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Abstract— VCO-based phase-domain ΣΔ modulators employ 

the combination of a voltage-controlled-oscillator (VCO) and an 

up/down counter to replace the analog loop filter used in 

conventional ΣΔ modulators. Thanks to this highly digital 

architecture, they can be quite compact, and are expected to 

shrink even further with CMOS scaling. This paper describes the 

analysis and design of such converters. Trade-offs between design 

parameters and the impact of non-idealities, such as finite counter 

length and VCO non-linearity, are assessed through both 

theoretical analysis and behavioral simulations. The proposed 

design methodology is applied to the design of a phase-to-digital 

converter in a 40-nm CMOS process, which is used to digitize the 

output of a thermal-diffusivity temperature sensor, achieving 

±0.2° (3σ) phase inaccuracy from -40 to 125 °C and a sensor-

limited resolution of 57 m° (RMS) within a 500-Hz bandwidth. 

Measurements on the prototype agree quite well with theoretical  

predictions, thus demonstrating the validity of the proposed design 

methodology. 

 
Index Terms— VCO-based Sigma-Delta modulator, Time-to-

digital converter, Phase-to-digital converter, Quantization noise 

 

I. INTRODUCTION 

N recent years, time-to-digital converters (TDCs) have found 

many applications, especially in digital PLLs and 

instrumentation applications [1][2]. One specific class of TDCs, 

known as phase-to-digital converters, can be used to digitize the 

phase of a periodic input signal. Phase-to-digital converters 

based on the ΣΔ ADC architecture, i.e. phase-domain ΣΔ 

modulators (PDΣΔMs), have been used in readout circuits for 

single-photon avalanche diodes (SPADs) [3], wireless receivers 

[4], resistor-based temperature sensors [5], and thermal-

diffusivity-based (TD) temperature sensors [6].  

Fig. 1 shows a simplified block diagram of a PDΣΔM. Here, 

an input signal (VIN) at frequency FIN and with a phase shift ΦIN 

is multiplied by the clock signal VDEM, which is at the same 

carrier frequency as VIN (FDEM = FIN). This results in a DC 

component proportional to their phase difference, as well as 

higher order components. The multiplier’s output is applied to 

a loop filter, which in the case of a 1st-order modulator is an 

integrator [7]. The loop filter drives an M bit quantizer, which, 
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in turn, drives an M bit phase DAC that adjusts the phase of 

VDEM. The loop attempts to minimize the DC component at the 

integrator input in a ΣΔ manner, and as a result, the output bit-

stream is a digital representation of the signal phase ΦIN. 

 
The architecture of a PDΣΔM is similar to that of an analog 

PLL, and as such it is capable of rejecting wide-band noise 

while detecting the phase of an input signal relative to that of a 

reference. This property has been exploited for the readout of 

temperature sensors based on the thermal diffusivity (TD) of 

silicon [6]-[8]. Such TD sensors output a small (millivolt-level) 

signal, whose phase-shift is a function of temperature, but 

which is accompanied by relatively large amounts of wide-band 

noise. Since their accuracy improves with process scaling, 

smart TD sensors, i.e. TD sensors with a digital output, are well 

suited for the thermal management of SoCs. In such 

applications, however, area is at a premium, and so most 

published designs occupy less than 10,000 µm2 [10][11]. This 

in turn puts pressure on the area of the PDΣΔM, which currently 

dominates the area of smart TD sensors.  

This issue has been addressed by the adoption of a highly 

digital PDΣΔM based on a voltage-controlled oscillator (VCO), 

first implemented in a mature 0.16-μm CMOS process [8], and 

later shown to scale in a more advanced 40-nm CMOS process 

[9]. Inspired by compact VCO-based ADCs [12][13], a VCO 

translates the input signal into the frequency domain. The 

phase-shift of this frequency-domain signal is then digitized by 

an all-digital phase-domain ADC based on an up/down counter, 
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Fig. 1. Block diagram of an analog PDΣΔM.  
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which acts as an integrator. Thanks to this highly digital 

architecture, such VCO-based PDΣΔMs take full advantage of 

technology scaling, as proven by a x3 smaller area and x2 less 

supply voltage requirement when ported from 0.16-μm to 40-

nm CMOS [8][9]. However, an analysis of this architecture 

discussing potential drawbacks and design trade-offs, has not 

yet been reported.  

This paper will analyze the unique features of VCO-based 

PDΣΔMs that differentiate them from VCO-based ADCs and 

analog-based PDΣΔMs. Section II will describe the operation 

of a general multi-bit VCO-based PDΣΔM. The quantization 

error associated with its digital counter is discussed in section 

III. Section IV discusses the design of the digital counter, based 

on counter wrap-around constraints. The effect of non-linearity 

is tackled in section V. A second order modulator with 

potentially higher SNR is presented in section VI. In section 

VII, the developed models will be used to go through the design 

procedure of a prototype first-order PDΣΔM and expected 

performance will be compared to experimental results. Finally, 

the conclusions highlights how the proposed design procedure 

can lead to area-efficient VCO-based PDΣΔMs with 

performance comparable to analog-based designs.  

II. VCO-BASED PDΣΔM ARCHITECTURE 

The VCO-based version of this architecture is shown in Fig. 

2(a). VIN is converted into variations of the VCO’s output 

frequency. The counter acts like an integrator, while its up-

down input (DEM) facilitates chopper demodulation, i.e. 

multiplication by a square wave, since it determines whether the 

counter’s state is either incremented or decremented. The value 

accumulated by the counter after one cycle of DEM will then be 

proportional to the integrated phase-shift between DEM and the 

VCO’s output frequency, thus emulating the function of an 

integrator. 

This highly digital implementation avoids the need for the 

large capacitors usually employed in analog loop filters and 

enables an efficient implementation of the M bit quantizer, 

which can be realized by sampling the M MSB’s of the digital 

integrator output.  

For maximum accuracy, both analog and VCO-based 

modulators are usually operated as incremental converters, in 

which the integrator is reset before each conversion [14]. A sinc 

filter (implemented by a simple counter) can then be used to 

decimate the converter’s output [14].An implementation of the 

first order VCO-based PDΣΔM is shown in Fig. 2 (b). An S bit 

up/down counter is used to combine demodulation and 

integration, while an M bit register acts as the quantizer. The 

quantizer sampling clock (FS) is typically chosen at the same 

frequency as FDEM [7].  

In order to prevent meta-stability problems in the counter, a 

flip-flop is used to synchronize the up/down signal to the next 

edge of FVCO. This is similar to the clock re-synchronization 

[15] required when two clock domains cross each other. This 

re-synchronization clock is shown as FSYNC in Fig. 2(b). 

III. NOISE ANALYSIS AND COUNTER QUANTIZATION 

The VCO-based PDΣΔM has three major noise sources: ΣΔ 

quantization noise, up/down counter’s quantization error and 

VCO’s phase noise. As is well-known, the ΣΔ’s quantization 

noise can be reduced by increasing M, its order or sampling rate 

[18]. 

 
The second noise source, due to up/down counter’s 

quantization, is unique to VCO and counter based ΣΔ 

modulators. Unlike an analog integrator, an up/down counter 

can only count integer values and hence imposes rounding on 

its input. In the following, a simple expression for the 

quantization noise associated with the operation of the up/down 

counter will be derived. 

For this analysis, we will model the counter as an ideal 

discrete-time integrator that introduces some input-referred 

quantization error at the end of every up/down cycle. The 

timing diagram in Fig. 3 shows how this simplification can be 

made. Here, we are also assuming that the input carrier signal 

is a sinusoid with frequency FIN and a signal phase shift ΦIN 

with respect to the reference square-wave up/down signal with 

ΦDAC = 0. 

The frequency of the VCO (FVCO) can be expressed as: 

 

 �����t� = 	���
� cos�2����t + ���� + ����  (1) 

 

where KVCO is the VCO gain, VA is the amplitude of the input 

carrier and FNOM is the nominal VCO output frequency. After 

integrating FVCO for each full up period (τUP) and a full down 

period (τDOWN), an ideal counter, i.e. a counter without any 

quantization error, would compute the residual count C given 

by: 
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Fig. 2. (a) Block diagram, and (b) circuit-level implementation of the VCO-

based PDΣΔM architecture.  
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 � =  � �����t����
� dt − � �����t����� � !"#

���
dt (3) 

 

Every period, C is computed and then accumulated with the 

previous result. For an up/down signal with a duty cycle of 50% 

(τUP = τDOWN = 0.5/FIN), C becomes: 

 

 � =  2	���
����� sin ����� (4) 

 

It should be noted that while an exact 50% duty cycle can 

be guaranteed by a fully digital chopper, the mismatch or duty-

cycle errors of an analog chopper will result in residual offset 

[16]. The absence of residual chopper offset is a distinct 

advantage of this architecture. 

Shifting the phase of the up/down signal by �&��  (due to 

the phase DAC action) is equivalent to shifting the input signal 

by -�&��; thus a more general form of (4) is: 

 

 � =  2	���
����� sin ���� − �&��� (5) 

 

During regular ΣΔ operation, the feedback loop ensures that 

on average sin(ΦIN–ΦDAC) = 0. Since sin(ΦIN – ΦDAC) ≈ ΦIN – 

ΦDAC for small phase  differences, we can model the relationship 

between C and phase as a gain factor K (Fig. 4). The phase-to-

count gain 	 can be readily defined from (5) as: 

 

 	 =  2	���
�� ���  (6) 

 

 
However, a digital counter can only accumulate integer 

values because it only responds to the edges of FVCO, which is 

equivalent to rounding C to an integer before the accumulation 

operation. Fig. 5 demonstrates the timing diagram resulting 

from such synchronization. With this additional 

synchronization step, the quantization is in essence a “round 

up” operation, where the counter is able to round up the 

fractional count at its input before integration. The errors 

ΔQU(N) and ΔQD(N) denote the fractional count error at the Nth 

cycle in the up and down period, respectively, and as round-up 

errors, they are bounded by [0 1] (Fig. 5). 

 

 
ΔQU(N) and ΔQD(N) are deterministic for a given FVCO and 

up/down signal. As will be shown later, VCO’s accumulated 

jitter at the Nth cycle will randomize the timing and duration of 

events ΔQU(N) and ΔQD(N). Thus, the VCO will introduce 

significant dithering, and the quantization error can be assumed 

to be uniformly and randomly distributed on the [0 1] interval 

and uncorrelated in time. 

This is analogous to approximating as white noise the 

quantization error introduced by the comparator of a ΣΔ 

modulator [17]. Noting that the average quantization error is 

0.5, the variance of ΔQU(N) and ΔQD(N) can then be computed 

as [18]: 

 

 

'()  =  � �* − 0.5�).*/
� = 112 

 

(7) 

 
 

As can be seen on Fig. 5, the total error for the Nth cycle 

[ΔQT(N)] is given by the error on the up period minus the error 

on the down period  

 

 123�4�= 5126�4� − 12&�4�7 − 512&�4� − 126�4 + 1 = 126�4� − 2 12&�4� + 126�4 + 1�
 

(8) 

The total error after N up/down cycles can be written as the sum 

of the following series: 

 

 

8 123�9��
:;/

=  126�1� − 212&�1� + 2126�2� − 212&�2�
+ ⋯ +  126�4 + 1� 

(9) 

 

Since each element in the series has a variance of '(), and is 

assumed to be uncorrelated from the others, the variance of the 

total error is equal to the sum of all component variances: 

 
 

Fig. 3 Timing diagram demonstrating how up/down counting can be modeled 

as a combination of chopping and discrete-time integration. 

 

 
 

Fig. 4. Block diagram of the ideal discrete-time PDΣΔM with a discrete-time 

integrator. 

  

 
 

Fig. 5. Timing diagram demonstrating the error introduced by metastability 

synchronization of up/down signal to FVCO. 
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 σ) >8 123�9��
:;/

? = �84 − 2� '() (10) 

 

while the mean of the total error is zero. When N ≫ 1, this error 

converges to 8N'(). The bandwidth of this error is FIN/2, since 

it manifests every time an up/down count period is completed. 

Using (7), we get the total power of the error in fractional counts 

('3�3�B) ) for a bandwidth FBW: 

 

 '3�3�B)  =  43 �EF���  (11) 

 

If the sampling rate (FS) of the PDΣΔM is chosen equal to 

FIN, then the ratio FS/2FBW is also known as the oversampling 

ratio (OSR) of the ΣΔ modulator.  

Now, we can replace the discrete-time block in Fig. 4 with 

an integrator and an additive white noise source (ΔQERR) with a 

power of '3�3�B) , as shown in Fig. 6. 

 

 
The error in fractional counts can be directly converted into 

phase, which results in an input-referred phase error with an in-

band power of 'G), where: 
 

 'G)  =  23 ∙ IJK ∙ 	) (12) 

 

By using (6), the RMS in-band error in radians ('G,M) is: 

 

 σN,O�in − band� = R 16IJK ∙ � ���	���
� (13) 

 

Looking at (13), we can make an important conclusion: the 

input-referred quantization noise due to the digital counter 

scales inversely with the product of signal amplitude and VCO 

gain, i.e. the frequency swing at the VCO output. For a given 

FIN and VA, KVCO or OSR must be increased to suppress such 

quantization noise. Since a larger OSR implies a lower 

conversion speed, increasing KVCO is more desirable.  

This analysis has been also confirmed by system-level 

simulations, i.e. the simulation of an ideal ΣΔ modulator with 

additive noise (to breakup strong idle tones) as shown in Fig. 6 

(simulated in Matlab), and a mixed-signal simulation in 

CppSim [19].  

In both models, KVCOVA = 70 MHz, FIN = FS = 1.17 MHz, 

FNOM = 600 MHz, S = 8 and M = 3. The phase DAC spans 

78.75° with steps of 11.25°. A block diagram of the mixed-

signal CppSim model is shown in Fig. 7. A high-frequency 

clock (FSYNC) is used to generate the 3-bit phase DAC values 

ranging from 11.25° to 90°. The up/down counter was compiled 

as a Verilog block, and is hence ideal. Standard D flip-flop, 

VCO and multiplexer elements were used from CppSim’s 

standard libraries.  

Fig. 8 shows the power spectral density (PSD) simulated in 

the two models together with the quantization noise floor 

calculated from (13) (dashed blue line). Good agreement is 

achieved at low frequencies between both models and the 

theoretical prediction. The quantization noise is predicted to be 

38 m° for OSR = 1024, which corresponds to ~1 ms conversion 

time. The idle tone around 400 kHz for the CppSim model 

results is attributed to the limited accuracy of the time-domain 

model (100 ps). The idle tone is not observed in measurement 

results. Although low-frequency idle tones are a typical issue 

for 1st-order modulator, they do not appear in the simulation 

shown in Fig. 8 because of the dithering action of the thermal 

noise superimposed on the input signal. In typical sensing 

applications of the phase-domain read-out, such as those shown 

in section VII, the input signal is characterized by a small 

amplitude and relatively large noise that is enough to dither the 

modulator. 

 

 
 

The agreement of the two models with (13) means that long 

time-domain simulations can be avoided when only the in-band 

behavior of the counter’s quantization noise is of interest, since 

 

Fig. 6. Block diagram of the PDΣΔM with white additive noise source modelling 

the counter quantization noise. 

 

 

 
 

Fig. 7. Block diagram of the implemented CppSim model. 

Fig. 8. Power spectral density of the output bitstream of an ideal ΣΔ model 

with additive noise and of a transient simulation. 
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a simple noise source at the input of the discrete-time integrator 

is sufficient to capture its low-frequency noise behavior. 

Once the counter quantization noise is calculated, we can 

determine the VCO’s phase noise requirement. For this analysis 

we assume that thermal noise dominates the VCO phase noise. 

In order to make the analysis consistent with the model in Fig. 

(6), we first derive the effect of phase noise in terms of 

fractional counts and then refer the error back to phase. 

First, we assume a fractional frequency power spectral 

density (PSD) SY(f) due to phase noise. For simplicity, we also 

assume FVCO = FNOM. 

 From (3), we can convert SY(f) into fractional count PSD 

SC(f). Up/down modulation acts as a chopper, or a mixer, and 

down-modulates to DC the frequency noise spectrum around 

FIN, where FIN is the modulation frequency [16]. Without 

up/down operation, counter output is simply FNOM times the 

count period of 2τUP, so: 

 

 S��U� = 4VWX2 �4IY2 SZ�U + ����  (14) 

 

We can relate SY(f) to VCO’s phase noise ℒΦ(f) [26]: 

 

 SZ�U� = 2ℒ\�U� U)
����)   (15) 

 

By combining (14) with (5) and (15), we get the PSD of the 

input-referred noise as: 

 

 S]^_�f� =  �2
2	
�I2 
a2  ℒ\�U + �����U + ����) (16) 

 

Note that SΦIN(f) is the equivalent noise on the input phase 

signal and it is different from the VCO phase noise ℒΦ(f). The 

variance due to SΦIN(f) can be obtained by integrating SΦIN(f) 

over the bandwidth of interest from DC up to FBW. As expected, 

only the VCO phase noise at an offset FIN from the carrier 

contributes to the output. Noise at lower frequencies (such as 

flicker noise) is suppressed because it will be up-modulated 

around FIN by the up/down modulation and filtered by the 

decimation filter, which is analogous to the flicker-noise 

suppression in chopper amplifiers [16]. However, most 

practical VCOs can still exhibit flicker noise at an offset 

frequency form the carrier around and above FIN. In that case, 

the flicker noise corner can be reduced by a wide-band low-

noise amplifier that precedes the VCO [8]. If the system allows 

it, the carrier frequency FIN can also be increased to avoid 

flicker noise, at the cost of additional quantization noise. 

For KVCO=140 MHz/V and VA =  0.5 mV, the phase-noise-

induced output noise will be below the quantization-noise-

induced output noise if the VCO phase noise is below -65 

dBc/Hz for offset frequencies above 1.17 MHz, which is easily 

attainable by low-power VCO’s [20]. 

IV. COUNTER SIZE AND WRAP-AROUND 

Due to practical limitations, the maximum counter output in 

a VCO-based PDΣΔM is limited, especially in compact 

readouts where the area of the counter must be minimized [9]. 

A possible issue is counter wrap-around, i.e. when the counter 

overflows. In order to design the size of the counter, we will 

first investigate wrap-around.  

A straightforward solution would be to design the counter 

with overflow protection. Here, we will first observe what 

happens when both the input and the DAC phase are fixed, i.e. 

without any ΣΔ feedback. From (2) and (3), assuming equal up 

and down periods, the minimum size of a non-wrapping counter 

(�b�cd,efeghMij) is: 

 

 �b�cd,efeghMij >  � �����l����
� dt (17) 

 

Note that �b�cd,efeghMij in this case must be at least larger 

than ����VWX, which is large (~8 bits) for typical values (FNOM 

> 500 MHz, τUP > 100 ns). A similar constraint also exists for 

the down-counting phase.  

If the counter is allowed to wrap-around (or overload) 

between up/down counts, this limitation is relaxed because only 

the remainder after a sequence of up and down counts must be 

smaller than the counter size. This can be simply expressed as: 

 

 �b�cd,hMij >  � (18) 

 

where � is defined in (5), and does not depend on ����. Wrap-

around in this case simply means allowing the counter output to 

overflow, as shown in Fig. 9. Intuitively, (20) means that the 

ΣΔ still operates correctly if the counter wraps around, as long 

as the output sampled by the quantizer is correct. This can be 

observed from Fig. 9, which shows how wrapping does not 

affect the latched counter result. Since a wrapping counter can 

be of smaller length and does not need any additional logic for 

overload detection, it is simpler and hence occupies less silicon 

area. Thus, we will assume the use of a wrapping counter in the 

following. 

The problem in a wrapping counter occurs when the counter 

value wraps around at, or just before a sampling moment, as 

illustrated in Fig. 10. Since the error ruins the integrated history 

of the signal, it is not shaped by the ΣΔ loop and introduces a 

significant error. The erroneous bits generated during the 

recovery process will corrupt the output and influence both the 

decimated output (i.e. the accuracy) and the resolution. The 

wrap-around can be avoided by limiting the counter’s output 

swing, which is analogous to limiting the output swing of 

integrators in a regular ΣΔ modulator to avoid amplifier 

saturation [21]. 

For a single-bit PDΣΔM, wrap-around can be avoided if the 

peak-to-peak swing of the latched counter value is less than half 

the counter length. In that case, the ΣΔ output bit-stream is the 

sampled counter MSB, and we have: 

 

 
�b�cd,hMij = 2b > 2����m −  ����� = 2�GG ; 
 J > log)�2�GG�  (19) 

Where CPP is the peak-to-peak swing of the counter and S is 

the number of bits of the counter. Since CPP is dependent on the 

input signal amplitude (VIN) and VCO gain (KVCO), an 

interesting trade-off exists between counter size and 

quantization noise. For low quantization noise, VIN and KVCO 

need to be high [from (13)], which means a larger counter is 

necessary to avoid wrap-around. 
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CPP is bounded for a first-order modulator and is 

approximately constant over a bounded range of DC inputs 

[18]. A similar analysis can be made for an M-bit PDΣΔM, as 

shown in Fig. 11. Counter wrap-around can be prevented if the 

peak-to-peak swing of the counter is guaranteed to be less than 

2S-M. Therefore, for a general multi-bit case, we have: 

 

 
�b�cd,hMij = 2bg� > �GG, when Y > 1; 

 J > tuv)��GG� + Y 

(20) 

 

As a convenient reliability measure, the input phase range 

can be restricted to be between the second highest and second 

lowest phase DAC steps, which relaxes (22) to   J > tuv)��GG� + Y − 1. An example of a PDΣΔM used in a 

temperature sensor will demonstrate a typical CPP value in 

section VII. 

Another case where the counter can wrap-around is at the 

start of the conversion. This first count value can be very large 

and can cause a wrap-around. We will assume that the counter 

is reset to its median value (2S-1) and that the input phase is 

bounded within [0 Δ], where 0 and Δ are the minimum and 

maximum value of the phase DAC (�&��), respectively. In this 

case, maximum value of |��� − �&��| ≤ Δ/2, and from (5), we 

find the maximum count (CMAX) to be: 

 

  ���m =  ± 2	���
����� sin �1/2� (21) 

 

To avoid wrap around, the following condition must hold: 

 

 J >  tuv) {2	���
����� sin �1/2�| + 1  (22) 

 

Note that (21) and (22) hold for a multi-bit PDΣΔM where |��� − �&��| ≤ Δ/2. For a single-bit modulator, ��� − �&�� can 

assume values up to ±Δ, and hence (21) and (22) must be 

modified by changing Δ/2 with Δ.  

The constraint imposed by (22) is different from (19) or 

(20), since it is not dependent on signal statistics. It is instead 

dependent on Δ, i.e. the span of the phase DAC. Resetting the 

counter to 2S-1 instead of another arbitrary value also helps 

minimizing the counter size. 

 

 

V. NON-LINEARITY 

Because of the sine term in (5), the PDΣΔM exhibits a 

systematic non-linearity. This non-linearity can either be 

corrected during digital post-processing [6], or by using small 

range(s) for �&�� [22], thus linearizing the sine term.  

The non-linear relation between the average of the output 

bitstream (μ) and the input and DAC phase is described by the 

following equation for a single-bit PDΣΔM: 

 

 } =  sin ���� − �&��,/�sin~��� − �&��,/� −  sin ���� − �&��,�� (23) 

 

where �&��,/ and �&��,� are the DAC phases for a feedback 

values of 0 and 1. For multi-bit operation, �&��,/ and �&��,� can 

be replaced with the exercised phase levels of the DAC. Note 

that although μ itself is a non-linear function of ���, it is 

independent of any circuit parameters, i.e. its non-linearity is 

systematic. However, additional non-linearities can shift this 

systematic curve, and add inaccuracy to the design. 

From literature, VCOs are known to be highly non-linear 

with respect to the amplitude of their frequency-controlling 

input signal. For this reason, many techniques to improve VCO 

non-linearity have been adopted in VCO-based ADCs [23-25]. 

However, since the information in a PDΣΔM is encoded in the 

 
Fig. 9. Timing diagram showing how a wrapping counter can tolerate a smaller 

swing and counter size.  

 

 
Fig. 10. Latched counter values of a single-bit PDΣΔM with an 8-bit counter over 

time. If the counter wraps around, the output is corrupted for several successive 

samples.  
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Fig. 11. Counter output of a 3-bit PDΣΔM with an 8-bit counter over time.  
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phase of the input signal, VCO non-linearity will have a smaller 

effect in the proposed read-out, as demonstrated in the 

following. 

For a sinusoidal input as in (1), the VCO’s amplitude non-

linearity will produce tones at harmonics of FIN. Considering 

only second and third harmonic of FIN, the VCO output 

frequency can be expressed as: 

 

 
�����l� = a/ cos�2π��4l + ����+ a) cos�4π��4l + +2���� +  a� cos�6π��4l + 3���� + ����  

(24) 

 

where AN is the amplitude of the N-th harmonic component. 

Combining (5) and (24), we get the total count after up/down 

periods as: 

 

 � = − 2���� �a/sin���� − �&��� + a�3 sin�3��� − 3�&����  (25) 

 

Due to the up/down operation, the second harmonic cancels out 

and third harmonic only adds a gain error as long as 3��� −3�&�� is small, since sin�3��� − 3�&��� 3⁄ ≈ ��� − �&�� .  This 

means that the linearity can be improved if ��� − �&�� is made 

smaller, as will be demonstrated by simulation in the following. 

However, in the general case, (27) is modified to: 

 

 μ =  A/ sin�Δ�/� + a�3 sin�3Δ�/�
A/�sin�Δ�/� − sin�Δ���� + a�3 �sin�3Δ�/� − sin�3Δ���� (26) 

 

where 1�/ is ��� − �&��,/ and 1�� is ��� − �&��,�. In this case, 

the systematic non-linearity is a function of the ratio A3/A1, 

which strongly depends on the VCO circuit parameters. If A3/A1 

is fixed, the error can be eliminated by batch trimming but any 

spread will add inaccuracy. 

From (26), we can make an important conclusion: First order 

errors in absolute values of A1 or A3 do not influence μ. This is 

important in sensor applications, where changes in A1 (via 

KVCO) over temperature and other environmental effects are 

rejected by the system. 

 Any non-linearity in the VCO adds harmonic components 

of the input signal but does not cause any non-linear distortion 

in the phase of the fundamental tone. Since an ideal phase read-

out is sensitive only to the phase of the fundamental, it is not 

affected by the VCO’s amplitude distortion. Therefore, as the 

PDΣΔM behaves more closely to an ideal phase detector, for 

example using a smaller DAC phase range, it rejects VCO non-

linearity better.As an example, we analyze the case where A1/A3 

= 40 dB for a single-bit modulator spanning a 90°-range 

(�&��,� = 0°, �&��,� = 90°). A1/A3 = 40 dB was chosen as a 

realistic third-order non-linearity of a typical VCO [12]. The 

non-linear error of such a PDΣΔM over the full range is shown 

in Fig. 14 (a) as the red curve. The blue curve shows the case 

where A3 = 0, and the black curve shows the difference between 

the two cases. The VCO non-linearity causes a ±0.5° error. 

When the phase range, i.e. the maximum ��� − �&��, is 

changed to 11.25°, as shown in Fig. 14 (b), the error then 

reduces to less than 2 m°. A reduction in the phase range can be 

easily achieved in multi-bit PDΣΔMs or two-step PDΣΔMs [7], 

thus making such architectures robust to the non-linearity of 

typical VCO’s, which show third-harmonic distortion ranging 

from -40 to -60 dB.It must be again highlighted that the high 

tolerance to distortion of the proposed read-out is an inherent 

property of phase-domain read-outs. Even a large distortion in 

the amplitude domain at the system input does not significantly 

affect the phase of the signal, which is the parameter carrying 

the information to be detected and converted. 

However, the VCO’s phase distortion or its signal-

dependent delay will impact non-linearity. This necessitates the 

use of fast response VCO’s or constant-bandwidth gain stages 

to drive the VCO, in order to control its delay. As an example, 

for a temperature sensor application [8], the gm-stage that 

drives the VCO needs to be biased with a PTAT current to 

improve linearity. 

Current-starved inverters or simply current-controlled 

oscillators (CCO) are a good candidate for implementation of 

VCOs in PDΣΔMs [8] because a CCO can respond very quickly 

to changes in its biasing current. If this CCO is driven by a gm-

stage [8], that gm-stage dominates the VCO’s delay. A gm-

stage can be designed to have a relatively signal-independent 

bandwidth and thus the VCO’s delay is only a weak function of 

the input signal. 

VI. SECOND-ORDER MODULATOR 

 

It is well known that first order ΣΔ modulators are affected 

by idle tones if the input signal does not have enough white 

noise content [18][21]. In sensor applications working with 

small signals, the 1st-order system in Fig. 2(a) is sufficiently 

dithered for achieving proper quantization noise behavior. For 

higher resolution systems, input noise may not provide 

sufficient dithering and higher-order PDΣΔM may be required.  

Fig. 15 shows the block diagram of a second-order fully-

digital PDΣΔM, where the quantizer in Fig. 2 (a) has been 

replaced by a digital ΣΔ modulator. A linear-feedback shift 

register (LFSR) can be used to add dither to the quantizer.  

Secondary feedback is applied via the digital gain term G. 

The digital ΣΔM itself can be operated at the relatively low 

sampling rate of the quantizer (FS). This results in a minimal 

power penalty when increasing the modulation order. 

The system in Fig. 15 has been simulated in CppSim 

environment to observe the system’s performance for a large 

input carrier amplitude VA. Thus, the following values were 

chosen: VA = 200 mV, KVCO = 5 MHz/mV, FIN = FS = 1.17 MHz, 

FNOM = 1.5 GHz, S = 12, G = 512 and M = 3. The phase DAC 

spans 78.75° with steps of 11.25°.  The second counter was 

sized as 16-bits, and is clocked at a rate of FS. 

Fig. 16 shows the simulated power spectral density (PSD) of 

the second-order PDΣΔM with the chosen variables. When 

compared to the first-order modulator in Fig. 8, this modulator 

is able to accommodate a much larger input voltage swing and 

thus has 23 dB better SNR due to 14x increase in KVCOVA.This 

improvement in SNR comes at a cost of larger area, higher VCO 

frequency, and requirement for higher VA and better VCO phase 

noise and linearity specs. In modern digital processes, the 

impact of additional area and higher VCO frequency can be 

negligible for applications requiring high-resolution from the 

PDΣΔM.  
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As the amplitude of the input signal increases, VCO linearity 

becomes a critical practical problem. Larger input amplitude 

implies that both quantization and VCO phase noise contributes 

less, but the VCO will exhibit more distortion. This can be 

tackled using the techniques discussed in Section V.  

VII. AN EXAMPLE DESIGN: PDΣΔM FOR TD TEMPERATURE 

SENSOR 

In order to confirm the theoretical analysis presented in this 

work, we will consider the design and analysis of the multi-bit 

PDΣΔM used to read out a thermal-diffusivity-based 

temperature sensor in a 40-nm CMOS process [9]. 

Specifications of the PDΣΔM can be directly derived from the 

specifications of the temperature sensor. The input signal from 

the sensor is a filtered square-wave at FIN=1.17 MHz with 

roughly 1.3 mVpp amplitude, and a phase resolution of 47 m° 

(~0.8 mrad in radians) in a bandwidth of 500 Hz. This 

resolution includes the thermal noise generated by the sensor 

and also by the front-end amplifier. By choosing FS = FIN = 1.17 

MHz, an OSR > 1024 is obtained for a 500-Hz bandwidth. The 

output phase from the sensor ranges from 11.25° to 90°, thus Δ 

= 78.75°. 

In order not to degrade the sensor’s resolution, we need to 

derive the KVCO value that sufficiently suppresses the counter’s 

quantization noise. We choose 'G,M = 23 m° [0.4 mrad in (13)], 

i.e. equal to half of the signal noise, which results in a 12% SNR 

degradation. From (13), KVCO is then found to be 180 MHz/mV. 

In practice, since KVCO can change dramatically due to process 

spread and temperature, we chose KVCO = 200 MHz/mV in the 

nominal case with worst-case of KVCO =160 MHz/mV. Since we 

want to observe the worst cases for both resolution and wrap-

around, we assume KVCO = 160 MHz/mV for quantization-noise 

calculation and 200 MHz/mV for wrap-around estimation. 

 

 
Experimental results also confirm this analysis. Fig. 17 

shows the power spectral density (PSD) of the prototype sensor 

[9] as well as calculated counter quantization, thermal and 

combined noise densities. The sensors exhibit an RMS 

resolution of 1 mrad (0.36 °C for the temperature reading) 

within 500 Hz, which agrees well with a total computed RMS 

resolution of 0.95 mrad [0.8 mrad due to sensor noise; 0.45 

mrad due to counter quantization noise according to (13)]. 

 

 
 

The next step is determining the counter size (S) from (20) 

and (22). The modulator is designed to span Δ = 78.75°, with a 

phase DAC range from 11.25° to 90°, resulting in S > 6.12 from 

(24). For (20), we need to fix M, or the number of ΣΔ modulator 

bits. M = 3 was chosen as a good trade-off between phase DAC 

area and quantization noise suppression. The mixed-signal 

model in Fig. 7 for KVCO = 200 MHz/mV and ��� = 47°  was 

used to obtain a histogram of the counter output swing in Fig. 

 
(a) 

 
(b) 

Fig. 14. Non-linearity error of a PDΣΔM with and without the third order non-

linearity from the VCO; with a phase DAC range of (a) 90° and (b) 11.25° 

 
 

Fig. 15. Block diagram of a second-order VCO-based PDΣΔM 

 

 
Fig. 16. Simulated PSD of the 2nd Order PDΣΔM’s output bitstream, 

generated via a transient simulation. 

 
Fig. 17. Measured PSD of the prototype PDΣΔM (8 million samples, 

averaged 8192 times); with expected noise densities. 
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18 (a). In this model, thermal noise floor shown in Fig. 17 was 

added to the input. The peak-to-peak swing is 18 count values 

for 8192 samples. According to (20), 2S-M > 18 to avoid wrap-

around, which implies S ≥ 8. This satisfies the requirement from 

(22) as well. 

The simulated counter swing was compared to the 

measurement results in order to validate the simulation model. 

For this, the measured 3-bit MSBs of the counter (bit-stream) 

was compared to the 3-bit representation of the counter swing, 

shown on a histogram plot in Fig. 18 (b). For the measurement, 

8192 samples were obtained also at ��� = 47° . The measured 

and simulated histograms align, and the small difference 

between them is within the thermal noise budget. 

 

 

VIII. CONCLUSIONS 

This paper presents the first theoretical analysis of the 

operation of a VCO-based PDΣΔM. The derived theoretical 

model is shown to be in good agreement with both simulation 

and experimental results. 

Quantization noise, counter wrap-around and settling time 

can add additional errors and design constraints in VCO-based 

PDΣΔMs with respect to fully analog PDΣΔMs. However, with 

enough VCO gain and a sufficient number of counter bits, the 

performance gap between analog and VCO-based modulators 

can be abridged. In addition, it has also been shown that the 

high non-linearity of practical VCO’s can be tolerated by 

PDΣΔMs. This allows the implementation of compact, scalable, 

mostly digital and accurate PDΣΔMs, thus making them ideal 

for implementation in nanometer CMOS technologies.  
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