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Turbulent jets are known to support large-scale vortical wave packets traveling down-
stream. We show that a propagating helical wave represents a common form of the
“optimal” eigenfunction tracking these structures from the near to the far field of a round jet
issuing from a pipe. Two first mirror-symmetric modes containing around 5% of the total
turbulent kinetic energy capture all significant large-scale events and accurately replicate
the full shear-layer dynamics of the azimuthal wave number m = 1. A family of the most
energy-containing traveling waves represents low wave numbers and is described in terms
of “empirical” dispersion laws.

DOI: 10.1103/PhysRevFluids.3.062601

Large-scale organized (coherent) vortical structures are at the heart of free-shear turbulent
flows, such as wakes, mixing layers, and jets [1,2]. These structures are involved in intensive
mixing and entrainment [3] and play a significant role in the generation of aeroacoustic noise [4].
Vortical dynamics is extremely sensitive to initial and/or boundary conditions [5–11] and defines the
asymptotic self-similar flow states at larger evolution times or distances [12–16]. Optimal control
routes require a deep understanding of spatial and dynamical flow organization with coherent vortices
representing the energetic backbone.

For a round transitional jet, this vortical “skeleton” usually appears as Kelvin-Helmholtz rings
near the nozzle while further downstream they break down, producing fully developed turbulent flow
[17]. Previous observations [18–23] suggest the presence of helical structures in the fully developed
region with various azimuthal wave numbers m. These waves (“wave packets”) are usually treated
by using a linearized framework or using reduced-order modeling [24–33]. While close to the nozzle
this approach is successful, a full understanding of wavy motion and a corresponding dispersion law
in the far jet is still lacking.

In this Rapid Communication, we analyze direct numerical simulation data of a turbulent jet
[34], performed with an in-house high-order finite-difference/pseudospectral code that solves the
compressible Navier-Stokes equations using 400 million grid points. We consider a jet at Reynolds
number Re = 5940 based on the bulk velocity Ub in the pipe and its diameter D generated by a
fully turbulent pipe flow entering a uniform stream with a coflow velocity uco = 0.27Ub. Together
with a sufficient spatial resolution, the computation features a very long time realization with around
400D/Ub time units, allowing one to statistically assess even the far field of the jet.

A visual impression of the turbulent dynamics is given by the instantaneous vorticity magnitude
field, shown in Fig. 1(a). While the simulation area includes x = 50D, the analyzed physical region
covers only the domain up to x � 40D to avoid the influence of the outflow boundary conditions
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FIG. 1. (a) Instantaneous contours of the vorticity field and five subdomains for further statistical analysis.
(b) uco/(uc − uco), θ , and δ against x/D. (c) Cross-section integrated kinetic energy for azimuthal wave numbers;
the black dashed line showsm = 0. The momentum thickness is defined as θ = 2D−1

∫
ux,n(1 − ux,n)rdr , where

ux,n = (ux − uco)/(uc − uco). The local half width is defined as the point r = δ where the time-averaged axial
velocity is half the value of the sum uc + uco. Horizontal blue dashed lines show the “asymptotic” levels of
energy for each m (see Table II).

(see Ref. [34]). Five cylindrical subdomains in the flow field are highlighted, denoting where the
subsequent statistical analysis is performed (see Table I). The time-averaged center-line velocity uc,
momentum thickness θ , and half width of the jet δ are shown in Fig. 1(b) against the downstream
distance, indicating that fully developed (self-similar) flow is achieved after around x = 20D.

TABLE I. Geometrical characteristics of domains I–V shown in Fig. 1(a) with xs,xe being the axial
coordinates of the bottom and top, and R the radius of each cylindrical subdomain.

Domain xs/D xe/D R/D

I 2.5 8.5 1.5
II 7.5 17.5 2.0
III 15.0 25.0 2.5
IV 22.5 32.5 2.8
V 30.0 40.0 3.0
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TABLE II. Asymptotic levels of turbulent kinetic energy in the far jet for different azimuthal wave numbers
[see Fig. 1(c)].

|m| 0 1 2 3 4 5 6 7 8 9 10

km (%) 11.5 16.7 13.1 9.2 6.7 4.8 3.7 2.9 2.4 1.9 1.6

The round geometry suggests Fourier decomposition in the azimuthal direction φ with complex
coefficients representing the velocity field u,

u(r,x,m,t) = um = 1

2π

∫ 2π

0
u(r,x,φ,t)eimφdφ. (1)

The turbulent kinetic energy of each azimuthal mode, km = |um|2/2, integrated over the r-φ plane,
is shown in Fig. 1(c). Close to the inflow, due to the exit of fully developed pipe turbulence, a broad
spectrum of high m modes is excited while further downstream low wave numbers carry the bulk of
the energy with some “asymptotic” levels reached at x = 40D (see Table II).

We further apply snapshot proper orthogonal decomposition (POD) [35] for each azimuthal
wave number m and each cylindrical subdomain I–V to an ensemble of Fourier-decomposed fields
[um

1 ,um
2 , . . . ,um

N ] corresponding to subsequent time instants t = t1, . . . ,tN ,

um
i (r,x) = u(r,x,m,ti) =

N∑
q=1

am
q (ti)λ

m
q vm

q (r,x), (2)

where vm
q (r,x) and am

q (t) are the nondimensional complex-valued spatial eigenfunctions and temporal
amplitudes satisfying orthonormal conditions [36,37], λm

q are the real eigenvalues.
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FIG. 2. Distribution of km
q = (λm

q )2/2 (normalized by the total energy in a particular domain) among the
most energetic POD modes for various m and domains I–V. The index q denotes the number of ranked modes
according to the value of km

q .

062601-3



R. I. MULLYADZHANOV et al.

m � 1, q � 1 m � 1, q � 2
r

x

(a)

0 100 200 300 400
t Ub / D

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m = 1, q = 1
m = 1, q = 2

0 200 400

-10

0

10

β

γ

dγ / dt = f

(b)

FIG. 3. (a) Isosurface of the velocity magnitude colored with axial velocity for m = 1 and q = 1,2 for
domain V. Contour plot shows the real part of the POD axial velocity field. (b) Evolution of β and γ calculated
for am=1

q=1,2 in domain V.

Figure 2 shows the turbulent kinetic energy km
q = (λm

q )2/2 of the most energetic POD modes for
various m and different domains. As noted above, the self-similar jet area is governed by energy-
containing modes with low m compared to the near field. The eigenfunctions come in pairs of
(virtually) equal amounts of energy which is especially evident in the near field where the time
realization is extremely long in terms of the local timescales, providing well-converged results. Each
mode should have a counterpart identical with respect to φ → −φ symmetry as a consequence of
round geometry and the absence of mean swirl. Figure 3(a) shows the helical shape of the two most
energetic modes with m = 1 and q = 1,2 in domain V which together provide 4.85% of the total
energy. The helix is formed due to the wavelike distribution of vm

q (r,x) in the x direction, together
with the Fourier decomposition with respect to φ. This shape is observed for all energetic modes and
can be interpreted as the common form of the basis jet eigenfunction (“optimal” in terms of POD).

To probe the dynamical features of these helices we analyze the complex-valued temporal
amplitudes am

q starting with the representation a(t) = β(t)e2πiγ (t), where β and γ are real functions
of time. An important observation is that γ turns out to be a linear function, γ ≈ f t ; see the inset on
Fig. 3(b) [38,39]. Note that the matching mirror modes have the same value of γ but opposite signs
corresponding to the rotation of the helices around the axis of symmetry in the opposite direction,
with f being the frequency of rotation. The revealed e2πif t dependence implies that the described
helices travel (propagate) downstream with a phase velocity as defined below. Turbulence dynamics
is represented by the amplitude β (Fig. 3), where their large-scale fluctuations also appear with the
period of the helix rotation 1/f ≈ 22.5D/Ub or ≈5.6δ/ux using the local scaling at x = 35D and
r = δ.

The properties of the helical wave corresponding to the most energetic POD mode with m = 1
are summarized in Figs. 4(a) and 4(b). The frequency decays with x but also fluctuates around a
constant value of 0.17 when normalized with the local jet characteristics. The propagation or phase
velocity defined as uph = f λ is slightly lower than 1.0 in terms of δ and ux(δ), in agreement with
previous findings [40]. The POD results extracted from the direct numerical simulation (DNS) data are
compared with the local linear spatial stability analysis that uses a quasiparallel assumption based on
the time-averaged velocity profiles. The linearized equations for the coherent part of perturbations ũ
are derived with the perturbation represented as a monochromatic wave, i.e., ũ = û(r)eikxx+imφ−2πif t ,
where kx = kre

x + ikim
x is the complex-valued streamwise wave number, with kre

x = 2π/λ. The
Reynolds stresses are modeled using the Boussinesq approximation. These equations result in
a system of linear ordinary differential equations (ODEs), with appropriate boundary conditions
which are solved for the unknown function û providing the dispersion relation kx = kx(f ) (see the
Supplemental Material [36]). A disturbance is exponentially amplified at a given real frequency f

provided that kim
x (f ) < 0. The only unstable azimuthal mode is m = 1 with f and uph of the neutral
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FIG. 4. (a), (b) Variation of f and uph with x. Symbols: POD normalized with Ub,D (squares) and local
values δ,ux(r = δ) (circles); line: linear stability analysis (Ub,D). (c) Normalized total turbulent kinetic energy
spectra k(f ) in the shear layer, r = δ, and different axial positions together with the normalized spectra for
m = 1, km=1 (shifted down for clarity).

eigensolution (kim
x = 0) presented in Figs. 4(a) and 4(b) showing a close resemblance with the POD

results. Further, we assess the normalized turbulent kinetic energy spectrum k(f ) in the shear layer
at different axial positions, shown in Fig. 4(c). Note the evident self-similarity of large scales as the
individual spectra collapse on a single curve [41]. Vertical dashed lines show the frequency scatter
depicted in Fig. 4(a) residing near the inertial range where the dynamics of POD modes with m = 1
and q = 1,2 is expected to contribute. This range is indeed the most energy containing, with 43%
of the total energy in the low-frequency range up to f δ/ux < 0.24. The spectra of km=1 show a
distinct bump in this range of frequencies. For the spectral analysis of a broader range of m, see the
Supplemental Material [36].

One may ask if the identified most energetic coherent structures are of dynamical significance.
Figure 5(a) shows comparison of instantaneous streamwise velocity fluctuations at x = 35D in the

0

(a) (b)

FIG. 5. Comparison of streamwise velocity fluctuation signal at x = 35D, r = δ with that recovered from
POD for (a) the full signal and (b) m = 1 only.
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FIG. 6. The diagram of the most energetic POD modes with variousm andq indices in kx-f space normalized
with local characteristics (f δ/ux against kxδ/2π ). Each symbol represents a separate mode while the size of
the symbol schematically shows the amount of energy represented by this mode (Fig. 2). The axial wavelength
(λ = 2π/kx) and frequency (f = dγ /dt) are extracted for each q and m according to Fig. 3. Three dashed lines
denote the phase velocities (uph/ux) of 0.6, 0.8, and 1.0, respectively. The horizontal line shows the results of
linear stability analysis (LSA) [Fig. 4(a)].

shear layer with that provided by the reduced-order POD model recovered using a different number
of modes. Two modes with m = 1 and q = 1,2 representing only 4.85% of total energy capture all
significant large-scale events. The ten most energetic modes with m = 1, 2, and 3 [see Fig. 2(e)],
containing 16.66% of the overall energy, sufficiently improve the amplitude of the signal. If one
inspects only the m = 1 instantaneous signal of the streamwise velocity fluctuations, these two
modes q = 1,2 are sufficient to replicate the full signal with high accuracy [Fig. 5(b)], confirming
the significance of the identified structures. Similar results are also found for other m.

We have documented in detail the most energetic mode with m = 1 and q = 1,2 while the overall
dynamics can be fairly represented by a family of traveling waves (Fig. 5). To get a general view of
the spatiotemporal properties of wavy motion we plot an “empirical” dispersion law as a diagram in
kx-f space (Fig. 6; see also Ref. [42]). Symbols represent separate POD modes with their respective
amount of energy, spatial, and spectral features, extracted according to Fig. 3 with a specific axial
wavelength (λ = 2π/kx) and frequency (f = dγ /dt) for each q and m. While structures with m > 0

062601-6
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behave similarly in the near and far field, axisymmetric modes have higher phase velocities close to
the nozzle, governed by a Kelvin-Helmholtz instability. When reaching the far jet, the phase velocity
for m = 0 can be confidently bounded in the interval 0.8 < uph/ux < 1.0 while uph/ux for waves
with m > 0 vary from 0.6 to 1.0 [43].

Thus, we have shown that propagating waves are the building units of the “optimal” basis (the
feature of POD) describing the dynamics of turbulent jets. We tracked the wave packets from the
near to the far field and showed their scaling properties and dispersion laws in terms of local jet
characteristics. According to far-jet asymptotics, this dynamical “skeleton” is expected to be universal
also for swirling and nonaxisymmetric jets [44]. Future work should demonstrate the particular role
of the observed structures and their contribution to mixing [21], aeroacoustics [45], and to the strong
anisotropy and peculiarities of the concentration distribution in particle-laden jets [46]. The obtained
basis can also be a good candidate for a Craya-type decomposition for inhomogeneous flows to
inspect the role of helicity in the energy transfer [47–49].

This work is funded by the Russian Science Foundation Grant No. 14-19-01685. The resources
for postprocessing are provided by Novosibirsk State University supercomputer center, Siberian
Supercomputer Center SB RAS (Novosibirsk) and Joint Supercomputer Center RAS (Moscow).
The authors are grateful to the anonymous referees for their valuable comments.
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