 (0.03) 0.74 (0.30)

 F/W‑ratio 0.85 (0.16) 0.71 (0.34) 0.99 (0.04) 0.72 (0.31)

Full spectrum 0.92 (0.06) 0.94 (0.10) 0.89 (0.11) 0.84 (0.12)

Selected wavelengths 0.93 (0.06) 0.95 (0.07) 0.91 (0.14) 0.87 (0.11)

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Wavelength (nm)

10 -6

10 -4

10 -2

10 0

p-
va

lu
e

Mean Significant wavelenghts Best p-values

Fig. 4 P‑values of Wilcoxon rank sum test. Results of a two sided Wilcoxon rank sum test (alpha = 0.05) for each wavelength between normal 
and tumor measurements. The grey wavelength ranges indicate that over these wavelengths there is a significant difference between normal 
and tumor. The vertical dashed lines represent the wavelengths with the lowest p‑value in each grey area. The eight selected wavelengths were: 
501 nm, 916 nm, 973 nm, 1145 nm, 1211 nm, 1371 nm, 1424 nm, and 1597 nm
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wavelengths, the model performance was compared to 
the model performance of a subset of wavelengths that 
had the maximum p-value from wavelength ranges with 
p-values of > 0.5. The selected wavelengths for this model 
were: 602  nm, 681  nm, 951  nm, 1018  nm, 1095  nm, 
1174  nm, 1230  nm, 1397  nm, and 1503  nm. As for the 
model with these eight selected wavelengths the mean 
accuracy, mean sensitivity, and mean specificity was 0.49 
(0.12), 0.48 (0.25), and 0.50 (0.27), respectively. The MCC 
also displayed weak performance of this model with a 
mean value of 0.61 and a standard deviation of 0.32.

Classifying continuous data
The data from the five patients that were measured in 
continuous mode were tested on the three classification 
models (fit parameters, full spectrum and selected wave-
lengths). To make these classification models consistent 
with the previous models, the fit parameter model was 
developed with the same fit parameters as in the previ-
ous model (F/W-ratio & Collagen) and similarly for the 
selected wavelengths model the same eight wavelengths 
(501 nm, 916 nm, 973 nm, 1145 nm, 1211 nm, 1371 nm, 
1424  nm, and 1597  nm) were used. The results of the 
classification of the continuous data are represented in 
Fig. 5.

In the left part of the figure for each patient the US 
images at two locations along the needle trajectory 
(‘normal’ and ‘tumor’) are shown. The histopathology of 
the part of the biopsy specimen that was in touch with 
the fibers at the last measurement location is displayed 
in the right side of the figure. The black bars represent 
a distance of 1  mm in the histopathology image. The 
graphs in the center of the figure show the output of the 
classification models in terms of probabilities for each 
measurement. A probability of > 0.5 indicates a measure-
ment is classified as ‘normal breast tissue’ by the model, 
whereas a probability of < 0.5 implies ‘tumor’. The x-axis 
represents the measurements in time, not in distance. In 
patient 1, there are some measurements missing because 
these were accidently not saved during the procedure.

The histopathologic evaluation by the pathologist 
revealed that there was tumor (‘mucinous adenocarci-
noma’, or ‘invasive ductal carcinoma’) in the biopsy speci-
men of patient 1, 2 and 3. In the case of patient 4 and 5, 
the side of the biopsy specimens touching the fibers did 
not contain malignant tissue according to the pathologist. 

In all three patients that had invasive carcinoma in their 
biopsy specimen (patient 1, patient 2, and patient 3) there 
is a distinct decrease in probability visible in the classi-
fied DRS measurements taken along the trajectory from 
healthy tissue to tumor tissue. Furthermore, the first 
measurements of patient 1 and patient 2 are classified as 
normal tissue (probabilities close to one), and the final 
measurements are classified as tumor (probabilities close 
to zero) by all three models. In both these patients, the 
probability of the final measurement of the trajectory 
calculated by the full spectrum model and the selected 
wavelengths model are closer to zero than the output of 
the fit parameter model, indicating more certainty of the 
classification. Along the trajectory of patient 1, there is 
one outlier (measurement #10), which displays a distinct 
decrease in probability for all classification models. The 
measurements of patient 3 are classified as normal in the 
beginning of the trajectory and as the needle progressed 
to the tumor, the probabilities, clearly and consistently 
over all models, decreased. However, at the end of the 
trajectory, none of the three models classified the final 
measurements as tumor, whereas according to the biopsy 
specimen the needle was placed in tumor tissue.

Two patients did not have tumor tissue in the first 
2  mm of the biopsy specimen that was in contact with 
the optical fibers (patient 4 and 5). In both cases, the 
outcomes of the classification models classified all meas-
urements in the needle trajectory as normal tissue. As 
for patient 4, the probability of the fit parameter model 
does show a decrease that was not seen in the output of 
the other two classification models. The transition from 
normal tissue to tumor, seen in the patients with a malig-
nancy (patient 1, patient 2 and patient 3), is not con-
sistently present in the classification output of all three 
models in patient 4 and patient 5, whom had no malig-
nancy in their biopsy specimens.

Discussion
A large amount of evidence from in  vivo and ex  vivo 
studies around the world has proven that DRS can be a 
highly powerful tool for clinical use to discriminate tissue 
types. However, the technology has not been integrated 
with a surgical tool for real-time margin assessment. 
With the goal of moving towards a real-time classifica-
tion tool for surgical margin assessment during breast 
surgery, we aimed at developing a classification model to 

(See figure on next page.)
Fig. 5 Classification of continuous data. In the left part of the image, US images taken along the needle trajectory at ‘normal’ and ‘tumor’. The 
middle of the image includes the outcomes of the classification algorithms, where the x‑axis is the measurement number (≠ distance) and the 
y‑axis is the probability of a measurement being normal (> 0.5) or tumor (< 0.5). The green and red arrows indicate the locations where the needle 
was kept still. The histopathology of the part of the biopsy specimen that was in contact with the needle is displayed in the right side
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accurately predict the type of tissue in front of the DRS 
tool, as well as showing the feasibility of real-time use 
of this technology. To reach these goals a custom made 
optical biopsy needle was used enabling DRS measure-
ments and histopathology to be assessed on the same 
tissue volume which is inevitable for developing a robust 
classification model. It should be noted that this research 
was conducted with this set-up as step towards devel-
oping a surgical tool that can guide the surgeon, rather 
than to improve the yield of breast biopsy procedures. 
This research differs from previous work as it measures 
DRS over a broader wavelength range extending into the 
near-infrared wavelengths. Furthermore, to the authors’ 
knowledge, it is the first publication to test the feasibility 
of in vivo continuous DRS data acquisition, with a frame 
rate of approximately one measurement per second, 
which is more similar to how data will be acquired in the 
surgical setting.

We first used the point-based measurements to deter-
mine the performance of the classification models that 
were based on different input data. We found that if the 
fit parameter data was used as input, the combination 
of the F/W-ratio and collagen resulted in a model with 
the highest accuracy and MCC (0.85 and 0.74) compared 
to other combinations of fit parameters. Besides the fit 
parameter model, two other models were developed 
using the full spectrum of wavelengths or a selection of 
wavelengths as input. The full spectrum model had a 
better sensitivity compared to the fit parameter model 
(0.94 versus 0.72), whereas the fit parameter model had 
a higher specificity (0.99 versus 0.89), suggesting that the 
full spectrum model is more suitable for detecting tumor 
tissue, while the fit parameter model has less misclassifi-
cations of normal tissue. Although not statistically tested, 
the classification model based on a subset of selected 
wavelengths seems to outperform the other two models 
with the highest accuracy and MCC (0.93 and 0.87).

We developed three classification models (fit param-
eters, full spectrum and selected wavelengths) based on 
all available point-measurements specifically to classify 
the continuous measurements. Importantly, none of the 
continuous measurements were used for development 
of a classification model, they only served as test data to 
be classified by the classification model (Fig. 3). In all five 
patients, the first measurements were classified as normal 
tissue by the classification models, this is expected con-
sidering the fact that the needle trajectory starts in nor-
mal tissue going towards the suspected tumor tissue. In 
patients 1, 2, 4, and 5, the classified DRS measurements 
of the final measurement locations are in agreement with 
the pathological outcome. In patient 1, however, there is 
a measurement (#10) in the trajectory that is classified 
as ‘tumor’; this appears to be a ‘false positive’ since the 

distance from this location to the lesion is quite far. In 
the surgical pathology report following lumpectomy for 
this patient it was noted that there was a focus of DCIS 
1.5  mm from the tumor. It could be possible that this 
smaller lesion was in the trajectory of the needle, explain-
ing the decrease in probability.

The output by the classification models of the final 
measurement location were not in accordance with his-
topathologic evaluation in one patient (patient 3). In 
this case, the outputs of the classification models show 
a decrease in probability, but never reach the threshold, 
and the final measurement location is classified as normal 
by all classification models. It could be possible that the 
histopathology evaluation of this patient has been com-
promised as the removal of the biopsy specimen from 
the needle cavity was difficult and, since the specimen 
was fragmented, part of it might have been left behind. 
Overall, in four out of five continuous mode patients, the 
classification models were able to discriminate tumor tis-
sue from normal tissue, although the fit parameter model 
was least convincing with probabilities closer to 0.5. In 
three out of five patients malignant tissue was present 
in the biopsy specimen and in these patients a decrease 
in probability of the classified measurements is also seen 
along the needle trajectory. This decrease is absent in the 
other two patients that had healthy tissue in their biopsy 
specimens. The fact that a decrease can be detected is 
an important result when considering DRS as a margin 
assessment tool. In a way, this trajectory can be seen as 
a line that at some point crosses the optimal resection 
plane that is perpendicular to this line. Thus, being able 
to detect the upcoming tumor could provide the surgeon 
with viable information for guidance.

A limitation of the continuous measurements is that 
a biopsy was only available from the final measurement 
location of the presumed tumor area while no histopa-
thology was taken along the needle trajectory. However, 
all breast tumors were clearly visible on the US images 
and could confirm that the needle was positioned in 
normal tissue from the start of the measurements. Nev-
ertheless, some uncertainty will still exist on the precise 
location of the tissue border where normal tissue ends 
and tumor tissue starts. It should furthermore be noted 
that the x-axes of the graphs in Fig. 5 are related to time 
opposed to distance, and thus these graphs therefore dis-
play a change over time. Since the needle was not moved 
with constant speed along the needle trajectory, it was 
not possible to display the measurements as a function of 
the distance.

In literature many different methodologies are used 
for classifying reflectance spectra of breast tissue, for 
example logistic regression [20, 22], classification and 
regression trees [35, 36], artificial neural network [24], 
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hierarchical cluster analysis [24], k-nearest neighbor 
[37], linear discriminant analysis [35], and support vector 
machines [35, 38–41]. In this study, a linear SVM classi-
fier was chosen, as this classifier is relatively insensitive 
to overfitting [42–46]. Possibly a polynomial kernel SVM 
would have provided better results, however because the 
number of patients in the study is limited for machine 
learning, a linear, less complicated, classifier was chosen. 
For similar reasons the bootstrap sampling was preferred 
to leave-one-patient-out cross-validation, even though 
bootstrap methods can have the tendency to be pessimis-
tic. By extending the number of measurements the accu-
racy of the classification of the DRS measurements will 
likely improve, and more sophisticated machine learning 
algorithms can be used.

The SVM classification model was developed with the 
input of either fit parameters (fit parameter model), or all 
wavelengths in the spectrum (full spectrum model), or 
some selected wavelengths (selected wavelengths model). 
A previous publication comparing the classification 
accuracy for discrimination of breast cancer of a SVM 
model based on physical parameter data (equivalent to 
fit parameters model), with the accuracy of a SVM clas-
sification model based on empirical data (equivalent to 
the selected wavelengths model) reported similar results 
to this study [38]. The main advantage of using the fit 
parameters is that these parameters can provide insight 
into the physical and structural features that contribute 
to discrimination [38, 43]. However, if fit parameters 
cannot be estimated accurately, for example because the 
tissue has a layered structure, accuracy of classification 
models based on fit parameters will be lower [43]. This 
can explain why the accuracy of the fit parameter model 
was lower compared to the other two models.

We found that the performance of the selected wave-
lengths model is slightly better compared to the perfor-
mance of the full spectrum model, which is not surprising 
since removing redundant wavelengths is often reported 
to be beneficial for classification performance [42]. There 
are many ways to select or reduce features, such as par-
tial least squares [38], maximum representation and dis-
crimination feature [20], or principal component analysis 
(PCA) [24, 38–40]. In this study, a Wilcoxon rank sum 
test is performed to find wavelengths that are signifi-
cantly different between normal and tumor tissue. This 
method has been described for feature selection in pre-
vious publications, although in many cases this statisti-
cal test was preceded by PCA [40, 46]. The advantage of 
the Wilcoxon rank sum test is that the selection of wave-
lengths is based on true spectral differences between tis-
sue types. The disadvantage is that wavelengths that are 
not discriminated according to this statistical test are 
excluded in the model development, although they could 

have discriminative power in combination with each 
other.

The wavelengths that were eventually selected are 
located in wavelength areas that are related to the 
absorption of light by fat, water, and to a lesser extent, 
blood. This result is in line with previous publications by 
others and our own group in which these substances also 
contributed to discriminating healthy tissue from tumor 
tissue [32, 38].

The DRS measurements in this study were obtained 
during breast biopsy procedures to provide a correlated 
dataset (DRS data and histopathology) and test the fea-
sibility of real-time data acquisition. This setting is obvi-
ously different than the surgical setting where the goal is 
to classify DRS measurements of the resection margin. 
In that situation, the influence of air exposure will likely 
affect the visual wavelength range due to differences in 
oxygenated and de-oxygenated blood which have dif-
ferent optical absorption characteristics; whereas the 
near-infrared wavelength range, with predominant 
absorption characteristics from fat to water, will likely 
be less affected by the surgical setting. Furthermore, the 
resection margin can also be influenced by cauteriza-
tion which was absent in the measurements obtained in 
the biopsy setting, or extravascular blood on the resec-
tion surface. With regard to the results in this study, this 
might imply that in the selected wavelengths model the 
first wavelength that was selected (501  nm) cannot be 
used. The accuracy of DRS measurements for the detec-
tion of tumor intra-operatively at the resection margin, 
should be investigated in a study in which DRS measure-
ments (including also the NIR wavelengths) are acquired 
at the true resection margins, preferably in the surgical 
workflow.

Using DRS as a clinical margin assessment tool also 
requires that measurements can be acquired and classi-
fied in real-time. In the continuous dataset, each spec-
trum required 0.35  s to be acquired. If necessary this 
acquisition time could be decreased by a factor of 4 by 
increasing the fiber diameter from 200 to 400 μm. As for 
the classification this was not performed real-time in this 
study. However, once a classification model is defined the 
tissue can be classified in real-time as this requires little 
computational power.

Another important factor to consider is the influence 
of ambient light that might be different in the surgical 
resection field compared to the setup during a biopsy. 
Part of this challenge is overcome by the fact that a 
fiber is used which has to be in contact with the tissue 
instead of a non-contact configuration. Therefore, only 
light that falls in the acceptance angle of the fiber will be 
recorded by the spectrometer. However, in clinical prac-
tice this might mean that very bright light sources that 
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are in close proximity of the fiber-optic probe have to be 
dimmed to ensure interference with the DRS measure-
ments is prevented.

Conclusions
In this paper, we demonstrate the feasibility that DRS 
measurements can be acquired real-time and that a pre-
dictive classification model can be built to classify the 
measurements as normal or tumor tissue. The classifica-
tion model based on a selection of wavelengths discrimi-
nated normal tissue from tumor tissue with the highest 
accuracy and MCC of 0.93 and 0.87, respectively. This 
performance may be sufficient for the application of 
detecting positive resection margins during breast con-
serving surgery. The needle trajectory measurements 
show that DRS measurements can be acquired real-time 
and that these measurements can be classified accurately. 
Furthermore, the transition from normal tissue to tumor 
tissue was seen in the continuous DRS measurements.

Our current results indicate that integration of DRS in 
a surgical tool or knife could be useful for characterizing 
breast tissue in vivo and aiding surgeons in detecting pos-
itive resection margins during surgery. The next step is 
to investigate the feasibility of real-time DRS acquisition 
and classification on resection margins and investigate 
the impact of a DRS guided tool on surgical outcomes.
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