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Summary

Quantum computers can solve some problems exponentially faster than classical
computers. Unfortunately, the computational power of quantum computers is cur-
rently limited by the number of working qubits. It is difficult to scale up these sys-
tems, because qubits are easily affected by noise in their environment. This noise
leads to decoherence: loss of the qubit’s encoded information. A possible solution
to diminish decoherence is usingMajorana box qubits, as these qubits are predicted
to be insensitive to local noise. However, this promising type of qubit does not exist
yet.

With the research described in this thesis, we aim to contribute to the develop-
ment of Majorana box qubits (MBQs). In these qubits, Majorana zero modes, the
basic elements ofMBQs, are contained within a superconducting island to suppress
Majorana parity fluctuations caused by quasiparticle poisoning. To enable parity
readout of the MBQ, these modes are coupled to quantum dots within a nanowire
network. To help realize MBQs, we need a better understanding of quasiparti-
cles in superconducting islands, parity-readout techniques, and ways to fabricate
nanowire networks. These three aspects are the focus of the experiments presented
in this thesis.

To study superconducting islands and readout techniques, we used InAs semi-
conductor nanowires with an epitaxially grown Al shell. Majorana signatures have
already been observed in such nanowires. We addressed quasiparticle dynamics in
superconducting islands by measuring the gate-charge modulation of the switch-
ing current. We found a consistent 2𝑒-periodic modulation at zero magnetic field,
and an exponential decrease of parity lifetime with increasing magnetic field. We
explored MBQ readout, using a quantum dot level as a proxy for a Majorana zero
mode, and measured its charge hybridization with another dot using gate-based
readout. We showed that we can rapidly discriminate between two settings with dif-
ferent tunnel couplings, demonstrating the potential of gate-based readout to mea-
sure MBQs. And, using gate-based readout, we could study charge-transfer pro-
cesses occurring in hybrid structures of superconducting islands coupled to quan-
tum dots.

Finally, to find a good material platform for nanowire networks, we character-
ized two two-dimensional systems. We realized quantum point contacts in InSb,
which we used to measure the 𝑔-factor anisotropy, and effective electron mass in
this system. And, we studied the spin-orbit interaction in InAs/GaSb by extracting
the difference in density between electrons with different spin orientations.

This thesis finishes with a proposal for a series experiments to realize MBQs.
These experiments make use of superconducting islands and the reflectometry
setup we developed for gate-based readout.
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Samenvatting

Kwantumcomputers zouden sommige problemen exponentieel sneller kunnen op-
lossen dan klassieke computers. Helaas wordt de rekenkracht van kwantumcom-
puters momenteel beperkt door het aantal werkende kwantumbits. Het is moeilijk
om deze kleine kwantumprocessoren op te schalen, omdat kwantumbits gemakke-
lijkworden verstoord door ruis in hun omgeving. Die ruis leidt tot decoherentie: het
verlies van de opgeslagen kwantuminformatie. Een mogelijke oplossing om deco-
herentie te verminderen zijn Majorana-box-kwantumbits (MBQs), omdat dit type
kwantumbit ongevoelig lijkt te zijn voor lokale ruis. Deze veelbelovende kwantum-
bit bestaat echter nog niet.

Met het onderzoek in dit proefschrift willen we bijdragen aan de ontwikkeling
van MBQs. In deze kwantumbits worden Majoranapariteitsschommelingen (ver-
oorzaakt door vervuilingmet quasideeltjes) tegengegaan doordatMajoranatoestan-
den zich op een supergeleidend eiland bevinden. Door een netwerk van nanodraden
zijn de Majoranatoestanden gekoppeld aan kwantumdots, wat het mogelijk maakt
om hun pariteit uit te lezen. Om MBQs te helpen realiseren is een beter begrip
nodig van quasideeltjes in supergeleidende eilanden, pariteitsuitleestechnieken en
manieren om een netwerk van nanodraden te maken. Deze drie aspecten worden
met de experimenten in dit proefschrift verder onderzocht.

Om supergeleidende eilanden en uitleestechnieken te bestuderen hebben we
halfgeleidende, InAs-nanodraden gebruikt die gedeeltelijk zijn bedekt met een
dunne laag aluminium. In zulke draden heeft men al aanwijzingen voor Majorana-
toestanden waargenomen. We hebben de dynamica van quasideeltjes in superge-
leidende eilanden bestudeerd door demodulatie van de transitiestroom door de ga-
telading te meten. Deze metingen laten een systematische 2𝑒-periodiekemodulatie
bij nulmagneetveld zien, en een exponentiële afname van de pariteitslevensduur als
functie van hetmagneetveld. Omhet uitlezen vanMBQs te onderzoeken hebben we
een kwantumdottoestand ter vervanging van de Majoranatoestand gebruikt. Door
middel van reflectometrie vanaf de gate hebben we de ladingshybridisatie van deze
dot met een andere dot gemeten, en laten zien dat we snel onderscheid kunnenma-
ken tussen twee instellingen met verschillende tunnelamplituden. Dit experiment
laat de potentie van deze uitleesmethode voor MBQs zien. Met dezelfde methode
hebben we ook ladingsoverdrachtprocessen bestudeerd in supergeleidende eilan-
den gekoppeld aan kwantumdots.

Om een geschiktmateriaal voor nanodraadnetwerken te vinden hebbenwe twee
verschillende tweedimensionale systemen gekarakteriseerd. Door kwantumpunt-
contacten in InSb te maken hebben we de 𝑔-factoranisotropie en de effectieve elek-
tronenmassa in dit systeemweten te meten. Ook hebben we de spin-baaninteractie
in InAs/GaSb kunnen bepalen door het verschil in dichtheid te meten tussen elek-
tronen met verschillende spinoriëntaties.

xiii



xiv Samenvatting

Dit proefschrift sluit af met een voorstel voor een reeks experimenten om verder
toe te werken naar MBQs. Deze experimenten maken gebruik van supergeleidende
eilanden en de reflectometrie-meettechniek die we hebben ontwikkeld voor dit on-
derzoek.
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2 1. Introduction

1.1. Quantum mechanics and computation
At the end of the 19th century, physicists were puzzled by the emission spectra of
hot objects, commonly referred to as blackbodies. Their interest in this problemwas
not purely academic. At that time, better light bulbs were in high demand. How-
ever, a method to measure a lightbulb’s (absolute) luminosity was not yet available.
By solving the blackbody problem, physicists hoped to construct a method to char-
acterise and improve the performance of light bulbs. In 1859, Gustav Kirchhoff had
already shown that the emission spectrum only depends on the temperature of the
blackbody. But, an equation describing the precise amount of energy emitted at
each wavelength was still missing. In 1896, WilhelmWien derived an approximate
expression, but his formula disagreedwith observations at longerwavelengths. Max
Planck solved this discrepancy by invoking that light comes in packages of quantized
energy. This observation signaled the start of quantummechanics. Despite his great
contributions to this research field, Planck himself later said: “Briefly summarized,
what I did can be described as simply an act of desperation.” In the next 30 years,
quantum theory was further developed by many, now famous, physicists such as
Niels Bohr and Erwin Schrödinger [1].

These days, quantum mechanics is a mature theory, and its predictions have
been thoroughly tested. Notable experiments include the double-slit experiment
with single electrons, demonstrating particle-wave duality [2]; and the Bell test,
showing that local hidden variables cannot account for correlations caused by en-
tangled particles [3]. Motivated by these successes, people started thinking about
using quantum mechanical systems to process and transmit information. Richard
Feynman, for example, vigorously argued to use a quantum computer to efficiently
simulate quantum systems. In a lecture, he said: “nature isn’t classical, dammit,
and if you want to make a simulation of nature, you’d better make it quantum me-
chanical, and by golly it’s a wonderful problem, because it doesn’t look so easy” [4].
Quantum computing is, however, not restricted to simulating quantum systems,
and can also be used to speed-up certain algorithms. A well-known example is the
factoring algorithm found by Peter Shor in 1994 [5]. It can be used to find the prime
factors of a large integer much faster than it would take for any classical algorithm.
Nowadays, many quantum algorithms have been identified; an up-to-date list can
be found in Ref. 6.

Quantum bits, or qubits for short, form the basic elements for these quantum
algorithms. Unlike their classical analogues, qubits can be entangled, and be in a
superposition of zero and one [8]. Qubits come in many forms including: photons,
trap ions and atoms, spins in semiconductor quantum dots or NV centers in dia-
mond, and superconducting circuits [9]. The solid-state variants are particularly
interesting as they are compatible with existing microfabrication techniques, and
therefore, regarded scalable [10, 11]. However, to-date, the number of qubits is
limited to a few tens, not enough to perform useful algorithms. Feynman turned
out to be right: building a quantum computer is not easy. One of the main limita-
tions is dephasing of qubits due to interactions with uncontrolled parts of their en-
vironment, like nearby charge and spin switchers. In this process, the stored quan-
tum information gets lost. At the same time, qubits cannot be completely shielded
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a b

Figure 1.1–The quantumHall effect. aMicrograph of theHall bar in which the fractional quantum
Hall effect was discovered. b Typical magnetic field dependence of the longitudinal ( ) and Hall ( )
resistance. The plateaus in the Hall resistance are so precise that they are now used to define the official
resistance standard. Both images are obtained from [7].

from this environment because they need to be controlled and measured. More-
over, measuring and controlling operations themselves can introduce errors in the
encoded quantum information. One way to deal with this issue is to use quantum
error correction, in which several physical qubits encode one logical qubit. Then,
errors can be corrected as long as they occur at low enough rates [12]. Alternatively,
qubits and qubit operations can be engineered so that they are robust to noise at a
hardware level. This approach relies on topology, and forms the main motivation
behind the work presented in this thesis.

1.2. Topologically protecting quantum information
Topology can be used to classify the Hamiltonians of band insulators and supercon-
ductors based on their dimensionality and symmetries. A prime example of topol-
ogy in condensedmatter is the quantumHall effect (QHE), discovered by Klaus von
Klitzing in 1980 [13]. It occurs in low-density, two-dimensional systems in a strong
perpendicular magnetic field. The hallmark of the QHE is the quantization of the
Hall resistance, which is clearly visible in the data shown in Figure 1.1b. The particu-
lar sample shown in Figure 1.1awas used for the discovery of the fractional quantum
Hall effect. It does not look very clean, which is not so surprising as Horst Störmer
said in his Nobel lecture: “The sample was prepared by scratching away parts of
semiconducting material with little attention to exact dimensions or tidiness” [7].
Still, the Hall quantization in this sample was measured to an accuracy of a few
10 parts in a billion! Interestingly, this is generally observed, i.e. the quantization
is largely insensitive to sample details such as material system, disorder, dimen-
sions and so forth. The underlying reason for this extreme precision is topology.
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In a quantum Hall insulator, electrons are transported via edge channels. These
edge channels, which result directly from the topology of the sample, are one-way
streets; they only conduct in one direction. Electron backscattering is simply not
allowed, and hence, the resistance cannot deviate from its quantized value.

Now, one could dream to construct a qubit that is topologically protected against
decoherence, just as quantized Hall plateaus are protected against backscattering.
To do so, we consider a different topology class; the class of one-dimensional topo-
logical superconductors [14]. The elementary quasiparticle excitations in these su-
perconductors are called Majorana modes. These zero energy quasiparticles are
their own antiparticle, and are located at the end of the 1D superconductor. Two
Majorana modes define one nonlocal fermionic mode which also has zero energy
regardless of its occupation, and can be used to encode quantum information. Due
to the nonlocal nature of the fermionic modes, local noise cannot perturb the qubit,
i.e. the information is topologically protected. As an additional benefit, Majoranas
obey non-Abelian statistics upon exchanging them. These exchanges, or braids, can
transform the state of the system, and can therefore be used to implement quantum
gates. These gates are exact as they only depend on the topology of the braid.

There exist concrete blueprints for realizing topologically protected qubits based
on semiconductor nanowires that are proximitized with a conventional supercon-
ductor [15–18]. Majorana particles can emerge in this system upon applying a
magnetic field [19, 20], and the first Majorana signatures in this system have al-
ready been observed [21]. However, to build a Majorana qubit additional elements
are needed. Here, we discuss three of these elements based on a proposal known
as the Majorana box qubit, see Figure 1.2 [17, 18]. First, the Majoranas are con-
tained within a superconducting island. These islands have finite charging energy
𝐸 , leading to a preferred number of charges on the island, thereby suppressing
charge fluctuations. This is useful, because a Majorana qubit loses its quantum in-
formation when an additional quasiparticle tunnels into one of the Majoranas, a
process known as quasiparticle poisoning. Second, there should be a way to mea-
sure the state of the qubit. In a box qubit, this is implemented by coupling a pair of
Majoranas to a double quantumdot [17, 18]. In this geometry, interference between
tunneling paths leads to a qubit-state-dependent tunnel coupling between the dots.
These different tunnel couplings can be measured via gate-based readout using ra-
dio frequency waves. Third, for braiding operations a (quasi) 2D system is needed.
Such a system can be realized using a nanowire network. For all these aspects, there
are open research questions that need to be answered before aMajorana (box) qubit
can be realized.

1.3. This thesis
The experiments presented in this thesis relate to the qubit elements discussed
above, as a contribution to the realization ofMajorana qubits. In the first part of this
thesis, we present three experiments using InAs nanowires, focusing on supercon-
ducting islands in proximitized, semiconductor nanowires, and gate-based readout
of semiconductor quantum dots. In the second part of this thesis, we switch gears
to 2D systems, which should allow for fabrication of nanowire networks. We focus
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Figure 1.2 – Elements of a Majorana box qubit. In this schematic, the semiconductor nanowire
network is shown in gray, the conventional superconductor in blue, and the Majoranas , … , are
indicated with dark gray circles. The Majoranas are contained within a superconducting island which
is connected via a small capacitance island to ground. The readout circuit shown consists of a double
quantum dot coupled to a pair of Majoranas, and a resonator connected to the gate of one of the dots.
This figure is adapted from [17].

on the characterization of these systems for their use as platforms for topological
superconductivity.

1.3.1. Thesis outline
In chapter 2, we describe the theoretical background of Majoranas in semicon-
ductor nanowires, as well as the building blocks for Majorana box qubits: quantum
dots and superconducting islands. We also discuss how these qubits can be readout
using quantum dots and gate-based sensing.

In chapter 3, we provide the technical details for the nanowire experiments.
We describe the reflectometry setup used for the gate-based readout, and the fab-
rication procedure for the nanowire devices.

In chapter 4, we study the switching current modulation of nanowire single-
Cooper pair transistors as a function of gate voltage, temperature, and colinearmag-
netic field. These island devices show a consistent 2𝑒-periodic switching current,
indicating a hard superconducting gap without any low-energy subgap states. At
finite field, we do observe subgap states which we study by tracking the length of
the even and odd Coulomb valleys.

In chapter 5, we use the reflectometry setup to study charge hybridization in a
double quantum dot. We show that the frequency shift due to the additional capaci-
tive load follows the theoretical prediction, and demonstrate that we can distinguish
betweenCoulombblockade and resonancewith a signal-to-noise exceeding 2within
1 μs.

In chapter 6, we use gate-based readout to study charge-tunneling between su-
perconducting islands andquantumdots. We find single and twoparticle processes,
depending on the energy scales in the superconducting island.

Next, we characterize two material systems for their use in studying topological
quantum states. In chapter 7, we study quantum point contacts made from InSb
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quantum wells. We observe a large 𝑔-factor anisotropy, and extract the effective
mass from magnetic depopulation of the subbands. In chapter 8, we study the
zero-field spin-splitting in InAs/GaSb using Shubnikov-de Haas measurements.

Finally, in chapter 9, we present a discussion on the availablematerial systems,
and describe a series of experiments on the road to a Majorana box qubit.



2
Theory

Tussen de regels buiten de kantlijn,
Hoe anders zou het zijn, hoe anders zou het zijn

Typhoon

In this chapter, we present the theoretical background for our nanowire experi-
ments performed in the context of gate-based readout of Majorana box qubits via
quantum dots. We first discuss quasiparticle excitations in superconductors, and
Majorana zeromodes in semiconductor nanowires (section 2.1). Then, we continue
with an in depth discussion of quantum dots, double quantum dots, and supercon-
ducting islands (sections 2.2 and 2.3). Lastly, we describe the gate-based readout
of Majorana box qubits (sections 2.4 and 2.5).

7
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2.1. Superconductivity and Majorana zero modes
In this section, we describe the basic properties of Majorana zero modes (MZMs);
zero energy quasiparticles that emerge in topological superconductors [21–25]. We
begin with a general discussion of quasiparticle excitations in s-wave superconduc-
tors following the Bogoliubov-de Gennes (BdG) formalism [26, 27]. Then, we use
this formalism to show how MZMs can be created in semiconductor nanowires.
Lastly, we present an overview of the topological properties of these zero energy
quasiparticles.

2.1.1. Bogoliubov-de Gennes formalism of superconductivity
Superconductors are interestingmaterials as they carry currentwithout dissipation.
Moreover, they act as perfect diamagnets, and expel magnetic fields from their in-
terior. Initially, these phenomena were described using effective models such as
the London equations and Ginzburg-Landau theory [27]. However, these theories
lack amicroscopic foundation. Later, Bardeen, Cooper, and Schrieffer formulated a
microscopic theory of superconductivity, now known as BCS theory [26–28]. Here,
we briefly review this theory in terms of the BdG formalism.

In BCS theory, electronswith oppositemomentumand spin interact via (virtual)
phonons. To calculate the effect of this interaction on the Fermi sphere, we write
down the so-called pairingHamiltonian using second quantization, where 𝑎 (𝑎 )
creates (annihilates) an electron with momentum ℏ𝑘 and spin-projection 𝜎

𝐻 =∑𝜖 𝑎 𝑎 +∑
,
𝑉 𝑎 ↑𝑎 ↓𝑎 ↓𝑎 ↑. (2.1)

The first term in this Hamiltonian describes the kinetic energy of the spin-
degenerate superconductor. Here, 𝜖 = ℏ 𝑘 /2𝑚∗ − 𝜇 with 𝑚∗ the effective mass
of the electrons in the superconductor and 𝜇 the chemical potential of the super-
conductor. The second term models the phonon-mediated interaction between the
electrons, where 𝑉 quantifies the strength of the interaction. This term can be
simplified using themean-field approximation which assumes that the fluctuations
of 𝑎 ↑𝑎 ↓ from its expectation value ⟨𝑎 ↑𝑎 ↓⟩ are small. Using this approximation,
and neglecting all constant energy terms, Eq. (2.1) reduces to the so-called model
Hamiltonian

𝐻 =∑𝜖 𝑎 𝑎 +∑(Δ 𝑎 ↑𝑎 ↓ + Δ∗ 𝑎 ↓𝑎 ↑) , (2.2)

where Δ = ∑ 𝑉 ⟨𝑎 𝑎 ⟩ is the pairing function. For a s-wave superconductor, the
interaction strength does not depend on momentum and, hence, the pairing func-
tion is a constant Δ = Δ. The model Hamiltonian does not conserve the number of
particles, however, this is a mere artifact of the mean-field approximation.

To calculate the excitation spectrum, it is convenient to write the model Hamil-
tonian in the (𝑎 ↑, 𝑎 ↓) basis which we denote as 𝐻 1. The quasiparticle excitation

1 Explicitly, , where , are the Pauli matrices acting in particle-hole space. Again, we
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with momentum ℏ𝑘 is found by diagonalizing the BdG equation [27]

𝐻 Φ = 𝐸 Φ . (2.3)

This results in Bogoliubov quasiparticles which are superpositions of electrons and
holes

𝑏 ↑ = 𝑢 𝑎 ↑ − 𝑣 𝑎 ↓ (2.4)

𝑏 ↓ = 𝑣 𝑎 ↑ + 𝑢 𝑎 ↓, (2.5)

with energy 𝐸 = ±√𝜖 + Δ and coherence factors2 |𝑢 | = 1 − |𝑣 | =
(1 + 𝜖 /𝐸 ) [26]. In writing down the BdG equation, we effectively doubled the

number of excitations by explicitly taking the holes into account. To resolve this, we
only consider the positive energy solution. Particle-hole symmetry can be used to
relate negative energy excitations to their positive energy counterparts 𝑏 ↑ → 𝑏 ↑.

2.1.2.Majorana zero modes in nanowires
In this section, we set out to calculate the quasiparticle spectrum of a proximitized,
semiconductor nanowire using the BdG formalism. The idea of using nanowires
to engineer topological superconductivity started with the Kitaev chain. Kitaev
showed that in an one-dimensional (1D), spinless p-wave superconductor, the Ma-
jorana operators can be paired such that two unpaired Majorana modes remain at
the end of the chain [29]. Unfortunately, it has been proven difficult to find mate-
rials that exhibit p-wave superconductivity. A potential solution was offered by Fu
and Kane by showing that it is possible to engineer topological superconductivity
using a proximitized topological insulator [30]. Similarly, Lutchyn et al. [20] and
Oreg and et al. [19] showed that it is possible to engineer such a superconductor
by applying an external magnetic field to a proximitized, semiconductor nanowire
with large spin-orbit interaction (SOI). Below we follow their approach.

We start with a description of the 1D semiconductor nanowire with strong
Rashba SOI in a magnetic field 𝐵, for which the Hamiltonian is

𝐻 = 𝜖 + 𝜖 𝜎 + 𝜖 𝜎 . (2.6)

Here, 𝜖 = 𝛼𝑘 with 𝛼 the Rashba parameter; 𝜖 = 𝑔𝜇 𝐵 the Zeeman energy
of a spin-1/2 particle with 𝑔 the Lande 𝑔-factor and 𝜇 the Bohr magneton; and
𝜎 , , the Pauli spin matrices acting on the spin degree of freedom. Note that the
magnetic field (along 𝑥) is applied perpendicular to the effective spin-orbit field
(along 𝑦), and that both are perpendicular to the transport direction of the electrons
𝑘 = 𝑘 (the wire points along 𝑧). The eigenvalues of this Hamiltonian are given by
𝐸 = 𝜖 ± (𝜖 + 𝜖 ) /

.

discard all constant energy terms which, all combined, give the ground state energy of the supercon-
ductor ∑ ⟨ ⟩.
2In Eqs. (2.4) and (2.5) we chose , to be real which equates to setting the phase of the supercon-
ductor to zero. In general, and are complex and have a phase difference equal the phase of the
superconductor.
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Figure 2.1 – Bandstructure of a single-band nanowire. a For a nanowire without spin-orbit
interaction, the spin-degenerate energy bands have approximately a parabolic shape near the bottom.
b The spin-orbit interaction causes a shift of the energy bands of ± in momentum, depending on
the spin projection along the spin-orbit field (blue arrows). The bands are still doubly degenerate. c A
helical gap of size opens upon applying an external magnetic field. When the chemical potential
lies within this gap, only one band crosses the Fermi surface, rendering the electrons effectively spinless
(purple arrows). The inset in a indicates the direction of the wire and the respective fields. Note that
the same effective mass is used for all panels. The bands seem to have a different curvature because the
Fermi wave vector is rescaled by the spin-orbit and magnetic field.

Figure 2.1 illustrates the effect of the different terms on the bandstructure of
the wire. Without SOI, the bottom of the conduction band can be approximated
with a parabolic dispersion (Fig. 2.1a). This band has a two-fold spin degener-
acy, which have a different projection along 𝜎 . With finite SOI, the spins are pro-
jected along 𝜎 as they align to the spin-orbit field. This shifts the energy bands
with ±𝑘 = ±𝑚∗𝛼/ℏ in momentum, but does not lift the degeneracy (Fig. 2.1b).
The applied magnetic field can, however, lift this degeneracy; it opens a Zeeman
gap (often called the helical gap) with size 𝑔𝜇 𝐵 around at 𝑘 = 0 (Fig. 2.1c). If the
Fermi level lies within this gap, only one band crosses the Fermi surface, effectively
lifting the spin degeneracy. In addition, the quantization axis of the spin acquires a
momentum dependence. At 𝑘 = 0, the SOI vanishes and the spins align to the ap-
plied field, but they rotate towards the spin orbit field as 𝑘 increases. In the helical
gap, the spin-projection is coupled to the group velocity which can bemeasured as a
drop in the conductance of a quantum point contact [31]. To open the helical gap, it
is important that the magnetic field is applied perpendicular to the spin-orbit field.
In experiments, this can be accomplished by pointing the magnetic field along the
wire, as the Rashba spin-orbit field is perpendicular to the momentum of the elec-
trons.

The helical spin texture gives rise to p-wave correlations in a proximitized
nanowire which we describe using the BdG formalism [24]. Since both SOI and the
external field couple electrons with different spin, the matrix describing the bare
wire (Eq. (2.6)) is already 2x2 which makes the corresponding BdG Hamiltonian
4x4 upon including the holes3. In the (𝑎 ↑, 𝑎 ↓, 𝑎 ↓, 𝑎 ↑) basis, the Hamiltonian

3The BdGHamiltonian for a conventional superconductor could also be written as 4x4matrix consisting
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of the proximitized wire reads

𝐻 = 𝜏 ⊗𝐻 − Δ(𝜏 ⊗ 𝜎 ) , (2.7)

where Δ is the size of the induced gap, and 𝜏 , , are the Pauli matrices acting on
particle-hole space. The eigenenergies are given by [32]

𝐸 = (𝜖 + 𝜖 + 𝜖 + Δ ± 2√𝜖 (𝜖 + 𝜖 ) + 𝜖 Δ ) . (2.8)

In Figure, 2.2 the evolution of the wire spectrum as a function of the external
magnetic field is shown. At zero field, the proximity induced superconducting cor-
relations result in a gap Δ around the Fermi level. There are two gaps: Δ around
𝑘 = 0 and Δ at 𝑘 = 𝑘 , corresponding to the two Fermi level crossings when
Δ = 0 (Fig. 2.1b). Due to the Zeeman splitting, Δ decreases linearly with field
Δ = √𝜇 + Δ − 𝜖 . In contrast, the gap at the Fermi wave vector only has a weak
field dependence because of the finite SOI [33]. When 𝜖 = √𝜇 + Δ , the gap
around 𝑘 = 0 closes and the wire undergoes a topological phase transition driven
by the external field (Fig. 2.2c). For larger fields, Δ reopens, albeit with a different
sign, and the wire is in the topological superconducting phase with MZMs localized
at its ends [19, 20].

InAs and InSb nanowires have large SOI and a large 𝑔-factor whichmakes them
good candidates for studying topological superconductivity [25]. Indeed, two hall-
mark signatures of MZMs, perfect Andreev reflection and fractional Josephson ra-
diation, have been reported in these systems [34–37]. In this thesis, we use InAs
nanowires for our experiments on superconducting islands and gate-based readout.

∆
∆F∆0

a b c d

Figure 2.2 –Magnetic field evolution of the bandstructure of a proximitized nanowire. a
At zero field, an induced gap of size is present around the Fermi level. By increasing the field, the gap
around , , decreases linearly while the gap around , , remains roughly constant due
to the finite spin-orbit interaction. b For ( ) / , both gaps remain finite. c When
( ) / , closes, while remains finite, and the wire undergoes a topological phase transition.
dWhen ( ) / , reopens (with a different sign), and the wire is in the topological phase.

of two decoupled 2x2 matrices. In fact, the positive energy solution, ↑, we obtained from a particle-
hole symmetry argument, directly follows from diagonalizing the other 2x2 matrix.
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2.1.3. Properties of Majorana zero modes
In the previous section, we learned that Majoranas can emerge in proximitized
semiconductor nanowires. Here, we will zoom out and look and the general prop-
erties of MZMs.

Majorana zero modes are their own antiparticle. In addition, they obey the
fermion anticommutation relations, leading to the following set of defining equa-
tions [21]

𝛾 =𝛾 (2.9)

{𝛾 , 𝛾 } =2𝛿 . (2.10)

Consequently, it does notmake sense to define a number operator for a singleMajo-
rana. Moving forward, twoMajoranas (e.g., 𝛾 and 𝛾 ) define onenonlocal fermionic
mode 𝑓 = (𝛾 + 𝑖𝛾 ). Therefore, we can associate a number operator with this
fermion 𝑛 = 𝑓 𝑓. With this definition the occupancy of the nonlocal fermion de-
pends on the parity of the MZMs 𝑛 = (1 + 𝑃) with 𝑃 = −𝑖𝛾 𝛾 = ±1. Thus, we
can label its eigenstates either with the occupancy of the nonlocal fermion |0, 1⟩ or
with the parity of the Majorana pair |±⟩.

Both eigenstates have zero energy resulting in a twofold degenerate groundstate.
This groundstate degeneracy increases exponentially upon adding more Majorana
pairs; a system with 2𝑁 MZMs has a 2 -fold degenerate groundstate. The states
|𝑛 , … , 𝑛 , ⟩ of this degenerate manifold are the eigenstates of the joint num-
ber operator 𝑛 = ∏𝑛 , . Braiding two MZMs (say 𝛾 and 𝛾 ), by changing their
positions, takes the system from one groundstate to another, specified by the so-
called braiding matrix [22]

𝑈 = 𝑒± = 1
√2

(1 ± 𝛾 𝛾 ) . (2.11)

This is a direct consequence of the non-Abelian exchange statistic of theMZMs. Ex-
perimental conformation of these statistics is an outstanding problem in condensed
matter physics [21].

A parity measurement on a Majorana pair generally has two outcomes corre-
sponding to the two number states. This feature, also known as the fusion chan-
nels of MZMs, relates directly to their nontrivial properties [16]. For a single pair
of MZMs, however, the nonlocal fermion has a definite occupancy (or parity), and
only one of the fusion channels is attainable. To observe both fusion channels two
or more pairs are needed. For concreteness, we consider a system with four Ma-
jorana in the |0 0 ⟩ state. Now, we bring 𝛾 and 𝛾 together to measure their
parity. If we measure an even/occupied state |0 ⟩, the inner pair is also in the
even/occupied state (and vice versa). These outcomes have exactly equal probabil-
ity |0 0 ⟩ = (|0 0 ⟩ + |1 1 ⟩) /√2, due to the topological nature of theMZMs.
This feature will be used in section 2.4 to describe projective measurements. The
Majorana parity can be measured in several ways, for example by utilizing the frac-
tional Josephson effect in a Majorana Josephson junction [38], parity-to-charge
conversion [16, 39], or by coupling to a double quantum dot [17, 18].
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The degeneracy between the parity states can be lifted when the wave functions
of two MZMs overlap. This energy splitting should be avoided because it restores
the susceptibility to local fluctuations, i.e. it removes the topological protection. It
can be made exponentially small by increasing the separation between the Majo-
ranas (or equivalently by increasing the length of the wire), because of the expo-
nential decrease of theMajorana wave function. Additionally, the size of the energy
splitting exhibits oscillatory behavior as a function of the magnetic field due to field
dependence of the Fermi wave vector [40]. Recently, these effects have been seen
in experiment [41].

In topological qubits, the quantum information is encoded in the degenerate
grounstate, and braiding operators can be used to encode robust single qubit gates4.
In section 2.4, we will further eloborate on Majorana qubits, but first we discuss
charging effects in semiconductor nanowires, as they play an important role in the
physical implementation of these qubits.

4Actually, braiding operations can only implement / rotations, and thus have to be supplemented
with nonprotected operations to achieve an universal set of gates with a Majorana qubit.
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2.2. Quantum dots
Over the years, quantum dots have been extensively studied [42–44]. They have a
discrete energy spectrum because of their small size with respect to the Fermi wave
length of their electrons. Additionally, the Coulomb repulsion between electrons on
a dot results in a large energy cost for adding an extra electron charge, making this
charge a good quantum number. Quantum dots have found an important appli-
cation in quantum-information processing as the host for spin- and charge qubits
[45–47]. Moreover, the coupling between quantum dots and superconductors has
led to exciting new phenomena such as 𝜋-junctions and Cooper-pair splitters [48].
Nanowires offer a natural platform to study quantumdots due to their built-in radial
confinement. However, dots are not limited to semiconductor nanowires and have
been realized in a whole zoo of material systems; including GaAs [43, 44], graphene
[49], and carbon nanotubes [50].

Here, we are interested in quantum dots for the readout of Majorana box qubits
[17, 18]. In this section, we review the relevant energy scales for single- and double
quantum dots, and discuss of their transport properties.

2.2.1. Single dots
To describe single quantum dots, we use the constant interaction model [42–44].
This model makes two assumptions: first, all electrostatic interactions between
electrons can be captured using one effective capacitance 𝐶 for the dot; and sec-
ond, the discrete energy structure of the dot 𝐸 does not depend on the number of
electrons on the dot 𝑁 [43]. Given these assumptions, the total energy 𝑈 of the dot
is

𝑈 (𝑁) = 1
2𝐶(−𝑒 (𝑁 − 𝑁 ) +∑𝐶 𝑉) +∑𝐸 , (2.12)

where 𝑒 is the elementary electron charge, 𝑁 is the offset charge when no external
voltages are applied, and 𝑉 is the voltage applied to electrode 𝑖 which has a capac-
itance 𝐶 to the dot (with 𝑖 = s(ource), d(rain), or g(ate)). See Figure 2.3a for the
effective circuit. The energy cost to put the 𝑁th electron on the dot, i.e. the electro-
chemical potential5, is 𝜇 (𝑁) = 𝑈 (𝑁) − 𝑈 (𝑁 − 1). Using Eq. (2.12), we find

𝜇 (𝑁) = (𝑁 − 𝑁 − 12)2𝐸 − 𝑒𝛼 𝑉 + 𝐸 , (2.13)

where 𝐸 = 𝑒 /2𝐶 is the charging energy of the dot with 𝐶 = 𝐶 +𝐶 +𝐶 , and 𝛼 =
𝐶 /𝐶 is lever armof the gate. This potential scales linearly in the applied gate voltage
whichmakes it more convenient than the total energy which scales quadraticly. The
energy spacing between the transitions is called the addition energy: 𝐸add (𝑁) =
𝜇 (𝑁 + 1) − 𝜇 (𝑁) = 2𝐸 + Δ𝐸 .

To describe electron transport through the dot, we first consider a dot with𝑁−1
electrons in the linear transport regime with 𝑉 ≈ 0. When 𝜇 (𝑁) > 0 > 𝜇 (𝑁 − 1),
5Assuming that we consider transitions between ground states.
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Figure 2.3 – Single quantum dot. a Circuit model of an asymmetrically biased single quantum dot.
The junctions are modeled as a resistor ≫ / in parallel with a capacitor. The electrochemical
potential of the dot levels can be controlled with the gate voltage and the bias voltage . b At zero
bias, the conductance of the dot shows a series of Coulomb peaks as a function of gate voltage. When
the electrochemical potential is misaligned with the Fermi level in the reservoirs (left panel of c) the
conductance is blocked. On the other hand, when , the number of particle on the dot is allowed to
vary, leading to a finite conductance through the dot (right panel of c). d The linear increase of the bias
window with bias voltage leads to the characteristic Coulomb diamonds in ( , )-space. The blue lines
result from transitions between two ground states with a different number of electrons. The green lines
represent transitions from the ground state to the first excited state (and vice versa).
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Figure 2.4 – Double quantum dot. a Circuit diagram of a double quantum dot in series. b The
number of charges on dot can be controlled via the gate voltage resulting in a charge stability dia-
gram. c The spectrum close to the interdot transition between ( , ) and ( , ) as a function
of the detuning . The coherent tunnel coupling between the dots hybridizes the charge states leading to
an anti-crossing in the spectrum (solid lines). The dashed lines represent the situation without tunnel
coupling.
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the number of electrons is fixed and therefore no current can flow, see the left panel
of Figure 2.3c. This situation is called Coulomb blockade. By adjusting the gate
voltage to 𝑉 so that 𝜇 (𝑁) = 0, the blockade is lifted, and the number of electrons
on the dot is allowed to fluctuate between 𝑁 − 1 and 𝑁, see Figure 2.3c. In this
case, electrons can be transported through the dot sequentially, leading to a so-
called Coulomb peak in the measured current. A series of these Coulomb peaks is
measured as the gate voltage is swept over multiple dot levels (see Fig. 2.3b). The
spacing between the 𝑁th and the (𝑁 + 1)th peak, also called the Coulomb valley, is
proportional to the addition energy 𝐸add (𝑁) = 𝑒𝛼 (𝑉 − 𝑉 ).

The addition energy can also be found using finite-biasmeasurements. Now, the
blockade is lifted whenever a dot level enters the bias window −𝑒𝑉 = 𝜇 − 𝜇 . We
consider an asymmetric biasing scheme for which 𝜇 = 0, see in Figure 2.3a. The
level 𝜇 (𝑁) enters the bias window when 𝜇 (𝑁) = 0, and exits again when 𝜇 (𝑁) =
−𝑒𝑉 . This leads to so-called Coulomb diamonds in the (𝑉 , 𝑉 )-plane, see Figure
2.3d. The height of 𝑁th diamond is set by the addition energy 𝐸add (𝑁), making it
possible to extract the lever arm 𝛼 from a diamond measurement.

So far, we have only considered groundstate transitions. However, at high bias,
transitions to the excited state(s) are possible as well. When −𝑒𝑉 > Δ𝐸 , the
transition to the first excited state can enter the bias window. This results in ad-
ditional lines in the (𝑉 , 𝑉 )-plane that run parallel to the lines corresponding to
ground state transitions. In general, a line ending in the 𝑁th diamond corresponds
to the excited state of the 𝑁 electron system.

2.2.2. Double dots
A double quantum dot (DQD) can be made by connecting two quantum dots in se-
ries, as shown in Figure 2.4a. Similar to a single dot, the charge occupation of the
dots (𝑁,𝑀) can be controlled via the two gates, leading to a so-called charge sta-
bility diagram with a hexagonal structure, see Fig. 2.4b [51]. The DQD exchanges
particles with the reservoir whenever the electrochemical potential is zero, result-
ing in the horizontal (i.e. the transitions between (𝑁,𝑀) and (𝑁,𝑀 + 1)) and the
vertical (i.e. the transitions between (𝑁,𝑀) and (𝑁 + 1,𝑀)) boundaries of the
hexagon. It is also possible to exchange electrons between the two dots (i.e. the
transition between (𝑁,𝑀 + 1) and (𝑁 + 1,𝑀)). These interdot transitions occur
when 𝜇 (𝑁 + 1,𝑀) = 𝜇 (𝑁,𝑀 + 1) if (𝑁 + 1,𝑀) and (𝑁,𝑀 + 1) form the (degener-
ate) groundstate of the DQD.

Hybridization of the charge states due to coherent electron tunneling between
the dots lifts this (energy) degeneracy. To illustrates this coupling, we consider
an effective Hamilonian for the double dot valid around the interdot transition be-
tween (𝑁 + 1,𝑀) and (𝑁,𝑀 + 1)

𝐻DQD = −
𝜖
2𝜎 − 𝑡

2𝜎 , (2.14)

where 𝑡 is the tunnel coupling between the two dots, and 𝜖 is the energy difference
between the (unperturbed) charge states (often called the detuning), see Fig. 2.4c.
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The energy levels of this system are

𝐸± = ∓
1
2
√𝜖 + 𝑡 , (2.15)

corresponding to the bonding |+⟩ and anti-bonding |−⟩ states

|+⟩ = 1
√2

(√1 + 𝜖/Ω |𝑁,𝑀 + 1⟩ + √1 − 𝜖/Ω |𝑁 + 1,𝑀⟩) , (2.16)

|−⟩ = 1
√2

(√1 − 𝜖/Ω |𝑁,𝑀 + 1⟩ − √1 + 𝜖/Ω |𝑁 + 1,𝑀⟩) (2.17)

where Ω = √𝜖 + 𝑡 . Figure 2.4c shows the energy spectrum along 𝜖 for zero and
finite tunneling coupling. Indeed, the tunnel coupling lifts the degeneracy by hy-
bridizing the charge states.

2.3. Superconducting islands
In the previous section, we investigated charging effects in semiconductor quantum
dots. In this section, we look at the consequences of making the dots superconduct-
ing. We will refer to these superconducting “dots” as islands because, in this case,
the level spacing is negligible. These islands are building blocks of Majorana box
qubits because they help to control the parity of the qubit. Therefore, recent re-
search has been directed at realizing these structures in semiconductor nanowires
[41, 52–54].

In this section, we will first describe the interplay between Coulomb blockade
and superconductivity resulting in the parity effectwith a 2𝑒-periodic Coulombpeak
spacing. Then, we look at supercurrents in a so-called single-Cooper-pair transistor
(SCPT) where the island is connected to superconducting leads. Finally, we discuss
the effect of quasiparticle poisoning and temperature on the parity effect. These
discussions form the basis for the experiments presented in chapters 4 and 6.
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Figure 2.5 – Circuit diagram for a superconducting island (a) and a single-Cooper-pair
transistor (b). The double lines indicate the superconducting sections of the device. In b, is the
superconducting phase across the island and is the phase of the superconductor on the island. and
are conjugate variables and cannot be determined simultaneously.
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2.3.1. The parity effect
In mesoscopic superconducting islands, charging effects are combined with super-
conductivity resulting in a parity effect with a preference for even charge states [55–
60]. The island Hamiltonian consists of a Coulomb term and a superconducting
term: 𝐻 = 𝐻 + 𝐻BCS, see Figure 2.5a. The Coulomb term is given by

𝐻 = 𝐸 ∑(𝑛 − 𝑛 ) (2.18)

similar as in section 2.2.1. Here, we only consider the gate voltage, and set the off-
set charge to zero 𝑁 = 0. Moreover, we neglect the discrete energy structure of the
island6. As we have seen in section 2.1.1, the BCS Hamiltonian can be written as
𝐻BCS = ∑ 𝐸 𝑏 𝑏 . We simplify this Hamiltonian by assuming that the island
can only contain one quasiparticle with energy Δ; a second quasiparticle would con-
densewith the already present quasiparticle the into a Cooper pair with𝐸 = 0. With
this assumption 𝐻BCS reduces to

𝐻BCS = {
0 𝑛 is even
Δ 𝑛 is odd. (2.19)

This additional energy penalty for the odd states leads to the parity effect. Proxim-
itized semiconductor nanowires can contain bound states with energies below the
the gap [52]. Examples of such states include Andreev bound states due to the finite
size of the wire [62] andMZMs [41]. In this case, the quasiparticle in the odd charge
states occupies the subgap state with the lowest energy 𝐸 instead of a continuum
state at Δ. Regardless, there is an energy penalty for the odd states.

Within this framework, the energy spectrum of the island is easily calculated.
The different columns of Figure 2.6 show the spectrum for various values of Δ/𝐸
together with the resulting Coulomb peak spacing. In the first column, the ground-
state always contains an even number of particles because Δ > 𝐸 . At odd gate
charge values, the groundstate is degenerate 𝐸gs(𝑁) = 𝐸gs(𝑁 + 2) and transport
through the island is allowed, mediated by Andreev reflection at the junctions
[63, 64]. This leads to a 2𝑒-periodic Coulomb peak spacing (Fig. 2.6g). For the
middle column, Δ < 𝐸 . Now, the ground state switches parity when adjacent,
charge states are degenerate 𝐸gs(𝑁) = 𝐸gs(𝑁 + 1), and single particles charge the
island [57, 64]. This happens at 𝑛g = ±𝑛g + 2𝑙 with 𝑛g = (Δ + 𝐸 )/2𝐸 and inte-
ger 𝑙. Consequently, the Coulomb peak spacing exhibits an even-odd pattern. The
length of the even/odd Coulomb valleys (in gate reduced charge) scales with the su-
perconducting gap Δ𝑛 / = (𝐸 ± Δ) /𝐸 . Hence, the superconducting gap can be
extracted by tracking the extend of the Coulomb valleys, using so-called Coulomb
peak spectroscopy 2Δ/𝐸 = Δ𝑛 − Δ𝑛 . Again, this can be related to the spacing
in gate voltage via the gate lever arm 4Δ = 𝑒𝛼 (Δ𝑉 − Δ𝑉 ). In the particular case
where Δ = 0 (right column), the Coulomb peaks are regularly spaced with an 1𝑒
period.
6We estimate the level ≈ 0.1 μeV 1 from 23 eVnm 3 and ≈ 5 × 100 × 1000nm3 [61].
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Figure 2.6 – Energy versus gate charge and zero bias conductance of a superconducting
island. a-f Energy dispersion versus gate charge for the case without a subgap state a-c and with a
(field-induced) subgap state d-f. The even (odd) states are indicated with blue (green). g-i Resulting
zero bias conductance of the island (ordered by column). For the first column which gives a
-periodic Coulomb peak spacing, for the second column which gives an even-odd pattern, and

for the third column which results in a 1 periodicity.
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The charging energy and the superconducting gap can also be obtained via finite
bias measurements. When Δ < 𝐸 , the addition energy of the even/odd state is
given by 2(𝐸 ± Δ). In case Δ > 𝐸 , the addition energy is 8𝐸 . Moreover, the
gap can also be extracted from the onset of quasiparticle transport via cotunneling
processes at 𝑉 = 2Δ.

Next, we discuss the typical evolution of the energy spectrum with a magnetic
field applied perpendicular (top row) or parallel (middle row) with respect to the
wire [54]. In a simplified picture, a perpendicular field only causes the lowering of
the bulk gap, whereas a parallel field also causes the Zeeman splitting of the spinful
bound state 𝐸 (𝐵∥) = 𝐸 (0) − 𝑔𝜇 𝐵∥. The island is driven into the normal phase
when the field is increased above the critical field of the superconductor resulting
in equally spaced Coulomb peaks. The Zeeman splitting, on the other hand, leads
to a subgap state separated from the continuum, because the 𝑔-factor of the subgap
state is typically larger than the 𝑔-factor of the superconductor as it is partially lo-
cated inside the wire [65, 66]. At zero energy, the state can either stick to zero, in
case of a MZM or a quasi-Majorana state [67], or cross through zero, in case of a
trivial bound state or an overlapping Majorana state [40], upon increasing the field
further. The former case again leads to equally spaced peaks; whereas in the latter
case, the length of the even and odd Coulomb valleys invert as a consequence of the
zero energy crossing.

2.3.2. Single-Cooper-pair transistors
In a single-Cooper-pair transistor (Fig. 2.5b), the superconducting island is con-
nected to superconducting leads via Josephson junctions, which are gate-tunable
in a nanowire setup [68]. In this configuration a supercurrent can flow. In this
section, we calculate the gate dependence of the critical current through the island.
Here, we define the critical current as the maximum supercurrent that can flow at
a particular gate setting.

Compared to Eqs. (2.18) and (2.19), the Hamiltonian of a SCPT contains a
Josephson term reflecting the Josephson coupling between island and the leads
𝐻 = 𝐻 + 𝐻BCS + 𝐻 . The junctions are modeled as

𝐻 = −𝐸 cos (�̂� − 𝜙/2) − 𝐸 cos (�̂� + 𝜙/2) , (2.20)

where �̂� is the phase on the island, 𝜙 is the phase difference between the leads, and
𝐸 , are the Josephson energies of the two junctions. The operator exp (±𝑖�̂�) adds
(removes) a Cooper pair to (from) the island. Hence, Eq. (2.20) describes Cooper
pair tunneling across the junctions. By combining the terms, the Hamiltonian re-
duces to

𝐻 = −√(𝐸 + 𝐸 ) − 4𝐸 𝐸 sin (𝜙/2)∑|𝑛⟩ ⟨𝑛 + 2| + H.c. (2.21)

From the total Hamiltonian, we obtain the groundstate energy 𝐸 which is a func-
tion of 𝑛g and 𝜙. The hybridization between adjacent, equal parity charge states
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results in an anti-crossing in the spectrum (see Fig. 2.7). Now, the gate modulation
of the critical current can be found through

𝐼 (𝑛g) =max
𝑒
ℏ
𝜕
𝜕𝜙𝐸 (𝑛g, 𝜙) . (2.22)

The bottom row of Figure 2.7 shows the critical current modulation by the gate
charge for different energies of a subgap state 𝐸 7. If 𝐸 > 𝐸 , the critical current is
maximal at odd values of the offset charge. This can be understood as a consequence
of the uncertainty principle for the conjugate variables 𝑛 and 𝜑; the large supercur-
rent around 𝑛 = odd results in well-defined phase states, while the charge states
hybridize [69].

Similar to the Coulomb peaks, the 2𝑒-periodic critical current modulation
evolves via an even-odd pattern to an 1𝑒-periodic modulation as the energy of the
subgap state is decreased to zero. However, unlike for conductance measurements,
the maximal current strongly decreases when 𝐸 < 𝐸 . In this case, the anti-
crossing giving rise to the critical current is not contained within the groundstate.

x5 x5
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Figure 2.7 – Energy spectrum and critical current versus gate charge in a single-Cooper-
pair transistor. a-c Energy spectrum versus gate charge for a SCPT containing a subgap state. The
even (odd) states are indicated with blue (green). d-f Resulting critical current versus gate charge. For
the first column, resulting in a 2 -periodic critical current modulation. For the second column,

, and the critical current exhibits an even-odd pattern. When the odd state is the groundstate,
the system is far detuned from the anti-crossing and the critical current drops. For the third column,

and the critical current is 1 -periodic. For panel e and f, the critical current modulation is shown
twice; the upper trace is multiplied by a factor 5 to increase its visibility.

7Here, we depict a spectrumwith a subgap state in anticipation of chapter 4. However, within our frame-
work, the modulation would be the same without this subgap state.
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2.3.3. Quasiparticle poisoning
In the previous sections, we looked at the parity effect in superconducting islands
and SCPTs. However, we only considered the groundstate properties of these sys-
tems. These are valid at zero temperature and without the stochastic parity flips
that can occur when quasiparticles in the leads hop on and off the island. Here, we
discuss the latter effect which is also known as quasiparticle poisoning. The tem-
perature dependence is treated is the next section.

Quasiparticle poisoning harms the operation of superconducting devices; it
causes decoherence in superconducting and Majorana qubits [70, 71]. Naively, one
would expect an exponentially small quasiparticle density as it is suppressed by the
superconducting gap: 𝑛 = 𝜌√2𝜋Δ𝑘 𝑇 exp (−Δ/𝑘 𝑇) [72]. However,many exper-
iments have reported a significant quasiparticle concentration [73–75]. Though the
source of these nonequilibrium (or nonthermal) quasiparticles remains unknown
[76], advancements have been made in understanding their dynamics [73], and in
reducing and controlling their density profile by using normal metal quasiparticle
traps and gap engineering [60, 77, 78].

To describe the consequences of quasiparticle poisoning for the parity effect,
we use the weighted sum of the even and odd signal as a simple toy model. For
a conductance measurement, this results in 𝐺 = 𝑝 𝐺 + (1 − 𝑝 )𝐺 . The weight
𝑝 = 1/ (1 + Γin/Γout) is the steady state solution of the master equation �̇� , =
∓Γin𝑝 ± Γout𝑝 , subjected to 𝑝 + 𝑝 = 1. In Figure 2.8, the resulting conduc-
tance signal is plotted for various ratios of Γin/Γout. We see that the 2𝑒 periodicity is
retained as long as the unpoisoning rate Γout is much larger than the poisoning rate
Γin. As the ratio increases towards unity, an additional conductance peak appears
at odd values of the gate charge, making the signal 1𝑒-periodic.

increasing Γin/Γout

Γin Γout

Figure 2.8 –Quasiparticle poisoning. The parity effect is destroyed as the poisoning rate (charac-
terized by in/ out) is increased. Individual traces are offset for clarity.



2.3. Superconducting islands

2

23

2.3.4. Temperature dependence of the parity effect
At nonzero temperatures, the gap giving rise to the parity effect in Eq. (2.19) is
replaced by the free energy difference to include the entropy associated with the
large number of states at the gap edge [79]

𝐹 − 𝐹 = −𝑘 𝑇 ln(𝑍𝑍 ) . (2.23)

Here, 2𝑍 , = ∏ (1 + exp (−𝜖 /𝑘 𝑇)) ± ∏ (1 − exp (−𝜖 /𝑘 𝑇)) is the partition
function of the even (odd) parity sector. Evaluating these products in the case of
a superconducting island with a spin degenerate subgap state yields [52]

𝐹 − 𝐹 ≈ −𝑘 𝑇 ln (𝑁 𝑒 / + 2𝑒 / ) , (2.24)

with 𝑁 = 𝜌𝑉√2𝜋Δ𝑘 𝑇 the effective number of states at the gap edge. Figure 2.9
show the evolution of 𝐹 −𝐹 as a function of temperature. For temperatures below
𝑇∗∗ ≈ (Δ − 𝐸 ) / (𝑘 ln (𝑁 /2)), the free energy difference is only weakly depen-
dent on temperature due to the presence of the subgap state. Above 𝑇∗∗, the free
energy decreases linearly until it finally reaches zero around 𝑇∗ ≈ Δ/ (𝑘 ln (𝑁 )).
Consequently, a 2𝑒-periodic signal will evolve via an even-odd pattern into a 1𝑒-
periodic signal upon raising the temperature. Typically, 𝑇∗ ≈ 300mK for an alu-
minum island which is smaller than the critical temperature of aluminum.

b increasing Ta

T*T**

Figure 2.9 – Temperature evolution of the parity effect. a The free energy difference between
the odd and even state as a function of the temperature for an aluminum island with (blue) and without
(green) a subgap state. The presence of a subgap state causes a saturation of the free energy difference
below ∗∗. Above ∗, the free energy difference is zero. b The decrease of with temperature causes
a transition from a periodicity to an even-odd pattern when , and subsequently to a
periodicity when . Individual traces are offset for clarity.
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2.4.Majorana box qubits
As we have seen in section 2.1.3, the topological properties of Majorana zero modes
give rise to nonlocal fermionic states. The quantum information stored in these
states is protected against local perturbations8, and is therefore expected to have
long coherence times. Over the past years, many proposals for Majorana-based
qubits have been developed [15–18, 38, 39, 80, 81]. Here, we briefly review the
similarities and differences between these proposals. We elaborate on the readout
of the Majorana box qubit as it forms an important motivation for this thesis.

Generally, the state of a Majorana-based qubit is encoded in the parity (or num-
ber) basis of the underlying nonlocal fermions. This requires a minimum of four
MZMs, 𝛾 ,… , 𝛾 (or two nonlocal fermions 𝑓 and 𝑓 ) so that the qubit can change
its state by flipping the parity of both fermions while the total parity is fixed. Here,
we define the qubit in (|0 0 ⟩ , |1 1 ⟩). In this basis, the four MZMs encode the
effective spin state

𝜎 = −𝑖𝛾 𝛾 , (2.25)
𝜎 = −𝑖𝛾 𝛾 , (2.26)
𝜎 = −𝑖𝛾 𝛾 . (2.27)

Majorana qubits can be manipulated by braiding the MZMs. The main dif-
ference between the proposals is the way these braiding operations are imple-
mented. Roughly, we distinguish three ideas: Initially, it was proposed to physi-
cally move the MZMs to implement braiding operations [38]. Later, it was recog-
nized that an adiabatic time-evolution of the interaction betweenMZMs can achieve
the same operation [80, 81]. This interaction can be controlled via the tunneling
coupling betweenMZMs [80], or bymodulating the Coulomb-mediated interaction
[15, 16, 39, 81]. Lastly, in Majorana box qubits, braiding is performed via a series
of projective measurements [17, 18].

The latter approach is more generally known as measurement-only topologi-
cal quantum computation. The see how it works, we consider the projector ∏ =
(1 − 𝑖𝛾 𝛾 ) which enforces that the MZM pair 𝛾 , 𝛾 fuses to 0 when measured

in the (|0 0 ⟩ , |1 1 ⟩) basis. This means that ∏ |0 0 ⟩ = |0 0 ⟩, which
effectively transfers |0 ⟩ to |0 ⟩, a feature known as anyonic state teleportation.
Now, by repeatedly performing these projective measurements, single-qubit gates
can be encoded. For example, the sequence∏ ∏ ∏ ∏ corresponds to braid-
ing MZMs 𝛾 and 𝛾 , while 𝛾 and 𝛾 fuse to 0. This can be verified with (brute
force) calculations using the anticommutation relations of the underlying fermions
or a diagrammic approach [18].

Majorana parity readout is essential for these projective measurements. In the
next section, we will see how these parity measurement can be performed by cou-
pling the box qubit to a quantum dot.

8Except for quasiparticle poisoning.
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2.4.1.Majorana box qubit readout
Figure 2.10 shows a schematic image of the so-called Majorana box qubit (MBQ)
[17, 18]. It consists of two parallel topological superconductors connected by a triv-
ial superconductor. Because of the parallel configuration of the topological sections,
it is possible to align the magnetic field to both wires at the same time. The length
of the topological wires should bemuch longer than theMajorana coherence length
𝐿 ≫ 𝜉 to avoid overlap between the Majorana wavefunctions and the associ-
ated lifting of groundstate degeneracy. The trivial superconductor ensures that the
qubit has a single charging energy 𝐸 . Moreover, it blocks uncontrolled 1𝑒 charge-
transfer between the two sections which otherwise could cause parity fluctuations
of 𝑖𝛾 𝛾 and 𝑖𝛾 𝛾 .

B

γ1γ3

γ2γ4

Lwire

Lsc

Figure 2.10 – Schematic representation of the Majorana box qubit. The four Majoranas
, … , at the end of the topological superconductors (in green) constitute a nonlocal spin which is

used to encode the qubit. The topological superconductors are connected via a s-wave superconductor
(in dark blue) allowing for charge-transfer between the topological superconductors.

The parity operators of Eqs. (2.25) to (2.27) can be measured by connecting the
corresponding Majorana pair to either a single or a double quantum dot. In either
of these configurations, the tunneling coupling depends on the occupation of the
Majorana pair due to interference of the tunneling paths. To illustrate this further,
we consider the readout of the 𝜎 operator, corresponding to the setup shown in
Figure 2.11. We focus on the single dot case for which the Hamiltonian is given by

𝐻 = 𝜖QD𝑑 𝑑 + 𝐸 (𝑛 − 𝑛 ) + 𝐻 . (2.28)

Here, the first term describes a single spin-polarized level 𝑑 in the dot which is de-
tuned by 𝜖QD from the Fermi level; the second term describes the charging of the
box; and the third term represents the coupling between the dot level and theMZMs
[18]

𝐻 = 𝑒 / (𝑡 𝑑 𝛾 + 𝑡 𝑑 𝛾 ) + H.c. (2.29)

= −12 [(𝑡 + 𝑖𝑡 ) 𝑑 𝑓 𝑒 + (𝑡 − 𝑖𝑡 ) 𝑑 𝑓 + (𝑡∗ − 𝑖𝑡∗) 𝑑𝑓𝑒 + (𝑡∗ + 𝑖𝑡∗) 𝑑𝑓 ] ,
(2.30)
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where 𝑡 , are the tunnel couplings to Majoranas 𝛾 , , and exp (−𝑖𝜑/2) removes a
single electron from theMBQ. To arrive at the second equality, theMajorana opera-
tors are expressed in terms of the creation/annihilation operators of the underlying
nonlocal fermion: 𝛾 = 𝑒 / (𝑓 + 𝑒 𝑓) and 𝛾 = 𝑒 / (𝑓 − 𝑒 𝑓). There
are two distinct processes that exchange particles between the qubit and the dot,
one involves breaking a Cooper pair to fill the nonlocal state and the dot (and the
reverse); the other one exchanges an electron between the dot and the nonlocal
state.

When written in the (|𝑝 , 𝑛dot⟩) basis, where 𝑝 is the eigenvalue of 𝜎 and 𝑛dot
the occupation of the dot, Eq. (2.28) reads

𝐻 = −12 [
𝜖 𝑡 + 𝑖𝑝 𝑡

𝑡∗ − 𝑖𝑝 𝑡∗ −𝜖 ] . (2.31)

In other words, the tunneling amplitude between the MBQ and the quantum dot
depends on the parity of 𝑖𝛾 𝛾 and can thus be used to measure 𝜎 .

Similarly, it can be shown that the tunnel coupling between the two dots in the
double dot configuration (Fig. 2.11b) acquires a parity-dependent term [17]

𝑡 = 𝑡ref + 𝑝 𝑡MBQ, (2.32)

with 𝑡ref the direct tunneling amplitude between the dots, and 𝑡MBQ ≈ 𝑡 𝑡 /ΔMBQ
the contribution due to cotunneling through the MBQ with ΔMBQ the detuning of
the chemical potential of the box qubit with respect to the DQD (see Fig. 2.11b).

Compared to the single dot case, the double dot approach has several advan-
tages. For one, it allows for independent tuning of the global coupling amplitude by
adjusting 𝑡ref. Also, the MBQ can be operated deeper in Coulomb blockade, making
it less susceptible to quasiparticle poisoning [18]. Moreover, the qubit state is not
sensitive to dephasing of the readout dot. For both approaches, it is important that
the level spacing of the readout dot(s) is larger than the thermal energy 𝛿𝜖 ≫ 𝑘 𝑇,
because the scheme requires coherent charge tunneling from a single dot level.

γ1γ3

γ2γ4

γ1γ3

γ2γ4
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trefdot
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QD

MBQ

QD 2

MBQ

QD 1

ΔMBQ

Figure 2.11 – Quantum dot-based readout of the Majorana box qubit. The interference of
the tunnel couplings between a pair of Majoranas and a single dot a, or double dot b leads to a parity-
dependent tunneling amplitude. The relevant levels in the QD(s) and MBQ are shown schematically.
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The other Pauli operators, 𝜎 = −𝑖𝛾 𝛾 and 𝜎 = −𝑖𝛾 𝛾 , can be measured by
connecting the respective Majorana pairs to quantum dots. Additionally, in a loop
containing two dots connected to four MZMs it is possible to measure the joint-
parity of these Majoranas [17, 18]. These joint-parity measurements can be used to
implement two qubit gates. The number of measurable parity operators depends
on the number of ways the MZMs can connect to quantum dots. To increase this
connectivity, coherent links made from Majorana islands can be used to readout
distant Majoranas [82]. In Refs. 17 and 18, they combine these links with smart
qubit geometries to achieve scalable qubit networks. Wenote that the parity readout
can also be implementedwithCooper pairs instead of electrons cotunneling through
the respective Majorana pair [83].

2.5. Gate-based reflectometry
As we have seen in the previous section, we can readout the Majorana box qubit by
translating the difference in tunnel coupling associated with the two parity states
to a difference in readout signal. This can be done by imbedding the gate of the
quantum dot in a 𝐿 𝐶 tank circuit and monitoring the phase shift of the reflected
radio frequency (RF) probe field (see next chapter for a more elaborate discussion).
This technique, called RF reflectometry, has been successfully used to readout su-
perconducting and spin qubits. In this section, we will derive a semi-classical ex-
pression for the gate impedance of a double quantum dot following Refs. 84 and
85. As we will see, the reactive part of this impedance contains a parametric capac-
itance 𝐶 term, which in turn consist of a quantum capacitance 𝐶 and a tunneling
capacitance 𝐶 . The quantum capacitance is inversely proportional to the tunneling
coupling and can thus be used for the readout of the box qubit.

2.5.1. Gate impedance of a double quantum dot
To obtain the gate impedance 1/𝑍 = 𝐼 /𝑉 , we calculate the gate current 𝐼 =
d𝑄 /d𝑡 from the gate charge 𝑄 . The relation between the gate charge and the gate
voltage 𝑉 is determined using a network of capacitors to represent the circuit of the
DQD, see Fig. 2.4a,

𝑄 = 𝛼 𝐶 𝑉 + 𝑒𝛼 𝑃, (2.33)

where 𝑃 is the charge occupancy of the readout dot. For simplicity, we assumed
𝐶 ≫ 𝐶 so that the dots are effectively decoupled. By differentiating Eq. (2.33), we
get

𝐼 = 𝐶geom
d𝑉
d𝑡 + 𝑒𝛼

d𝑃
d𝑡 . (2.34)

The geometric contribution of the gate impedance is set by the gate capacitor con-
nected in series with the source capacitor: 𝐶geom = 𝐶 + 𝐶 . To evaluate the sec-
ond term in Eq. (2.34), we write 𝑃 = + (𝑃 − 𝑃 ) using Eqs. (2.17) and (2.16).
Here, 𝑃± are the occupancies of the groundstate and the excited state respectively.
Furthermore, we note that the probe signal modulates the gate potential 𝑉 (𝑡) =
𝑉 + 𝛿𝑉 sin (𝜔𝑡), and hence, the detuning of the dot levels 𝜖 (𝑡) = 𝜖 + 𝛿𝜖 sin (𝜔𝑡)
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with 𝛿𝜖 = −𝑒𝛼𝛿𝑉 . Now, the dot occupancy acquires a timedependence via twopro-
cesses: one, because the probe signal modulates the (detuning-dependent) charge
polarization of the DQD, and second, because the charge is redistributed within the
double dot via tunneling processes on the time scale of the modulation. These pro-
cesses lead to the quantum and tunneling capacitance respectively

d𝑃
d𝑡 = (𝑃 − 𝑃 ) d

d𝑡
𝜖
2Ω⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

quantum

+ 𝜖
2Ω

d
d𝑡 (𝑃 − 𝑃 )⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
tunneling

. (2.35)

This result is semi-classical because we disregard any coherent oscillations between
the states (for example, Landau-Zener transitions). For a double dot, this is a valid
assumption given that the typical DQD coherence time is well below 100 ns [47, 86];
much smaller than the typical integration time.

The quantum capacitance is now readily calculated

𝐶 =
(𝑒𝛼 )
2

𝑡
Ω (𝑃 − 𝑃 ) . (2.36)

To evaluate the tunneling contribution, the master equation �̇� − �̇� =
2 (Γ 𝑃 − Γ 𝑃 ) needs to be solved. Following Ref. [84], we assume that the excita-
tion and relaxation processes are driven by thermal phonons: Γ = Γ 𝑛 and Γ =
Γ (1 + 𝑛 ), where Γ is the charge relaxation rate, and 𝑛 = (exp (Ω/𝑘 𝑇) − 1)
is the phonon occupation number. This results in the following expression for the
tunneling capacitance:

𝐶 =
(𝑒𝛼 )
2

1
2𝑘 𝑇 (

𝜖
Ω)

𝛾
𝜔 + 𝛾 coth (Ω/2𝑘 𝑇) , (2.37)

where 𝛾 = Γ coth (Ω/2𝑘 𝑇) is the characteristic relaxation rate at temperature 𝑇.
When 𝛾 ≈ 𝜔, the tunneling processes also lead to a dissipative contribution to the
impedance 𝑅sys, known as the Sysiphus resistance [84].

2.5.2. Circuit quantum electrodynamics
Circuit quantum electrodynamics (cQED) describes the interaction betweenmatter
and light. In this section, we discuss the coupling between the double quantum dot
and the resonator in the language of cQED [87, 88], as an alternative to the circuit
element approach discussed in the previous section. We start with the Hamiltonian
of the DQD-resonator system:

𝐻 = 𝐻DQD + 𝐻 + 𝐻coupling, (2.38)

with 𝐻DQD as in Eq. (2.14), and 𝐻 = (𝑎 𝑎 + )ℏ𝜔 describing the resonator. In
the latter, 𝑛 = 𝑎 𝑎 is the photon number operator of the resonator mode 𝜔 . The
resonator couples to the dipolemoment 𝜎 of the DQD. In the bonding/antibonding
basis, this coupling is expressed as

𝐻coupling = ℏ𝑔 (− cos𝜃𝜎 + sin𝜃𝜎 ) (𝑎𝑒 + 𝑎 𝑒 ) . (2.39)
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where 𝜔 = 2𝜋𝑓 is the frequency of the probe field, 𝑔 = ℏ√ℏ𝜔 /𝐶 the strength of
the dipole coupling9, and 𝜃 = tan (𝑡/𝜖) the degree of hybridization between the
charge states.

The Hamiltonian in Eq. (2.38) can be simplified by applying the rotating wave
approximation (in the frame of the double dot). This amounts to only keeping the
terms that conserve the number of excitations (e.g., 𝑎𝜎 and𝑎 𝜎 with𝜎± the raising
and lowering operators of the DQD), reducing Eq. (2.38) to a Jaynes-Cummings
Hamiltonian. Now, we can obtain an expression for the reflected probe field using
a master equation approach [88, 89]

𝑎out
𝑎in

= 𝜅ext
𝑖 (𝜔 − 𝜔) + 𝜅/2 + 𝑖𝑔eff𝜒

− 1 (2.40)

with the double dot susceptibility

𝜒 = 𝑔eff
Ω/ℏ − 𝜔 + 𝑖𝛾/2 . (2.41)

In these equations, 𝜅 = 𝜅ext + 𝜅 = 𝜔 /𝑄 is the total resonator damping rate, com-
posed of internal losses 𝜅 and external coupling 𝜅ext; 𝛾 is the dephasing rate, and
𝑔eff = 𝑔 sin (𝜃) is the effective coupling strength. These equations are used in chap-
ter 5 to extract the tunnel coupling from the dispersive shift of the resonator.

Lastly, we show the equivalence between cQED in the dispersive regime and
the circuit element approach discussed in the previous section. In the dispersive
regime, the detuning between the qubit excitation energy and the probe energy is
large: Δ = Ω/ℏ − 𝜔 ≈ Ω/ℏ. In this case, the shift on the resonator frequency is
given by 𝛿𝜔 = −𝑔 /Δ. Using Eq. (2.36) to relate ℏ𝑔eff/Ω to 𝐶 , this reduces to

𝛿𝜔
𝜔 = −

𝐶
2𝐶 ; (2.42)

Equal to the expression found by expanding 𝛿𝜔 = 1/√𝐿 (𝐶 + 𝐶 ) − 1/√𝐿 𝐶 for

small 𝐶 /𝐶 .

9For a double quantum dot this coupling is twice as small as for a Cooper-pair box, because the charge
of single electrons is twice as small as the charge of a Cooper-pair, leading to a smaller dipole moment.
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Methods

Slow is smooth, and smooth is fast

Phil Dunphy

This chapter consists of two parts. In the first part, we describe the measurement
technique gate-based RF reflectometry, and give a detailed technical description of
the setups for the nanowire experiments. In the second part, we discuss the proce-
dure for fabricating the nanowire devices.
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3.1. Gate-based reflectometry
In chapters 5 and 6, we utilize gate-based radio frequency (RF) reflectometry to
measure the electron tunneling between quantum dots and islands. In this section,
we describe this measurement technique followed by a technical discussion of our
measurement setup.

Microwave reflections occur at the interface between twomedia with a different
characteristic impedance. In this thesis, we will use the reflection from the gate
electrode of a quantum dot to measure the charge tunneling in our devices. The
amplitude 𝐴 and phase𝜙 of the reflected wave are given by the reflection coefficient
[90]

Γ = 𝑍 − 𝑍
𝑍 + 𝑍 , (3.1)

where 𝑍 = 50Ω is the characteristic impedance of the coax cables in the setup,
and 𝑍 is the combined impedance of the device and the 𝐿𝐶 tank circuit attached to
the gate. In reflectometry, typically the amplitude and phase of the reflected field
are measured at a constant probe frequency while control parameters, such as gate
voltages and/or the magnetic field, that impact the impedance of the device, are
swept.

In quantum dots and islands, the change in impedance is reactive in nature as
tunneling processes give rise to an additional parametric capacitive load seen by the
gate (see section 2.5). The added capacitance shifts the resonance frequency 𝑓 of
the 𝐿𝐶 circuit by connected to the gate

Δ𝜔 = 1
√𝐿𝐶

− 1

√𝐿 (𝐶 + 𝐶p)
. (3.2)

The frequency shift translates in an amplitude1 and a phase shift when measured
at a constant probe frequency, see Figure 3.1. The phase-roll across the resonance
is 2𝜋. Hence large phase shifts can be obtained when the frequency shift exceeds
the resonator linewidth Δ𝑓 > 𝑓 /𝑄. Here, 𝑄 is the quality factor; it is composed
of an internal and an external contribution 𝑄 = 𝑄int + 𝑄ext. For our resonators,
𝑄ext ≪ 𝑄int, meaning that the coupling to the detection circuit dominates the in-
ternal losses. The maximum measurement bandwidth is set by the quality factor
𝐵𝑊 = 𝑓 /𝑄. Typically, 𝑓 ≈ 400MHz and 𝑄 = 100 to 200, leading to a maximum
bandwidth of 2 to 4 MHz.

The tank circuits used for our experiments are defined by NbTi spiral inductors
in combination with the parasitic capacitance of the circuit. The inductors (see Fig.
3.5a for a picture) are made in the group of David Reilly [91]. They are fabricated
on a sapphire chip to ensure a stable dielectric environment. Moreover, they are
suitable for multiplexing since a single feedline connects to eight inductors ranging
from 40 to 420 nH. On-chip bias tees are use to supply a DC offset to the individual
1An ideal resonator has a flat amplitude response as a function of frequency because there is no power
dissipation. In practice, however, we always measure a dip in the reflected amplitude at the resonance
frequency due to finite losses.
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Figure 3.1 –Gate-based RF reflectometry. The resonance frequency of a resonator shifts upon
increasing the capacitive load, for example, due to electrons tunneling within a double quantum dot.
This results in a phase shift a and amplitude change b of the reflected microwave signal when probed at
a constant frequency.

inductors. Finally, the 150 nm thick NbTi film has a large critical magnetic field and
is therefore compatible with Majorana zero mode measurements.

3.1.1. Reflectometry setup
In this section, we describe the reflectometry setup used for the dot-islandmeasure-
ments of chapter 6. The setup used for the double dot measurements (chapter 5)
is similar albeit with slightly different choices for various components2. Roughly,
the setup can be separated into three parts: the RF electronics, the DC electronics,
and the the printed circuit board (PCB). Figure 3.2 present a schematic circuit of
the setup.

The RF carrier signal is generated using R&S SGS100A sources and is routed
to the sample via low-loss coax cables. In the fridge, we use silver-plated stainless
steal cables above 4 K and superconducting NbTi cables below 4 K (both from coax
co). Themicrowaves are attenuatedwith a variable attenuator at room-temperature
(RUDAT-13G-90) to set the overall power level, and cryogenic attenuators (from
XMA) to reduce the thermal noise from room-temperature and to thermally an-
chor the inner conductor. Moreover, DC blocks are added to various parts of the
readout chain to prevent ground loops. The coupled port of a directional coupler
(ZFDC-20-S) is used to route the RF tone to the sample and to direct the reflected
signal towards the amplification chain. The first stage of this chain is located at 4K
and consist of a low-noise amplifier (CITLF3) with a gain of about 30 dB. For reflec-

2More precisely, we use a custom-made room-temperature amplifier and mixers; high frequency
( cutoff>1 GHz) copper-powder filters and custom-made filters instead of the Qdevil filters; an addi-
tional DC block (PE8210) before the cryogenic amplifier; a ZEDC-15-2B directional coupling; keithley
2000 DMMs; and SRS830 lockin-amplifiers.
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Figure 3.2 – Reflectometry setup used for the dot-island experiment in chapter 6. The
directional coupler separates the incoming and outcoming RF fields. The reflected signal is amplified
and mixed down before its amplitude and phase are extracted using a Fourier transform. DC voltages
to bias the gates are added via a bias tee on the inductor chip. The in-house built IVVI rack controls the
routing of DC signals and isolates the device from the control electronics. For illustration purposes, only
one of the inductors is connected to the device.
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tometry measurement, it is crucial that the 𝑆 of this amplifier is low (≲ −10 dB).
Furthermore, any attenuation before the first amplification stage strongly increases
the noise temperature of the setup and should therefore be avoided. The second
amplifier (from Miteq) is located directly after the signal exits the fridge and has a
gain of about 36 dB. Subsequently, the carrier is mixed (using JCIR-4MH) with a
local oscillator (LO) resulting in an intermediate frequency (IF = RF−LO) and the
sum frequency (RF+ LO). Typically, IF = 1-10 MHz. The signal is low-pass filtered
(𝑓cutoff = 10MHz) and amplified before it is discretized using an Alazar acquisi-
tion card (ATS9360). The amplitude and phase are determined via the fast Fourier
transform. To correct for phase drifts, the phase of the reference arm is subtracted.

The DC signals are handed to the sample via an in-house built module called the
IVVI rack which is designed by the group of Raymond Schouten [92]. This battery-
poweredmodule isolates the device from the control electronics using isolation am-
plifiers for device signals and opticals control signals. Moreover, it contains 16 low-
noise digital-to-analog converters (DACs) which are used to bias the gates and the
source of the device. They have a resolution of 61 μV and a range of -2 to +2 V. Volt-
age sources can be used to increase the resolution of the DACs, and current sources
to generated bias currents. Furthermore, 𝐼𝑉 converters and voltage amplifiers are
used to amplify the signal before it is measured using a digital multimeter (Keysight
34465A) and/or a low-frequency lockin amplifier (SRS860); and an arbitrary wave-
form generator (Tektronix AWG5014) is used to bias the gate with a staircase signal
in order to speed up the measurements. Finally, all in- and output signals are fil-
tered using pi-filters with a cutoff frequency of 10 MHz at room-temperature, and
several stages of RC filtering at base temperature (using Qdevil filters).

Like the inductor chip, the PCB is supplied by the Reilly group. It consist of
a fixed motherboard and a replaceable daughterboard and is equipped with 96 DC
lines and8RF lines (of whichwe only use the one connected to the reflectometry cir-
cuit). Each of the DC lines contains an additional 𝑅𝐶 filter, resulting in a combined
cutoff frequency of about 50 kHz and a total series resistance of 8.7 kΩ (including
the Qdevil filters). The RF lines can also be DC biased via a bias tee on the mother-
board which increases the series resistance by 5 kΩ. Furthermore, DC/RF lines are
added to the respective inductors via another bias tee on the inductor chip which
adds another ≈ 2 kΩ in series.

3.2. Switching current measurements
Here, we briefly describe the setup used for the switching current experiment on
the nanowire single-Cooper-pair transistors (SCPTs) presented in chapter 4.

The switching current histograms aremeasured using a Rigol DG4062 arbitrary
waveformgenerator to supply thewaveformof the ramp to the current sourcewhich
results in a time-dependent current bias of the device characterized by a constant
current ramp rate d𝐼/d𝑡. The voltage across the SCPT ismeasured in a four-terminal
configuration using a voltage amplifier that is isolated from the commercial elec-
tronics. A typical current bias waveform together with the resulting voltage are
schematically depicted in Figure 3.3a. When the measured voltage crosses the pre-
set voltage threshold𝑉 , the corresponding bias current is recorded using a custom-
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made sample-and-hold circuit and a Keithley 2000 digital multimeter. This refer-
ence voltage is tuned inside the voltage step that separates the supercurrent- from
the quasiparticle current branch so that the recorded current measures the switch-
ing current. This measurement is repeated𝑁 times to acquire the switching current
histogram.

Figure 3.3b shows an example of ameasured switching currentmodulation with
this protocol.
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Figure 3.3 – Switching current histograms. a Protocol for the switching current histograms. The
bias current is varied with a constant ramp rate while the voltage across the sample is measured. When
this voltage passes a preset threshold voltage, the corresponding bias current is recorded using a sample-
and-hold circuit. If the threshold voltage is tuned so that it lies within the voltage step, the recorded
current measures the switching current. bModulation of the switching current of a SCPT. For each gate
value, the switching current measurement is repeated times.

3.3. Fabrication of nanowire devices
In this section, we introduce the nanofabrication methods used for the dot-island
devices3 of chapter 6. Besides introducing the fabrication process, the aim of this
section is to hightlight important steps taken in its development andpoint outwhere
improvements could possibly be made with the hope to make it a useful starting
point for future nanowire reflectometry devices.

3.3.1. Nanowire growth
The InAs-Al core-shell wires used in this thesis are grown withmolecular beam epi-
taxy (MBE) in the group of Peter Krogstrup in Copenhagen [93]. The InAs wires are
grown in the ⟨0001⟩B-direction. They have a hexagonal cross section with {1100}
facets. They have a typical width between 80 and 120 nm, a typical length between
5 and 10μm, and a typical electron mobility between 5000 and 10000 cm /(Vs).
The aluminium shell is grown on the wire without breaking the vacuum which re-
sults in an epitaxial interface between the InAs and the Al as can be seen in Figure
3These devices combine superconducting islands (chapter 4) with quantum dots (chapter 5). As such,
the methods and recipes discussed here are also applicable for those devices.
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3.4a. Since the aluminium is depositedwith a directional beamonly a fraction of the
facets are covered (typical two to three facets), leaving room for adjusting the chem-
ical potential in the wire via electrostatic gating [94]. The clean interface between
the InAs and the Al induces a hard superconducting gap (Fig. 3.4b) which was a
major advancement in the field of proximizited nanowires [95–97]. Finally, the Al
layer is very thin (<10 nm), resulting in a large critical magnetic field necessary for
the emergence of MZMs.

a b

Figure 3.4 – Hard gap in InAs nanowires with an epitaxially grown shell. a Left: scanning
electron micrograph showing the InAs-Al nanowires grown in a regular grid. Middle and right: trans-
mission electron micrographs indicating the epitaxy between InAs and Al. Image obtained from [93]. b
Comparison of the induced superconducting gap of an evaporated- (red) and an epitaxially grown alu-
minium shell (blue). Indeed, the latter shows a stronger reduction of the subgap conductance, indicating
a hard induced superconducting gap without low-energy subgap states. Image obtained from [95].

3.3.2. Chip layout and nanowire transfer
Intrinsic silicon chips (𝜌 > 10000Ωcm) covered with 20 nm of LPCVD-deposited
SiNx are used for the reflectometry samples to reduce the parasitic capacitance that
sets the resonance frequency. The fabrication starts with patterning 4-inch wafers
with e-beam and alignment markers. The wafer is diced into 6.5 × 6.5 mm chips
so that they exactly fit in the cutout on the PCB and no post-fabrication dicing of the
chips is required4. The marker layout allows for three devices on a chip which re-
sults in a reasonable yield while minimizing the amount of design work. Moreover,
it leaves room for the resonator chip as can be seen in Figure 3.5a.

Before the nanowires are deposited, the device chip is cleaned with acetone
(10 minutes in an ultrasonic bath) and IPA. It could be worthwhile to investigate
whether additional cleaning would improve the device quality [98]. Individual
nanowires are transferred onto the chip using a micro-manipulator [99]. Care is
taken to avoid bending and/or sticking together of the nanowires. Figure 3.5b
shows a dark field optical image of the alignment markers together with a single
4We noticed that post fabrication dicing of nanowire devices with our gate geometry (e.g., a wrap gate
separated by a thin layer of AlOx or SiNx.) enhances the probability of shorting gates to the nanowires;
presumably caused by electrostatic discharge (ESD).
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nanowire. This image is used to align the design to the wire. The wires are stored
in an argon environment to prevent degradation of their quality5.

a  b

6.5 mm

6.5 mm

 10 μm  

    
device area

Figure 3.5 – Chip layout and wire deposition. a The chip layout used for the reflectometry sam-
ples. The chip is made from intrinsic silicon and is covered with 20 nm LPCVD SiNx. The inductor chip
is glued on the device chip using PMMA. b Dark-field optical image of a single nanowire deposited on a
predefined location using a micro-manipulator.

3.3.3. Etching of the aluminium shell
TranseneD is used to etch the aluminium shell from the InAs-Al nanowires in order
to define the superconducting islands. This etchant was developed to selectively
etchAl fromGaAs [100]. We optimized the eching recipe to be able to reliably define
short junctions which is difficult because of the different etch rates for Al and AlOx.
We achieve an average junction length of 85 nm with a standard deviation of 5 nm
(starting from 50 nm lithographically defined windows). Figure 3.6a shows a SEM
of a typical test sample and Figure 3.6b the result of an etch test with the optimized
recipe. In this recipe, it is key to be able to control the temperature of the etchant.
Therefore, we put the glass-coated sensor directly into 100 mL of transene D. In
addition, we use a sensitive hot plate (IKA C-MAGHP 10) and controller (IKA ETS-
D6). The acid is heated to 48.2 ∘C while it is gently stirred. We put the sample in
the etchant for 12 s and rinse thoroughly in water afterwards.

Despite its selectivity for GaAs, transene D does slowly etch InAs. Therefore, it
could beworthwhile to investigate different chemicals; possible candidates are BOE
(or HF), sulphur, or MF321 (or TMAH).

5A quick calculation shows that roughly wires fit on a 1 × 1 cm growth chip. Still, we regularly use
new chips either because wires degrade or because improved wires growths are available.
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Ljunction
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a  b

Figure 3.6 – Calibration of the transene D etch. a Scanning electron micrograph of a test sample
used to calibrate the etching recipe. The remaining aluminium patches are visible on the top-right facet
of the wire. b Histogram of the junction length obtained by analyzing 134 junctions made using the
optimized recipe. The histogram shows that we can reliably make 85 nm long junctions.

3.3.4. Ohmic contacts
The native oxide of the InAs has to be removed to make ohmic contacts to the
nanowire. We remove this oxide with 30 seconds of in situ argon milling before
depositing a 10/140 nm Ti/Au layer. We calibrated the argon mill by etching unox-
idized Al, where we measure an etch rate of -0.6 Å/s. Typically, the room tempera-
ture resistance is 1 and 5MΩ after this step of the fabrication.

3.3.5. Gating the nanowire
The dots and islands are defined by locally depleting the nanowire via electrostatic
gating. The lever arm of a gate is primarily determined by its geometry and dielec-
tric environment. We want a large lever arm for the readout gate to increase the
dispersive signal which scales as 𝐶 ∝ 𝛼 (see Eq. (2.36)). In addition, the gate-
hysteresis should be small to be able to efficiently tune up the dots. We chose for a
wrap-around gate design to maximize the gate lever arm.

First, we tested the continuity of these gates by measuring the resistance of a
short crossing the wire. For the dielectric layer, we considered sputtered SiNx and
ALDAlOx. Typical pinchoff curves for such gates are shown inFig 3.7a andb. Figure
3.7a shows that gateswith a 20nmSiNx layer6 canhave lowhysteresis. However, we
noticed that this recipe was not reproducible between fabrication runs. Figure 3.7b
contains a typical pinchoff curve for a gate separated by a 10 nm thick AlOx layer.
These gates generally have a lower value for the threshold voltage than the SiNx
gates indicating a stronger coupling to the nanowire channel. Moreover, the AlOx
gates have negligible hysteresis and their fabrication was found to be reproducible.
Therefore, we use AlOx for the reflectometry devices.

We note that after the deposition of the dielectric the wire resistance typically
drops to 5 to 10 kΩ.

6We found that 30 nm thick SiNx films give similar results.
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Vb = 1 mV Vb = 1 mVVb = 10 mV

10 nm AlOx 10 nm AlOx + SEM20 nm SiNx
a  b c  

Figure 3.7 – Typical pinchoff curves for gates with different dielectric layers. a SiNx can
result in gates with small hysteresis. b Gates on AlOx generally have negligible hysteresis and a small
voltage span between saturation and pinchoff. cAfter SEM inspection the gating properties can degrade;
the hysteresis increases and the threshold voltage shifts towards more negative voltages. Note that the
difference in saturation current between the panels is also influenced by the series resistance of the setup
and the applied bias voltage.

3.3.6. Post processing
After the gate fabrication, the devices are ready to be measured. Often it is useful
to inspect the devices using SEM to check whether there were no shifts during the
lithography of the gates. However, we observed an increase in the hysteresis of
the pinchoff curves after SEM as is illustrated in Fig. 3.7c. Moreover, we noticed
that dicing the sample increased the probability of shorting a gate to the nanowire.
Therefore, we avoid SEM and dicing after the dielectric deposition.

For the cooldown, the chip is mounted on the daughterboard of the PCB. Then,
the resonator chip is placed on top of the device chip. PMMA is used as glue for both
steps. Next, a device is wire bonded to the DC lines on the PCB and the inductors on
the resonator chip. The bond wires to the inductor should be as short as possible to
minimize the parasitic capacitance of the tank circuit. Finally, the PCB is screwed
into the cold finger of a dilution refrigerator.
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Magnetic-field-dependent
quasiparticle dynamics of

nanowire single-Cooper-pair
transistors

Parity control of superconducting islands hosting Majorana zero modes (MZMs)
is required to operate topological qubits made from proximitized semiconductor
nanowires. We test this control by studying parity effects in hybrid InAs-Al single-
Cooper-pair transistors (SCPTs) to evaluate the feasibility of this material system.
In particular, we investigate the gate-chargemodulation of the supercurrent and ob-
serve a consistent 2𝑒-periodic pattern indicating a general lack of low-energy sub-
gap states in these nanowires at zero magnetic field. In a parallel magnetic field,
an even-odd pattern develops with a gate-charge spacing that oscillates as a func-
tion of field demonstrating that the modulation pattern is sensitive to the presence
of a single bound state. In addition, we find that the parity lifetime of the SCPT
decreases exponentially with magnetic field as the bound state approaches zero en-
ergy. Our work shows that aluminum is the preferred superconductor for future
topological qubit experiments and highlights the important role that quasiparticle
traps and superconducting gap engineering would play in these qubits. Moreover,
we demonstrate a newmeans by which bound states can be detected in devices with
superconducting leads.

This chapter is based on J. van Veen, A. Proutski, T. Karzig, D. I. Pikulin, J. Nygård, P. Krogstrup, A.
Geresdi, L. P. Kouwenhoven, and J. D. Watson, Magnetic-field-dependent quasiparticle dynamics of
nanowire single-Cooper-pair transistors, Physical Review B 98, 174502 (2018).
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4.1. Introduction
The interplay of charging energy 𝐸 and the superconducting gap Δ leads to the
surprising result that the electrical transport in a mesoscopic superconducting is-
land containing amacroscopic number of electrons is sensitive to the addition or re-
moval of a single electron [55–57, 101]. This parity effect has been extensively stud-
ied in Al-AlOx SCPTs by measurements of a 2𝑒-periodic gate-charge modulation of
Coulomb peak spacings, ground state charge, and switching currents [58–60, 79,
102–106]. In recent experiments, the presence of MZMs in hybrid semiconductor-
superconductor nanowires was inferred from a field-induced 1𝑒 Coulomb block-
ade periodicity, illustrating the utility of this periodicity in understanding the low-
energy spectrum of superconducting islands [41, 52–54, 64, 82, 107, 108]. In con-
trast with these previous studies which utilized devices with normal metal leads, we
investigate parity effects in gate-tuneable nanowire SCPTs which have supercon-
ducting leads by studying the junction gate, temperature, andparallelmagnetic field
dependence of the switching current modulation. These experiments not only give
new insights into quasiparticle dynamics but also represent a first step towards im-
plementing recent Majorana-based qubit proposals which require Josephson cou-
pling to the leads to enable parity-to-charge conversion for MZMmanipulation and
readout [15, 16, 39, 81, 109].

The Hamiltonian of a SCPT consists of three terms: 𝐻 = 𝐻 + 𝐻 + 𝐻BCS. The
Coulomb term, 𝐻 = 𝐸 (𝑛 − 𝑛 ) , stabilizes the excess charge 𝑛 on the island
which can be changed by varying the gate-charge 𝑛 . The effective charging energy
𝐸 = 𝑒 /2𝐶 is given in terms of the electron charge 𝑒 and a generalized capaci-
tance 𝐶 that takes into account the geometric capacitance and possible renormal-
ization effects due to tunneling of quasiparticles [110–114]. The Josephson term for
symmetric junctions 𝐻 = −𝐸 cos (𝜙/2)∑ |𝑛⟩⟨𝑛 + 2| + ℎ.𝑐., with 𝐸 the Joseph-
son energy and 𝜙 the superconducting phase difference across the island, couples
adjacent, equal-parity states and results in energy level anti-crossings when states
with the same parity are degenerate. The third term describes the spectrum of the
gapped BCS quasiparticles resulting in an energy offset Δ for the odd ground state
due to an unpaired electron in the superconductor. Figure 4.1a shows the resulting
band structure of a SCPT. The corresponding gate-charge modulation of the critical
current is shown in Fig. 4.1b. We denote the amplitude of the (even) ground state
charge dispersion 𝐸gs(𝑛 ) with 𝛿𝐸eo = 𝐸gs(𝑛 = 1) − 𝐸gs(𝑛 = 0). When Δ > 𝛿𝐸eo
the ground state is always even. Consequently, the switching current modulation
will be 2𝑒-periodic at 𝑇 = 0 in this simple model.

Quasiparticle poisoning, however, affects this 2𝑒-periodic modulation. Previ-
ous studies have illustrated several important timescales, namely the (un)poisoning
rate Γin,(out) at which quasiparticles in the lead tunnel to the island (or vice versa),
the non-equilibrium unpoisoning rate Γneqout at which non-equilibrium quasiparti-
cles on the island tunnel out to the leads, and the relaxation rate 1/𝜏 at which
non-equilibrium quasiparticles on the island relax to the gap edge or subgap states
[72, 73, 77, 115]. While the relaxation is important for the quasiparticle dynamics,
the thermodynamics of the system can be described by equilibrium poisoning and
unpoisoning rates Γin and Γout alone; therefore, we leave the implications of relax-
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ation in our devices to the discussion section below. The ratio Γin/Γout gives the rel-
ative occupation between the even and odd parity states in equilibrium 𝑝odd/𝑝even.
If Γin/Γout ≈ 1 as is expected to occur at high temperature, the switching current
modulation deviates from 2𝑒 periodicity and exhibits a 1𝑒 periodicity instead.

Figure 4.1c presents a scanning electronmicrograph (SEM) of one of our SCPTs,
and a 3-dimensional schematic of the device is shown in Fig. 4.1d. The SCPTs are
fabricated from InAs nanowires covered with a thin aluminium shell on two of their
facets. It has been shown that this material combination results in a hard, induced
superconducting gap in the nanowire [93, 95]. The aluminium shell is etched in two
regions along the nanowire in order to define the island together with the two Al-
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InAs-Al Josephson junctions. The wire is contacted 1 μm away from each junction
by NbTiN/Ti/Au contacts which are expected to act as quasiparticle traps due to
the presence of normal metal and the large subgap density of states in NbTiN [116].
Previous studies have shown the effectiveness of such traps to reduce the quasipar-
ticle density [60, 70, 77]. Voltages 𝑉 and 𝑉 applied to the side gates tune the
transparency of the weak links while the plunger gate voltage 𝑉 tunes the chemical
potential of the island, and the global backgate voltage 𝑉 tunes the chemical po-
tential of the whole system. The SCPTs are mounted to the cold finger of a dilution
refrigerator with a base temperature of 27 mK. We report on six devices in total; in
themain text, we present data on a device with a 500 nm long island (see Table 4.S1
of the Supplemental Material for an overview of all the devices). Unless otherwise
indicated, the presented data were obtained at 27 mK and at zero field.

4.2. Results
4.2.1. Coulomb blockade and switching current histograms
We first tune the device into Coulomb blockade by increasing the heights of the bar-
riers separating the island from the leads. The clear, regular Coulomb diamonds
shown in Fig. 4.2a demonstrate the creation of a single, well-defined island. More-
over, a 1𝑒-periodic conductancemodulation appearswhen 𝑒 |𝑉 | > 4Δ and transport
through the island is dominated by quasiparticles which enables us to identify the
gate voltage periodicity corresponding to 1𝑒 [117]. The current at lower bias voltages
is too small to resolve in the Coulomb blockade regime since it involves Cooper pair
transport and is therefore higher order in the tunneling. Finally, we extract the su-
perconducting gap Δ = 180μeV and the geometric charging energy 𝐸 = 1.5meV
from the observed diamonds.

In order to generate a measurable supercurrent, we lower the barriers in or-
der to increase 𝐸 which simultaneously suppresses 𝛿𝐸eo. The switching current is
recorded by triggering on the voltage step in the 𝐼-𝑉 curve as illustrated in Fig. 4.2c;
this is repeated 𝑁 times for each 𝑛 to gather statistics, typically 𝑁 = 100 to 500.
Figure 4.2b shows the resulting switching current histogram which is 2𝑒-periodic,
indicating that in this regime the charge dispersion has decreased at least an or-
der of magnitude to the point that 𝛿𝐸eo < Δ, consistent with the observed charging
energy renormalization in a nanowire island with normal leads [107].

To establish that our observed 2𝑒 periodicity is robust, we investigate the gate-
charge modulation for a wide range of gate settings, as is shown in Fig. 4.2d. We
characterize each gate setting by the normal state resistance of the device. Figure
4.2d shows that the modulation is observed for 𝑅 ranging from 5.8 to 19.6 kΩ. At
𝑅 = 5.8kΩ, the switching current was only modulated by 5%, indicating that the
device is in the Josephson dominated regime where 𝐸 > 𝛿𝐸eo.

The other devices behave similarly as can be seen in Fig. 4.S1 of the Supple-
mental Material. Five out of the six measured SCPTs show a 2𝑒-period modulation
robust over different gate settings. The remaining SCPT (device 5) exhibits an even-
odd pattern, indicating that 𝛿𝐸eo > Δ. Nevertheless, the robustness of the 2𝑒-signal
across gate settings and devices suggests a general lack of low-energy subgap states
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inside the islands at zero field, consistent with the hard gap observed in bias spec-
troscopy experiments which locally probe the density of states [35, 95].
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4.2.2. Temperature dependence and modeling
To gain insight into the relevant poisoning mechanisms of the SCPT, we measure
the temperature dependence of the 2𝑒-periodic switching current modulation at
𝑅 = 14.8kΩ. As can be seen in Fig. 4.3a, we observe that the 2𝑒 periodicity per-
sists up to 𝑇 ≈ 189mK at which point the oscillations develop local maxima at even
𝑛 values and finally become fully 1𝑒-periodic for 𝑇∗ ≈ 300mK. This is consistent
with an expected level spacing of the Al shell 𝛿 of a fewmKwhen using the estimate
for vanishing charge dispersion 𝑘 𝑇∗ = Δ/ ln(Δ/𝛿) [118]. For comparison to the
histograms, Fig. 4.3b shows d𝑉/d𝐼 data taken over the same temperature range.
At elevated temperatures, the d𝑉/d𝐼 characteristics show a similar behavior as the
histograms including the onset of local maxima at even 𝑛 . This can be explained
by self-averaging that takes place in the overdamped regime due to a succession of
multiple switching and retrapping events. Indeed, we note that for 𝑇 > 189 mK,
the d𝑉/d𝐼 traces show negligible hysteresis, indicating that the SCPT is in the over-
damped regime. At low temperatures, the junction enters the underdamped regime
where a single phase slip can drive the junction normal, which leads to increased
fluctuations in the d𝑉/d𝐼 data at base temperature.

Our modeling of the d𝑉/d𝐼 data, outlined in Supplemental Material dection
4.5.1, focuses on the overdamped regime. We identify two limiting cases, depending
on the ratio of the parity switching times controlled by 1/Γin, 1/Γout and the response
time of the SCPT given by the Josephson time constant 𝜏 = ℏ/2𝑒𝐼 𝑅 [119], with
𝑅 the effective shunt resistance of the device and 𝐼 the critical current. For slow
parity switches, one expects a double peak structure in the d𝑉/d𝐼. In contrast, we
observe a parity-averaged single peak in the d𝑉/d𝐼 which shows that at high tem-
peratures the SCPT is in the fast parity switching regime Γin, Γout ≫ 1/𝜏 . At 𝑇 ≈ 189
mKwhere the SCPT transitions into the overdamped regime, 𝑅 ≈ 180Ω and 𝐼 ≈ 3
nA leading to 𝜏 ≈ 1 ns in our experiment.

Given the fast (un)poisoning at high temperature, we model the observed
switching currents as the weighted sum of the switching current of the even and
the odd parity states, with the relative probabilities governed by the free energy dif-
ference of the two states. Our model includes the charging energy of the island,
Josephson coupling of the island to the leads, and the entropic factor associated
with bringing a quasiparticle into the island; see Supplemental Material section
4.5.2 for a more detailed discussion. We note that though the fast (un)poisoning
is a necessary assumption to fit the data at high temperature 𝑇 > 189 mK, at low
temperatures the probability to find the system in the odd state becomes negligible,
i.e. 𝑝odd/𝑝even ∝ exp(−(Δ − 𝛿𝐸eo)/𝑘 𝑇) → 0 for Δ > 𝛿𝐸eo. Thus, for low temper-
atures the system is essentially only in the even state which yields the 2𝑒-periodic
histograms of Fig. 4.3a (v).

The fitting gives approximate values of the Δ, 𝐸 , and 𝐸 . These values have er-
ror bars of the order of half of their values due to the weak parameter dependence
of the fitting function. The fitted value of the superconducting gap Δ ≈ 220μeV
is, within its error bar, consistent with the value obtained from the Coulomb dia-
monds in Fig. 4.2a. Similarly, the fitted 𝐸 ≈ 43μeV is consistent with the observed
switching current. The fitted effective 𝐸 ≈ 160μeV, however, is smaller than 𝐸
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extracted from the Coulomb diamond data in Fig. 4.2a. This indicates that, in the
regime of open barriers, 𝐸 is significantly renormalized by virtual quasiparticle
tunneling processes relative to the geometric charging energy [110–114]. The set
of consistent fit parameters, together with an excellent fit of the model to the ob-
served switching current dependence on 𝑛 , supports the validity of the model and
the assumption of fast (un)poisoning at high temperatures. Similar fitting results
for device 2 strengthen this conclusion, see Supplemental Material Fig. 4.S4.
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4.2.3. Parallel magnetic field dependence
Next, we study the effect of a parallel magnetic field on the switching current mod-
ulation. In particular, we tune the gates such that 𝑅 = 12.9 kΩ, and 𝐼 shows a
2𝑒-periodic modulation at zero field, as is shown in Fig. 4.4b. The 2𝑒 periodicity
implies that Δ > 𝛿𝐸eo and thus that the ground state is always even. As a magnetic
field is applied along the nanowire axis, the spinful, odd-charge states are split by
the Zeeman energy, thereby reducing the minimal single-particle excitation energy
𝐸 of the island. Here, we consider a bound state with energy 𝐸 . This state is resid-
ing in the island since its energy is modulated by 𝑛 [52]. The parity-dependence of
the bound state energy suggests that its origin is superconductivity-related. More-
over, the effective 𝑔-factor of a bound state residing partially in the InAs nanowire
may be larger than that of the states in the Al shell [65, 66]. This is why in Fig.
4.4a the bound state energy is detached from the quasiparticle continuum for fi-
nite magnetic fields. Interestingly, when the applied field is large enough so that
𝐸 < 𝛿𝐸eo, the parity of the ground state around 𝑛 = ±1 changes to odd. Dur-
ing the retrapping process of the switching current measurement, the system tends
to be reset to the ground state, indicated by the general lack of bimodal switching
current distributions in our data. Hence, the corresponding parity-flip shows up
as a dip in the switching current modulation around odd 𝑛 , causing an even-odd
pattern. Figures 4.4c and 4.4d show examples of this even-odd structure in the
switching current modulation measured at 250 mT and 300 mT, respectively.

We investigate the field dependence of this even-odd pattern in more detail by
defining the length in gate-charge over which the even (odd) state is stable as 𝑆even
(𝑆odd). In Fig. 4.4e these spacings are tracked as a function of the magnetic field us-
ing both switching current histograms and 𝐼-𝑉measurements, see Fig. S6 and S7 of
the Supplemental Material for the representative data. The even (odd) data points
are obtained by averaging over 2 (3) successive spacings. Earlier studies performed
inmetallic superconducting islands found amonotonous drop in 𝑆even [58–60, 120].
In contrast, we find an oscillating behavior in the even and odd spacings with the
first crossing at 420 mT. After the first crossing, the spacings oscillate around 1𝑒
with increasing oscillation amplitude. The crossings indicate a closing and reopen-
ing of the energy gap for single-particle excitations in the island. Therefore, we con-
clude that the oscillating pattern is caused by the field-induced zero energy cross-
ings of a single bound state that is detached from the continuum as is illustrated in
Fig. 4.4a.

Similar to Fig. 4.3, the histograms and 𝐼-𝑉 characteristics mostly coincide. For
small fields below 200 mT, however, the histograms indicate an even ground state,
while the slower 𝐼-𝑉 traces display an even-odd pattern, see Fig. 4.4e. This discrep-
ancy occurs because the slower 𝐼-𝑉 measurements are sensitive to trapping events
of quasiparticles in the island [115]. The latter occur since even in the absence of
subgap states the island acts as a metastable trap with energy 𝛿𝐸eo below the gap
of the superconducting lead around odd 𝑛 . In rare cases, the metastable state be-
comes occupied long enough by quasiparticles to cause switching to the resistive
state.

In addition, we measure the parity lifetime of the SCPT in a parallel field by
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performing slow histogram measurements while fixing the gate-charge at 𝑛 = 1
so that the extracted lifetime corresponds to poisoning of the even state [104, 116].
For representative histograms see the lower inset of Fig. 4.4f and Fig. 4.S7 of the
Supplemental Material. At 𝑛 = 1, we expect the worst-case scenario for poisoning
since the energy difference between the even and odd state is maximal (i.e. favor-
ing the odd state). We observe that this lifetime decreases exponentially with field
between 225 and 300 mT, see Fig. 4.4f. We are limited to this intermediate field
range because the lifetime is too large to obtain useful statistics at lower fields and
too small to be captured by the bandwidth of the measurement electronics at larger
fields. Still, by extrapolating the lifetime to 415 mT where 𝑆even = 𝑆odd = 1𝑒, one
can estimate the parity lifetime when the bound state is at zero energy to be ≈ 1 ns.
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4.3. Discussion
Webegin by noting that the growth of the even-odd spacing oscillation as a function
of field seen in Fig. 4.4e is reminiscent of one of the proposed signatures of over-
lapping Majorana zero modes [40]. However, this increasing oscillation amplitude
was only observed in a narrow gate range in our device, as is illustrated in Fig. 4.S8
of the Supplemental Material. This makes it difficult to map the amplitude of the
first oscillation to a Majorana overlap, as was done in Ref. [41]. From our results,
we can only conclude that if this oscillation is indeed due to the presence of overlap-
ping MZMs, the topological portion of the device parameter space is rather small.
Nevertheless, mapping the even-odd peak spacing in this manner could be used in
future experiments to signal the transition to the topological regime in devices with
superconducting leads such as the ones proposed in Refs. [16, 39, 109]. This could
be an attractive alternative to gap-edge spectroscopy [121–124] as a signature of the
topological regime in these all-superconducting systems.

We also note that the splitting of the 2𝑒-signal into an (oscillating) even-odd
signal is not always observed. Measurements performed on device 4, which has
a 3 μm-long island, show a sharp transition of the 2𝑒-signal to the 1𝑒-signal at a
parallel field of 100 mT, similar to the behavior observed while increasing the tem-
perature in device 1, see Fig. 4.S9 in the SupplementalMaterial. This field evolution
of the 𝐼 modulation indicates that the SCPT is in the fast (un)poisoning limit with
Γin/Γout ≈ 1, possibly caused by a field-induced softening of the superconducting
gap in the island and/or leads.

To understand the exponential decrease of the even state lifetime with field seen
in Fig. 4.4f, we model the system as an island connected to a gapped superconduct-
ing lead in contact with a normal metal quasiparticle trap as is shown in the upper
inset of Fig. 4.4f. In the field range where we measure the lifetime, the observed
even-odd pattern indicates that the energy difference between the odd and even
state at 𝑛 = 1 is always negative, as also depicted in Fig. 4.4a and the inset of Fig.
4.4f. Therefore, at 𝑛 = 1 poisoning is only prevented by the quasiparticle filtering
effect of the superconducting gap in the leads. Quasiparticles can cross this gap in
two ways: by thermal excitation to the gap edge or by tunneling through the gap.
Both processes are exponentially suppressed by a factor that scales with the size of
the gap in the leads Δlead. Quantitative estimates of the relative strength of the tun-
neling and thermal activation contributions require amicroscopic knowledge of the
device. Still, both processes lead to an exponential dependence of the lifetime with
field since Δlead(𝐵) = Δlead(0) − 𝑔𝜇 𝐵. In either case, the filtering effect should
be enhanced by increasing the length of the superconducting leads as well as by in-
creasing Δlead. Since recent studies indicate that the size of the proximitized gap in
semiconducting nanowires is gate-tunable [65, 66], we suggest enhancing this fil-
tering effect by locally gating the leads of the SCPT. Additionally, the length of the
leads could be varied in order to investigate the proximity effect of the traps on the
gap in the leads [77, 125].

Next, for a Majorana-based qubit one is primarily concerned with poisoning
events which change the state of the qubit - namely, poisoning of the MZMs [71]. If
direct tunneling from the quasiparticle trap is the dominant poisoning mechanism,
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the subgap state is expected to be directly poisoned since it is the lowest energy state
on the island. In this case, the measured 𝜏even in Fig. 4.4f directly gives the bound
state lifetime since the quasiparticle residence time in the subgap state is likely to be
longer than the relevant switching timescale of the junction - 𝜏 for an overdamped
junction, and 2𝜋/𝜔 , with 𝜔 is the plasma frequency, for an underdamped junc-
tion. In the opposite case of thermally activated poisoning, quasiparticles are first
transfered elastically from the superconducting lead to the continuum in the island
before relaxing to the subgap state within a time 𝜏 [115]. In this case, quasiparti-
cles can escape from the island before they are detected if Γneqout is faster than the
SCPT response time. Now, the time 𝜏even represents a lower bound on the parity
lifetime of the subgap state, and the overall parity of island might fluctuate faster.
Our previous estimate of 𝜏 ≈ 1 ns sets a lower bound on our poisoning detec-
tion bandwidth since the junction would switch even faster to the resistive state in
the underdamped case which we observe at low temperature. Given that typical
resonators in time-domain RF measurements have bandwidths of no more than a
few 10’s of MHz [72, 77, 105], switching current measurements are a promising al-
ternative before Majorana poisoning times can be measured more directly via the
coherence of MZM-based qubits.

Finally, with the design of futureMZM-based qubits inmind it is worth compar-
ing our results with those obtained with NbTiN islands [116]. Our observed gate-
charge modulation of the switching current shows a robust 2𝑒-periodic signal for
a wide range of gate settings which indicates that there are no low-energy subgap
states inside the SCPTs at zero magnetic field. This is in stark contrast to the case
of NbTiN islands, where subgap states result in a 1𝑒-periodic, bimodal switching
current distribution. In that case, despite the large superconducting gap, the island
parity is effectively randomized after each measurement when the island retraps
after being flooded with quasiparticles.

4.4. Conclusions
We have investigated quasiparticle poisoning in hybrid InAs-Al SCPTs by measur-
ing the gate chargemodulation of the switching current as a function of temperature
and magnetic field. In contrast to previous studies of NbTiN SCPTs, we observe a
consistent 2e-periodic supercurrent at zero field despite having a similar gap in the
island and leads. This highlights that at zero field there are no subgap states in
the island, and places Al as the superconductor of choice for MZM qubit experi-
ments despite its smaller gap and critical field relative to NbTiN. In addition, we
have observed, for the first time, an oscillating pattern in the gate periodicity of the
supercurrent due to the field-induced zero energy crossing of a bound state. This
opens the door to using the switching current to identifyMZMs in qubit deviceswith
superconducting leads. This is a crucial proof-of-principle demonstration as the
superconducting leads are not compatible with the zero-bias peak measurements
typically taken as evidence of MZMs. We have performed lifetime measurements
on this subgap state and observed an exponential decay of the lifetime in magnetic
field due to a collapsing filtering effect of the leads. This exponential decay high-
lights the importance of proper engineering of the superconducting gap via local
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gating and intentional quasiparticle traps to minimize the presence of quasiparti-
cles in the leads in future topological qubits.

4.5. Supplemental Material

Table 4.S1 – Device overview. Parameters characterizing the devices are the length of the island , the
thickness of the aluminum shell , and the backgate layout. Moreover, the geometric charging energy

and superconducting gap are listed. These parameters are extracted from Coulomb diamonds in
the strongly blockaded regime (data shown in Figure 4.S1). In addition, the cooldown at which the device
was measured is specified.

Device 𝐿(μm) Backgate layout 𝑡 (nm) 𝐸 (meV) Δ(μeV) Cooldown
1 0.5 Global 5 1.5 180 2
2 1 Global 5 0.85 160 2
3 2 Global 5 0.44 220 2
4 3 Global 5 0.35 180 2
5 3 Global 5 No data No data 2
6 1.2 Local 8 0.5 160 1

4.5.1. Overdamped junction limit
In this section, we discuss the 𝐼-𝑉 characteristics and switching dynamics of over-
damped junctions in the presence of quasiparticles. For larger temperatures where
the 𝐼-𝑉 characteristics departs from 2𝑒 periodicity, the junction is typically in the
overdamped regime which allows the following theory to capture the 2𝑒 to 1𝑒
crossover (see Fig. 4.3 in the main text).

Overdamped RCSJ model
We start with the standard RCSJmodel of a junctionwith resistance𝑅 , capacitance
𝐶, and Josephson energy 𝐸 = ℏ𝐼 /2𝑒. The overdamped regime is reached once the
damping rate 𝜏 = (𝑅 𝐶) exceeds the plasma frequency 𝜔 = √2𝑒𝐼 /ℏ𝐶. The
equation of motion then takes the form of the Langevin equation

�̇� + sin𝜙 = ℐ + √2Γ 𝜂(𝑡) , (4.S1)

where 𝜙 is the phase differences across the junction, ℐ = 𝐼bias/𝐼 is the current bias
relative to the critical current, and time is measured relative to 𝜏 = (2𝑒𝐼 𝑅 /ℏ) =
𝜏 𝜔 . Fluctuations due to thermal noise Γ = 𝑘 𝑇/𝐸 are assumed to be short-
time correlated ⟨𝜂(0)𝜂(𝑡)⟩ = 𝛿(𝑡). Note that in these units, the renormalized voltage
𝑣 = 𝑉/𝐼 𝑅 is given by 𝑣 = �̇�. The Langevin form can bemapped to a Fokker-Planck
equation

𝜕 𝑝 = 𝜕 ([𝜕 𝑢]𝑝) + Γ 𝜕 𝑝 (4.S2)

in terms of probability distribution 𝑝 = 𝑝(𝜙, 𝑡) and potential 𝑢(𝜙, ℐ) = − cos𝜙−ℐ𝜙.
Eq. (4.S2) is in the form of a continuity equation 𝜕 𝑝 + 𝜕 𝑗 = 0 which defines the
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no data

1 μm

1 μm

1 μm

1 μm

1 μm

a device 2 b device 3

c device 4 d device 5

e device 6

VJG1 = -7.25 V, VJG2 = -7.5 V

VJG1 = -7 V, VJG2 = -7.65 V

VJG1 = -0.75 V, VJG2 = -0.98 V

VJG1 = -0.2 V, VJG2 = -0.19 V

VJG1 = 0.4 V, VJG2 = 0.1 V VJG1 = -0.63 V, VJG2 = -0.63 V

VJG1 = -0.68 V, VJG2 = -0.78 V

VJG1 = -1.5 V, VJG2 = -2.1 V

VJG1 = -4 V, VJG2 = -4.5 V

VJG1 = -4.5 V, VJG2 = -4.5 V

VJG1 = -4.25 V, VJG2 = -4 V

VJG1 = -6.25 V, VJG2 = -9 V
VBG = -6 V

VJG1 = -5.5 V, VJG2 = -9 V
VBG = -7 V

VJG1 = -6.75 V, VJG2 = -9 V
VBG = -6 V

VJG1 = -7.1 V, VJG2 = -8.3 V
VBG = -8.5 V

VJG1 = -4.5 V, VJG2 = -2.5 V
VBG = -9.5 V

VJG1 = -5.5 V, VJG2 = -5.5 V
VBG = -9 V

Figure 4.S1 – Scanning electron micrographs, Coulomb diamonds, and gate dependence of the -
periodic signal for device 2-6 (a e). The and extracted from Coulomb blockade are summarized
in Table 4.S1. Apart fromdevice 5which shows an even-odd pattern in the switching currentmodulation,
all devices show a modulation, illustrating that the signal does not correspond to a fine-tuned gate
setting. The gate settings corresponding to the measurements are specified in each subfigure. The gates
are labeled using the same convention as in the main text. For device 2, 5, and 6 the backgate is fixed at

-10 V, -8.5 V, and 0, respectively.
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probability current

𝑗 = −[𝜕 𝑢]𝑝 − Γ 𝜕 𝑝 . (4.S3)

The 𝐼-𝑉 characteristics can be obtained from considering the stationary case 𝜕 𝑝 =
0 of constant current 𝜕 𝑗 = 0. When the probability distribution is normalized
with respect to the interval [0, 2𝜋], using periodic boundary conditions in 𝜙, the
current 𝑗 is ameasure for the rate at which the phase particle traverses the interval,
and is therefore related to the voltage 𝑣 = 2𝜋𝑗 . Solving Eq. (4.S3) yields the 𝐼-𝑉
characteristics

𝑣 = 2𝜋Γ (𝑒
ℐ
− 1) {∫ 𝑑𝜙 [∫ 𝑑𝜙 + 𝑒

ℐ
∫ 𝑑𝜙 ] 𝑒

( ,ℐ) ( ,ℐ)
} . (4.S4)

Quasiparticle dynamics in the overdamped RCSJ model
The overdamped RCSJ model can be readily extended to include quasiparticle dy-
namics by keeping track of the even 𝛼 = 0 and odd 𝛼 = 1 state of the island,

𝜕 ( 𝑝𝑝 ) + 𝜕 ( 𝑗𝑗 ) = ( −𝛾in𝑝 + 𝛾out𝑝
+𝛾in𝑝 − 𝛾out𝑝 ) , (4.S5)

where 𝑗 = −[𝜕 𝑢 ]𝑝−Γ 𝜕 𝑝 in terms of the parity dependent potential 𝑢 (𝜙, ℐ) =
−𝑎 cos𝜙 − ℐ𝜙 with 𝑎 = 1 and 𝑎 = 𝐸 /𝐸 . Here 𝛾in/out = Γin/out𝜏 are dimen-
sionless rates of switching the system from even to odd or vice versa. To derive the
𝐼-𝑉 characteristics, we again look at the steady state 𝜕 𝑝 = 𝜕 𝑝 = 0. We then ob-
serve that 𝜕 (𝑗 + 𝑗 ) = 0 and, similar to the single state case, the constant is fixed
by the voltage 𝑗 + 𝑗 = 𝑣/2𝜋. The normalization condition of the probabilities is
now in terms of ∫𝑑𝜙(𝑝 + 𝑝 ) = �̄� + �̄� = 1. We now consider the two limiting
cases of slow and fast poisoning.

Slow poisoning limit In the slow poisoning limit corresponding to 𝛾in, 𝛾out ≪ 1
the right hand side of Eq. (4.S5) can be neglected which, in the steady state, sets
both 𝑗 and 𝑗 independently to a constant and therefore recovers the standardRCSJ
model. The result from section (4.5.1) can essentially be copied with voltages 𝑣
defined by Eq. (4.S4) using the potential 𝑢 of the corresponding parity state. To
calculate the total voltage drop oneneeds to take into account that the normalization
of the probabilities ∫ 𝑑𝜙𝑝 / = �̄� / = 𝛾out/in/(𝛾out+𝛾in) enters Eq. (4.S4), so that
the voltages 𝑣 are correctly weighted. This yields

𝑣 = 𝑣 �̄� + 𝑣 �̄� . (4.S6)

We conclude that in the slow poisoning case the 𝐼-𝑉 characteristic is the weighted
sumof the 𝐼-𝑉 characteristics of each parity where theweight is given by the average
occupation. For significantly different even and odd switching currents we would
therefore expect a double-kink in the 𝐼-𝑉 characteristicswhich ismost clearly visible
in the derivatived𝑉/d𝐼which subsequently turns into a double-peak (see Fig. 4.S2).
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Figure 4.S2 – Analytic solution of the slow and fast poisoning limit. Voltage drop in terms of the bias
current bias (left) and / bias (right). The slow poisoning case (blue) is showing a double-kink behav-
ior while fast poisoning (yellow) leads to a single-kink at the averaged switching current. Parameters are
( ) . nA, ( ) . nA, and . .

Fast poisoning limit In the fast poisoning limit corresponding to 𝛾in, 𝛾out ≫ 1,
the probabilities 𝑝 (𝜙) have to cancel the leading order of the right hand side of
Eq. (4.S5) [up to terms 𝒪(1)]. This allows to separate the fast quasiparticle dynam-
ics, that lock the ratio of 𝑝 (𝜙)/𝑝 (𝜙) to �̄� /�̄� for each 𝜙, from the 𝜙-dependence
of the probability distribution, i.e. use the ansatz 𝑝 (𝜙) = �̄� 𝑝 (𝜙) with 𝑝 (𝜙) =
𝑝 (𝜙) + 𝑝 (𝜙). We can then solve for 𝑝 (𝜙) by looking at the sum of both compo-
nents of Eq. (4.S5)

𝑣
2𝜋 = 𝑗 + 𝑗 = −[𝜕 𝑢 ]𝑝 − [𝜕 𝑢 ]𝑝 − Γ 𝜕 (𝑝 + 𝑝 )

= −[𝜕 (�̄� 𝑢 + �̄� 𝑢 )]𝑝 − Γ 𝜕 𝑝 ,

which yields the same type of equation to solve as for the standard RCSJmodel with
an effective potential 𝑢eff = �̄� 𝑢 + �̄� 𝑢 . The solution corresponds to a single kink
that signals the onset of the resistive state that lies in between the double step kink
solution of the slow poisoning case, see Fig. 4.S2.

General case In the general case the differential equation (4.S5) can be solved
numerically. Figure 4.S3 shows a gray scale plot of the d𝑉/d𝐼-𝐼 characteristics for
fast, intermediate, and slow poisoning with different Γin/Γout. Comparing the dif-
ferent poisoning scenarios with the experimental data of Fig. 4.3 clearly shows that
at high temperatures, where the Γin/Γout ratio is sizable, slow and intermediate poi-
soning is incompatible with the experimental data while fast poisoning yields an ex-
cellent agreement. Note that at the level of Eq. (4.S5) the critical currents 𝐼( )c (𝑛 )
are input parameters. For simplicity, we used a parabolic dependence with a min-
imum and maximum of 2.5 nA and 7.5 nA to resemble the behavior of Fig. 4.2b in
the main text.
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Figure 4.S3 – Numerical solution of the d /d characteristics in different parameter regimes. The
columns from left to right correspond to fast, intermediate, and slow poisoning, respectively. The rows
correspond to different ratios of in/ out and are therefore a measure of the temperature.
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4.5.2. Temperature Dependence
In this section, we discuss the model used to fit the switching current histograms in
Fig. 4.3 of the main text for varying temperature. In our model, we assume that the
quasiparticle poisoning and unpoisoning rate is fast compared to the characteristic
switching time of the junction Γin, Γout ≫ 1/𝜏 . Under this assumption, which is jus-
tified above in section 4.5.1, the critical current of the SCPT is given by the weighted
average of the critical currents in the even and odd states with the weighting coef-
ficients given by the free energy difference between the parity states of the SCPT.
In the opposite regime when the switching rate of the junction is much larger than
the poisoning or unpoisoning rate Γin ≪ 1/𝜏 or Γout ≪ 1/𝜏 , we expect a bimodal
switching current distribution. This is not observed in the temperature dependence
data. It is important to note that the fast poisoning-unpoisoning assumptionmay be
broken at small temperatures, where the probability of odd state occupation is very
small. Even though we do not see bimodal distribution of the switching current at
low temperatures, this may be due to weak spectral density of the peak correspond-
ing to the odd occupations.

To calculate the sought-after temperature dependence, we need to compute the
critical currents in the two parity states as functions of the gate charge 𝑛 , as well
as the free energy difference between the two states. To do so, we use the Hamilto-
nian 𝐻 = 𝐻 + 𝐻 + 𝐻BCS described in section 2.3.2. For the fitting procedure, we
fix moderately asymmetric junction with 𝐸 /𝐸 = 2. Furthermore, we note that
the chaging energy is possibly renormalized due to (virtual) tunneling of quasiparti-
cles. We can find the even ground state energy of the SCPT as a function of the phase
difference between the superconducting leads 𝜙 and gate charge 𝑛 , 𝐸 (𝜙, 𝑛 ),
by diagonalizing the Hamiltonian. The odd ground state energy is found by shift-
ing 𝐸 (𝜙, 𝑛 ) by 𝑛 = 1 and adding the superconducting gap; 𝐸 (𝜙, 𝑛 ) =
𝐸 (𝜙, 𝑛 + 1) + Δ. The zero-temperature supercurrent is given by the derivative
of the ground state energy as a function of phase difference

𝐼 (𝜙, 𝑛 ) = 𝑒
ℏ
𝜕
𝜕𝜙𝐸 (𝜙, 𝑛 ) . (4.S7)

The finite-temperature supercurrent is given by the weighted sum of the even and
odd oneswith the assumption of the fast (un)poisoning, where theweighting factors
𝑝 and 𝑝 = 1 − 𝑝 are calculated as follows

𝑝 (𝑇, 𝜙, 𝑛 ) = 𝑍
𝑍 + 𝑍 = 1

1 + exp(Δ𝐹(𝑇, 𝜙, 𝑛 )/𝑘 𝑇) , (4.S8)

where 𝑍 , are the partition functions in the state with and without a quasipar-
ticle on the island, respectively, Δ𝐹 is the free energy difference between the parity
states, 𝑘 is the Boltzmann constant, and 𝑇 is the temperature.

The free energy difference between the two parity states can be computed as
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follows

Δ𝐹(𝑇, 𝜙, 𝑛 ) = 𝛿𝐸(𝜙, 𝑛 ) − 𝑘 𝑇 ln tanh 𝑧 (𝑇, 𝛿 ), (4.S9)

𝑧 (𝑇, 𝛿 ) = 2𝜋√𝑘 𝑇Δ
𝛿 exp(−Δ/𝑘 𝑇). (4.S10)

Here 𝛿𝐸(𝜙, 𝑛 ) = 𝐸even(𝜙, 𝑛 + 1) − 𝐸even(𝜙, 𝑛 ) is the difference in ground state
energy between the odd and even parity sectors (not including Δ), 𝑧 is the parti-
tion function difference between the quasiparticle being inside the island at energy
Δ and in the lead at zero energy, and 𝛿 is the level spacing inside the island. In
this expression we assume that the quasiparticle is tunneling from a gapless, large
quasiparticle trap. This means the lead has negligible level spacing and negligible
change of entropy due to the removal of one electron from the trap. We assume
𝛿 = 5mK. This gives the following expression which we use to fit the data

𝐼 (𝑇, 𝑛 ) =max [𝐼 (𝜙, 𝑛 )(1 − 𝑝 (𝑇, 𝜙, 𝑛 )) + 𝐼 (𝜙, 𝑛 + 1)𝑝 (𝑇, 𝜙, 𝑛 )] .
(4.S11)

Equation (4.S11) fits the data nicely, as shown in Fig. 4.3a of the main text. It is
important to mention that the same fit assuming non-equilibrium quasiparticles in
the lead instead of equilibrium quasiparticles in the trap does not fit the data, since
even at lowest temperatures it would produce an even-odd or a purely 1𝑒 periodicity.
We thus conclude that the dominating poisoning effect is via direct tunneling of the
quasiparticles from the normal lead.
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Figure 4.S4 – Switching current modulation as a function of temperature for device 2 at 10.5 kΩ.
The experimental histograms shown in grayscale are overlaid by the theoretical fit to the average switch-
ing current ⟨ sw⟩ (red curves). Individual fits are for different values of , , and . The averaged values
for these parameters are ≈ 245μeV, ≈ 192μeV, and ≈ 111 μeV.
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Figure 4.S5 – Representative switching current histograms as a function of parallel magnetic field for
device 1 at . V, and . V. The Seven and Sodd spacings reported in Figure 4.4e
are extracted from the average Seven and Sodd of these histograms. Note that the histogram at ∥
mT is distorted around . and . due to false triggers.

Figure 4.S6 – Representative - characteristics as a function of parallel magnetic field for device 1
at . V, and . V. The Seven and Sodd spacings reported in Figure 4.4e are
extracted from the average Seven and Sodd of these - characteristics.
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Figure 4.S7 – Slow switching current histograms at at representative values of the magnetic
field taken on device 1 at . V, . V. The even state lifetime even, presented in
Figure 4.4f of themain text, was obtained from the exponential tail of the histograms, using the following

model: exp ( / even
), where is the number of counts at and d /d is the current ramp

rate. The extracted lifetimes are tabulated in Table 4.S2.
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Table 4.S2 – Overview of the even state lifetimes at as a function of the parallel magnetic field
∥ taken on device 1. This data is presented in Fig. 4.4f of the main text. In addition, the current ramp
rate d /d and the sample size used to construct the switching current histogram are shown.

𝐵∥ (mT) 𝑑𝐼/𝑑𝑡 (nA/s) 𝜏even (ms) 𝑁

225 2.5 105 3500
10 80 5000

237 2.5 50 5000
10 30 10000

250 10 4.8 10000
50 5.6 10000

262 50 1.6 10000
100 2.4 25000

275 100 0.78 10000
500 0.87 10000
1000 0.39 10000

287 500 0.1 10000
1000 0.26 50000
2000 0.22 50000

300 250 0.11 10000
500 0.073 10000
1000 0.05 50000
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a                                              b

Figure4.S8–Parallelmagnetic field dependence of the even andodd spacing in device 1 at .
V and . V. Although it is very close to the used gate setting for the data presented in
Figure 4.4 of the main text, we believe this corresponds to a different charge configuration in the SCPT
because the of hysteresis in the gate response. a - characteristics used for the construction of b for
representative values of the parallelmagnetic field. b even and odd as a function of the parallelmagnetic
field. even ( odd) is obtained by averaging over 2 (3) succesive spacings respectively. At this gate setting,
the spacings cross, similar to the data presented in Figure 4.4e of the main text. However, the shape of
the oscillation pattern is different from Figure 4.4e.

Figure 4.S9 – Parallel magnetic field dependence of the - characteristics of device 4. Instead of an
even-odd pattern that develops as a function of field, as was observed for device 1, the - characteristics
develop a peak in the switching current at odd gate charge similar to the behavior that was observed
as a function of temperature (Fig. 4.3). This indicates that the SCPT is in the fast (un)poisoning limit
possibly caused by field-induced softening of the gap.
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Rapid detection of coherent

tunneling in an InAs nanowire
quantum dot through

dispersive gate sensing

Dispersive sensing is a powerful technique that enables scalable and high-fidelity
readout of solid-state quantum bits. In particular, gate-based dispersive sensing
has been proposed as the readout mechanism for future topological qubits, which
can bemeasured by single electrons tunneling through zero-energymodes. The de-
velopment of such a readout requires resolving the coherent charge tunneling am-
plitude from a quantumdot in aMajorana zeromode host system faithfully on short
time scales. Here, we demonstrate rapid single-shot detection of a coherent single-
electron tunneling amplitude between InAs nanowire quantum dots. We have re-
alized a sensitive dispersive detection circuit by connecting a sub-GHz, lumped-
element microwave resonator to a high-lever arm gate on one of dots. The resulting
large dot-resonator coupling leads to an observed dispersive shift that is of the order
of the resonator linewidth at charge degeneracy. This shift enables us to differen-
tiate between Coulomb blockade and resonance – corresponding to the scenarios
expected for qubit state readout – with a signal-to-noise ratio exceeding 2 for an
integration time of 1 μs. Our result paves the way for single shot measurements of
fermion parity on microsecond timescales in topological qubits.

This chapter is based on D. de Jong, J. van Veen, L. Binci, A. Singh, P. Krogstrup, L. P. Kouwenhoven,
W. Pfaff, and J. D. Watson, Rapid detection of coherent tunneling in an InAs nanowire quantum dot
through dispersive gate sensing, Physical Review Applied 11, 044061 (2019).
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5.1. Introduction
Dispersive sensing is a promisingmeasurement technique that enables high-fidelity
readout of solid-state quantum bits, such as superconducting [87, 126] or spin
qubits [127]. Recently, dispersive readout has also been proposed for future topo-
logical qubits based on Majorana zero modes (MZMs) [17, 18]. In particular, gate-
based dispersive readout can be used to measure an electron tunneling rate in the
system which in turn reflects the state of the qubit [128]. As a result of this differ-
ence in tunnel coupling, different qubit states can impart a different dispersive shift
on a resonator coupled to the gate electrode. This frequency shift can be probed on
very fast time scales, using state-of-the-art radio frequency (RF) techniques, and in
a quantum non-demolition manner with minimal perturbation [87, 129].

High-fidelity, quantumnon-demolitionmeasurements require fast readoutwith
high signal-to-noise ratio (SNR). This is particularly crucial formeasurement-based
quantumcomputation, such as proposed forMZM-based architectures [17, 18, 130].
So far, however, the frequency shift of dispersive gate sensors has been fairly small,
on the order of a degree [127, 128, 131–133]; correspondingly, the required readout
times to resolve a difference in tunnel coupling has been in the range of millisec-
onds [134–136]. It is thus of great interest to find avenues toward increasing the
attainable SNR, and achieve readout on the sub-microsecond scale, as available for
other solid-state qubit platforms [137].

In this chapter, we show rapid dispersive sensing in an InAs nanowire double
quantumdot system. InAsnanowires have been studied in the context of spin qubits
[88, 138], but have also recently gained significant attention as host system for
MZMs that could enable the realization of topological qubits [41, 139]. We demon-
strate a sensitive gate sensor based on a large-lever arm top-gate that is connected
to an off-chip, lumped-element resonant circuit probed with reflectometry [91]. In
particular, we show a dispersive shift close to 1MHz which is on the order of the
linewidth of the resonator; this results in a detected phase shift that approaches the
maximally possible value of 𝜋. We study in detail the magnitude of the dispersive
shift both as a function of tunnel coupling and readout power; we find, in agree-
ment with theory, that the attainable shift is ultimately set by the magnitude of the
tunneling rate and the resonator frequency. The large shift allows us to resolve a
difference in tunneling rate with a SNR of up to 2 within 1 μs.

5.2. Experimental approach and setup
The coherent tunneling amplitude 𝑡C, between two single-particle levels in weakly
coupled quantum dots can be detected through an arising change in differential ca-
pacitance [140, 141]. The coupling affects the expectation value of charge on either
island. The dependence of induced charge on gate voltage, i.e. the differential ca-
pacitance 𝐶 = 𝜕𝑄/𝜕𝑉g, depends on the coupling. This effect can be described within
the framework of circuit quantum electrodynamics (cQED) [87] or as a “quantum
capacitance” [142] and measured by monitoring the change in differential capaci-
tance through an external tank circuit. Our aim is to determine how fast the tun-
neling amplitude can be detected; this maps to the projected readout performance
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Figure 5.1 – Dispersive sensing on an InAs nanowire double quantum dot. a Schematic of
the of experiment measurement setup. One of the quantum dots is capacitively coupled to a resonant
circuit that is probed in reflectometry. Inset: False-colored electron micrograph of a nominally iden-
tical device. The sensing top gate is colored red. b Charge stability diagram measured with the gate
resonator. The dashed lines are guides to the eye. The triangle marker denotes charge degeneracy while
the squaremarker denotes Coulomb blockade. The arrow denotes the detuning from charge degeneracy,
. c Sketch of the energy levels and resulting quantum capacitance versus detuning. Solid lines: ground
state; dashed lines: first excited state; dotted line: case of no interdot tunneling.
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for MZM qubits [17, 18] where the magnitude of the tunnel coupling is the qubit
readout signal.

Our experiment approach is schematically depicted in Fig. 1a. We form two
quantum dots in an InAs nanowire where the interdot coupling can be set through
a gate voltage. We designate one of the dots as the “sensor” whereas the other dot is
merely used as an auxiliary single level system, in lieu of MZMs. To achieve a large
signal from the interdot coupling, we connect a gate with a large lever arm to a res-
onant circuit. The goal of the experiment is then to resolve a change in resonance
frequency,

𝛿𝜔 = √𝐿𝐶 − √𝐿(𝐶 + 𝐶q) , (5.1)

that arises from the tunneling-dependent quantum capacitance 𝐶q (Fig. 1c).
To realize this experiment we have fabricated a double quantum dot in an InAs

nanowire with a diameter of approximately 140nm. The nanowire was determinis-
tically deposited using a micromanipulator on an intrinsic silicon substrate with a
20nm SiNx dielectric layer deposited with LPCVD after removing the native SiO .
Contacts to the nanowire are made using argon milling followed by evaporating a
10nm Ti sticking layer and a 150nm Au layer. A 10nm AlOx dielectric layer de-
posited using atomic layer deposition (ALD) seperates the nanowire from the top
gates. By using a thin dielectric layer, we ensure a large lever arm from the top
gates to the underlying quantum dots. The top gates consist of a 10nm Ti layer and
a 150nm Au layer. A false color SEM of a similar device is shown in Fig. 1a.

Using top gates T1, T2, and T3, a double dot is defined in the nanowire by pinch-
ing off the electron coupling to the leads and between the two dots. The top gate of
the sensing dot is wire-bonded to a lumped-element resonator that was fabricated
on a separate chip [91]. The sample is cooled down in a dilution refrigerator with a
base temperature of 20mK. The resonator response is then probed using standard
RF heterodyne techniques (Fig. 1a).

5.3. Results
5.3.1. Observation of quantum capacitance and dispersive shift
We begin by characterizing the change in resonator response resulting from co-
herent tunneling between the two quantum dots. To this end, we first tune the
device to a regime where the dot charge states strongly hybridize on resonance.
We then record the phase response of a reflected probe field as a function of the
two plunger gates, SP1 and SP2. (Fig. 1b). The resulting charge stability diagram
shows a prominent phase shift at charge degeneracy, hinting at a large dispersive
shift of the resonator frequency. We attribute the substantial magnitude of the ob-
served phase shift in this regime to the large lever arm of the sensing gate [87, 142].
From independent Coulomb blockade measurements, we estimate the lever arm to
be 𝛼 = 𝐶g/𝐶 ≈ 0.75, where 𝐶g is the capacitance of the gate to the sensing dot, and
𝐶 is the total capacitance seen by the dot.

The relation between the dispersive shift and themagnitude of the interdot cou-
pling lies at the heart of the 𝐶q detection scheme; we therefore focus next onmodel-
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Figure 5.2 – Charge-resonator coupling. a Right panel: Resonator reflection spectrum measured
from the difference between injected ( RF) and reflected RF power ( r) corrected for estimated attenua-
tion and gain in the setup, as a function of detuning . T2-gate voltage was 768mV for this data. Left
panel: Line cuts in blockade (orange; square) and at degeneracy (blue; triangle) together with fits (black)
to Eq. (5.2). b Resonator spectroscopy at charge degeneracy for different tunneling rates together with
the fit to Eq. (5.2). Traces are offset for clarity. Tunnel rates C/ extracted from the fit are indicated on
the right.

ing this relation from our data following earlier work performed on semiconductor
dots in cQED environments [88, 132]. Near charge degeneracy the eigenstates of
the double dot are superpositions of a charge delocalized between the two dots, with

energy splittingΩ = √4𝑡C + 𝛿 , where 𝑡C is the tunnel coupling1, and 𝛿 is the detun-
ing of the two dots (Fig. 1c) [143]. To determine the tunnel coupling, we measure
the resonator response as a function of 𝛿 and the detuning of the drive from the res-
onance frequency (Fig. 2a). The reflected probe signal can be developed in a cQED
approach from the input-output relations [87, 88],

𝑎out
𝑎in

= 1 + i𝜅ext
−i𝜅/2 + Δ𝜔 + 𝑔𝜒 . (5.2)

Hereby, 𝑎in,out are the complex input and output signals; 𝜅 = 𝜅int + 𝜅ext is the to-
tal resonator damping rate, composed of internal losses 𝜅int and external coupling
1In this chapter, the full splitting at zero detuning is C rather than C as in Eq. (2.14).
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𝜅ext; Δ𝜔 is the detuning of the drive from resonance; 𝑔 = 𝑔 (2𝑡C/Ω) is the effective
coupling strength with 𝑔 being the Jaynes-Cummings coupling; and 𝜒 is the sus-
ceptibility of the double quantum dot that depends on the dephasing rate 𝛾 and the
detuning between the charge dipole and the resonator,

𝜒 = 𝑔/(𝜔 − Ω + i𝛾/2). (5.3)

Figure 2a shows the evolution of the dispersive shift as we tune the double dot
between Coulomb blockade regime and charge degeneracy, for one particular tun-
nel gate setting. Fitting this data yields the tunnel coupling, as well as the relevant
parameters characterizing circuit and resonator-dot coupling. In particular, we find
𝑄 = 𝜔 /𝜅 ≈ 350, and 𝑔 /2𝜋 ≈ 60 MHz, consistent with the large lever arm. This
procedure allows us now to correlate the tunnel coupling and the dispersive shift
with the gate voltage on electrode T2 (Fig. 2b).

5.3.2. Quantitative model of the dispersive shift
Having established themeans to analyze the resonator response, we now investigate
the change in resonator frequency as a function of double dot properties. Figure 3a
shows the magnitude of the dispersive shift at charge degeneracy as a function of
tunnel coupling. This shift can be predicted using the quantum capacitance picture;
from determining the expectation value of charge on the sensing dot one expects
[142, 144]

𝐶q =
𝛼 𝑒
4𝑡C

, (5.4)

where 𝑒 is the electron charge; this relation straight-forwardly yields the frequency
shift through Eq. (5.1). We find that this prediction agrees well with our data for
tunnel couplings 𝑡C/ℎ ≳ 4 GHz. The effect of reduced frequency shift with increas-
ing tunnel coupling is reflected also in the familiar geometry of charge stability di-
agrams (Fig. 3a, inset). For small tunnel couplings, we observe a reduction in the
shift; this behavior is likely due to noise in the system, such as thermal fluctuations
[133] or charge fluctuations on the gates (i.e. fluctuations in 𝛿). This noise would
effectively blur out the 𝐶q peak as it narrows with decreasing 𝑡C.

A natural question that arises is in which regimes this simple description holds.
In particular, from the quantum capacitance picture one could naively expect that it
is always possible to increase the power of the readout tone to increase the signal-to-
noise ratio (SNR).However, this view ignores any internal dynamics of the quantum
dot system that can impact the dispersive shift. Most importantly, increasing theAC
voltage of the readout drive can induce transitions of the ground state to the excited
state of the double dot, resulting in an incoherentmixture. Since the dispersive shift
from the excited state is opposite to that of the ground state, excitation would thus
lead to a reduction of the measured shift.

In Figure 3b, we show the evolution of the dispersive shift when increasing the
readout drive amplitude; indeed, the shift disappears entirely at large drive ampli-
tudes. We compare this data to a model in which we compute the excitation of the
double dot by assuming that the readout drive acts as a detuned Rabi drive (with
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Figure 5.3 – Evolution and modeling of the dispersive shift. a Frequency shift as a function of
tunneling rate, extracted from fitting spectroscopy data to Eq. (5.2). We estimate an accuracy of 5% for
extracting the tunnel coupling and of 40 kHz in the extraction of . Solid line: independent theoretical
prediction from Eq. (5.4). Inset: charge stability diagrams for tunneling rates corresponding to the
yellowmarkers. bResonator response as a function of frequency andpower. Power is given at the sample
level; this is attenuated by a total of ∼ dB after the generator. Top left panel: resonator spectroscopy
as function of RF power. Bottom left panel: calculated steady state population in the excited state. Right
panel: Resonator shift in blockade (orange), and on degeneracy (blue). Red: prediction from the excited
state population by assuming that the net shift is given by the population-weighted average between
ground and excited state shifts.
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detuning𝜔 −2𝑡C/ℎ) and the double dot dephases quickly. We find that the double
dot approaches a fully mixed state in the same range in which the disappearance of
the shift occurs; the resulting predicted dispersive shift is in very good agreement
with the data.

We can therefore conclude that the tunnel coupling has two competing influ-
ences on the observed resonator shift: For one, the shift gets larger for decreasing
𝑡C following Eq. (5.4). On the other hand, in the present setup a decreased tun-
nel coupling results in reduced drive detuning; this in turn increases excited state
population, reducing the shift again.

5.3.3. SNR for detecting a tunnel amplitude
In order to show the feasibility of dispersive gate sensing for qubit readout, we fi-
nally investigate the time-resolved resonator response. In particular, we aim to
show that the difference in charge hybridization between Coulomb blockade and
charge degeneracy can be obtained on fast time scales [17, 18]. To do so, we re-
peatedly measure the RF-signal in Coulomb blockade and on charge degeneracy
by switching between the two points in the charge stability diagram. The signal
is then binned in 1 μs intervals and for each interval, the in-phase and quadrature
components of the signal are extracted and represented in a histogram (Fig. 4a).
From Gaussian fits, we can then extract the SNR, which is given by the distance be-
tween the two distributions, Δ, divided by their full width, 2𝜎. These widths are set
by the noise in the system, which is dominated by the thermal contribution of the
cryogenic amplifier. From independent measurements, we estimate the equivalent
noise temperature of the readout circuit to be around 4K.

In Figure 4b, we show the attained SNR per 1 μs “shot” as a function of read-
out power and tunnel coupling. The SNR reaches its peak value of >2 for an RF
power of 𝑃RF ≈ −109dBm and a tunnel coupling of ∼ 5GHz. The probability of
misidentifying the state of the system using thresholding is less than 2% for these
settings. Since the signal is largely set by the frequency shift, the dependence of
the SNR on 𝑡C closely follows the evolution of the dispersive shift shown in Fig. 3a.
The power dependence results from the competition between double dot excitation
and signal increase. The optimal power is reached at the point where the dimin-
ishing frequency shift starts dominating over the improvement gained from larger
accuracy in the estimation of 𝐼 and 𝑄.

5.4. Conclusions
We have performed gate-based dispersive sensing on a double quantum dot in an
InAs nanowire. The observed charge-tunneling induced dispersive shift on our res-
onator is comparable to the resonator linewidth, enabling fast detection of the pres-
ence of the tunnel amplitude with high SNR. Notably, this result was achieved with
a low-Q, lumped-element resonator operating at a frequency of less than 1GHz;
these types of resonators hold great promise for scalable readout due to their re-
duced footprint compared to high-Q, CPW resonators that are more traditionally
used in cQED [87]. Utilizing the large resonator shift, we have shown that states
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corresponding to different charge hybridizations can be distinguished in 1 μs mea-
surements while retaining an SNR exceeding two in our experimental setup. We
have further established that the factor that predominantly limits the SNR is the
tunnel coupling. Its magnitude determines the dispersive shift, and its detuning
from the resonator frequency places a limit on the readout power that can be used
before adverse effects take over.

a

b

Figure 5.4 –Readout SNR. aHistogram of resonator reflection measurements in Coulomb blockade
(squaremarker) and charge degeneracy (triangle marker). This data was taken with a tunnel coupling of
4.3GHz and a readout power of RF 105 dBm. Each count corresponds to an integration time of 1 μs.
The SNR is defined as / . The dashed line is the threshold used for state identification. b Attained
SNRas a function of readout power (left panel) and tunnel coupling (right panel). For the tunnel coupling
dependence, readout power and frequency were optimized for every data point individually.



5

72 5. Rapid detection of coherent tunneling in an InAs DQD

Our results show that high-fidelity measurements of semiconductor nanowire-
based qubits could be performed using gate-sensing on the single-microsecond
scale. This is particularly promising for MZM-based topological qubits that could
be realized in nanowire networks [17, 18]. Since our work illustrates the dominating
factor of only a few key device parameters — such as electron tunneling rate, gate
lever arm, and resonator frequency — our results can provide important guidance
for the design of qubit and measurement circuits. We further expect that existing
technology could be used to lower the noise temperature of the cryogenic amplifier
[145–148] or optimize the sensing circuits [149] in order to enhance the attainable
SNR further, and reduce the required measurement time.
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Revealing charge-tunneling

processes between a quantum
dot and a superconducting
island through gate sensing

We report the detection and identification of charge-tunneling processes between
a quantum dot and a superconducting island through radio-frequency gate sens-
ing. We are able to resolve spin-dependent quasiparticle tunneling as well as two-
particle tunneling involving Cooper-pairs. The sensor allows us to characterize
the superconductor excitation spectrum, enabling us to access subgap states with-
out transport. Our results provide crucial guidance for future dispersive parity
measurements of Majorana modes, which can be realized by detecting the parity-
dependent tunneling between dots and islands.

This chapter is based on J. van Veen, D. de Jong, L. Han, C. Prosko, P. Krogstrup, J. D. Watson L.
P. Kouwenhoven, and W. Pfaff, Revealing charge-tunneling processes between a quantum dot and a
superconducting island through gate sensing, submitted (2019).
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6.1. Introduction
Quantum dots coupled to superconductors can give rise to novel physical phenom-
ena such as 𝜋 and 𝜙 -junctions [48, 150, 151], Cooper-pair splitting [152, 153], and
Yu-Shiba-Rusinov (YSR) states [154, 155]. These phenomena arise because the
single-electron states of the dot hybridize with the more complicatedmany-particle
states of the superconductor. Recently, such hybrid systems have gained inter-
est in the context of Majorana zero modes (MZMs) where the quantum dot (QD)
can, for example, be used as a spectrometer [35]. Moreover, projective parity mea-
surements can be achieved by coupling a QD to a pair of MZMs, which are located
on a superconducting island (SC) [41, 52], enabling topologically protected quan-
tum computation. These projective measurements rely on the parity-dependent
hybridization between a single dot level and the MZMs [17, 18]. Therefore, unam-
biguous detection of coherent tunneling between a QD and the superconducting
island is needed to implement this readout.

Dispersive gate sensing provides direct access to the charge hybridization be-
tween weakly coupled dots or islands. More precisely, coherent tunneling within
these structures can impart a frequency shift on a resonant circuit that can be ob-
served on short time scales with high accuracy. In this way, experiments have re-
vealed coherent charge hybridization between superconductors [142, 156, 157] and
in semiconductor double quantum dots [88, 128, 132]. Moreover, capacitive RF
sensing has been used to study charging of QDs connected to normal- and super-
conducting reservoirs [158, 159]. However, while dispersive readout presents an
excellent opportunity to study charge-tunneling between QDs and superconduct-
ing islands, it has not been employed yet in such hybrid systems.

In this chapter, we report detection and identification of charge-tunneling pro-
cesses between a QD and a superconducting island through RF sensing via an 𝐿𝐶
resonator connected to the gate of the QD. From observations of the resonator re-
sponse, supported by numerical simulations of the system, we find that the nature
of the tunneling depends crucially on the ordering of the relevant energy scales of
the SC. When the smallest scale is the energy of the lowest single-particle state, the
QD and SC can exchange quasiparticles, giving rise to a characteristic “even-odd”
effect. Conversely, when the charging energy of the SC is lowest, we detect signa-
tures of Cooper-pairs tunneling out of the SC. Depending on the tunneling ampli-
tude, this results in either 1𝑒-charging of the QD, with the other electron leaving
into a reservoir, or 2𝑒-charging of the QD via coherent Cooper-pair tunneling. We
can re-enable the tunneling to the single-particle states by operating the device in a
floating regime where the total number of charges in the two systems is conserved.

A schematic of our experiment is shown in Fig. 1a. Two charge islands are
formed in an InAs nanowire with an epitaxially grown Al-shell. A superconduct-
ing island is defined by removing the Al outside a 1.2μm segment with wet-etching.
Tunneling barriers are implemented with gates, insulated from the wire by 10nm
AlOx. They are used to define the QD and SC; and to control the various tunneling
rates. Large-lever arm top gates (“plungers”) on bothQDand SC can be used to tune
the chemical potentials. The dot plunger is connected to an off-chip, superconduct-
ing resonator [91]. We use its response near the resonance frequency to probe the
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charge tunneling on and off the dot. We have fabricated two of these devices, and
measured them separately at temperatures of 𝑇 ≈ 20mK in a dilution refrigerator.

The relevant energy scales in our devices can be obtained from Coulomb block-
ade measurements: Figure 1b shows Coulomb diamonds of the superconducting
island alone, measured through conductance. The diamonds of device A display
a clear even-odd pattern, indicating that the energy of the lowest odd-parity state,
𝐸 , is smaller than the charging energy of the superconducting island, 𝐸SC (Fig. 1c)
[57, 64, 160]. For this device, we estimate 𝐸 = 72μeV and 𝐸SC = 112 μeV from
the extent of the diamonds. Conversely, the charging of the superconducting is-
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Figure 6.1 – Experimental setup and sample characterization. a False-colored electron mi-
crograph of a nominally equivalent hybrid double dot. The plunger gate of the QD (island) is colored
cyan (purple). A resonator is capacitively coupled via the gate of the QD. Its phase and amplitude
response are monitored at a constant probe frequency. b Coulomb blockade measurement of the SC.

Left: for device A measured using RF reflectometry off the source (circuit not shown in a). The even-
odd pattern indicates that . Right: for device Bmeasured using standard lockin techniques. The
doubling of the period at low bias illustrates that . c Energy dispersion of the superconduct-
ing island for device A (left) and device B (right). The even (odd) energy levels are shown in darkblue
(green). The odd parity sector consists of a discrete subgap state at and a continuum of states above
.
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land of device B is 2𝑒-periodic, indicating that 𝐸 > 𝐸SC [63, 64]; here, we estimate
𝐸 ≈ 90μeV and 𝐸SC ≈ 70μeV. While in an ideal BCS superconductor 𝐸 is equal
to the superconducting gap Δ, current measurements on device A (Supplemental
Material) and the negative differential conductance observed in device B indicate
the presence of subgap states [52]. In both devices, the charging energy of the dot,
𝐸QDC ≈ 200 − 300μeV, is the largest energy scale in the system, and the typical QD
level spacing exceeds the thermal energy (Supplemental Material).

6.2. Results
6.2.1. Spin-dependent tunneling
In the following, we investigate the change in resonator response when charges are
able to tunnel between the QD and SC at zero bias, beginning with device A. To this
end, we form a hybrid double dot by tuning the gates T1 and T2 close to pinch-off,
and T3 into pinch-off. Figures 2a,b show the resonator response as a function of
the two plunger gates in the weakly coupled regime. Both the amplitude- and phase
response display the charge stability diagram (CSD) of the hybrid double dot, which
shows a clear 1𝑒 pattern along the QD gate, and an even-odd pattern along the SC
gate; this is again a manifestation of 𝐸 < 𝐸SC, and the CSD shape can be readily
reproduced by computing the charge ground states of the system (Supplemental
Material).

We focus on the interdot transitions, highlighted in Figs. 2a-c, where we observe
a strong amplitude and phase response on all charge degeneracy points. Interest-
ingly, we see a strong difference in the resonator response across interdot transi-
tions with a different parity of the total particle number, indicating a difference be-
tween the coupling between the involved states [84]. Two scenarios can lead to such
a different coupling: One, an asymmetric electron- and hole coupling to the quasi-
particle state in the SC [160]; and second, a difference in the available spin states
for the different transitions [161].

We find that the latter situation can qualitatively describe the asymmetry in our
data. To see this, we label the states according to their pairing; for the SC states
as even/odd, and for the states in the QD as singlet/doublet: |𝑒/𝑜, 𝑆/𝐷⟩. We can
differentiate couplings between two sets of states; |𝑒, 𝐷⟩ to |𝑜, 𝑆⟩ and |𝑒, 𝑆⟩ to |𝑜, 𝐷⟩.
The coupling is different for these two sets, because they involve a different number
of states. Only one spin channel contributes to the coupling between |𝑒, 𝐷⟩ and |𝑜, 𝑆⟩,
while both spins of a Cooper-pair can couple to the QD doublet for the transition
between |𝑒, 𝑆⟩ and |𝑜, 𝐷⟩ [161]. The “checkerboard”-like pattern in the CSD that
results from thismechanism is in agreementwith our data. This effect has originally
been predicted for a double quantum dot and is thus not restricted to the QD-SC
system [161]. The asymmetry from the electron or hole tunneling would result in
a different pattern in the CSD; we thus conclude that the features observed in the
data are most likely explained by the number of available spin states in the hybrid
double dot.
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Figure 6.2 – Spin-dependent tunneling between a QD and a SC. a and b Charge stability dia-
gram of device A measured in phase a and amplitude b. The charge states are labeled with ( SC , QD)
with respect to the state ( , ) with and even. Dashed pink lines: expected locations of the lead-
island transitions. c Linecuts of the phase (green) and amplitude (blue) along the interdot transitions.
The linecut crosses the states (0,2) and (1,1) in the left panel (dashed line) and (1,2) and (2,1) in the right
panel (continuous line). A pronounced different resonator response is observed for the two transitions.
For the | (ven), (inglet)⟩ to | (dd), (oublet)⟩ transition between (0,2) and (1,1) (left panel), both spin
channels are available, while only one spin channel contributes to the | , ⟩ to | , ⟩ transition between
(1,2) and (2,1) (right panel).



6

78 6. Revealing charge-tunneling processes between a QD and a SC

6.2.2. Cooper-pair tunneling
For device B, the situation changes significantly. The energy ordering 𝐸 > 𝐸SC im-
plies that quasiparticle states are not accessible (Fig. 1c). We form a hybrid double
dot by tuning T1, T2, and T3 close to pinchoff. The CSD for a weak QD-SC coupling
is shown in Fig. 3a. The diagram is 2𝑒-periodic in the SC gate, indicating that the
island is charged via Andreev reflections from the lead. TheQD is again 1𝑒-periodic.
Tomodel themeasured CSDs, we compute the charge ground state by diagonalizing
an effective Hamiltonian of the system that includes charging effects, the supercon-
ducting gap in the island, and coupling terms (SupplementalMaterial). Thismodel,
with the energy scales extracted from the Coulomb blockade measurements and an
adjustable tunneling amplitude (rightmost panel in Fig. 3a), describes the observed
CSD well.

The different gate charge periodicity for the QD and SC leads to interdot transi-
tions that change the total charge of the dot-island system. This implies that a reser-
voir must be involved in the corresponding charge-transfer process. The observed
resonator signal, with a linecut shown in Fig. 3b, results from tunneling on and off
the QD, and thus should not contain information of SC-lead coupling [84]. A possi-
ble candidate for the precise underlying process that gives rise to our data is crossed
Andreev reflection (CAR) [152, 153]. There, a hole from the QD is converted to an
electron in the lead, consistent with the charge states involved in the experiment.
This process is exponentially suppressed in the length of the island exp (−𝐿/𝜋𝜉),
where 𝜉 is the superconducting coherence length [162]. Still, with 𝐿 = 1.2μm and
assuming a coherence length of 𝜉 ∼260nm [41] this remains a plausible scenario.

Interestingly, increasing the tunnel coupling allows for bringing the system into
a regime where a particle-conserving interdot transition emerges. The CSD in a
more strongly coupled regime, together with a simulation of the charge ground
states is shown in Fig. 3c. In this regime, we assume an induced gap in the quantum
dot, consistent with earlier studies in the context of YSR states [155]. Here, we ob-
serve that the regions with odd charge number in the QD shrink, while the regions
with an even number of QD charges connect, resulting in an even-odd pattern in
both gates. Now, the interdot transition shows a purely dispersive signal (Fig. 3d):
we observe only a small phase shift, without any amplitude response; this is indica-
tive of a coherent transition. We can thus conclude that this transition is caused
by coherent Cooper-pair transfer between the dot and the island, resulting in an
anti-crossing in the energy spectrum.
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Figure6.3–Cooper-pair tunneling in ahybriddouble dot. aCharge stability diagrammeasured
in phase (left) and amplitude (middle) along with a simulation of the charge ground state (right) in the
weakly coupled regime. The charge states are labeled with ( SC , QD) with respect to the state ( , )
with even. Dashed pink lines: locations of the transitions from the (0,0) state as a guide to the eye. The
gray scale in the simulation indicates the sum of the charge in the combined system. b Linecuts of the
phase (green) and amplitude (blue) along the (-2,0) to (0,-1) interdot transition. This transition involves
a reservoir with a continuous spectrum, indicated by the shaded region above the lowest available energy
state. The schematic shows how these states couple via crossed Andreev reflection. c Same as in a for the
strongly coupled regime. Dashed pink lines: locations of the lead transitions from the (-2,-1) and (0,-1)
states as a guide to the eye. d Linecuts of the phase (green) and amplitude (blue) along the (2,-2) to
(0,0) interdot transition. These states couple via coherent Cooper-pair tunneling. All data is measured
in device B.
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6.2.3. Floating regime

As we have seen, the main difference between the two devices is that the odd states
of the SC cannot be directly accessed in the regime𝐸 > 𝐸SC. This changes in absence
of lead reservoirs because quasiparticles that tunnel from the QD onto the SC are
confined to the system [157]. The additional energy associated with decharging the
QD makes Cooper-pair tunneling energetically unfavorable when 𝐸 < 𝐸SC + 𝐸

QD
C .

We realize this situation experimentally in device B by closing the outer tunnel bar-
riers, through gates T1 and T3. The resulting CSD and corresponding calculation of
the ground state transitions are shown in Figs. 4a,b. It can readily be seen that no
transitions to a reservoir take place, and the even-odd pattern is indicative of the
alternating occupation of even and odd states of the SC.

Importantly, even though SC and QD are now galvanically isolated from the en-
vironment, the gate sensor still allows us to study the quasiparticle states in the SC.
To establish this further, we study the evolution of the even-odd spacing as a func-
tion of temperature (Fig. 4c). This spacing is ameasure for the free energy difference
of the SC. In particular, the temperature evolution of the free energy difference can
be used to identify and characterize subgap states [59]; for proximitized nanowires,
this has earlier been studied in transport [52]. The extracted free energy difference
𝐹o − 𝐹e as a function of temperature is shown in Fig. 4d. A fit to the model from
Ref. 52 yields a gap of Δ = 220μeV, a subgap state energy of 𝐸 = 106μeV, and an
Al volume of 𝑉 = 2.9 × 105 nm3, consistent with the dimensions of the island. We
note that the slightly larger energy of the subgap state is consistent with the more
negative plunger gate voltage for this measurement [94]. The excellent quality of
the fit corroborates our initial assessment of the presence of a subgap state (Fig. 1b).
This result shows clearly that the resonator response of the QD gate sensor can be
used to characterize states of the SC, even when leads for transport experiments are
not available.

6.3. Conclusions

In summary, we have performed dispersive gate sensing on a quantum dot that
can exchange particles with a superconducting island. Analysis of the resonator re-
sponse has allowed us to directly detect and identify the charge-tunneling processes
that take place between the dot and the superconductor. We have found that single-
or multi-particle tunneling processes take place, depending on the dominating en-
ergy scales of the hybrid double dot. In particular, our data shows that gate sensing
provides an excellent tool for studying subgap excitations, even in situations where
an absence of leads prohibits transport studies. Going forward, the ability to detect
the coherent tunneling into subgap states will be crucial for the realization and op-
eration of Majorana qubits based on proximitized nanowires [17, 18]. Our results
thus set the stage for the implementation of quantummeasurements of topological
qubits.
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a

c

b

d

so se

device B

Figure 6.4 – Re-enabling of single-particle tunneling in the floating regime a Charge sta-
bility diagram measured in phase in device B. The anti-diagonal lines indicate that the total charge in
the system is conserved. b The calculated positions of the transitions in good agreement with the mea-
sured stability diagram. Inset: energy spectrum with the even states in black and the odd states in green
showing that the even-odd pattern is caused by the parity effect even though . c Temperature de-
pendence of the even-odd pattern. d The evolution of the free energy difference with temperature. The
free energy difference is extracted from the even-odd pattern via o e ( e o) /4 with 0.9
the lever arm of , and the elementary electron charge.

6.4. Supplemental Material
6.4.1. Additional Coulomb diamond measurements
In this section, we present additional Coulomb blockademeasurement of the quan-
tum dots (QD) in Fig. 6.S1, and the superconducting island (SC) of device A in Fig.
6.S2.

From the Coulomb diamonds in Fig. 6.S1, we extract the QD charging energy
and estimate the typical level spacing of the dot. We find that the charging energy
is the largest energy scale for both QD-SC systems. Moreover, the level spacing, 𝛿,
exceeds the thermal energy for both QDs, and it fluctuates with the charge occupa-
tion in the QD.

Figure 6.S2 showsCoulombdiamonds for the SCof deviceA obtained via current
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device A device B

a b

Figure 6.S1 – Coulomb blockade measurements on the quantum dots. a For device A, the
conductance is calculated from the numerical derivative of the measured current. We extract QD ≈
300μeV, 150μeV, and QD . . bFor device B, we obtain QD ≈ 200μeV, 170μeV,
and QD . .

measurements at the same gate settings as the diamond scan shown in Fig. 1b of the
main text. The data in presented in the main text is measured using RF reflectome-
try from the source of the QD-SC system. The conductance shown here drops back
to zero when 𝑉b increase above the height of the small odd diamond. This indicates
that for the odd charge states the current is carried by a discrete, subgap state. In
contrast, if the current is carried by a continuum of states, the conductance would
remain constant.

device A

a b

Figure 6.S2–Coulombblockademeasurements of the superconducting island indeviceA.
Left panel: current data, right panel: differential conductance obtained by taking the numerical deriva-
tive of the current data.
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6.4.2. Simulation of the charge stability diagrams
In this section, we discuss the phenomenological model used to simulate the charge
stability diagrams shown in Fig. 3 of the main text. We start with the Hamiltonian
of the QD-SC system

𝐻 = 𝐻 + 𝐻BCS + 𝐻 , (6.S1)

where 𝐻 describes the charging energy of the combined system, 𝐻BCS the super-
conductivity on the island and the induced superconductivity in the dot, and𝐻 the
coupling between the two systems. Note that we neglect the level spacing in both
systems. For the superconducting island, this is justified since its estimated level
spacing is on the order of several mK. However, for the QD, where 𝛿 ≈ 100μeV, this
is a large simplification. We model the charging term by 𝐻 = 𝐻QD + 𝐻SC + 𝐻

𝐻i =∑𝐸 (𝑛 − 𝑛 ) (6.S2)

𝐻 = ∑
SC , QD

𝐸 (𝑛SC − 𝑛SC) (𝑛QD − 𝑛QD) (6.S3)

where 𝑖 = QD, SC labels the system; 𝐸 is the charging energy, 𝑛 the gate charge,
and 𝑛 labels the charge state.

We approximate the BCS Hamiltonian by assuming that only the lowest single
particle state with energy 𝐸 is relevant

𝐻BCS ≈ {
0 𝑛 is even
𝐸 𝑛 is odd. (6.S4)

Note that 𝐸 = Δ in case there are no subgap states present on the SC. Usually,
𝐸QD = 0, we included this term to be able to model induced superconducting cor-
relations in the quantum dot when the QD-SC coupling is strong.

Lastly, for the tunnelingHamiltonian, we include both 1𝑒 and2𝑒 charge-transfer
processes: 𝐻 = 𝐻 + 𝐻 with

𝐻 = ∑
SC , QD

𝑡 |𝑛SC − 1⟩ ⟨𝑛QD + 1| + h.c. (6.S5)

𝐻 = ∑
SC , QD

𝑡 |𝑛SC − 2⟩ ⟨𝑛QD + 2| + h.c., (6.S6)

where 𝑡 (𝑡 ) is the tunneling amplitude for the 1𝑒 (2𝑒) process.
To simulate the charge stability diagrams, we construct a Hamiltonian based

of a finite number of charge states |𝑛SC, 𝑛QD⟩ = |−4,−4⟩ , |−4,−3⟩ , … , |4, 4⟩, using
Kwant [163], and numerically solve for its eigenvalues and eigenvectors. We use
the eigenvectors to calculate the charge expectation value of the total system which
we compare to the data.
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Additional information simulations

(0,0)

(0,1)

(0,2)

(-2,0)

(-2,1)

(-2,2)

Figure 6.S3 – Simulation of the charge stability diagram of Fig. 2 of themain text. The gray
scale indicates the total charge in the hybrid double dot.

Table 6.S1 –Overview of the parameters used in the simulations. All values are in μeV.

Simulation 𝐸SC 𝐸QD 𝐸 𝐸SC 𝐸dot 𝑡 𝑡
Fig. 3a 72 230 50 88 0 9 0
Fig. 3c 72 230 60 88 18 176 308
Fig. 6.S3 112 500 50 72 0 35 0



7
Quantized conductance and
large 𝑔-factor anisotropy in

InSb quantum point contacts

InSb plays an important role in research on Majorana zero modes because of its
strong spin-orbit interaction and large Landé 𝑔-factor. To further explore the
novel properties of these Majorana quasiparticles, hybrid devices based on quan-
tum wells have gained interest as an alternative approach to nanowires. In this
work, we report a pronounced conductance quantization of quantum point contacts
in InSb/InAlSb quantum wells. By rotating the magnetic field, we observe a large
anisotropy between the in-plane (|𝑔 | = 26) and out-of-plane (|𝑔 | = 52) 𝑔-factor.
Additionally, we investigate crossings of subbands with opposite spins, and extract
the effective electron mass from magnetic depopulation of the one-dimensional
subbands.

This chapter is based on F. Qu, J. van Veen, F. K. de Vries, A. J. A Beukman, M. Wimmer, W. Yi, A. A.
Kiselev, B-M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele, C. M. Marcus, and L. P. Kouwenhoven,
Quantized conductance and large -factor anisotropy in InSb quantum point contacts, Nanoletters 16,
7509-7513 (2016).
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7.1. Introduction
One-dimensional (1D) InSb structures are promising for spintronics [164] and topo-
logical quantum computation [165, 166]. InSb has the smallest effective electron
mass and the highest room-temperature mobility among the binary III-V semicon-
ductors [167]. It further exhibits strong spin-orbit interaction (SOI) and the largest
Landé 𝑔-factor (|𝑔| = 51 for the bulk). These properties arise because of the strong
coupling between conduction- and valence band resulting from the small band gap
[167–169]. A magnetic field applied perpendicular to the spin-orbit field of these
nanowires opens a Zeeman gap and creates helical states [170]. Now, a 1D topo-
logical superconductor, with Majorana zero modes (MZMs) at its boundaries, can
form when a superconducting gap is induced through the proximity effect. These
MZMs possess non-Abelian exchange statistics. However, an exchange between
MZMs requires a quasi two-dimensional (2D) network of topological superconduc-
tors [15, 16, 38, 81]. The Majorana box qubit, introduced in section 2.4.1, is an ex-
ample of such a network and consists of two parallel topological wires connected
by a trivial superconductor. Although, crossed nanowires have been developed
[171, 172], simultaneously applying magnetic fields parallel to different branches
of these nanocrosses is difficult. Furthermore, scaling nanowire-based systems for
topological quantum computing might be challenging1. Alternatively, these net-
works could be realized using a top-down approach; starting from 2D quantum
wells, wires and networks can be defined by etching or electrostatic gating. As a first
step towards MZM physics in quantum wells, control over nanostructures such as
quantum point contacts (QPCs) and quantum dots should be established. In this
chapter, we report on ballistic transport through QPCs in an InSb 2D electron gas
(2DEG).We study the Zeeman spin splitting of the energy bands as a functionmag-
netic field direction and observe a large in-plane/out-of-plane 𝑔-factor anisotropy.
Additionally, we deduce the electron effective mass usingmagnetic depopulation of
the subbands.

InSb quantum wells have several advantages over InSb nanowires. Their mo-
bility2 can exceed 200,000 cm2/Vs [175–177], corresponding to a mean free path
larger than 1.4μm. This is a factor 5 to 10 larger than typical mobilities in InSb
nanowires [98]. Moreover, the 2DEG functions as an ideal contact which naturally
solves the interface problem for nanowires [98]. Although the calculated and re-
ported Rashba SOI parameter 𝛼 ranging between 0.03 and 0.15 eVÅ [178–183] is
smaller than that reported in nanowires [168, 184], a 2D heterostructure enables
tuning of SOI strength by engineering asymmetric doping, barrier modulation, and
electrical gating [178, 179, 181–183, 185]. Moreover, the confinement of 1D struc-
tures defined on an InSb 2DEG may enhance 𝛼 towards the values for nanowires.
Despite these advantages, only one work reported on the observation of quantized
conductance in InSb 2DEG QPCs thus far [186]. In contrast, ballistic transport in

1Recently, (proximitized) InAs nanowires have developed using the bottom-up method called selective
area growth [173, 174]. This scalable technique could offer a different route (as compared to 2DEGs) to
complex nanowire networks.
2TheHall barmeasurments on our InSb wafer indicate amaximummobility of roughly 180,000 cm2/Vs
(Fig. 7.1a).
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Figure 7.1 – Characterization of an InSb Hall bar. a Density (black) and mobility (red) as a
function of top gate voltage . The mobility drops around = 3 V due to occupation of the second
subband. b Longitudinal resistance and c Hall resistance as a function of both and out-of-
planemagnetic field . At highmagnetic field, the integer quantumHall effect is observed; reaches
zero (dark blue region in b) and quantized Hall plateaus form (marked by the filling factors in c). These
results are similar as for Hall bars made with HfO2 as dielectric on the same wafer [175].

InSbnanowires has already been established [187–189]. This discrepancy arises be-
cause the gate leakage problem, which prevented successful gate depletion of InSb
2DEGs, has only recently been solved [175, 190]. Our hall bar measurements show
well-developed integer quantum hall plateaus together with the longitudinal resis-
tance dropping to zero (Figs. 7.1b,c), indicating proper gating without gate leakage,
or creation of parallel conduction channels.

7.2. Fabrication and methods
The InSb/InAlSb heterostructure used in this work is grown on a GaAs (100) sub-
strate using a fully relaxed In1-xAlxSb buffer (𝑥 = 0.08). The quantum well consists
of a 30 nm InSb layer sandwiched between In1-xAlxSb barriers. Single-side Si 𝛿-
doping sits 20 nm above the InSb well in the top barrier. Details of the material
growth, and the full gate depletion of the 2DEG in Hall bar devices with HfO2 as di-
electric have been reported earlier [175]. These results have been reproduced using
SiNx as dielectric (Fig. 7.1). To fabricate the QPC device studied here, a narrow con-
striction (≈280 nm wide) on a 20μm wide mesa is wet etched ≈100 nm deep (see
Fig. 7.2a). The InSb 2DEG at both sides of the constriction functions as an in-plane
side gate (SG). Next, the Ohmic contacts are formed > 20μm away from the QPC
by etching into the InSb layer using an Argon ion etch, and the subsequent in-situ
deposition a Ti/Au layer. Finally, the top gate is made using a 100 nm thick SiNx
dielectric layer followed by evaporating a 100 nm wide Ti/Au electrode. We also
fabricated fully gate-defined QPCs, in which, instead of etching, the constriction is
defined by two split Ti/Au gates on top of a SiNx dielectric layer, and a global Ti/Au
top gate on a second SiNx layer.

Transportmeasurements are carried out on the two types ofQPCs in both a cryo-
free dilution refrigeratorwith a 6-2-1 T vectormagnet and a He systemwith a single
axis magnet of 9 T. Standard low-frequency lockin techniques are employed in a 2-
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terminal or 4-terminal measurement configuration; The differential conductance
𝐺 = d𝐼/d𝑉 = 𝐼 /𝑉 is measured by applying a small AC excitation voltage 𝑉 ,
and measuring the resulting AC current 𝐼 . The series resistances from the wires,
measurement equipment, and adjacent InSb 2DEG have been subtracted to match
the quantized conductance for the data reported below, unless otherwise stated.
For the source-drain bias spectroscopy, the voltage drop on the QPC is corrected
accordingly. By comparing the two types ofQPCs, we find that the etch-definedQPC
shows pronounced quantized conductance plateaus at zeromagnetic field, while the
fully gate-defined type requires a small perpendicular magnetic field to suppress
backscattering and interference. Therefore, we focus on the former in the following,
andbriefly present the results on the latter in Fig. 7.S1 of the SupplementalMaterial.

7.3. Results
7.3.1. Quantized conductance and spin splitting
Figure 7.2b shows𝐺 as a function of side gate voltage𝑉 with a fixed top gate voltage
𝑉 = 0.3 V at different temperatures. Quantized conductance plateaus at 𝑛𝐺 are
observed resulting from the ballistic transport in the 1D constriction, where 𝑛 = 1, 2
and 3, and 𝐺 = 2𝑒 /ℎwith ℎ Planck’s constant and 𝑒 the elementary charge. At 𝑇 =
26 mK, small conductance fluctuations indicate finite backscattering and interfer-
ence processes around the QPC. The rest of the reported data are all measured at 26
mK. As shown in Fig. 7.2c, 𝐺 can be controlled by the top as well as the side gates,
confirming their proper functioning. Figure 7.2d displays the numerically calcu-
lated derivative of 𝐺 with respect to the side gate voltage, i.e. the transconductance
d𝐺/d𝑉 , versus 𝑉 and 𝑉 (see Fig. 7.S2 of the Supplemental Material for the raw
data). As indicated by the green arrows, the subband spacings 𝐸 and 𝐸 are
roughly equal ≈4.6 meV, suggesting a near-parabolic confinement potential. Here,
𝐸 represents the energy spacing between the 𝑖th and 𝑗th subband.

We examine the spin splitting of the 1D subbands in a magnetic field. Figure
7.3a shows 𝐺 as a function of 𝑉 and 𝐵 (along current flow). As 𝐵 increases from
0 T, half-integer plateaus resulting from Zeeman spin splitting appear and widen
in 𝑉 , while the integer plateaus narrow down. The evolution of the spin resolved
subbands with 𝐵 is illustrated in the right panel of Fig. 7.3b, ignoring SOI. At 𝐵
= 3 T, only the half-integer plateaus survive because the spin-down band from the
𝑖th subband (𝑖 ↓) crosses the spin-up band from the (𝑖 +1)th subband ((𝑖 +1) ↑), as
indicated by the green curve in the left panel of Fig. 7.3b. When 𝐵 > 3 T, after the
crossing of the spin split subbands, the spin-up bands 1 ↑ and 2 ↑ are the lowest two
bands in energy, and the current is fully spin-polarized for 1𝐺 . The combination of
a large 𝑔-factor and a modest subband separation enables such clear crossing at a
moderate magnetic field [187, 191]. When two 1D subbands of opposite spins cross,
a spontaneous spin splitting and the emergence of the so-called 0.7 analog at the
1.5 plateau have been reported in GaAs 2DEGs [191], which, as well as the 0.7𝐺
feature, are absent in our InSb QPCs.

In contrast to the case of 𝐵 , at large 𝐵 > 1 T (out-of-plane), all plateaus widen
due to Zeeman splitting and magnetic depopulation of 1D subbands (Fig. 7.4a).
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This effect will be discussed in more detail below. For the case of 𝐵 (in-plane but
perpendicular to current flow), the behavior is similar to that in 𝐵 , although here
the measured magnetic field range is smaller (see Fig. 7.4b).

Figure 7.2 – Quantized conductance in an etch-defined InSb QPC. a Image and schematics
of the etch-defined QPC. The top panel shows an atomic force micrograph of the constriction after the
mesa etch (before depositing the SiNx and Ti/Au layers). The black region is roughly 100 nm deep. The
scale bar is 200 nm. The axes illustrate the vector magnet orientations. The bottom panel displays the
cross-section of the device along the planemarked by the two arrows in the top panel. The constriction is
controlled by two etch-defined in-plane side gates (SG) and a 100 nm wide top gate (TG). b Differential
conductance versus curves at a fixed = 0.3 V for different temperatures. The traces are offset
by 1 ( / ) for clarity. c as a function of both and , demonstrating the proper working
of both gates. d Numerically calculated transconductance d /d as a function of and at
= 0.3 V. The green dashed lines are guides-to-the-eye and the green solid arrows indicate the subband
spacings.



7

90 7. Quantized conductance in InSb QPCs

Figure 7.3 –Crossings of electron subbands with opposite spins. a versus and (along
current flow) at = 0.3 V with labeling the quantized conductance plateaus at . b The left panel
shows linecuts taken from a at different magnetic fields. Traces are offset by for clarity. The right
panel displays band dispersions at different , sketching the evolution of the spin-resolved subbands.
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7.3.2. 𝑔-factor anisotropy
Next, we inspect the evolution of the spin splitting in different magnetic field direc-
tions, by rotating the field in the 𝑥 − 𝑧 plane (Fig. 7.4c) and the 𝑥 − 𝑦 plane (Fig.
7.4d), while keeping the amplitude fixed at 1.8 T and 1 T respectively. The mag-
netoresistance from the adjacent InSb 2DEG increases as the 𝐵 component rises.
Consequently, after subtracting a constant series resistance at𝐵 = 0, the calculated
conductance at finite𝐵 is lower than the actual value, and the conductance plateaus
labeled by 0.5 and 1 in Fig. 7.4c drop below their respective values (see Supplemen-
talMaterial Fig. 7.S4a). Interestingly, when the𝐵 component increases by rotating
the field both the 0.5 and the 1 plateau widen in 𝑉 . Assuming a constant gate volt-
age to energy conversion (i.e lever arm), the Zeeman splitting in the first subband,
𝐸 ↓ ↑ = |𝑔 |𝜇 𝐵 with 𝜇 the Bohrmagneton, is proportional to the width of the 0.5
plateau along the gate voltage axis. Figure 7.4c thus shows a 𝑔-factor anisotropy up
to a factor of two between the 𝑧 and 𝑥 directions (see Supplemental Material Fig.
7.S4b). In contrast, the in-plane (𝑥 −𝑦 plane) 𝑔-factor is nearly isotropic as follows
from the roughly constant width of the 0.5 plateau in Fig. 7.4d (see Supplemental
Material Fig. 7.S5a).

To determine the magnitude of the 𝑔-factor quantitatively, source-drain bias
spectroscopy is performed. Figures 7.5a, b, and c show the numerically calculated
transconductance d𝐺/d𝑉 as a function of 𝑉 and 𝑉 at 𝐵 = 2 T, 𝐵 = 1.5 T, and 𝐵
= 2 T respectively, with a fixed 𝑉 = 0.5 V. The green dashed lines are guides-to-
the-eye and help to read the energy spacings as marked by the green solid arrows.
From 𝐸 ↓ ↑ = |𝑔 |𝜇 𝐵, the effective 𝑔-factor for the first subband can be extracted
to be |𝑔 , | ≈ 51 (𝐵 = 2 T), |𝑔 , | ≈ 53 (𝐵 = 1.5 T), and |𝑔 , | ≈ 26 (𝐵 = 2 T),
exhibiting an anisotropy, as already anticipated by Fig. 7.4c. We would like to em-
phasize that the difference in absolute values between |𝑔 , | and |𝑔 , | of ≈26 is
large. Consistent with Fig. 7.4d, the extracted |𝑔 , | ≈ 28 is close to |𝑔 , |, show-
ing a nearly isotropic in-plane 𝑔-factor (see Supplemental Material Fig. 7.S5). In
2D quantum wells, the effective electron 𝑔-factor becomes anisotropic due to lower
symmetry introduced by the heterostructure. It is also renormalized (usually re-
duced) due to subband confinement and strain [192–195]. The 1D constrictionmay
further modify the effective 𝑔-factors. Still, the extracted anisotropy is larger than
expected based on theoretical calculations [192, 193]. The effective 𝑔-factor for the
second subband can also be obtained from 𝐸 ↓ ↑ giving |𝑔 , | ≈ 38 (𝐵 = 1.5 T) and
|𝑔 , | ≈ 23 (𝐵 = 2 T), both smaller than the first subband, in qualitative agreement
with experimental results on quantum dots in InSb nanowires [168].

The extracted 𝑔-factor anisotropy of |𝑔 , |/|𝑔 , | ≈ 2 from the bias spectroscopy
agrees well with the anisotropy suggested by the width of the 0.5 plateau (Δ𝑉 ) in
Fig. 7.4c, in line with the assumption of a constant lever arm. Therefore, we can use
Δ𝑉 to deduce the 𝑔-factor at different angles in the 𝑥-𝑧 plane. Figure 7.6a shows
the transconductance d𝐺/d𝑉 of Fig. 7.4c, where the white-red color represents
the transition between conductance plateaus. The green arrow illustrates the width
of the 0.5 plateau Δ𝑉 . The 𝑔-factor for the first subband |𝑔 | can be now obtained
from |𝑔 , | × Δ𝑉 (angle)/Δ𝑉 (angle = 90∘) with |𝑔 , | ≈ 52. Figure 7.6b presents
the angular dependence of |𝑔 |.
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Figure 7.4 – Spin splitting in different magnetic field directions. a versus and , b
versus and with numbers marking quantized conductance at ( = 0.3 V). c and d as a
function of and the angle at a fixed magnetic field amplitude of 1.8 T c, and the angle at a
fixedmagnetic field amplitude of 1 T d. The angle = 0, 90, and 180 degrees correspond tomagnetic
field along , , and , respectively. Accordingly, in the plane these three angles stand for the ,
, and directions.

Figure 7.5–Bias spectroscopy and -factors. Transconductance d /d as a function of and
at a = 2 T, b = 1.5 T, and c = 2 T with a fixed = 0.5 V. The larger d /d (red color)

represents transitions between quantized conductance plateaus. Green dashed lines are guides-to-the-
eye, and green solid arrows indicate the subband spacings.
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Figure 7.6–Anisotropic -factors. aTransconductance d /d extracted as the numerical deriva-
tive of the data in Fig. 7.4c. The green arrow indicates the width of the 0.5 plateau . b First subband
-factor | | in the plane calculated based on .

7.3.3.Magnetic depopulation
Next, we turn to magnetic depopulation to extract the effective electron mass. At
𝐵 = 0, the parabolic confinement from the gates (as indicated by the fact that
𝐸 ≈ 𝐸 in Fig. 7.2d) results in a constant subband spacings of ℏ𝜔 (with
ℏ = ℎ/2𝜋). When a perpendicular magnetic field (along 𝑧) is applied, an additional
magnetic parabolic potential enhances the level separation to ℏ√𝜔 + 𝜔 , where
𝜔 = 𝑒𝐵 /𝑚∗ is the cyclotron frequency with 𝑚∗ is the effective mass [196–198].
Hence at finite 𝐵 ,𝑚∗ can be extracted from the subband spacing

𝐸 (𝐵 ) = 1
2 (𝐸 ↓ ↑ + 2𝐸 ↑ ↓ + 𝐸 ↓ ↑) = ℏ√𝜔 + 𝜔 . (7.1)

Neglecting the orbital effect of 𝐵 , we find ℏ𝜔 ≈ 4.7 meV (𝜔 = 0) using the energy
intervals in Fig. 7.5c at 𝐵 = 2 T (𝐸 ↓ ↑ ≈ 3.0 meV, 𝐸 ↑ ↓ ≈ 1.9 meV, and 𝐸 ↓ ↑ ≈
2.6 meV). Consequently, applying the energy separations at 𝐵 = 1.5 T and 2 T, the
effective mass is calculated to be 𝑚∗ ≈ 0.017𝑚 and 0.019𝑚 , respectively, with
𝑚 the electron rest mass. For an InSb quantum well, confinement enhances the
effective mass, and the nonparabolicity of the band dispersion enhances it further
at finite densities [193]. The average𝑚∗ of 0.018𝑚 is larger than the bulk value of
0.014𝑚 [167], but is consistent with theoretical calculations for a 30 nm thick InSb
quantum well at low densities [193].
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7.4. Conclusions
We have demonstrated high quality conductance quantization in QPCs on InSb
quantum wells. The Zeeman spin splitting is investigated as a function of field
angle, and a surprisingly large anisotropy between the in-plane and out-of-plane
𝑔-factor is observed. In a moderate in-plane magnetic field, clear crossings of elec-
tron subbands with opposite spins are achieved. Moreover, for the first time, the
electron effective mass is extracted from magnetic depopulation of 1D subbands in
InSb QPCs. Further research on carefully designed hybrid devices in InSb quantum
wells is needed to pursue helical states and Majorana zero modes.

7.5. Supplemental Material

Figure 7.S1 – Results on fully gate-defined QPCs. a Cross-section of the fully gate-defined InSb
QPC. The constriction is defined by two split side gates, separated by 400 nm on top of a SiNx dielectric
(100 nm thick), and a global top gate. b Typical color plot of (in units of / ) versus and
at a fixed = 3 V (the top gate is separated by 270 nm SiNx in total) and = 0.3 K. In general, this type
of QPC requires a small perpendicular magnetic field to suppress conductance fluctuations associated
with backscattering and interference. c Linecuts taken from b (with the series resistance subtracted)
showing quantized conductance in a finite . By a comparison of the quality of quantized conductance
plateaus, the etch-defined QPC shown in the main text is preferred for further research on helical states
and Majorana zero modes.
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Figure 7.S2 – Differential conductance G at B = 0 for the etch-defined QPC shown in the
main text. a as a function of the voltage and on each of the two in-plane side gates, at a
fixed = 0.5 V.b versus source-drain bias voltage and ( ≡ ) at a fixed = 0.3
V. The numbers , in a represent quantized conductance at . Note that the pinch-off voltage
in a has a slope of ≈ ( / ≈ 0.6 V/(-0.5 V)), suggesting equal-coupled side gates. The
green dashed lines in b are guides-to-the-eye, marking the transitions between quantized conductance
plateaus. The transconductance shown in Fig. 7.2d in the main text is numerically calculated from the
data in b. Level separations are labeled by and .

Figure 7.S3 –Differential conductance for the etch-defined QPC shown in themain text.
as a function of and at a = 2 T, b = 1.5 T, and c = 2 T at a fixed = 0.5 V. The

numerically calculated transconductance shown in Fig. 7.5 in the main text is calculated based on these
plots. Green dashed lines are guides-to-the-eye, and green solid arrows illustrate subband spacings.
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Figure 7.S4 – Linecuts taken from Fig. 7.4c in the main text. a Two line cuts at angle = 0
(along current flow, = 1.8 T, black) and 90 degrees ( = 1.8 T, red). For the whole 2D color plot of
Fig. 7.4c a series resistance of 6.5 kΩ from the adjacent InSb 2DEG is subtracted to match the quantized
conductance at = 1.8 T (black). However, when the component increases, the magnetoresistance
of the adjacent 2DEG rises and therefore the calculated conductance of the QPC drops below the actual
value. As shown by the red line, the conductance at the quantized plateaus is lower than the expected
value. Nevertheless, the width of the 0.5 plateau at = 1.8 T is wider than that at = 1.8 T, indicating a
-factor anisotropy. The exact width can be obtained from the numerically calculated transconductance

d /d as shown by the red and black arrows in b, = 0.256 V and 0.126 V respectively. Therefore,
an out-of-plane and in-plane -factor anisotropy of about two is inferred.

Figure 7.S5 – -factors in (in-plane but perpendicular to current flow) for the etch-
defined QPC in the main text. Figure 7.5 in the main text shows the bias spectroscopy of the QPC
transconductance in and , from which anisotropic -factors are extracted. As shown in Fig. 7.4d
in the main text, the roughly constant width of the 0.5 plateau when the magnetic field is rotated in the

plane implies an isotropic in-plane -factor. This figure shows a the numerical transconductance
of Fig. 7.4d in the main text, b bias spectroscopy with = 1 T and c its numerical transconductance.
The high d /d in a (red color) represents transitions between conductance plateaus and the green
arrow illustrates the width of the 0.5 plateau , which is roughly constant. The energy separation
↓ ↑ ≈ 1.6meV is small (indicated by the green dashed and solid lines in b as it is limited by the low

maximal field for the component of the vector magnet. This lead to a relatively large uncertainty. Still,
from ↓ ↑ | , | , we find | , | ≈ , close to | , | ≈ as shown in the main text.
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Spin-orbit interaction in a dual
gated InAs/GaSb quantum well

We investigate the spin-orbit interaction in a dual gated InAs/GaSb quantum well.
Using an electric field, the quantum well can be tuned between a single-carrier
regime with exclusively electrons as carriers, and a two-carrier regime where elec-
trons and holes coexist. The spin-orbit interaction in both regimes manifests itself
as a beating in the Shubnikov–de Haas oscillations. In the single-carrier regime,
the linear Dresselhaus strength is characterized by 𝛽 =28.5meVÅ , and the Rashba
coefficient 𝛼 can be tuned from 75 to 53meVÅ by changing the electric field. In the
two-carrier regime, a quenching of the spin splitting is observed and attributed to
a crossing of spin bands.

This chapter is based on A. J. A Beukman, F. K. de Vries, J. van Veen, R. Skolasinski, M.Wimmer, F. Qu,
D. T. de Vries, B-M.Nguyen,W. Yi, A. A. Kiselev,M. Sokolich,M. J.Manfra, F. Nichele, C.M.Marcus and
L. P. Kouwenhoven, Spin-orbit interaction in a dual gated InAs/GaSb quantum well Physical Review B
96, 241401(R) (2017).

97



8

98 8. SOI in a dual gated InAs/GaSb quantum well

8.1. Introduction
The semiconductors InAs and GaSb have small band gaps together with a crystal
inversion asymmetry resulting from their zinc-blende structure. These materials
are therefore predicted to have strong spin-orbit interaction (SOI) [192, 199] which
has been measured experimentally [185]. Moreover, tuning of the Rashba strength
by electrostatic gating has been shown for InAs quantum wells [200, 201]. Strong
and in-situ control over the SOI is a promising route towards novel spintronic de-
vices [164, 199, 202], and a strong SOI together with a large 𝑔-factor and induced
superconductivity are ingredients for a topological superconducting phase [24].

Combining InAs and GaSb in a quantum well gained much interest because
of the type-II broken-gap band alignment [203]. As a result, the GaSb valence
band maximum is higher in energy than the InAs conduction band minimum,
opening a range of energies where electrons in the InAs coexist with holes in the
GaSb. The spatial separation of these electron and hole gases allows for tunabil-
ity of the band alignment using an electric field. Therefore, a rich phase diagram
can be mapped out using dual gated devices [204, 205]. Although spatially sepa-
rated, strong coupling between the materials allows for electron-hole hybridization
which opens a gap in the energy spectrum when the electron and hole densities are
equal [206, 207], driving the band structure topologically nontrivial [204].

Interestingly, the magnitude of this hybridization gap is spin-dependent due to
the SOI [208–210]. Therefore, a spin-polarized state is seen at energies close to
the hybridization gap [211], and at higher energies a dip in the spin splitting is ex-
pected [212]. The latter has yet to be observed and indicates a competition between
electron-hole hybridization and the spin-orbit interaction. Here, we experimen-
tally study SOI through the difference in density of the spin-orbit split bands of
an InAs/GaSb quantum well. This zero-field density difference (Δ𝑛ZF) is extracted
frommagnetoresistance measurements. First, the SOI is investigated in the regime
where the GaSb is depleted from carriers. Rashba and Dresselhaus SOI strengths
can be extracted frommeasurements ofΔ𝑛ZF. Second, SOI is investigated just above
the hybridization gap where Δ𝑛ZF almost vanishes, consistent with band-structure
calculations.

8.2. Experimental setup
A 20-𝜇m-wide and 80-𝜇m-long Hall bar device is defined using chemical wet etch-
ing. A top gate is separated from the mesa by a 80-nm-thick SiNx dielectric layer.
The Hall bar is fabricated from the same wafer used in Refs. 205, 213. The quan-
tumwell consists of 12.5 nm InAs and 5nmGaSb between 50nmAlSb barriers. The
doped GaSb substrate acts as a back gate. All measurements are done at 300mK
using standard lock-in techniques with an excitation current of 50nA.

Figure 8.1 presents the longitudinal resistance of the Hall bar device as a func-
tion of top gate voltage 𝑉tg and back gate voltage 𝑉bg. Themeasurement is performed
in a 2 T perpendicular magnetic field and therefore shows quantum oscillations re-
sulting from the changing electron density. Quantum oscillations corresponding to
holes are less pronounced as themobility of holes in this system is much lower than
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Figure 8.1–Resistancemap of theHall bar device. Longitudinal resistance of theHall bar device
(see bottom right inset) as a function of top gate voltage ( tg) and back gate voltage ( bg) at 2 T out-of-
planemagnetic field. Oscillations in resistance originate fromLandau levels and denote lines of constant
electron density. The dashed green and white lines indicate regions with the Fermi level located inside
an energy gap. The solid green line separates the region with electrons as carriers (right) from a region
where electrons and holes coexist (left). Line I is situated in the electron regime and Line II in the two-
carrier regime. The insets show the schematic band alignment for both cases.

the mobility of electrons [205]. For lines parallel to these oscillations, such as line
I in Fig. 1(a), the electron density is constant while the electric field changes. Re-
gions of high resistance, indicated by the dashed white and green lines, correspond
to having the Fermi level inside an energy gap. A detailed description of the phase
diagram obtained from measurements on the same wafer was reported by Qu et
al. [205].

The green solid line in Fig. 8.1 divides the phase diagram into two regimes. To
the right-hand side of this line is the electron-only regime, where the GaSb is de-
pleted. The system effectively is an asymmetric InAs quantum well with a trivial
band alignment and the Fermi level residing in the conduction band (see the inset
of Fig. 8.1). In this regime we investigate Δ𝑛ZF along line I, where the electron mo-
bility is highest while only the lowest subband remains occupied. The regime to the
left of the green line is the two-carrier regime where electrons and holes coexist.
Line II is chosen to evaluate Δ𝑛ZF close to the hybridization gap (highlighted by the
dashed green line). Before discussing the spin-orbit interaction in the two-carrier
regime (along line II), we first study the electron-only regime (line I).
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Figure 8.2 – Spin splitting at a constant electron density in the electron regime. aMagne-
toresistance traces for data points 1-10 along line I indicated in Fig. 8.1, a constant background is sub-
tracted from the traces and they are offset 10 from each other. b Fourier power spectra |ℱ[ ( / )]|
of the traces in a. cElectron density extracted fromHall resistance and Shubnikov-deHaas period (right
axis) together with the ZF at each data point along line I (left axis), with error bars in gray.

8.3. Results
8.3.1. Electron regime
Figure 8.2a shows magnetoresistance traces for 10 points along line I. The density
of electrons is fixed (see Fig. 8.2c) while the electric field is changed. We first con-
sider trace 1. Clear oscillations in the longitudinal resistance 𝑅 are observed as
a function of perpendicular magnetic field 𝐵 modulated by a beat pattern. These
Shubnikov-de Haas (SdH) oscillations appear for each single-spin band and are pe-
riodic in 1/𝐵 with a frequency that relates to the carrier density via 𝑛 = 𝑒/ℎ ⋅ 𝑓
[185, 214]. The beat modulation observed in trace 1 is caused by two slightly dif-
ferent SdH frequencies 𝑓 , 𝑓 . This is also evident from the fast Fourier transform
(FFT) of the magnetoresistance trace ℱ[𝑅 (1/𝐵)] presented in the first curve of
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Fig. 8.2b (see Supplemental Material for details on the Fourier procedure Sec. 8.5).
These two SdH frequencies indicate two distinct densities 𝑛 , 𝑛 . They must corre-
spond to different spin species because their sum 𝑛 +𝑛 equals the Hall density 𝑛
(see Fig. 8.2c). Subsequently, one spin species has a larger density than the other,
𝑛 > 𝑛 , implying that the system favors one spin-orbit eigenstate over to the other.
The difference, Δ𝑛ZF = 𝑛 −𝑛 , is a measure for the zero-field spin splitting energy,
Δ𝐸ZFSS = Δ𝑛ZF (𝑚∗/𝜋ℏ ) .

Upon moving from point 1 to 10 along line I, two trends are observed. First, an
extra frequency peak emerges in the FFTs at (𝑓 + 𝑓 )/2. This originates from the
asymmetry between adjacent beats in the SdHoscillations, visible both in amplitude
and number of oscillations of beats A and B in Fig. 8.2a and Fig. 8.S1. Second, the
spacing between the outer peaks in the FFT spectrum decreases, as is evident from
the decreasing Δ𝑛ZF over line I (Fig. 8.2c). This arises from an increasing number
of oscillations in both beats A and B (Fig. 8.S1), which also pushes the beat nodes to
lower magnetic fields. Before we extract the actual SOI strengths and show its elec-
tric field dependence, we first elucidate the origin of the emerging center frequency
peak.

The center frequency, interestingly, does not correspond to an actual density.
The sum of the densities 𝑛 and 𝑛 (corresponding to the outer peaks in the FFT)
still equals the Hall density. There are, however, mechanisms involving scattering
between Fermi surfaces that can result in extra frequency components. Suchmech-
anisms are magnetic inter-subband scattering (MIS) [215, 216], magnetophonon
resonances (MPR) [217, 218], and magnetic breakdown (MB) [219–221].

We exclude MIS and MPR. By changing electron density all the frequency peak
positions shift with equal strength (Fig. 8.S2). However, the oscillation frequency
of MIS and MPR is determined by the subband spacing and a specific phonon fre-
quency, respectively. Both do not depend on the electron density. In contrast, for
MB the spurious peak always appears in between 𝑓 and 𝑓 . TheMBmechanism ex-
plains this spurious central peak as carriers tunneling between spin-polarizedFermi
surfaces at spin-degeneracy points. The interplay of Dresselhaus and Rashba SOIs
in our heterostructure could lead to such an anisotropic Fermi surface [219, 222].
In order to confirm this hypothesis, we extract the individual Rashba and Dres-
selhaus contributions by comparing our data to quantum mechanical Landau level
simulations that include the MB mechanism.

8.3.2. Landau level simulations
The quantum well in the electron-only regime is modeled by a Hamiltonian for a
two-dimensional (2D) electron system with spin-orbit interaction subject to a per-
pendicular magnetic field 𝐵 , as given by [192, 199]:

𝐻 =
(�̂� + �̂� )
2𝑚∗ 𝜎 + 𝛼(�̂� 𝜎 − �̂� 𝜎 )/ℏ + 𝛽(�̂� 𝜎 − �̂� 𝜎 )/ℏ

+𝛾(�̂� �̂� �̂� 𝜎 − �̂� �̂� �̂� 𝜎 )/ℏ + 12𝑔𝜇 𝐵 𝜎 .
(8.1)
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Where 𝑝 → 𝑝 + 𝑒𝐴 is the canonical momentum, 𝜎 the Pauli spin matrices, 𝛼, 𝛽, 𝛾
the Rashba, linear Dresselhaus, and cubic Dresselhaus coefficients, respectively, ℏ
the reduced Planck’s constant, and 𝜇 the Bohr magneton. An electron effective
mass 𝑚∗ of 0.04𝑚 is measured from the temperature dependence of the SdH os-
cillations (Fig. 8.S3) and a 𝑔-factor of −11.5 is used in the calculations1 [223]. We
solve for the Landau level energies in a perpendicular magnetic field, and extract
the resistivity as a function of magnetic field (for details see Supplemental Material
Sec. 8.5).

The parameters 𝛼, 𝛽, 𝛾 in the model are estimated and fine tuned to match the
node positions and the number of oscillations in a beat of the measured SdH traces.
Figures 8.3a and8.3b show themeasured SdHdata togetherwith the simulated data
for traces 1 and 10. Trace 1 is fitted with 𝛼 = 75 meVÅ, 𝛽 = 28.5 meVÅ, 𝛾 = 0
meVÅ , and trace 10 with 𝛼 = 53meVÅ , 𝛽 = 28.5meVÅ, 𝛾 = 0meVÅ . The
node positions and amplitude modulation of the simulated data agrees well with
the measured SdH oscillations.
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Figure 8.3–Landau level simulations for a 2DEGwithRashba andDresselhaus spin-orbit
interactions. a and b depict the measured trace (blue) together with the simulated magnetoresistance
trace (gray) which is offset by ten units. The values for , , and used are mentioned in the Figure.
In all simulations, the Landau level broadening is set to . meV. c Fast Fourier transform of the
simulated andmeasured magnetoresistance at points 1-10 along line I. All simulated magnetoresistance
traces can be found in the Supplemental Material Fig. 8.S4.

1Note that this g-factor value of -11.5 is measured on a slightly different stack with an InAs layer of 11 nm
thick. We have checked in the simulations that changing the g-factor to -5 or -15 has negligible influence
on the SdH oscillations.
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Curiously, only good fits are obtained when setting the cubic Dresselhaus term
𝛾 to zero. In 2D systems, 𝛽 is related to 𝛾 via 𝛽 = ⟨𝑘 ⟩𝛾, where ⟨𝑘 ⟩ ≈ (𝜋/𝑑) is
the expectation value of the transverse momentum [192, 199] in a quantum well of
thickness 𝑑. So 𝛾 should be non-zero. Currently, we do not understand this dis-
crepancy. A recent experimental study on a similar material system also found that
the cubic Dresselhaus term could be neglected [224].

Now, we consider all traces (1-10) and show that the two trends of Fig. 8.2
(emerging center FFT peak and approaching outer FFT peaks) are reproduced
by changing only the Rashba SOI strength. Figure 8.3c shows the FFTs of the
simulated traces where 𝛼 is linearly interpolated between 𝛼 and 𝛼 while fixing
𝛽 = 28.5 meVÅ and 𝛾 = 0 meVÅ . Linear interpolation is used because the elec-
tric field changes linearly along line I, and Rashba SOI strength depends linearly
on electric field [192, 225, 226]. All simulated FFTs and the SdH traces (Fig. 8.S4)
match the measured data very well, clearly reproducing the emerging central peak
and the approaching outer peaks.

8.3.3. Two-carrier regime
In the remainder of this chapter, we switch to the two-carrier regime, located left of
the solid green line in Fig. 8.1. Electrons in InAs are present alongside with holes
in GaSb (𝑛 + 𝑝). Here, we study the influence of the hybridization between elec-
trons with holes on Δ𝑛ZF by investigating magnetoresistance traces on the points
1-13 along line II.

Before continuingwith themeasuredmagnetoresistance traces, it is insightful to
examine the expected band structures at points 1 and 13, as illustrated in Fig. 8.4b.
The first point of line II is located near the boundary between the two-carrier and
single carrier regimes. A small amount of holes with a large amount of electrons is
present. At point 13, close to the hybridization gap, the electron and hole densities
are roughly equal, hence the Fermi level 𝐸 is close to the hybridization gap. Note
also that 𝑘cross decreases from 1 to 13, since the electric field changes.

Figure 8.4a shows the magnetoresistance traces 1-13 along line II. Starting from
trace 1 towards trace 13, we find series of traces with or without beating, depicted
in blue and red, respectively. For traces 1-3, at large electron density, beating is
observed fromwhich we extract2 Δ𝑛ZF = 1.7 ⋅10 m . Remarkably, traces 4 and 5
do not show any beating, therefore no zero-field density difference can be extracted.
For traces 6-10, the beating revives, showing strong beating. Finally, traces 11-13
show no beating. Figure 8.4c depicts the extracted Δ𝑛ZF along line II, which shows
a nonmonotonic behavior as a function of gate voltage along line II.

In order to understand this nonmonotonic Δ𝑛ZF near the hybridization gap
(points 1-10), we performed band structure calculations of our InAs/GaSb quan-
tum well. The Δ𝑛 extracted from these calculations is plotted in Fig. 8.4d, which
qualitatively agree with the observed dip in Δ𝑛ZF at points 4 and 5 (Fig. 8.4c). In
order to understand the simulated Δ𝑛, the band structure near the hybridization
gap is depicted in the inset of Fig. 8.4d (the zoom-in on Fig. 8.4b indicated by the

2We cannot directly extract the spin-orbit strength from this by comparing to the single-carrier case,
since the effective mass in this region is unknown.
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Figure 8.4 – Spin-splitting in the two-carrier regime. aMagnetoresistance traces for points 1 to
13 along line II indicated in Fig. 1. For each trace the ( ) background resistance is subtracted
and afterwards the traces are offset by 100 . Beating is (not) observed for (red) blue colored traces. b
Schematic band structure tuning when moving from point 1 to 13. c ZF extracted from the Fourier
transform of magnetoresistance traces (see Fig. 8.S5) of a. Error bars are indicated by the light blue bar.
d ZF extracted from band structure calculation for our InAs/GaSb quantum well at zero electric field.
The inset shows the corresponding band structure in the [100] direction.

red box). The blue and red lines represent different spin bands. The bands cross at
the black arrow, indicating the vanishing of Δ𝑛, such as observed in the experiment.
We found this feature to be robust for different electric fields and crystal directions,
see Fig. 8.S6. Interestingly, the crossing of spin bands implies a sign change in SOI
strength. Opposite signs of SOI can thus be reached by adjusting the chemical po-
tential. Usually, electric fields are applied to reach such a sign change [227].

Note that only a qualitative comparison between experiment and calculations is
possible as only theFermi energy is varied in the simulation, while in the experiment
the band structure (𝑘cross) and Fermi energy are expected to change. The fact that
Δ𝑛ZF in Fig. 8.4d does not completely vanish is because the crossing of the spin
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bands in the [110] occurs at a slightly different energy than in the [100] direction.
The lack of beating of traces 11-13 is not captured with the simulation. There are

two possible reasons for this deviation. First, a strong asymmetry in SdH ampli-
tudes of the two spin species (𝐴up ≫ 𝐴down) determines the visibility of the beating
pattern. The single spin band SdH oscillation amplitude depends on effective mass
𝑚∗ and scattering time according to 𝐴SdH ∼ (𝑒𝐵/𝑚∗) exp(−𝜋/𝜔 𝜏) [228]. Both the
effective mass and scattering time for the two spin bands become very dissimilar
when approaching the hybridization gap (Fig. 8.S7), resulting in a reduced visibil-
ity below the experimentally detectable value. Second, Nichele et al. [211] shows
there is an energy window with only one single spin band present. In such a spin-
polarized state no beating can occur. Here, we cannot discriminate between these
two reasons that explain the lack of beating in traces 11-13.

8.4. Conclusions
In conclusion, we presented a study of the spin-orbit interaction in an InAs/GaSb
double quantum well. The Fermi level and band structure are altered by top and
bottom gates. In the electron-only regime, we find an electric field tunable spin-
orbit interaction, and extract the individual Rashba and Dresselhaus terms. In the
two-carrier regime, we observe a nonmonotonic behavior of the spin splitting which
we trace back to the crossing of the spin bands due to the hybridization of electrons
and holes.

8.5. Supplemental Material
8.5.1. Supplementary Figures

Figure 8.S1 –Number of oscillations in a beat. Number of SdH oscillations in beat A ( ), beat B
( ) and the sum ( ) for each trace in Fig. 2a of themain text. The two trends discussed in themain
text are clearly visible here. First, moving from point 1 to 10 the asymmetry ( )/( )
increases. Second, the total number of oscillations increases.
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traces ( ) for points 1 to 9. Traces are offset by 20 . c Fourier transforms of the traces inb, showing
that the center frequency shifts together with the outer frequency peaks. This density dependence of the
central frequency peak excludes MIS and MPR.
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Figure 8.S5 – Fourier transforms for the 13 points along line II in the two-carrier regime.
All traces are normalized such that the maximum is set to 0.8 a.u.
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8.5.2. Fourier Transforms
The Fourier transforms in thismanuscript are obtained using the followingmethod.
Starting from amagnetoresistance curve, first a magnetic field range is chosen. The
lower bound is fixed at 0.15 T. The upper bound is chosen such that the interval ends
at 40% of a beat maximum. Truncating the signal in this way causes minimal devi-
ation from the true frequency components. Next, the background resistance is es-
timated using a 6th order polynomial fit, which subsequently is subtracted from the
signal. The remaining signal is interpolated on a uniform grid in 1/𝐵 and padded
with zeros on both sides. No extra window function is applied. A fast Fourier trans-
form converts the signal to the frequency domain 𝑅(𝜔) and the power spectrum is
obtained using 𝑃(𝜔) = 𝑅(𝜔) × 𝑅∗(𝜔). All Fourier transforms are normalized such
that the maximum is 0.8 a.u.

8.5.3. Details on the Landau level simulation
This section describes the calculations used to simulate the magnetoresistance
traces to extract the Rashba and Dresselhaus coefficients as shown in Fig. 3a of
the main text. We closely follow the method presented in Ref. 228 and Ch. 4 of
Ref. 192.

For convenience, we repeat the Hamiltonian presented in Eq. 1 of the main text:

𝐻 =
(�̂� + �̂� )
2𝑚∗ 𝜎 + 𝛼(�̂� 𝜎 − �̂� 𝜎 )/ℏ + 𝛽(�̂� 𝜎 − �̂� 𝜎 )/ℏ

+𝛾(�̂� �̂� �̂� 𝜎 − �̂� �̂� �̂� 𝜎 )/ℏ + 12𝑔𝜇 𝐵 𝜎 .
(8.S1)

For the perpendicular magnetic field 𝐵 = (0, 0, 𝐵 ), the symmetric gauge A(𝑥, 𝑦) =
(−𝑦, 𝑥, 0) is used. The canonical momentum can be written as

�̂� = −𝑖ℏ∇ + 𝑒A. (8.S2)
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Raising and lowering operators are defined as

𝑎 = 𝜆
√2ℏ

(�̂� + 𝑖�̂� ) ,

𝑎 = 𝜆
√2ℏ

(�̂� − 𝑖�̂� ) ,
(8.S3)

where 𝜆 = √ℏ/𝑒𝐵 is the magnetic length. The raising operators act on the Landau
levels, i.e. 𝑎 |𝑛, ↑⟩ = √𝑛 + 1 |𝑛+1, ↑⟩. Themomentumoperators are rewritten in the
raising and lowering operators, which are then substituted into the Hamiltonian.
We take a basis of 𝑁 = 400 Landau levels in order to capture magnetic fields ≳ 0.1
T for the electron density 𝑛 ≃ 17.6 ⋅ 10 m . Solving the Hamiltonian results in
the Landau level energies at a particular magnetic field 𝐸(𝑛, 𝐵 ).

Following Luo et al. [228] the conductance is written as:

𝜎 = 𝑒
𝜋 ℏ ∑

,↑↓
(𝑛 ± 12)exp(−

(𝐸 − 𝐸 ,↑↓)
Γ ) . (8.S4)

We assume a fixed Fermi energy at 𝐸 = (𝜋ℏ 𝑛 )/𝑚∗. To obtain the resistivity we
use the approximation that for quantizing magnetic fields 𝜎 ≫ 𝜎 so that the
transverse resistivity 𝜌 is given by [228]:

𝜌 = 𝜎 /(𝜎 + 𝜎 ) ≈ 𝜎 /𝜎 ≈ 𝜎 (𝐵 /𝑒𝑛 ) (8.S5)
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The experiments presented in this thesis are related to various components of
the Majorana box qubit (MBQ). We developed superconducting islands (SC) and
gate-based readout in proximitized InAs nanowires, and characterized InSb and
InAs/GaSb 2D electron gases (2DEGs) which might be used for realizing topologi-
cal superconducting networks.

In this chapter, we propose a series of experiments that further work towards re-
alizing a MBQ, using the results presented in this thesis. The first experiment aims
at distinguishing Majorana zero modes (MZMs) from quasi-Majoranas. Quasi-
Majoranas are zero energy states which occur in proximitized, spin-orbit coupled
nanowires in a magnetic field near a smooth potential [67, 229, 230]. They can
mimic Majorana signatures such as quantized zero bias conductance, the fractional
Josephson effect, and the hybridization between a quantum dot (QD) and a MZM;
and may even be used to demonstrate non-Abelian statistics [67, 230]. However,
they are at best partially separated in space, and hence, not immune to local pertur-
bations. The second experiment probes the cotunneling through aMajorana island.
This process is central for MBQ readout, and can already be investigated in a single
nanowire. Finally, we propose tomeasureMajorana parity fluctuations as an initial
experiment for theMBQ itself. However, before we dive into these experiments, we
start with a discussion on the available material platforms.

9.1.Materials
For the experiments in this thesis, various material systems have been used. It is
interesting to compare these systems among themselves and alternatives for two
reasons: one, other materials might have favourable properties to induce a topo-
logical state, and two; ultimately, a nanowire network is necessary to construct a
MBQ.

For the first aspect, we restrict the discussion to vapour-liquid-solid (VLS)
nanowires. Here, InSb nanowires are an interesting alternative for InAs nanowires.
Compared to InAs, InSb has a larger 𝑔-factor (8-15 for InAs versus 40-50 for InSb
[25]) which lowers the required magnetic field to drive the wire into the topological
regime. Also, the electron mobility in InSb is larger than in InAs which might pre-
vent unwanted quantum dots in the tunnel barriers. This hypothesis is supported
by the observation of quantized conductance and ballistic Majorana signatures in
InSb wires [188, 231]. In addition, quantized zero bias conductance peaks have
been observed in InSb wires proximitized with an aluminium shell [36]. On the
other hand, nanofabrication might be more difficult on InSb, because its maximum
allowed processing temperature is lower. As such, fabrication recipes cannot be
directly transferred from InAs to InSb. We mainly expect difficulties for the depo-
sition of the AlOx layer as it occurs at elevated temperature. Besides, the selectivity
for the aluminium etch might be different for the two materials.

Going forward, nanowire networks need to be developed. These networks can
be defined both with top-down as with bottom-upmethods. In the top-downmeth-
ods, one starts with a 2D system and defines the desired structure via either gating
or etching. This approach has been investigated in this thesis, and has the advan-
tage that one can start with a clean, high mobility system as evidenced by the quan-
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tized conductance observed in Chapter 7, and low-onset field for the Shubnikov-de
Haas oscillations reported in Chapter 8. Between InSb and (the electron system
in) InAs/GaSb1, the former seems a more promising platform for topological net-
works, because InAs/GaSb is difficult to gate due to the proximity of the hole band
[205], and accumulates electrons at edges defined through etching [232]. Recently,
induced superconductivity in an InSb 2DEGhas been reported togetherwith the ob-
servation of a 𝜋-junction in a parallel magnetic field, indicating significant progress
towards creating a topological state [233]. Besides InSb, InAs-Al 2DEGs are inter-
esting candidates for the top-down approach [234]. In this system, initial MZM
signatures have already been demonstrated [235]. In the bottom-up approach, the
network is defined when the crystal is grown, using, for example, selective area
growth (SAG) [174, 236], or directed nanowire growth [172]. In this approach, no
additional gates (or etching steps) are needed to define the 1D structures. How-
ever, the mobility in these structures is lower than for the 2D systems. Here, we
note that it is not clear to what extent the high mobility of the 2D systems drops
once 1D structures are defined.

To summarize, there aremultiple routes to realize nanowire networks, andmore
research is needed to determinewhich one ismost suitable forMBQs. An important
aspect relates to yield, including both the yield for basic device operation such as
working gates and contacts; as the yield with which the device can be tuned into the
topological phase. At the moment, the shortest route for realizing a MBQ seems to
be using InAs-Al 2DEGs. Signatures of MZM have already been observed in this
platform (as mentioned above). Moreover, a recent study reports measurement
of a superconducting island embedded in an Aharonov-Bohm loop, showing the
applicability of this platform for creating complicated devices [237]. For the two
wire experiments discussed below, we recommend using InSb nanowires for the
better prospect in reaching the topological regime.

9.2. Current-phase relation of a SCPT
In Chapter 4, we studied the gate-charge modulation of the switching current of
a single-Cooper-pair transistor (SCPT) as a function of parallel magnetic field. In
this section, we propose to extend thesemeasurements, and record the full current-
phase relation (CPR) of the SCPT. This allows to distinguish a zero energy state
(indicated by a 1𝑒-period modulation) due to Majoranas from a state due to quasi-
Majoranas [238, 239].

Figures 9.1a and b explain the experiment in more detail. For the Majorana
case, a Cooper-pair can be transferred from the left to right lead by coupling to
both MZMs. First, the pair tunnels into the spatially-separated Majorana pair, af-
ter which it tunnels out of the same Majorana pair. The amplitude for this process
scales with 𝛾 𝛾 = 1, and is thus independent of the Majorana parity. For quasi-
Majoranas, on the other hand, a Cooper-pair in the left lead can tunnel into the
island via the left quasi-Majoranas and out to the right lead via the right quasi-
Majoranas. This process scales with 𝛾 𝛾 𝛾 𝛾 , resulting in a parity-dependent sign
1Here, we do not consider the 2D topological insulator state in InAs/GaSb.



9

114 9. Outlook

(or direction) of the supercurrent [238]. Hence, a measurement of the CPR of a
SCPT as a function of gate-charge should be able to distinguish betweenMajoranas
and quasi-Majoranas2. However, when the Cooper-pairs can only couple to one of
the quasi-Majoranas, similar to the situation described in Ref. 230, we expect the
same parity-insensitivity for quasi-Majoranas as for Majoranas. Still, the lack of a
𝜋-phase shift is a necessary condition for MZMs. Moreover, this experiment can
exclude models for which both quasi-Majoranas couple to the lead.

To measure its CPR, the SCPT can be embedded in an asymmetric DC SQUID
with the critical current of the reference junction much larger than the critical cur-
rent of the SCPT (see Fig. 9.1c). In this case, the applied phase bias fully drops
across the SCPT, and the CPR is directly measured by an 𝐼 versus phase scan.
Typically, the switching current of the SCPT is 1-5 nA (see Chapter 4), requiring a
switching current through the reference arm larger than 50 nA. This condition can
be met using, for example, nanowires or Al/AlOx junctions [240]. Nanowires have
the advantage that they can be pinched-off, so that the SCPT can also be studied
without the reference arm. The conventional aluminium junctions, on the other
hand, have a well-known, sinusoidal CPR which allows for determining the exact
CPR of the SCPT.

Alternatively, the CPR of the SQUID can be measured by embedding it in a 𝐿𝐶
tank circuit [105, 241], see Fig. 9.1d. In this case, the Josephson inductance of the
SCPT, and hence the resonance frequency of the circuit, changes due to the phase
modulation of the switching current. With this approach the full CPR can be mea-
sured in a single phase sweep and a short integration time, making it easier to ex-
plore the parameter space. Also, it enables using a RF SQUID design where the
reference junction is replaced by a shunt inductor.

In this follow-up experiment, the gate design of the SCPT employed in Chapter 4
can be improved by using the top gate design of the devices used in Chapters 5 and
6. These top gates have smaller cross-talk compared to the side- and global back
gates used in Chapter 4, making it easier to control the SCPT.

2 When Cooper-pairs can only couple to one of the Majoranas (in the long wire limit), supercurrent can
still flow through the SCPT if one quasiparticle is transferred through the continuum while the other
is transferred via the MZMs [239]. In this case, the supercurrent is also parity-dependent. However,
now the supercurrent is symmetric around the charge degeneracy points instead of asymmetric as for
the quasi-Majorana case.
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Figure9.1–Current-phase relationof a (quasi-)Majorana single-Cooper-pair transistor. a
For Majoranas, the gate-charge modulation of the switching current is parity independent. Whereas for
quasi-Majoranas b, there is a -phase difference between the switching current of the different parity
branches. c The current-phase relation (CPR) can be measured by embedding the single-Cooper-pair
transistor (SCPT) in a DC SQUID. When , ≫ , , the flux bias fully drops across the SCPT,
and the flux modulation of the switching current is given by , ,

max
, cos ( / ).

The lower panel of c shows this modulation for the Majorana (green) and the quasi-Majorana (blue)
case at the gate-charge indicated by the dashed line in a, b. d The CPR can also be measured using RF
reflectometry. The (flux dependent) Josephson inductance of the SCPT changes the resonance frequency
of the tank circuit, and thereby imparts a phase shift on the reflected probe field. The lower panel of
d shows the phase response of this circuit for the Majorana (green) and the quasi-Majorana (blue) case
at the gate-charge indicated by the dashed line in a, b. For the simulation, we used pH,
pF, pF, and max

, nA, resulting in a bare resonance frequency of ≈ MHz. To fabricate
the shunt inductor, the kinetic inductance of a NbTiN film could be used. For the shunt capacitor one
could use a parallel plate geometry. Panels a and b are adapted from [238].
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9.3. Double dot coupling through a Majorana island
In this section, we propose to measure the charge hybridization between two dis-
tant quantum dots through cotunneling via aMajorana island. With a conventional
superconducting island, one expects that this coupling decays exponentially in the
length of the SC. However, for a Majorana island, the QD hybridization is nearly
length independent due to the non-local nature of the MZMs. We propose to mea-
sure this hybridization using gate-based sensing. From such an measurement, we
could extract the attainable cotunnel coupling, which is an important figure ofmerit
for MBQ readout. This experiment builds on the QD-SC experiment reported in
Chapter 6, and is based on theoretical work described in Refs. 242, 243.

The eigenstates of aQD-SC-QD (see Fig. 9.2a) can be labelledwith |𝑛 , 𝑛 , 𝑛 , 𝑁⟩,
with 𝑛 , indicating the occupation of the QDs, 𝑛 the occupation of the nonlocal
fermionic state formed by the twoMZMs, and𝑁 the number of Cooper-pairs on the
island. For simplicity, we only consider states with an even number of particles in
the combined system. In the odd Coulomb valley of the SC (e.g., around 𝑛 = 1),
the state of the SC is odd (𝑛 = 1 and 𝑁 = 0), and the groundstate is a linear com-
bination of |0110⟩ and |1010⟩. These states are coupled via second-order tunneling
through theMZMswith |1100⟩ and |0001⟩ as the possible virtual states. The former,
|1100⟩, is reached by so-called normal tunneling where the particle in the nonlocal
fermion tunnels to the emptyQD. The latter, |0001⟩, couples upon so-called anoma-
lous tunneling where the particle in the nonlocal fermion condenses together with
the particle in the QD into a Cooper-pair. The coupling between |0110⟩ and |1010⟩
remains finite in the whole odd Coulomb valley of the island, although it is sup-
pressed by the charging energy 𝑡 ∝ 𝑡 𝑡 /𝐸 , with 𝑡 , the tunnel coupling fromQD ,
to 𝛾 , . In addition, the hybridization between the dot is sensitive to the detuning,
𝜖 −𝜖 , between the dots. However, the coupling is independent of the length of the
island due to the presence of the MZMs.

In the even Coulomb valleys of the island (e.g., around 𝑛 = 0), the situation
is different. Now, the ground state is a linear combination of |0000⟩ and |1100⟩.
To couple these states, which have a different total number of particles, one should
introduce a Josephson coupling by connecting the SC to ground via a Josephson
junction in a three-terminal geometry (see Fig 9.2b). Now third-order processes
consisting of normal, anomalous, and Josephson tunneling connect the two states.
In this case, the coupling is strongest when 𝜖 = −𝜖 , so that |0000⟩ and |1100⟩
have the same energy. Moreover, the coupling is only significant in a small region
around 𝑛 = even with width ∝ 𝐸 /𝐸 [242].

The coupling between the distant quantum dots can be measured using disper-
sive gate sensing. If 𝐸 = 0, we expect a finite frequency shift in the odd valleys,
but no frequency shift in the even valleys. Since the frequency shift is inversely
proportional to the coupling, we expect the largest signal around 𝑛 = odd where
the energy gap due to charging effects is highest. For finite 𝐸 , an additional peak
in the frequency shift around 𝑛 = even can appear. The two different peaks can
be distinguished by tuning the onsite energy of the QDs; The coupling in the odd
(even) valley is largest when the QD level alignment is symmetric (asymmetric). An
important feature for theMajorana-mediated coupling is that it is insensitive to the
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Figure 9.2–Majorana-mediated double dot hybridization. With the sample geometry in a (and
a global even parity), the QDs can be coupled when the Majorana island is in the odd Coulomb valley. b
The Josephson coupling to a third terminal makes it possible to change the number of particles in the
system. Now the QDs can also hybridize when the Majorana island is in the even Coulomb valley.

length of the island. It is therefore interesting to measure the coupling between
distant QDs for various SC lengths.

In an extension of the experiment, the coherent coupling between the distant
QDs can be studied inmore detail using photon-assisted cotunneling, following ref.
244. Furthermore, this Majorana-mediated coupling can be use to realize long-
distant coupling of spin qubits. As an initial experiment in that direction, we pro-
pose to construct a singlet-triplet qubit using the two QDs [162, 245]. Coupling be-
tween Majoranas and spin qubits could be useful for implementing arbitrary single
qubit rotations on Majorana qubits [246, 247].

9.4.Majorana parity readout
Finally, we discuss an initial implementation of the MBQ for which the double QD
(DQD) is only connected to one pair of MZMs [17, 18]. This configuration is also
referred to as the loop qubit due to its geometry, see 9.3a. This qubit can only be
readout in the 𝑧 = 𝑖𝛾 𝛾 basis which is insufficient for executing topological oper-
ations. Still, we think the loop qubit is an important milestone because it can be
used to test the parity readout of MZMs. Here, we propose to employ this readout
tomeasure the fluctuations inMajorana parity due to poisoningwith quasiparticles.

TomeasureMajorana parity fluctuations, a large contrast between the even and
odd parity signals is needed. To tune the MBQ to a good readout point, the flux
dependence of the tunnel coupling of the DQD can be measured. The flux mod-
ulates the tunnel coupling with a 2𝜋 period due interference of single electrons,
see Fig 9.3b. For maximum contrast, the tunnel coupling 𝑡 through both arms
should be equal, so that, for 𝜑 − 𝜑 = 𝑛𝜋 with integer 𝑛, there is complete con-
structive/destructive interfere depending on the parity of the Majorana pair, see
Eq. 2.32. For the DQD measured in Chapter 5, we found a maximum signal-to-
noise ratio (SNR ≈ 2 in 1 μs) for a tunneling amplitude of 5 GHz. For the MBQ,
this translates to 𝑡 = 2.5 GHz through both arms to achieve maximum contrast
and large SNR. We note that this optimal coupling might be setup/sample depen-
dent, and that it should be calibrated for each box qubit independently. The optimal
value of 𝑡 = 2.5 GHz seem realistic; a crude estimation using 𝑡 ≈ 𝑡 /𝐸 , with
𝐸 ≈ 100μeV gives 𝑡 ≈ 16 GHz, well within the range of tunnel coupling measured
in chapter 5. However, we note that MZM-QD coupling could be different from
QD-QD coupling [248], and experiments, such as the one proposed in the previ-
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ous section, should provide a better picture of the attainable cotunneling couplings.
With the readout tuned, we can measure the Majorana parity lifetime by monitor-
ing the signal as a function of time 𝑋 (𝑡). Figure 9.3d shows a typical time trace,
simulated with a SNR of 2 and an integration time much shorter than the typical
parity lifetime. Clearly, the signal jumps between two values 𝑋 , , indicating that
the parity fluctuations can be resolved.

simulation

a b

c d

φ

Figure 9.3 –Majorana parity readout in a Majorana box qubit. aMinimal setup to do a Ma-
jorana parity measurement using a Majorana box qubit. Because of the loop, this device is sometimes
referred to as the loop qubit. b Tunnel coupling between the dots as a function of flux through the loop
for different parity states (with even/odd in blue/green). When with integer , the con-
trast between the parity states is maximal. c Energy spectrum of the double dot at the point of maximal
contrast. d Time trace of the reflected signal showing parity fluctuations. For this simulation, we
used an exponential distribution for the parity switches with even 100 int and odd 50 int, and a
signal-to-noise ratio of 2.
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