

Delft University of Technology

The Case for Polymorphic Registers in Dataflow Computing

Ciobanu, Catalin Bogdan; Gaydadjiev, Georgi; Pilato, Christian; Sciuto, Donatella

DOI
10.1007/s10766-017-0494-1
Publication date
2018
Document Version
Final published version
Published in
International Journal of Parallel Programming

Citation (APA)
Ciobanu, C. B., Gaydadjiev, G., Pilato, C., & Sciuto, D. (2018). The Case for Polymorphic Registers in
Dataflow Computing. International Journal of Parallel Programming, 46(6), 1185-1219.
https://doi.org/10.1007/s10766-017-0494-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10766-017-0494-1
https://doi.org/10.1007/s10766-017-0494-1

Int J Parallel Prog (2018) 46:1185–1219
https://doi.org/10.1007/s10766-017-0494-1

The Case for Polymorphic Registers in Dataflow
Computing

Cătălin Bogdan Ciobanu1,2 · Georgi Gaydadjiev2,3 ·
Christian Pilato4 · Donatella Sciuto5

Received: 10 May 2015 / Accepted: 21 February 2017 / Published online: 10 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract Heterogeneous systems are becoming increasingly popular, delivering high
performance through hardware specialization. However, sequential data accesses may
have a negative impact on performance. Data parallel solutions such as Polymorphic
Register Files (PRFs) canpotentially accelerate applications by facilitating high-speed,
parallel access to performance-critical data. This article shows how PRFs can be inte-
grated into dataflow computational platforms. Our semi-automatic, compiler-based
methodology generates customized PRFs and modifies the computational kernels to
efficiently exploit them. We use a separable 2D convolution case study to evaluate the
impact of memory latency and bandwidth on performance compared to a state-of-the-
art NVIDIA Tesla C2050 GPU. We improve the throughput up to 56.17X and show
that the PRF-augmented system outperforms the GPU for 9 × 9 or larger mask sizes,
even in bandwidth-constrained systems.

B Cătălin Bogdan Ciobanu
c.b.ciobanu@uva.nl; c.b.ciobanu@tudelft.nl

Georgi Gaydadjiev
g.n.gaydadjiev@tudelft.nl; georgi@maxeler.com

Christian Pilato
christian.pilato@usi.ch

Donatella Sciuto
donatella.sciuto@polimi.it

1 System and Network Engineering Group, University of Amsterdam, Amsterdam,
The Netherlands

2 Distributed Systems Group, Delft University of Technology, Delft, The Netherlands

3 Maxeler Technologies Ltd, London, UK

4 Faculty of Informatics, University of Lugano, Lugano, Switzerland

5 Dip. di Elettronica, Informazione E Bioingegneria, Politecnico di Milano, Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0494-1&domain=pdf
http://orcid.org/0000-0002-3329-3773

1186 Int J Parallel Prog (2018) 46:1185–1219

Keywords Dataflow computing · Parallel memory accesses · Polymorphic register
file · Bandwidth · Vector lanes · Convolution · High performance computing ·
High-level synthesis

1 Introduction

Heterogeneous High-Performance Computing (HPC) systems are becoming increas-
ingly popular for data processing. For example, the Cell Broadband Engine [1]
combines one Power Processor Element (PPE) and eight Synergistic Processor Ele-
ments (SPEs). The PPE runs the operating system and the application’s control
sections, while the SPEs are designed to excel in data-intensive computations, execut-
ing themost time-consuming parts of the applications. Another approach is to combine
General Purpose Processors (GPPs) with specialized accelerators, implemented as
custom chips or on reconfigurable devices, like Field-Programmable Gate Arrays
(FPGAs). GPPs are mainly used for I/O and control-dominated functions, while the
specialized components accelerate the application’s computationally intensive parts.
For example, the Maxeler MaxWorkstation [2] combines Intel x86 processors with
multiple dataflow engines powered by, e.g., Xilinx Virtex-6 FPGA devices. This sys-
temadopts the dataflowcomputationalmodel and organizes the data into highly regular
streams flowing through the functions implemented in hardware, obtaining efficient
implementations for streaming applications [3,4]. This platform allows the designer
to focus on the high-level application development, while the corresponding HDL is
generated using a dedicated Java-to-HDL high-level synthesis process by means of a
proprietary compiler (MaxCompiler).

Generally, data-processing applications consist of relatively simple kernels, which
are applied to large amounts of data. For example, image processing algorithms usually
apply digital filters at some stages. These filters process the stream in blocks through
“masks” (i.e., regular patterns for accessing the data). However, the existing dataflow
systems are limited in terms of memory accesses to the Local Store (LS): this may
become a serious bottleneck, heavily affecting the performance of the final system.
In fact, the values on which the mask is applied are usually loaded sequentially from
the LS, limiting the parallelism that can be extracted from the computational kernels.
Therefore, multi-module parallel memory access schemes are of interest.

This work focuses on the integration of the Polymorphic Register File (PRF) in
dataflow computing. The PRF [5] is a novel architectural solution targeting high per-
formance execution. Using the Single Instruction, Multiple Data (SIMD) paradigm,
the PRF provides simultaneous paths to multiple data elements. The PRF implements
conflict-free access to the most widely used memory access patterns in the scientific
and multimedia domains. However, the creation of PRF-based systems is not triv-
ial. The efficient design of such systems demands: (i) a careful identification of the
most-suited data structures and access patterns to configure the PRF, (ii) an analysis
of the potential benefits to determine the architectural parameters, and (iii) a mod-
ification of the algorithms in order to take advantage of the newly-generated PRF
memory. Designers currently need to perform the above steps by hand. This process
is generally tedious and error-prone. In this context, this article aims at facilitating the

123

Int J Parallel Prog (2018) 46:1185–1219 1187

integration of PRFs into heterogeneous HPC systems for accelerating dataflow appli-
cations. We start from a C-based description of the accelerator where the designer
can use custom pragmas to annotate the variables to be placed into the PRF and the
corresponding memory access patterns. We then propose a semi-automatic method-
ology, which is integrated with existing tool-chains for creating the target streaming
architecture. This methodology includes a compiler-based step, which is based on the
LLVM compiler [6], to leverage the available high-level synthesis tools and generate
the hardware accelerators able to interface with the properly customized PRF instance.
Finally, we rely on the vendor-specific tools for the technology mapping, place and
route. One crucial point for PRF-based systems is the latency of memory accesses
to external data. Hence, we extensively analyze possible system-level organizations
of the target architecture, along with the characteristics of the corresponding mem-
ory subsystem. In order to provide useful guidelines to the designers, we perform a
comprehensive simulation-based exploration of different parameters (e.g., memory
latency and bandwidth of the local scratchpads) in terms of the resulting performance.
More specifically, the contributions of this article are:

– Amethodology for enhancing existing dataflow architectureswith PRFs in order to
support parallel memory accesses, providing dedicated high-bandwidth memory
interfaces to preselected data blocks that substitute sequential loads and stores;

– A compiler-based methodology supporting the automatic creation of these PRF-
based systems to accelerate the access to specific variables;

– A comprehensive study of the Separable 2D Convolution, including:
– An evaluation of the impact of memory latency on the estimated performance
and efficiency of PRF-augmented designs;

– An evaluation of the impact of the LS bandwidth on the PRF throughput. For
small mask sizes, the PRF throughput is mainly constrained by the available
LS bandwidth;

– An efficiency study of multi-lane PRF designs. For each configuration, we
quantify the relative throughput improvement when doubling the number of
PRF lanes (e.g., the gain obtained by doubling the lane count from 8 to 16, 16
to 32, etc.). Our results suggest that PRFs with large number of lanes are more
efficient when the mask size is large;

– A comparison of the PRF throughput with the NVIDIATesla C2050GPU. The
results indicate that our PRF implementation is able to outperform the GPU for
9×9 or largermask sizes.Depending on themask size, the throughput improve-
ments range between 1.95X and 25.60X in the case of bandwidth-constrained
systems and between 4.39X and 56.17X in high bandwidth systems.

The article continues as follows: background information and related work are
presented in Sects. 2 and 3, respectively. Section 4 describes our target PRF-based
system, while Sect. 5 details our compiler-basedmethodology. Section 6 describes our
case study, along with a detailed description of the PRF architecture and a sensitivity
analysis on the architectural parameters. Finally, Sect. 7 concludes the article.

123

1188 Int J Parallel Prog (2018) 46:1185–1219

Fig. 1 The Polymorphic Register File

2 Background

The PRF was developed as part of the Scalable computer ARChitecture (SARC)
project as its Scientific Vector Accelerator [7]. A PRF is a parameterizable register file,
logically reorganized under software control to support multiple register dimensions
and sizes simultaneously [8]. The total storage capacity is fixed, containing N × M
data elements. Figure 1 provides an example of a two-dimensional (2D) PRF with a
physical register file size of 128 × 128 64-bit elements. In this simple example, the
available storage has been divided into six logical registers with different locations and
dimensions, defined using the Register File Organization (RFORG) Special Purpose
Registers (SPRs), shown on the right side of Fig. 1. For each logical register, we need
to specify its position (i.e. the base), the shape (e.g., rectangle, row, column, main or
secondary diagonal), its dimensions (i.e. horizontal and vertical length) and the data
type (e.g., integer or floating-point, 8/16/32/64 bits).

For the PRFhardware implementation, previousworks considered a 2D array of p×
q1 linearly addressable memory banks and used parallel access schemes to distribute
the data elements in the corresponding memory bank. The memory schemes proposed
in [5] are denoted as ReRo, ReCo, RoCo and ReTr, each of them supporting at least
two conflict-free access patterns: (1) Rectangle Row (ReRo): p × q rectangle, p · q
row, p · q main diagonals if p and q + 1 and co-prime, p · q secondary diagonals
if p and q − 1 are co-prime; (2) Rectangle Column (ReCo): p × q rectangle, p · q
column, p ·q main diagonals if p+1 and q are co-prime, p ·q secondary diagonals if
p − 1 and q are co-prime; (3) Row Column (RoCo): p · q row, p · q column, aligned
(i%p = 0 or j%q = 0) p×q rectangle; (4) Rectangle Transposed Rectangle (ReTr):
p× q, q × p rectangles (transposition) if p%q = 0 or q%p = 0. Conflict-free access

1 In the following, we use “×” to refer to a 2D matrix, and “·” to denote multiplication.

123

Int J Parallel Prog (2018) 46:1185–1219 1189

is therefore supported for all of the most common vector operations for scientific and
multimedia applications [5].

Synthesis results for FPGA and ASIC technologies have been presented in [5,9]
and [10]. Specifically, results targeting the Virtex-7 XC7VX1140T-2 FPGA show fea-
sible clock frequencies between 111 and 326 MHz and reasonable logic resources
usage (less than 10 and 15% of the available LUTs and BRAMs, respectively). When
targeting a 90 nm ASIC technology, the PRF clock frequency is between 500 and
970MHz for storage sizes of up to 512 KB and up to 64 vector lanes. Power consump-
tion remains reasonable, not exceeding 8.7 W and 276 mW for dynamic and static
power, respectively [10].

One of the main objectives of the PRF is scalability in terms of performance and
storage capacity. The key to high-performance PRFs lies on their capability to deliver
aligned data elements to the computational units at high rates. Moreover, a properly
designed PRF allows multiple vector lanes to operate in parallel with an efficient
utilization of the available bandwidth. This is achievedwith a parallel access tomultiple
data elements and requires dedicated logic for its implementation. In fact, the most
performance-efficient solution is to support this with parallel memory access schemes
in hardware. The main 2D PRF benefits are:

– Performance gains by reducing the number of committed instructions;
– Improved storage efficiency by registers defined to contain exactly the number
of elements required, completely eliminating the potential storage waste inherent
to organizations with fixed register sizes and maximizing the available space for
subsequent use;

– Customizable number of registers the number of registers is no longer an architec-
tural limitation, contributing to the PRF runtime adaptability. Unlike fixed number
of registers of predefined size in traditional systems, the unallocated space can
be further partitioned into a variable number of registers of arbitrary (1D or 2D)
shapes and dimensions;

– Reduced static code footprint the target algorithm may be expressed with fewer,
higher level instructions.

Previous works show that, in some representative cases, PRFs can reduce the num-
ber of committed instructions by up to three orders of magnitude [8]. Compared to
the Cell CPU, PRFs decrease the number of instructions for a customized, high per-
formance dense matrix multiplication by up to 35X [7] and improve performance for
Floyd and sparse matrix vector multiplication [8]. A Conjugate Gradient case study
evaluated the scalability of up to 256 PRF-based accelerators in a heterogeneous
multi-core architecture, with two orders of magnitude performance improvements
[11]. Furthermore, potential power and area savings were shown by employing fewer
PRF cores compared to a system with Cell processors. A preliminary evaluation of
the PRF 2D separable convolution performance showed that PRFs can outperform
state-of-the-art GPUs in terms of throughput [12].

123

1190 Int J Parallel Prog (2018) 46:1185–1219

3 Related Work

3.1 Data Organization

Efficient processing of multidimensional matrices has been targeted by several works.
One approach is to use a memory-to-memory architecture, such as the Burroughs
Scientific Processor (BSP) [13]. The BSP machine is optimized for the Fortran
programming language, having the ISA composed of 64 very high-level vector instruc-
tions, called vector forms. A single vector form is capable of expressing operations
performed on scalar, 1D or 2D arrays of arbitrary lengths. To store intermediate results,
each BSP arithmetic unit includes a set of 10 registers, which are not directly accessi-
ble by the programmer. The PRF also creates the premises for a high-level instruction
set. However, while BSP has a limited number of automatically managed registers to
store the intermediate results, our approach is able to reuse data directly within the
PRF. This offers additional control and flexibility to the programmer, the compiler and
the runtime system and potentially improves performance.

The Complex Streamed Instructions (CSI) approach [14] is a memory-to-memory
architecture which allows the processing of two-dimensional data streams of arbitrary
lengths with no data registers. One of the main motivations behind CSI is to avoid
having the section size as an architectural constraint. Through a mechanism called
auto-sectioning, PRFs allow designers to arbitrarily choose the best section size for
each workload by resizing the vector registers, greatly reducing the disadvantages of
a fixed section size as in CSI. To exploit data locality, CSI relies on data caches. As
also noted for the BSP, our approach can make use of the register file instead, avoiding
high-speed data caches.

The concept of Vector Register Windows (VRW) [15] consists of grouping con-
secutive vector registers to form register windows, which are effectively 2D vector
registers. The programmer can arbitrarily choose the number of consecutive registers
which form awindow, defining one dimension of the 2D register. However, contrary to
our proposal, the second dimension is fixed to a pre-defined section size. Furthermore,
all register windows must contain the same number of vector registers and the total
number of windows cannot exceed the number of vector registers. The latter severely
limits the granularity to which the register file can be partitioned. These restrictions
are not present in our PRF architecture, which provides a much higher degree of free-
dom for partitioning the register file. Therefore, our vector instructions can operate on
matrices of arbitrary dimensions, reducing resizing overhead of register windows.

Two-dimensional register files have been used in several other architectures, such
as the Matrix Oriented Multimedia (MOM). MOM is a matrix oriented ISA targeted
at multimedia applications [16]. It also uses a 2D register file in order to exploit the
available data-level parallelism. The architecture supports 16 vector registers, each
containing sixteen 64-bit elements. By using sub-word level parallelism, each MOM
register can store a matrix containing at most 16 × 8 elements. The PRF also allows
sub-word level parallelism, but does not restrict the number or the size of the two-
dimensional registers, bearing additional flexibility.

Another architecture which also uses a two-dimensional vector register file is the
Modified MMX (MMMX) [17]. It supports eight 96-bit multimedia registers and

123

Int J Parallel Prog (2018) 46:1185–1219 1191

special load and store instructionswhich provide single-column access to the subwords
of the registers. Our PRF does not limit the matrix operations to only loads and stores
and allows the definition of multi-column matrices of arbitrary sizes.

Based on Altivec, the Indirect VMX (iVMX) architecture [18] leverages a large
register file consisting of 1024 registers of 128 bits. Four indirection tables, each with
32 entries, are used to access the iVMX register file. The register number in the iVMX
instructions, with a range from 0 to 31, is used as an index in the corresponding
indirection table. The PRF also uses indirection to access a large register file, but does
not divide the available RF storage into a fixed number of equally-sized registers. This
allows a higher degree of control when dynamically partitioning the register file.

The Register Pointer Architecture (RPA) [19] focuses on providing additional stor-
age to a scalar processor, thus reducing the overhead associated with the updates of the
index registers while minimizing the changes to the base instruction set. The archi-
tecture extends the baseline design with two extra register files: the Dereferencible
Register File (DRF) and the Register Pointers (RP). In essence, the DRF increases the
number of available registers for the processor, while the RPs provide indirect access
to the DRF. RPA is similar to our proposal as it also facilitates the indirect access to a
dedicated register file by using dedicated indirection registers, even if the parameters
stored in these registers are completely different. In RPA, each indirection register
maps to a scalar element. In PRFs, one indirection register maps to a sub-matrix in
the 2D register file. This is more suitable for expressing the data-level parallelism in
multidimensional (matrix) vector processing.

3.2 Dataflow Architectures

Several FPGA-based HPC architectures have been recently proposed. The Cray
XD1 [20] incorporates 12 AMD Opteron processors and six Xilinx Virtex-II PRO
XC2VP30-6 or XC2VP50-7 FPGAs with dedicated QDR RAM and 3.2 GB/s inter-
connect. TheCrayXR1blade [21] is a dual-socket 940 design, incorporating oneAMD
Opteron processor in the first socket, while the second socket holds a Xilinx Virtex-
4 LX200 FPGA, communicating with the rest of the system using the high-speed
HyperTransport interface.

The SGI Altix 4700 [22] platforms featured a modular blade design and incorpo-
rated the Non-Uniform Memory Architecture (NUMA) shared-memory NUMAflex
architecture. The compute blade contained Intel Itanium processors, while dedicated
memory, I/O and special-purpose blades were also available. The Reconfigurable
Application Specific Computing (RASC) [23] blades facilitated two Virtex-4 LX200
FPGAs and dedicated memory DIMMs.

The Convey HC-1 [24] consists of two stacked 1 Unit chassis: one contains the
processor, while the other one contains the FPGAs. The CPU chassis consists of a
dual-socket Intel motherboard, out of which one is populated with an Intel Xeon CPU.
The other socket is used to route the Front Side Bus (FSB) to the FPGAs. The HC-1
contains four Virtex-5 LX 330 Application Engines (AEs), connected to 8 memory
controllers through a full crossbar. The memory controllers are connected to propri-
etary scatter-gather DIMMs. HC-1’s memory system is designed to maximize the

123

1192 Int J Parallel Prog (2018) 46:1185–1219

likelihood of conflict-free accesses. The processor and the coprocessor memories are
cache coherent, sharing a common virtual address space. The HC-1 also contains two
additional Virtex-5 LX110 FPGAs which form the Application Engine HUB (AEH),
one which interfaces with the FSB and manages the memory coherence protocol. The
second AEH FPGA contains a scalar soft-core processor implementing a customCon-
vey ISA. The softcore acts as a coprocessor to the Intel CPU, and the AE FPGAs are
coprocessors to the soft-core.

Note that, assuming that the high-bandwidth PRF interface is implemented, similar
benefits as the ones obtained with our architectures can also be obtained with these
alternative FPGA-based HPC systems.

3.3 Hardware Accelerator Design

Given the time-consuming and error-prone process of designing the HDL code for
FPGA-based heterogeneous systems, several C-to-HDL compilers exist. The study
in [25] provides a comprehensive overview of academic and industrial solutions for
high-level synthesis (HLS). These tools are usually based on compilers (e.g., SUIF,
LLVM or GCC) to produce Verilog/VHDL accelerators with interfaces for system-
level integration [26]. However, these tools are usually limited in terms of memory
accesses, requiring additional tools for the creation of multi-port memory systems
[27]. Our approach is also built on the top of existing compilers (e.g., LLVM), but it
does not explicitly perform HLS. Instead, it includes a preprocessing step that gener-
ates a modified C code ready for the HLS with existing vendor tools (e.g., Maxeler
MaxCompiler or Xilinx Vivado HLS) to leverage the PRFs. Hence the manual inter-
vention of the designer is minimized. Moreover, the programmer is not expected to
add any additional C or HDL glue code to obtain a functional system.

Finally, for NVIDIA Graphics Processing Unit (GPU)-based [28] heterogeneous
computing, the CUDA [29] programmingmodel has beenwidely used. CUDAextends
the C programming language with additional keywords allowing, among others,
explicit allocations of variables in the on-chip and off-chip GPU memory, data trans-
fers between the GPP and the GPU. Unlike our approach, programmers still need to
parallelize the algorithms in terms of threads and thread blocks, partition memory and
schedule synchronizations.

4 Target System Organization

In domains such as HPC or embedded systems, applications usually process large
amounts of data with fixed and relatively simple functionality. In these cases, all
aspects of the computation can be determined at design time to specialize the system
architecture. Designers are thus increasingly using heterogeneous systems in these
domains, combining processor cores (for preparing the data and collecting the results
for the users) and specialized hardware accelerators with customized memory subsys-
tems for achieving energy-efficient high performance. In this context, modern HLS
tools can create specialized hardware directly from a high-level language, mitigat-
ing the burden for the designer, who can focus on the algorithm development at a

123

Int J Parallel Prog (2018) 46:1185–1219 1193

(a) (b)

Fig. 2 System organization for streaming architectures. aWithout PRF, bWith PRF

higher level of abstraction. In the rest of this section we clarify the organization of
the dataflow system and its enhancement with the PRF. For this, let us assume that
we aim at implementing a computational kernel that operates on a data stream with a
N × N mask (e.g., an image filter). The mask coefficients can be eventually updated
at runtime so they are stored in memory instead of hard-coded in the accelerator logic.

A classical implementation for heterogeneous dataflow systems is shown in Fig. 2a.
In these systems, a local scratchpad memory (SPM)2 is used so that the accelerator
can have low-latency access to the data. Specifically, SPMs can store the following
types of data, based on the kernel requirements:

– streaming data they represent input/output data (e.g., N rows of the image flowing
through the accelerator);

– local data they represent intermediate results or parameters (e.g., the set of coef-
ficients used within the computational kernel).

In case of streaming data, the designer usually implements a circular buffer for storing
these rows. To continue the computation, the kernel only requires a new row from
the CPU, while N − 1 rows already stored in the SPM will be accordingly shifted.
Local data, such as the coefficients, are usually represented as arrays in the original
application and accordingly stored in the SPM at specific locations. In both cases, the
kernel specifies which element is being accessed with a memory-based approach. For
streaming data, elements are usually identified by offsets with respect to the current
streamposition (represented by a pointer to the circular buffer). For local data, elements
are identified by their position in the array. This kind of architecture is limited by the
available bandwidth between the SPMand the accelerator, as usually a small number of
ports is available. Multiple read/write operations cannot be thus performed in parallel,
and therefore must be serialized.

Polymorphic Register Files can be thus adopted in the architecture to enhance
the performance of memory accesses. In case of streaming data, PRFs substitute the
memory elements containing the stream values and must be customized in order to
create local registers of proper sizes, i.e. the maximum number of values to be simul-
taneously stored. Additionally, when new data arrives, it is necessary to determine

2 In the following, we will use Local Store (LS) and Scratchpad Memory (SPM) interchangeably.

123

1194 Int J Parallel Prog (2018) 46:1185–1219

where they must be stored based on the current PRF configuration and how to update
the accesses to the current stored values. Thereafter, by collecting information on
the input stream accesses and the corresponding values, it is possible to determine
the memory access patterns and customize the PRFs accordingly. PRFs can be also
used for storing local data, but without any shifting operations. The PRF registers
are initialized with these values. Similarly to streaming data, it is possible to iden-
tify the kernel memory access patterns to perform multiple operations in parallel.
Figure 2b illustrates the resulting system after PRF integration for streaming data.
Compared to the reference implementation depicted in Fig. 2a, wider buses are avail-
able in the memory interface, effectively allowing the kernel to access multiple values
in the same clock cycle. Note that hundreds of cycles are required to access the data
directly received from themainmemory through the interconnection system. To future
overlap communication, a local SPM can be used between the interconnect and the
PRF.

PRF-enhanced architectures can be easily created in different technologies, either
FPGA or ASIC. For example, the Xilinx Zynq Evaluation Board [30] is based on
the Zynq-7000 SoC and combines a dual-core ARM Cortex-A9 Processing Sys-
tem (PS) with a Xilinx XC7Z020 FPGA, also called Programmable Logic (PL).
These are connected to SDRAM, Flash memory controllers and other periph-
eral blocks through the ARM AMBA AXI-based interconnect. The on-chip PS
is attached to the corresponding Zynq device’s PL through nine ARM AMBA
AXI ports, allowing the CPU to send data to the local memory of the accelera-
tors in few clock cycles. Additionally, Xilinx provides an end-to-end development
kit to synthesize applications onto this architecture. Xilinx Vivado HLS is a com-
mercial tool for HLS, which takes a C-based application as input and produces
the corresponding RTL implementation. This generated IP can be then integrated
with the rest of the system through Xilinx Vivado, which performs all the steps
necessary to generate the bitstream. Finally, Xilinx SDK is an environment for
developing the embedded applications that run on the CPU and interface with the
hardware accelerators. Embedded BRAMs can be arranged as local SPMs on the
PL, directly connected to the the kernel (see Fig. 3a). Otherwise, we expect future
FPGAs to integrate high density PRF modules as hard macros, for low latency data
access.

Similarly, the Maxeler MaxWorkstation [2] combines an Intel CPU with one or
two Data Flow Engines (DFEs). The DFEs, based on state-of-the-art Xilinx Virtex-6
SX475T FPGAs, are connected to the Intel CPU via PCI Express. Furthermore, each
DFE board contains up to 48 GB of DDR3 DRAM. The DFE implementation consists
of one or more Kernels and a Manager, both written in a Java-based meta-language.
The Kernels describe the data paths which implement the target algorithm, while the
Manager describes the data flow between Kernels and with the off-chip stream I/O
(e.g., CPU, DRAM). The application running on the CPU can be written in many
high-level languages (e.g., C, Python, FORTRAN, etc.) and uses a set of API calls to
communicate with the DFE components. The Maxeler run-time system (MaxCompil-
erRT) andMaxelerOS software libraries enable the communication between the CPU
and theDFE, and abstract the low-level details of theDMA transfers over PCI Express.
TheMaxCompiler creates a DFE design throughHLS and provides libraries that allow

123

Int J Parallel Prog (2018) 46:1185–1219 1195

(a) (b)

Fig. 3 System organization for streaming computation on different architectures. aXilinx Zynq evaluation
board, b Maxeler MaxWorkstation

the CPU to communicate with the kernels. For the device configuration, MaxCompiler
leverages the Xilinx toolchain. Moreover, MaxCompiler allows hand-crafted HDL
code to be connected toMaxJ Kernels. We leverage this to instantiate our PRFmodule
(see Fig. 3b).

PRF-based architectures can be also created as custom chips, where the processor
core is connected to the hardware accelerators via a standard or proprietary inter-
connection system (either bus or network-on-chip). For example, these specialized
components can be generated by means of HLS with Cadence Stratus, starting from
SystemC and targeting the given technology library. On the other hand, the internal
PRF storage is Static RAMs (SRAMs) for fast accesses from the accelerators.

5 Proposed Methodology

This section describes the proposed methodology to automatically create a system
augmented with PRFs (as described in Sect. 4). Our methodology starts from a C-
based description of the application, where the designer manually introduced custom
pragmas to specify relevant information on the variables to be stored in the PRF. The
overall methodology is shown in Fig. 4, where the gray boxes highlight the steps
proposed in this work: Variable Extraction, PRF Customization and Code Gener-
ation. In Variable Extraction (detailed in Sect. 5.1), the input C code is analyzed
with a source-to-source preprocessing step based on LLVM that extracts the pragma-
annotated variables. The step also produces an XML, which contains the list of
variables and a description of the memory access patterns required for accessing
them. PRF Customization (detailed in Sect. 5.2) starts from this XML file to generate
the PRFs and allocate the identified variables onto them. These PRFs are then config-
ured for providing values with the required access patterns. The corresponding HDL
code is then generated, along with the wrapper to interact with the computational
kernel. The Code Generation implements an additional compiler step to produce
the input files for HLS starting from the information on PRF variables and access
patterns identified during Variable Extraction. More specifically, sequential memory
accesses are substituted by parallel PRF accesses as detailed in Sect. 5.3. This step is

123

1196 Int J Parallel Prog (2018) 46:1185–1219

Fig. 4 Overall methodology for supporting automatic PRF integration

technology-dependent and it must be partially specialized based on the target archi-
tecture. For example, considering the examples described in above, this step generates
the C code synthesizable with Xilinx Vivado HLS when targeting the Xilinx Zynq
evaluation board, a Java-like kernel description ready for MaxCompiler when tar-
geting the Maxeler MaxWorkstation or a SystemC-based description for HLS with
Cadence C-to-Silicon. At this point, the System Integration creates the system-level
description of the final architecture starting from the HDL code of the PRF and the
computational kernel. Finally, vendor-specific tools are used for mapping, place and
route.

5.1 Variable Extraction

This section describes our preprocessing step for automatically extracting the PRF
variables from the input C code. We implement the analysis of the custom pragmas
using the Mercurium source-to-source compiler [31]. To better understand how these
annotations are specified and translated, let us assume that we have a computational
kernel that performs a weighted average on three column pixels of a 64 × 64-pixel
image. This can be represented in C with the piece of code shown in Listing 1, where
the infinite loop is used to represent the processing of input streaming data as long as
the CPU provides values.

For computing each output value, the kernel requires to read six different values
from memory. Two types of pragma annotations are currently supported:

– #pragma prf variable it specifies the variable name and the space needed
for its allocation in the PRF;

– #pragma prf access it specifies a memory access to a PRF block, along
with information on the specific accessed element.

123

Int J Parallel Prog (2018) 46:1185–1219 1197

Listing 1 Example of C-based kernel implementing the weighted average on pixels.

void kernel(int* in , int* out)
{

volatile int K[3] = {3, -1, 3};
...
while (1)
{

...
out[i,j] = (K[0]*in[i-1][j] + K[1]*in[i][j] +

K[2]*in[i][j]) /
(K[0]+K[1]+K[2]);

...
}

}

The pragma variable is defined as follows:

#pragma prf variable <name> <size> <type>

The parameter name is the variable name. We assume that this variable can represent
either stream or static data (<type>=stream or <type>=static, respectively).
The parameter size instead represents the space to be reserved in the PRF for this
variable. For example, considering Listing 1, the code is annotated as follows:

#pragma prf variable in 129 stream
#pragma prf variable K 3 static

Variable in represents a streaming data and the parameter size represents the num-
ber of consecutive elements of the input data stream to be simultaneously stored so
that the computational kernel can operate. In our example, two consecutive rows plus
one element (129 elements) of the image must be stored to allow the computation
of each output value. When a new pixel is received, the data must be accordingly
shifted. For the local variable K, this value is the size of the array itself, entirely
stored into the PRF. In this case, the array must be initialized with a set of pre-
defined values (e.g., {3, -1, 3}), which will be reported in the output XML
file to properly initialize PRF registers. The pragma access is, instead, defined
as:

#pragma prf access <var> <index> <name>

The parameter var represents the PRF variable name, with the index specified by the
second parameter. For streaming variables (e.g., variable in), the index represents the
offset with respect to the current value and thus it can be either positive or negative.
Conversely, for local data, it simply represents the position within the array. The last
parameter specifies the name used to identify this access. For example, the operation
in Listing 1 is annotated as follows:

#pragma prf access in -64 in0
#pragma prf access in 0 in1
#pragma prf access in 64 in2
#pragma prf access K 0 k0
#pragma prf access K 1 k1
#pragma prf access K 2 k2

123

1198 Int J Parallel Prog (2018) 46:1185–1219

out[i][j] = (K[0]*in[i-1][j] + K[1]*in[i][j]
+ K[2]*in[i+1][j]) ...;

The code is then transformed as follows to simplify the computational kernel code
generation (see Sect. 5.3):

int in0 = in[pos-64];
int in1 = in[pos]
int in2 = in[pos+64]
int k0 = K[0];
int k1 = K[1];
int k2 = K[2];
out[i][j] = (k0*in0 + k1*in1 + k2*in2) ...;

5.2 PRF Customization

In this phase, the variables and the corresponding access patterns are analyzed to
customize the PRF and generate the corresponding HDL code. Each block stored in
the PRF is represented as a logical register, whose base address is used to access it from
the kernel. We also need to determine the shape and the corresponding dimensions
(horizontal and vertical length) based on the number of stored values and their data
types. Moreover, when a block stores an array with initial values (e.g., the array K in
our example), the corresponding registers are initialized with the values specified in
the XML file.

5.3 Code Generation

At this stage, the PRF has been already customized based on the information provided
by the Variable Extraction. Considering the simple example described above, the
variable in has been moved to the PRF and 129 consecutive elements are stored at
each moment. Each read operation will require three elements at specific locations,
as shown in Fig. 5. As a consequence, a simple implementation of the PRF for this
variable can provide a 96-bit interface to the kernel that is then unpacked to get the
actual values of in for the computation. However, note that this is just an example
of the implementation that can be obtained with our compiled-based methodology.

Fig. 5 Extraction of values from the parallel one provided by the PRF

123

Int J Parallel Prog (2018) 46:1185–1219 1199

More complex examples of PRF-based memory accesses can be found in Sect. 6.1.
For this reason, we implemented another source-to-source transformation to support
the subsequent HLS as a dynamic step in the LLVM compiler [6] (version 3.2). After
the PRF load, the code is restructured as follows:

in_prf = read_prf(in, pos);
k_prf = read_prf(k);
int in0 = trunk_32(in_prf >> 64);
int in1 = trunk_32(in_prf >> 32);
int in2 = trunk_32(in_prf);
int k0 = trunk_32(k_prf >> 64);
int k1 = trunk_32(k_prf >> 32);
int k2 = trunk_32(k_prf);
out[i][j] = (k0*in0 + k1*in1 + k2*in2) ...;

where read_prf is a support function that reads multiple values in parallel from the
PRF (based on the given configuration), while the function trunk_32 generates a
32-bit value starting from its parameter value.

Even such a simple example shows the potential advantages of PRFs. In fact, in the
resulting description, we require only twomemory operations, which are implemented
with customized parallel PRF accesses, for computing each output value (instead
of six). The time for performing the unpacking operations and extract the values
from the high-bandwidth memory interface is negligible because these are simply
bit-select operations.

6 Case Study

In this section,wefirst introduce our case study, namely the Separable 2DConvolution,
and a detailed description of the corresponding PRF architecture. We then present a
comprehensive exploration of the different PRF parameters (e.g., memory latency
and bandwidth) that can result from different organizations of the target architecture.
This study includes an analytical PRF validation and simulation-based results when
sweeping these values.

6.1 Vectorized Separable 2D Convolution

In this work, we use the Separable 2D Convolution as our case study. Convolution is
used among others in image and video processing for filtering signal values. For
example, Gaussian blur filters can be used to reduce the image noise and detail.
Another good example is the Sobel operator, popular in edge detection algorithms.
In addition, the Sobel operator is a separable function, allowing the use of two
consecutive 1D convolutions to produce the same result as a single, more compu-
tationally expensive, 2D convolution. The first 1D convolution filters the data in
the horizontal direction, followed by a vertical 1D convolution. We will exploit this
later.

123

1200 Int J Parallel Prog (2018) 46:1185–1219

In digital signal processing, each output of the convolution is computed as a
weighted sum of its neighboring data items. The coefficients of the products are
defined by a mask (also known as the convolution kernel), which is applied to all
elements of the input array. Intuitively, the convolution can be viewed as a blending
operation between the input signal and the mask (also referred to as aperture from
some applications prospective). Because there are no data dependencies, all output
elements can be computed in parallel, making this algorithm very suitable for efficient
parallel implementations with data reuse.

The dimensions of a convolution mask are usually odd, making it possible to posi-
tion the output element in the middle of the mask. For example, consider a ten-element
1D input I = [20 22 24 26 28 30 32 34 36 38] and a three-element mask
M = [2 5 11]. The 1D convolution output corresponding to the 3rd input (the one
with the value 24) is 2 · 22+ 5 · 24+ 11 · 26 = 450. Similarly, the output correspond-
ing to the 4th input (26) is obtained by shifting the mask by one position to the right:
2 · 24 + 5 · 26 + 11 · 28 = 486.

When the convolution algorithm is used for the elements close to the input edges,
the mask should be applied to elements outside the input array (to the left of the first
element, and to the right of the last element of the input vector). Obviously, some
assumptions have to be made for these “missing elements”. In this article, we will
refer to those as “halo” elements where a convention is made for their default values.
If we consider all halo elements to be all 0, the output corresponding to the 10th input
(38) is 2 · 36 + 5 · 38 + 11 · 0 = 262.

In the case of 2D convolution, both the input data and the mask are 2D matrices.
For example, let us consider the case of the following 9 × 9 input matrix:

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 5 7 9 11 13 15 17 19
13 15 17 19 21 23 25 27 29
23 25 27 29 31 33 35 37 39
33 35 37 39 41 43 45 47 49
43 45 47 49 51 53 55 57 59
53 55 57 59 61 63 65 67 69
63 65 67 69 71 73 75 77 79
73 75 77 79 81 83 85 87 89
83 85 87 89 91 93 95 97 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the 3× 3 mask M =
[

4 6 8
9 11 13
14 16 18

]
. Furthermore, the halo elements are assumed

to be 0 in this example. To compute the 2D convolution output on position (4, 7)
we first compute the point-wise multiplication of the 3 × 3 sub-matrix of the input[
33 35 37
43 45 47
53 55 57

]
with the mask, obtaining

[
132 210 296
387 495 611
742 880 1026

]
. By summing up all the ele-

ments of this matrix, the value 4779 is obtained. Since we assume the halo elements
to be 0, they do not contribute to the result and can therefore be omitted from the com-
putation. So, the result on position (1, 9) is computed by the point-wise multiplication
of the corresponding sub-matrices from the input

[
17 19
27 29

]
and the mask

[
9 11
14 16

]
,

obtaining
[
153 209
378 464

]
which accumulates to 1204.

123

Int J Parallel Prog (2018) 46:1185–1219 1201

Assuming the 2D mask has MASK_V rows and MASK_H columns, MASK_V ·
MASK_H multiplications required to compute a single element. On the other hand,
separable 2D convolutions (e.g., the Sobel operator) can be computed as two 1D con-

volutions on the same data. For example, in [32], the 2D convolution
[−1 0 1

−2 0 2
−1 0 1

]

is equivalent to first applying
[
1
2
1

]
and then [−1 0 1]. Separable 2D convolutions

are widely used because fewer arithmetic operations are required as compared to the
regular 2D convolution. In our example, onlyMASK_V+MASK_Hmultiplications
are needed for each output element. Moreover, separable 2D convolutions are more
suitable for blocked SIMD execution because the individual 1D convolutions have
fewer data dependencies between blocks. In this work, we focus on separable 2D con-
volutions. Separable 2D convolutions consist of two data dependent steps: a row-wise
1D convolution on the input matrix followed by a column-wise 1D convolution. The
column-wise access involves strided memory accesses, which may degrade perfor-
mance due to bank conflicts. In order to avoid these strided memory accesses, we
need to transpose the 1D convolution outputs while processing the data. This can be
performed conflict-free by using our Row Column (RoCo) scheme [9].

A vectorized separable 2D convolution algorithm, which avoids strided memory
accesses when accessing column-wise input data, is introduced in [12]. The input
matrix containsMAX_V×MAX_H elements. The two masks used for row-wise and
column-wise convolutions haveMASK_H and MASK_V elements respectively. We
will refer to both as MASK_H, since both convolution steps are handled identically
by the PRF. The PRF algorithm processes the input in blocks of VSIZE × HSIZE
elements, vectorizing the computation along both the horizontal and the vertical axes.
For clarity, we only present the steps required to perform one convolution step. The
same code should be executed twice, once for the row-wise convolution and the second
time for the column-wise version. The data will be processed VSIZE rows at a time.
Without loss of generality, we assume that MAX_V%VSIZE = 0 and MASK_H =
2 · R + 1, where the convolution Radius R is a positive integer.

Because special care needs to be taken at the borders of the input, the vectorized
algorithm has three distinct parts: the first (left-most) block, the main (middle) sec-
tions, and the last (right-most) one. The first iteration of the convolution takes into
consideration the R halo elements to the left of the first input elements. Similarly, the
last iteration handles the R halo elements on the right. The only modification required
by the first and last iterations is resizing the PRF logical registers. However, the opera-
tions performed remain the same.We assume the dimensions of the input data aremuch
larger than the processed block, allowing us to focus on the main convolution itera-
tions. Moreover, in this scenario, the time required to define the PRF logical registers
becomes insignificant compared to the memory and arithmetic operations. Therefore,
in the rest of this section we only consider the memory and arithmetic operations of
the main convolution iterations.

The row-wise convolution requires the following steps:

1. Row-wise Load VSIZE × HSIZE input elements;
2. Row-wise Convolution withVSIZE×HSIZE×MASK_H arithmetic operations

(multiply-and-accumulate);

123

1202 Int J Parallel Prog (2018) 46:1185–1219

3. Column-wise Store VSIZE × HSIZE results;
4. Left Move VSIZE × R input elements used as halos by the next iteration;
5. If unprocessed data remains, go to step 1.

6.2 Polymorphic Register File Architecture

The main challenge when implementing the Polymorphic Register File in hardware
is the design of the parallel memory used to instantiate the logical registers capa-
ble of supplying multiple data elements at each clock cycle. Furthermore, a realistic
implementation requires multiple register file ports. It is important that our parallel
memory design is implementable with practically feasible clock frequency and power
consumption in contemporary technologies. We envision that the extra logic required
to resolve dependencies between instructions does not contribute significantly to the
total PRF area as compared to the 2D memory complexity. Furthermore, this addi-
tional logic will not appear on the critical path of the PRF hardware implementation
[5]. Therefore, we implement a parallel memory corresponding to the left part of Fig. 1
only.We have not implemented the Special Purpose Registers or other additional logic
needed in a complete PRF design.

The PRF contains N ×M data elements, distributed among p×q physical memory
modules, organized in a 2D matrix with p rows and q columns. Depending on the
parallel memory scheme employed, such an organization allows the efficient use of
up to p · q lanes. The data width of each memory module is sram_width. The number
of lanes is n_lanes = p · q.

For simplicity, in Figs. 6 and 7, we only show the signals required for 1 read and
1 write ports. In the actual design, the signals are replicated according to the actual
number of read and write ports. Figure 6(a) shows all inputs and outputs of our PRF
design, and specifies the bit-width of each signal. The solid lines indicate the data
signals, while the dashed lines are used for address and control signals. The inputs
and outputs of our top level module, depicted in Fig. 6a, are:

1. Prf_data_in and prf_data_out the PRF input and output data, for n_lanes vector
lanes and a data path sram_width bits wide;

2. Memory_scheme the parallel memory scheme, which can be one of the following:
(a) Rectangle Only; (b) Rectangle Row; (c) Rectangle Col; (d) Row Col; and (e)
Rectangle Transposed Rectangle;

3. Read/write control signals enabling reads and writes to the PRF;
4. Read/write i, j the upper left read/write block coordinate, log2N/log2M bits wide;
5. Read/write access type the shape of the read/write block, which can be one of the

following: (a) rectangle; (b) row; (c) column; (d) main diagonal; (e) secondary
diagonal; and (f) transposed rectangle;

6. Clock the clock signal.

TheAddress GenerationUnit (AGU) is shown in Fig. 6b. Starting from i and j—the
upper left coordinates of the block being accessed and the access type (e.g., rectangle),
the AGU computes the individual coordinates of all PRF elements which are accessed.
For example, if a p× q rectangle is accessed, the AGU computes p · q pairs of values
(i + α, j + β) , α ∈ [0 . . . p − 1] , β ∈ [0 . . . q − 1].

123

Int J Parallel Prog (2018) 46:1185–1219 1203

(a)

(b)

(c)

(d)

(f)

(h)(g)

(e)

Fig. 6 PRF blockmodules. a PRF topmodule, bAddress GenerationUnit, cModuleAssignment Function,
dCustomizedAddressing coefficients, eStandardAddressingFunction, f CustomizedAddressingFunction,
g Read/Write Shuffle, h SRAM modules

A PRF data element with coordinates i + α, j + β is assigned to one of the mem-
ory modules using the Module Assignment Function (MAF) m (Fig. 6c). The MAF
computes the vertical and horizontal indexes of the corresponding memory module
(select_v and select_h). The intra-module address is computed using one of the two
Addressing Function modules A:

– The Standard Addressing Function (Fig. 6e) computes the intra-module address
using the individual coordinates of all the elements which are being accessed (i+α

and j + β, computed by the AGU);
– The Customized Addressing Function (Fig. 6f) only requires the coordinates of
the accessed block (i and j), and two additional coefficients ci and c j . These
coefficients are computed independently for each memory module using the coor-

123

1204 Int J Parallel Prog (2018) 46:1185–1219

Table 1 The ω constants p/q 2 4 8
2 1 1 1
4 3 1 1

(a) ωq+1

p/q 2 4 8
2 1 1 1
4 1 3 3

(b) ωq−1

p/q 2 4 8
2 1 3 3
4 1 1 5

(c) ωp+1

p/q 2 4 8
2 1 1 1
4 1 3 3

(d) ωp−1

dinates of the block (i and j), the position of each memory module in the p × q
matrix (denoted as k and l in Fig. 6d) and the access type (e.g., main diagonal).
In order to compute these coefficients for the main and secondary diagonals, the
ω constants are to be computed, which represent the multiplicative inverses of the
pairs (q + 1; p), (q − 1; p), (p + 1; q) and (p − 1, q). Table 1 contains the ω

constants for p = 2 . . . 4 and q = 2 . . . 8.

The Read and Write Shuffles (Fig. 6g) rearrange the inputs according to the select
signals. The shuffle_in inputs are sram_width bits wide for each lane. The select
signals (select_v and select_h), computed using the Module Assignment Function,
specify the position of each output (shuffle_out). Figure 6h describes the Memory
Modules, while the block diagrams of the read path for an 8 vector lane PRF, with
p = 2 and q = 4, are shown in Fig. 7a. The inputs are the coordinates of the data
block which is being read (i and j), and the shape of the block (set by Access Type).
The data output (PRF Data Out) consists of 8 elements. The AGU computes the
individual coordinates of all the data elements which are accessed and forwards them
to the Module Assignment and the intra-module Addressing functions. The MAF m
controls the read data shuffle, which reorders the data. Since accessing the memory
modules introduces a delay of one clock cycle, the select signals for the data Shuffle
block should be delayed accordingly. The Address Shuffle is required to provide the
correct address to memory modules. Figure 7b depicts the PRF write path when using
the customizedAddressing Function. The data input (PRFData In) has 8 elements and
the same control signals as described above. In this case, the address shuffle is avoided,
as the customized addressing function provides the correct address to each memory
module using ci and c j . Figure 7c superimposes the standard and customized block
diagrams. The shaded blocks, part of the standard design, are replaced by the ci and
c j coefficients and the customized addressing function to simplify the organization.

FPGA Set-Up As a proof of concept, we implemented a PRF prototype design in
SystemVerilog (excluding the Special Purpose Registers) with 2 read and 1 write ports
with 64-bit data path, using Synplify Premier F-2011.09-1, and targeting a Virtex-7
XC7VX1140T-2. This prototype implementation uses full crossbars as read and write
address shuffle blocks. We have coupled two dual-port BRAMs and duplicated the
data in order to obtain 2 read and 1 write ports.

ASIC Set-UpWe synthesized a PRF prototype design with two read and one write
ports with 64-bit data path described in SystemVerilog, targeting the TSMC 90 nm
technology.We used SynopsysDesignCompiler Ultra version F-2011.09-SP3 in topo-
graphical mode, which accurately predicts both leakage and dynamic power with
standard switching activity. In all experiments, the tool was configured to optimize for
best timing. In all considered designs, the shuffle networks have been implemented
using full crossbars. Using the Artisan memory compiler, a 1 GHz 256× 64-bit dual-

123

Int J Parallel Prog (2018) 46:1185–1219 1205

(a) (b)

(c)

Fig. 7 PRF block diagrams, 8 lanes, p = 2, q = 4. a Standard Addressing Read, bCustomized Addressing
Write, c Superimposed Read / Write Standard and Customized Addressing

123

1206 Int J Parallel Prog (2018) 46:1185–1219

Table 2 128 KB PRF maximum
clock frequency (MHz)

Target/number
of lanes

8 (2 × 4) 16 (2 × 8) 32 (4 × 8) 64 (4 × 16)

TSMC 90 nm ASIC 909.1 847.5 813.0 613.5

VX1140T FPGA 194.0 165.4 118.9 –

Table 3 128 KB PRF Virtex-7
FPGA resource usage

Resource/number of lanes 8 (2 × 4) 16 (2 × 8) 32 (4 × 8)

BRAMs 64 (10%) 64 (10%) 96 (15%)

LUTs 4699 (<1%) 18207 (2%) 76406 (8%)

port SRAM register file was generated and used as the atomic storage element for our
PRF.When the required capacity of the memory modules exceeded the available max-
imum of 256 64-bit elements, several SRAMmodules were used together to aggregate
the overall capacity. We coupled two dual-port SRAMs and duplicated their data in
order to feature two read ports.

The synthesis results for TSMC 90 nm ASIC and Virtex-7 XC7VX1140T-2 FPGA
for a 128 × 128 (128 KB) PRF with two read ports and one write port employing the
customized RoCo memory scheme are presented in Tables 2 and 3. The difference
in clock frequency between the ASIC and the FPGA implementations is 4.7X for a
8-lane PRF and 6.8X for a 32-lane PRF. Table 3 presents the usage of BRAMs and
LUTs when targeting the FPGA. For configurations featuring up to 32 lanes, less than
10% of the available LUTs are used. The FPGA LUT usage grows quadratically when
increasing the number of lanes, increasing up to 8% for the 32-lane PRF. For 128 KB
PRFs, the BRAM usage varies between 10 and 15%.

6.3 Analytical Validation

We first analytically estimate the speed-up potentially introduced by the PRFs in the
target architecture. The PRF read and write ports can provide multiple data elements
simultaneously to L computational lanes. Assuming sufficient memory bandwidth
and functional units, each convolution step can execute up to L times faster. Our
estimations assume the following row-wise convolution scenario: 32 × 32 × 64-bit
elements block size (HSIZE = VSIZE = 32), 9 elements mask size (R = 4) and the
multiply-and-accumulate latency is 12 clock cycles. In this experiments, we vary the
average memory-load latency from 1 to 200 clock cycles.

Table 4 shows the estimated convolution execution time expressed in clock cycles,
along with the estimated duration of the Load, Convolution, Move, and Store phases.
In the baseline case (1 Lane), the PRF can only provide one data element per port at
each clock cycle. This corresponds to using a simple serial memory for storing the
input and output convolution data. For the baseline scenario and 100-cycle load latency,
1024 data elements need to be loaded, which takes 1124 clock cycles. The convolution
requires 32 · 32 · 9 = 9216 multiply-and-accumulate operations which consume 9228

123

Int J Parallel Prog (2018) 46:1185–1219 1207

cycles. Similarly, we estimate the duration of the halomoving stage as 128 cycles since
4 · 32 elements need to be moved. In this case, storing 1024 data elements is expected
to take 1024 cycles. The combined duration of the four convolution steps is 11,504
cycles. The rows for the other memory latencies are computed in a similar fashion.
For the other columns of Table 4, we estimate the number of cycles by considering
the load and multiply-and-accumulate latencies and dividing the remaining cycles by
the number of PRF lanes.

The absolute speedups for all scenarios presented in Table 4 are shown in Fig. 8a
and the relative speedups are illustrated in Fig. 8b. The absolute speedup is estimated
by using the single-lane PRF as baseline. The fastest configuration is the 256-lane,
1-cycle latency scenario, having a speedup of 197X. For the same number of lanes
and a latency of 200 cycles, the estimated absolute speedup is 45X. For each scenario,
we estimate the relative speedup of each PRF with respect to the one with half as
many lanes (e.g., the 1-lane PRF is the baseline for the 2-lane relative speedup, 2-
lane PRF is the baseline for the 4-lane PRF, etc.). The relative speedup is useful
for estimating the efficiency of a multi-lane PRF implementation and measures the
performance improvements when doubling the number of PRF lanes. As expected,
Fig. 8b suggests that the memory latency becomes more important as the number of
PRF lanes increases. A 256-lane PRF is estimated to be only 17% faster than the
128-lane configuration when the memory latency is 200 cycles. If the load latency
would be reduced to 1 cycle, a 256-lanes PRF becomes 76% faster than a 128-lane
configuration. Figure 8c shows the estimated PRF speedups for two load latencies: 11
cycles and 100 cycles. This corresponds to the expected latencies of the architectures
presented in Fig. 2b with and without the local SPM, respectively. The absolute and
relative speedups are illustrated with solid and dashed lines, respectively. The 100-
cycle latency is representative for accessing data inDRAM,while the 11-cycle is closer
to a scenario with on-chip memory [33]. In case of 256 lines, we forecast a speedup
of 73X with a 100-cycle latency and a speedup of 168X with a 11-cycle latency. For
the 100-cycle latency, a 32-lane PRF is 76% times faster than a 16-lane configuration.
Furthermore, the efficiency of addingmore lanes decreases below 50%withmore than
64 lanes, as 128 lanes are only 44% faster than the 64 lanes. When the load latency
is 11 cycles, a 32-lane PRF becomes 94% faster than a 16-lane configuration, with an
efficiency for having 128 lanes of 79%. A 75% efficiency can be obtained for up to
32 lanes for a 100-cycle load latency. On the other hand, with a latency of 11 cycles,
up to 128 lanes can be efficiently utilized (more than 75% of relative speedup). In the
following, we focus on a scenario with an on-chip SPM having a latency of 11 cycles
(i.e., the LS latency of the Cell processor [33]).

6.4 Simulation-Based Analysis of Architectural Parameters

For conducting our analysis, we use the single-core simulation infrastructure described
in [5]. The PRF is implemented as part of the Scientific Vector Accelerator (SVA),
which processes data from its Local Store (LS). We assume that all input data are
present in the LSwhen the SVA starts processing. This situation is practically achieved
with DMA transfers and double buffering, masking the communication overhead. Fur-

123

1208 Int J Parallel Prog (2018) 46:1185–1219

Ta
bl
e
4

C
on
vo
lu
tio

n
es
tim

at
ed

ex
ec
ut
io
n
tim

e
(c
yc
le
s)

L
oa
d

la
te
nc
y

(c
yc
le
s)

St
ag
e\
la
ne
s

1
2

4
8

16
32

64
12

8
25

6

1
10

25
51

3
25

7
12

9
65

33
17

9
5

11
10

35
52

3
26

7
13

9
75

43
27

19
15

50
L
oa
d

10
74

56
2

30
6

17
8

11
4

82
66

58
54

10
0

11
24

61
2

35
6

22
8

16
4

13
2

11
6

10
8

10
4

20
0

12
24

71
2

45
6

32
8

26
4

23
2

21
6

20
8

20
4

–
C
on
vo
lu
tio

n
92

28
46

20
23

16
11

64
58

8
30

0
15

6
84

48

–
M
ov
e

12
8

64
32

16
8

4
2

1
1

–
St
or
e

10
24

51
2

25
6

12
8

64
32

16
8

4

1
11

40
5

57
09

28
61

14
37

72
5

36
9

19
1

10
2

58

11
11

41
5

57
19

28
71

14
47

73
5

37
9

20
1

11
2

68

50
To

ta
l

11
45

4
57

58
29

10
14

86
77

4
41

8
24

0
15

1
10

7

10
0

11
50

4
58

08
29

60
15

36
82

4
46

8
29

0
20

1
15

7

20
0

11
60

4
59

08
30

60
16

36
92

4
56

8
39

0
30

1
25

7

123

Int J Parallel Prog (2018) 46:1185–1219 1209

(a)

(b)

(c)

Fig. 8 Convolution Estimated Speedup. a Absolute Speedup, b Relative Speedup, c Combined Speedup

123

1210 Int J Parallel Prog (2018) 46:1185–1219

Table 5 Vector lanes range providing at least 75% efficiency

LS bandwidth / Mask Size 3 × 3 5 × 5 9 × 9 17 × 17 33 × 33

16 Bytes/Cycle 2 4 8 16 32

32 Bytes/Cycle 4 8 8 16 32

64 Bytes/Cycle 4 8 16 32 32

128 Bytes/Cycle 4 8 16 32 64

256 Bytes/Cycle 4 8 16 32 64

thermore, we assume only 1D contiguous vector loads and stores. Therefore, a simpler
multi-bank LS, which uses low-order interleaving, can provide sufficient bandwidth
for the PRF.We set the LS access latency to 11 cycles, taking into account the overhead
incurred by the 1D vector memory accesses, and we vary the bandwidth between the
PRF and the LS starting from 16 Bytes/Cycle, equal to the bus width used in the Cell
processor between the Synergistic Processor Unit and its LS. Exploring these values
corresponds to analyzing different architectural templates. This way, the designer can
obtain practical guidelines on how to configure the PRF based on the characteristics
of the target platform.

We compare our solution with the execution of the same 2D separate convolution
on a NVIDIA Tesla C2050 GPU [34], which is based on the Fermi architecture.
The C2050 has a 384-bit memory interface connected to a 3 GB off-chip GDDR5
memory clocked at 1.5 GHz, with a memory bandwidth of 144 GB/s. The maximum
power consumption of the C2050 is 247W. The C2050 GPU consists of 14 Streaming
Multiprocessors, each one with 32 SIMD lanes (also known as CUDA cores), 64 KB
of private RAM, and 768 KB unified L2 cache. The C2050 features a total of 448
SIMD lanes running at 1.15 GHz. This clock frequency is comparable to our ASIC
synthesis results for the PRF [35]. Therefore, we express the throughput for both the
PRF and the NVIDIA C2050 in terms of pixels/1000 cycles. The absolute throughput
in pixels/s can be easily obtained by correlating our simulation results with the PRF
configurations clock frequencies in Table 2 for both ASIC and FPGA technologies.

We study the throughput of multiple PRF configurations, ranging from 1 to 256
vector lanes. The peak throughput for the C2050 was obtained for an image size
of 2048 × 2048 elements, which is the size we will use in our comparison study
below.The details regarding the separable convolution implementation on theNVIDIA
C2050GPUused as a baseline here can be found in [32]. The input data for the PRFwas
set to 128× 128 elements, as larger inputs did not additionally improve performance.
The mask sizes are varied between 3× 3 and 33× 33 elements, representing realistic
scenarios. For the PRF experiments, we selected HSIZE = VSIZE = 32.

Next, we present two pairs of figures for each considered LS bandwidth. The first
one, which we will refer to as the A-set (Figs. 9a, 10a, 11a, 12a and 13a) depicts
the absolute throughput measured in Pixels/1000 cycles. The second set of figures,
referred to as the B-set (Figs. 9b, 10b, 11b, 12b and 13b), quantifies the relative
throughput improvement when doubling the number of PRF lanes (e.g., the 16-lane
PRF relative performance improvement uses the 8-lane PRF as its baseline) and is

123

Int J Parallel Prog (2018) 46:1185–1219 1211

(a)

(b)

Fig. 9 Throughput, Input size = 128× 128, LS BW = 16 Bytes/Cycle. a Throughput, b Relative perfor-
mance improvement (in %)

measured in %. For the B-set figures, for each considered mask size, the baseline PRF
configuration has half as many vector lanes. For example, for the 3 × 3 mask size,
the baseline for the relative throughput increase of the 256-lane PRF is the 128-lane
PRF. In addition, Table 5 quantifies the trends between LS bandwidth, mask size and
multi-lane efficiency by summarizing the B-set of figures. For each LS bandwidth and
each mask size, the highest number of lanes which can be used with an efficiency of
at least 75% is shown. This represents the maximum configuration in which it was
convenient to double the number of lanes with respect to the previous configuration.

With a LS bandwidth equal to 16 Bytes/Cycle, the GPU is faster than the PRF
for small masks of 3 × 3 or 5 × 5 (Fig. 9a). In fact, the PRF is limited by the LS
bandwidth when more than 8 lanes are used. However, as the mask size grows, the
convolution becomes more computationally expensive and the throughput of the GPU
decreases. Conversely, the PRF scales well with the number of lanes and outperforms
the GPU starting from 9× 9 masks. For a 256-lane PRF configuration, the throughput
improvement varies between 1.95X (9 × 9 mask) up to 25.6X (33 × 33 mask). For

123

1212 Int J Parallel Prog (2018) 46:1185–1219

(a)

(b)

Fig. 10 Throughput, Input Size = 128 × 128, LS BW = 32 Bytes/Cycle. a Throughput, b Relative
performance improvement (in %)

17 × 17 masks, as depicted in Fig. 9b, doubling the number of vector lanes from 8 to
16 increases throughput by 83%, compared to 9% in the 9 × 9 convolution. For the
33 × 33 mask, only the 1-lane PRF provides less throughput than the GPU. The PRF
performance saturates with 32 lanes, and using 64 lanes can increase the throughput
by only 7%. For the 3 × 3 mask, a 2-lane PRF is the most efficient (see Table 5). In
case of 33 × 33 masks, up to 32 lanes can be efficiently used.

When doubling the LS bandwidth to 32 Bytes/Cycle, as shown in Fig. 10a, 8 vector
lanes are sufficient for the PRF to match the GPU performance for a 5×5 mask, while
only 4 lanes are required for 9× 9 masks. When increasing the number of lanes from
2 to 4 for 3× 3 masks, the throughput increases by 86%. The relative efficiency drops
to 21% for 8 lines. For 17× 17 masks, a 32-lane PRF provides 57% more throughput
than 16 lanes, but then saturates as only 3% extra performance can be gained with 64
lanes. For the largest mask (i.e. 33× 33), the PRF performance begins to saturate for
configurations having 64 lanes. Doubling the number of lanes from 64 to 128 only
increases throughput by 4%. Table 5 suggests that, compared to the 16 Bytes/Cycle

123

Int J Parallel Prog (2018) 46:1185–1219 1213

(a)

(b)

Fig. 11 Throughput, Input size = 128 × 128, LS BW = 64 Bytes/Cycle. a Throughput, b Relative
performance improvement (in %)

bandwidth scenario, we can efficiently use up to 4 lanes for 3 × 3 masks, and 8 lanes
for 5× 5 masks. However, 16 lanes can be used with 65% efficiency for 9× 9 masks,
while 32 and 64 lanes achieve efficiencies higher than 50% for 17 × 17 and 33 × 33
masks, respectively.

When the LS bandwidth is set to 64 Bytes/Cycle as shown on Fig. 11a, the peak
throughput of 16-lane PRFs more than doubles for 3 × 3 masks compared to the
scenario where the LS provides only 16 Bytes/Cycle (Fig. 9a). In order to match the
GPU throughput, 4 lanes are required for 9 × 9 masks. To outperform the GPU, 8
lanes are sufficient for 9×9 masks, while only 2 lanes are required for 33×33 masks.
Figure 11b shows that the 16-lane PRF outperforms the 8-lane configuration by only
5%when using a 3×3mask. The advantage is increased to 30% for the 5×5mask and
to 81% for the 9×9 case. For the 33×33 mask, the 256-lane PRF is around 2% faster
than the 128-lane one, and 20% faster than the 64-lane configuration. Table 5 suggests
that compared to the scenario where the LS delivers data at a rate of 32 Bytes/Cycle

123

1214 Int J Parallel Prog (2018) 46:1185–1219

(a)

(b)

Fig. 12 Throughput, Input Size = 128 × 128, LS BW = 128 Bytes/Cycle. a Throughput, b Relative
performance improvement (in %)

32 lanes can be efficiently used starting from 17× 17 masks. A 64-lane configuration
provides 71% more throughput than 32 lanes for 33 × 33 masks.

Figure 12a presents the scenario with a LS bandwidth of 128 Bytes/Cycle. For the
3 × 3 and 5 × 5 masks, performance saturates with 16 lanes, which offer only 7 and
37% extra throughput, respectively, compared to an 8-lane PRF. Figure 12b shows that
for the 5×5 mask, switching from 16 to 32 lanes translates into only 4% performance
improvement, and adding more lanes does not further increase the throughput. For
9×9 masks, using 32 lanes increases the throughput by 27% compared to the 16-lane
PRF. When using larger masks, doubling the number of lanes up to 32 increases the
throughput by 80 and 90% for the 17 × 17 and 33 × 33 masks, respectively. With
33× 33 masks, the efficiency of adding more lanes starts decreasing from the 64-lane
configuration which offers a 75% improvement. Doubling the number of lanes (from
64 to 128) increases the throughput by just 21%. Table 5 shows that, compared to a
64 Bytes/Cycle bandwidth, increasing the number of lanes from 32 to 64 improves
the throughput by 75%.

123

Int J Parallel Prog (2018) 46:1185–1219 1215

(a)

(b)

Fig. 13 Throughput, Input Size = 128 × 128, LS BW = 256 Bytes/Cycle. a Throughput, b Relative
performance improvement (in %)

Figure 13a, b illustrate the scenario of a LS bandwidth of 256 Bytes/Cycle. The
PRF performance only increases by less than 1% compared to the previous scenario
(128Bytes/Cycle). In this case, thePRFperformance ismainly limited by the latency of
the LS and, as a consequence, there are no improvements in increasing the bandwidth.

Figure 14a, b summarize the A-set Figs. 9a, 10a, 11a, 12a and 13a and illustrate
the PRF throughput improvement using the NVIDIA C2050 GPU as the baseline. In
these figures, the mask size is constant (9 × 9 and 33 × 33, respectively) in order to
determinewhether theLSbandwidth represents a performance bottleneck for a specific
PRF configuration. The two figures suggest that, for each LS bandwidth configuration,
it is possible to identify a threshold after which there is little to no performance gain
from increasing the number of lanes. This is summarized in Table 5.

For the 9× 9 mask size (Fig. 14a), the highest throughput improvement for a 256-
lane PRF ranges from 1.95X for a LS bandwidth of 16 Bytes/Cycle and 4.39X for
the 256 Bytes/Cycle scenario. The results suggests that for PRF configurations with
a small number of lanes (e.g., the 8-lane configuration), increasing the LS bandwidth

123

1216 Int J Parallel Prog (2018) 46:1185–1219

(a)

(b)

Fig. 14 Throughput improvement versus NVIDIA C2050 GPU, fixed mask size. a Mask Size = 9 × 9. b
Mask Size = 33 × 33

will not improve the throughput. However, starting from the 16-lane PRF, there is
a noticeable performance improvement when the LS bandwidth is increased up to
64 Bytes/Cycle. The results suggest that for 9×9 masks, increasing the LS bandwidth
beyond 64 Bytes/Cycle does not offer performance advantages.

When the Mask Size is fixed at 33× 33 (Fig. 14b), the 256-lane PRF improves the
throughput of the NVIDIA GPU 25.60X for a LS bandwidth of 16 Bytes/Cycle and
up to 56.17X for a bandwidth of 256 Bytes/Cycle. The 64 Bytes/Cycle case offers
more than 93% of the performance of the 256 Bytes/Cycle scenario, a result similar
to the 9 × 9 mask scenario. For 9 × 9 masks, a bandwidth larger than the baseline
16 Bytes/Cycle improves performance for PRFs with 16 or more lanes. However,
for 33 × 33 masks, only PRF configurations with 64 lanes or more benefit from
LS bandwidths larger than 16 Bytes/Cycle. This interesting result suggests that for
separable 2D convolution, the point at which the LS bandwidth becomes a bottleneck
depends not only on the number of PRF lanes but also on the specific mask size used.
More specifically, the smaller themask size used, the fewer PRF lanes can be employed
without the LS bandwidth becoming the bottleneck.

123

Int J Parallel Prog (2018) 46:1185–1219 1217

Figure 14a, b suggest that, for 256-lane PRFs, scaling LS bandwidth from 16 to
256 Bytes/Cycle can increase the performance by a factor of 2.24X for 9 × 9 masks
and 2.19X for 33 × 33 masks.

All of the above supports our claim that, depending on the configuration, the PRF
brings large benefits for a system performing a separable 2D convolution of various
mask sizes. The PRF can be proportionally adjusted to the instant requirements of
the running algorithm. Moreover, the results discussed above confirm the close rela-
tionship between the mask size, the available LS bandwidth and the PRF scalability
with the number of vector lanes. By increasing the mask size, the input data can be
reused for more operations in the PRF, allowing the efficient use of multiple vector
lanes. Depending on the mask size and the number of PRF lanes employed, the 2D
convolution kernel can be memory bandwidth limited. The results show that for 256-
lane PRFs increasing the LS bandwidth from 16 to 64 Bytes/Cycle leads to more than
double improvement of the PRF throughput.

In a more generic scenario, unused vector lanes can be switched off in order to save
power. Furthermore, the interface between the LS and the PRF can be customized
in order to provide sufficient bandwidth for the high-end configurations with many
vector lanes, or to save resources and power when fewer lanes are needed. This can
further enhance the runtime adaptability of the computing system in combination with
the ability to resize the vector registers in the PRF.

7 Conclusions

This article analyzed the impact of Polymorphic Register Files (PRFs) on state-of-the-
art dataflow computing systems. First, it presents a semi-automatic methodology for
integrating PRFs in existing architectures. Specifically, our compiler-based methodol-
ogy extracts the information provided by the designer, integrates and customizes the
corresponding registers accordingly, and properly modifies the computational kernels
in order to exploit the parallel memory accesses. Next, we presented our separable 2D
convolution case study to quantify PRF advantages in dataflow computing.We studied
the impact of thememory-load latency.Our estimations suggested that PRFs canpoten-
tially speed up the convolution algorithm on dataflow computing platforms by up to
two orders of magnitude. Furthermore, we evaluated the performance of the separable
2D convolution algorithm executing on multi-lane PRFs, and compared its throughput
against a state-of-the-art NVIDIA Tesla C2050 GPU.We gained throughput improve-
ments by up to 56.17X and showed that the PRF-augmented system outperforms the
GPU for 9× 9 or larger mask sizes, even in bandwidth-constrained systems. Further-
more, our experiments show that PRFs with large number of lanes are more efficient
for large convolutionmasks. For small mask sizes, the 2D convolution kernel is mainly
constrained by the available bandwidth to the Local Store.

Acknowledgements The authors would like to thank Wen-Mei W. Hwu and Nasser Salim Anssari from
the University of Illinois at Urbana-Champaign for assisted us with obtaining the NVIDIA Tesla C2050 2D
separable convolution results. This work was partially funded by the European Commission in the context
of the FP7 FASTER Project (#287804) and the EUHorizon 2020 research and innovation programme under
Grant No. 671653.

123

1218 Int J Parallel Prog (2018) 46:1185–1219

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Gschwind,M., Hofstee, H., Flachs, B., Hopkin,M.,Watanabe, Y., Yamazaki, T.: Synergistic processing
in Cell’s Multicore Architecture. IEEE Micro 26(2), 10–24 (2006)

2. Maxeler MaxWorkstation. http://www.maxeler.com/products/desktop/
3. Tomas, C., Cazzola, L., Oriato, D., Pell, O., Theis, D., Satta, G., Bonomi, E.: Acceleration of the

anisotropic PSPI imaging algorithm with Dataflow Engines. In: Society of Exploration Geophysicists
(SEG) Technical Program Expanded Abstracts, pp. 1–5 (2012)

4. Fu, H., Osborne, W., Clapp, R., Mencer, O., Luk, W.: Accelerating seismic computations using cus-
tomized number representations on FPGAs. EURASIP J. Embed. Syst. 2009(1), 1–13 (2009)

5. Ciobanu, C.: Customizable Register Files for Multidimensional SIMD Architectures. PhD Thesis,
Delft University of Technology, Delft, March (2013)

6. The LLVM Compiler Infrastructure. http://llvm.org
7. Ramirez, A., Cabarcas, F., Juurlink, B., Alvarez Mesa, M., Sanchez, F., Azevedo, A., Meenderinck,

C., Ciobanu, C., Isaza, S., Gaydadjiev, G.: The SARC architecture. IEEE Micro 30(5), 16–29 (2010)
8. Ciobanu, C., Kuzmanov, G.K., Ramirez, A., Gaydadjiev, G.N.: A Polymorphic Register File for matrix

operations. In: Proceedings of SAMOS, pp. 241–249. July (2010)
9. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: On implementability of Polymorphic Register Files.

In: Proceedings of ReCoSoC, pp. 1–6 (2012)
10. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: Scalability study of Polymorphic Register Files. In:

Proceedings of DSD, pp. 803–808 (2012)
11. Ciobanu, C., Martorell, X., Kuzmanov, G.K., Ramirez, A., Gaydadjiev, G.N.: Scalability evaluation of

a Polymorphic Register File: a CG case study. In: Proceedings of ARCS, pp. 13–25 (2011)
12. Ciobanu, C., Gaydadjiev, G.: Separable 2D Convolution with Polymorphic Register Files. In: Proceed-

ings of ARCS, pp. 317–328 (2013)
13. Kuck, D., Stokes, R.: The Burroughs Scientific Processor (BSP). IEEE Trans. Comput.C–31(5), 363–

376 (1982)
14. Juurlink, B., Cheresiz, D., Vassiliadis, S., Wijshoff, H.A.G.: Implementation and Evaluation of the

Complex Streamed Instruction Set. In: Proceedings of PACT, pp. 73–82 (2001)
15. Panda, D., Hwang, K.: Reconfigurable Vector Register Windows for fast matrix computation on the

orthogonal multiprocessor. In: Proceedings of ASAP, pp. 202–213, 5–7 (1990)
16. Corbal, J., Espasa, R., Valero, M.: MOM: a matrix SIMD Instruction Set Architecture for multimedia

applications. In: Proceedings of the ACM/IEEE SC99 Conference, pp. 1–12 (1999)
17. Shahbahrami, A., Juurlink, B., Vassiliadis, S.: Matrix Register File and extended subwords: two tech-

niques for embedded media processors. In: Computing Frontiers ’05, pp. 171–180. May (2005)
18. Derby, J.H., Montoye, R.K., Moreira, J.: VICTORIA: VMX indirect compute technology oriented

towards in-line acceleration. In: Proceedings of CF, pp. 303–312 (2006)
19. Park, J., Park, S.-B., Balfour, J.D., Black-Schaffer, D., Kozyrakis, C., Dally, W.J.: Register Pointer

Architecture for efficient embedded processors. In: Proceedings of DATE, pp. 600–605 (2007)
20. Osburn, J., Anderson, W., Rosenberg, R., Lanzagorta, M.: Early experiences on the NRL Cray XD1.

In: HPCMP Users Group Conference, pp. 347–353 (2006)
21. Cray XR1 Reconfigurable Processing Blade. http://www.cray.com/Assets/PDF/products/xt/Cray

XR1Blade
22. SGI Altix 4700. http://www.sgi.com/products/servers/?/4000/configs.html
23. Stojanovic, S., Bojic, D., Bojovic, M., Valero, M., Milutinovic, V.: An overview of selected hybrid and

reconfigurable architectures. In: Proceedings of ICIT, pp. 444–449 (2012)
24. Brewer, T.M.: Instruction set innovations for the convey HC-1 computer. IEEE Micro 30(2), 70–79

(2010)
25. Nane, R., Sima, V.-M., Pilato, C., Choi, J., Fort, B., Canis, A., Chen, Y.T., Hsiao, H., Brown, S.,

Ferrandi, F., Anderson, J., Bertels, K.: A survey and evaluation of FPGA High-Level Synthesis tools.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(10), 1591–1604 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://www.maxeler.com/products/desktop/
http://llvm.org
http://www.cray.com/Assets/PDF/products/xt/CrayXR1Blade
http://www.cray.com/Assets/PDF/products/xt/CrayXR1Blade
http://www.sgi.com/products/servers/?/4000/configs.html

Int J Parallel Prog (2018) 46:1185–1219 1219

26. Villarreal, J., Park, A., Najjar, W., Halstead, R.: Designing modular hardware accelerators in C with
ROCCC 2.0. In: Proceedings of FCCM, pp. 127–134 (2010)

27. Pilato, C., Mantovani, P., Di Guglielmo, G., Carloni, L.P.: System-level optimization of accelerator
local memory for heterogeneous systems-on-chip. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 36(3), 435–448 (2017)

28. Nickolls, J., Dally, W.: The GPU computing era. IEEE Micro 30(2), 56–69 (2010)
29. Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E., Zhang, Y.,

Volkov, V.: Parallel computing experiences with CUDA. IEEE Micro 28(4), 13–27 (2008)
30. Xilinx Zynq-7000 All Programmable SoC User Guide. http://www.xilinx.com/support/docume

ntation/user_guides/ug585-Zynq-7000-TRM
31. Balart, J., Duran, A., Gonzlez, M., Martorell, X., Ayguad, E., Labarta, J.: Nanos mercurium: a research

compiler for openmp. In: European Workshop on OpenMP (EWOMP’04), pp. 103–109 (2004)
32. Podlozhnyuk, V.: Image convolution with CUDA. http://developer.download.nvidia.com/compute/

cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable
33. Eichenberger, A.E., et al.: Using advanced compiler technology to exploit the performance of the Cell

Broadband Engine Architecture. In: IBM Systems Journal, pp. 59–84 (2006)
34. TESLAC2050 / C2070GPUComputing Processor. Supercomputing at 1/10th of the cost. www.nvidia.

com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores
35. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: Scalability study of Polymorphic Register Files. In:

Proceedings of DSD, pp. 803–808 (2012)

123

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable
www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores
www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores

	The Case for Polymorphic Registers in Dataflow Computing
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Data Organization
	3.2 Dataflow Architectures
	3.3 Hardware Accelerator Design

	4 Target System Organization
	5 Proposed Methodology
	5.1 Variable Extraction
	5.2 PRF Customization
	5.3 Code Generation

	6 Case Study
	6.1 Vectorized Separable 2D Convolution
	6.2 Polymorphic Register File Architecture
	6.3 Analytical Validation
	6.4 Simulation-Based Analysis of Architectural Parameters

	7 Conclusions
	Acknowledgements
	References

