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Determinants of Bus Riding Time Deviations:
Relationship between Driving Patterns

and Transit Performance
Oded Cats1

Abstract: Urban bus services are subject to high levels of uncertainty and disturbances. Methods to determine the timetable are designed to
absorb variations in riding times between stops by allocating additional travel time. The propagation of service unreliability along the route
could be restrained by drivers’ adjustment at stops and between stops. This paper analyzes the main determinants of bus riding times
deviations based on automatic vehicle location (AVL) data from four trunk lines in Stockholm, Sweden. The analysis indicates that drivers
can and do adjust their speeds in response to instantaneous real-time schedule adherence information, although these adjustments depend on
the underlying control scheme: locations where the performance is measured. A model for bus riding time deviations was estimated
with autoregressive effects, performance indicators, link characteristics, and trip attributes as the explanatory factors. The results can
support the development of travel time prediction and real-time control strategies that take drivers’ response to operations into account.
This highlights the importance of the human factor in designing control schemes and the corresponding transit performance evaluation.
DOI: 10.1061/JTEPBS.0000201. © 2018 American Society of Civil Engineers.

Author keywords: Public transportation; Delay time; Bus vehicles; Time factors; Driver behavior; Scheduling.

Introduction

Service reliability is a key factor for both service users and prov-
iders since it influences door-to-door travel times as well as the
capability to maintain the planned timetable. Transit operations
are subject to several sources of uncertainty that could negatively
impact service reliability. This is particularly true for the bus oper-
ation environment. The underlying causes of service variability are
the inherent stochastic demand and supply processes such as pas-
senger arrival process, traffic conditions, and driver behavior. The
interactions between these processes impact schedule deviations
from the planned timetable of departure times from the first stop,
riding times between stops, and dwell times at stops. These devia-
tions are further reinforced by the interaction between delayed ve-
hicles, headways, passenger flows, and dwell times at stops. This
positive feedback loop results in the well-known bunching phe-
nomenon because delays propagate along the trip as well as from
one trip to the other through trip chaining.

There are various methods to determine the scheduled running
time, i.e., the combination of subsequent riding and dwell times
(Strathman et al. 2002). These methods are designed to balance
between, on one hand, the need to allocate sufficient time to allow
buses to maintain the schedule and, on the other hand, the need to
minimize resources while adhering to labor and safety constraints.
Timetables have to be revised on a regular basis to account for
changing traffic and transit conditions. Service providers are com-
monly evaluated and penalized based on their on-time performance

(Jansson and Pyddoke 2010). Consequently, timetable design and
its punctual execution have substantial economic implications and
are subject to negotiations between service providers and the re-
spective transit authority as part of the tendering process.

The propagation of service unreliability along the route could be
restrained by drivers’ adjustments at stops and between stops
through speed adjustments and holding, respectively. In order to
improve their prospects of adhering to the schedule, drivers are
often required to regulate their departure time from stops in case
of early arrivals. This common schedule-based holding control
strategy helps distribute the operational uncertainty over several
segments with their boundaries defined by the set of stops where
holding may take place. These stops are known as time point stops
(TPSs). The extent to which drivers can adjust their speeds is, of
course, restricted by traffic conditions, traffic signals, and safety
concerns. Nevertheless, the analysis of Cats et al. (2012, 2011) pro-
vides indications that drivers do adjust their cruising speeds just
before approaching TPSs in order to make it within the desired time
window.

Timetables are therefore not merely a reflection of running
times. Driver performance has a mutual relationship with transit
operations and control. This is indeed one of the reasons for per-
formance evaluation—to impact driver behavior in a favorable
manner. Ingemarson (2010) compared the running times of Trunk
Lines 1 and 4 in Stockholm, Sweden, before and after the introduc-
tion of priority measures and congestion charging. She found that
riding speeds remained unchanged even though traffic flows de-
creased by 20%. It is important to interpret these results in the con-
text of the schedule-based control strategy that was at the time used
in Stockholm. As long as the timetables did not reflect the updated
traffic conditions, buses did not exploit them. This highlights the
importance of analyzing riding time deviations (RTDs) at the link
level in order to get a better understanding of the mutual relation-
ship between driving patterns and transit performance.

The aim of this paper is to analyze the main determinants of bus
riding time deviations. The performance of high-frequency lines
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that operate under a schedule-based control scheme is analyzed
based on detailed automatic vehicle location (AVL) data. The au-
toregressive relations of link riding time deviations of consecutive
links and subsequent trips are analyzed. Distinctive patterns emerge
for different lines for the relationship with the riding time deviation
experienced by the previous trip. In contrast, a more homogenous
pattern prevails for the relationship with schedule adherence, argu-
ably due to the common underlying behavioral mechanisms. A lin-
ear regression model for bus riding time deviations is presented
with link characteristics, trip attributes, and performance-related
variables as the explanatory factors. The autoregressive impact
of previous trip travel time and proximity to the next control stop
are some of the unique contributions of this study. The results pro-
vide transit operators and agencies with insights into the interrela-
tion between timetable design, driver performance, and schedule
adherence. Moreover, these interrelations can be used to for im-
proving real-time bus arrival time prediction (Cats and Loutos
2016) and the design of methods for combating bus bunching that
rely on such predictions (Moreira-Matias et al. 2016). The impacts
of such measures can then be quantified and monetarized by relat-
ing changes in travel time and travel time variability to service users
and providers costs (Fadaei and Cats 2016).

The remainder of this paper is organized as follows: first, the
literature on bus travel time models and the impact of drivers on
transit performance is reviewed, followed by a brief presentation
of the main concepts that are used throughout the analysis and re-
lated hypotheses. The case study lines is then described and an
analysis of their schedule adherence and how riding time deviations
evolve spatially and temporally is performed, assessing the plau-
sibility of autoregressive effects. The estimated model is thereafter
presented and discussed. This paper concludes with practical rec-
ommendations and suggestions for future studies.

Literature Review

There is an agreement in the literature that the main determinants of
bus running times at the route level are route length, passenger ac-
tivity at stops, and the number of traffic signals (e.g., Abkowitz and
Engelstein 1984; Berkow et al. 2009). Feng et al. (2015) examined
the impact of traffic signals and traffic volumes on bus stop-to-stop
travel time. Comi et al. (2017) investigated the relationship between
bus traffic and the temporal congestion variability of the relevant
background car traffic.

The effect of driver heterogeneity on running times at the route
level was studied by Strathman et al. (2002) and Mishalani et al.
(2008). Both studies incorporated driver-specific coefficients in
their bus running time model, which had a significant contribution
to the explanatory power of the total running time model. Strathman
et al. (2002) calculated that driver-specific variations account for
17% of running time variation. Furthermore, drivers’ experience was
found to have a significant effect on running times, with experienced
drivers having shorter running time. The same result was reported by
El-Geneidy et al. (2011) at the TPS-segment level.

Previous studies obtained contradictory findings with respect to
the impact of an initial delay on running times. Some studies found
that a late departure from the origin stop is associated with shorter
running times along the route (El-Geneidy and Vijayakumar 2011;
Tetreault and El-Geneidy 2010), while others reported no signifi-
cant effect (Strathman et al. 2002; El-Geneidy et al. 2006). At the
TPS-segment level, an analysis by El-Geneidy et al. (2011) found
that each second of schedule deviation from the first stop on the
segment is associated with 0.21-s longer running time along this
segment. Mishalani et al. (2008) compared the explanatory power

of a model that considers the impact of schedule deviation at the
origin stop on the total trip running time with an alternative autor-
egressive model that considers the relation with the total running
time of the previous trip. They found that in the case of buses that
perform a round trip, a short running time on the first trip is
followed by a longer than planned running time on the back trip.
Furthermore, successive trips also exercised a negative relation.
Mishalani et al. concluded that the model that considers the initial
delay is preferred over the autoregressive model.

Few recent studies explicitly considered the relations between
driver behavior and transit performance. Lin and Bertini (2004) for-
mulated the drivers’ speed adjustment in response to schedule de-
viations as a Markov chain model. Their model was developed
under the assumption that all links have an equal travel time
and exercise a uniform degree of schedule recovery. R. M. Johnson
et al. (“‘The War for the Fare’: How Driver Compensation Affects
Bus System Performance,” Working Paper No. 11744, National
Bureau of Economic Research, Cambridge, MA) demonstrated
the importance of driver behavior to transit performance by com-
paring two operations environments in Santiago, Chile: fixed wage
versus per-passenger payment for drivers. They found that the latter
were more active in maintaining a regular service due to their in-
terest in avoiding bunching, which implies lower revenues. This led
to a lower deterioration of service reliability. However, passengers’
satisfaction with service quality and driving safety indicators were
higher for lines that are operated with fixed-wage drivers. More-
over, drivers that were paid per passenger reported a higher level
of stress and were involved in more traffic accidents.

The determinants of travel time variability were investigated by
Mazloumi et al. (2010). They found that a log-normal distribution
characterizes the running time distribution, while total trip travel
times are distributed symmetrically due to holding times at inter-
mediate TPSs. Schedule deviation was found to be a significant
determinant of travel time variation. They also found that trips that
run early exercise higher levels of travel time variability. These
findings were then embedded into a travel time day-to-day variabil-
ity prediction model by Mazloumi et al. (2011). The prediction
method was applied at the TPS-segment level and included the
schedule deviation at each TPS. In contrast, Jeong and Rilett
(2005) concluded that it is infeasible to incorporate the schedule
recovery phenomenon when estimating bus arrival time prediction
models. The results of these studies indicate that drivers’ reaction to
schedule may introduce a systematic source of variation into run-
ning times, but its investigation may require a more detailed level of
analysis such as stop-to-stop riding times. Analyzing bus operations
at the link level, Ma et al. (2015) estimated regression models with
travel time, buffer time, and the coefficient of variation of travel time
as dependent variables with planning, operational, and environmen-
tal factors as explanatory variables. The ratio of mode speed to free-
flow speed, number of traffic signals, and passenger demand at stops
were found to be the most important contributors.

An analytical model that formulates the progression of service
reliability along a bus route was developed by Ji et al. (2010). The
impacts of driver behavior on dwell and running times was repre-
sented through their covariance with schedule deviation. Their
analysis was restricted for the case that the covariance between
the schedule deviations of consecutive trips from the same stop
is negligible. They estimated the contribution of riding times be-
tween stops to account for 50% of the deterioration of transit
reliability along the line. Moreover, in cases of transit reliability
improvement, 40% of the improvement was attributed to riding
time changes, indicating that drivers indeed adjust their speeds
in the benefit of transit performance. They concluded that riding
time adjustments could be as important as holding at TPSs.

© ASCE 04018078-2 J. Transp. Eng., Part A: Syst.
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All of the preceding studies were conducted at either the route or
TPS-segment level. Hence, the dependent variable was always a
combination of riding time between stops and dwell time at stops.
While the main determinants of stop-specific dwell times have been
studied extensively (TCRP 2003), less attention has been given to
determinants of riding time between stops, which accounts for the
lion’s share of bus travel time. Furthermore, the aggregate level of
analysis prohibits the identification of more refined determinants
such as link attributes and the evolution of schedule deviation.
In their conclusions based on an analysis of the London road net-
work, Cheng et al. (2012) stressed that to adequately capture au-
tocorrelations, the analysis needs to be performed at a sufficiently
detailed level. The aim of this paper is to study the determinants of
bus riding time deviations through a high-resolution analysis of ri-
ding times between subsequent stops, which enables accounting for
link characteristics and instantaneous adjustments by drivers. Such
an analysis will be instrumental for bus operations purposes such as
timetable design (e.g., by identifying the distortions in the alloca-
tion of riding times along the route), dispatching, and control. The
next section presents the main notions that will be used throughout
this paper.

Concepts and Definitions of Riding Time Deviations

Bus line l is defined by a sequence of stops l ¼ ðs1; s2; : : : Þ. The
ordered set of vehicle trips on line l during a certain time interval
ðt; tþ τÞ is denoted Kl. Fig. 1 provides an illustration of an actual
bus trajectory and a corresponding scheduled trajectory. The bus
trajectory of a given trip is constructed by registering consecutive
arrival times, a, and exit (departure) times, e, from each stop along
the route. The superscripts A and T refer to actual and scheduled
time records, respectively.

Bus trajectories, as displayed in Fig. 1, can be decomposed into
riding times between stops and dwell times at stops using the time-
space diagram. Riding times consist of the time from the departure
from the upstream stop to the arrival at the subsequent downstream
stop. The actual riding time of trip k ∈ Kl that traverses a link that
starts at stop s − 1 and ends at stop s is denoted rAk;s and is defined
as follows:

rAk;s ¼ aAk;s − eAk;s−1 ð1Þ

where aAk;s and e
A
k;s = actual arrival and exit (departure) time records

of bus trip k ∈ Kl from bus stop s ∈ l, respectively. Riding times
vary between different trips due to traffic conditions on links and at
intersections as well as driving styles.

The dwell time at stop s for trip k, denoted dk;s, varies between
lines, trips, and days, depending on passengers’ activity, vehicle
type, and driver operations. The actual exit time of trip k from stop
s could be decomposed as follows:

eAk;s ¼ eAk;s1 þ
Xs

s 0¼s1þ1

ðrAk;s 0 þ dAk;s 0 Þ ð2Þ

where stop s1 is the first stop along trip k and eAk;s1 is the corre-
sponding exit time from the origin stop; and s 0 = stop index.

The riding time deviation for trip k on the link that ends at stop s
is defined as the difference between the actual and the scheduled
riding time between consecutive stops

RTDk;s ¼ rAk;s − rTk;s ¼ ðaAk;s − eAk;s−1Þ − ðaTk;s − eTk;s−1Þ ð3Þ

In other words, RTDk;s is equivalent to the contribution of this
link to a positive or negative deviation from the schedule for a

certain trip. The deviation from the schedule upon exiting stop s
is defined as follows:

ETDk;s ¼ eAk;s − eTk;s ð4Þ

Finally, the actual headway at stop s is defined as the time in-
terval between the actual exit times of trip k and the preceding trip

hAk;s ¼ eAk;s − eAk−1;s ð5Þ

The purpose of this analysis is to identify and analyze system-
atic deviations from the scheduled riding time. The impacts of
past RTDs on future deviations could be twofold: temporal autor-
egressive on subsequent trips and spatial autoregressive on con-
secutive links. First, prevailing local traffic conditions may
induce lasting deviations from the schedule on consecutive trips
due to the preservation of traffic conditions. Hence, RTDs are ex-
pected to be dependent on the immediately preceding performance:
RTDk;s ¼ fðRTDk−1;sÞ. Second, the effects of traffic spillbacks
may also result in correlated schedule deviations on succeeding
links, hence RTDk;s ¼ fðRTDk;s−1Þ. In addition, consistently short
or long riding times compared with the timetable could also be
attributed to a driving style that is sustained along the line, sug-
gesting a fixed effect at the trip level. The decoupling of these
two effects requires detailed data concerning traffic conditions
and driver-specific information.

Simultaneously, there are forces that may act in the opposite
direction and cause the reversion of existing trends. Bus drivers’
efforts to adhere to the schedule could be manifested at stops—
by shortening or lengthening their dwell times—or through
speed adjustments between stops. In the case of the latter, drivers
act as a counterforce to traffic conditions thereof, implying
RTDk;s ¼ fðETDk;sÞ. The schedule deviation refers to exit time
and hence already accounts for the potential dwell time adjustments
related to schedule recovery.

The mutual relationship between driving patterns and transit
performance is analyzed by investigating the link-level and trip-
level autoregressive effects and the timetable adherence effect on
riding time deviations. These effects are empirically analyzed in
the following section and their impact is estimated in the section
thereafter.

Fig. 1. Bus trajectory.
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Riding Time Deviation Analysis

The concepts and definitions presented in the previous section were
applied and analyzed for a set of high-frequency bus lines in Stock-
holm, Sweden. First, the case study properties are presented along
with a description of the data sources that were utilized. Second, the
spatial variation of speed and schedule deviations are investigated.
Third, in order to gain better understanding of temporal variations
in riding times, the two underlying effects discussed in the previous
section—namely, traffic conditions and schedule adherence—are
further analyzed in the final subsection. This analysis sheds light
on the spatial and temporal variations in riding times prior to the
estimation of multiple regression models.

Case Study Description

The backbone of the bus network in inner-city Stockholm, Sweden,
consists of four trunk lines (Fig. 2). These lines account for approx-
imately 60% of the total number of bus trips in this area and are
characterized by high frequency, articulated vehicles, designated
lanes at main arterials, signal priority, and real-time arrival infor-
mation at stops. The planned headway for all these lines is 4–6 min
between 07:00 and 19:00.

The performance of the inner-city trunk lines was analyzed based
on detailed and comprehensive AVL data for regular operations. The
AVL data include information on each bus stop visit that occurred

throughout the data collection period. Every time a bus visited a stop,
an AVL record was generated with information on the respective
line, trip, vehicle, and stop and the corresponding actual and sched-
uled departure time based on a trajectory analysis. Since the service
provider did not indicate scheduled arrival times in the timetable,
riding time deviations were calculated in relation to the scheduled
departure time only, hence including the dwell time.

The data were made available by SL, Stockholm’s public trans-
portation agency.

The database used in this study consists of two periods: from
November 15 to December 15, 2011, and January 9 to January
19, 2012, in order to exclude seasonal holidays. Both periods were
characterized by high passenger demand and traffic congestion.
The analysis considered four distinguished time periods: morning
peak (07:00–09:00), off-peak (09:00–15:00), and afternoon peak
(15:00–19:00) during weekdays, and all day (07:00–19:00) for
weekends. Timetables have been designed to account for the vary-
ing traffic and passenger demand conditions. In total, 1,145,324
records corresponding to 40,253 bus trips were used for this analy-
sis, where each record corresponds to a bus stop visit.

At the time data were collected in 2011–2012, the control strat-
egy was to regulate bus departures from two to four TPSs along
each route (marked in Fig. 2). These stops were selected based
on network configuration as well as function as the main transfer
stops from the underground system. Some of these stops were also

Fig. 2. Stockholm inner-city trunk lines routes. (Map data ©2018 Google.)
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used as a relief point where drivers may start or end their driv-
ing block.

All buses in Stockholm are equipped with a computer called
BusPC that is located in the driver’s cabin. The screen shows
the three next TPSs or terminals and the scheduled time at these
stops. A measure of schedule adherence is continuously displayed.
The measure is calculated based on the current location of the bus at
the half-minute level. A plus sign indicates that the bus is running
ahead of the schedule and a minus sign indicates that the bus is
running behind schedule. This display enables drivers to monitor
their performance and promptly adjust their behavior in order to
improve their schedule adherence.

During the analysis period, the agreement between the regional
transit authority and the incumbent bus operator used on-time per-
formance as the main measure of performance. On-time perfor-
mance is defined as the share of departures from TPSs that are
within the time window of [−1, þ3 min] with respect to the time-
table. Drivers are trained and encouraged to obtain high on-time
performance at TPSs. However, the operator does not provide
any incentives at the individual driver level.

Evolution of Deviations from Schedule along the Route
Riding times between stops account for 70%–75% of the travel
time for all the analyzed routes and time periods. For each of
the eight route directions, the speed profile along the route was first
analyzed. The analysis revealed that the eight routes have similar
commercial speed, i.e., operational speed consisting of both riding
and dwell times, distributions of all of them having a mean speed
in the range of 18–20 km=h and a coefficient of variation of ap-
proximately 0.25. Moreover, there was no significant difference
between speed distributions for different time-of-day periods,
while an increase of 2–3 km=h can be observed on weekends.
However, speed distributions at the link level vary considerably
over links along each route with the mean and coefficient of varia-
tion of speed ranging between 8 and 41 km=h and 0.08 and 0.95,
respectively.

Fig. 3 presents the distribution of RTDs for the entire data set in
the form of a histogram. As described previously, the scheduled
time also includes dwell time and therefore the distribution of
RTDs is slightly skewed to the left. The average RTD value is
−27 s, which is almost equal to the average dwell time of 24 s.
After considering the dwell time, the distribution is symmetrical
with 67% of the deviations within [−0.5, þ0.5 min] difference
and 87% within [−1, þ1 min] difference.

The accumulation of running time deviations in combination
with dwell times may result in systematic schedule deviations.
Fig. 4 presents the schedule deviation along the case study routes
averaged over all trips. TPSs are marked with dashed vertical lines.
A recurring pattern is evident—buses tend to first run behind sched-
ule and then reduce their lateness shortly before approaching a
TPS. This suggests that TPSs are effective in enforcing drivers
to better adhere to the schedule by adjusting their riding times.
In contrast, TPSs that are located toward the end of the route
are not effective in holding buses that run ahead of schedule. Driv-
ers are reluctant to hold at these stops because the last stretch is
dominated by alighting passengers as well as its impact on layover
time (known as the coffee effect in the industry) at the end terminal,
as was observed by Cats et al. (2012).

Correlation Analysis of Link Riding Time Deviations
As an exploratory step, key correlations of link RTDs were
examined:
1. The temporal autoregressive effect of subsequent trips on RTD

on the same link, rRTDk;s;RTDk−1;s , is positive and significantly
different from 0 at the 99.9% confidence level for all routes.

This implies that riding time deviations tend to sustain them-
selves. As expected, the autoregressive relation manifests itself
to a larger extent during peak periods (correlation coefficients of
6.5% and 5.8% for the morning and afternoon peaks, respec-
tively) than for other periods (2.7% for midday off-peak
and 1.4% for weekends). Very distinctive patterns emerge for
different routes because they are subject to different traffic con-
ditions. No pronounced differences were found for different
time-of-day periods. Fig. 5 shows the autoregressive effect at
the link level between consecutive trips along both directions
of Line 1, which was selected for illustration purposes. Bars
on the x-axis indicate the presence of a dedicated bus lane.
The autoregressive effect is particularly pronounced when
driving in mixed traffic.

2. A potential spatiotemporal autoregressive effect pertains to the
correlation between riding time deviations of the same trip on
consecutive links, rRTDk;s−1;RTDk;s

. These deviations may be de-
pendent because of queue propagation or a particular driving
style. However, the correlations between the riding times of a
certain trip on consecutive links were not found to be signifi-
cantly different from 0 at the 95% confidence level for 90%
of the links. All of the correlations were lower than 0.3. Hence,
it can be concluded that riding time deviations on consecutive
links do not vary jointly because queue propagation and distin-
guished driving styles do not prevail in most cases.

3. The relation between riding time and the respective cumulative
schedule deviation is negative, rRTDk;s;ETDk;s−1 ¼ ½−0.17;−0.04�
and significantly different from 0 at the 99% confidence level
for all routes and time periods. Hence, late buses traverse the
successive link faster than early buses do. These results are
in line with the findings of Cats et al. (2012), who found that
speeds are positively correlated with scheduled adherence, sug-
gesting that drivers can and do continuously adjust their speed in
order to reduce their deviation from the scheduled time. How-
ever, the extent of these adjustments varies considerably from
one link to the other, with strong correlations occurring at
segments just prior to TPSs.

Riding Time Deviation Model

Method

Minimum least-squared multiple linear regression models for ri-
ding time deviations at the link level were estimated. To this end,
four sets of independent variables were compiled: performance re-
lated, link characteristics, and time and line indicators. Table 1 lists

Fig. 3. Riding time deviations.
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all the independent variables that were considered in this analysis
and Table 2 reports the corresponding summary statistics.

The set of performance-related variables includes the autore-
gressive and cumulative schedule deviation effects discussed in
the previous sections. In addition, the actual headway from the
preceding bus, hAk;s, could be relevant if the operator actively main-
tains regular headways on these high-frequency services. The op-
erator indicated in joint discussions that based on their field
observations such attempts are made by drivers on a voluntarily
basis or in response to intervention of traffic dispatchers in the con-
trol room.

The second set of variables consists of link-specific character-
istics. Static properties that characterize the driving conditions on a

certain link are reflected in historical travel times and therefore
should be accounted for in the timetable design and incorporated
into the planned riding time. However, inadequate timetable
design may result in systematic biases—either underestimation
or overestimation—of riding times. Hence, if link characteristics
are significant determinants of RTD and induce substantial system-
atic deviations, then their impact has to be assessed and timetables
should be revisited. The following link characteristics were re-
corded based on field observations: number of right and left
turnings, number of signalized and unsignalized intersections
(including pedestrian crossings), the presence of a dedicated bus
lane, and whether there is an adjacent parking lane or not. In ad-
dition, the segment distance was included in the analysis to assess

Fig. 4. Average schedule deviations (ETDs) along the route in seconds.
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to what extent timetables correctly account for it. Furthermore, the
number of remaining downstream stops until the next TPS along
the route was expected to be positively correlated with RTD based
on previous analysis.

The third and fourth sets of variables are time and line specifics.
Part of the RTD variability could stem from various attributes that
are consistent over links of the same trip. The data unfortunately do
not allow for the identification of individual drivers. Time periods

and line-specific indicators were included in the estimation where
Line 3 and off-peak weekday periods were used as the reference
values.

Estimation and Analysis

Model selection was based on a backward estimation approach by
iteratively reducing the number of variables. Independent variables
were assessed based on statistical tests for the null hypothesis that
the coefficient is equal to 0. The multiple linear regression model
was first specified without the lagged deviation for riding times,
RTDk−1;s, as an explanatory variable in order to investigate whether
an autoregressive effect prevails after the inclusion of all other in-
dependent variables. The residual analysis indicated that the errors
were not independent and an autocorrelation pattern was detected.
Thereafter, the autoregressive lagged term was introduced as an
explanatory variable. Lagged terms for other performance variables
(ETD and h) were estimated and found insignificant. Other
explanatory variables—link, time, and line specific—did not carry
an autoregressive effect.

The estimation process suggests that schedule deviation may be
an explanatory variable only when buses run early. It is more
plausible for drivers to adjust by slowing down (or prolonging
dwell time) than by speeding up, and therefore the response to ear-
liness is more pronounced than the response to lateness. As a result,
the relation between ETDk;s−1 and RTDk;s is more pronounced for

Fig. 5. Autoregressive relation at the link level ðx; yÞ ¼ ðRTDk;s;RTDk−1;sÞ along Line 1: consecutive riding time deviations between 07:00 and
19:00.

Table 2. Summary statistics of the independent variables

Variable Mean Standard deviation

RTDk−1;s (s) −11.85 33.22
ETD−

k;s (s) −13.42 35.08
NSTPSs 3.32 2.54
hAk;s (s) 364.50 249.14
SInters 1.55 1.17
NoPrioritys 0.0266 0.2249
TTurns 0.75 0.93
BLanes 0.11 0.31
Distances (m) 380.71 168.46
AMpeakk 0.15 0.36
PMpeakk 0.37 0.48
Weekendk 0.18 0.38
L1k 0.29 0.45
L2k 0.20 0,40
L4k 0.31 0.46

Table 1. Description of independent variables

Variable
category

Variable
name Description

Performance RTDk−1;s Riding time deviation of the previous bus
trip on the same link (s)

ETD−
k;s−1 Earliness in the beginning of the link (s)

hAk;s−1 Time interval between consecutive trips (s)
Link NSTPSs Number of stops between the current

location and the next TPS
SInters Number of signalized intersections and

traffic lights on this link
UInters Number of unsignalized intersections on

this link
RTurns Number of right turns on this link
LTurns Number of left turns on this link
BLanes Dummy variable for dedicated bus lane on

this link
Distances Total length of the link (m)
Parkings Dummy variable for an adjacent parking

lane on this link
Pedestrians Number of unsignalized pedestrian

crossings on this link
Time AMpeakk Dummy variable for morning peak period,

weekdays (07:00 and 09:00)
OFFpeakk Dummy variable for off-peak period,

weekdays (09:01 and 14:49), used as the
reference variablea

PMpeakk Dummy variable for evening peak period,
weekdays (15:00 and 19:00)

Weekendk Dummy variable for weekends
Line L1k Dummy variable for Line 1

L2k Dummy variable for Line 2
L3k Dummy variable for Line 3, used as the

reference variablea

L4k Dummy variable for Line 4
aReference level in model estimation, values fixed to zero.
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negative ETDk;s−1 values, which correspond to buses that run early.
This may also be attributed to the incentive scheme present during
the analysis period that penalizes early departures more heavily
than late departures. In addition, the coefficients of right and left
turns yield values that are significantly different from 0 but are not
significantly different from each other and therefore the total num-
ber of turnings, TTurns, was used in further estimations. This pro-
cess resulted with the following model:

RTDk;s ¼ β0 þ β1· · RTDk−1;s þ β2 · ETD−
k;s−1 þ β3 · hAk;s

þ β4 · NSTPSs þ β5 · SInters þ β6 · NoPrioritys

þ β7 · TTurns þ β8 · BLanes þ β9 · Distances

þ β10 · AMpeakk þ β11 · PMpeakk þ β12 · Weekendk

þ β13 · L1k þ β14 · L2k þ β15 · L4k þ εk;s ð6Þ

where β = estimated coefficients; and ETD−
k;s−1 takes only negative

values of ETDk;s and 0 otherwise.
Traffic signals along the trunk line corridors in Stockholm are

equipped with an adaptive control system. Buses that run ahead of
schedule by more than 120 s are not entitled to priority at the in-
tersection. The variable NoPrioritys captures this interaction by
counting the number of signals for nonprioritized buses as follows:

NoPrioritys ¼
�
SInters if ETD−

k;s−1 < −120
0 otherwise

The error term that accounts for the unobserved explanatory var-
iables, measurement errors, and random noise is εk;s, which is nor-
mally distributed with a mean value of 0.

Table 3 presents the estimated values of the coefficient and the
corresponding t-statistic in parentheses. All statistical tests were for
the null hypothesis that coefficients are equal to 0. All of the
estimated coefficients were significant at the 99% level. The
model explains approximately 25% of the variation in riding
time deviations.

The coefficients were interpreted as the change in seconds in
riding time deviation associated with a unit change in the explana-
tory variable. The negative constant value was arguably attributed
to the reference to scheduled departure time. The link-level autor-
egressive factor was found to have a significant positive impact on
RTD. Approximately 5% of the RTDs experienced by the preced-
ing bus on the same link was sustained on the immediate succes-
sive trip.

The model suggests that drivers do not adjust promptly their
riding times to better adhere to the schedule. In fact, drivers that
are ahead of schedule even tend to increase their deviation by riding
a shorter time than scheduled on the successive link. This could be
interpreted as an indication of an underlying driving style in par-
ticular drivers that consistently drive too fast and do not respect the
timetable. In addition, buses that run with long headways from the
preceding bus result with longer RTDs. Given the range of head-
ways exercised by the cast study lines, the impact of headway on
RTD may amount to 6 s per link or 3 min for the entire route. The
impact of headway on riding times does not, therefore, counteract
the bunching phenomenon, but rather further contributes to it and
reinforces the positive feedback loop between headway, passenger
flows, and dwell time at stops. Furthermore, running behind sched-
ule has no significant effect on the following RTD. This is in line
with the results reported in the section “Correlation Analysis of
Link Riding Time Deviations.” However, drivers do adjust their
riding times when in proximity to a TPS. The further away they
are from a downstream TPS, the longer is the RTD. This pattern
was observed in the analysis of the evolution of deviations from

the schedule in the previous section. This occurs even thoughdrivers
have continuous access to information on their schedule adherence.
The same pattern was reported by Ji et al. (2010) for the case that
drivers have only information concerning scheduled times at TPSs.

The coefficients of the physical link-specific characteristics
indicate a systematic error in estimating their contribution to the
riding time in the timetable design process. Interestingly, the coef-
ficients of all of these attributes suggest that their impact is under-
estimated. Each traffic light adds a delay of approximately 3 s to
the RTD. In case the bus runs very early and hence is not entitled
to signal priority, a longer delay of more than 7 additional seconds
is associated with each traffic light. In addition, each turning is
associated with 3 additional seconds. The presence of a dedicated
bus lane is associated with a reduction of the riding time by 5.5 s
more than is reflected in the timetable. Although these values may
seem small, since the analysis was carried out at the link level,
each of these biases translates to 6%–8% of the scheduled running
time. The number of unsignalized intersections and the presence
of an adjacent parking lane did not have a significant effect
on RTD.

Longer links negatively affect RTD, with each additional 100 m
being associated with a decrease of 11 s in the respective RTD. The
variation in links length is considerable even in the context of our
case study, which exhibits relatively homogenous operations con-
ditions, ranging from 142 to 1,264 m. The latter corresponds to a
long bridge connecting a major public transportation interchange
hub on the southern fringe of inner-city Stockholm. A further in-
vestigation suggested that the timetable allocates too much time for
long links. The possibility to reach a higher speed and maintain it
on a longer segment is also part of the motivation behind stop con-
solidation (e.g., Tetreault and El-Geneidy 2010). However, it is also
likely that this result is related to the traffic characteristics of these
links because their less urban character is the very reason for having
a lower stop density.

Various time periods exercise different systematic deviations
from the schedule. Riding times during the morning peak period,
as one might expect, deviate more from the schedule than in the off-
peak period. The opposite trend was found for the afternoon peak
period, which is characterized by more homogenous traffic condi-
tions due to the greater dispersion of travel demand. However,
weekends have the highest deviation from the schedule, with an

Table 3. Riding time deviations model

Variable Coefficient t-statistic

Constant −8.97 −36.69
RTDk−1;s 0.05 40.34
ETD−

k;s −0.18 −110.80
NSTPSs 2.73 127.56
hAk;s 0.005 23.28
SInters 2.64 51.11
NoPrioritys 7.85 26.35
TTurns 3.14 49.56
BLanes −5.42 −28.97
Distances −0.11 −311.29
AMpeakk 2.21 13.98
PMpeakk −1.94 −16.43
Weekendk 4.36 30.06
L1k 1.53 9.25
L2k −17.37 −93.64
L4k 2.41 15.28
Observations 706,879
R2 0.257
Adjusted R2 0.257
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excessive deviation of more than 4 s per link compared with off-
peak periods on weekdays. This may be an indication that the
shorter scheduled riding times on weekends are unrealistic even
though the average speed is higher. However, discussions with
the operator raised an alternative explanation. Most of the weekend
crew consists of part-time and reserve drivers who are less expe-
rienced and adhere to the schedule less. Finally, the line-specific
coefficients indicate that all other things being equal, the timetable
of Line 2 still contains much more slack than any of the other lines
(as visible in Fig. 3).

The presence of a dedicated lane is expected to have a profound
impact on the determinants of riding time and drivers’ ability to
adjust their speed. Fig. 5 indicated that the autoregressive relation
might be different for dedicated bus lanes than for mixed-traffic
links. In order to adequately assess this, two additional multiple
linear regression models were estimated for the subsets of the data
set, which consists of bus lane links (11% of all data records) and
mixed traffic links, separately.

The estimated models along with the corresponding summary
statistics are presented in Table 4. Model specification is the same
as presented in Eq. (6) with two changes: (1) the inclusion of
ETDþ

k;s, which takes only positive values of ETDk;s and 0 other-
wise; and (2) the exclusion of L1k and L2k, which were found
to be insignificant. All of the estimated coefficients are significant
at the 99% confidence level. In the case of bus lane links, the model
explains approximately 37% of the variation in riding time devia-
tions on bus lanes. In contrast, less than 15% of the dependent var-
iable variations are explained for mixed-traffic links. Hence, the
explanatory variables can better predict riding time deviations
on bus lanes than in mixed traffic. This is expected because riding
times in mixed traffic are subject to greater uncertainty. When
driving in dedicated lanes, drivers that are ahead of schedule tend
to and often can reinforce their earliness rather than better adhere
to schedule. However, this driving pattern is considerably less
pronounced—by an order of two—than when driving in mixed traf-
fic. A similar effect occurs for late drivers on links with dedicated
bus lanes but to a much smaller extent. Delay attributed to signal-
ized intersections and turnings is longer for buses driving in
dedicated lanes than in mixed traffic, possibly due to the more com-
plicated signal programs and intersection layouts that are required.
RTDs are systematically longer for Line 4 than for other lines

unlike in the case of mixed-traffic conditions. Other variables
exhibit similar patterns to those reported for the general model.

Conclusion

Urban bus riding times are subject to high levels of uncertainty and
disturbances. Methods to determine the timetable are designed to
account for this inherent variability by allocating sufficient time for
riding times between stops. A high schedule adherence is desired
because it positively influences the passenger level of service and
the operational costs associated with crew assignment. This study
investigated the main determinants of bus RTDs through a high-
resolution analysis of riding times between subsequent stops,
which enables accounting for link characteristics and instantaneous
adjustments by drivers.

The analysis performed in this study indicated that drivers can
and do adjust their speeds based on time-dependent service perfor-
mance. Importantly, these adjustments depend on the underlying
TPS layout—locations where the performance is measured. More
specifically, it indicates that drivers do take advantage of the real-
time scheduled adherence information that is provided to them, but
their reaction is determined by the control scheme design. This re-
sult is also relevant in the current mode of operations in the case
study network, which since 2014 has shifted into regularity-based
operations (Cats 2014). Driver speed adjustments are key for
regulating service and proactively avoiding bus bunching from
emerging.

The RTD per link can be partially explained by the RTD expe-
rienced by the previous trip when riding on the same link. This
autoregressive effect over subsequent trips traversing the same link
was found to be significant for three of the four studied lines, with a
positive correlation between consecutive trips presumably due to
the prevailing local traffic conditions. This is reflected in the dis-
tinctive patterns that emerged for different lines. A positive autor-
egressive effect was also found on consecutive links in the case of
negative deviations. Further investigation is needed in order to
determine whether this is due to driver-specific driving style or be-
cause of the correlation between traffic conditions on consecu-
tive links.

The analysis of link-specific attributes such as the presence of a
dedicated bus lane and number of turnings and signals indicates
that the current timetable systematically underestimates their im-
pact on driving time deviations. RTDs on bus lane links exercise
a higher autocorrelation at the link level but lesser tendency to
reinforce an existing deviation from the schedule. Nevertheless,
the majority of the RTD variation remains unexplained, a testimony
to the unsystematic randomness that characterizes the uncertain bus
operations environment.

The model of bus riding time deviations presented in this paper
could be further enhanced in several ways. First, the RTD analysis
is intimately linked to the dwell time. Bus drivers could potentially
adjust their dwell time in order to better adhere to the schedule.
Moreover, deviations from the schedule can also influence dwell
time variations due to the relationship between headways, number
of waiting passengers, and dwell times. In order to explain overall
travel time variations, the interaction between RTD, schedule
deviation, and dwell times needs to be investigated. Second, autor-
egressive riding times were used in this study as a proxy to local
traffic conditions. However, traffic data such as link-specific flows
and speeds as well as weather data could be matched against AVL
records to adequately capture the impacts of various traffic condi-
tions. Third, previous studies (Strathman et al. 2002; Mishalani
et al. 2008) have shown that driver-specific impacts play an

Table 4. Separate riding time deviations model and summary statistics of
the independent variables for bus lane links and mixed traffic links

Variable

Bus lanes Mixed traffic

Coefficient t-statistic Coefficient t-statistic

Constant −8.13 −10.87 −14.34 −61.52
RTDk−1;s 0.27 47.26 0.14 71.28
ETD−

k;s −0.07 −11.04 −0.13 −76.20
ETDþ

k;s 0.01 5.53 — —
NSTPSs 2.51 32.24 3.48 141.12
hAk;s 0.004 4.95 0.011 38.61
SInters 7.55 44.44 3.95 71.80
TTurns 9.50 39.99 3.95 57.57
Distances −0.16 −155.7 −0.10 −249.9
AMpeakk 3.16 6.91 1.58 8.94
PMpeakk −2.07 −6.13 0.44 3.28
Weekendk 1.86 4.39 2.74 16.70
L4k 18.79 38.26 −1.23 −8.67
Observations 79,145 627,734
R2 0.374 0.145
Adjusted R2 0.373 0.145
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important role. Information related to their duty such as down-
stream relief could also enhance the model. Fourth, quantile regres-
sion can be used for analyzing the impacts of various determinants
on the distribution of riding time deviations as opposed to only its
central tendency (Ma et al. 2017).

The results of this study could support transit performance
improvements in several ways. First, schedule adherence could be
improved by adjusting future timetable planning based on the
observed systematic biases. Second, the impact of alternative mea-
sures such as changing the configuration of TPSs could be as-
sessed. Third, an improvement in headway variability can also
reduce travel time variability. This is especially true for headways
that are much longer than the planned headway, which are associ-
ated with longer travel times and therefore are consequential for
fleet size and operational costs.

The results of this study emphasize the importance of the human
factor in designing a control scheme and the corresponding transit
performance evaluation. The assessment of alternative strategies
therefore needs to account for the human factor impacts (Cats
et al. 2012; Hlotova et al. 2014). The common way of measuring
on-time performance at several stops along the route led to the ob-
served driving pattern. Hence, the operator may revise the location
of TPSs in order to maximize their impact. Alternatively, extending
the performance evaluation to all stops could encourage drivers to
adjust their speed more evenly. This has proven effective in a series
of field experiments in Stockholm, Sweden (Cats 2014). Further-
more, the real-time information display in the driver cabin could be
enriched by incorporating real-time predictions concerning down-
stream traffic conditions that were shown to be a key determinant of
riding time deviations. This will enable drivers to become more
proactive in their adjustments. Drivers could be further encouraged
by designing adequate incentive schemes. Moreover, the analysis
of driver behavior and their adherence to control strategies can be
incorporated in real-time bus arrival time prediction, the design of
real-time control strategies, and enriching the representation of
driver behavior in transit simulation models.
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