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Abstract. This paper presents the findings of the workshop “New approaches to evacuation 

modelling”, which took place on the 11th of June 2017 in Lund (Sweden) within the 

Symposium of the International Association for Fire Safety Science (IAFSS). The workshop 

gathered international experts in the field of fire evacuation modelling from 19 different 

countries and was designed to build a dialogue between the fire evacuation modelling world 

and experts in areas outside of fire safety engineering. The contribution to fire evacuation 

modelling of five topics within research disciplines outside fire safety engineering (FSE) have 

been discussed during the workshop, namely 1) Psychology/Human Factors, 2) Sociology, 3) 

Applied Mathematics, 4) Transportation, 5) Dynamic Simulation and Biomechanics. The 

benefits of exchanging information between these two groups are here highlighted in light of 

the topic areas discussed and the feedback received by the evacuation modelling community 

during the workshop. This included the feasibility of development/application of modelling 

methods based on fields other than FSE as well as a discussion on their implementation 

strengths and limitations. Each subject area is here briefly presented and its links to fire 

evacuation modelling are discussed. The feedback received during the workshop is discussed 

through a set of insights which might be useful for the future developments of evacuation 

models for fire safety engineering.  

Keywords. Evacuation modelling, Egress, Fire Safety, Human Behaviour, Emergency, 

Pedestrian Dynamics, Smoke, Exit choice, Pre-evacuation. 

Highlights: 

 Findings of a workshop on new approaches to evacuation modelling are presented.

 Five areas useful for evacuation modelling development are introduced.

 Feedback on the modelling ideas is reported

 A roadmap for implementation of new approaches is drafted
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1. Introduction 
The developments of evacuation models for fire safety engineering applications have reached 

a crossroads. An extensive list of sub-models are today available for the representation of the 

behavioural and physical components of evacuation (e.g., pedestrian movement, evacuation 

decisions, route choice, social influence, etc.) (Ronchi and Nilsson, 2016). Model developers 

face the choice of tuning parameters and variables of existing sub-models or to begin 

incorporating new features based on insights from outside the field of fire safety engineering. 

 

Evacuation modelling for fire safety engineering applications is a multi-disciplinary research 

area per se since it combines both behavioural sciences (e.g. psychology, sociology, etc.) for 

the representation of human behaviour in fire as well as engineering and natural sciences (e.g. 

computer science, physics, physiology, applied mathematics, etc.) for the development and 

implementation of the models into simulation tools. Those tools are generally used in fire 

safety engineering for the design of buildings and transportation systems within the 

performance-based design approach (Meacham, 1997). 

 

To date, scientists from fields outside of fire safety engineering have investigated behavioural 

and physical issues associated with human behaviour in fire, crowd dynamics and pedestrian 

monitoring which may potentially be relevant to evacuation modelling. The critical question 

is if/how such insights can be integrated into the existing body of fire evacuation models. 

Based on this starting point, a set of challenges need to be analysed concerning the possible 

uses and suitability of such studies in the field of evacuation modelling for fire safety 

engineering applications. These challenges include, identifying relevance (Is the research 

relevant to human behaviour in fire?), maturity (How well established are findings within 

their discipline?), and applicability (How can we implement basic research findings into an 

evacuation model?) of research, but also finding a common vocabulary and overcoming 

jargon from within each discipline. In short, models, methods, data, and theories from other 

fields need to be assessed for their suitability for evacuation models. This process should run 

in parallel with identifying and filling potential knowledge gaps in existing evacuation models 

(Galea, 2012).  

 

To facilitate this process, the workshop “New approaches to evacuation modelling” was held 

as part of the Symposium of the International Association for Fire Safety Science (IAFSS) 

hosted by Lund University in Lund (Sweden) on the 11th of June 2017. The workshop brought 

together a set of international experts from various disciplines outside of fire safety 

engineering with invited evacuation modelling experts in order to discuss new ideas for future 

evacuation modelling developments. Researchers, evacuation model developers, users and 

experts as well as fire safety practitioners and regulators took part in the workshop. 

Participants came from 19 different countries, reflecting the global relevance of the topic. 

Another key motivation of the workshop was to stimulate collaborations between specialists 

of different disciplines and increase the visibility of fire safety engineers in areas outside of 

their “usual” boundaries.  

 

A set of disciplines were selected during the preparation of the workshop and relevant experts 

from each discipline were invited to form a panel and present an overview of each subject and 

discuss possible issues which might be relevant to evacuation modelling for fire safety 

engineering applications with the workshop audience. The reasons behind the selection made 

by the workshop organizers on the set of disciplines discussed were mostly linked to 1) 

potential of the area findings to be implemented in existing evacuation modelling tools, 2) 

estimated time for implementation of area findings (e.g., in a relatively short time, thus 



excluding fields which are at a relatively early stage of research, and 3) interest/availability of 

researchers working in an area different than fire safety engineering to contribute to the 

workshop 4) time available within the workshop to discuss the selected topics. In fact, in 

order to achieve a constructive dialogue during the workshop, it was necessary to identify an 

area expert willing to present the topic and engage in the discussion with the fire safety 

engineering community. Furthermore, only a limited number of topics could be addressed 

within the time available. The audience consisted of a heterogeneous group of parties 

interested in evacuation modelling, including researchers, regulators (e.g. authorities having 

jurisdictions and fire code developers), practitioners, and students. Nevertheless, the majority 

of the audience were researchers and/or students and so the support for the suggested needs 

and proposed developments presented are primarily driven by a researcher perception rather 

than an end-user perception.  

 

Here, the main conclusions of the workshop as well as the five presentations and their 

accompanying discussion are summarized. In addition, a roadmap for the integration of the 

advances in interdisciplinary research into fire evacuation models is proposed. The final part 

of this paper discusses the steps and actions that could be taken to improve current evacuation 

modelling tools for fire safety engineering applications. More information about the 

workshop, along with the full articles associated with each presentation can be found in a 

Lund University report associated with the workshop (Ronchi et al., 2017). 

 

2. Workshop structure 
Five experts (the acronyms here refer to the initials of each paper author) from 

psychology/human Factors (MK, YS), sociology (EK), applied mathematics (AC, FT), 

transportation research (AP), and dynamic simulation/biomechanics (PT, DM) presented their 

work. Each presentation was followed by a questions & answers (Q&A) session with the 

workshop panel moderated by two experts from the evacuation modelling community (ER, 

EG). The Q&A session gave the opportunity to the audience to comment on potential issues 

associated with the implementation of the proposed methods/theories/data/ideas and discuss 

strategies for improvement of current evacuation models based. The workshop closed with an 

open discussion in which the workshop participants had the opportunity to present comments, 

questions and remarks directly to the presenters of each disciplines and/or other experts from 

the evacuation modelling community. 

 

The next sections present an overview of the five disciplines presented during the workshop, 

namely 1) psychology/human factors, 2) sociology, 3) applied mathematics, 4) transportation, 

5) dynamic simulation and biomechanics. The disciplines were selected after a review made 

by the workshop organizers of the scientific outputs in different subject areas which may be 

potentially integrated into evacuation modelling tools for fire safety engineering applications1. 

Each presenter focussed on a sub-set of key subject areas within each discipline which could 

be relevant for future evacuation model developments. 

 

The selected subject areas presented were: 

1) Psychology/Human factors: Visual Perception, Social Influence, and Emotional States 

                                                           
1 The organizers had to limit themselves to a select number of fields which were deemed most relevant and in 

which some previous work directly applicable to evacuation modeling had been published. Note, however, that 

many other disciplines could provide potential insights on human behavior in fire, for example 

physiology/kinesiology, artificial intelligence/machine learning, data scientists/big data, or geography, just to 

name a few. 



2) Sociology: A Multi-disciplinary Perspective on Representing Human Behaviour in 

Evacuation Models 

3) Applied Mathematics: Overhead pedestrian tracking for large scale real-life crowd 

dynamics analyses 

4) Transportation: Evacuation Modelling in the field of Transport 

5) Dynamic simulation and biomechanics: An analysis of human biomechanics and 

motor control during evacuation movement. 

 

3. Psychology/Human Factors: Visual Perception, Social Influence, and 

Emotional States 
 

The uses and effectiveness of evacuation models relies on understanding human perception 

and action in emergency situations. Recent developments pushed the possibilities as to what 

aspects of human behaviour in fire can be modelled (Kinateder et al., 2014d; Kuligowski et 

al., 2017). However, there seems to be a gap between basic research and model development. 

This might be attributed to the difficulty in translating findings from a basic laboratory 

experiment into valid predictions on how people would react in a wide range of emergency 

situations.  

 

Aspects that influence individual occupant evacuation behaviour were discussed and an 

attempt to connect the existing approaches in evacuation modelling was made. The key 

question of this presentation were: What information is available to an evacuee at what time? 

How is this information processed? And how does it affect behaviour? The presenter touched 

on three exemplary aspects that are representative for these questions. First, perception, i.e. 

the process of picking up the information that allows an organism to successfully act in its 

ecological niche. There are many aspects of perceptual research that are relevant to fire 

evacuation (e.g., vision, auditory perception, olfaction); the focus here was on visual motion 

perception. The second aspect was social influence with a focus on low density scenarios (i.e., 

scenarios in which behaviour is not completely restrained by physical forces). In the third 

section, the influence of intense emotions such as fear on spatial behaviour is discussed, 

linking observation that evacuees “don’t panic” (Fahy et al., 2012) to findings that show how 

stress and fear bias decision-making.  

 

The three examples illustrate how basic research on human behaviour can inform evacuation 

model development. Perceptual processes could be simulated to inform agents about the 

environment. This would have the benefit that agents could navigate novel spaces with 

incomplete knowledge of the environment. Perceptual processes can be implemented with 

varying granularity: for example, modellers could specify agents’ visual field, how agents 

respond to dynamic changes in the environment and visibility), or even complex interactions 

between biomechanical constraints, eye-movement, environment and behaviour. An even 

more complex approach would be to model a wide range of perceptual abilities depending on 

the agent profile expected in a given situation (e.g. age or physical ability). Social influence 

and fear could be implemented as a source of biases or variance that change the probability 

distributions of certain behaviours (e.g., the probability to select one egress route over 

another) in one way or the other.  

 

There are obvious limitations to the approach discussed here. For instance, most basic 

research results have been studied in controlled and isolated settings. Although the strength of 

the experimental method is its ability to identify causal relationships between variables, it is 

challenging to transform findings from lab studies into predictions about human behaviour in 



fire without further validating studies. However, evacuation models can only be improved if 

the underlying psychological and physiological processes are sufficiently understood. 

Evacuation models that conceptually simulate occupants as agents embedded in a 

sociotechnical system can benefit from a deeper understanding of the psychological, social 

and physical environment. Results from basic research provides surprisingly precise 

descriptions about how humans could potentially react in fire emergencies.  

 

3.1. Visual perception in fire emergencies 

Evacuation models often base agent behaviour on what agents “see” in a given emergency 

situation. In some models agents can map the environment with a so called “god view”, i.e., a 

complete knowledge of the layout of the building in which they are (Ronchi and Nilsson, 

2016). However, this might not accurately represent information uptake and wayfinding 

during evacuation. Other models attempt to address this issue by acknowledging that in many 

scenarios, agents may only have knowledge of one exit route i.e. the way they entered.  

However, in these cases agents are also provided with an ability to discover previously 

unknown exit routes through the visual detection of, and use of, emergency exit signage 

(Filippids et al 2008, Xie et al 2012).  The process of human navigation based on visual 

information is referred to as visually guided locomotion and has been studied extensively 

(Gibson, 2014; Warren, 2006; Warren Jr et al., 2001) and applied to pedestrian behaviour in 

crowds (Warren, 2018) . Vision is a crucial process of information uptake during human 

locomotion, and, for example, gaze behaviour (i.e., where a person looks) while walking over 

complex terrain is immediately connected to gait behaviour and foot placement (Matthis and 

Fajen, 2014; Matthis et al., 2018) Most evacuation models sufficiently simplify visual 

perception and thus risk misrepresenting how building occupants might react to an 

approaching fire. For example, many evacuation models completely ignore dynamic visual 

features such as smoke or use the physical extinction coefficient (complex refractive index) to 

describe how far people can see through smoke (Ronchi et al., 2013). The example of smoke 

perception is used here to illustrate how perceptual processes could be better conceptualized 

in evacuation modelling.  

 

One source of motion information during fire evacuation might come from smoke and flames, 

but what are the visual features of moving smoke? Approaching smoke is a visually rich 

stimulus that provides the observer with a range of potential motion cues and can be classified 

as fluid non-rigid motion (Aggarwal et al., 1997). As an object moves through an observers 

visual field, it creates characteristic patterns of motion vectors, often referred to as optic flow 

(Gibson, 2014) that are accessible to the visual system. Several flow-based motion cues are 

available to the observer, allowing to extract simple (e.g., speed and angle of moving contrast 

gradients) to complex (e.g., looming of a smoke plume) motion patterns. Unlike rigid objects, 

smoke continuously changes its shape and contrast. This creates perceptual uncertainty, which 

in turn might lead to bias in how humans speed and orientation of moving smoke. Studies on 

motion perception in fog show that reducing contrast uniformly in the visual field reduces 

perceived speed (Snowden and Hammett, 1998). If, however, contrast is reduced non-

uniformly (decreased contrast with larger distance), speed is overestimated, indicating that the 

spatial distribution of contrast affect how speed is being perceived (Pretto et al., 2012). Like 

contrast, motion coherence can bias perceived speed of a moving stimulus. In one study, 

peripheral background noise (i.e. dots moving incoherently) to a central coherently moving 

set of dots biased participants to overestimate the stimulus speed as a function of noise level 

(Chuang et al., 2016). Next to basic motion cues, the visual system is able to identify more 

complex visual motion patterns such as optical expansion (flow based) and the change in size 

(not flow based) to specify approaching movement (Schrater et al., 2001).  



 

Another question is how smoke impairs vision during navigation. Some research indicates 

that artificially impaired vision reduces navigation, way-finding abilities and spatial learning 

(Gauthier et al., 2008) as well as walking speed (Fridolf et al., 2014). That is, occupants’ 

ability to detect exit signs and navigate egress routes depend not only on their knowledge of 

the spatial layout but also on the visual information available in a given moment.  

 

Although the current example uses perception of moving smoke and may appear overly 

specific, it illustrates how visual information could guide agent behaviour. Many aspects of 

the visual environment are known to the model developer given the information available to 

him/her from other sources or models (e.g., the layout of the environment or the distribution 

and movement of smoke from a fire model). Consequently, agent behaviour could be 

modelled based on the rules by which physical features in the environment are translated into 

visual perception.  

 

3.2. Social influence in low density crowd situations 

Factors influencing agent decision-making and behaviour in low density situations are not 

well understood as in ambiguous emergency situations, occupants seek information and the 

behaviour of other occupants may be considered as a useful source of information (Kinateder, 

2013). There is evidence in the literature that during dangerous situations people influence 

each other with regard to where to and how they navigate e.g., (Kinateder et al., 2014a, 

2014b; Nilsson, 2009). As this might be the case for all occupants in the situation, behavioural 

uncertainty may lead to different (e.g. inadequate, delayed or better) evacuation decisions 

(Darley and Latane, 1968; Kinateder and Warren, 2016). Social influence can potentially 

affect pre-evacuation time (time from a first alarm cue onset to evacuation behaviour) and exit 

choice (choice of evacuation destination) (Kinateder et al., 2018; McConnell et al., 2010) and 

it has been object of several studies in recent years (Kinateder et al., 2014b; Köster et al., 

2011; Lovreglio et al., 2016; Riad et al., 1999). 

 

3.3. Defensive behaviour and evacuation: the role of stress and fear 

Fire evacuation models attempt to describe how humans react in life threatening situations. 

Surprisingly, the influence of emotional responses such as fear or stress that occupants may 

experience during evacuation only plays a minor role in evacuation modelling. Emotions are 

directly linked to defensive behaviours and cause qualitative shifts decision making and 

behaviour to increase (or decrease) the chance of survival. Established behavioural models 

identified a cascade of defensive behaviour in three stages of how an organism’s autonomic 

responses, protective reflexes, and brain responses change systematically depending on threat 

proximity (Löw et al., 2015).  

 

The defense-cascade model describes three distinct stages of defensive behaviour (Fanselow, 

1994). In the pre-encounter stage, no threat has been detected yet but a threat has been 

previously experienced in similar situations leading to increased vigilance. Conceptually, 

hearing a fire alarm could be classified into this stage, as most people have experienced fire 

alarms before, however mostly in non-threatening drill situations. Individuals who 

experienced a severe fire emergency in the past might be more vigilant when they hear a fire 

alarm and prepare to engage in avoidance behaviour. As soon as a threat has been detected, 

the organism moves on to the post-encounter defense stage, in which attention is focussed on 

threat cues, and physiological and behavioural defensive responses are generated (Campbell 

et al., 1997; Fanselow, 1994; Lang et al., 2000; Maren, 2001; Morgan and Carrive, 2001). 

Threat cues in fire emergencies could be perceiving fire cues (flames, smoke) or observing 



fearful behaviour in other occupants. Finally, in the circa-strike stage the threat is most 

imminent and the organism engages in active behavioural strategies accompanied with 

increased physiological activation (Kim et al., 2013; LeDoux, 2012). In the case of a fire 

evacuation, this would be an extreme situation in which threat of fire is imminent and 

occupants are exposed to smoke and flames or other threats. In this case, most occupants are 

more susceptible to fear related biases in decision-making. Each of the three stages may 

appear during a fire evacuation and depending on the scenario, different fear reactions can be 

hypothesized. Although there is a lack of empirical evidence it is possible that in most 

evacuation scenarios, occupants will find themselves in the pre-encounter or post-encounter 

defense stage, as the most common evacuation triggers are fire alarms or initial fire cues 

(Xiong et al., 2017).  

 

Fear directly influences cognitive processes (e.g., attention) relevant for evacuation 

behaviour. Thus, basic research on fear processes may help to understand the role of fear in 

evacuation. For instance, cognitive biases are well documented in fearful situations and are 

consistently found in highly fearful participants and in patients suffering from specific 

phobias such as pathological fear of heights. Several studies have shown that fear influences 

attention (e.g. by narrowing it) towards threatening objects (Cisler et al., 2007; Mogg and 

Bradley, 2006; Öhman et al., 2001; Watts et al., 1986), and that when experiencing strong 

fear, attention is quickly engaged with the fearful object (Mogg and Bradley, 2006) and slow 

to disengage (Fox et al., 2001, 2002). Furthermore, fear inducing cues are hard to ignore and 

can distract from the task at hand (Gerdes et al., 2008; Okon-Singer et al., 2010). Although, 

not often documented in real cases, in an evacuation scenario this could explain why fearful 

occupants might be more susceptible to “ignore” exit signage when confronted with more 

salient fire cues.  

 

Furthermore, fear might shape spatial navigation. In fearful behaviour, often manifested as 

avoidance in humans, a fearful person tries to increase the distance between feared stimulus or 

situation. Interestingly, research on rodent behaviour has shown that fearful rats exploring a 

square field tend to avoid open spaces and stick closer to walls compared to non-fearful 

rodents (Simon et al., 1994). At least one study observed similar effects in human exploration 

behaviour (Walz, 2013).  

 

Importantly, the fact that fear and stress can bias evacuation behaviour is not in contrast to the 

fact that so called “panic” rarely occurs during evacuation (Fahy et al., 2012). Humans are 

able to engage in pro-social behaviour and make rational decisions when they experience fear; 

however, emotional states can introduce systematic biases in decision-making and spatial 

behaviour (Kinsey et al., 2018). Understanding, if and how much fear is typically caused by 

various aspects of fire evacuation scenarios, and how that fear is linked to evacuation 

behaviour is still unclear and it can be subject to future research but bears the potential to 

explain certain behavioural phenomena observed in evacuation. 

 

4. Sociology: a multi-disciplinary perspective on representing human 

behaviour in evacuation models 

 
Behavioural researchers in fire are still fighting the long-standing belief that human behaviour 

during fires is just too complicated to predict. At present, evacuation models focus much more 

on simulating, verifying, and validating the movement of people through the entire building. 

More specifically on the importance of tracking individuals or crowds, their physical 

movements, and their evacuation timing in the event of a building fire (Gwynne et al., 1999; 



Kuligowski, 2016). While these tools and their underlying calculation techniques are crucial 

to the engineering community and performance-based analyses, many are missing a key 

component of building evacuation: the behavioural component. Because the movement and 

behavioural components are highly coupled, an evacuation modelling tool is incomplete 

without proper representation of both components. 

 

The benefits and necessity of a comprehensive, conceptual model of human behaviour in fire 

(HBiF) for incorporation into evacuation models were discussed. Many of the current 

evacuation modelling tools available today rely on the user to supply a significant amount of 

information on behavioural representation. This information is required before a simulation is 

run. Current models include different behavioural aspects such delay times or behavioural 

itineraries. While existing behavioural approaches are a positive step toward the 

representation of human response within a simulation tool, the problem is that they rely 

primarily on the user to determine the population’s behaviours before the simulation even 

begins (i.e., representation rather than prediction). This places a large burden on the model 

user; requiring a significant amount of knowledge about evacuation behaviour and theory, and 

based on that knowledge, the pre-determination of behaviours that are likely to emerge during 

the simulation.  

 

Another method of behavioural representation is through the inclusion of component theories, 

either as defaults in the modelling tool, embedded input options available for users, or user 

configuration of the model set-up. In this context, “component theories” are behavioural 

findings from journal articles, authoritative reports, observations, and/or studies on human 

behaviour in fire and other emergencies. Each component theory focusses on a particular 

aspect of the fire emergency and results in one type of behavioural outcome. Component 

theories are often incorporated within modelling tools as behavioural rules that link one 

condition to one outcome (e.g., if X, then Y occurs).  

 

The benefits of a behavioural approach using component theories is that it begins to reduce 

the burden on the user; and instead, involves agency at a more refined level moving us closer 

to producing genuinely new and unexpected results through the generation of emergent 

outcomes. Emergent outcomes are those that arise from the model’s simulation of the 

evacuation scenarios, rather than outcomes pre-determined completely by the user. It is 

important to note that genuinely emergent outcomes can only truly occur at a less refined 

(higher) level than the pre-determined user intervention – and typically involves interaction 

between simulated agents / objects. For instance, if the user determines that an agent will 

definitely use a particular route, then the agent’s use of the route is not emergent – no new 

outcome is generated. The outcome is effectively an attribute of the agent. However, the 

outcomes produced by the simulated population’s use of that route will be emergent (e.g. the 

length of the queue formed); i.e. outcomes that are not an attribute of the agent. If the agent’s 

route selection is reliant on external conditions (e.g. interaction with other agents, provision of 

new information, interaction with smoke, etc.), then the agent’s action selection is emergent, 

along with all of the population-level outcomes identified above (e.g. the number of agents 

using the route, the congestion formed, etc.).   

 

However, there is a problem with the behavioural approach using component theories. 

Typically, only a small subset of these component theories is incorporated in any one 

modelling tool, resulting in a piecemeal representation of HBiF. Piecemeal representations 

can result in inaccurate modelling results, quite possibly underestimating/overestimating 



evacuation timing. Instead, it is desirable is to create and incorporate a more comprehensive 

and inclusive representation of HBiF within evacuation modelling tools.   

 

4.1. Improvements to Evacuation Modelling – Conceptual Modelling  

With current evacuation modelling tools, the user is required to set up the initial conditions 

and the evacuee response (either via user-defined inputs or the selection of component 

theories). A new conceptual model is envisioned and it should require user-input of only the 

initial conditions, which is often times difficult enough. During simulation, these inputs 

would be used by the conceptual model of HBiF, to predict internal motivations of agents 

(i.e., risk perception), and in turn, agents’ actions and associated delays.   

 

The benefits of such a model is that it could predict, rather than simply determine based upon 

user input, human behaviour during fire events. This outcome alone would enable a user to 

identify the behaviours that emerge as the fire scenario unfolds, removing significant burden 

from the model user and increasing the accuracy of model results. This sub-model, after 

extensive validation, could be incorporated into current and future evacuation modelling tools.  

 

Examples of existing conceptual models of human behaviour in fire relevant to the goal of 

predicting decisions and actions taken in a fire emergency are 1) the general model of human 

behaviour in fires developed by (Canter et al., 1980), 2) a conceptual model developed by 

Kuligowski (Kuligowski, 2011) that focusses only on pre-evacuation behaviour from a single 

fire event - the 2001 World Trade Center Disaster and 3) a conceptual model developed by 

compiling a series of component theories from various disciplines into a cohesive platform to 

predict whether an agent takes protection (or not) in a fire emergency (Kuligowski et al., 

2017).  

 

At present, existing conceptual models scratch only the surface of the development of a 

larger, comprehensive model of HBiF. These models provide a path forward for the methods 

that could be used in its eventual development. However, there is much work still to be done 

to improve our understanding of HBiF, and without this understanding, a comprehensive 

model is near impossible.  For the field to reach its goal and develop a larger understanding of 

human behaviour in fire, accurate, rigorous, and comprehensive research and theory 

development must continue. There is still much left to understand, but the ultimate goal of a 

comprehensive model is in our future. 

 

Independent of the method used to create the conceptual model, it will require a large effort to 

be validated using different sets of data from emergency events (including fires in different 

types of structures and with different populations, as well as from analysis of other types of 

disasters, not limited to building fires) – to ensure that this model is sufficiently generalized to 

accommodate all types of fire scenarios.   

 

Once a validated conceptual model is developed, extensive work will be required to 

implement it into current or future evacuation models. Gwynne (Gwynne, 2012) has already 

begun to consider requirements of the agent-based evacuation modelling tools such that a 

conceptual model of HBiF could be represented, which was extended in (Kuligowski et al., 

2017). The authors first describe a simplified behavioural theory of HBiF, and then outline the 

model functionality required to represent the theory, including external cues and conditions, 

cue processing, a roles/social network, spatial map, event map, threat perception, agent 

attributes, and a response or action generator. They end by providing an example of how the 

evacuee decision-making process can be represented by an agent-based modelling tool. 



 

After development and implementation, the next question that arises is when and where a 

conceptual model of HBiF is needed. Evacuation model users would benefit from guidance on 

its usage for different types of projects and project objectives. It is likely that the development 

of this conceptual model will be expensive, and therefore, the use of such a model may be 

expensive as well. There are certain instances (e.g., scenarios, projects, purposes, etc.) where 

the inclusion of a conceptual behavioural sub-model within an evacuation computer model 

would be more beneficial than others.   

 

First, there are certain types of fire evacuation scenarios where the use of a conceptual model 

matters. A conceptual model of HBiF would be most useful in scenarios where most or all of 

the evacuation timing can be spent in the decision-making process. The domestic setting is a 

prime example of this phenomenon. In domestic settings, the time to movement from “Point 

A” to safety (i.e., outside of the residence in the case of a building fire) can be insignificant, 

especially when compared to the time often spent seeking information, deciding to evacuate, 

and preparing. Therefore, a conceptual model would be more applicable when modelling 

evacuation from fires. 

 

With that said, a conceptual model may be beneficial even in scenarios that are dominated by 

people movement and flow, e.g., stadia evacuations. That is, if the user wishes to explore 

more than just the evacuation timing of the fire event. Without a conceptual model, the user 

may superficially treat the evacuation as laminar flow. By doing so, he/she is potentially 

ignoring the impact of social clusters and group dynamics on evacuation performance. In 

other words, if a user wishes to study individual experiences of groups/evacuees (at lower 

levels) during the stadium evacuation, in order to better understand locations of ‘turbulent’ 

flow throughout the building or structure, the use of conceptual model is desirable. 

 

Second, there may be certain types of project objectives (over others) that require the use of a 

conceptual model. In projects where the evacuation model is being used to simulate agents 

strictly adhering to a specific procedure, the benefits of a conceptual model are limited. An 

example of this is exploring the results of a procedure whereby the building population 

evacuates immediately and uses the main exit. This is a legitimate use of current modelling 

tools, given that the evacuation model used is capable of capturing the outcomes of the agents. 

In this project, the benefits of a conceptual model are limited because the “behaviour of the 

occupants” in the modelling scenario can be sufficiently pre-defined by the user. Projects 

where a conceptual model is of most benefit are those where the user is required to answer 

“what could happen if….” questions. Essentially, these projects require the model to explore 

what agents would do, given only a series of initial conditions. In these projects, a model’s 

ability to simulate emergent behaviours and outcomes (i.e., those not completely pre-defined 

by the user) is crucial, and only possible through the inclusion of a refined and comprehensive 

conceptual model of HBiF.  

 

At the moment, it is up to the model user to decide, based upon project requirements, the 

capabilities of the evacuation modelling tool(s) required for the job, and in turn, select the 

correct/appropriate tool to use. The same would be true when/if a conceptual model was 

available. Currently, we do not have the capabilities of a conceptual model of HBiF in any of 

the current evacuation modelling tools. In the future, if these capabilities are made available 

to model users (either within certain modelling tools or as a sub-model to accompany current 

tools), users would benefit from a guide that would help them decide when, and for which 

projects/scenarios, a conceptual model would be beneficial. 



 

5. Applied mathematics: overhead pedestrian tracking for large scale 

real-life crowd dynamics analyses 
 

Pedestrian monitoring, and in particular the observations of pedestrian trajectories are of key 

importance for the understanding of pedestrian evacuation behaviour. This contribution 

discussed a novel technique for pedestrian monitoring as it allows unprecedented, 

unsupervised, 24/7, months-long, pedestrian measurement campaigns that provided millions 

of individual trajectories, allowing novel statistical insights. The tracking technique leverages 

overhead depth-sensors, such as Microsoft Kinects, arranged in grids, and ad hoc pedestrian 

localization algorithms.  

 

Over time measurement techniques evolved: manual measurements for flux-density relation 

estimates (e.g. (Seyfried et al., 2007)) has been replaced by increasingly automatized 

individual(-head) tracking (Boltes and Seyfried, 2013; Zanlungo et al., 2014).  Crowd 

dynamics experiments in real-life conditions are receiving increasing attention, e.g. (Helbing 

et al., 2007; Zanlungo et al., 2014) as they come as alternatives of laboratory-based, “in 

vitro”, pedestrian data acquisition campaigns, in which experimenters involve groups of 

voluntaries, that possibly wearing special clothing to aid tracking, take part to crowd flows 

scenarios. Real-life measurements present two main advantages over laboratory approach: 

first, they involve pedestrians unaware of being part of a scientific experiment. While in 

laboratory the measured dynamics is orchestrated, thus unavoidably more or less biased by 

the experimenter instructions, in real-life pedestrian flows respond to the free will of the 

randomly involved individuals, allowing to truly expose the stochasticity of pedestrian 

motion. Secondly, real-life pedestrian measurement campaigns can span over potentially 

limitless time intervals; therefore, they allow collection of thousands or millions of 

trajectories. Such a large amount of unbiased data, impossible to collect in a laboratory 

framework, enables to measure the motion beyond its average quantities and estimate its 

fluctuations and its characteristic rare events.  

 

Real-life measurements, when targeting the acquisition of thousands of trajectories, must 

occur in an unsupervised manner, demanding a strong technological effort for robustness and 

accuracy. For instance, unaware participants can wear any sort of clothing or headgear, that 

the tracking algorithmic must be able to deal with. Also, in laboratory, the experimenter can 

fully define “control parameters” for their experiment (e.g. number of individuals involved, 

crowd density, directionality), while in real-life they are subjected to the randomness of the 

crowd flow (Corbetta et al., 2017a). In real-life conditions, privacy of the involved crowd is 

also a crucial issue, as individuals must consent to participate to experiments, especially if not 

anonymous (e.g. in case tracked individuals remain recognizable in the recorded data). 

 

A novel pedestrian tracking approach was discussed and exemplified with data collection 

campaigns held respectively in a building of Eindhoven University of Technology (years 

2013-2014, about 200.000 trajectories collected, see e.g. (Corbetta et al., 2014) and at 

Eindhoven train station (years 2014-2015, about 5 millions trajectories collected, see 

(Corbetta et al., 2017b), cf. Figure 1), analysed the pedestrian dynamics with high statistic 

resolution, targeting motion fluctuations and rare events. 

 



 

 

 

  

Figure 1. (top) Crowd tracking experiment at the Metaforum Building, Eindhoven University 

of Technology; setup sketch, example of collected trajectories and related depth maps (figure 

from (Corbetta et al., 2017b). (bottom) Crowd tracking experiment at Eindhoven train station 

with four Kinect sensors: snapshot and sample depth map with trajectories. In both cases 

depth maps have grayscale colorization (figure from (Corbetta et al., 2016)). 

 

5.1. Measurements via overhead depth sensors 

The grounds of the measurement technique employed have been firstly and independently 

posed in (Bršcic et al., 2013; Seer et al., 2014), and leverage depth field signals, acquired via 

depth sensors, for pedestrian localization. Thanks to the usage of depth map signals 

pedestrians remain unrecognizable, thus fully preserving the individual privacy. 

 

Depth sensors return distance-field maps, or depth maps. While an ordinary digital image 

reports pixel-by-pixel a color information (RGB, i.e. three channels), a digital depth map 

reports the distance between each pixel and the camera plane. This is a single channel (scalar) 

information, usually encoded in grayscale images. A fairly extended selection of depth 

sensors is currently available on the market differing in resolution, depth reach, acquisition 

frequencies and prices (Bršcic et al., 2013; Stoyanov et al., 2011). Since the early 2010s, 

depth sensors entered the consumer market with devices as Microsoft Kinect, which along 

with a standard colour camera, is equipped with an infrared structured-light sensor (Stoyanov 

et al., 2011) and, via an embedded system, it delivers an estimate of the depth map of the 

scene at VGA resolution (640x480 px) and at 30Hz refresh rate. Microsoft Kinect sensors 

provide the raw depth images of pedestrians at the basis of the tracking technique considered 

in this paper.  

 



In the campaigns discussed in (Corbetta et al., 2016, 2017b) either one or four sensors were 

employed roughly at 4 meters above the ground. The effective spatial coverage provided by a 

single sensor is about 2m x 2.2m, i.e. within this area heads of subjects up to 1.8m tall are 

observable without cuts. Sensors are juxosed in a way that a continuous coverage of such 

effective area is provided. Throughout real-life experimental campaigns, it is possible to 

collect hundreds of thousands of pedestrian trajectories aiming at unveiling statistic signatures 

of the pedestrian motion. While individual paths of people may be less relevant to evacuation 

modelling for fire safety engineering applications, a statistical analysis of the movement and 

behaviour of a population would be useful to design evacuation safety. The analysis of real-

life measurements comes with an intrinsic complexity, determined by the randomness with 

which different crowding conditions follow one another. In a train station, a diluted flow 

composed of one or few people can, in a matter of seconds, turn into a dense crowd, e.g. after 

the arrival of a commuter train. In this sense, data acquired in real-life campaigns come from 

a (random) sequence of experiments and should undergo an aggregation phase preliminary to 

the analyses (see Figure 2).  

 

  

Figure 2. Walking speed distribution and band of preferred positions for pedestrians walking 

in the landing in Figure 1(top), respectively to the left (left panel, descending direction) and to 

the right (right panel, ascending direction). Figure from (Corbetta et al., 2016). 

 

A pedestrian tracking algorithm based on overhead depth imaging data enables real-life data 

collection of pedestrian trajectories with high accuracy. In this context, high statistics 

measurements enable unprecedented insights in usage patterns. These are relevant toward the 

comprehension and the quantitative modelling of the complex motion of crowds.  Finally, the 

localization algorithm exploits simple geometric concepts identifying pedestrians as cluster 

within the foreground of an overhead depth cloud. The geometric simplicity of this algorithm 

is the key for its execution speed and the high localization accuracy in moderately dense 

conditions (up to 1.5people/m2). The algorithm performance, in fact, decreases as soon as the 

correspondence between point clusters and pedestrian vanishes. This occurs at high densities 

or in presence of foreground elements which are not pedestrians (strollers, bikes, removable 

obstacles and so on), that are unavoidably marked as walking individuals. To address such 

richer scenarios, more complex localization algorithms are necessary, which effectively 

analyse the frames and classify each element for type. Only for the element classified as 

pedestrians they further estimate the locations. Recent advancements in machine intelligence 

and, in particular, in deep learning (LeCun et al., 2015), showed impressive performance at 

such recognition and localization tasks, making excellent candidates for algorithmic 

improvements.  
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6. Transportation: evacuation modelling in the field of transport 
 

In this section, we consider evacuation beyond the confines of a physical structure such as a 

building or vehicle or otherwise more confined area, and expand the discussion to  consider 

the case of large-scale urban or regional evacuation, for example as a result of a natural 

disaster such as a wildfire (Veeraswamy et al 2018), a tsunami (Urata and Pel, 2018). As a 

result, it is also necessary to look beyond the level of individual pedestrians and crowds, and 

consider how people make various travel decisions and how these collectively result in traffic 

flows, possibly across multiple modes of transport (e.g. car, public transit, active 

modes).Thus, evacuation modelling in the field of transport pertains to developing models 

that: (1) can predict the spatial-temporal traffic conditions in case of an evacuation, (2) 

conditional on situational factors such as disaster dynamics and human response behaviour, 

and (3) conditional on strategic factors such as the dissemination of evacuation information 

and instructions and the deployment of traffic control measures. Such transport models are 

then used, for example, to assess the evacuation capability of a region, to assess the strengths 

and weaknesses of an evacuation strategy, or to adopt a model-predictive framework in order 

to design optimal evacuation strategies. Furthermore, models can be used for theory testing; 

by developing a model based on a (behavioural) theory, the theory can be tested by verifying 

the model predictions against empirical data. 

 

A transport modelling framework generally consists of five sub-models (Barceló, 2010; 

Bayram, 2016; Intini et al., 2018; Murray-Tuite and Wolshon, 2013), where the first four sub-

models describe the travel choice behaviour and the fifth sub-model describes the (resulting) 

traffic flows in the transport network. The travel choice behaviour sub-models have as 

purpose to predict the decisions that people make both prior to departure and during their trip, 

and what the collective of these individual decisions yields in terms of travel patterns. These 

sub-models thus relate to,  

1. Trip generation: how many people will evacuate and at what time they will do so, 

2. Trip distribution: where they will evacuate to, 

3. Modal split: by what mode they will evacuate (e.g. car, public transit, active modes), 

4. Traffic assignment: by what route they will evacuate. 

 

However, in changing scales from building to community, it is important to understand that 

additional factors can influence household decision-making processes and subsequent 

evacuation behaviour in community-wide disasters. Community-wide evacuation is often 

complicated by existing household vulnerabilities, e.g., financial constraints, access to a 

vehicle, age, disabilities, etc. (Cutter et al., 2003; Lindell and Perry, 2012; Wong et al., 2018) 

and/or potentially aided by existing social ties and relationships within the community (also 

known as social capital) (Aldrich and Meyer, 2015). 

 

 

6.1. Existing modelling approaches 

Trip generation models (Pel et al., 2012; Wilmot and Mei, 2004) predict the number of people 

who will evacuate and when these people will depart. Note that contrary to a building 

evacuation where the evacuation compliance rate is typically close to 100 percent, in a larger-

scale evacuation of a region aspects of compliance (i.e. of those under risk, how many will 

evacuate) and shadow evacuation (i.e. of those not currently directly under threat, how many 

will still evacuate) are important considerations. Two approaches can be distinguished: two-

step static models, and integrated recursive models. In two-step static models, two separate 



models are estimated: the first model describes the evacuation participation (either the 

probability for an individual, or the percentage for a population), while the second model 

describes the evacuation departure time (either as most likely time window for an individual, 

or as response rate for a population). Then combining the models predictions yields the 

number of evacuees departing at any specific time. These models are static in the sense that 

the trip generation is predicted prior to simulating the evacuation, and hence any time-varying 

changes in the conditions that may influence the trip generation is not accounted for. 

Typically simplistic statistical distributions are used here, as opposed to explanatory 

econometric models. This two-step model is commonly applied, likely due to the 

mathematical simplicity of the approach and the fact that relatively little situation-specific 

data is required. A main drawback of this two-step static modelling approach is the lack of a 

behavioural theory underlining the model. In integrated recursive models, integrating the 

evacuation participation and timing decisions relaxes many of these limitations. This is done 

by recursively (i.e. interleaving with the evacuation simulation model) predicting the 

evacuation departures for that specific time. Here typically an econometric model is 

repeatedly used, which predicts the share of people who decide to evacuate and depart 

presently, or postpone the decision to evacuate. The econometric model models this binary 

decision based on the differential utility associated with evacuating (compared to not 

evacuating) as a function of the current or expected conditions. As these conditions change 

over time, so can the evacuation decision be predicted dynamically as the incident evolves. 

 

Trip distribution models (Murray-Tuite and Wolshon, 2013; Pel et al., 2012) predict 

individuals’ destination choice. This sub-model is only included in case of an evacuation with 

some minimal notice time, such that evacuees are actually capable of consciously deciding on 

their evacuation destination. In case of an evacuation with little to no notice a common 

modelling assumption is that the evacuation destination is not actively chosen, but instead a 

mere result of the chosen (presumably most familiar or fastest) evacuation route. That is, 

evacuees will choose the route that leads them out of the threatened region as soon as 

possible, and once safe may continue their trip to their final destination. Trip distribution 

models are almost without an exception always an econometric discrete choice model 

comprising of two components. The first component estimates the type of location that an 

individual evacuates to, thereby distinguishing: family and friends, public accommodation 

(e.g. hotels), and dedicated evacuation shelter. The second component estimates the specific 

destination, conditional to the type of location. The destination decision depends on 

characteristics of the available alternatives (e.g. costs, capacity, perceived safety) and the 

travel resistance to reach the destination (e.g. travel distance, travel time). 

 

Modal split models (Intini et al., 2018) predict the mode of transport that evacuees will use. 

Transport modelling tends to focus on evacuating suburbs and regions, where evacuation 

distances require some form of motorised transport. At the same time, many empirical 

examples (of evacuations due to wildfires, hurricanes, flooding, and storms) have shown that 

when a car is available, it is the preferred mode of transport for evacuation. This is ascribed to 

the fact that evacuating by car enables securing the safety of the car as asset while also it 

enables to bring along other personal items and assets (and makes it easier for a household to 

evacuate together). Therefore, it is seldom that a modal split model with be estimated. Instead, 

more commonly, census data and local expert knowledge/judgement is used to estimate the 

population share who have access to a car and the population share who will rely on public 

transport and dedicated evacuation (bus) services. The multimodality of public transport 

travel (i.e. using busses, trams, trains) as well as the interaction with cars on the road can be 

modelled using a multimodal transport model (Van der Gun et al., 2016). 



 

Traffic assignment models (Barceló, 2010; Intini et al., 2018; Pel et al., 2012) predict the 

route that evacuees will follow. Although the vast majority of evacuation models do explicitly 

include a traffic assignment sub-model, there are a number of studies that sidestep this sub-

model. One way is to simply insert pre-defined evacuation routes, thus simulating mandatory 

prescribed routes to test various evacuation route strategies. This however does assume full 

compliance, which is most certainly too strict an assumption to make. Another way to 

sidestep this sub-model is to simply estimate the ratio between the total spatially distributed 

travel demand (i.e. number of travellers) and the capacity bottlenecks in the road network (i.e. 

number of travellers that can pass per unit of time), which then together with some correction 

terms give a ‘first guess’ on the minimum time required for the complete evacuation. Apart 

from the questionable validity of this approach, more importantly, this method does not 

provide insight into: the dynamic evacuation traffic conditions, the underlying (success and 

failure) factors that determine the evacuation process, and the benefits of deploying control 

measures. 

 

In pre-trip traffic assignment models, evacuees are assumed to choose their route from origin 

to destination upon departure, and to not switch routes while travelling. Route choice 

behaviour is predicted using an econometric discrete choice model that is based on the 

currently prevailing or expected route conditions. The pre-trip route choice paradigm may 

appear inappropriate to model route decisions under evacuation conditions. This is because 

the sub-model is adopted from other transport models for long-term planning studies. There 

the pre-trip route choice model is embedded in an iterative procedure mimicking how 

travellers build up experiences (from one iteration to the next) leading to well-informed 

expectations about what traffic conditions to expect, thus iteratively updating their route 

choice until a steady (equilibrium) state has been reached. In on-trip traffic assignment 

models, the assumption that evacuees cannot deviate from their (pre-trip) chosen route is 

relaxed. Here, evacuees observe the prevailing conditions and make route choice decisions 

accordingly. In hybrid traffic assignment models, both pre-trip and on-trip decisions are 

modelled. This way, evacuees are assumed to choose an initial route upon departure, after 

which they may adapt their route during their trip. They might do so when prevailing traffic 

conditions are such that they are better off (or have the feeling of being better off) by 

deviating to another route. This type of model is also used to evaluate varying degrees of 

compliance towards dedicated evacuation routes (Pel et al., 2010).  

 

Traffic flow models (Leutzbach, 2012) predict how vehicles drive through the infrastructure 

network and interact with other traffic, thereby computing travel times and congestion 

dynamics. The majority of traffic flow models are dynamic, in the sense that they use 

simulation to compute the time-varying traffic conditions. Traffic flow models are best 

categorised along two axes; the first being the aggregation level for traffic representation and 

propagation; the second being whether flows are based on queueing theory or kinematic wave 

theory (Hoogendoorn and Bovy, 2001). Traffic flow models can be microscopic, 

macroscopic, or mesoscopic depending on the combination of traffic representation and 

propagation. The level of detail in the microscopic models is ideal for studying driving 

behaviour under evacuation conditions. For sake of computation time and model complexity, 

macroscopic and mesoscopic models are preferred in evacuation studies for larger regions.   

 

6.2. Model applications and challenges 

In evacuation modelling in the field of transport, models are used (1) to assess the evacuation 

capability of a region, (2) to assess the strengths and weaknesses of an evacuation strategy, or 



(3) to adopt a model-predictive framework in order to design optimal evacuation strategies.  

 

The essence of a fast and smooth evacuation lies in the balance between the travel demand 

(i.e. number of evacuees) and the network capacity (i.e. sustainable exit flow). Hence, 

likewise models are used to investigate demand and capacity strategies that aim to facilitate 

the evacuation. Demand-side evacuation strategies include 1) Phased evacuation, 2) 

Sheltering-in-place or close by, 3) Reducing shadow evacuation and background traffic, 4) 

Prescribed evacuation routes. Capacity-side evacuation strategies include instead 1) 

Contraflow, 2) Crossing elimination (i.e., prohibition of certain turning), 3) Special signal 

timings, 4) Dedicated public transport services, 5) Use of hard shoulders (i.e., emergency 

lanes). The use of these strategies in the transportation modelling domain can be a useful 

starting point for comparison with existing and future building evacuation modelling 

applications. 

 

Next to evaluating the expected effects of evacuation strategies, the sensitivity of these 

strategies is tested using model sensitivity analyses. Such sensitivity analyses are conducted 

by a controlled varying of a part of the model (scenario input, model assumptions/sub-models, 

or model parameters) to test how this leads to changes in model output. Common analyses are 

to test the impact of 1) Spatial-temporal disaster dynamics, 2) Failure of transport network 

components, 3) Population characteristics and behaviour, 4) Failure to deploy control 

measures, 5) Modelling simplifications. 

 

A set of challenges have been identified starting from the modelling capabilities and 

applications. Model calibration of evacuation transport models remains an issue. Choice 

models are calibrated using data from stated preference surveys and post-disaster 

questionnaires, while the traffic flow models are calibrated using data from empirical traffic 

counts and driving simulator experiments. This amount of empirical data is growing, giving 

insight into evacuees’ activity-travel patterns, the information that they had at hand at the 

time, and the resulting traffic flows in the region. However, there are very few modelling 

studies that investigate in what way these calibrated (sub-)models can be applied to other 

regions, in a different cultural context, and possibly other disaster dynamics.  

 

The second research challenge is to embed evacuation traffic models into decision support 

tools used in disaster management. Evidently, this requires an interdisciplinary approach with 

social scientists, structural engineers, transport engineers, and researchers from fields 

specifically related to the disaster type; possibly also incorporating the fields of humanitarian 

logistics and disaster relief operations. Besides the practical relevance of disaster management 

decision support tools, such an interdisciplinary approach can lead to greater holistic 

understanding of evacuations, and aid in refining our evacuation (transport) models. 

 

The third research challenge is to model how new technologies are utilised. This can pertain 

to information dissemination via social media, mobile devices and in-vehicle devices, with 

real-time information on disaster, infrastructure, and traffic conditions. It is currently 

insufficiently understood how this may affect evacuees’ behaviour (across all sub-models) 

and how this can be incorporated in evacuation transport models. Furthermore, this is also 

relevant for data collection methods, for example, relying on GSM and GPS traces. How such 

data can be used real-time in evacuation management strategies, as well as used post-disaster 

in model development and calibration, is a challenge for future research. 

 



7. Dynamic simulation and biomechanics: An analysis of human 

biomechanics and motor control during evacuation movement. 
 

Biomechanics and closely related fields can describe key elements of locomotion that are 

employed in the process of walking in congested space. In order to understand how these 

fields can interface with the discipline of crowd and evacuation modelling, we should 

consider the following areas of study: 

 

a. The study of biomechanics evaluates the motion of a living organism and the effect of 

force on a living organism (Hamill et al., 2015) 

b. The study of motor control: an area of natural science exploring how the central 

nervous system (CNS) produces purposeful, coordinated movements in its interaction 

with the rest of the body and with the environment.  

 

These fields of study are inextricably linked to the process of evacuation, particularly in terms 

of how humans move in relation to each other. The collective movement of individuals is 

encapsulated (in fire and life safety) as crowd flow. The flow metric emerges from 

aggregating the sum movement of the escaping individuals. However the design guides, 

research and computer modelling for life and fire safety have largely ignored the key aspects 

of biomechanics and motor control. An improved understanding of the fundamental 

biomechanical processes of human motion can be useful to improve predictions of crowd 

movement. This is particularly important to evaluate the impact of changing demographics, 

which would include in the future an aging population and an increasingly obese population , 

thus requiring a deeper understanding of the locomotion mechanisms.  

 

The field of evacuation modelling for fire safety engineering applications should aim at 

removing “rule of thumb” approximations of crowd flow and lead to much more rigorous 

assessments of safety based on biomechanics. The latest United Nations report on World 

Population Ageing (United Nations, 2015), states that between 2015 and 2030, the number of 

people in the world aged 60 years or over is projected to grow by 56 per cent, from 901 

million to 1.4 billion, and by 2050, the global population of older persons is projected to more 

than double its size in 2015, reaching nearly 2.1 billion. Preparing for the economic and social 

shifts associated with an ageing population is thus essential. Population demographics have 

changed over the past 50 years and will change even more, thus originators of the simple flow 

aggregate values need to be replaced. The effects of ageing on gait velocity, step width, step 

length and coefficient of friction, horizontal sway and perception of per personal space needs 

must logically impact on how heterogeneous crowds move in confined spaces, both in an 

emergency or normal situation. However, we currently have limited understanding on the 

fundamentals of how - and the extent to which - this does impact crowd flow. 

 
7.1. Biomechanical processes 

There are many aspects of locomotion biomechanics that can be considered by Fire Safety 

Engineers, such as, 1) walking, 2) running (while it is accepted that in most fire engineering 

designs people are assumed to be walking, understanding  running mechanisms could provide 

useful insight into walking behaviours), 3) Assisting others, 4) reacting to stimuli, 5) 

accelerating, decelerating, turning, 6) passing through openings, 7) adapting gait to confined 

space, 8) preserving one’s own personal space/respecting others’ personal space, 9) walking 

with encumbrances/disabilities, 10) transitioning between multiple phases of the above 

processes. 

 



Many aspects of the above processes have been well studied in the biomechanics and motor 

control disciplines, particularly in the fields of sport and exercise science, sports medicine, 

health sciences and public health. How these are measured, analysed, calculated or simulated 

can be of interest to Fire Safety Engineers. Opportunities for a more integrated approach 

across disciplines in advancing an important frontier in human movement analysis are 

explored, i.e. how interactive movement in a complex environment can be measured, 

understood and modelled. 

 

Gait analysis of walking is usually expressed in terms of spatial parameters e.g. step width, 

stride length or joint range of motion, and temporal parameters e.g. stride time, swing time, 

step time. The gait cycle, or gait stride, can be broken down in two broad phases: stance and 

swing (Perry and Burnfield, 2010). The time dimensions of the walking cycle includes single 

and double support time, i.e. the time when only leg or two legs are touching the ground, 

respectively. These are important parameters as the time spent in double support changes with 

age and disability, giving an indication of the level of stability that is being exploited within a 

person. Spatial parameters such as stride length and step width also give an indication of the 

limits of stability in the anterior-posterior direction and lateral body sway.  

 

Another commonly used variable in gait analysis is gait speed. It is a reliable, valid, sensitive 

and specific measure that correlates with functional ability, and balance confidence and 

predicts future health status, functional decline, discharge location and mortality (Fritz and 

Lusardi).  

 

Concerning running, the use of a deterministic model allows the understanding of the basic 

biomechanics of running. The deterministic model is a modelling paradigm that determines 

the relationships between a movement outcome measure and the biomechanical factors that 

produce such a measure (Hay, 1994). First, the model is made up of mechanical quantities or 

appropriate combinations of mechanical quantities. Secondly, all the factors included at one 

level of the model must completely determine the factors included at the next highest level, 

hence the term deterministic. This is a potential approach that could be used to investigate the 

important factors that determine movement in a crowd. The first level would start with “gait 

speed in a crowd”, and the next level may include stride time/stride frequency and stride 

length.  
 

The key elements of walking in congested space include (see Figure 3). 



1. Gait - particularly step & stride length 

2. Cadence - the frequency of a completed step 

cycle 

3. Avoiding collision - factors include response 

time and anticipating the movement of others 

4. ‘Comfort’ space where, in addition to space for 

leg-swing and avoiding a collision, we allow a 

buffer of space where we are comfortably 

allowing enough time and distance to avoid 

unexpected inter-person contact. 

 

Figure 3. Elements of stride/distance in 

congested space 

Figure 3. (a) Relationship between velocity and inter-person distance (Thompson et al., 2015). 
 

Early assessments of individual movements in congested space (Thompson and Marchant, 

1995) have involved the assessment of inter-person distance and walking speed. In addition to 

the relationship between distance and speed, these early studies used the general 

approximation of acceleration and deceleration as 10% of unimpeded walking speed over 0.1 

seconds, and also 10 degrees for rotational body ‘twist’ limitation over the same time period. 

When these parameters were implemented in the computer model Simulex (Thompson and 

Marchant, 1995) then it reproduced flow rates of 1.34 people/m/s for a nominal ‘commuter’ 

population type, using databases available at the time (Fruin, 1987; Predtechenskii and 

Milinskii, 1978).  

 

Many commonly encountered computer models use aggregated relationships for the speed 

and flow curves (Fruin, 1987; Predtechenskii and Milinskii, 1978). Similar correlations for 

movement on staircases (Burghardt et al., 2013). However, these curves take no account of 

population demographic differences, i.e., no account is taken of physical anthropology of the 

people. 

 

In contrast, the biomechanics and motor control literature abounds with movement data that 

has been recorded using an array of technologies. The field of movement analysis originated 

with the advent of moving pictures, resulting in playback facilities that enabled the analysis of 

the quality of the movement. The vast majority of quantitative analysis of kinematic data has 

been carried out on individual research subjects (Kontaxis et al., 2009). Development of 

techniques specifically for the accurate, high resolution analysis of movement of people in 

crowds is a frontier in the field of movement analysis that will very much impact a number of 

fields of study e.g. psychology, ageing, security and crowd flow in evacuation. 
 

The next step in the interdisciplinary research field of crowd biomechanics is to develop a 

fundamental understanding of movement of mixed populations. Potential biomechanical 

parameters that may influence individual movement and interaction in populated spaces needs 



to be assessed in a deterministic approach similar to Hay’s models (Hay, 1994).  Finally, there 

is need to explore how physiological, social, psychological and environmental factors 

influence the identified fundamental biomechanical parameters, across a range of populations. 

 

8. Discussion: Quo vadis evacuation modelling?  
 

The presentations of the panellists generated several discussions concerning future possible 

directions for evacuation modelling with the discussion focusing on two key issues, should 

tuning parameters of existing sub-models or incorporating new features  be prioritized. A 

general discussion with the whole workshop audience also took place after all panellists’ 

presentations were given. During the presentations and the discussion, two rapporteurs wrote 

down the main issues discussed during the workshop. The first topic of discussion concerned 

the challenges of using data-sets derived from different methodologies, as a set of different 

methods were proposed by various panellists. The workshop panellists agreed that the 

assessment of what can be considered representative data-sets remain for any type of research 

methods. The trade-offs between different methods (e.g., ecological validity vs. experimental 

control) should be assessed case-by-case rather than analysing the validity issue of a single 

method. There was agreement on avoiding the direct use of virtual reality data for modelling 

purposes without a careful evaluation of their validity because at least to date, it cannot be 

used to extract absolute parameter values of, for example, walking speed. The specific 

strength of the experimental approach in VR over uncontrolled observations is the possibility 

to test specific hypotheses and draw causal inferences on human behaviour (Kinateder et al., 

2014c). Similar trade-offs might be observed while using behavioural intention questionnaires 

to assist model development. Limitations have to be identified for all type of research 

methods and data need to be interpreted for the context of application.  

 

The presentation concerning psychology/human factors led to an interesting discussion 

concerning the applicability of data obtained from controlled psychophysical experiments in 

the fire safety engineering context. For example, while in most evacuation scenarios 

occupants would not be directly exposed to approaching smoke, psychophysical experiments 

provide basic research insights that can be used to evaluate not only approaching smoke but 

also smoke changing its density, thus making it useful to evaluate behaviour of people 

immersed in smoke.  

 

Another important point discussed related to the exact meaning of validation in the context of 

evacuation modelling, as this was a point raised in several presentations. Questions were 

made if the concept should relate to the outcome of an evacuation (e.g., the precision at which 

RSET can be predicted) or how accurately a model describes evacuation behaviour itself. The 

need for the definition of an overarching concept of behaviour was identified along with the 

need for a common set of references for validation of each component of behaviours. 

Although a comprehensive validated conceptual model would increase the credibility of the 

field and the use of models, it is important to identify solutions given the current state of the 

art in which such a comprehensive model does not exist. The discussion mostly focused on 

agent-based modelling, as this is likely the most feasible solution to perform such 

enhancements. Alternative (generally simpler) approaches are also used nowadays to 

represent evacuation (e.g. hydraulic models (Gwynne and Rosenbaum, 2016), cellular 

automata (Pelechano and Malkawi, 2008)), but they were not the main focus of the discussion 

as they present several limitations in terms of their ability to represent complex behaviours. In 

this context, recent efforts have been focussing on providing guidance on development and 

use of evacuation models given the existing state of research (Gwynne et al., 2015; 



Kuligowski et al., 2017). The conclusion for this particular cross-roads, was that future 

research should therefore focus on both possible pathways, 1) the development a 

comprehensive human behaviour in fire model, as well as 2) enhance current models.  

 

Another solution to the current lack of a comprehensive validated conceptual model is the 

collection and use of big pedestrian movement data as the basis for development and 

evaluation of evacuation models. Novel methodologies for automated tracking of hundreds of 

thousands of trajectories (Corbetta et al., 2016) were discussed as they open up for a 

completely new approach for development and validation of models which relies on high 

level statistics rather than fundamental properties of each individual. Key issues would be in 

this case the clustering of homogenous data. An important challenge is the need for pedestrian 

monitoring techniques able to allow understanding of the characteristics of the population 

observed at a microscopic level for the extrapolation of findings to new scenarios.  

 

The big data approach is somehow complementary with the approach discussed in the 

presentation on biomechanics and dynamics simulation as the suggestion was here instead to 

look at the fundamental biomechanics variables of human motion. The main advantage is the 

possibility of the latter approach is to extend prediction to aging populations. The main 

drawback is the sheer size and number of the data-sets that need to be collected. This issue led 

to a discussion on the assessment of the validity of some of the data-sets implemented in 

evacuation models, which are in some instances collected decades ago (Fruin, 1987; 

Predtechenskii and Milinskii, 1978). For instance, in case of significant levels of congestions, 

average speeds may be comparable between those data-sets and more recent data (Galea et al., 

2012). 

 

The level at which it is necessary to study crowd evacuation dynamics was also discussed in 

light of current research performed in the traffic modelling domain. In fact, similar issues take 

place in the transport field on the preferable modelling approach (macroscopic, microscopic, 

mesoscopic). This discussion led to the consideration that the assessment of the phenomenon 

of interest and subsequent model application is the first step for identifying the most 

appropriate modelling approach to use. Following this, the trade-off between computational 

time and complexity should be the considered for the definition of the appropriate method of 

analysis. In this context, the use of hybrid models can be a good solution to adopt the most 

suitable approach for different conditions (i.e. by modifying the modelling scale within the 

same model in relation to the variables of interest) (Chooramun et al, 2012, Chooramun et al., 

2017).  

 

It should be acknowledged that each panellists’ research work concerned the topic area they 

presented, thus potential biases can be present. The final discussion focussed on the next steps 

needed for the definition of a common framework for components that evacuation modellers 

and developers should consider. The point of view of regulators was here considered, as the 

first important step was identified in the need for bridging existing literature and research with 

day-to-day use. Following this issue, an important challenge to consider is that the evacuation 

design is often done once in the life of a building. This means the designers have to take into 

consideration the potential uses of the buildings and people demographics in the future. For 

this reason, future models and research efforts in the field should start from the premise of 

assessing the applicability of their models to a population which does is not necessarily in line 

with current today building population. 

 



The key needed actions to develop and implement a roadmap for the evacuation modelling 

field in the fire engineering domain are listed below: 

1) Identification of lessons learnt from the model developments in other fields, i.e. what 

can we learn from other fields? What data can we use? What modelling approaches 

can be adopted? 

2) Identification of the key data gaps concerning pedestrian movement and behaviour, 

i.e. what we know we do not know and how should we collect this data? 

3) Identification of the key modelling gaps, i.e., what conceptual models and sub-models 

need to be developed/improved? 

4) Development of a robust and internationally recognized verification and validation 

standard testing procedure for evacuation models used in fire safety engineering. 

 

 

9. Conclusion 
 

The workshop New approaches to evacuation modelling within the IAFSS Symposium has 

been a great opportunity to gather experts outside of the field of fire safety engineering and 

evacuation modelling experts. The benefits of exchanging information between these two 

groups appeared evident during the workshop given the successful exchange of ideas. 

Suggestions towards developments and improvements of evacuation models based on a multi-

disciplinary premise were given, analysing the advantages and drawbacks of different 

approaches and providing suggestions for future research in this field.  
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