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A new approach for computing the steady state

fluid-structure interaction response of periodic problems

P.J. Maljaars, M.L. Kaminski, J.H. den Besten

Delft, University of Technology, Maritime & Transport Technology Department

Abstract

A special type of fluid-structure interaction (FSI) problems are problems with
periodic boundary conditions like in turbomachinery. The steady state FSI
response of these problems is usually calculated with similar techniques as
used for transient FSI analyses. This means that, when the fluid and struc-
ture problem are not simultaneously solved with a monolithic approach, the
problem is partitioned into a fluid and structural part and that each time step
coupling iterations are performed to account for strong interactions between
the two sub-domains. This paper shows that a time-partitioned FSI compu-
tation can be very inefficient to compute the steady state FSI response of
periodic problems. A new approach is introduced in which coupling iterations
are performed on periodic level instead of per time step. The convergence be-
haviour can be significantly improved by implementing existing partitioned
solution methods as used for time step coupling (TSC) algorithms in the time
periodic coupling (TPC) framework. The new algorithm has been evaluated
by comparing the convergence behaviour to TSC algorithms. It is shown that
the number of fluid structure evaluations can be considerably reduced when
a TPC algorithm is applied instead of a TSC. One of the most appealing ad-
vantages of the TPC approach is that the structural problem can be solved
in the frequency domain resulting in a very efficient algorithm for computing
steady state FSI responses.

Keywords: Fluid-structure interaction, Time periodic coupling,
Partitioned solution methods, Strong coupling, quasi-Newton methods
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1. Introduction

Over the past decade many papers have been published on fluid-structure
interaction for different types of coupled problems. Examples of FSI prob-
lems studied in literature are for instance parachute dynamics [1, 2], flutter
analysis of wings [3], airbag deployment [4], blood flow in arteries [1, 5] and
hydro-elastic analysis of flexible propellers [6, 7].
Monolithic or partitioned approaches can be used to solve the coupled prob-
lems. In the monolithic approach the fluid and structure problem are simul-
taneously solved using a single code. In a partitioned approach the fluid and
structure problem are solved in separate codes. In case of strong interaction
between fluid and structure, a partitioned approach requires coupling itera-
tions to converge to the monolithic solution, which can be computationally
intensive. An important advantage of the partitioned approach is that exist-
ing codes can be used.
A straightforward partitioned solution method is the Gauss-Seidel method in
which the fluid and structure problem are solved alternately and the last so-
lution is taken as update. The convergence rate of the Gauss-Seidel method
is inversely proportional with the ratio between fluid added mass and struc-
tural mass. Instability occurs when this ratio exceeds one [8]. It has been
shown that the added mass of compressible flows is proportional to the time
step, whereas the added mass of an incompressible flow is constant and time
step size independent [8, 9] meaning that added mass instabilities in incom-
pressible flows cannot be solved by reducing the time step size.
Several partitioned solution methods have been presented in literature for FSI
problems with strong fluid added mass effects, like Aitken under-relaxation
[10] and Quasi-Newton inverse least squares (QN-ILS) [11]. Where the first
one belongs to the general class of stationary iterative methods and the latter
one to the class of Krylov subspace methods. In combination with coupling
iterations for each time step, these methods have been used in the past to
converge to the solution of the fully coupled problem.
A special class of FSI problems involve periodic boundary conditions like in
turbomachinery. A common approach is to solve these problems with sim-
ilar approaches as used in non-periodic problems, which means with fully
time step coupled (TSC) simulations [12]. An important drawback of this
approach is that the transient FSI response is calculated as well and any
transients in the solution procedure will adversely affect the convergence to
the steady state solution.
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The aim of this paper is to introduce a new approach, called the time periodic
coupling (TPC) to get rid of the transient response in order to compute more
efficiently the steady state response of periodic FSI problems with strong fluid
added mass effects. The motivation for this work follows from our research
on the hydro-elastic analysis of flexible composite propellers [13, 14]. These
problems involve periodic boundary conditions and include strong fluid added
mass effects [14], which require a strong coupling approach. The conceptual
idea of a time periodic FSI coupling approach comes from [15] but has been
applied only to a weakly coupled problem so far. The scope of this work
is to introduce a TPC approach for strongly coupled FSI problems and to
demonstrate the efficiency improvement for some fundamental FSI problems.
It will be shown that convergence problems as appearing in TSC schemes due
to strong fluid added mass effects, arise in the TPC as well. In order to sta-
bilize a TPC scheme two partitioned solution methods used in TSC schemes,
are applied in the TPC framework. The authors have limited themselves to
the implementation of the Aitken under-relaxation and the QN-ILS method.
The first one because it shows that a TPC approach not automatically per-
forms better than a TSC. The later one because the QN-ILS method is the
state of art in advanced under-relaxation methods in FSI calculations [16]
and it shows that a TPC in combination with QN-ILS can outperform a
TSC. Furthermore, with these two methods both the general class of station-
ary iterative methods and Krylov subspace methods have been represented.
Demonstrating the performance of the TPC approach for other partitioned
solution methods, which may belong to the aforementioned general classes,
was considered out of the scope of this work.
The contents of this paper are organized as follows: Section 2 provides back-
ground information ib partitioned FSI, Aitken under-relaxation and the QN-
ILS method. Section 2 also presents the concept of the TPC approach. Sec-
tion 3 introduces some fundamental FSI problems, which have been analysed
in this work. Section 4 compares TSC and TPC solutions for the problems
presented in Section 3. It is shown that both approaches converge to the exact
solutions. Furthermore, the TSC and TPC algorithms have been evaluated
by investigating the convergence behaviour for different settings. Section 5
contains conclusions and recommendations.
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2. Partitioned solution methods

In this section the time periodic FSI coupling approach is introduced
in combination with two methods to keep the coupling iterations stable.
First of all, the Aitken under-relaxation which belongs to the general class of
stationary iterative methods. Secondly, the QN-ILS method which belongs
to the general class of Krylov subspace methods.

2.1. Fluid-structure interaction

With F and S the fluid and structure operators, a partitioned fluid-
structure interaction problem can be written as,

y = F (x)

x = S (y)
(1)

where x is the structural response of the fluid-structure interface, y the fluid
loading on the interface. The coupled problem can be formulated as solving
for x or y by satisfying,

Rx (x) = S ◦ F (x)− x = 0 (2)

Ry (y) = F ◦ S(y)− y = 0 (3)

where Rx and Ry are the interface residual functions for structural response
and fluid loading respectively. It is more convenient to solve for Ry as will be
explained in Section 2.5. When the Jacobian ∂R

∂y
is known, Newton’s method

can be applied to find the roots of Eq. 3,

yk+1 = yk −
(
∂R
∂y

)−1
rky (4)

where k denotes the coupling iteration number and the residual, rky, is defined
as,

rky = Ry

(
yk
)
. (5)

2.2. Coupling strategies for partitioned FSI problems

In case of a black-box coupling the inverse Jacobian is usually not known
and time consuming to calculate. Therefore, quasi-Newton methods with
approximations of the inverse Jacobian can be employed. In case the non-
linearities are relatively small a straightforward approximation of the inverse
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Jacobian is −I. This approximation is basically a block Gauss-Seidel method
in which the fluid and structure subsystem are solved separately and itera-
tions are performed to converge to the fully coupled solution. For FSI prob-
lems with strong added mass effects this approach will not converge, (see for
instance [17, 18]) and other quasi-Newton methods have to be applied.

2.3. Aitken under-relaxation

A method to stabilize coupling iterations is to apply under-relaxation.
The inverse Jacobian is approximated as −σI, with σ the relaxation factor
in interval (0, 1]. An optimal relaxation factor has to be found to avoid di-
vergence on the one hand and long computational times on the other hand.
With adaptive Aitken a variable under-relaxation factor σ is computed,
which reduces the number of coupling iterations compared to a fixed under-
relaxation factor [10]. Two pairs of computed and predicted interface forces
(yk−1, ỹk−1) and (yk, ỹk) are required to estimate the best prediction of the
interface forces for the next coupling iteration (ỹk+1) based on the secant
method. The first step of the secant method reads,

ỹk+1 = ỹk + σk
(
yk − ỹk

)
(6)

where for vector cases the following expression for σk has been proposed [10],

σk = −σk−1
rk−1y ·

(
rky − rk−1y

)∥∥rky − rk−1y

∥∥2 (7)

Hence, with Aitken under-relaxation the relaxation parameter is adjusted
based on the inner product of the residuals to control the convergence of the
coupling iterations. It has been shown that the convergence behaviour of
Aitken’s method deteriorates as the fluid-structure mass ratio increases [8]
and, therefore, more coupling iterations are required. To reduce the number
of coupling iterations more efficient coupling strategies have been developed,
like the QN-ILS approach described hereafter.

2.4. Quasi-Newton inverse least squares

With the QN-ILS method [11] an improved approximation of the inverse
Jacobian is obtained. In the QN-ILS method the inverse Jacobian is not
explicitly determined but implicitly included in the new update of the inter-
face forces ỹk+1. The QN-ILS method is like Aitken under-relaxation based
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on known input-output pairs of Eq. 3, but in the QN-ILS method results
of all previous iterates are used. The best candidate for ỹk+1 is a vector of
forces which will minimize rk+1

y . By following [19] an approximation of the

new residual vector Ry

(
yk+1

)
is written as a linear combination of previous

residual vectors,

Ry

(
yk+1

)
≈ rky +

k−1∑
i=0

αki
(
riy − rky

)
(8)

The coefficients αki are found from a least squares minimization of the ap-
proximated residual Ry

(
yk+1

)
,

αk = arg min
αk∈R

||rky +
k−1∑
i=0

αki
(
riy − rky

)
|| (9)

By assuming a linear relation between ry and y, the best approximation for

ỹk+1 is the linear combination of the previous iterates of y,

ỹk+1 = yk +
k−1∑
i=0

αki
(
yi − yk

)
(10)

Eq. 10 shows that the approximate inverse Jacobian is implicitly included
in the expression

∑k−1
i=0 α

k
i

(
yi − yk

)
. Any linear combination of changes in

fluid forces that are obtained from previous iterates are coupled implicitly.
The coupling is explicit for the changes in fluid forces that cannot be written
as a linear combination of previous iterates. Since the most unstable vari-
ations will directly appear in the solution process, they will be included in
the approximation of the inverse Jacobian and, therefore, implicitly coupled
immediately after performing QN-ILS coupling iterations [20].

2.5. Time step coupling and time periodic coupling

For calculating the steady state response of FSI problems with periodic
boundary conditions TSCs are frequently applied. A typical algorithm is
shown as Algorithm 1. A certain number of FSI cycles, nFSI , have to be
performed until the steady state solution is obtained. To initialize the FSI
computation first ỹ1

1..N have to be defined, where N is number of time steps
in one period and the superscript 1 refers to the coupling iteration number.
This is accomplished by first computing y1..N from a calculation in which no
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fluid-structure coupling is involved. Then, y1..N is taken as the best candi-
date for ỹ1

1..N . Each time step, k coupling iterations are applied until ‖r‖ is
smaller than a specified tolerance ε. The best candidate ỹk+1

n for the next
coupling iteration is, for instance, calculated with Aitken under-relaxation
or the QN-ILS method. Algorithms for these two methods can be found in
[16].
In the TPC algorithm the periodicity in the problem has been utilized to
avoid coupling iterations on time step level. An algorithm for a TPC is pre-
sented as Algorithm 2. A certain number of FSI cycles have to be performed
until the FSI problem is converged. The number of FSI cycles coincides with
the number of coupling iterations k. In line 13 of Algorithm 2 the best candi-
dates ỹk+1

1..N for the interface forces at all time steps for the next FSI cycle are
calculated, for instance with Aitken under-relaxation or the QN-ILS method.
The TPC algorithm shows that the structural and fluid sub-problem com-
prises the steady state solutions for both sub-problems. For a fast conver-
gence we propose to solve fluid and structural problem, if possible, in the
frequency domain. Thus, the steady state solutions for the two sub-problems
are immediately obtained and any transients in the solutions, which will slow
down the convergence to the steady-state FSI solution, are not computed.
Note, that the algorithms might also start with the fluid evaluations in line 9
and line 8 of Algorithm 1 and 2, respectively. Then, line 11 of Algorithm 1
and line 13 of Algorithm 2 will change in calculating the best candidate for
the structural displacements. However, also the structural velocity and ac-

celeration are coupled to the fluid and, therefore, ˙̃x
k+1

and ¨̃x
k+1

have to be
approximated as well. That would require an additional calculation step,
therefore, Algorithms 1 and 2 have been followed for the computations in
this work.
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Algorithm 1 Algorithm for a time step coupling

1: nFSI = 0
2: Define ỹ1

1..N

3: while FSI problem not converged do
4: nFSI = nFSI + 1
5: for n = 1 : N do . With N the number of time steps in a period
6: k = 0
7: while

∥∥rk−1n

∥∥ > ε do
8: k = k + 1

9: ykn = F ◦ S
(
ỹkn

)
10: rkn = ykn − ỹkn
11: Calculate ỹk+1

n

12: end while
13: end for
14: end while

Algorithm 2 Algorithm for a time periodic coupling

1: nFSI = 0 ns = 0 nf = 0
2: k = 0
3: Define ỹ1

1..N

4: while FSI problem not converged do
5: nFSI = nFSI + 1
6: k = nFSI
7: for n = 1 : N do . Calculate steady state solution for xk1..N
8: xkn = S

(
ỹkn

)
9: end for

10: for n = 1 : N do . Calculate steady state solution for yk1..N
11: ykn = F

(
xkn
)

12: end for
13: Calculate ỹk+1

1..N

14: end while
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3. Problem description

This section will describe the problems which will be solved. First a
two-degree of freedom (DoF) model for pitching and plunging motions of a
prismatic wing in a fluid will be presented. The FSI response of this problem
will be solved with a TSC and TPC approach in which a black-box fluid
solver is used. Then, a 1-DoF model for the same wing but for pitching
motions only will be presented. This model has been used in another study
for comparison of fluid-structure interaction algorithms [21] and will be used
in this work to verify the TSC and TPC approach. Finally, this section will
present a 1-DoF model, again for the same wing but for plunging motions
only. This model will be used for a comparative study between the TSC and
TPC approach. The problem involves strong fluid-added mass effects which
are known to introduce numerical difficulties, making it a useful problem for
demonstrating the benefits of the TPC approach.

3.1. 2-DoF model for pitching and plunging wing motions

The problem of interest is the motion of a prismatic wing with a span,
s, of 20 m, chord, c, of 1 m and a NACA 0009 cross section profile in an
incompressible flow at zero angle of attack and an incoming flow velocity, vx,
of 3 m/s (Figure 1). The wing is connected with springs to a structure and
can rotate around the mid-chord point and move in vertical direction. The
wing is subjected to an external harmonic force and moment,

f0 =

{
fz
mθ

}
=

{
Fz
Mθ

}
cos(ωt) (11)

where Fz and M0 are the force and moment amplitudes, 400,000 N and
10,000 Nm, respectively. ω is the radial frequency in rad/s and unless speci-
fied otherwise the excitation frequency is 4π rad/s. Due to the external loads
the wing oscillates in pitching and plunging motion. The equation of motion
with respect to the centre of motion (COM) for this problem reads,

Mü + Cu̇ + Ku = f0 + fh(u, u̇, ü) (12)

where the vector u contains the vertical displacement, z, and rotation of the
wing, θ, fh is the vector with hydrodynamic loads due to the wing structural
response. M, K and C denote the mass, stiffness and damping matrices.
The mass of the wing is 1,000 kg, the rotational inertia is 100 kgm2. The
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centre of gravity (COG) is 0.05 m in front of the COM. Hence, the mass
matrix is given by,

M =

[
1, 000 50

50 100

]
(13)

The extensional spring stiffness is 7,500,000 N/m and the stiffness of the
torsional spring is 375,000 Nm/rad. Hence, the stiffness matrix is given by,

K =

[
7, 500, 000 0

0 375, 000

]
(14)

Unless specified otherwise, 5% critical damping, ζ, of the individual springs
has been used as default for the damping terms in the structural damping
matrix. The reason for this high value will be explained in Section 4.2.4.
Hence, the damping matrix is given by,

C =

[
8, 660 0

0 612

]
(15)

x

z

vx 0.05 m0.45 m 0.50 m

C11
C22

K11

K22

fz

m
θ

θ

Figure 1: A two-degree of freedom model for the pitching and plunging motions of a
prismatic wing.

3.2. 1-DoF model for pitching wing motions

To verify the correctness of the TSC and TPC partitioned approaches,
calculations have been performed for the specific case of pitching motions
only. For that case the 2-DoF model reduces to,

M22θ̈ + C22θ̇ +K22θ = m0 −mh(θ, θ̇, θ̈) (16)
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with θ the pitch angle. For this typical problem approximation formulas for
mh, subdivided in fluid added mass, fluid damping and fluid stiffness loads,
have been approximated based on incompressible viscous Reynolds-averaged
Navier-Stokes (RANS) computations [22]. The approximation formulas for
fluid added mass, mf , fluid damping, cf and fluid stiffness, kf read,

mh = −mf θ̈ − cf θ̇ − kfθ

mf =
π

128
ρc4s

cf =

{
0.105k−0.4ρvxc

3s for k≤4,

0.010k0.6ρvxc
3s for k≥12,

(17)

kf =

{
(0.090k − 0.80) ρv2xc

2s for k≤4,

(0.065k − 0.90) ρv2xc
2s for k≥12,

where k is the reduced frequency that describes the unsteadiness of the flow,

k =
ωc

2vx
(18)

With these approximations the equation for the pitching motion is,

M22θ̈ + C22θ̇ +K22θ = m0 −mf θ̈ − cf θ̇ − kfθ. (19)

3.3. 1-DoF model for plunging wing motions

A comparison of the TSC and TPC approach have been performed for
the specific case of plunging motions only. In that case the 2-DoF model
reduces to,

M11z̈ + C11ż +K11z = fz − fh(ż, z̈) (20)

with z the vertical plunge displacement and fh the hydrodynamic loads due
to the vertical plunge motion only. For high reduced frequencies the fluid
forces due to the plunging of the wing are dominated by the non-circulatory
lift [14, 23]. The non-circulatory lift part can be expressed as a fluid-added
mass, ma, times the acceleration [14, 23], meaning Eq. 20 can be converted
into,

M11z̈ + C11ż +K11z = fz −maz̈ (21)

In general Eq. 21 can be written as,

(M11 + λma) z̈ + C11ż +K11z = fz + (λ− 1)maz̈ (22)
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where λ is called the fluid added mass fraction which controls the amount of
fluid added mass in left- and right-hand-side of the equation. For λ a value
from the interval [0, 1] has to be taken, where for λ = 0 the problem is fully
partitioned and for λ = 1 the monolithic solution is obtained.
The added mass of the wing has been calculated with the method described
in [7, 14] and is approximately 16,000 kg. The advantage of this 1-DoF
problem is that the exact Jacobian of the residual function is irrespective
of the excitation frequency and can be easily derived. The Jacobian of the
residual function is the derivative of the residual function Ry with respect
to the fluid loads on the interface, for the 1-DoF case denoted by y. For the
plunging problem for any time step n, Eq. 3 can be written as,

Ryn = fzn −maz̈n − yn (23)

A direct relation between z̈n and yn exists and follows from the time in-
tegration scheme. In the TSC coupling the average constant acceleration
Newmark scheme has been used. This scheme is unconditionally stable with-
out numerical damping. This yields the following relation between z̈n and
yn,

z̈n = S−1 (yn − C11ż
∗
n −K11z

∗
n) (24)

where ż∗n and z∗n are the velocity and displacement estimates at timestep n,
respectively. S denotes the Newmark time stepping matrix, which for the
1-DoF problem is equal to,

S = M11 + γ∆tC11 + β∆t2K11 (25)

with γ = 1/2 and β = 1/4 for the Newmark average constant acceleration
scheme. Then, the derivative of the residual function to yn is equal to,

∂Ryn

∂yn
= −

(ma

S
+ 1
)

(26)

4. Fluid-structure interaction analyses

This section will present the results of the FSI calculations. The different
analyses have been structured as follows: first of all, results obtained with
the TSC and TPC approach for the 1-DoF pitching problem will be shown
together with the analytical solutions in order to verify the correctness of the
coupling approaches. Secondly, a comparison of the convergence behaviour
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of the TSC and TPC approach will be presented from the results obtained for
the 1-DoF plunging problem. This section concludes with a TSC and TPC
calculation of the 2-DoF problem in order to show the efficiency improvement
of the new approach for the more common case that fluid forces are computed
with a black-box fluid solver.

4.1. Verification of TSC and TPC approach for 1-DoF pitching problem

In order to verify the TSC and TPC approach, partitioned solutions for
the 1-DoF pitching problem have been compared to the exact monolithic
solutions. The monolithic solutions are obtained by moving the fluid forces
from the right-hand-side of Eq. 19 to left-hand-side and then the exact so-
lution for θ can be computed. The partitioned solutions are obtained by
keeping the fluid forces in the right-hand-side as unknowns and iterations
are required to converge to the monolithic solution. Fig. 2 shows the exact
solution, the TSC solution and the TPC solution for the oscillation frequen-
cies {4π, 7π, 10π} rad/s, i.e. stiffness, damping and mass dominated response
regimes. For all cases the TSC and TPC procedure converges to the exact
solution. The figures show also the number of FSI cycles, nFSI , required for
convergence. For convergence the criterion that the root mean square of the
relative difference in fluid forces between subsequent FSI cycles should be
smaller than 0.1% has been used. The results show that for all the cases the
number of FSI cycles is significantly smaller when TPC has been used. In
the next subsection the benefits of the TPC coupling will be further explored
for the 1-DoF plunging problem.

4.2. Comparison of TSC and TPC approach for the 1-DoF plunging problem

The benefits of the TPC coupling are demonstrated using the 1-DoF
plunging problem by comparing the performance of the TSC and TPC al-
gorithms for different settings and using Aitken or the QN-ILS method for
the approximation of the best candidate for the fluid interface forces. All
the TSC calculations for the 1-DoF plunging problem are performed using
the exact Jacobian as derived in Section 3.3. Therefore, the results obtained
with the TPC algorithm are always compared to the most efficient TSC algo-
rithm, since for a TSC framework the fastest convergence of the FSI problem
is obtained with the exact inverse Jacobian.
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t/T
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θ
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TSC, nFSI = 31
TPC, nFSI = 6

(a) ω = 4π
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(b) ω = 7π

t/T
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-3

-2
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0

1

2

3

Exact
TSC, nFSI = 70
TPC, nFSI = 6

(c) ω = 10π

Figure 2: Exact, TSC and TPC solution for θ as a function of the normalized time, t/T ,
T = 2π/ω, for the 1-DoF pitching problem.
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4.2.1. Time step and Aitken time periodic solution for different fluid added
mass fractions

The convergence of the TSC algorithm with the exact (inverse) Jacobian
of the residual function and the TPC algorithm with Aitken under-relaxation
will be compared for the 1-DoF plunging problem for different fluid added
mass fractions. Both algorithms have to run through a number of FSI cycles
until a steady state FSI response is obtained. After each FSI cycle the error,
ψ, is calculated from:

ψn =
ykn − ỹkn
ykn

n = 1 . . . N (27)

ψ = rms


ψ1
...
ψN


The error as a function of the number of FSI cycles is depicted in Figure 3
for various values of λ. For λ = 1 a monolithic problem is solved and both
algorithms are directly converged, since in that case y includes only the
non-oscillating wing forces, fz. For smaller fluid added mass fractions the
TSC requires only two coupling iterations per time step; after the first sub-
iteration only one corrector step is needed since the exact (inverse) Jacobian
of the residual function is known and the residual function, Ry, is linear in
the accelerations. Hence, the number of structure and fluid evaluations is
2nFSIN in case of the TSC, while this is nFSIN for the TPC. The factor 2
comes from the number of coupling iterations for each time step, which is
the minimum number of coupling iterations for the TSC approach.
The results show that the convergence of the TSC is hardly influenced by the
fluid added mass fraction. The opposite is the case for the Aitken TPC. When
λ becomes too small, the Aitken TPC does not converge. While depending
on λ a faster convergence could be obtained with the TPC compared to the
TSC.
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Figure 3: Convergence behaviour of the time step and Aitken time periodic coupling for
the 1-DoF plunging problem for different fluid added mass fractions.

4.2.2. Time step and QN-ILS time periodic solution for different fluid added
mass fractions

For the TPC a faster convergence rate can be obtained when a better
approximation of the inverse Jacobian of the residual function is included.
For that reason the QN-ILS approach has been implemented in the TPC.
Results obtained with the TSC and QN-ILS TPC for the 1-DoF plunging
problem for different fluid added mass fractions are depicted in Figure 4. This
figure shows that the QN-ILS TPC, in contrast to the Aitken TPC, converges
for any λ. For subsequent coupling iterations instabilities in the solution
process are included in the approximation of the inverse Jacobian of the
residual function and, therefore, implicitly coupled directly after performing
QN-ILS coupling iterations [20], keeping the solution process stable even for
strong instabilities due to fluid added mass effects. Furthermore, it can be
concluded that the number of FSI cycles needed for convergence is smaller
for the QN-ILS TPC than for the TSC for any λ. The results show also that
the convergence behaviour is more or less independent of λ for the TSC. This
is the case for the TPC as well, up to ψ = 10−6. For a further convergence
the calculation with λ = 0 requires more FSI cycles. In summary, it can
be concluded that the QN-ILS approach stabilizes the solution process of
the TPC even for strong fluid added mass effects and fewer FSI cycles are
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required for convergence than with a TSC algorithm.
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Figure 4: Convergence behaviour of the time step and QN-ILS time periodic coupling for
the 1-DoF plunging problem for different fluid added mass fractions.
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4.2.3. Time step and QN-ILS time periodic solution for different damping
ratios

For periodic FSI problems solved in the time domain the amount of damp-
ing in the system determines the number of FSI cycles required to obtain the
steady state solution. Therefore, damping has an important influence on
the convergence behaviour. In order to damp the transients in the response
rapidly, artificial damping could be included, but that will also alter the
steady state solution. Figure 5 shows the influence of damping on the con-
vergence of the TSC with the exact Jacobian of the residual function for the
1-DoF plunging problem. When the damping becomes too small the solution
will hardly converge. The number of FSI cycles is inversely proportional to
the damping ratio.
In case of the TPC, steady state solutions for the fluid and structural prob-
lem are sequentially calculated for each FSI cycle and the structural problem
has been solved in the frequency domain. In that way the steady state struc-
tural solution for each FSI cycle is immediately obtained and any transients
which will adversely affect the convergence to the steady state FSI solution
are not computed. Figure 5 shows also the convergence of the QN-ILS TPC
for different damping ratios. It can be concluded that fast damping indepen-
dent convergence is obtained with the QN-ILS TPC coupling and adopting a
frequency domain approach. Figure 5 explains also why the default damping
value is equal to the high value of 5% of the critical damping. This value has
been chosen in order to avoid biasing of the results in favour of the new cou-
pling approach. Since for low damping the TPC approach will outperform
the TSC even more.
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Figure 5: Convergence behaviour of the time step and QN-ILS time periodic coupling for
the 1-DoF plunging problem for different fluid added mass fractions.

4.2.4. Time step and QN-ILS time periodic solution for different oscillation
frequencies

The convergence of the TSC algorithm with the exact (inverse) Jacobian
of the residual function and the QN-ILS TPC algorithm will be compared for
the 1-DoF plunging problem for the oscillation frequencies {4π, 7π, 10π} rad/s.
Since, the wet natural frequency (i.e. the natural frequency including the
fluid added mass contribution) is 21 rad/s, the three oscillation frequencies
cover stiffness, damping and mass dominated response regimes.
Figure 6 shows the convergence behaviour of the two algorithms. For any case
the convergence rate of the QN-ILS TPC algorithm is much faster than for
the TSC algorithm. Up to ψ = 10−6 the various TPC calculations converge
similarly, for further convergence the number of FSI cycles strongly depends
on ω. Over the whole range of errors a frequency dependency can be seen for
the TSC approach. The slowest convergence is obtained for ω = 10π, which
is the case with the mass dominated response.
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Figure 6: Convergence behaviour of the time step and QN-ILS time periodic solution for
the 1-DoF problem for different oscillation frequencies.

4.3. Aitken time step and QN-ILS time periodic solution for the 2-DoF prob-
lem

In this subsection the convergence behaviour of the TSC and TPC ap-
proach will be compared for the 2-DoF problem. In the TPC calculation the
structural problem has been solved in the frequency domain, and the QN-ILS
method has been used to stabilize the FSI analysis. The fluid forces have
been computed with the potential flow solver PROCAL [24, 25], in order to
show the efficiency improvement of the new approach for the more common
case that fluid forces are computed with a black-box fluid solver. In the TSC
calculation Aitken under-relaxation has been used for stabilisation. The fluid
forces in the TSC calculation have been obtained from the approximations
for the loads as given in Eq. 17 and Eq. 21. In that way the TPC calcula-
tion has been compared to the fastest TSC calculation. Figure 7 shows the
convergence of the TSC and TPC calculation, for ω = 4π. The error has
been determined with Eq. 27 by separately calculating ψ for every degree of
freedom and taking the maximum of both errors.
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Figure 7: Convergence behaviour of the Aitken time step and QN-ILS time periodic cou-
pling for the 2-DoF problem, ω = 4π.

The number of FSI cycles to reduce ψ to 10−4 is 63 for the TPC cal-
culation and for the TSC calculation slightly more: 75 cycles. However, as
explained before, in the most optimal case the TSC calculation requires only
two structure and fluid evaluations per time step, whereas for the TPC cou-
pling this is one. In the present TSC calculation on average eight structure
and fluid evaluations per time step were required, since for this two degrees
of freedom problem the exact inverse Jacobian cannot be derived and is ap-
proximated with Aitken’s method. Hence, it can be concluded that also for
this 2-DoF case the TPC approach significantly reduces the computational
demand to obtain the steady state FSI solution.
Figure 8 shows the converged solution calculated with the TPC and the
black box fluid solver and the solution as obtained from the TSC calculation
in which the approximations for the fluid loads have been used. The plunging
response as obtained with both approaches are reasonably similar. Larger
differences can be seen for the pitching response. These differences can be
attributed to the following reasons. First of all, the hydrodynamic loads as
obtained with the potential flow solver PROCAL will differ from the ap-
proximated loads from RANS calculations as investigated in [21]. Secondly,
in the approximation formulas as used in the TSC calculation a constant
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Figure 8: Aitken time step and QN-ILS time periodic solution for z and θ as a function
of the normalized timed, t/T , for the 2-DoF problem, ω = 4π.

fluid added rotation inertia has been assumed. Depending on the reduced
frequency this might be wrong, since for plunging motions it has been shown
that a constant added mass is only valid for sufficiently low or high reduced
frequencies [14]. The most important reason is that in the TPC calcula-
tion with PROCAL the fluid forces create a coupling between plunging and
pitching response. This is not present in the TSC calculation. That can be
concluded from the results presented in Figures 9 and 10. These figures show
results obtained with the two approaches for the 1-DoF plunging and pitch-
ing problem. That means the differences between the TPC and TSC solution
can be only attributed to the first two aforementioned sources. Hence, it can
be concluded that the big differences in the right graph of Figure 8 is mainly
due to coupling between plunging and pitching response which is present in
the TPC but not in the TSC calculation.
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Figure 10: Aitken time step and QN-ILS
time periodic solution as a function of
the normalized timed, t/T , for the 1-DoF
pitching problem, ω = 4π.

5. Conclusions and recommendations

A new approach has been presented for solving more efficiently the FSI
response of problems with periodic boundary conditions like in turbomachin-
ery. It has been shown that time step coupled (TSC) simulations arduously
converge to the steady state solution due to transients in the response. To
get rid of the transient response the new approach is based on coupling the
fluid and structural problem on a periodic level rather than per time step. In
this time periodic coupling (TPC) the fluid and structural sub-problem can
be solved in the frequency domain resulting in a very efficient algorithm for
computing steady state FSI responses. To keep the iterative solution process
stable, existing partitioned solution methods, like Aitken under-relaxation
and Quasi-Newton inverse least squares (QN-ILS) have been used.
The TPC approach has been demonstrated for difficult FSI problems due to
strong fluid added mass effects. The convergence rate of the TPC has been
compared to a TSC approach. The results show that depending on the ratio
between mass in the left- and right-hand-side of the equation of motion and
damping in the system, the TPC converges much faster than a TSC. When
the amount of fluid added mass in the right-hand-side of the equation of
motion became too large, the Aitken TPC did not converge at all. The QN-
ILS TPC converged for any case. This work shows that the computational
demand to compute the steady state FSI response of periodic problems can
be significantly reduced with a TPC approach.
This work has been limited to 1-DoF and 2-DoF problems. Therefore, for
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future work it is recommended to analyse more extensive cases as well, prefer-
ably FSI problems comprising both potential flow and viscous flow calcula-
tions. The authors have already implemented the QN-ILS TPC approach for
the more extensive problem of the hydro-elastic analysis of flexible marine
propellers. This will be presented in a future publication. In this work the
TPC approach have been presented only in combination with Aitken under-
relaxation and the QN-ILS method. In future work the performance of the
TPC approach with other partitioned solution methods should be investi-
gated as well.
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[10] U. Küttler, W. Wall, Fixed-point fluid-structure interaction solvers with
dynamic relaxation, Computational Mechanics 43 (2008) 61–72.

[11] J. Degroote, K. Bathe, J. Vierendeels, Performance of a new partitioned
procedure versus a monolithic procedure in fluid–structure interaction,
Computers Structures 87 (1112) (2009) 793–801.

[12] C. Berthold, Development of a coupled fluid-structure simulation
method in the frequency domain, Master’s thesis, Delft University of
Technology, Delft, The Netherlands (2016).

[13] P. Maljaars, L. Bronswijk, J. Windt, N. Grasso, M. Kaminski, Experi-
mental validation of fluidstructure interaction computations of flexible
composite propellers in open water conditions using BEM-FEM and
RANS-FEM methods, Journal of Marine Science and Engineering 6 (2).

[14] P. Maljaars, M. Kaminski, J. den Besten, Boundary element modelling
aspects for the hydro-elastic analysis of flexible marine propellers, Jour-
nal of Marine Science and Engineering 6 (2).

[15] B. Beulen, M. Rutten, F. vandeVosse, A time-periodic approach for
fluid-structure interaction in distensible vessels, Journal of Fluids and
Structures 25 (5) (2009) 954–966.

[16] J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, J. Vierendeels,
Performance of partitioned procedures in fluid–structure interaction,
Computers Structures 88 (78) (2010) 446–457.

25



[17] P. Causin, J. Gerbeau, F. Nobile, Added-mass effect in the design of
partitioned algorithms for fluid-structure problems, Computer Methods
in Applied Mechanics and Engineering 194 (4244) (2005) 4506–4527.

[18] C. Förster, W. Wall, E. Ramm, The artificial added mass effect in se-
quential staggered fluid–structure interaction algorithms, European con-
ference on computational fluid dynamics, ECCOMAS (2006) 1–20.

[19] T. Scholcz, Multi-fidelity methods for fluid-structure interaction and
uncertainty quantification, Ph.D. thesis, Delft University of Technology,
Delft, The Netherlands (2015).

[20] J. Degroote, P. Bruggeman, R. Haelterman, J. Vierendeels, Stability of
a coupling technique for partitioned solvers in FSI applications, Com-
puters Structures 86 (2324) (2008) 2224–2234.

[21] Y. Young, E. Chae, D. Akcabay, Hybrid algorithm for modeling of fluid-
structure interaction in incompressible, viscous flows, Acta Mechanica
Sinica 28 (4) (2012) 10301041.

[22] C. Münch, P. Ausoni, O. Braun, M. Farhat, F. Avellan, Fluid-structure
coupling for an oscillating hydrofoil, Journal of Fluids and Structures
26 (2010) 10181033.

[23] J. Katz, A. Plotkin, Low-speed aerodynamics - 2nd ed., Cambridge Uni-
versity Press, 2001.

[24] G. Vaz, Modelling of sheet cavitation on hydrofoils and marine pro-
pellers using boundary element methods, Ph.D. thesis, Instituto Supe-
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