
 
 

Delft University of Technology

Air traffic assignment based on daily population mobility to reduce aircraft noise effects
and fuel consumption

Ho-Huu, Vinh; Ganić, Emir; Hartjes, Sander; Babić, Obrad; Curran, Richard

DOI
10.1016/j.trd.2019.04.007
Publication date
2019
Document Version
Accepted author manuscript
Published in
Transportation Research Part D: Transport and Environment

Citation (APA)
Ho-Huu, V., Ganić, E., Hartjes, S., Babić, O., & Curran, R. (2019). Air traffic assignment based on daily
population mobility to reduce aircraft noise effects and fuel consumption. Transportation Research Part D:
Transport and Environment, 72, 127-147. https://doi.org/10.1016/j.trd.2019.04.007

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.trd.2019.04.007
https://doi.org/10.1016/j.trd.2019.04.007


1

Air traffic assignment based on daily population mobility to 
reduce aircraft noise effects and fuel consumption

Vinh Ho-Huua, *,†, Emir Ganićb, *,†, Sander Hartjesa, Obrad Babićb, Richard Currana

a Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The 
Netherlands 

b Faculty of Transport and Traffic Engineering, University of Belgrade, 305 Vojvode Stepe Street, Belgrade, 
Serbia

E-mails: v.hohuu@tudelft.nl (Vinh Ho-Huu)
e.ganic@sf.bg.ac.rs (Emir Ganić)
s.hartjes@tudelft.nl (Sander Hartjes)
o.babic@sf.bg.ac.rs (Obrad Babić)
r.curran@tudelft.nl (Richard Curran)

*Corresponding authors: v.hohuu@tudelft.nl; e.ganic@sf.bg.ac.rs
†These authors contributed equally to this work.

Abstract

The paper first investigates the influence of daily mobility of population on evaluation of 

aircraft noise effects. Then, a new air traffic assignment model that considers this activity is 

proposed. The main objective is to reduce the number of people affected by noise via 

lowering as much as possible the noise exposure level Lden of individuals or groups of people 

who commute to the same locations during the day. It is hereby intended to reduce the noise 

impact upon individuals rather than to reduce the impact in particular– typically densely 

populated – areas. However, sending aircraft farther away from populated regions to reduce 

noise impact may increase fuel burn, thus affecting airline costs and sustainability. Therefore, 

a multi-objective optimization approach is utilized to obtain reasonable solutions that comply 

with overall air transport sustainability. The method aims at generating a set of solutions that 

provide proper balance between noise annoyance and fuel consumption. The reliability and 

applicability of the proposed method are validated through a real case study at Belgrade 

airport in Serbia. The investigation shows that there is a difference between the number of 

people annoyed (NPA) evaluated based on the census data and the NPA evaluated based on 

the mobility data. In addition, these numbers differ significantly across residential locations. 

The optimal results show that the proposed model can offer a considerable reduction in the 
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NPA, and in some cases, it can gain up to 77%, while maintaining the same level of fuel 

consumption compared with the reference case.

Keywords: Air traffic noise; airport noise; aircraft noise; noise annoyance; fuel consumption; 

multi-objective optimization.

1. Introduction

Proper allocation of aircraft to departure and arrival routes may play an important role in 

reducing aircraft noise effects on communities located near airports, and this issue has 

attracted considerable attention of researchers and authorities over the years. Although this 

topic has been well studied, research is often conducted based on census data, and hence it is 

assumed that people remain at the same location throughout the day. In reality, however, 

people spend substantial portion of the day at school, work or other places outside their 

homes. Consequently, analyses of daily population mobility have been considered in many 

transportation studies (Hatzopoulou and Miller, 2010; Jiang et al., 2017; Kaddoura et al., 

2016; Novák and Sýkora, 2007) as an important factor for a more precise estimation of noise 

effects. Nevertheless, there is a lack of this kind of research for air traffic assignment 

problems. This paper, therefore, first investigates the influence of population’s daily mobility 

upon evaluation of aircraft noise effects. Then, a new air traffic assignment model that takes 

daily movement of population into account is proposed. In the proposed model, the main 

objective is to minimize the number of people affected by aircraft noise while maintaining 

fuel consumption as low as possible. In order to achieve this purpose, a multi-objective 

optimization approach is utilized herein. The method aims at producing a set of solutions that 

are able to deliver a proper balance between conflicting objectives, i.e., noise annoyance and 

fuel consumption. An extensive review of the literature that served as the background and that 

motivated the authors to conduct this research is presented below.
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Over the years, significant efforts have been devoted to relieving the noise impact as well 

as to reducing fuel consumption and pollutant emissions. At the European level, a legislative 

framework has been introduced, namely the Environmental Noise Directive 2002/49/EC 

(END) (EC, 2002) for the assessment and management of environmental noise. The Directive 

regulated the obligation to develop strategic noise maps and noise action plans with the aim of 

avoiding, preventing and reducing the harmful effects of noise on public health, and these 

have been successfully implemented at many airports (Glekas et al., 2016; Vogiatzis, 2014, 

2012). After more than 15 years of enforcement, both the implementation review and the 

evaluation of END have been done twice so far, addressing questions related to effectiveness, 

efficiency, coherence, relevance and EU added value (European Commission, 2016). In 

addition, common noise assessment methods (CNOSSOS-EU) for the determination of the 

noise indicators Lden and Lnight have been adopted by the EC through the revision of Annex II 

of the END in 2015 (Coelho et al., 2011; Kephalopoulos et al., 2014; Vogiatzis and Remy, 

2014). CNOSSOS-EU has been developed to improve the consistency and the comparability 

of noise assessment results across the EU member states, providing a harmonized framework 

for assessment of each noise source covered by END. Upon the release of the Directive, 

numerous initiatives to reduce fuel consumption and emissions have been launched in recent 

years, as well. The examples include the Atlantic Interoperability Initiative to Reduce 

Emissions (AIRE)1, Asia and South Pacific Initiative to Reduce Emissions (ASPIRE)2, ACI 

Airport Carbon Accreditation3, and the European Advanced Biofuels Flightpath4. 

In addition to the above initiatives that require enormous budgets and focus more on 

strategical levels, at a practical level it has been observed that the variation of aircraft/airport 

operational procedures is one of the feasible options that could bring short-term 

1https://ec.europa.eu/transport/modes/air/environment/aire_en (assessed 9 September 2018)
2https://aviationbenefits.org/case-studies/aspire/ (assessed 9 September 2018)
3https://www.airportcarbonaccreditation.org/ (assessed 9 September 2018)
4https://www.biofuelsflightpath.eu/about (assessed 9 September 2018)
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improvements and could be less costly (Marais et al., 2013). From this perspective, literature 

shows that research efforts in designing optimal departure and arrival routes with less noise 

and fuel burn have been well studied over the past decades, and various strategies have been 

proposed (Prats et al., 2011; Visser, 2005; Visser and Wijnen, 2001). Recently, with the 

utilization of multi-objective optimization techniques, research has also demonstrated that the 

obtained optimal routes are beneficial not only from the noise perspective, but also in terms of 

fuel burn (Ho-Huu et al., 2017; Vinh Ho-Huu et al., 2018; Torres et al., 2011; Zhang et al., 

2018). In addition to efforts invested to improve environmentally friendly departure and 

arrival routes, optimal distribution of aircraft and operational procedures to specific routes 

could also contribute significantly to environmental impact decrease (Frair, 1984; Heblij et 

al., 2007; Kuiper et al., 2013; Netjasov, 2008; Nibourg et al., 2012; Zachary et al., 2011, 

2010).

In order to assess the impact of flight operations on communities located near airports, it 

is critical to include distribution data of populations in the vicinity of airports, as done in a 

number of previous studies. However, census data takes into account only the homes of 

people, whereas, in reality, people spend substantial portions of the day at work, school, 

university or other places away from their residential locations. Consequently, the population 

may experience noise exposures which are very different from the ones predicted when using 

only the census data. One of the first studies that has called attention to the drawback of 

relying on census data was carried out by Ott (1982). In this study, the author shows that 

employees and students usually spend a long time away from their residential locations, and 

this leads to a different overall impact of, in this case, air pollutants. The same observation is 

also recognized in a recent study by Kaddoura et al. (2017). In this work, the authors suggest 

that the evaluation of population’s exposure to road traffic noise should take spatial and 
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temporal variations in the population into account, because the use of static data would lead to 

an overassessment. 

One of the first air traffic assignment studies that takes daily mobility of population into 

account was done by Ganić et al. (2018). In this study, however, the evaluation of noise 

effects is based only on the change of population at several locations through three different 

periods of day, and is hence treated as three separate optimization problems. Furthermore, the 

model of air traffic assignment developed in Ganić et al. (2018) has some limitations, as well. 

The problem was formulated as a binary nonlinear optimization problem, in which, for each 

operation, every feasible assignment of routes was considered a decision variable. Therefore, 

the size of the problem is rather large and hence it is difficult to solve the problem when the 

number of aircraft operations increases. In addition, only the noise objective is considered, 

while fuel consumption and local air quality are not considered, and these may very well be 

adversely affected. 

Motivated by the above limitations, the authors of this paper considered the information 

on daily mobility of population in the air traffic assignment model. To evaluate whether the 

inclusion of mobility data is necessary or not, the influence of census and mobility data on 

evaluation of noise effects is investigated first. Then, a new air traffic assignment model that 

is capable of taking daily mobility of population into account is developed. In order to reduce 

the number of people affected by aircraft noise, the noise exposure level Lden is calculated for 

each individual or group of people who commute to the same locations during an entire day 

from 00:00 to 24:00 hours. Afterwards, a noise annoyance criterion recommended by EEA 

(2010) is employed to obtain the number of people annoyed. Furthermore, to acquire optimal 

solutions which are able to balance between noise impact and fuel consumption effectively, a 

bi-objective optimization problem is formulated. In addition, since the considered problem is 

an integer nonlinear multi-objective optimization problem, it is rather difficult to solve it by 
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nonlinear optimization programming models as applied in Ganić et al. (2018). To allow the 

problem to be solved with a multi-objective evolutionary algorithm, a new problem 

formulation is proposed. In the proposed formulation, each operation is considered a decision 

variable, and its feasible assignments of routes, after taking into account wind conditions, 

runway configurations and separation minima, are considered its search space. With the 

application of this formulation, the size of the problem reduces significantly, and hence the 

problem can be solved effectively by employing an evolutionary algorithm. The proposed 

approach is then applied to a real case study at Belgrade airport in Serbia. 

The structure of the paper is as follows. In Section 2, first the problem definition is 

presented, and then the mathematical formulation and data preparation are described in detail. 

Section 3 provides a brief description of the optimization method, namely the non-dominated 

sorting genetic algorithm (NSGA-II) which is applied to solve the formulated problem. The 

Belgrade airport case study is presented in Section 4. The results and discussion are presented 

in Section 5. Finally, some conclusions, remarks and ideas for future work are presented in 

Section 6.

2. Problem definition

This section presents the model of the air traffic assignment problem in detail. The main idea 

of the formulated problem is to assign aircraft to suitable routes with the aim of minimizing 

noise impact on communities close to the airport and fuel consumption. First, the 

mathematical form is presented. Then, the preparation of the input data is described. 

2.1. Mathematical formulation

The mathematical model of the optimization problem is formed based on several assumptions 

which are explained in detail in subsection 2.2. The model is described through three 

components: notations, decision variables, and objective functions, as follows. 
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Notations:

O is the set of aircraft movements departing from and arriving at an airport during a 

considered day;

Si is the set of feasible routes to which aircraft movement i can be assigned, and which takes 

into account runway configuration, wind conditions and separation minima, iO;

L is the number of considered locations;

J is the set of individual persons or groups of people commuting to the same location during 

an entire day (from 00:00 to 24:00 hour); 

T is the number of time periods;

SELitl is the sound exposure noise level (SEL) generated by the movement i at the time t and 

the location l, iO, tT, lL;

pj is the number of people in the group of people j who commute to the same location at the 

same time during the day, jJ;

Decision variables:

xi is an integer design variable of route assignment of the movement i, which is selected from 

the set of feasible operational options Si (xi Si). It should be noted that the noise level SEL 

at all locations in L and the fuel consumption for an entire flight are predefined for each 

option within Si. 

x is the vector of the design variable xi, containing the optimal assignments of all movements 

to routes. 

Objective functions:

With the aim of finding optimal solutions that are capable of balancing effectively between 

the number of people affected by aircraft noise and fuel consumption, an optimization 

problem with two objectives is considered. The first one is the total number of people 

annoyed (hereinafter referred to as NPA), which is defined as follows:

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413



8

)( % j j
j J

NPA PA p


 x (1)

where %PAj is the percentage of the group of people j who are annoyed due to being exposed 

to a certain level of aircraft noise. According to EEA (2010), it is based on the Lden cumulative 

noise metric, and estimated as follows: 

6 3
den

2 2
den den

% 8.588 10 ( – 37)  

              1.777 10 ( – 37)  1.221 ( – 37)

j j

j j

PA L

L L





  

 
(2)

where Lden j is the day-evening-night noise level to which the group of people j is exposed 

during the day, and it is determined as follows:

den
10

den 10
110log 10 ,

itl

j

SEL w

d i O t T
L j

T



 

  
   

    


(3)

where is the weighting factor to account for day, evening and night time den {0,5,10}w 

operations, and it is defined based on the time at which the movement i takes place. Td is the 

considered time period of an entire day in seconds (Td = 243600 seconds). It should be noted 

that, for further analyses in the later sections, the number of people who are highly annoyed 

(hereinafter referred to as NPHA) is used as well. This criterion is also developed by EEA 

(2010) and defined as follows:

) %( j j
j J

NPHA PHA p


 x (4)

where %PHAj is the percentage of the group of people j who are highly annoyed due to their 

exposure to a certain level of aircraft noise, and it is calculated by

5 3
den

2 2
den den

% 9.199 10 ( – 42)  

                3.932 10 ( – 42)  0.2939 ( – 42)

j j

j j

PHA L

L L
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The second objective is the total fuel burn. The EMEP/EEA air pollutant emission 

inventory guidebook – 2016 (Part B: sectoral guidance chapters, 1.A.3.a Aviation 2016) 

(Winther et al., 2017) is used to calculate the fuel consumption for each operation. 

Particularly, the LTO and Master Emission calculators in Annex 5 of this document, which 

use the data from the ICAO Aircraft Engine Emissions Databank (ICAO, 2017), are applied. 

These calculations have been done in the previous study (Ganić et al., 2018), and they are 

again to be used in this research. Then, the fuel objective is defined as follows:

) ( )( i
i O

fuelT uf el x


 x (6)

where fuel(xi) is the fuel consumption for the movement i. 

2.2. Data requirements

As described in the notations, the model needs the following input data:

 air traffic data,

 departure and arrival routes for each runway with a predefined set of feasible routes,

 population locations, 

 noise data for each location caused by all aircraft operating on all feasible routes,

 fuel consumption of all aircraft operating on all feasible routes,

 population data,

 daily mobility patterns.

The air traffic data includes information about origin and destination, aircraft type, actual 

take-off time, arrival time, and runway in use. This information can be obtained from Air 

Traffic Control. Real radar data can be used to represent departure and arrival routes, or the 

routes can be obtained from Aeronautical Information Publication (AIP). In this research 

radar data were used. Runway configuration, wind condition forecasts from METAR reports 
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and separation minimum are taken into account to determine the set of feasible routes for each 

aircraft operation. 

The noise levels caused by each aircraft movement on all feasible routes need to be 

determined a priori and stored in a database. The locations at which the noise is determined 

coincide with the census data and the data on population’s daily mobility. Considering the low 

level of detail required for this research, each settlement can be represented as a single point, 

i.e., location since it is not required to observe each housing unit in particular.

The fuel consumption is calculated by using the EMEP/EEA air pollutant emission 

inventory guidebook – 2016 (Winther et al., 2017). Fuel burn for Landing and Take-Off 

(LTO) flight phases is assessed by using the origin and destination information of airports, as 

well as aircraft type (engine type, number of engines), duration for each LTO phase (taxi, take 

off, climb out, approach) and rate of fuel burn (kg/s/engine). For Climb/Cruise/Descent 

(CCD) flight phases fuel consumption is calculated based on CCD stage length and aircraft 

type.

Static population data are collected for each location based on the census data. Census 

data essentially represent home addresses of the population. To account for daily mobility 

patterns the population is divided into groups of people commuting to the same locations 

during the day at the same time period. Daily mobility presented in this paper includes a 

special form of spatial mobility of economically active populations (who perform an 

occupation), pupils and students. This data for each municipality around the airport is 

available at National Statistical Office (Statistical Office of the Republic of Serbia, 2013).

3. Optimization algorithm 

As described in Section 2, the formulated problem is an integer nonlinear optimization 

problem with two objective functions. Thus, it is rather challenging to solve it using gradient-

based optimization methods or nonlinear programming models. The difficulties lie in two 
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aspects. Firstly, the decision variables are options that do not link directly to the objective 

functions, and hence they are difficult to solve with gradient-based optimization methods and 

nonlinear programming models. Secondly, even under the assumption that these models can 

be applied, they need to be combined with other techniques, such as weight methods, to solve 

the multi-objective optimization problem. Nevertheless, it is still hard to decide which weight 

vectors should be used. In addition, it is challenging to obtain a well-distributed Pareto front 

by applying these approaches when the considered problem is nonlinear. 

Fortunately, many evolutionary algorithms capable of effectively dealing with similar 

problem have been proposed in recent years. Among them, the non-dominated sorting genetic 

algorithm II (NSGA-II) proposed by Deb et al. (2002) has emerged as one of the most 

powerful methods. The algorithm has been successfully applied in various engineering 

applications, for instance, structural optimization problems (Thang et al., 2018; Vo-Duy et al., 

2017), scheduling problems (Martínez-Puras and Pacheco, 2016; Wang et al., 2017), 

allocation problems (Abouei and Taghi, 2018; Alikar et al., 2017), noise abatement departure 

trajectories (Hartjes and Visser, 2016), etc. 

The NSGA-II algorithm is the improved version of NSGA developed earlier by Srinivas 

and Deb (1994) with a fast non-dominated sorting procedure and a crowded-comparison 

technique. Due to the outstanding features of these techniques, the performance of NSGA-II 

has been significantly enhanced in comparison to the previous version. In NSGA-II, the 

optimization process is started with a random number of solutions called the initial population 

Pt, in which t is the generation. Then, for each candidate solution in the population, the 

objective functions are evaluated. In order to gradually evolve the population towards the 

optimal solutions, from the previous (parent) population, an offspring population Qt is 

generated by using genetic operators, such as tournament selection, crossover and mutation. 

Similarly, the objective function information of these solutions is also assessed. Next, both the 
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parent population and the offspring population are combined and denoted as Rt. From the 

combined population Rt, the fast non-dominated sorting procedure and the crowded-

comparison technique are applied to obtain a new population Pt+1 for the next generation. The 

algorithm repeats the same procedures until the maximum generation or a stopping condition 

is reached. Once the search process of the algorithm is terminated, the set of optimal solutions 

called the Pareto front is obtained. They are non-dominated solutions that can provide a sound 

basis for users to make decisions. A brief description of NSGA-II for one generation is shown 

in Fig. 1 (Deb et al., 2002). 

Rejected

Pt

Qt

Rt

F1

F2

F3

Pt+1

Crowding distance sortingNon-dominated 
sorting

Fig. 1. Illustration of NSGA-II procedure.

Due to its outstanding performance, NSGA-II has been implemented in various 

programming languages including MATLAB, which is used in this paper. However, this 

version handles only the optimization problem with continuous design variables. Therefore, to 

enable the algorithm to solve the presented problem with integer design variables, a rounding 

technique is applied. By using this technique, whenever the algorithm introduces new 

candidate solutions, these solutions are all rounded to their nearest integer values before their 

objective functions are evaluated. Although the technique is rather simple, it has been 

demonstrated to be effective when dealing with discrete and integer design variables in 

evolutionary algorithms (V. Ho-Huu et al., 2018).
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4. Case study: Belgrade Airport

In order to validate and demonstrate the reliability and applicability of the proposed approach, 

Belgrade Airport is selected as the case study in this paper. The airport is the largest and the 

busiest international airport in Serbia, located 18 km west of the Belgrade capital. With a 

single runway 3,400 m long (direction 12/30), the airport handled more than 5 million 

passengers and approximately 60 thousand aircraft operations in 2018. 

As presented in Section 2, detailed air traffic data is required to prepare the input data for 

the model. The operations on September 16th, 2016 were chosen as it was a summer day with 

relatively heavy traffic. In addition, some of the data have been already available from the 

previous study (Ganić et al., 2016), which included measured noise levels at locations near the 

airport as well. Daily traffic comprised of 220 operations, consisting of 109 departures and 

111 arrivals. The distribution of operations between runways was slightly in favor of runway 

12, which handled 128 operations (58.2%), while runway 30 was used for 92 operations 

(41.8%). Departure and arrival routes for each runway were obtained from the radar data 

(flightradar24.com) because the Standard Instrument Departure (SID) and Standard Arrival 

Routes (STAR) could be less accurate, as most aircraft are vectored at Belgrade Airport. 

From the radar tracks presented in Fig. 2a, 27 representative routes were selected, each 

representing a SID or STAR route. There are seven departure routes and seven arrival routes 

from runway 12 (Fig. 2b), and six departure routes and seven arrival routes from runway 30 

(Fig. 2c). Departure routes are marked blue, and arrival routes are marked red. Note that since 

operations in solutions obtained by the proposed model could be assigned to arrival/departure 

routes that are different from the ones assigned in the reference case (the base-case scenario), 

the routes shown in Fig. 2b and Fig. 2c are complemented by parts of the route which connect 

them with border corridors applied in the reference case. For more details, interested readers 

may refer to Ganić et al. (2018). Noise and fuel data have to be defined for each aircraft type. 
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For the observed day, the fleet mix consisted of 25 different aircraft types. However, in an 

effort to simplify the calculations, the aircraft were classified into 11 groups based on the 

similarity of aircraft types using principles of acoustic equivalency and noise significance 

(ECAC, 2016). Thereby, 85% of the operations are presented by the aircraft types that were 

actually operated that day, while the remaining 15% are presented by aircraft types that have 

approximately the same level of noise exposure and fuel consumption as their representative 

type. Table 1 shows the number of departure and arrival operations for different periods with 

different aircraft types that are categorized based on the INM (Federal Aviation 

Administration, 2007). The classification of these aircraft types in AzB databases is also 

provided and it can be used as an alternative when the AzB noise model is applied (AzB-08, 

2008; Isermann and Vogelsang, 2010).

Fig. 2. Radar data and representative departure and arrival routes (source: Flightradar24.com using QGIS).
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Table 1. Flight statistics and aircraft classifications
Departure Arrival

Aircraft type Assigned 
AzB class

INM airplane 
code Day Evening Night Day Evening Night

Boeing 737-300 S 5.2 737300 6 1 1 5 2 2
Boeing 737-800 S 5.2 737800 2 2 1 3 0 1
Airbus A319 S 5.2 A319-131 18 5 5 19 2 8
Airbus A320 S 5.2 A320-211 15 3 3 14 3 5
Airbus A330-200 S 6.1 A330-301 1 1 0 0 1 1
Beechcraft King Air P 1.4 CNA441 1 0 1 1 0 0
Cessna 560 XL S 5.1 CNA560XL 3 0 1 2 1 1
Swearingen Metroliner P 2.1 DHC6 3 1 0 3 0 1
ATR 42 P 2.1 DHC8 1 3 0 3 1 0
ATR 72 P 2.1 DO328 14 6 5 12 6 8
Embraer 190 S 5.2 EMB190 5 1 0 6 0 0

Total 69 23 17 68 16 27

The sound exposure levels (SEL) at each location caused by each aircraft type on the 

different routes are calculated by the INM software, which is used as input for the noise 

objective in the optimization model. For each operation, the standard INM profile settings are 

used and the fact that different aircraft types overfly locations at different altitudes and thrust 

settings is taken into account. In addition, different profile parameters for each aircraft type 

are also assigned, including take-off and landing weights, thrust and flaps settings, climb rate, 

and descent angle.

Before calculating the noise data, it is crucial to choose reasonable numbers and positions 

of locations for which the noise data and the population data will be obtained. Since the 

airport is surrounded by populated areas, 23 different municipalities are considered to be 

affected by aircraft noise, viz. 17 municipalities of Belgrade and 5 municipalities of Stara 

Pazova, Indjija, Irig, Ruma, Pecinći and Pančevo. In this case study, the SEL was calculated 

for 306 locations with each location representing one settlement in these 23 municipalities 

around the airport. Table 2 shows the population data and the number of settlements/locations 

for each municipality and for each period of time in accordance with human mobility patterns 

and 2011 census data (Statistical Office of the Republic of Serbia, 2013). 
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Table 2. Population data and the number of settlements for municipalities around the airport.
PeriodMunicipality Number of 

settlements
Census population 
(2011) 1 2 3 4 5

Barajevo 14 27,110 25,050 24,422 26,020 25,559 26,497
Čukarica 9 181,231 166,349 159,679 172,064 168,848 176,209
Grocka 15 83,907 76,011 73,679 78,942 78,573 81,748
Lazarevac 34 58,622 60,304 62,146 59,584 60,969 59,545
Mladenovac 22 53,096 51,297 51,024 52,022 52,108 52,752
Novi Beograd 16 214,506 222,238 226,900 218,799 222,321 217,613
Obrenovac 29 72,524 69,586 68,859 70,803 70,635 71,802
Palilula 13 173,521 176,540 174,006 175,343 172,061 172,950
Rakovica 13 108,641 96,108 90,980 100,827 98,808 104,699
Savski venac 1 39,122 75,290 88,058 61,474 65,749 49,778
Sopot 17 20,367 19,270 19,054 19,930 19,711 20,122
Stari grad 1 48,450 88,436 96,797 73,554 71,702 57,748
Surčin 7 43,819 41,546 41,638 42,342 43,130 43,544
Voždovac 24 158,213 160,242 155,406 159,370 153,766 156,380
Vračar 1 56,333 64,953 66,643 61,698 61,250 58,312
Zemun 5 168,170 170,663 169,291 169,851 167,703 167,986
Zvezdara 11 151,808 147,073 140,364 148,991 143,108 148,303
Pančevo 10 123,414 119,466 119,439 121,154 121,946 122,873
Indjija 11 47,433 45,032 44,657 46,029 46,160 46,930
Irig 12 10,866 10,336 10,328 10,533 10,669 10,786
Pećinci 15 19,720 18,965 19,155 19,447 19,579 19,670
Ruma 17 54,339 51,925 52,171 52,991 53,643 54,060
Stara Pazova 9 65,792 61,430 61,113 63,249 63,797 65,018
 Total 306 1,981,004 2,018,110 2015809 2,005,017 1,991,795 1,985,325
People living in other 
municipalities, but 
commuting to these 23 
municipalities or vice versa

88,942 51,836 54,137 64,929 78,151 84,621

In order to take into account human mobility patterns and to simulate working shifts of 

employees, pupils and students, the day has been divided into five periods, as shown in Fig. 3. 

The periods are defined in such a way that the number of people at each location remains 

constant for the duration of the period. This data was made available by the Statistical Office 

of the Republic of Serbia.

Period   Period 1 Period 2 Period 3 Period 4 Period 5

Time of the day   08:00 - 14:00 14:00 - 16:00 16:00 - 20:00 20:00 - 22:00 22:00 - 08:00

1 Employees 1st shift

2 Employees 2nd shift Residential location Residential location

3 Employees 3rd shift

4 Students 1st shift Studying location

5 Students 2nd shift Residential location

6 Staying at home

76 14 51 13 66

Studying location Residential location

Residential location

Group 
Number

Number of aircraft movements

Working location Residential location

Working location

Residential location Working location

Residential location

Fig. 3. Groups of people and periods based on working shifts of employees, pupils and students.
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The definition provided in the 2011 Census methodology describes daily migrants as 

persons who work or go to school/university outside the place of their usual residence, but 

they return on a daily basis or several times a week (Statistical Office of the Republic of 

Serbia, 2013). The daily mobility data is the key to calculate the total daily inflow and 

outflow of inhabitants for each settlement. This was used as the basis to calculate groups of 

people commuting to the same location at the same period of time during the day. 

Having in mind that human mobility patterns are obtained for the whole day only, and not 

for separate periods of the day, some assumptions are needed in order to assess how many 

people would actually be present at each location during a defined period of time. Therefore, 

it has been assumed that 50% of employees work first shift, 30% work second shift, and 20% 

work night shift. Out of the total pupils and students going to schools or universities, 60% 

follows the first shift, and 40% the second. Hereby, 76,423 groups of people were observed, 

and the population data calculated based on the census data and the daily mobility data show a 

difference in the number of people at each location in the pre-defined periods. The total 

number of residents living within these 306 locations based on the census data was 1,981,004. 

This research also includes the mobility of people living outside the 23 municipalities 

mentioned above, but working or studying in some of these municipalities, and vice versa.

By comparing the total number of people for different periods with the census population 

data, it can be seen that the highest absolute difference is 2% for Period 1. The reason behind 

is the fact that this study takes into account only the daily mobility of employees going to 

work and pupils and students going to schools and universities.

5. Results and discussions

As mentioned in Section 1, although the influence of the mobility data on evaluation of noise 

effects has been well recognized in previous transportation studies (Kaddoura et al., 2017, 

2016), the investigation of mobility data influence in air traffic models is still limited. 
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Therefore, before executing the optimization problem, the influence of the mobility patterns 

on evaluation of aircraft noise effects is assessed first. Afterwards, the optimal solutions based 

on the mobility data and derived from the proposed model are obtained and analyzed.   

5.1. Influence of daily population mobility on evaluation of aircraft noise effects

In order to assess the influence of census data and mobility data on evaluation of aircraft noise 

effects, the real air traffic operations on 16 September 2016 are used, which is hereinafter 

referred to as the reference case. The Lden noise contours caused by all the operations are 

shown in Fig. 4, where the NPA at each (residential) location is also indicated. At first glance, 

it can be observed that there is a significant difference between the census data and the 

mobility data among noise-affected locations. In fact, with the census data (depicted by 

triangles), only people at locations enclosed in the noise contours are affected. Meanwhile, 

when using the mobility data (depicted by circles), the noise effects occur not only at these 

locations, but also at locations outside of the noise contours. This can be explained by 

considering that people who live outside the area affected by aircraft noise may work or study 

within these areas at some time during the day, and are therefore affected by aircraft noise.
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 NPA at each location

 (Mobility data)

Fig. 4. Illustration of people at locations affected by noise with Lden  37 dB.5

For a specific evaluation, the NPA at the locations covered by Lden noise contours  37 dB 

(Lden ≥ 37 dB), as shown in Fig. 4, is estimated for both datasets and presented in Table 3. As 

seen from the table, the total NPA at these locations for the census data is 57,519, which is by 

2.18% relatively higher (by 1,228 in absolute numbers) than the NPA based on the mobility 

data. The same situation is observed for the NPHA, where the difference is even higher, 

5.24%. These observations show that even though people live inside the noise contours, some 

of them are still not annoyed by aircraft noise due to their mobility for working or studying 

purposes to locations far away from the airport. 

Table 3.  Number of people affected by noise at locations enclosed in Lden  37dB.
Criterion Census data Mobility data Absolute difference Relative difference
NPA 57,519 56,291 1,228 2.18%
NPHA 10,583 10,056 527 5.24%

Furthermore, in order to see how many people live outside the noise contours, but still 

experience noise impact, the NPA based on the mobility data at all locations is evaluated and 

presented in Table 4. The table shows that the total NPA is 60,265, more than 7.05% of whom 

5 All the figures with the Google earth background are created using the open source software, QGIS (https://qgis.org/en/site/)

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

https://qgis.org/en/site/


20

live outside the Lden  37 dB. The same trend is observed for the total NPHA as well. This is 

easily explained when considering that people who live farther away from the airport may still 

work or study in the areas affected by aircraft noise. 

Table 4.  Number of people affected by noise based on mobility data.

Criterion All locations Only locations 
enclosed in Lden ≥ 37dB

Absolute 
difference

Relative 
difference

NPA 60,265 56,291 3,974 7.05%
NPHA 10,499 10,056 443 4.40%

Apart from the observations in the above tables, it is also noted that although the absolute 

difference of the total NPA between the census data and the mobility data is relatively small, 

the difference in the NPA at each location is rather significant, as shown in Fig. 5. 

Summarizing the relative difference at all locations compared to the NPA obtained by the 

census data can add up to 52.9%. This number indicates that there is a significant change in 

the number of people at each location during the day. For example, for location 220, the NPA 

based on the census data is 0, while the NPA based on the mobility data is 307; and for 

location 15, the NPA based on the census data is 8,286, whereas the NPA based on the 

mobility data is 7,936.   

Fig. 5. Difference in the NPA between census data and daily mobility data at all locations.
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For a better illustration of the daily mobility of population outside and inside the noise 

contours, movements at locations 15 and 220 are highlighted in Fig. 6 and Fig. 7, 

respectively. Fig. 6 shows that location 15 is located nearby the airport and enclosed in the 

noise contours of Lden> 45 dB. However, some of the people living at this location may 

experience less noise than others, as they work or study outside the area. Therefore, the total 

NPA calculated using the mobility data at this location is less than the NPA obtained by the 

census data. In contrast, an opposite situation can be observed for location 220 in Fig. 7. At 

this location, people who live outside the noise contours work or study at locations close to 

the airport, and hence they can experience significant noise impact. This explains the 

significant difference in the NPA at each location. In addition, the combined mobility at 

locations 15 and 220 explains why the difference in the total NPA between the census data 

and mobility data is relatively small. 

Commute from location 15
Settlements connected to location 15

Fig. 6. Illustration of population at location 15 commuting outside Lden 37 dB.
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Commute from location 220
Settlements connected to location 220

Fig. 7. Illustration of population at location 220 commuting inside Lden 37.

To enable further examination of the influence that mobility data has on the number of 

people affected by aircraft noise during the night, the sleep disturbance criteria6 based on Lnight 

recommended by WHO (2009) are also evaluated. These evaluations are provided in Table 5 

and Table 6. As can be seen in the tables, the results obtained by using Lnight also have the 

same trend as those obtained by using Lden even though during the night only the mobility of 

employees is considered. The explanation for this is that, according to the mobility data, 

groups of employees account for a significant portion in the mobility of the entire population, 

which is approximately twice as high as the groups of students. In addition, the noise impact 

during the night is more sensitive compared to the noise impact during the day and evening, 

and hence the percentage of disturbed people in each group is higher. Consequently, the 

mobility data also has a noticeable impact on the estimation of aircraft noise effects during the 

night.

Table 5.  Number of people affected by noise at locations enclosed in Lnight noise contour  30 dB.
Criterion Census data Mobility data Absolute difference Relative difference
NSD 33,750 32,601 1,149 3.52%
NHSD 21,103 20,381 722 3.54%

6 %SD = 13.714 - 0.807 Lnight + 0.01555 (Lnight)2, and %HSD = 18.147 – 0.956 Lnight + 0.01482 (Lnight)2, where %SD and %HSD are 
the percentages of the group of people whose sleep is disturbed and highly disturbed, respectively (WHO, 2009).
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Table 6.  Number of people affected by noise based on mobility data.

Criterion All locations Only locations enclosed 
in Lnight > 30 dB

Absolute 
difference

Relative 
difference

NSD 33,809 32,601 1,208 3.71%
NHSD 21,138 20,381 757 3.71%

 Based on the above considerations, it can be concluded that evaluation of aircraft noise 

effects is significantly dependent on population data (i.e., the census data and the mobility 

data). Although the difference in the total NPA between these data is small, the difference in 

the NPA at each individual location is considerable as a result of the daily mobility. From the 

perspective of air traffic assignment, variations of population at each location may lead to 

different optimal assignments compared to the case when solely census data are used. This is 

because, in order to reduce the noise impact, optimal allocation of aircraft should avoid 

locations at which most people are present during the day, rather than just their home 

addresses. Consequently, developing a methodology that is capable of creating optimal air 

traffic assignments based on mobility data is important and necessary. In the following 

section, therefore, the methodology presented in the previous sections is applied to solve the 

optimization problem of the air traffic assignment. The obtained results are analyzed and 

compared to those obtained by the reference case. Since the main aim of the research is to 

find optimal air traffic assignments for an entire day, only the noise criteria based on Lden are 

employed for the optimization problems and further analyses as well. 

5.2. Air traffic assignment based on daily population mobility

The NSGA-II algorithm with a population size of 70 and a maximum generation (Gen.) of 

1500 is applied to solve the multi-objective optimization problem stated in Section 2. The 

method is set with an intermediate crossover rate of 1.5 and the Gaussian mutation technique 

with a scale of 0.8 and a shrink of 0.1. All the simulations are run on an Intel Core i5, 8GB 

RAM desktop and MATLAB 2016b.
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Fig. 8 presents the optimal solutions obtained in comparison with that of the reference 

case. Fig. 8 shows that the proposed approach generates solutions which are much better than 

that of the reference case. When a population size of 70 is used, the Pareto font contains 70 

distinct non-dominated solutions, and all of them dominate the reference case. Generally, all 

solutions will have the same weight of advantages, which spread from noise to fuel 

preference. Basically, decision makers can, therefore, choose any of the solutions based on 

their specific needs. However, to arrive at acceptable trade-off solutions from all of them, 

systematic analyses which are not considered in this study are needed. Therefore, only some 

representative solutions are chosen for further analyses later on.

In terms of computational cost, Fig. 9 shows the convergence history of results after 

specific generations with a particular amount of computational time. As seen from Fig. 9, the 

results seem to converge faster after 800 generations, and there are no significant 

improvements after 1200 generations. The computational cost (CPU time) is also recorded 

after each generation. To reach the last generation, the method spends almost 24 hours, mostly 

on calculating Eq. (3) for all 76,423 groups of people. Although the computation time is high, 

the algorithm is still applicable as the flight schedule can be obtained some days in advance. 

Moreover, with the development of powerful computers such as cluster and cloud computing, 

this issue can be addressed relatively easily.
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Fig. 8. Illustration of optimal solutions obtained by 
proposed method and reference case.
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Gen. 200, CPU time = 3.14 (hours)
Gen. 400, CPU time = 6.28 (hours)
Gen. 600, CPU time = 9.42 (hours)
Gen. 800, CPU time = 12.56 (hours)
Gen. 1000, CPU time = 15.69 (hours)
Gen. 1200, CPU time = 18.82 (hours)
Gen. 1400, CPU time = 21.96 (hours)
Gen. 1500, CPU time = 23.55 (hours)

Fig. 9. Convergence history of optimal solutions.

For a better overview on the optimal solutions, three distinct solutions are selected, viz. 1, 

23 and 70 as marked in Fig. 8, for further examinations. For these solutions, solutions 1 and 

70 represent the minimum noise and fuel solutions, respectively, while solution 23 shows the 

same fuel consumption as the reference case, but has significantly better noise performance. 

Table 7 presents the objective values of the optimization problem (i.e., the total NPA and fuel 

consumption) and other concerned metrics obtained by the representative solutions and the 

reference case. At first glance, the table indicates that all the solutions have better NPA and 

NPHA in comparison with the reference case. Particularly, the total NPA of solutions 1, 23 

and 70 are, respectively, 10,061, 13,663 and 51,234, and hence there is a reduction of 83.31%, 

77.33% and 14.99%, respectively, compared to that of the reference case (with 60,265 people 

annoyed). Similar relative amounts of the reduction are observed for the NPHA as well. 

Regarding the total fuel consumption and route length, due to focusing on the noise 

preference and hence assigning aircraft to routes which are farther away from the populated 

regions, solution 1 generates more fuel consumtion than the reference case with an increase of 

0.43%. However, even though it results in a significant reduction of the noise impact, solution 

23 still keeps the total fuel consumption slightly lower than that of the reference case, whilst 

with a still smaller amount of noise impact reduction, solution 70 provides the best option for 
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fuel preference. The same trend is also recognized for the total route length, except for 

solution 23. For this solution, although the total fuel burn is slightly less than that of the 

reference case, the total route length is still higher. This can be explained by considering the 

distribution of aircraft types. Even though the total route length has increased, the route length 

of aircraft with higher fuel burn has reduced, leading to an overall reduction in fuel 

consumption. 

It is also worth noting that the reason for the relatively small difference in fuel burn 

between the solutions and the reference case is due to the fact that departure and arrival 

operations account only for a small part of the flight. Nevertheless, there is an identifiable 

effect when considering the absolute values. Specifically, for solution 70, 3,093 kg can save 

airline companies around $ 2,327 per day (with an average cost of jet-A1 fuel of $ 86.1 per 

barrel7 in 2018), and generate roughly 9.7 ton of CO2
8 emission less.   

Table 7.Comparison of different metrics of representative solutions and reference case.
Method Case number NPA NPHA Fuel consumption (kg) Route length (NM)

Solution 1 10,061 2,059 775,457 124,771
Absolute reduction -50,204* -8,440 +3,351 +935
% reduction -83.31 -80.39 +0.43 +0.76

    
Solution 23 13,663 2,308 772,030 124,139
Absolute reduction -46,602 -8,191 -76 +303
% reduction -77.33 -78.02 -0.01 +0.24

    
Solution 70 51,234 8,892 769,013 123,391
Absolute reduction -9,031 -1607 -3,093 -445
% reduction -14.99 -15.31 -0.40 -0.36

This 
study

    
Reference case 60,265 10,499 772,106 123,836

*The signs “+” and “–” indicate increase and reduction compared to reference case, respectively. 

Besides the evaluation of the criteria as given in Table 7, the number of people enclosed 

in specific Lden noise contours is also evaluated and provided in Table 8. A comparison of the 

representative solutions and the reference case shows that the number of people enclosed in 

the higher noise contours reduces for solutions with more emphasis on noise. This behavior is 

7https://www.iata.org/publications/economics/fuel-monitor/Pages/index.aspx (assessed 19 January 2019)
8https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx(assessed 19 January 2019)
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expected, and it is comparable with the trends of the NPA and the NPHA in Table 7. 

According to the formula in Eq. (2), it is obvious that the higher the value Lden each group of 

people is subjected to, the greater the number of people annoyed that group has. 

Table 8. Comparison of the number of people enclosed in specific Lden noise contours.
Noise bandMethod
< 40 [40-45) [45-50) [50-55) [55-60) [60-65) > 65

Solution 1 1,987,474 59,075 5,326 10,860 7,211 0 0
Solution 23 1,970,373 72,420 7,897 8,891 10,365 0 0This study Solution 70 1,654,134 241,767 125,281 41,829 3,684 3,251 0

Reference case 1,595,717 253,308 156,340 57,587 1,803 5,191 0

In order to perceive the difference between the optimal solutions in terms of air traffic 

assignments as well as the noise contours and the NPA at each location, the features of 

solutions 1, 23 and 70 are further analyzed. The optimal assignment of these solutions is 

shown in Table 9, which provides the number of aircraft assigned to each route, while their 

Lden noise contours and the NPA at each location are depicted in Fig. 10, Fig. 11 and Fig. 12, 

respectively. 

Table 9 shows that the distribution of aircraft over the routes between the solutions is 

rather different. For example, for route 5, solution 1 has 31 operations, and solution 23 has 24 

operations, while solution 70 has only 11 operations. On the other hand, for route 27, there is 

no operation from solution 1, but 5 operations from solution 23, and 15 operations from 

solution 70. More specifically, solution 1 tends to send more aircraft to route 5 as it is 

positioned farther away from the populated regions. However, this selection will result in 

longer routes for aircraft that have their final destination in a different direction, and it will 

consequently cost more fuel. Meanwhile, solution 70 tends to directly send aircraft along 

routes in the direction of their final destinations disregarding populated areas, and hence 

leading to an increase in the NPA. Solution 23 tends to balance between noise and fuel 

concerns, and hence its distribution falls in the middle of those of solutions 1 and 70.  
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The above examinations are even more apparent when looking at Fig. 10, Fig. 11 and Fig. 

12. In these figures, the variation in the NPA between the solutions can be observed in the 

region that is highlighted by the white dotted line. In fact, for solution 1, there are only 3 

locations which have people affected by noise due to their daily mobility, while 8 locations 

are recognized in solution 23, and up to 18 locations in solution 70. Moreover, upon a closer 

look at the legends on the figures, it is also noted that the scale of the NPA at each location of 

these solutions is rather different. A further distinction of this comparison can be clearly 

recognized in Fig. 13. It can be seen from the figure that the difference of the NPA occurs not 

only at the highlighted region, but also at other locations. 

Table 9. Comparison of optimal route assignments of three representative solutions.
Number of operation Number of operationRoute 

number Solution 1 Solution 23 Solution 70

Route 
number
(continued) Solution 1 Solution 23 Solution 70

1 0 3 7 15 4 10 3
2 0 1 3 16 10 7 1
3 0 0 2 17 8 2 5
4 0 2 19 18 9 7 7
5 31 24 11 19 12 12 10
6 0 1 0 20 24 26 22
7 3 11 9 21 2 7 9
8 20 13 12 22 16 8 6
9 19 15 15 23 0 1 9
10 23 19 18 24 0 2 1
11 0 6 7 25 0 0 0
12 10 6 4 26 0 1 4
13 3 8 2 27 0 5 15
14 26 23 19
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Fig. 10. Illustration of NPA at each location (solution 1).

Fig. 11. Illustration of NPA at each location (solution 23).
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Fig. 12. Illustration of NPA at each location (solution 70).

Fig. 13. Comparison of NPA between solutions 1, 23 and 70 at each location.
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5.3. Evaluation of optimal assignments based on census data and mobility data

As noted earlier at the end of Section 5.1, the variation of population at each location between 

the census data and the mobility data during the day may lead to a change in the optimal 

assignments obtained by these data as well. Therefore, to estimate this concern for the applied 

case study, the air traffic assignment problem based on the census data is also performed. The 

obtained results are then compared with those based on the mobility data.   

Fig. 14 and Fig. 15 compare the objective functions (i.e., the total NPA and fuel 

consumption) for both datasets. In Fig. 14, the comparison is made based on the optimal 

assignments using the census data, whereas the comparison in Fig. 15 is made based on the 

optimal assignments using the mobility data. Both figures indicate that there is a small 

difference in the NPA between solutions evaluated based on the difference of datasets. Note 

that since the assignments for each comparison in each figure are the same, consequently the 

fuel consumption will be the same regardless of the data used. The variation increases from 

solution 1 to solution 70. Therefore, there is a difference in their optimal assignments. The 

variation of the optimal assignments between both sets of solutions can be readily explained. 

As mentioned earlier in Section 5.1, due to the daily mobility, the population at each location 

changes at different times of the day. Therefore, to reduce the noise impact, the optimal 

assignments should be changed as well. It should also be noted that although the change in the 

total NPA between the census data and the mobility data is relatively small, the change of the 

NPA at each location can be rather large, which has been discussed earlier in Section 5 as 

well. 
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Fig. 14. Comparison based on the optimal assignments 
using the census data.
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Fig. 15. Comparison based on the optimal assignments 
using the mobility data.

In order to further analyze the difference above, the optimal assignments of two 

representative solutions, viz. 1 and 70 obtained by using both datasets are extracted and 

presented in Table 10. This table shows that the optimal assignments are slightly different. 

For example, for route 9 of solution 1, the difference in the number of operations is 6, whilst 

for route 15 of solution 70 it is 3. It should be also noted that although the number of 

operations on each route for both datasets used is more or less the same, the distribution of 

aircraft types also contributes to the variation in the NPA. 

To get a better insight into the effect of the change in the optimal assignments, the 

resulting Lden noise contours for these assignments are illustrated in Fig. 16 and Fig. 17, for 

solutions 1 and 70, respectively. As seen in the figures, the noise contours are rather different, 

especially for solution 70.
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Table 10. Comparison of the optimal route assignments of solutions 1 and 70 based on both data.
Number of operation Number of operation

Solution 1 Solution 70 Solution 1 Solution 70Route 
number Census 

data
Mobility 
data

Census 
data

Mobility 
data

Route 
number

(continued) Census 
data

Mobility 
data

Census 
data

Mobility 
data

1 0 0 6 7 15 5 4 0 3
2 0 0 5 3 16 14 10 2 1
3 0 0 1 2 17 5 8 2 5
4 0 0 16 19 18 10 9 10 7
5 28 31 12 11 19 10 12 10 10
6 0 0 0 0 20 21 24 21 22
7 6 3 8 9 21 3 2 7 9
8 17 20 12 12 22 15 16 9 6
9 25 19 14 15 23 0 0 6 9
10 22 23 17 18 24 0 0 3 1
11 0 0 9 7 25 0 0 0 0
12 8 10 7 4 26 0 0 3 4
13 3 3 2 2 27 0 0 16 15
14 28 26 22 19

Fig. 16. Comparison of Lden noise contours based on census data and on daily mobility data (solution 1).
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Fig. 17. Comparison of Lden noise contours based on census data and on daily mobility data (solution 70).

6. Conclusions and future work

This paper introduces a new air traffic assignment model which is capable of taking the daily 

mobility of a city’s population into account, in addition to having a acceptable trade-off 

between conflicting objectives (i.e., the NPA and fuel consumption). Furthermore, substantial 

efforts have been invested to investigate the influence of the data used on the evaluation of 

aircraft noise effects. Then, the optimal solutions of the air traffic assignment based on the 

mobility data are obtained and compared with that of the reference case and those based on 

the census data. The following conclusions can be drawn from this work: 

1) The evaluation of aircraft noise impact is influenced by the daily population mobility 

data used. Specifically, when the census data are used, only people who live inside the 

noise contours get annoyed, whereas it has been found that people living outside the 

noise contours could be annoyed when the mobility data are used. Moreover, not all of 

the annoyed people suggested from the census data will actually be annoyed if their 

daily mobility is taken into account. Although the total NPA obtained by using either 
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census data or mobility data is very similar, the NPA at each location is significantly 

different. 

2) Compared to the reference case herein, the proposed methodology can generate 

solutions that are much improved in terms of both the total NPA and fuel 

consumption. Even with a small change in the total fuel consumption, the method can 

still offer a solution which can reduce the total NPA up to 77%. Furthermore, the 

proposed approach also provides a wide range of solutions with different benefits to 

either noise or fuel burn, and these solutions can serve as a valuable input for 

authorities and policymakers in their decision making. 

3) The optimal assignments obtained by both datasets are different since there is a 

significant difference in the number of people at each location during the day. The 

evaluation thereof also indicates that the difference in the optimal assignments is 

rather dependent on the case study under consideration, and on whether the variation 

of population at each location is significant or not, relative also to the population 

distribution and airport layout.

Some inherent limitations of the work which have not yet been considered in this study 

are also worth mentioning. First, the mobility data are considered only for three distinct 

groups of people, including students, employees and people staying at home. This assumption 

may lead to variations in optimal assignments as a result of the change of population at each 

location during the day if other types of mobility are also considered. Further research should 

also investigate to a larger extent the assumption regarding the allocation of employees and 

students to shifts. Second, for the air traffic assignment model, only the feasible options for 

each operation are considered, while the runway and airspace capacity (e.g., aircraft 

sequencing), which can lead to delay of flights, are not yet considered. This model could be 

regarded as pre-tactical and intended to be used for planning purposes since it takes into 
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account forecasted data for the whole day and it is not resistant to any disruption in the pre-

defined timetable. In order to render it suitable for tactical use in real-time operations, 

changes in runway in use, aircraft changes as well as delays should be included in the model. 

Therefore, these issues will be dealt with in further work. Furthermore, by using the mobility 

data, changes in population at sensitive regions such as schools and hospitals, can be 

recognized. These more detailed mobility data can help develop more realistic, applied 

solutions in terms of applying more complex fair weightings for each different category. 
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