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Theoretical Aspects of Spinodal Decomposition
in Fe-C

B. KIM, J. SIETSMA, and M.J. SANTOFIMIA

Carbon redistribution is known to occur during room temperature aging of Fe-C martensite.
One of the proposed mechanisms in the literature by which carbon redistributes is spinodal
decomposition, a thermodynamically driven reaction in which the alloy undergoes separation
into carbon-rich and carbon-poor regions, giving rise to modulations in carbon concentration.
Despite the substantial experimental evidence supporting the occurrence of spinodal decom-
position in Fe-C, its theoretical formulation requires attention. In the present study, a
theoretical framework based on the regular solution model is built for evaluating the
thermodynamics of the Fe-C system, with particular emphasis on the interstitial nature of
carbon atoms within the ferrite lattice. Assuming a defect-free lattice, the model explains a
miscibility gap in the Fe-C system. The limitations of the current model are critically evaluated.

https://doi.org/10.1007/s11661-018-5094-1
� The Author(s) 2019

I. INTRODUCTION

THERE is vast experimental evidence that shows
carbon redistribution during the room-temperature
aging of Fe-C martensite, giving rise to fine modulations
in carbon content across martensite. Two main pro-
cesses have been proposed in the literature to account
for this observation: (i) carbon segregation into the
vicinity of defects,[1] and (ii) spinodal decomposition.[2]

Both processes lead to a reduction in the free energy of
the supersaturated solid solution in ferrite. However, a
clear distinction must be made between the two. As
discussed in previous studies by the current authors,[3,4]

both defect segregation and spinodal decomposition are
strongly related to the thermodynamic description of the
ferrite phase.

Carbon segregation to defects is a well-understood
phenomenon, and has been extensively modeled, partic-
ularly in the context of strain aging.[5,6] On the other
hand, spinodal decomposition in Fe-C systems still
remains unclear. With the advances in experimental
techniques, the topic has recently drawn significant
interest from the scientific community.[7–9] Most of the
spinodal decomposition literature has been focused on

the experimental work on Fe-Ni-C systems, as exempli-
fied by References 2, 4, 7 and 8 However, evidence for
spinodal decomposition occurring in the iron-carbon
binary system is scarce. Ren and Wang[10] presented a
theoretical analysis of the spinodal decomposition in
Fe-C systems, and experimentally showed the occur-
rence of spinodal decomposition in a Fe-1.83wt. pct C
system[11] by means of electron microscopy. More
recently, Naraghi et al.[12] aimed to incorporate the
carbon-ordering processes occurring during martensite
aging in the Fe-C system into ThermoCalc. In agree-
ment with the earlier postulation by Taylor et al.,[2]

Naraghi et al.[12] showed that for Fe-C, the overall
system’s free energy was the highest for disordered
dissolution of carbon in BCC. The energy was then
shown to decrease successively by Zener-ordering and
spinodal decomposition.
It is emphasized that spinodal decomposition explic-

itly requires the presence of a miscibility gap caused by
the characteristic double-minima Gibbs free energy
curve (discussed in Section II). Within the spinodal, a
system is regarded as being thermodynamically unsta-
ble with respect to compositional fluctuations. There-
fore, in order to lower the system’s free energy, the
system decomposes into a mixture of two stable compo-
sitions on either side of the miscibility gap.[13] In the case
of Fe-C, spinodal decomposition would give rise to a
mixture of carbon-rich and carbon-poor regions. How-
ever, there are certain thermodynamic aspects of the
Fe-C system that require further evaluation in order to
ascertain the presence of a miscibility gap. The aim of
the current study is to build the theoretical framework
for modeling spinodal decomposition applied to Fe-C
binary systems. First, a brief theoretical background will
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be given in order to introduce the relevant thermody-
namic properties. The study by Ren and Wang[10] will be
revisited since parts of their theoretical formulation
require critical evaluation. Finally, the current approach
will be presented based on a regular solution model
applied to an interstitial solution.

II. BACKGROUND TO SPINODAL
DECOMPOSITION

Consider a binary system A-B that produces a random
solution mix of A- and B-atoms. In the presence of a
miscibility gap, the system undergoes a separation of
B-poor and B-rich regions, which gives rise to composi-
tional modulations in the material. In spinodal decom-
position, there are two aspects that need to be considered:

– Chemical spinodal: the process results in the mini-
mization of the free energy contribution of the
chemical atomic interaction,

– Coherent spinodal: the spinodal resulting from the
incorporation of the counterbalancing strain energy
arising from the lattice mismatch owing to the
difference in solute concentration between the uni-
form matrix and the modulated structure.

It is noted that throughout the present study, only the

thermodynamic aspects will be considered.

A. The A-B System Using a Substitutional Model
Approach

Following the regular solution model, the overall free
energy for an A-B binary system with a given crystal
structure at a given T is given by

GAB ¼ xAG
�
A þ xBG

�
B þ DHAB � TDSAB; ½1�

where xA and xB are the molar fractions of A and B,
respectively. G�

A and G�
B are the molar Gibbs free energy

of pure A and pure B having the given crystal structure,
respectively. The term (DHAB � TDSAB) corresponds to
the free energy of mixing, DGmix, where DHAB and DSAB

are the molar enthalpy and entropy of mixing, respec-
tively, and T is the temperature. Modeling DGmix is
fundamental in predicting the miscibility gap properties
of the system, as this is the term that determines the
overall stability of the mixture A-B.

As is done in the classical regular solution model, the
system’s free energy is assumed to be composed of atomic
pair interactions. The solution A-B will contain inter-
atomic bonds of A-A, B-B, and A-B types. The enthalpy
term DHAB for a regular solution containing a mole of
atoms with fractions xA and xB of A and B is given by[14]

DHAB ¼ XxAxB; ½2a�

X ¼ NAze ; ½2b�

where NA is Avogadro’s constant, z is the number of
nearest neighbors per atom, and e ¼ eAB � 1

2 ðeAA þ eBBÞ;

where eAA, eBB , and eAB are the bond energies for A-A-,
B-B-, and A-B-type bonds, respectively.
The entropy term DSAB is determined by the number

of ways in which atoms can be arranged at atom sites,
and, assuming a random distribution of atoms, is given
by

DSAB ¼ �RðxA ln xA þ xB ln xBÞ: ½3�

Given that in a substitutional solid solution,
xA þ xB ¼ 1, the following is obtained:

GAB ¼ð1� xBÞG�
A þ xBG

�
B þ Xð1� xBÞxB

þ RT ð1� xBÞ lnð1� xBÞ þ xB ln xB½ �:
½4�

If DHAB>0 (positive enthalpy of mixing), a chemical
spinodal can occur between the fractions x1 and x2,
determined by the second derivative of GAB with
respect to xB:

d2GAB

dx2B

� �
x1

¼ d2GAB

dx2B

� �
x2

¼ 0 ½5�

Figure 1 illustrates the basic thermodynamics of spin-
odal decomposition. For the purpose of illustration
consider a hypothetical system where X ¼ 10 kJ=mol,
giving rise to positive enthalpy of mixing (DHAB> 0).
At higher temperatures (Figure 1(a)), TDSAB>DHAB

for all compositions and so DGAB has a positive
curvature for all compositions. At lower temperatures
(Figure 1(b)), in the range of composition x1 ¼ 0:2 and
x2 ¼ 0:8 molar fractions, DGAB develops a negative
curvature. The solution for x1 and x2 in Eq. [5] as a
function of temperature is represented in Figure 1(c),
where the miscibility gap in A-B is shown, where it
shows that at T>601K; there is no spinodal decompo-
sition for the chosen value X ¼ 10 kJ=mol.
It is necessary to emphasize the fact that the above

example is developed for a substitutional system, where
B atoms take up lattice sites of A atoms. In the case of
the Fe-C solid solution, the carbon atoms are located in
a different sublattice. We will now model the Fe-C
system, taking two sublattices into account.

B. Interstitial Model Approach as Opposed
to a Substitutional View of the Fe-C System.

In a previous article in this journal, Ren and Wang
presented a thermodynamic model for spinodal decom-
position occurring in Fe-C martensite.[10] The purpose
of this section is to recapitulate the thermodynamic
framework used in their study, and to discuss some
fundamental challenges in their model. In order to
distinguish the study in the literature from our current
study, all thermodynamic expressions derived from the
study by Ren and Wang[10] are clearly marked by
subscript ‘‘RW.’’ Although a working mathematical
model was built, there are a few issues that require
further discussion. The authors in Reference 10 have
based their model on the fact that the molar fractions of
carbon and of iron sum to unity, i.e., xC þ xFe ¼ 1,
where xi is the molar fraction of element i. The
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expression for free energy of mixing obtained by Ren
and Wang, using xC þ xFe ¼ 1, was

DGRW ¼ I0ð1� xCÞ2xC þ RTðxC ln xC þ xFe lnxFe þ xC ln 2Þ;
½6�

where by applying the second differential of G with
respect to xC, Ren and Wang presented the following
expression:

d2GRW

dx2C
¼ �2I0ð2� 3xCÞ þ

RT

xC
; ½7�

in which I0 is the heat of solution of carbon in ferrite,

having a numerical value of 8:4� 104 J mol�1. In their
original study, the source of this value for I0 is not
stated.

By combining Eqs. [5] and [7], a quadratic equation is
obtained in the form [6I0x

2
C � 4I0xC þ RT ¼ 0]. Solving

this quadratic equation, the miscibility gap shown in
Figure 2(a) was obtained by Ren and Wang. The
coherent spinodal will be commented in Section IV–A.
Following the expression xC þ xFe ¼ 1 stated in

Reference 10, the equivalent graph using carbon mass
fraction, wC is shown in Figure 2(b), given that

wC ¼ xCMC

xCMC þ ð1� xCÞMFe
; ½8�

where Mi is the atomic mass of element i.
Following the thermodynamic formulation of Refer-

ence 10, a miscibility gap is expected up to � 1200K,
and at 300 K the coherent spinodal gives carbon
concentrations for the carbon-poor and carbon-rich
regions of � 0:01 and 7.74 wt. pct, respectively. This
does not match well to the experimental observations
typically made in the literature.[2]

Furthermore, since the authors in Reference 10 stated
that xC þ xFe ¼ 1, the substitution of xFe ¼ 1� xC
throughout Eq. [6] leads to

DGRW ¼I0ð1� xCÞ2xC þ RT½xC ln xC

þ ð1� xCÞ lnð1� xCÞ þ xC ln 2�:
½9�

The difference between Eqs. [6] and [9] will lead to a
significant mathematical difference in the second differ-
ential of GRW in Eq. [9] with respect to xC:

Fig. 1—Regular solution model for the hypothetical system A-B where the mixture leads to a strongly positive enthalpy of mixing. (a) At high
temperatures (T ¼ 1000K), there is no miscibility gap, but (b) at lower temperatures (T ¼ 380K), a miscibility gap is present. (c) Spinodal
shown in the A-B phase diagram based on Eq. [5].

Fig. 2—Reproduction of the spinodal curves derived from the model proposed by Ren and Wang. The chemical spinodal curves have been
obtained using Eq. [7]. For the expressions used in determining the coherent spinodal curves, the readers may refer to the original reference.[10]

Spinodal curves shown in (a) carbon mole fraction (xC), and (b) carbon mass fraction (wC). (c) Miscibility gap derived using Eq. [10], shown
only for 0 � wC � 0:3.
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d2GRW

dx2C
¼ I0ð�4þ 6xCÞ þ RT

1

xC
þ 1

ð1� xCÞ

� �
: ½10�

Following the same procedure as above, the combina-
tion of Eqs. [5] and [10] produces a cubic equation in the
form of [I0ð�4xC þ 10x2C � 6x3CÞ þ RT ¼ 0]. Solving
this cubic equation, a different miscibility gap is
obtained (expressed in terms of carbon mass fraction),
as shown in Figure 2(c), where Ren and Wang’s value

I0 ¼ 8:4� 104 J mol�1 is used. Comparing Figures 2(b)
and (c), although the same thermodynamic description
of the system is applied, different miscibility gaps are
obtained. For instance, at T ¼ 300K, the model
obtained from Eq. [6] gives molar fractions xC ¼ 0:004
and 0.278 for the carbon-poor and carbon-rich concen-
trations, respectively. These values differ from those
obtained from Eq. [9], which yields xC ¼ 0:008 and
0.645 for carbon-poor and carbon-rich regions,
respectively.

Therefore, a more robust model is needed in order to
avoid such discrepancy in results. For the current
approach, based on the framework presented in Sec-
tion II, we build step-by-step a regular solution model
for describing the Fe-C system.

III. THE INTERSTITIAL MODEL

The description of the Fe-C system used for the
current model is shown in Figure 3(a), where it is shown
that iron atoms occupy the substitutional lattice, which
generates an interstitial sublattice at which carbon
atoms and vacant sites are situated.

In the current model, it is assumed that the substitu-
tional lattice is fully occupied by iron atoms. The effect
of lattice defects in the Fe-C system is addressed in
Section IV–B in detail.

The interstitial sublattice is composed of vacant sites
and carbon atoms. The total number of interstitial sites,
Ni, is given by the number of carbon atoms and vacant
sites: Ni ¼ NC þNVa. Therefore, the site fraction con-
cept is introduced, where

sC ¼ NC

Ni
; sVa ¼

NVa

Ni
: ½11�

Ni is intrinsic to the iron lattice, and is given by
Ni ¼ bNFe, where b is the ratio of interstitial sites to the
number of substitutional sites. For the BCC lattice, b ¼
3 according to Zener[15] and b ¼ 2 according to Ren and
Wang.[10] This will be discussed in Section III–C.
The outline of the free energy graph for the described

system is shown in Figure 3(b). sC ¼ 0 represents the
scenario where all interstitial sublattice sites are vacant,
and no carbon atoms are present, essentially referring to
a state of pure iron. The notation used to describe the
free energy of both lattices in this case is G�

Fe:Va. On the
other hand, sC ¼ 1 refers to a situation where all
interstitial sublattice sites are occupied by carbon atoms,
where the free energy is given by G�

Fe:C.
Describing the thermodynamics of the Fe-C system is

complicated by the interstitial nature of the carbon
atoms. Hillert[16] proposed an interstitial solutes model
that takes into account the concept of excluded sites,
where an interstitial solute atom blocks its neighboring
sites from being occupied. However, his approach was
that of an ideal solution, where the enthalpy of mixing
was neglected. Our approach is to build a thermody-
namic description that captures the Fe-C system based
on the regular solution model: assigning the enthalpy to
the pairwise nearest neighbor interactions between
atoms, and calculating the entropy on the basis of
random positioning of atoms on the lattice, taking
carbon-carbon interactions into account.

A. Free Energy of Mixing

Building up from Figure 3(b), the molar free energy
of the overall system is described as

GFeC ¼ ð1� sCÞG�
Fe:Va þ sCG

�
Fe:C þ DG�

ðFe:Va;CÞ; ½12�

where DG�
ðFe:Va;CÞ is the free energy of mixing of carbon

and vacant sites within the iron substitutional lattice. By
definition, DG�

ðFe:Va;CÞ ¼ DH�
ðFe:Va;CÞ � TDS�

ðFe:Va;CÞ,

where T is the temperature and DH�
ðFe:Va;CÞ and

DS�
ðFe:Va;CÞ are the enthalpy and entropy of the Fe-C

mixture, respectively.
Applying Eq. [2] for the case of Fe-C interstitial

solution, the following expression for enthalpy per mole
of iron atoms follows from the regular solution scheme:

Fig. 3—(a) Representation of the interstitial model, where the system consists of a substitutional lattice composed of Fe atoms, and an
interstitial sublattice which can contain carbon atoms. (b) Schematics of the free energy diagram where sC represents the site fraction at the
interstitial sublattice occupied by carbon atoms.
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DHðFe:Va;CÞ ¼ XðFe:Va;CÞ½sCð1� sCÞ�; ½13�

where XðFe:Va;CÞ represents the interaction parameter
between the main substitutional lattice and the intersti-
tial lattice, and is defined by the following:

XðFe:Va;CÞ ¼ zisNi eðFe:VaCÞ �
1

2
ðeðFe:VaVaÞ þ eðFe:CCÞÞ

� �
;

½14a�

¼ zisbNA eðFe:VaCÞ �
1

2
ðeðFe:VaVaÞ þ eðFe:CCÞÞ

� �
; ½14b�

where zis is the number of nearest neighbors that an
interstitial element has on the substitutional lattice, Ni

was previously defined as the total number of intersti-
tial sites, and the various e terms represent the bond
energies for the various bond pairs: the terms eðFe:CCÞ,
eðFe:VaVaÞ and eðFe:VaCÞ represent the C-C, Va-Va, and
Va-C bonds, respectively, found on the interstitial lat-
tice within the Fe substitutional lattice. Since vacancies
will not mutually interact within the iron substitutional
lattice, the eðFe:VaVaÞ term is considered to be zero. The
molar change in enthalpy is thus given by

DHðFe:Va;CÞ ¼ zisbNA eðFe:VaCÞ �
1

2
eðFe:CCÞ

� �
½sCð1� sCÞ�:

½15�

The interstitial lattice, composed of carbon atoms and
vacancies, contributes to the molar entropy as follows:

DSðFe:Va;CÞ ¼ �kNi½sC ln sC þ ð1� sCÞ lnð1� sCÞ�;
½16a�

¼ �kbNA½sC ln sC þ ð1� sCÞ lnð1� sCÞ�: ½16b�

This is equivalent to

DSðFe:Va;CÞ ¼ �Rb½sC ln sC þ ð1� sCÞ lnð1� sCÞ�: ½17�

Adding the enthalpy and entropy terms, the molar free
energy of the overall system is given by

GFeC ¼ð1� sCÞG�
Fe:Va þ sCG

�
Fe:C

þ zisbNA eðFe:VaCÞ �
1

2
eðFe:CCÞ

� �
½sCð1� sCÞ�

þ RTb½sC ln sC þ ð1� sCÞ lnð1� sCÞ�:
½18�

In order to numerically evaluate the miscibility gap, the
terms zis, b, and the difference between eðFe:VaCÞ and
eðFe:CCÞ are to be established. These will be discussed in
the next sections.

B. Nearest Neighbors

In BCC, the available interstitial sites are classified
into octahedral and tetrahedral interstitial sites (OIS and
TIS, respectively), where the former is known to be the
favorable one for the location of carbon atoms.[18] The
OIS are shown in Figure 4(a), where these can be further
categorized into ‘a,’ ‘b,’ and ‘c’ sites depending on the
direction in which they distort the lattice, i.e., in the
½100�a, ½010�a or ½001�a directions, respectively. Each
carbon atom occupying an octahedral interstitial site has
six nearest-neighboring iron atoms, thus zis ¼ 6.

C. b and Bond Energies

As previously mentioned, b is the ratio of interstitial
atoms to the number of iron atoms. If all octahedral
sites are considered, then b would have a value of 3.
Nevertheless, in carbon supersaturated martensite, it has
been reported that one type, for which we take ‘c,’
xxxOIS are preferentially occupied, thus giving rise to
tetragonality in ferrite, where the ferrite cell is stretched
along the ½001�a direction. If all ‘c’ sites were to be
potentially occupied by carbon atoms, b ¼ 1. However,
as it will become clearer in the following that, b will
depend on the configuration of possible locations for
carbon atoms.
For obtaining information on the interaction bonds

between the substitutional and interstitial lattice, the
literature on Density Functional Theory (DFT)[17,19–22]

can provide numerical values. It is important to note
that most of the Fe-C DFT literature studies are based
on systems containing a single carbon atom within an
iron supercell. The study by Domain et al.[17] will be
referenced throughout, as in their study, the effect of a
second carbon atom in the system is also studied, and
thus information regarding the C-C interaction within
the iron lattice is obtained.
The study by Domain et al.[17] reports the formation

enthalpy of a system where a carbon atom binds at an
octahedral site, DHC

f (FeNC). This is given by

DHC
f ðFeNCÞ ¼ EðFeNCÞ �NEðFeÞ � EðCisolatedÞ: ½19�

where N is the number of iron atoms within the
supercell, E(Fe) is the reference energy of pure BCC
iron, E(FeNC) is the energy of a system containing a
single carbon atom within the BCC iron, and E(Cisolated)
is the energy of a single carbon atom alone in a large
supercell. It is worth noting that since the calculations in
Reference 17 already incorporate the changes in the
electronic structure and magnetic moment within the
ferromagnetic supercell in the presence of interstitial
carbon, the current model does not consider magnetic
effects separately.
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The enthalpy reported for the 54 Fe atoms supercell
in Reference 17 is 10.71 eV at 0 K for the entire system.
Therefore, eðFe:VaCÞ ¼ 0:19 eV per atom, equivalent to

3:1� 10�20 J per atom.
Furthermore, in the study by Domain et al.,[17] it is

seen that a repulsive interaction exists between carbon
atoms and that the magnitude of the repulsion depends
on their relative positions and the distance between the
two carbon atoms. In general, the further apart the two
carbon atoms are, the smaller the repulsive energy. In
Figure 4(b), two adjacent BCC unit cells are shown,
where only one set of the OIS has been indicated. The
red atom in the lower unit cell represents the first
interstitial carbon atom. For the second interstitial
carbon atom, a series of possible interstitial sites have
been proposed by Domain et al.[17] From their original
study, only those corresponding to the same set of OIS

sites are currently considered, labeled as sites A-E. The
magnitude of the binding energies between the red
carbon atom and a carbon atom at the possible sites are
summarized in Table I. It is seen that the strongest
repulsion takes place when the second carbon atom is
placed in site E, i.e., along the same axis in the adjacent
unit cell, whereas the repulsion is minimized in site D,
i.e., when the atoms are furthest apart with the second
atom placed diagonally from the first atom.

In order to assess each type of carbon-carbon
interaction individually, the repeating ‘unit cell’ must
be carefully chosen in order to avoid introducing
additional types of interaction in the system. This is
illustrated in Figure 5. Let us consider carbon-carbon
interaction type C (see also Figure 4(b)), where the

carbon atoms are placed at distance
ffiffiffi
2

p
a. If the building

block shown in Figure 5(a) was to be the ‘unit cell,’ the
lattice will contain carbon-carbon interactions of type D
and E, Figure 5(b). To overcome this, a layer of unfilled
carbon atoms is introduced under the building block in
Figure 5(a). The resulting ‘unit cell’ is given in Fig-
ure 5(c). This will ensure that no other types of
interactions are present in the lattice within the distances
included in the types A-E. The carbon–carbon interac-
tion is assumed negligible at distances greater than 2a, in
line with the trend observed in Table I.
Following the same procedure outlined in Figure 5 for

the other interactions of type A, B, D, and E, it is found
that all ‘unit cells’ consist of a 16 Fe supercell structure
containing a maximum number of two carbon atoms.
Following the definition that b is the ratio of interstitial
sites to the number of substitutional sites, b is 1/8.

Fig. 4—(a) Illustration of the octahedral interstitial sites (OIS) within a-Fe with the respective classification, and (b) representation of only the ‘c’
OIS in ferrite, labeled as sites A-E, after Domain et al.[17]

Table I. eðFe:CCÞ Values Based on the C-C Binding Energy in
a-Fe Depending on the Relative Location and Distance (in

Terms of Lattice Parameter a) Between Two Interstitial

Carbon Atoms (Data Taken for the 54 Fe Atoms System,

from Domain et al.[17])

Distance Binding Energy, eðFe:CCÞ ðeVÞ

Site A
ffiffi
3

p

2 a �0:42
Site B a �0:17
Site C

ffiffiffi
2

p
a �0:20

Site D
ffiffiffi
3

p
a �0:09

Site E a �2:28

The negative values for the binding energy represent the repulsive
nature of the C-C bonds.
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D. Free Energy of Mixing

Based on Eqs. [15], [17], Table I, and the procedure
shown in Figure 5, the enthalpy, entropy, and free
energy of mixing plots of the Fe-C mixture at 300 K are
shown in Figure 6 for the five types of carbon–carbon
interactions. The different values for eðFe:CCÞ have been
given for sites A-E shown in Table I. Full curves for all
configurations except for E are shown in Figure 6, as
configuration E is unlikely to occur given the large
repulsive force between carbon atoms. It is seen that
while the enthalpy of mixing is positive, the entropy
contribution at 300 K is comparatively low. Hence, the
free energy of mixing remains positive in practically the
entire composition range. In order to calculate the
chemical spinodal for the system, the second derivative
of G with respect to sC of Eq. [18] is to be equal to zero:

d2G

ds2C
¼ �2zisbNA eðFe:VaCÞ �

1

2
eðFe:CCÞ

� �
þ RTb
sCð1� sCÞ

¼ 0:

½20�

where the maximum possible number of carbon atom
is given by b, the actual carbon concentration

contained within the supercell is determined by its site
fraction, sC. Therefore, the carbon weight fraction in
the system is determined by

wC ¼ bsCMC

bsCMC þ MFe
; ½21�

where Mi is the molar mass of element i.
Solving Eq. [20], the chemical spinodal is shown as a

function of carbon weight fraction in Figure 7.

IV. DISCUSSION

As shown in Figure 6, the addition of carbon within
the interstitial lattice leads to an increase in the enthalpy
of mixing. The enthalpy of mixing is further increased
by the repulsive carbon–carbon interaction. As shown in
Figure 7, this gives rise to a large miscibility gap that is
seen to be stable up to 10000 K. It must be noted that in
Section III, only the chemical spinodal has been mod-
eled. The coherent spinodal will be discussed in this
section.

Fig. 5—(a) Representation of the type C interaction in a supercell consisting of four BCC unit cells (8 Fe), where carbon atoms are
ffiffiffi
2

p
a apart

(iron atoms and unoccupied carbon sites have not been represented for clarity). (b) When the 8 Fe supercell in (a) is stacked, additional
carbon-carbon interactions of type D and E will be introduced. (c) 16 Fe supercell proposed in order to isolate type C carbon-carbon
interaction, by introducing a layer of four BCC unit cells containing no carbon atoms.

Fig. 6—Results from the Fe-C model proposed showing (a) enthalpy of mixing, (b) entropy of mixing at 300 K, and (c) free energy of mixing at
300 K for the different eFe:CC values in octahedral interstitial sites A-E.
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A. Coherent Spinodal

Hilliard[23] showed that for evaluating coherent spin-
odal decomposition, the criterion to be used is

d2G

ds2C
þ 2g2Y � 0; ½22�

where the term 2g2Y accounts for the elastic strain
energy arising due to the density difference between
the carbon-rich and carbon-poor regions. Y is an elas-
tic constant, and the density effect of concentration
variations is given by the parameter g, defined as

g ¼ 1

a0

� �
da
dxC

� �
: ½23�

Applied to the current study, a0 is the lattice parameter
of pure BCC iron and the term da

dxC
accounts for the

change in iron’s lattice parameter due to a change in
carbon concentration.

Incorporating the expression for d2G
ds2

C

from Eq. [20]
into Eq. [22] shows that the units do not balance

between the chemical spinodal (units J mol�1 or

N m mol�1) and 2g2Y (N m�2). In order to balance
the units, a molar volume term, Vm is introduced in the
elastic strain energy term. This way, both terms have

units of J mol�1. Therefore, the coherent spinodal is
obtained by

d2G

ds2C
þ 2g2YVm ¼ 0: ½24�

The parameter g accounts for the increase in lattice
parameter as carbon atoms are added into solid solu-
tion. In the Fe-C system, the addition of carbon to the
‘c’ interstitial sites has anisotropic effects, giving rise to
tetragonality in the unit cell, as carbon redistribution
occurs. At room temperature, the lattice parameters a
and c are given by[24]

a ¼ 0:28664 nm� ð0:028 nmÞxC; ½25a�

c ¼ 0:28664 nmþ ð0:256 nmÞxC; ½25b�

where 0.28664 nm is the lattice parameter of pure BCC
iron (a0), a and c are the lattice parameters in tetragonal
ferrite, and xC is the atomic fraction of carbon in ferrite
solid solution.
The average linear expansion due to carbon in solid

solution can be given by a ¼ 0:28664 nmþ hxC, where h
is the equivalent lattice expansion coefficient. h is
determined from

ð0:28664 nmþ hxCÞ3 ¼ ½0:28664 nm� ð0:028 nmÞxC�2

½0:28664 nmþ ð0:256 nmÞxC�:
½26�

A fit of this expression yields h � 6:7� 10�2 nm, for xC
below 0.1.[10] Therefore, g in Eq. [23] has a value of 0.23.
The molar volume of iron is calculated according to

Vm ¼ NAVatomic ¼ NA
a30
2
; ½27�

yielding Vm ¼ 7:1� 10�6 m3 mol�1.
The elastic constant for spinodal decomposition, Y, is

reported to be 280 GPa.[25] This value has been reported
for an isotropic cubic system.
Following the same procedure as in Eq. [20] but

including the strain energy term 2g2YVm, some coherent
spinodal curves are calculated and shown in Figure 8.
g ¼ 0:23 is too large to allow coherent spinodal decom-
position. Instead, values which were orders of magni-
tude smaller yield a coherent spinodal inside the
chemical spinodal.
Using the derived value g ¼ 0:23 gives a strong

counterbalancing strain term to the chemical spinodal.
Possible uncertainties in the determined g value come
from the fact that the carbon-rich ferrite cell is approx-
imated to a cubic form, where in reality, the presence of
carbon may lead to tetragonality in the lattice. Further-
more, the value of Y is taken from an isotropic cubic
form of ferrite. A more realistic approach would be to
incorporate tetragonality aspects owing to carbon redis-
tribution during spinodal decomposition, and use
plane-specific Y values for tetragonal martensite. Nev-
ertheless, the difference between the calculated (0.23)
and the minimum possible (� 0:08) values of g is almost
threefold. Such difference is regarded to be too large to

Fig. 7—Chemical spinodal of the Fe-C system for different eFe:CC
values in octahedral interstitial sites A-E, where wC has been
calculated based on Eq. [21].

Fig. 8—Coherent spinodal for the chemical spinodal curve D, where
different values of g have been evaluated.
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be accounted in justifying the assumptions used in the
current approach to model the strain contribution.

Furthermore, in comparison with the spinodal
decomposition literature, the carbon-rich product is
typically described as a00-Fe16C2, where the supercell
structure consisting of eight BCC unit cells is shown in
Figure 9. The a00-Fe16C2 product yields a carbon mass
fraction of 0.026, consistent with b ¼ 1=8.

This value is equal to the chemical spinodal obtained
in Figure 7. This comes as no surprise, since the ‘unit
cells’ considered are supercells containing 16 iron atoms
and two carbon atoms. In fact, Figure 9 is actually the
‘unit cell’ of interaction D, where the distance between
neighboring carbon atoms are either 2a or

p
3 a.

According to the results by Domain et al.,[17] C-C
interaction D results in the minimum binding energy
between carbon atoms. Therefore, it becomes evident
that the designated Fe16C2 structure results in the
configuration that enables the carbon atoms to minimize
their interaction energy. Modeling the coherent spinodal
remains a challenge for the Fe-C system, since the
addition of carbon will transform the cubic cell into
tetragonal, hence anisotropy must be considered when
evaluating the 2g2YVm term.

B. Vacancies in the Substitutional Lattice

In the current model, it is assumed that the main
substitutional lattice consists of a perfect crystal com-
posed of Fe atoms only. However, this is not realistic as
defects are always present, and hence a more complete
picture is obtained when considering Fe-Va occupancy
in the substitutional lattice, and C-Va occupancy in the

interstitial sublattice. The vacancy fraction xv in the
substitutional lattice is calculated from

xv ¼ exp
�Qv

kT

� �
; ½28�

where Qv is the energy associated with the vacancy
formation.
Given that Qv is 1.4 eV in BCC iron,[26] at 300 K, the

fraction of vacancies to lattice sites in pure iron is
� 2:4 � 10�31. Although this value is low, it will
increase significantly in quenched specimens from
austenite, since the vacancy concentration at austeniti-
zation temperature is much higher, e.g., � 2:2 � 10�8 at
1200 K. Moreover, quenching introduces further defects
in the microstructure, as martensite is characterized by
its high dislocation density.
The significance of having vacant sites and other

defects in the substitutional lattice is that they provide
additional carbon trapping sites. Carbon-substitutional
vacancy interactions have been studied in the literature,
e.g., References 21, 27, and 28 where the binding energy
between the interstitial carbon and the substitutional
vacancy is in the range of 0.4–0.75 eV.[27,28] In partic-
ular, the study by Först et al.[21] shows that as the
number of vacant sites within the BCC lattice increases,
the interaction between carbon atoms and lattice defect
sites becomes dominant over the Fe-interstitial site
interaction. The authors in Reference 21 have proposed
that a vacant site in the substitutional lattice can bind up
to two interstitial atoms. This implies that whereas in a
perfect lattice, a repulsive C–C force exists, as a vacancy
is introduced, an attractive interaction builds up
between the two interstitials and the vacancy.
Based on the literature findings and the current

model, it appears that spinodal decomposition is limited
to very specific situations. In the unlikely event of a
defect-free substitutional lattice composed entirely of
iron, the process of spinodal decomposition becomes
dominant. Under such circumstance, the free energy of
the Fe-C system may only be reduced by the process of
spinodal decomposition, by separating into carbon-rich
and carbon-poor regions. The redistribution of the
carbon atoms into the Fe16C2 supercell structure pro-
vides the lowest energy state by providing the carbon
configuration that minimizes the C-C repulsion.
However, as soon as defects are introduced in the

substitutional lattice, the carbon atoms will have the
possibility to remain either at regular OIS, or bind to
defect sites. This line of reasoning is supported by the
experimental work carried out earlier by the authors.[4]

The carbon redistribution during the room-temperature
aging of two Fe-Ni-C alloys was studied in the context
of spinodal decomposition vs carbon segregation to
defects. In the experimental work, the quenched and
aged alloys were characterized using atom probe
tomography and synchrotron radiation X-ray diffrac-
tion, but there was no evidence for the presence of the
Fe16C2 structure. Instead, it was argued that carbon
segregation to defects was more likely to have occurred,
given the expected high dislocation density following the
quenching process.

Fig. 9—The a00-Fe16C2 structure proposed in the literature for the
carbon-rich product as a result of spinodal decomposition, adapted
from Ref. [18].
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The theoretical framework presented in the current
paper gives a comprehensive thermodynamic descrip-
tion of Fe-C. The present study provides a fundamental
basis for building up more complex processes occurring
in aged martensite, as discussed above.

V. CONCLUSIONS

A thermodynamic framework has been developed for
the Fe-C system based on the regular solution model,
and taking into consideration the interstitial nature of
the carbon interstitial atoms. The chemical spinodal was
seen to strongly depend on the carbon configuration
within the iron lattice. Various carbon configurations
were evaluated and showed the presence of a spinodal in
Fe-C up to temperatures near 1200 K across a wide
range of carbon content, 0<wC<0:17. The model
assumes a perfect substitutional lattice, where all sites
are occupied by iron atoms. Nevertheless, taking into
consideration the recent literature, it is concluded that
spinodal decomposition is becoming less favorable in
the presence of defects.
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