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CONTENTS

1 Introduction 1
1.1 Problem of word meanings . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Motivation for Numerical Representations . . . . . . . . . . . . . . . 2

1.2.1 Exponential Word Embeddings . . . . . . . . . . . . . . . . . . . 3
1.2.2 Topic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Markov Random Fields. . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Exponential Family Representations . . . . . . . . . . . . . . . . . . . . 8
1.4 Focus of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 PAWE: Polysemy Aware Word Embeddings 13
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Distributed Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 PAWE Embedding Model . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Nearest Neighbors Analysis. . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Word Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Robust Gram Embeddings 27
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Robust Gram Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Sensitivity Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Word Similarity Performance . . . . . . . . . . . . . . . . . . . . 32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Semantic Vector Specializations with Bidirectional Constraint Propagations 35
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Word Vector Models . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Semantic Word Vector Specializations . . . . . . . . . . . . . . . . 38
4.3.3 Bidirectional Constraint Propagations . . . . . . . . . . . . . . . . 40
4.3.4 Learning by Controlled Negative Sampling. . . . . . . . . . . . . . 40

vii



viii CONTENTS

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Embedding Stability . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.4 Word Similarity Measurements . . . . . . . . . . . . . . . . . . . 45

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Boosted Negative Sampling by Quadratically Constrained Entropy Maximiza-
tion 51
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Quadratically Constrained Entropy Maximization . . . . . . . . . . . . . 53
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Exponential Family Density Estimation . . . . . . . . . . . . . . . 57
5.4.2 Word Embeddings Similarity . . . . . . . . . . . . . . . . . . . . . 59
5.4.3 Real world text classification . . . . . . . . . . . . . . . . . . . . . 63

5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Constrain Global Sample Local: Faster and Variance Reduced Word Embed-
dings 65
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Constrain Global Sample Local Method . . . . . . . . . . . . . . . . . . . 67

6.3.1 Sampling Approximation Gap . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Global Bands for Approximation Gap . . . . . . . . . . . . . . . . 68
6.3.3 Local Context Relevance via Concreteness . . . . . . . . . . . . . . 68
6.3.4 Locally Relevant Sampling Model . . . . . . . . . . . . . . . . . . 70

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.1 Performance on Word Similarity . . . . . . . . . . . . . . . . . . . 73
6.4.2 Variance Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.3 Convergence Rates. . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Markov Random Suitability Field for Wind Farm Planning 77
7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Modeling wind farm suitability . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 A grid-based model on the two-dimensional Cartesian plane . . . . 78
7.3.2 Quantifying the elementary criteria for wind farms . . . . . . . . . 79
7.3.3 Multiple-criteria decision analysis of wind farms . . . . . . . . . . 80

7.4 Spatial Suitability Modeling with
Markov Random Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5.1 A grid-based model of Turkey . . . . . . . . . . . . . . . . . . . . 83
7.5.2 Quantifying the wind farm potential in Turkey . . . . . . . . . . . . 84
7.5.3 Spatially-aware suitability for wind farms in Turkey . . . . . . . . . 85

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



CONTENTS ix

8 Conclusion and Discussions 89
8.1 Future Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References 93

A Appendix A 107
A.1 Variational Bayes for LDA . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2.1 γ Variational Update . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2.2 φ Variational Update . . . . . . . . . . . . . . . . . . . . . . . . . 109

B Appendix B 111
B.1 Negative Sampling Objective . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Smoothing the distribution . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.3 Powering the distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Summary 115

Samenvatting 117

Acknowledgements 119

Curriculum Vitæ 121





1
INTRODUCTION

1.1. PROBLEM OF WORD MEANINGS
Words are powerful entities. It is a question of interest whether we are usually aware of
their broad impact. During the course of history, humankind has identified the potential
of words and developed literature in order to describe how powerful words can be. An
example is the book of One Thousand and One Nights in which Scheherazade tells a
story to the king every night in order to delay her execution. She uses words to save her
life.

The power of words lies in their meanings. The problem of how words acquire their
meanings has been studied from many perspectives; semantics, philosophy of language,
philosophy of mind, linguistics etc. Here, we highlight a few reasons why addressing the
meaning of words directly is so challenging:

First, words are imprecise by their nature [1]. In many contexts, it is quite challenging
to obtain a precise definition. Even carefully constructed lexical dictionary sources ex-
hibit vagueness despite the fact that they are prepared by a committee of field experts. As
a result, there are significant variations in word definitions. Secondly, the meaning of a
word is a function of collective decisions. Humans signify their ideas with words, and the
inherent meaning of a particular word, or a concept, can change by changes in collective
usage in the society [2]. Lastly, words are influenced by the dynamics of a society. Com-
plex historical and social processes drive both word meanings and language grammar to
different states [3]. Effective discovery of the cause-effect relations, for explaining what
words do mean and how that varies, requires complex workflows. Scientific analysis of
such phenomenons are bound to the interaction of multiple disciplines.

In this thesis, we circumvent the grand problem of how word meanings arise and
what words do actually mean. We instead aim to utilize computational tools in order
to find whether we can contribute by developing some numerical word representations.
In this manner, we wish to represent the words on computers, such that similarities be-
tween words are accurately learned under time and resource constraints. These numeri-
cal word representations can be used as building blocks for natural language processing

1
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Figure 1.1: Global internet usage statistics from 1996 to 2018 [4]

tasks to address the current needs of the information age, in which we elaborate in the
next subsection.

1.2. THE MOTIVATION FOR NUMERICAL REPRESENTATIONS
In the digital age we are living in, we not only see a tremendous improvement both in
physical limits of the computation but also on the methods and the speed at which we
are able to communicate.

Considering the steady improvements on low cost data storage devices, our overall
capacity to collect, filter, process, create and finally distribute more and more informa-
tion has leveraged. Our price to pay for the accumulation of the increasing amount of
digital data is information overload. As we are not able to cope with all the information,
we need to develop tools that enable us to combat this information overload and give
support to make decisions based on all available information. The information overload
necessitates summarizing documents. Out of a large document collection, which subset
of documents are more representative? Which parts of the data are more informative?
Given the number of documents and the rate at which this number increases, we can
not realize these objectives with human labor, and need computational tools to do so.

The scale at which communication takes place has undergone a revolution. In the
past, communication and cultural exchange between different societies were taking place
on common trade routes and moments of war, whereas interactions between people
were almost negligible. Letters were the traditional transmission medium which had of-
ten delivery times of weeks. With the invention of telegraphy, it became possible to send
messages in minutes of time to thousands of kilometers away. The worldwide internet
and its widespread adoption (Fig. 1.1) completely changed our way of communication;
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any human on the planet can virtually talk to each other instantly and lengthy.
The way that humans move also radically changed, i.e. lengthy intercontinental

journeys over the land have been replaced with daily flights, where previously a sub-
population came into contact with other societies, nowadays everyone has a chance to
do so. As a result, more people get into contact with other languages, increasing the need
for language translation tools.

We touched upon global trends and their increasing needs of document summariza-
tion, and automatic machine translation systems. There are many other Natural Lan-
guage Processing (NLP) tasks such as Part Of Speech (POS) tagging [5], question answer-
ing [6], sentiment analysis [7]. All these tasks require having some form of numerical
word representation as the key building block.

Word representations have found their applications in numerous scientific fields. For
instance, computer vision benefits from them for text recognition in images [8], image
captioning [9] and action recognition [10]. Methodologies are developed for bioinfor-
matics [11] and genomics [12] that uses word representations as side information. All of
these systems have potential to benefit from accurate word representations.

In this thesis, we aim to develop a task-independent way of representing words. We
do so by learning these representations from examples. As text data usually is ambiguous
and noisy, we adopt a probabilistic methodology.

1.2.1. EXPONENTIAL WORD EMBEDDINGS
A word embedding is a representation for each word (symbol) in a language, which we
typically learn from long sequence of already preprocessed text. For example, a naive
embedding is to use a one-hot encoding, which means that we treat each word as a basis
vector wq in the vector space with the length of the vector is equal to the vocabulary size.
As words are viewed as independent vectors, computing the similarities for words is not
possible with this representation. An alternative is the exponential word embeddings
which is a recent methodology [13] for obtaining word representations. These represen-
tations learn the word vectors with a distributional assumption.

Since there is an immense number of possible configurations these vectors can ex-
hibit, our aim is to learn a representation such that the words with same meanings are
similarly represented in the final vector space. Compared to the image representation
learning, this is an even more challenging task because:

• Spatial coherence is an acceptable assumption for images. Unfortunately, words
usually do not such a continuity property. Take for example: casting and fasting. A
change of one letter already fully changes the meaning of the two words.

• Words are highly abstract symbols. It is difficult to find a connection between their
form and meanings.

• An image representation can use information from a vast number of observations.
Nowadays, a single image acquired with an ordinary off-the-shelf camera has mil-
lions of pixels. The number of observations for a word is however quite a few.
Google Books NGram corpus shows that the average word length in English is 5.1
letters [14].
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walking in fog covered forest hoping to see a blue sky
. falling tree leaves in forest wonderful scenery for ...

.. losing track in country forest is unlikely with a scout ....

. some thugs sadly started forest fire but buckets of water ...
....scary atmosphere of the forest and storyteller’s inspiration

nature gave Ithaca this forest and few beautiful lakes..

Figure 1.2: Illustration of distributional hypothesis for the word forest. We generate few sentences containing
the forest as middle word and. There are semantic relations between forest, and co-occurring blue words.

• Semantic and syntactic similarity of words seems to be hard to measure.

DISTRIBUTIONAL HYPOTHESIS

The word embedding approaches we developed in this thesis grounds on the Distribu-
tional Hypothesis to represent the similarity of words. This hypothesis was derived from
the semantic theory of language usage. The underlying idea of Distributional Hypoth-
esis given in [15] is that: You shall know a word by the company it keeps. Thus, if two
words are occurring in the same context, they tend to be similar in their meanings. In
Figure 1.2, we provide an illustration of this hypothesis. Here, the word of interest is for-
est, and it occurs more often with words like tree, leaves, sky, suggestive of a semantic
relationship between all these words.

The formalization of what Distributional Hypothesis means by context is still an un-
solved language processing problem. There are many questions unanswered like: is it
practical to take the order of context words into account or rather omit it? Should we
use a bilateral context or one-sided context of words? In addition, a theoretical expla-
nation is lacking at how the context length should be chosen. For those interested in
different word context implementations, we refer to [16], where the authors provide an
excellent literature overview. We now detail neural and matrix based word embedding
architectures and explain how they implement the Distributional Hypothesis.

Neural network based embedding architectures implement Distributional Hypothe-
sis by iterating on each training sample, being a sentence of the training set. Lets define
Cq as the set of context words. The conditional probability for a word embedding then
becomes the following exponential family model:

P (wq |Cq ) = exp(sθ(wq ,Cq ))
�

wq̃
exp(sθ(wq̃ ,Cq ))

, (1.1)

where wq̃ iterates over all possible words in the language, and sθ is the function which
decides the similarity between a word and a given context, parameterized by the embed-
ding parameters θ.

Note that two key decisions have to be made in this formulation. Firstly, the form of
Cq has to be determined in the neural architecture. Secondly, the calculation of the de-
nominator can be expensive. There exists a vast amount of work on sampling techniques
(e.g. negative sampling technique) to circumvent the calculation of the denominator.

Neural architecture based embeddings update parameters on a sentence basis and
they are local models. However, this locality can reduce the learning efficiency if the
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training set does not have the right curriculum [17, 18]. In contrast, matrix based em-
beddings are global alternatives to neural architectures. In matrix based embeddings,
the word co-occurrence matrix is first calculated from the given corpus. Then this ma-
trix is decomposed using a Singular Value Decomposition (SVD) to find word vectors
such that words that tend to co-occur will be represented by the same eigenvectors. In
that sense, they comply with the distribution hypothesis, which is also elaborated in [19].

In some scenarios, we would like to represent documents. In this case, learned word
representations allow us to design more sophisticated document representations by in-
corporating an intermediate function layer. This intermediate layer makes it possible to
have a distinction between words and higher level features. It can capture more informa-
tion such as the style, and mood of the author. In the word embedding literature, such a
function that bridges the gap between word vectors and the document representation is
called the composition function.

The simplest baseline composition function here is the average word vectors [20]. Al-
though the naive choice of using the average of word vectors to represent a document is
a simple technique, we can learn the composition function by fixing word embeddings
to get document vectors [21]. Arora et al. proposed a weighted averaging approach fol-
lowed by a PCA based reduction [22]. In Lee et al. [23], they propose an embedding
model called Doc2Vec, extending word vector learning to the paragraph and document
vectors. The work of [24] also extends the paragraph vector methodology to a proba-
bilistic fully Bayesian framework rather than obtaining point estimates of paragraph vec-
tors. Here our goal is not going into detail of the composition functions, but pose that
word representations can be easily extended using a composition function. We direct
the reader to the work of Hill et al. which provides a systematic performance bench-
mark of document representations that uses a combination of word representations and
composition functions [25]. To yield more generality, we adopted average word vector
compositions during the thesis.

1.2.2. TOPIC MODELS

Topic modelling is a widely adopted technique for obtaining document representations
in NLP. These probabilistic models are based on the key idea that there exist high-level
concepts, called topics, that can explain how documents are formed. The number of
topics is usually orders of magnitude smaller than the vocabulary size. Thus, unlike
traditional Term Frequency - Inverse Document Frequency (TF-IDF) approaches which
model each document with a vocabulary sized vector, topic models represent each doc-
ument with a distribution over a mixture of K topics. In Table 1.1, we show a subset of
learned topics on the Wikipedia 2014 corpus, along with the most probable words for
each topic in vertically descending order.

Latent Dirichlet Allocation (LDA) [26] is a generative process to explain how docu-
ments are written. The name Dirichlet stems from the fact that document vector pri-
ors are drawn from the Dirichlet distribution. It makes two key assumptions. Firstly,
it assumes that each document is independently generated. In other words, when we
observe one document, this observation does not influence the observation of other
documents in the corpus. Secondly, it assumes the exchangeability of words in a doc-
ument. Exchangeability is a statistical notion stating that for a set of random variables,
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any reordering of them to get a new sequence does not change the probability of the
document. In this regard, it discards a certain number of grammatical dependencies
between the words and enables high-level descriptive summary of documents. Both as-
sumptions oversimplify the document generation process but have shown to perform
well and capture meaningful topics.

The generative process of the LDA is illustrated as a graphical model in Figure 1.3 and
formally can be described as follows:

• Sample document’s topic distribution θ ∼ Di r (a)

• for each word wn in the document:

– Sample a topic zn from Mul (θ).

– Sample a word from p(wn |zn ,β).

where Di r (a) represents a Dirichlet Distribution and Mul (θ) is the Multinomial dis-
tribution. α is the governing parameter for the topic distribution of documents, and β is
the topic-word matrix where each row is a multinomial word distribution for a particu-
lar given topic. We first draw a θ vector from the Dirichlet topic distribution. The docu-
ment representation θ vector, governs how likely it is to exhibit a particular topic for that
document. The generative model then draws a latent topic indicator zn for every word
in the document. It then conditions on the given topic-word distribution β to sample
words wn in the document. Here, unlike word indicators wn that are observed random
variables, {θ, z} are latent random variables. As we get more and more documents, we
update the latent values {θ, z} such that these parameters explain the observed words.
The full posterior of this probabilistic model combines the likelihood and the prior of
the LDA:

p(θ, z , w |a,β) = p(θ|α)
N�

n=1
p(wn |zn ,β)p(zn |θ) (1.2)

where for simplicity, we assumed that each document has N words.
In its full generality, maximization of the LDA’s posterior distribution in Equation 1.2

requires approximations. Similarly to the Expectation Maximization (EM) algorithm, a
distinction between inference and learning is made. In the maximization step, {α,β}
parameters are learned. In the inference step, the latent random variables {θ, z} that
maximize the posterior distribution are inferred 1. In literature, there are many ways
to perform this inference2; such as variational approximations [27], Monte Carlo based
Gibbs Sampling [28], or hybrid variants [29].

There are many extensions to the original LDA model. For example, correlated topic
models [30] alleviate the assumption of independent topics. Others applied topic mod-
els to other modalities such as images or time-series data. For instance, Zhou et al. pro-
posed a temporal topic model in which topics represent time trajectories [31]. Hospedales
et al. applied topic models to cluster motion patterns and detect detect anomalies in a

1Obtaining latent values {θte , zte } for a given test document is straightforward, it only requires a single Expec-
tation step {α,β}

2A variational approximation for the model is provided in Appendix A.1
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Table 1.1: Highest probability words of a random set of learned topics on Wikipedia 2014 data. We observe
that topic 1-3 collected words in a biology and physics context respectively. Topic 7 specialized in representing
educational words whereas Topic 8 learned representation for sports words.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
cell align space ireland game published education league
chemical text earth irish games book research football
protein style star horse player books students club
cells dnf nuclear dublin video isbn institute round
acid bar energy stakes players press science cup
gene colspan physics northern version author department player
dna color solar lengths chess works professor games
structure center light race super magazine association teams
chemistry right science derby character journal award tournament
reaction linear sun cork characters editor director game

α θ z w βN
M

Figure 1.3: Graphical illustration of the LDA Model using the plate notation. Shaded nodes indicate observed
variables. Unshaded nodes are random variables. Arrows indicate probabilistic conditioning relation. Rectan-
gular plate notation represents repetitions. Each outer box is a copy for M documents, and the inner box is for
each word in the corresponding document.

visual surveillance scenario [32]. In this case, topics represent low-level motion (op-
tical flow), and topic distributions correspond to high-level behavior, which is tempo-
rally connected across video clips. Griffiths et al. proposed a topic model which tar-
gets to capture syntactic structure [33]. They build a joint temporal topic model where
LDA component captures long term dependencies, and a Hidden Markov Model (HMM)
component captures short term interactions. Blei et al. proposed a dynamical topic
model to model the temporal evolution of documents with a Gaussian state transitions
over time [34]. Emonet et al. proposed an extended motif model for modelling spatio-
temporal word (flow) co-occurrences [35]. Mainwright et al. showed how the LDA model
can be conveniently reparameterized in the exponential family model [36]. For a com-
prehensive literature overview on topic models, we refer the interested readers to [37].

1.2.3. MARKOV RANDOM FIELDS
Similarly to word embeddings and topic models, a Markov Random Field (MRF) based
embedding is another powerful exponential family model [36, 38]. This probabilistic
model consists of observed and latent random variables. The observed random variables
are measurements. Since real world measurements are not usually precise, measure-
ments are assumed to be a noisy realization of the underlying latent random variables.
In Figure 1.4, we illustrate the graphical model of an MRF.

The MRF model then relates the observed variables to latent variables via potential
functions. These functions measure the amount of consistency between two variables.
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Figure 1.4: Graphical illustration of an MRF Model on a 3x3 image using the plate notation. Shaded nodes
indicate observed variables. Unshaded nodes are latent random variables. Each link indicates a potential
function.

The learning of the random field means performing probability maximization over states
of latent random variables to find consistent states for them and the whole random field.
Intuitively, we aim to find a latent representation that is likely to be the noiseless version
of the observation while latent variables are consistent with their neighbors. We provide
a broad explanation of the MRF model in Chapter 7.

Originally, MRFs have found their usage in image-based applications. Some exam-
ples include medical image registration [39], a variety of texture modeling applications
[40], ranged sensing [41], and image denoising [42]. Recently, they have been applied to
text based applications. Chen et al. showed how text segmentation can benefit from ran-
dom field optimization [43]. Faruqui et al. recently applied an MRF as a postprocessing
technique to improve the quality of the word embeddings [44]. They first extract rela-
tional information from semantic lexicons and construct a random field over the words
of the vocabulary. After learning the word embeddings on large corpora, they treat them
as noisy observations, and they then refine each learned word vector by minimizing the
energy over the random field.

In Section 1.2 we elaborated that noise is an essential characteristic of the text data.
Due to this, we adopted a probabilistic methodology. Although MRFs have been applied
to the text problems successfully, we questioned whether random field modeling help for
other domains where substantial noise is present in the data? In Chapter 7, we search an
answer to this question and present our results on modelling wind energy measurement
data. We show that an MRF model is able to fuse several wind farm suitability factors,
each exhibiting a different amount of measurement noise, to determine which regions
are more promising for establishing wind farms.

1.3. EXPONENTIAL FAMILY REPRESENTATIONS
Compared to traditional knowledge-based approaches in artificial intelligence, proba-
bilistic modelling techniques offer a lot for learning representations of data. These prob-
ability models assume that observations can be represented with particular probability
distributions. Assumptions in probabilistic modelling have to deal with two dilemmas.
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Firstly, the model family has to be sufficiently large to have a rich number of model in-
stances so that it can represent the intrinsic aspects and variations of the data at hand.
Secondly, the model family should be still simple enough such that model parameters
are confidently estimated.

All models, including word embeddings, topic models, and MRFs we deal with in this
thesis are exponential family models. In its full generality, we consider an exponential
family for modelling the data x which contains the set of probability density and mass
functions in the form:

p(x|θ) = 1

Z (θ)
h(x)exp(θTφ(x)) (1.3)

where θ represents the natural parameters (or canonical parameters) which we would
like to learn. φ(x) is a vector of sufficient statistics of the data. h(x) is a scaling constant3

and Z (θ) is a partition function of the model. The exponential family poses a unified
view of different continuous and discrete distributions by using a canonical representa-
tion. It is often chosen in modern machine learning models. We list a few reasons why
they are chosen:

• Given a set of constraints, the exponential family naturally arises as the solution
from the set of distributions which makes the least number of assumptions for the
maximum entropy problem4.

• It is known that the exponential family has finite-sized sufficient statistics. This
property imbues models of the family with the ability to summarize a large num-
ber of independent and identically distributed samples using only a small set of
numbers. With their finite sized sufficient statistics, there is no loss of information
of the data [37].

• Bayesian statistics advocates the use of conjugate priors in the likelihood function
which greatly simplifies the calculation of the relevant posterior distributions. One
exponential family naturally comes with its conjugate prior [46] and consequently
makes the family very suited for learning purposes.

Moreover, many simple building block probability distributions such as the Nor-
mal, Exponential, Gamma, Bernoulli, Poisson and Dirichlet distributions, can be re-
parameterized to be in a particular exponential family. For more background on the
exponential family of probability distributions, we refer the interested readers to the
seminal paper of [36].

1.4. FOCUS OF THIS THESIS
This thesis focuses on exponential family word embeddings in two aspects; improving
the representative power of word embedding models, and developing efficient learning
strategies for them.

3Some exponential family notations absorb the scaling function into the exponential.
4A simplified proof of Maximum Entropy problem is in [45].
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• Availability of training data is important for training word embeddings. While text
datasets for natural languages such as English Chinese and Spanish are publicly
available, for most natural languages [47] there is not a lot of data available. For
such scenarios, we must ensure that the embedding model generalizes well de-
spite the small amount of data available for training.

Research Question 1 How can we learn more robust representations given scarce
text datasets? (Chapter 3)

• For some languages a vast amount of training data is available, but across multiple
lexical resources which all have varying levels of semantic informativeness. Hence,
one would like to effectively mix these available data taking their informativeness
into account.

Research Question 2 How to fuse lexical sources with varying structure to specialize
embeddings for semantics? (Chapter 4)

• Word embedding models assume each word can be represented with one partic-
ular unique sense and thus do not address polysemy. Our hypothesis is that we
can automatically distinguish different word senses from the given context. Thus,
a new embedding model with a novel objective function to take polysemy into ac-
count can be derived.

Research Question 3 How can we learn word representations taking polysemy into
account? (Chapter 2)

• It is a very common practice to employ a negative sampling approach for learn-
ing word embeddings. However, it includes heuristic specifications of the sam-
pling distribution and usually driven by empirical experience. This is a resource-
demanding step and requires extensive experimentations for satisfactory perfor-
mance. Optimizing the sampling distribution can eliminate faulty heuristic spec-
ifications.

Research Question 4 How to efficiently optimize negative sampling distributions to
eliminate heuristic specifications? (Chapter 5)

• Negative sampling is much faster compared to the maximum likelihood based
estimators for learning word embeddings. Nevertheless, when sampling is per-
formed with small sample sizes, an accurate estimation of the denominator in
Equation 1.1 turns out to be problematic. This drawback can be addressed by pro-
viding further guidance to the sampling step during the word vector training.

Research Question 5 How to develop a word embedding sampler that is a more
reliable estimator of the partition function? (Chapter 6)

• MRF has been applied to the noisy text problems successfully. It is interesting to
investigate whether MRFs can also deal with the measurement noise in other do-
mains such as wind energy farm placing. In this scenario, the suitability crite-
rion exhibit different amount of measurement noise and utilization of a random
field can have positive consequences and immediate effects on wind farm deci-
sion making.
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Research Question 6 Does MRF help decision making in wind energy farm placing?
(Chapter 7)





2
PAWE: POLYSEMY AWARE WORD

EMBEDDINGS

2.1. ABSTRACT
Word embedding models learn a distributed vectorial representation for words, which
can be used as the basis for (deep) learning models to solve a variety of natural language
processing tasks. One of the main disadvantages of current word embedding models
is that they learn a single representation for each word in a metric space, as a result of
which they cannot appropriately model polysemous words. In this work, we develop a
new word embedding model that can accurately represent such words by automatically
learning multiple representations for each word, whilst remaining computationally effi-
cient. Without any supervision, our model learns multiple, complementary embeddings
that all capture different semantic structure. We demonstrate the potential merits of our
model by training it on large text corpora, and evaluating it on word similarity tasks. Our
proposed embedding model is competitive with the state of the art and can easily scale
to large corpora due to its computational simplicity.
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2.2. INTRODUCTION
Distributed word embedding models are probabilistic language models in which each
word is represented with a distinct high dimensional continuous vector. The prominent
advantage of using such representations is the ease to measure vector similarity with
simple techniques. Moreover, an intriguing property of these models is capturing several
relationships between entities as vector offsets in space. For instance, the vector vki ng −
vqueen yields a similar vector to vman −vwoman , capturing the gender relation implicitly
[48]. Computationally, it is possible to learn such embeddings using neural formulations
that scales well with vast amount of data. Nowadays, word embeddings can be trained
on corpora having billions of tokens with off-the-shelf hardware. Learned embeddings
can be used for a diverse set of applications, such as information retrieval [49], machine
translation [50] and sentiment analysis [7].

One property of natural languages is the polysemous words, i.e. words having mul-
tiple senses. In many languages, some words even have dozens of senses which greatly
reinforces the lexical ambiguity. Despite the work in linguistics [51, 52] and psychology
[53] domains to detect and resolve polysemy based ambiguities, computational embed-
ding models usually ignore polysemy and represent each word with a single vector. This
constraints the word representation to be invariant under the polysemy transformations.
This is unnatural since one might expect that the representation of a particular polyse-
mous word (e.g. book: a reading material (noun) or reserving a resource (verb)) to vary
in different contexts.

We remove this limitation of distributed embedding models by having multiple com-
plementary prototypes that explain possible senses of the words more naturally. A pol-
ysemy aware representation provides a more natural embedding of words and helps to
disambiguate word meaning by decoupling meanings into different maps. The main
contribution of this work is a new word embedding model that can appropriately rep-
resent polysemous words by learning multiple, complementary embeddings. The pro-
posed Polysemy Aware Word Embeddings (PAWE) 1) ameliorates the representation pol-
ysemous words by learning multiple complementary embeddings, 2) retains favorable
properties of prior models 3) can be trained online on large corpora. The performance
of the learned embeddings is demonstrated in word similarity tasks. Experimental re-
sults show that our method successfully distinguishes different senses and learns em-
beddings that perform better compared to the state of the art embedding models on
Wikipedia corpus. For reproducibility, we provide an open source prototype implemen-
tation of our embedding approach1.

2.2.1. RELATED WORK

Our work is a combination of two streams of work, the construction of word embeddings
and techniques addressing the polysemy property of the language.

Word Embedding Architectures. Various statistical language models are proposed
to obtain word representations that generalize to multiple tasks [54, 55]. Preliminary
works focused on stochastic models that have a large hidden layer with stochastic units.

1MATLAB+MEX implementation of the proposed model can be downloaded from http://homepage.
tudelft.nl/8f9v2/poly_pawe.zip
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One example is the Factored Restricted Boltzmann Machine framework whose factors
represent input and predicted words [56]. Since such a generative architecture is ex-
tremely slow to train, recent work shifted to logbilinear (LBL) architectures which re-
place stochastic hidden variables with a simple hidden layer for producing the predic-
tion. Continuous Bag of Words (CBoW), SkipGram [57, 58], Robust Gram [59] and Para-
graph Vector [60] models can be considered as different logbilinear models. In our work,
we utilize a large but computationally cheap hidden layer.

The computational bottleneck of logbilinear architectures is the softmax output layer,
which requires a summation over the vocabulary to obtain a valid probability mass func-
tion. Since the softmax unit renders maximum likelihood to be expensive, the learning
requires approximate inference techniques such as Importance Sampling [13] or Noise
Contrastive Estimation (NCE) [61, 62]. Another strategy to avoid summation over the
vocabulary is to construct a hierarchical decomposition tree using semantic priors [63].
Similar to [48], we also use the Negative Sampling variant of NCE to learn plausible em-
beddings.

Aforementioned logbilinear architectures can be viewed as techniques to factorize
a non-negative matrix of corpus statistics into context and target matrices [19] and are
related to Non Negative Matrix Factorization techniques [64]. Rather than training such
architectures, some methods first extract useful statistics of the corpus (such as word
co-occurrences) and discover embeddings using PCA or HPCA [65]. However such ap-
proaches suffer from the disproportionate effects of stop words such as ‘the’,‘a’ in the
corpus which co-occur with many words in the language. They are also very susceptible
to data sparsity. In our formulation, in order to account for such effects, we apply a sim-
ple subsampling technique during the learning so that very frequent words will have a
lower probability to be sampled.

Polysemy Modeling. The problem of modeling polysemy has been addressed in sev-
eral different works [66, 67]. Neelakantan et al. proposes a nonparametric way to cap-
ture different meanings [68]. Tia et al. proposed a mixture model for learning multi-
prototype embeddings [69]. They train a multi-prototype Skip-Gram model and train it
using an EM algorithm. Since the exact solution to the maximization step is not available
in their model, they use gradient descent to optimize the maximization step. Reisinger et
al. employ an initial clustering step to extract different senses of words in the vocabulary
[70]. Then for each word sense, a representation is learned individually. Similar multi-
prototype word vector ideas are also employed in the context of neural word embeddings
[71], [72], [73]. In our work, we do not perform a pre-clustering step to extract multiple
meanings. We directly represent multiple embeddings using a unified logbilinear energy
where various meanings are automatically discovered during the optimization. Hence,
our technique avoids adjusting extra clustering parameters. Moreover, by avoiding a
distinct offline clustering step, our model readily extends to new unknown senses when
new senses of words are introduced during the training.

Some other works exploit additional supervised information. This is done by incor-
porating annotated knowledge of the senses of words from a knowledge base such as
WordNet. In Chen’s work [74], sense vectors are also learned along with word vectors for
Word Sense Disambiguation [75] task. They show that word sense representation and
word sense disambiguation tasks can benefit from each other. While it is possible to
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increase the quality of embeddings with increased supervision [55], annotated sensual
knowledge might not be available in a general setting (for example, such a database is
missing for the Turkish language). Contrary to their work, our model does not exploit
such priory knowledge. As a result, compared to other embedding approaches that has
the same sample size, our model has potential to discover polysemy relations in unsu-
pervised fashion: learning of the model does not require any extra supervision such as
ground-truth polysemy or sense annotations.

From this perspective, our work is related to graphical models such as Similarity
Component Analysis [76] or Latent Dirichlet Allocation (LDA) [77]. Both LDA and our
model are unsupervised. LDA discovers hidden topics on document level while our
method discovers different senses on word level to learn embeddings. While LDA’s gen-
erative process ignores word order, it is easy to extend our formulation to account for
word ordering with a simple weighting.

A closely related method to our work is the Multiple Maps T-SNE algorithm [78].
Since high dimensional non-metric pairwise similarities can not be preserved in low
dimensional spaces, the authors propose multiple maps to represent intransitive non-
metric similarities. Their technique conditions on given high dimensional pairwise word
distances and finds low dimensional embeddings while we directly learn the high di-
mensional embeddings from the corpus.

2.3. DISTRIBUTED WORD EMBEDDINGS
In this section, we start by formulating distributed word embeddings. Then we describe
our proposed approach, followed by its learning technique.

2.3.1. PROBLEM FORMULATION

We are given a set of vocabulary indices of words as the training dataset D = {d1,d2, ..,dx , ..,dN }
with N words in the corpus, dx representing the vocabulary index of x’th word in the
text. Let q denote the iterator over the vocabulary of size V and wq be word q’s one-hot
encoded representation such that wq j ∈ {0,1} and

�V
j=1 wq j = 1. We use |wq | to indicate

number of times the q’th word occurs in the corpus. LetΦ,Ψ be the D×V target and con-
text embedding matrices that map each word into a continuous D dimensional space.
We would like to learn parameters θ = �

Φ,Ψ
�
. In light of the distributional hypothesis

(words that occur in same context tend to purport similar meanings), embedding for-
mulations disregard long range dependencies in the text and represent the context of a
word by a (small) set of surrounding words. While other definitions of context are possi-
ble, we use bilateral words for the context representation.

Let Sx = {wdx−t , ..,wdx−1 ,wdx ,wdx+1 , ...,wdx+t } = {Cdx ,wdx } represent x’th sentence of
the training set with word dx to be predicted. The goal is to minimize the negative con-
ditional log likelihood of the training data for all sentences:

θ∗ = argmin
θ̂

�

∀x
logP (wdx |Cdx ; θ̂) (2.1)

where Cdx is the context and defined as Cdx = {wdx+i , i ∈ {t −1, ..,−1,1, .., t +1}} and t is
the window size parameter.
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In the online setting, one epoch consists of performing a single pass over the training
set and performing gradient updates with an iterative optimization algorithm. For sim-
plicity, let us focus on sentence Sx , with target word’s identity q = dx . The conditional
probability P (wq |Cq ) is given as:

P (wq |Cq ) = exp(sθ(wq ,Cq ))
�

q̃ exp(sθ(wq̃ ,Cq ))
, (2.2)

where sθ(wq ,Cq ) is called the score function in statistics. Different score functions
yield different logbilinear models which will be discussed in the next section. First we
describe our embedding model.

2.3.2. PAWE EMBEDDING MODEL
Word embedding techniques learn different embeddings based on their predictive for-
mulation. The CBoW, Skip Gram [57], GloVe [79] and Paragraph Vector [60] models all
have different sθ(.) functions. While we base our model on CBoW architecture due to its
simplicity and speed, we note that it is equally applicable to other embedding methods,
thanks to its generic formulation. The single prototype CBoW score function is given as:

sθ(wq ,Cq ) = 1

2t


 �

wr ∈Cq

�
Φwr

�T (Ψwq )


+bq , (2.3)

where Φwr ,Ψwq ∈ RD are the context and target embeddings obtained by projecting
the one-hot encoded representations onto the embedding spaces, and where bq is the
prediction bias of wq . For the sake of simplicity, we will drop the bq and 1

2t from the
notation.

Because the score of the CBoW model (Eq. 2.3) penalizes the dissimilarity between
wq and the arithmetic mean of the context word embeddings around this word wq ,
words that appear in the same context, should be close in high dimensional space as
well. However, knowing that each word can have multiple senses, the same prediction
will be used to penalize possibly different senses of a target word wq .

A better score function must take polysemous cases into account and automatically
compute a score for multiple senses of a target word. This can be done by creating
multiple prototypes of a target word and representing the target-context similarity as
a weighted sum. Following this idea, we propose a score function that takes polysemous
cases into account whilst staying computationally efficient. Formally, the score of the
Polysemy Aware Word Embeddings embedding model is defined as:

sθ(wq ,Cq ) = log
�
m
πm

q exp


 �

wr ∈Cq

(Φwr )T (Ψm wq )


 , (2.4)

where m is the index to iterate over the M prototypes and πm
q is the weight of wq ’s m’th

prototype. Each word weight denotes how important a particular sense is in an individ-
ual map. These weights can also be interpreted as prior probabilities of occurence of the
different word senses in a corpus. The score function finally combines the prediction
scores for each map using a weighted linear combination.
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Ideally we would like each prototype weight to be bounded on an interval, but in-
troducing constraints per word to the formulation complicates and slows down the op-
timization. Instead we optimize unconstrained weights Wm

q and make π depend on the
unconstrained weights using the sigmoid function: πm

q =σ(Wm
q ). We have experimented

with few other functions to constrain the map weights and found that the sigmoid func-
tion works best.

Conceptually, Equation 2.4 can be interpreted as a mixture model, with an unnor-
malized prior distribution. In this sense, if the target word has several distinct senses (e.g.
jaguar), one representation will quickly specialize to represent one particular meaning
with updates to its weight. The model will still be able to represent cases in which each
word has only one meaning. Despite the fact that the number of maps M has to be spec-
ified beforehand, in practice the model does not behave like a hard clustering method
that forces each word to have a predefined number of meanings. For PAWE model, the
parameter vector consists of θ = {Φ,Ψ1:M ,W} where M is the number of target maps used
and W is M ×V unconstrained word weight matrix.

The PAWE model is a more general case of the LBL model, and it boils down to the
single prototype model when the number of maps is equal to one. Applying multiple
maps to both Φ and Ψ introduces a high degree of parameter redundancy and makes
learning relatively harder. Armed with this knowledge, we only represent the target em-
bedding Ψ with multiple maps. Doing so also prevents overfitting in the training of our
model.

2.3.3. LEARNING
Since our model is from the family of probabilistic models, it shares the same bottle-
neck: during the optimization, evaluating partition function of the distribution requires
summing over the whole vocabulary (Eq. 2.2), which quickly becomes problematic for
large vocabularies. This yields Maximum Likelihood Estimation approach very expen-
sive to use. Even for a single word update wq , the gradient ∂Jq (θ) requires a full pass
over the vocabulary set, with a training complexity of O(Sx ×V ). Indeed, it is possible to
approximate this update with algorithmic approximations such as Hierarchial Softmax.
However, this approximation technique requires construction/learning of a tree on the
vocabulary which is yet another difficult learning problem to address.

We bypass such difficulties by resorting to a new estimator: called Negative Sam-
pling approximation [48]. The key idea of negative sampling learning is to train a logis-
tic regressor to distinguish samples arising from data and samples from the noise dis-
tribution. Negative Sampling estimation is an instance of Unsupervised as Supervised
Learning algorithms [80]. For word embeddings, we obtain noise samples by randomly
changing words of sentences. For one training sample {wq ,Cq }, the contribution to the
total cost J(θ) is:

Jq (θ) = EPd [log
�
σ(sθ(wq ,Cq ))

�
]+EPn [log

�
σ(−sθ(wn ,Cq ))

�
] (2.5)

where the second term is the expectation over the noise distribution Pn . Practically, the
expectation is approximated by sampling a few negative instances from the noise distri-
bution. The noise distribution is usually chosen to be a distribution over unigrams, that
is proportional to the occurrence frequencies of the unigrams raised to some power: For
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English embeddings trained with a highly scientific content language such as Wikipedia,
Pn(wn) ∝ |wn |0.75 is known to work best which we also validated by tuning the exponent
parameter in the range [0.5,1]. An empirical justification to the raised power is provided
in [79].

The gradient of Eq. 2.5 with respect to θ is given by:

∂

∂θ
Jq (θ) =

�
1−σ(sθ(wq ,Cq ))

� ∂

∂θ
sθ(wq ,Cq )

−
K�

k=1

�
σ(sθ(wk ,Cq ))

∂

∂θ
sθ(wk ,Cq )

� (2.6)

where K is the number of negative samples used in practice. For our PAWE model, the
parameter vector consists of θ = {Φ,Ψ1:M ,W} where M is the number of target maps
used and W is V ×M unconstrained word weight matrix. Since it is very difficult to tune
the learning rates of Stochastic Gradient Descent, we instead learn the parameters with
Adagrad. The idea is simply to store the historical gradients from previous steps of the
optimization, and use these to automatically tune the learning rate:

θi (t +1) = θi (t )−η gi (t )

τ0 +
�

Hi (t )
(2.7)

where θi (t ) is the i ’th parameter value at t ’th step of the optimization and gi (t ) is its gra-
dient. η is the master step size that is less sensitive compared to the Stochastic Gradient
Descent learning rate. Hi (t ) is the historical gradient that is Hi (t ) =�t

r=1 gi (r )2. Hi (t ) is
then recursively updated at every step of the optimization as follows:

Hi (t ) = Hi (t −1)+ gi (t )2 (2.8)

Since Adagrad’s learning rate is adapted component-wise, optimization adapts to the
curvature of the loss function more precisely. The historical component of the denom-
inator adjusts whether more updates are required to reach the minimum. For our model,
with negative sampling approximation, the computational complexity is reduced to O(Sx×
k ×M) and scales linearly with the number of maps.

2.4. EXPERIMENTAL RESULTS
Setup and Training Protocols. We trained PAWE on the Wikipedia 2006 and Wikipedia
2014 corpora having 100M and 3B tokens respectively. For each year multiple snapshots
are provided, we selected snapshot-20141208. We use standard preprocessing proto-
cols: the HTML tags and non visible text are removed, content is lowercased, reducing it
to word tokens. We compare our model with the CBoW baseline models. For all models,
we use AdaGrad for optimization with a master step size of 0.05. The minibatch size for
all experiments is set to 1. The window size parameter t is set to 4. Rest of the param-
eters follows the standards in [57]. We set the number of negative samples to number
of maps for each experiment. Unlike in the GLoVe model, we do not perform any post
training operations on embeddings (such as Ψ+Φ) and simply use Ψ1:M as the output
embeddings.
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Table 2.1: Nearest neighbors of some polysemous words are shown for each map.

Map 1 Map 2
memory processor,processors,mode pupil,gift,pleasure
elementary graduate,school,schools theorems,geometry,thermodynamics

show contain,survive,appear club,host,bbc
shows commercials,selling,mtv represents, gives, presents
site website,com,forum monument,tallest,canal
bill floyd,charlie,tom jury,lawsuit,court
resolution amendment,statute,amendments frequency,bandwidth,output
press fbi,editorial,scandal routledge,ed,journal

We have experimented with a grid of values to determine the number of target maps,
M . We first queried the English lexical database of WordNet [81], which contained a
vocabulary of 147k words with a total number of 316k total senses. This reported an
average of 2.15 polysemy amount per word. For our experiments with M > 2 the overall
results slightly increased for our architecture, which is consistent with the average sense
statistics of the English corpora. As the number of senses a word has follows the power
law, marginal benefit from our model decreases with increased number of maps.

2.4.1. NEAREST NEIGHBORS ANALYSIS.
For this task, we randomly sampled words with replacement from the vocabulary and se-
lectively rejected words that we believe with a high confidence does not contain multiple
senses. This resulted in a subset the words that we can inspect its nearest neighbours in
space. We measure the cosine distance [19] to show polysemous words’ neighbours.

The discovered polysemy relations are demonstrated in Table 1. The bolded words in
the first column are the query words and each column in the table depicts three nearest
neighbor of a query word in a particular map. The obtained neighbours in many rows
indicate that the model is capturing different senses of a word. The interesting obser-
vation here is that it sometimes pools semantic and syntactic regularities of a word into
different maps. For example, for the word resolution, the first map captures the meaning
used in a legal context, and the second map captures the meaning in the technological
sense. For the word shows, second map captures the syntactic tense relation where first
map only discovered the medial sense that is a semantic relations. We also analyzed the
rejected words’ nearest neighbours but do not report them since they were not pretty
much informative, and mostly identical in all maps.

It must be noted that we do not constrain the model with explicit supervision to dis-
cover these regularities. When these regularities are inherent in the data, our model au-
tomatically discovers them. As there is no supervision of these maps, they do not nec-
essarily capture a particular semantic or syntactic context such as document topics. In
topic modeling approaches where each topic exhibits a particular meaning aspect, this
is not the case in our polysemy aware model. Rather, lingual regularities occurs weakly
on the word level.

It is difficult to visualize how our high dimensional vectors are distributed in the
space. We project our vectors using t-SNE data visualization in order to analyze how
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multiple maps look like. Since it is impossible to inspect all the vocabulary, we selected
few polysemous words: paper and size that is extensively studied in the work of [51]. We
then inspect the local neighbourhood of these words. In Figure 2.1, we observe that for
the word paper, the first map captures material sense of paper. The nearest neighbours
of this sense are the substances or fabrics used in the production of clothes, furnitures
and buildings. The latter map captures the academic sense of the paper with neighbours
such as researches, discussion, document, approach. Notice that there is almost none
common neighbours in both maps, suggesting that these points capturing the senses of
the paper are far away in the high dimensional space as well.

In Figure 2.2, we depict the case for word size where first map captures the physical
sense. This sense represents the greatness of a physical quantity such as the rotation
amount, trajectory length, or plane width. The second map captures the concept of ge-
ographic size that is a measure of the temperature and natural disasters. We observe no
common neighbours also for this word.

2.4.2. WORD SIMILARITY
The second evaluation of the embeddings is to check the correspondence between hu-
man similarity judgements of words, and the cosine similarity in the embedded spaces.
We use two datasets: the WordSim-353 dataset [82] and the Stanford Contextual Word
Similarities (SCWS) dataset [71]. The WordSim-353 dataset consists of 353 pairs of nouns.
For each pair, a relatedness measure is assigned by 13 to 16 human judges, 0 indicat-
ing that no relation is present and 10 indicating the maximum similarity. In order to
measure the correlation between embedding and human similarity judgements, we use
Spearman’s Correlation Coefficient.

WordSim-353 dataset is a standard evaluation set for word embeddings and do not
necessarily contain polysemous word pairs. In contrast, SCWS dataset contains 2003
pairs of words and designed to reflect interesting variations of homonymous and poly-
semous words. For each word pair, Part-of-Speech (POS) tags and a long sentence is pro-
vided to disambiguate the meaning of each word. Ten individual human ratings judge
the similarity of the word pairs.

We define the similarity of multiple prototype vectors using the AvgSimC metric as
in [71]:

Av g Si mC (w1, w2) = 1

M 2

M�

i=1

M�

j=1
P (wi

1|C1)P (w j
2|C2)d(wi

1, w j
2 ) (2.9)

where P (wi
1|C1) is the likelihood of using i �th prototype of word w1 given the sentential

context C1, and d(wi
1,w j

2) is the distance metric chosen as the cosine similarity in the
embedded space. AvgSimC gives higher score when two words have similar prototypes.

Quantitative Results. Our single map baseline model is denoted as LBL (CBoW)
[58]). We first ask, which words in WordSim353 are problematic for baseline LBL model.
Figure 2.3 shows the results for the baseline model for a few word pairs, compared to the
results of PAWE. In vertical axis we depict the normalized error, i.e. the difference be-
tween the human similarity judgements and the cosine similarity predicted by the mod-
els. For Max score, we compute similarity of multiple map embeddings and select the
map having max score. Indeed, we observe that the single map model has the highest
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Figure 2.1: T-SNE visualization of our vectors.
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Figure 2.2: T-SNE visualization of our vectors.
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Figure 2.3: WordSim353 words having highest error.
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Figure 2.4: Spearman Correlations (SC) for WordSim353.

error with respect to similarity scores for word pairs including polysemous words such as
“cell”,“family”, “practice” and “sign”. For all such polysemous words, our approach yields
lower error compared to the LBL baseline.

To investigate the influence of the map embedding dimensionality D , we trained sev-
eral models on the WordSim353 dataset and plotted the correlation as a function of the
embedding dimensionality. The results are depicted in Figure 2.4. A higher dimension-
ality tends to increase the correlation, although the computational effort starts to in-
crease as well. Inspecting the similarity predictions for word pairs reveals that for pairs
with multiple senses (e.g. “jaguar-cat” and “jaguar-car”), the multiple map model cor-
relates better to the human based similarities. However, while adopting our model still
leverages overall similarity prediction accuracy, the margin between the baseline and
our model is not quantitavely very large in this dataset. This result is expected since
the WordSim353 evaluation set is a standard set for word similarity tasks and the frac-
tion of polysemous words in query pairs is quite limited. We also evaluated the quality
of the models by computing Negative Log Likelihood (NLL) on a validation subsets of
Wikipedia 2014 using a 10 fold cross validation averaging. We have measured that the
NLL is %2.2 lower for our embeddings, which is an indicator of an improvement over the
single prototype model: our embeddings can yield a better minimum for the training
objective and is more flexible to variations in the unseen data.

The word sense representation power of our model becomes more distinctive on the
SCWS dataset. PAWE obtains 63.2% accuracy using AvgSimC, beating the single proto-
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Table 2.2: Runtime and SC for WordSim353 and SCWS.

Model Runtime (h) WS353 SCWS
CB [55] 400+ 55.3 57.0
LBL [57] 0.2 55.7 58.9
Huang [71] 168 57.9 63.5
PAWE MaxSim 0.2 ×M 58.1 62.2
PAWE AvgSimC 0.2 ×M 58.5 63.9

type model having 58.3% accuracy by a large margin (Table 2.2). Adapting to the poly-
semy, it softly votes up the suitable prototype in a context. LBL and CB baselines can not
yield high performance on SCWS due to no explicit polysemy modeling. While Huang et
al. achieve higher accuracy than our MaxSim instance, even MaxSim instance of PAWE
is significantly faster (150x than Huang’s on M = 5) compared to the competitor meth-
ods. Since training these embeddings on very large corpora already takes days without
any special GPU hardware, our multi-prototype embeddings trades off a little accuracy
but retains linear time training complexity and big data applications. The selection of
number of maps is not as difficult as in a clustering setting or number of topic selection.
This is because there exists strong prior knowledge in each language to select the M pa-
rameter. Also, unlike non-parametric word embedding approaches that is known to be
very difficult to train [68], our model is trained similarly to LBL instances and training
increases with linear time, with no extra hyperparameters guiding the training. These
results suggest that composition of multiple prototypes is an appropriate representa-
tion for a variety of words in the vocabulary, suggesting that PAWE instances are a good
promise between speed and accuracy.

2.5. CONCLUSIONS

This chapter presents a novel word embedding model that uses multiple complemen-
tary maps to represent the words. We developed a new score function to enable the rep-
resentation of polysemous words, i.e. words that can have multiple meanings. Because
polysemous words are inherent in natural languages, it is crucial that word embeddings
allow for these distinct meanings. During the learning of this Polysemy Aware Word Em-
beddings (PAWE) we automatically discovered multiple meanings without using any hu-
man annotations for polysemy. This approach of polysemy modeling collected syntactic
and semantic variations inherent in the natural language into different vector maps.

Unlike previous approaches, ours does not use any supervised entity-relationship
knowledge to learn word senses, and does not utilize any clustering step. This removes
the burden of tuning extra model-specific parameters for word embeddings. The al-
gorithmic complexity of PAWE increases only linearly with the number of maps, and is
comparable to the complexity of the baseline logbilinear model. Due to these reasons,
the proposed embedding model is easily scalable to large text corpora containing rich
polysemy collections.
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We validated the behaviour and potential of our model with experimental results,
and verified that the similarity based language tasks enjoy the potential of multi-prototype
embeddings. For word similarity task, competitive performances are obtained using our
vectors. While we demonstrated the value of such embeddings on discovering language
polysemy, additional merits of learning multiple map representations is open question
and left for future investigation. Prosperous directions of our future work includes ex-
ploring the theoretical gains of using multiple prototypes word vectors, effectively deter-
mining the number of prototypes for a language, and application of similar score func-
tions to Recursive Neural Network (RNN) based language models.



3
ROBUST GRAM EMBEDDINGS

3.1. ABSTRACT
Word embedding models learn vectorial word representations that can be used in a vari-
ety of NLP applications. When training data is scarce, these models risk losing their gen-
eralization abilities due to the complexity of the models and the overfitting to finite data.
We propose a regularized embedding formulation, called Robust Gram (RG), which pe-
nalizes overfitting by suppressing the disparity between target and context embeddings.
Our experimental analysis shows that the RG model trained on small datasets general-
izes better compared to alternatives, is more robust to variations in the training set, and
correlates well to human similarities in a set of word similarity tasks.
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3.2. INTRODUCTION
Word embeddings represent each word as a unique vector in a linear vector space, en-
coding particular semantic and syntactic structure of the natural language [83]. In vari-
ous lingual tasks, these sequence prediction models have shown superior results over the
traditional count-based models [84]. Tasks such as sentiment analysis [7] and sarcasm
detection [85] enjoys the merits of these features.

These word embeddings optimize features and predictors simultaneously, which can
be interpreted as a factorization of the word cooccurence matrix C . In most realistic sce-
narios these models have to be learned from a small training set. Furthermore, word
distributions are often skewed, and optimizing the reconstruction of Ĉ puts too much
emphasis on the high frequency pairs [19]. On the other hand, by having an unlucky
and scarce data sample, the estimated Ĉ rapidly deviates from the underlying true cooc-
curence, in particular for low-frequency pairs [86]. Finally, noise (caused by stemming,
removal of high frequency pairs, typographical errors, etc.) can increase the estimation
error heavily [87].

It is challenging to derive a computationally tractable algorithm that solves all these
problems. Spectral factorization approaches usually employ Laplace smoothing or a
type of SVD weighting to alleviate the effect of the noise [88]. Alternatively, iteratively
optimized embeddings such as Skip Gram (SG) model [57] developed various mecha-
nisms such as undersampling of highly frequent hub words apriori, and throwing rare
words out of the training.

Here we propose a fast, effective and generalizable embedding approach, called Ro-
bust Gram, that penalizes complexity arising from the factorized embedding spaces.
This design alleviates the need from tuning the aforementioned pseudo-priors and the
preprocessing procedures. Experimental results show that our regularized model 1) gen-
eralizes better given a small set of samples while other methods yield insufficient gener-
alization 2) is more robust to arbitrary perturbations in the sample set and alternations
in the preprocessing specifications 3) achieves much better performance on word simi-
larity task, especially when similarity pairs contains unique and hardly observed words
in the vocabulary.

3.3. ROBUST GRAM EMBEDDINGS
Let |y | = V the vocabulary size and N be the total number of training samples. Denote
x, y to be V × 1 discrete word indicators for the context and target: corresponding to
the context and word indicators c, w in word embedding literature. Define Ψd×V and
Φd×V as word and context embedding matrices. The projection on the matrix column
space, Φx, gives us the embedding�x ∈Rd . We use Φx and Φx interchangeably. Using a
very general formulation for the regularized optimization of a (embedding) model, the
following objective is minimized:

J =
N�

i
L (Ψ,Φ, xi , yi )+ g (Ψ,Φ) (3.1)

where L (Ψ,Φ, xi , yi ) is the loss incurred by embedding example target yi using context
xi and embedding parameters Ψ, Φ, and where g (Ψ,Φ) is a regularization of the em-
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bedding parameters. Different embedding methods differ in the form of specified loss
function and regularization. For instance, the Skip Gram likelihood aims to maximize
the following conditional:

L (Ψ,Φ, x, y) = − log p(y |x,Φ,Ψ)

= − log
exp(ΨT

y Φx )
�

y � exp(ΨT
y �Φx )

(3.2)

This can be interpreted as a generalization of Multinomial Logistic Regression (MLR).
Rewriting (Ψy)T (Φx) = (yTΨTΦx) = yT W x =Wy x shows that the combination ofΦ and
Ψ become the weights in the MLR. In the regression the input x is transformed to directly
predict y . The Skip Gram model, however, transforms both the context x and the target
y , and can therefore be seen as a generalization of the MLR.

It is also possible to penalize the quadratic loss between embeddings [89]:

L (.) =− log
exp(−||Ψy −Φx ||2)

�
y � exp(−||Ψy � −Φx ||2)

(3.3)

Since these formulations predefine a particular embedding dimensionality d , they
impose a low rank constraint on the factorization W =ΨTΦ. This means that g (Ψ,Φ)
contains λr ank(ΦTΨ) with a sufficiently large λ. The optimization with an explicit
rank constraint is NP hard. Instead, approximate rank constraints are utilized with a
Trace Norm [90] or Max Norm [91]. However, adding such constraints usually requires
semidefinite programs which quickly becomes computationally prohibitive even with a
moderate vocabulary size.

Do these formulations penalize the complexity? Embeddings under quadratic loss
are already regularized and avoids trivial solutions thanks to the second term. They
also incorporate a bit weighted data-dependent �2 norm. Nevertheless, choosing a log-
sigmoid loss for Equation 3.1 brings us to the Skip Gram model and in that case, �p reg-
ularization is not stated. Without such regularization, unbounded optimization of 2V d
parameters has potential to converge to solutions that does not generalize well.

To avoid this overfitting, in our formulation we choose g1 as follows:

g1 =
V�
v
λ1

�
||Ψv ||22 +||Φv ||22

�
(3.4)

whereΨv is the row vector of words.
Moreover, an appropriate regularization can also penalize the deviance between low

rank matricesΨ andΦ. Although there are words in the language that may have different
context and target representations, such as the 1, it is natural to expect that a large pro-
portion of the words have a shared representation in their context and target mappings.
To this end, we introduce the following regularization:

g2 =λ2||Ψ−Φ||2F (3.5)

1Consider prediction of Suleiman from the, and the from oasis. We expect the to have different vectorial repre-
sentations.
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where F is the Frobenius matrix norm. This assumption reduces learning complexity
significantly while a good representation is still retained, optimization under this con-
straint for large vocabularies is going to be much easier because we limit the degrees of
freedom.

The Robust Gram objective therefore becomes:

LL+λ1

V�
v

�
||Ψv ||22 +||Φv ||22

�
+λ2||Ψ−Φ||2F (3.6)

where LL =�N
i L (p(yi |xi ,Ψ,Φ)) is the data log-likelihood, p(yi |xi ,Ψ,Φ) is the loglinear

prediction model, and L the cross entropy loss. Since we are in the pursuit of preserv-
ing/restoring low masses in Ĉ , norms such as �2 allow each element to still possess a
small probability mass and encourage smoothness in the factorized ΨTΦ matrix. As L

is picked as the cross entropy, Robust Gram can be interpreted as a more principled and
robust counterpart of Skip Gram objective.

One may ask what particular factorization Equation 3.6 induces. The objective searches
for Ψ,Φ matrices that have similar eigenvectors in the vector space. A spectral PCA em-
bedding obtains an asymmetric decomposition W = UΣV T with Ψ = U and Φ = ΣV ,
albeit a convincing reason for embedding matrices to be orthonormal lacks. In the Skip
Gram model, this decomposition is more symmetric since neitherΨ norΦ are orthonor-
mal and diagonal weights are distributed across the factorized embeddings. A symmet-
ric factorization would be: Ψ = UΣ0.5,Φ = Σ0.5V T as in [19]. The objective in Eq. 3.6
converges to a more symmetric decomposition since ||Ψ−Φ|| is penalized. Still some
eigenvectors across context and target maps are allowed to differ if they pay the cost. In
this sense our work is related to power SVD approaches [92] in which one searches an
a to minimize ||W −UΣaΣ1−aV T ||. In our formulation, if we enforce a solution by ap-
plying a strong constraint on ||Ψ−Φ||2F , then our objective will gradually converge to a
symmetric powered decomposition such that U ≈V .

3.4. EXPERIMENTS
The experiments are performed on a subset of the Wikipedia corpus containing approx-
imately 15M words. For a systematic comparison, we use the same symmetric window
size adopted in [93], 10. Stochastic gradient learning rate is set to 0.05. Embedding di-
mensionality is set to 100 for model selection and sensitivity analysis. Unless otherwise
is stated, we discard the most frequent 20 hub words to yield a final vocabulary of 26k
words. To understand the relative merit of our approach 2 , Skip Gram model is picked
as the baseline. To retain the learning speed, and avoid inctractability of maximum like-
lihood learning, we learn our embeddings with Noise Contrastive Estimation using a
negative sample [94].

3.4.1. MODEL SELECTION
For model selection, we are going to illustrate the log likelihood of different model in-
stances. However, exact computation of the LL is computationally difficult since a full

2Our implementation can be downloaded from github.com/taygunk/robust_gram_embeddings
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Figure 3.1: The LL objective for varying λ1,λ2. There exists a global minimum in the optimization landscape.

pass over the validation likelihood is time-consuming with millions of samples. Hence,
we compute a stochastic likelihood with a few approximation steps. We first subsample a
million samples rather than a full evaluation set, and then sample few words to predict in
the window context similar to the approach followed in [19]. Lastly, we approximate the
normalization factor with one negative sample for each prediction score [95][94]. Such
an approximation works fine and gives smooth error curves. The reported likelihoods
are computed by averaging over 5-fold cross validation sets.

Results. Figure 3.1 shows the likelihood LL obtained by varying {λ1,λ2}. The plot
shows that there exits a unique minimum and both constraints contribute to achieve a
better likelihood compared to their unregularized counterparts (for which λ1 = λ2 = 0).
In particular, the regularization imposed by the differential of context and target em-
beddings g2 contributes more than the regularization on the embeddings Ψ and Φ sep-
arately. This is to be expected as g2 also incorporates an amount of norm bound on the
vectors. The region where both constraints are employed gives the best results. Observe
that we can simply enhance the effect of g2 by adding a small amount of bounded norm
g1 constraint in a stable manner. Doing this with pure g2 is risky because it is much
more sensitive to the selection of λ2. These results suggest that the convex combina-
tion of stable nature of g1 with potent regularizer of g2, finally yields comparably better
regularization.

3.4.2. SENSITIVITY ANALYSIS
In order to test the sensitivity of our model and baseline Skip Gram to variations in the
training set, we perform two sensitivity analyses. First, we simulate a missing data effect
by randomly dropping out γ ∈ [0,20] percent of the training set. Under such a setting,
robust models are expected to be effected less from the inherent variation. As an ad-
dition, we inspect the effect of varying the minimum cut-off parameter to measure the
sensitivity. In this experiment, from a classification problem perspective, each instance
is a sub-task with different number of classes (words) to predict. Instances with small
cut-off introduce classification tasks with very few training samples. This cut-off choice
varies in different studies [57, 93], and it is usually chosen based on heuristic and storage
considerations.

Results. Figure 3.2 illustrates the likelihood of the Robust and Skip Gram model by
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Figure 3.2: Training dropouts effect on LL. Our approach consistently has better Log Likelihood on γ spectrum.
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Figure 3.3: LL w.r.t the cut-off parameter. Increasing values effect RG’s performance significantly.

varying the dropout ratio on the training set. As the training set shrinks, both models get
lower LL. Nevertheless, likelihood decay of Skip Gram is relatively faster. When 20% drop
is applied, the LL drops to 74% in the SG model. On the other hand the RG model not
only starts with a much higher LL, the drop is also to 75.5%, suggesting that RG objective
is more resistant to random variations in the training data.

Figure 3.3 shows the results of varying the rare-words cut-off threshold. We observe
that the likelihood obtained by the Skip Gram is consistently lower than that of the Ro-
bust Gram. The graph shows that throwing out these rare words helps the objective of SG
slightly. But for the Robust Gram removing the rare words actually means a significant
decrease in useful information, and the performance starts to degrade towards the SG
performance. RG avoids the overfitting occurring in SG, but still extracts useful informa-
tion to improve the generalization.

3.4.3. WORD SIMILARITY PERFORMANCE
The work of [96] demonstrates that intrinsic tasks are a better proxy for measuring the
generic quality than extrinsic evaluations. Motivated by this observation, we follow the
experimental setup of [96, 97], and compare word correlation estimates of each model to
human estimated similarities with Spearman’s correlation coefficient. The evaluation is
performed on several publicly available word similarity datasets having different sizes.
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Table 3.1: Spearman’s ρ coefficient for a set of benchmarks models (rows), and word similarity datasets
(columns). Higher numbers are better.

RG65 WS WSS WSR MEN RW
Size 63 353 203 252 3000 2034

CBoW 48.5 59.7 71.8 61.3 56.5 26.4
GloVe 48.9 56.2 61.5 59.1 53.0 30.0
SG 59.2 71.7 74.6 66.5 64.7 33.5
HPCA 32.1 48.6 52.9 51.5 49.9 30.7
RG 59.0 71.7 74.8 66.7 65.8 34.0

For datasets having multiple subjects annotating the word similarity, we compute the
average similarity score from all subjects.

We compare our approach to set of techniques on the horizon of spectral to window
based approaches. A fully spectral approach, HPCA, [98] extracts word embeddings by
running a Hellinger PCA on the cooccurrence matrix. For this method, context vocab-
ulary upper and lower bound parameters are set to {1,10−5}, as promoted by its author.
GLoVe [93] approach formulates a weighted least squares problem to combine global
statistics of cooccurence and efficiency of window-based approaches. Its objective can
be interpreted as an alternative to the cross-entropy loss of Robust Gram. The xmax ,α
values of the GLoVe objective is by default set to 100,3/4. Finally, we also compare to
shallow representation learning networks such as Skip Gram and Continuous Bag of
Words (CBoW) [99], competitive state of the art window based baselines.

We set equal window size for all these models, and iterate three epochs over the
training set. To yield more generality, all results obtained with 300 dimensional embed-
dings and subsampling parameters are set to 0. For Robust Gram approach, we have set
λ1,λ2 = {0.3,0.3}. To obtain the similarity results, we use the finalΦ context embeddings.

Results. Table 3.1 depicts the results. The first observation is that in this setting, ob-
taining word similarity using HPCA and GLoVe methods are suboptimal. Frankly, we can
conjecture that this scarce data regime is not in the favor of the spectral methods such
as HPCA. Its poor performance can be attributed to its pure geometric reconstruction
formulation, which runs into difficulties by the amount of inherent noise. Compared to
these, CBoW’s performance is moderate except in the RW dataset where it performs the
worst. Secondly, the performance of the SG is relatively better compared to these ap-
proaches. Surprisingly, under this small data setting, RG outperforms all of its competi-
tors in all datasets except for RG65, a tiny dataset of 63 words containing very common
words. It is admissible that RG sacrifices a bit in order to generalize to a large variety of
words. Note that it especially wins by a margin in MEN and Rare Words (RW) datasets,
having the largest number of similarity query samples. As the number of query samples
increases, RG embeddings’ similarity modeling accuracy becomes clearly perceptible.
The promising result Robust Gram achieves in RW dataset also sheds light on why CBoW
performed worst on RW: CBOW overfits rapidly confirming the recent studies on the sta-
bility of CBoW [100]. Finally, these word similarity results suggest that RG embeddings
can yield much more generality under data scarcity.
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3.5. CONCLUSION
This paper presents a regularized word embedding approach, called Robust Gram. In
this approach, the model complexity is penalized by suppressing deviations between
the embedding spaces of the target and context words. Various experimental results
show that RG maintains a robust behaviour under small sample size situations, sam-
ple perturbations and it reaches a higher word similarity performance compared to its
competitors. The gain from Robust Gram increases notably as diverse test sets are used
to measure the word similarity performance.

In future work, by taking advantage of the promising results of Robust Gram, we in-
tend to explore the model’s behaviour in various settings. In particular, we plan to model
various corpora, i.e. predictive modeling of sequentially arriving network packages. An-
other future direction might be encoding available domain knowledge by additional reg-
ularization terms, for instance, knowledge on synonyms can be used to reduce the de-
grees of freedom of the optimization. We also plan to enhance the underlying optimiza-
tion by designing Elastic constraints [101] specialized for word embeddings.
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SEMANTIC VECTOR

SPECIALIZATIONS WITH

BIDIRECTIONAL CONSTRAINT

PROPAGATIONS

4.1. ABSTRACT
Word embeddings learn a vector representation of words, which can then be utilized in a
large number of natural language processing applications. Learning these vectors shares
the drawback of unsupervised learning: learned representations are not specialized for
semantic tasks. In this work, we propose a joint formulation to effectively learn seman-
tically specialized word vectors (Sem2Vec) by creating shared representations of online
lexical sources, and formulating them as constraints to learning semantic specialization
embeddings. Our results suggest that embeddings of our joint formulation are more sta-
ble and robust to variations. Further, we perform an empirical evaluation of our model
on the word similarity task comprised of eleven word similarity datasets, and obtain sig-
nificant boosts over state of the art competitors.
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4.2. INTRODUCTION
Developing accurate representations for the word meanings is a challenging problem.
Ongoing debates on the linguistics deals with the philosophical aspects of how word
meanings arise for a language. In a nutshell, the widely accepted idea in the domain is
the Distributional Hypothesis [102] which claims that words mostly acquire their mean-
ings through the context they are being used. Grounding on this hypothesis allows one to
develop unsupervised learning techniques to effectively learn the low order cooccurence
statistics of a language. Vector space learning approaches (a.k.a. word embeddings) [13]
are techniques whose representations of words are optimized such that these words and
their context words are located nearby in the embedding. It appears that the resulting
word vectors are usable for a diverse set of natural language applications. Recent studies
have shown that these vectors yield substantial representation power and proven to be
much more useful in many lingual tasks than their traditional counting based N-Gram
representations [84].

Training of embedding vectors is usually performed on large unstructured corpora. A
word embedding algorithm is expected to learn the structures and regularities in the lan-
guage without any further guidance. Unfortunately, these algorithms share the common
drawback of unsupervised learning: learned embeddings are not necessarily specialized
enough for the given predictive task. Generally speaking, when one wishes to special-
ize the vectors for a semantic task of interest, the Distributional Hypothesis yields to be
insufficient. Words occurring in similar contexts may exhibit weak or no semantic rele-
vance, and the learned vectors do not necessarily encode features that capture semantic
similarities [103].

Many formulations have been proposed to tackle this tedious and error-prone pro-
cess. Incorporation of knowledge graphs [104] to the embedding network, augment-
ing the objective with extra relatedness annotations [105], and extraction of word senses
from lexical dictionaries [106] are solutions to embed these general purpose vectors to a
semantic space. The work in [107] constructs an unsupervised random field over the se-
mantic associations to retrofit (post-process) the word vectors. These works jointly learn
embeddings, given a knowledge source, and they show improvements over unsuper-
vised, raw embeddings. Nevertheless, utilization of semantic sources is not straightfor-
ward. Each semantic source has a degree of semantic relevance to the task, and usually
sources with high semantic relevance have scarce amount of data. Carefully addressing
these points require the design of novel unsupervised objectives that exploits auxiliary
semantic content.

In this work, we propose a novel approach to address aforementioned issues and
effectively learn embeddings with semantic specializations. Briefly, the main contribu-
tions of this chapter are listed as follows:

• Each lexical source exhibits different degrees of semantic relevance. We create a
shared representation of Thesaurus and online dictionaries, and then fuse these
semantic content into the learning process as hard and soft constraints to restrict
the original embedding problem.

• We introduce bidirectional propagations over constraint sets where 1) bottom to
top augmentation propagations increase the number of hard constraints 2) top to
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bottom propagations improve the overall reliability of soft constraints. This strat-
egy constructs a well-behaving objective for learning semantically specialized em-
beddings. The constraint construction and propagations of our pipeline is visually
illustrated in Figure 4.1.

• It is difficult to train embeddings that take long range dependencies into account.
These embeddings are known to be highly unstable when trained under large win-
dow sizes. We found out that embeddings trained with our semantic constraints
favors stabilized solutions almost under all query sets compared to the original
embedding problem.

• Our empirical findings suggest significant improvements on semantic task evalua-
tions. More precisely, we measure the word similarity performance of a various set
of word embedding baselines using a diverse test collection comprised of eleven
datasets. Our weighted average of Spearman correlation scores, yield a 4.3% im-
provement upon the state of the art solutions. The improvement over the com-
petitors is much more significant with a 7.4% when embeddings are trained on a
smaller subset of Wikipedia 2017.
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Figure 4.1: Our proposed word embedding pipeline (best viewed in color). We first generate various levels of
word context pairs using a triplet of sources: unsupervised corpora, lexical dictionaries and Thesaurus. We
then treat upper lexical sources as optimization constraints and perform bidirectional propagations between
the constraint sets to maximize the learning efficiency. Our final word embeddings are highly suited for se-
mantic tasks.

4.3. PROPOSED APPROACH
In this section, we introduce the preliminary word-context learning problem, followed
by construction of our hard and soft constraints. We then conclude by detailing our
bidirectional constraint propagations.

4.3.1. WORD VECTOR MODELS
A large set of word embedding approaches use the following objective function:

J (w,c) = �(w,c)−
�

cN∈Vc

�(w,cN ) (4.1)
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where w is a target word in vocabulary Vw , and c is a context word in a vocabulary set Vc .
Further we define �w and �c as the vector representations of w and c, respectively. Then

�(w,c) = log
�
1+exp(−�w T�c)

�
is the logistic loss function. The first logistic loss term in

the objective penalizes the dissimilarity of �w and �c . The second term is the negative
sampling contribution, in which some randomly sampled contexts cN are forced to have
a vector�cN that is most dissimilar to �w . The total loss over the corpus is then simply the
sum of i.i.d. (w,c) word context pairs. This objective is an application of distributional
hypothesis: if a word w occurs together with context c, they should have similar vectors.
This relation is weighted more if they cooccur more in the observed corpus.

4.3.2. SEMANTIC WORD VECTOR SPECIALIZATIONS
The learning embeddings using Equation 4.1 attained reasonable success for the general
tasks. However, when we want to specialize embeddings for semantic relations, we no-
tice several problems with this approach. First, given a word, its semantic partner (e.g.
its hypernym, hyponym or synonym) usually occurs with it usually only through long
range dependencies [108]. It is very unlikely to observe a word and its semantic partner
together in a local window.

The second difficulty is that unsupervised objective has no preference over any pairs.
Without explicitly telling the model which loss pairs are semantically valuable, most of
the loss pairs are those that do not necessarily have a strong semantic informativeness.
For instance, consider the sentence: "my dog is a nice and big one, and like to eat high
quality food". According to the Distributional Hypothesis; the meaning of dog and stop
words like a, is, one should be closer to dog, although we know the semantic relation here
between dog and food is much stronger.

These two problems arising from the hypothesis can be addressed by guiding the
objective function, such that it weights semantically valuable pairs heavier than the rest.
This is possible by leveraging auxiliary semantic information that specify the feasible re-
gions of the objective function in Equation 4.1. But which pairs are more semantically
valuable? From a computational linguistics point of view [109], the value of semantics
is understood via the concept of Information Content which suggests that general enti-
ties present less information than the more specialized entities and relations. In other
words, abstract relations of semantics have high information content whereas raw cooc-
curences provide significantly less amount of semantic content. Consider the relations
of two words w and c. These words can cooccur in a domain such as raw noisy corpora,
a dictionary, or in a thesaurus. As information content suggests, these relations differ in
their semantic abstraction level: there is a clear distinction between the raw text cooc-
curence relation and a dictionary sense relation, the latter indicating a stronger relation.

Lexical Dictionary. The lexical dictionary is a rich source containing sense defini-
tions of the words where one can extract significant clues what the meaning of the word
is with respect to other words. For example, consider the definition of word tower in
Table 4.1. There are commonalities across the definitions of the same word. For our pur-
poses, we extract all word-context pairs from the dictionary definitions, and denote an
extracted elements as sense pairs. Let D be the dictionary. We formulate a sense pair as
a constraint to the semantic similarity of (w,c). We penalize the dissimilarity of �w and�c
under the logistic loss, and form a constraint �(w,c) ≤ τ. Then for any word-context pair
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Table 4.1: Dictionary and Thesaurus content for the query word tower.

Source Content
Dict 1 a building or structure high in proportion to its lateral dimensions, either iso-

lated or forming part of a building.

Dict 2 A tower is a tall, narrow building, that either stands alone or forms part of
another building such as a church or castle.

Theasarus 3 belfry - castle - citadel - column - fort - fortification - fortress - keep - lookout
...

1 http://www.dictionary.com 2 http://en.oxforddictionaries.com 3 http://www.thesaurus.com

in the learning problem, we have the following soft constraint via the dictionary:

�
�(w,c) ≤ τ��D(w,c)

where

�D(w,c) =




1 (w,c) ∈ D

0 other wi se

is the indicator function for the cooccurence of (w,c) in dictionary set D. We then use
standard Karush Kuhn Tucker (KKT) conditions [110] to treat this dictionary constraint
as an objective term:

JD(w,c) =λD
�
�(w,c)�D(w,c)

�
(4.2)

where τ disappeared since it neither depends on w nor c. Since dictionary pairs are
considered as a constraint to raw cooccurences: we call JD(w,c) as the soft constraint
objective.

Thesaurus. Thesaurus is a reference source where a word is explained in a concise
manner using a small subset of vocabulary words. In contrast to a dictionary, thesaurus
does not treat words in an alphabetic order. Also, dictionary definitions can contain syn-
tactic or semantic relevance, yet Thesaurus only accounts for semantic relations. These
relations are very abstract and may contain synonyms and antonyms. The pure seman-
tic nature of the Thesaurus means that pairs generated from it have higher information
content than dictionary pairs. For the word tower the last row of Table 4.1 shows the
query result from a thesaurus. We see that the Thesaurus definition of tower is much
condensed compared to dictionary content, and mostly includes concrete building ob-
jects having structural similarities.

Similarly to the dictionary definitions we extract pairs, and denote T as the set of
Thesaurus pairs to further constrain the embedding problem. That is we penalize the
dissimilarity under the logistic loss and form the hard constraint through the Thesaurus:

�
�(w,c) ≤ τ��T(w,c)

where �T(w,c) is the indicator function for the Theasarus T for the pair. This hard con-
straint is converted to an objective term:

JT(w,c) =λT
�
�(w,c)�T(w,c)

�
(4.3)
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where JT is the objective contribution from the Theasarus. In here hard means the
constraint has to be strictly satisfied during the optimization problem. This is character-
ized by using λT such that λT ≥λD holds.

4.3.3. BIDIRECTIONAL CONSTRAINT PROPAGATIONS

In the last subsection, we constructed soft constraints from the lexical dictionary and
hard constraints from a Thesaurus source. These constraints restrict the maximization of
the objective function over a subspace that semantic relations hold. Unfortunately, sets
with high information content are very much limited in size as Figure 4.1 demonstrates.
On the other hand, dictionary pairs are relatively less informative but potentially can
yield to an order of magnitude more constraints. The main idea in this subsection is that
these two lexical sources can mutually benefit from each other. Promoting reliable sense
pairs can increase the number of hard constraints and Thesaurus can create some new
constraints for the dictionary to increase its average informativeness.

For promoting a soft constraint to hard, we define two rules:

• definitional symmetry. The dictionary sense definition pair is denoted as symmet-
ric if (w,c) ∈ D, and (c, w) ∈ D. This indicates a very strong semantic relation, and
we promote this pair to be an element of T.

• expert agreement. Assume we have d dictionaries collected from independent
sources representing our large dictionary set D = {D1,D2, ...Dd }. If the definition
of word w contains c in multiple dictionaries, then (w,c) pair is an expert sense.
According to this rule, the word tower in Table 4.1 has building in its definition
across multiple dictionaries. Hence, tower-building is an expert agreed sense. We
augment T with these pairs.

In the next step, we query elements of T and stochastically apply semantic associa-
tion rules to form new pairs. While there exists ontology knowledge based association
rule techniques [111], we adopt a low complexity association rule that is if a pair (w1,c)
are (w2,c) both in T, we then create (w1, w2) pair and add it to the set D. We perform
these associations for a tiny number of KNN neighbourhood and increase the average
information content of the soft constraint set.

4.3.4. LEARNING BY CONTROLLED NEGATIVE SAMPLING

A common technique to learn word embeddings is the negative sampling [112]. In this
approach, a noise distribution generates word context pairs and the model is trying to
learn by discriminating between positive word-context pairs and negative pairs. Nega-
tive sampling contribution term is:

JN (w) =
�

cN∈Vc

�(w,cN )

When using this approach, we must ensure that w and cN are not related. In our
approach we know pairs obtained from T and D are strongly related. There is still a non-
zero probability to sample such pair. To overcome this issue, we perform Controlled
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Negative Sampling similarly to [106]. We do not negative sample if the pair is in these
sets:

JN (w) =
�

cN∈Vc
(w,cN )�∈T
(w,cN )�∈D

�(w,cN ) (4.4)

This discards a small fraction of the negative samples from the objective and yields better
learning. Our final objective is the sum of the pair loss, JN , JT and JD :

J (w,c) = �(w,c)+ JT (w,c)+ JD (w,c)− JN (w) (4.5)

where the global objective can be easily obtained by simply summing over all i.i.d (w,c)
pairs in the corpus.

4.4. EXPERIMENTAL RESULTS
Experimental Setup. We train our embedding models using the latest Wikipedia 2017
July snapshot containing 4.5B tokens. We extract the vocabulary from the corpus which
gives us approximately a vocabulary of 2.3M words. Our corpus processing follows the
state of the art practices for Wikipedia which we use the standard preprocessing scripts
and remove XML and HTML tags to obtain the raw text [99]. For a fair evaluation, all
common embedding training parameters are set as in [113], where we remove words
that occur less than 5 times, set the window size to 5, number of negative samples to 5,
and corpus is processed for 5 epochs. The initial learning rate is set to same value for the
methods and Stochastic Gradient Descent is used as the optimization algorithm.

Dictionary and Thesaurus Collections. We use Cambridge, Oxford, Collins, Dic-
tionary.com and Longman English dictionaries to obtain word definitions. Similarly to
[106], we crawl the dictionaries with web requests and parse the HTML contents us-
ing regular expressions to get word definitions from Cambridge, Oxford, Collins, Dictio-
nary.com. Unlike other dictionaries, the Longman Dictionary provides an Application
Programming Interface ,Longman Pearson API, allowing to directly get the word defini-
tions. The definition texts are preprocessed similarly to the input corpus such that only
alphanumeric characters are present. For obtaining more accurate pairs, we reduce the
redundancy by removing the stop-words from dictionary definitions. After collection of
all definitions from all dictionaries, as the purpose is not word sense disambiguation, we
concatenate all senses into a single list. For a Thesaurus source, we crawl the contents
of Online Thesaurus4 where each word is provided a list of synonyms. After the initial
construction of our hard and soft objective terms using pairs from our sources, we apply
the bidirectional constraint propagations.

Methods. Our performance benchmarks includes comparisons with the following
architectures:

• SG [99]: The vanilla baseline using Skip Gram architecture of Word2Vec. We refer
to this architecture if no abbreviation is given.

• CBoW [112]: state of the art architecture representing the context vectors as the
bag of words around the target word. This architecture is faster than SG.

4http://www.thesaurus.com
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Figure 4.2: Kernel Density Estimate fits to inner products. x-axis is the inner product value and y-axis is the
density estimate. a) symmetry pairs b) expert pairs and c) association pairs. In d) we show the inner product
density for all pairs.

• Dict2Vec [106]: embedding architecture using dictionary definitions. As their ap-
proach requires a preliminary training step of word embeddings, we first pretrain
the embeddings to obtain initial vectors. We then follow identical steps: use pre-
trained vectors to specify and promote the constraint pairs and set parameters to
the best reported results.

• FastText [113]: embedding architecture where each word is represented as a bag
of character N-grams. This is one more extra layer of word representation where
vectors enjoy the additional shared knowledge of N-Grams. For parameter specifi-
cation, we use the default suggested settings for their bucket length, N-Gram sizes
and update rates.

• Our approach. For setting our hyperparameters λD and λT , we follow the same
protocols as in [106].

We also ran our experiments with GLoVe [93] and HPCA [98] embeddings but we
could not obtain comparable results with these embeddings, so we do not report their
results.

4.4.1. QUANTITATIVE RESULTS
Constraint Propagations. Some random pairs obtained from our bidirectional propaga-
tion step are shown in Table 4.2. Symmetry and expert agreement pairs highlights strong
semantic relevancies. As there seems to be a low deviation in the conveyed meaning for
some of these pairs, arguably, these can even be used as meaning-preserving substitutes
for training a lexical substitution system (e.g. "examination-test", "forbidden-taboo"),
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Figure 4.3: Log Likelihood landscapes for {λT,λD} a) no propagation b) with constraint propagations. In both
cases, there exists global maxima for the landscapes.

Unlike symmetry and expert pairs, association pairs instead depicts gripping cases. This
step generates pairs like "science-aesthetic" which captures a usually omitted dimen-
sion of word science, suggesting the "science" is not only functional, but also contains
an aesthetics aspect. Another pair "international-alphabet" is an example how simple
associations on word pairs can also point to phrasal concepts such as the Phonetic Al-
phabet. Compared to symmetry and expert relations, these associations also generate
potentially valuable semantics that we do observe in the corpus.

To measure how these word pairs are affected when we apply our model, we fit a Ker-
nel Density Estimate to the cosine distances of pairs for symmetry, expert, association
and depict the results in Figure 4.2. Satisfying our expectations, learning with our model
causes all densities to undergo a mean shift and yield higher average inner product. The
density shift is relatively larger in expert pairs compared to symmetry and associations,
suggesting that the expert agreement has the strongest impact in our constraints. Fur-
thermore, observe that original densities for these word pairs are right (positive) skewed.
This is logical when there is no prior knowledge available for semantics, most of the pairs
are tend to have low cosine similarity. Learning with our model corrects the inherent
skew, and yields a Gaussian-peaked concentration for inner products.

4.4.2. MODEL SELECTION
Setting. For model selection purposes, we analyze the likelihood of multiple trained in-
stances of our model. We form a large validation set containing millions of words and
then evaluate the predictive likelihood of each model instance on this set. Since exact
computation is not feasible, similarly to stochastic computations in [19], we compute a
stochastic likelihood with sampling few context words around the target word and ran-
domly perform multiple repetitions.

Results. Figure 4.3a and Figure 4.3b depicts the likelihood LL contours over the
{λT ,λD } grid without and with constraint propagations. We observe on both settings
landscapes exhibit a unique maximum. Constraint propagations increases the smooth-
ness of the landscape, contour edges yield smoother transitions. This means for any
optimization algorithm, it is easier to discover a better maximum when new constraints
are formed using these propagations. In particular, the slope of the contours also show
that hard constraints of Thesaurus is much more informative compared to the ones ob-
tained from Dictionaries. The orientation of the contours suggest that there is a linear



4

44
4. SEMANTIC VECTOR SPECIALIZATIONS WITH BIDIRECTIONAL CONSTRAINT

PROPAGATIONS

Table 4.2: Some example word pairs from propagation sets.

Symmetry Expert Association
coal-fuel forbidden-taboo time-atomic
examination-test hit-serve abroad-disperse
gold-jewellery crack-open natural-harmony
carry-serve microscobic-small society-tandem
medicine-surgery existence-produce art-witchcraft
address-addressed disrupt-prevent black-gathering
break-disrupt cave-hill science-aesthetic
short-summary pond-water dignity-quality
box-wagon fall-shower international-alphabet
college-institution cache-hidden language-grammatical

relationship between λT and λD , that suggests the relative weighting of these sources.
Under our embedding model for learning semantics, a Thesaurus is worth ten (we used
dictionary constraints from aggregating 5 independent sources) dictionaries.

4.4.3. EMBEDDING STABILITY

Setting. In this section, we want to measure the stabilization effects of using our embed-
ding technique. To be able to capture long range dependencies of word cooccurences,
large window sizes have to be used [108]. Nevertheless, experimental evidence [100]
shows that embeddings obtained from such training conditions are shown to be highly
unstable. To understand the behaviour of the models, we simply train multiple randomly
initialized embeddings and check how the nearest neighbours of the query words are
subject to variations. We first train multiple random embeddings, and store the near-
est neighbours of query words using cosine similarity. Then, similarly to [114] we use a
stability measure based on Jaccard Index for comparing the similarity and diversity of
sample sets. The index is defined as the size of the intersection divided by the size of
the union of the sample sets: J (A,B) = |A∩B |

|A∪B | where A and B are embedding sets for a set
of word queries. For query sets, we use word similarity datasets as well as the recently
proposed Sch dataset of [96], that is calibrated well according to word frequencies, and
also considers parts-of-speech and abstractness of words into account.

Results. Figure 4.4 depicts the mean and variance of the Jaccard Index for each query
inventory. The stability significantly deteriorates on large window sizes with the typical
embedding learning approach. The mean deterioration trend is mostly linear for RW
and Sch datasets, and variances are comparably similar. Our approach does not de-
teriorate on large window sizes, instead yields increased stability. The stability results
strongly suggests that learning the embeddings does possess high degrees of freedom in
the optimization, maybe even more than necessary, carrying the risk of forming random
neighbours for words for each training instance. Introduction of our constraint pairs
serves as a stabilizer for avoiding these solutions. Since the stability index results of our
approach suggests that the model is even rejecting some weak word neighbours that is
slightly recommended by the corpus.
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Figure 4.4: Jaccard Stability Index on different query inventories. Despite the traditional approach, the stability
does not detoriate with our approach. The embeddings yields to be highly stable especially for large window
sizes.

In Figure 4.5, we project the word vectors to 2D space using t-SNE dimensionality re-
duction [115] and show how the close proximity of a randomly sampled word ("feasible"
in this case) change. Each column shows the neighbourhood of a training instance. The
circle radius’ for the neighbour indicates how many times it appears as the neighbour of
the word in total. First row shows instances from baseline training, and the second row
shows instances of our model. We observe more stationary neighbours when training
includes our constraints.

Embeddings trained with our semantic constraints favours stabilized solutions for
all query sets compared to the original embedding problem, and might be also utilized
when the task of interest asks for large window dependency modelling.

4.4.4. WORD SIMILARITY MEASUREMENTS
Data and Parameters. We report both the similarity results for embeddings trained on
the first 50M words and the 200M version of the Wikipedia. For a fair comparison against
all other baselines, we also concatenate the collected definitions and synonyms to the
training data so that other methods can also benefit from the extra sources. Wiki 50M
denotes the raw training corpus whereas Wiki 50M+ is the corpus with pair concatena-
tions.
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Table 4.3: Word Similarity performances of embeddings trained on first 50 Million words, and 200M version of
Wikipedia 2017.

Wiki50M Wiki50M+
SG CBoW D2V FT Ours SG CBoW D2V FT Ours

MC-30 69.9 64.2 74.5 74.1 72.0 76.7 72.9 75.3 78.5 77.6
MEN 69.5 65.3 71.1 70.4 72.1 71.7 66.7 72.0 72.1 72.3
MTurk-287 65.4 65.5 66.6 66.0 68.5 65.6 65.3 66.6 67.6 68.0
MTurk-771 61.4 56.3 65.6 59.9 70.2 64.7 60.9 67.6 64.5 70.9
RG-65 70.0 67.5 76.8 69.9 80.6 80.3 75.3 82.0 78.0 83.9
RW 40.9 31.2 43.4 44.9 49.2 46.9 40.4 47.9 49.1 50.9
SimVerb 20.8 15.5 29.8 19.7 43.5 30.0 23.4 35.7 28.6 47.1
WS 69.9 62.7 74.2 67.2 71.6 72.2 64.1 73.6 68.3 72.7
WSR 64.6 55.7 67.9 62.9 61.5 65.6 56.3 67.3 63.3 63.5
WSS 75.6 68.6 77.8 72.4 77.9 77.8 71.1 78.0 75.2 78.9
YP-130 39.8 32.5 56.0 46.3 67.5 54.7 47.2 58.7 59.1 67.6
W. Average 46.9 41.1 51.7 47.4 57.9 52.4 46.5 54.9 52.3 59.7

Wiki200M Wiki200M+
SG CBoW D2V FT Ours SG CBoW D2V FT Ours

MC-30 78.6 66.4 78.5 73.4 79.6 79.3 76.0 78.2 77.9 79.3
MEN 71.3 67.1 72.6 71.5 74.5 72.5 68.7 72.0 74.4 75.3
MTurk-287 65.4 65.5 64.8 67.2 66.5 64.0 63.9 64.2 69.1 66.7
MTurk-771 61.7 57.2 66.2 60.1 73.2 64.7 60.1 67.5 68.1 74.2
RG-65 74.6 70.9 79.2 69.7 83.6 79.1 77.5 81.2 79.9 85.6
RW 43.1 37.4 45.8 46.5 53.1 47.6 43.5 49.2 54.5 53.6
SimVerb 20.9 15.7 29.6 19.0 43.6 26.7 23.0 33.7 35.7 46.8
WS 70.3 62.7 72.9 67.2 74.2 71.0 63.1 73.2 71.4 73.2
WSR 63.9 55.8 66.2 62.1 66.3 64.9 56.3 65.4 65.7 64.6
WSS 76.4 69.6 78.2 72.1 80.8 76.9 70.2 78.3 76.5 79.9
YP-130 33.2 24.3 50.7 46.5 68.1 47.5 40.2 57.3 63.3 69.2
W. Average 47.9 42.8 52.4 47.8 59.8 51.5 47.4 54.4 56.9 61.2
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Figure 4.6: Word Similarity performances when semantic sources are concatenated multiple times to the train-
ing corpus. The gain for other embedding architectures quickly saturates.

Evaluation and Baselines. We test our embeddings on a large set of test collections.
As a standard extrinsic benchmark of [96], we compute the Spearman Correlation Coef-
ficient of cosine distances of word pairs to measure how much embeddings can predict
the expert annotated similarities. We measure the weighted average by weighting each
dataset by its query inventory size. We test our embeddings on: MC-30 [116], MEN [117],
MTurk-287 [118], MTurk-771 [119], RG65 [120], RW [121], SimVerb-3500 [122], WordSim-
353 [123] and YP-130 [124]. To increase the confidence of the experiments, we repeat
each experiment with different seeds and report the averages.

Quantitative results. Results are reported in Table 4.3. For models trained on Wiki50M
corpus, the gain of our approach over FastText reaches 10.5%, and Dict2Vec by 6.2% on
dataset average. On dataset basis, our method obtains highest gains for SimVerb and
YP-130 datasets. For models trained on the concatenated Wiki50M+ corpus, other meth-
ods yield a 4.75% increased performance, whereas our model obtains 1.2% extra on the
Wiki50M corpus, as it already learned embeddings on the constrained subspace. Con-
catenation of pairs from the semantic sources as training input can benefit all models
only for a few percents. The contribution is largest for the RW and Simverb datasets.
Here, SimVerb contains many pairs for the syntactic and semantic similarities of verb
meanings. RW dataset contains query pairs that are observed only few times in the cor-
pus. We understand that leveraging pairwise constraints helps most for learning the verb
meanings, and also for out of vocabulary queries. Our observations are similar when
training on the 200M version, except that a few percents extra performance is obtained,
with FastText gaining the most from the concatenation routine.

Sample duplication results. It is also a question of interest whether we can treat the
semantic sources as samples, and apply sample duplications rather than extending the
formulation with constraints. We demonstrate the consequences of this scenario in Fig-
ure 4.6 where we simply extract all pairs from sources and concatenate them multiple
times to the available corpus. The first few duplications raises the performance greatly,
but gain saturates around 10 duplications where no extra benefit is observed. For our ap-
proach, duplications only cause small fluctuations in the word similarity performance.
It turns out that duplications are an alternative approach to embed semantic knowledge
to the learning problem while introducing little extra training time, nevertheless the per-
formance gain is far away from optimal.

Economical scenario. So far we assumed that the model has access to a highest level
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Figure 4.7: Word similarity performance when high level semantic source is unavailable.

semantic source during training. Under some conditions, this assumption might be too
optimistic since for many languages these semantic sources might not be either available
or accessible. We name this condition as an economical one for the word embedding
learning. In Figure 4.7, we demonstrate how word similarity performance varies when
we are only left with a dictionary source and lose access to the Thesaurus content. On all
datasets, losing access to the Thesaurus harms the performance. We observe significant
performance losses on the RW and SimVerb datasets. Comparably, the drop is less sig-
nificant for easy datasets containing very frequent words such as RG-65 and WSS. This
suggests that learning word similarities can be done using only lexical dictionaries, given
that test sets query relatively easy word pairs. On the other hand, if test sets contain pairs
that are rare, exploiting a higher level of semantic source appears to be indispensable.

4.5. CONCLUSION
In this work, we proposed a novel embedding framework to learn vectors specializing to
semantics. Our word embedding pipeline integrated various levels of semantic sources
into one unified formulation by treating highly confident lexical sources as hard con-
straints, and lexical dictionaries as soft constraints to learning. We then utilized the do-
main knowledge inherent in the lexical sources to further refine our constraint sets by
bidirectional propagations, yielding a better behaving objective function.

Our constrained embedding formulation is found out to be more stable than typical
word embeddings, especially for training settings on the large window sizes. We empir-
ically evaluated how much gain our model implies for word similarity measurements,
suggesting significant boosts performance over multiple baselines. Furthermore, the
limitations of sample duplications as integrating semantic knowledge to the embeddings
is highlighted and compared to our constraint based formulation. Worst-case economi-
cal scenarios in which a semantic source is unavailable is investigated and performance
losses are discussed. Practical contribution of our model on the word similarity test suite
of eleven datasets is measured, showing significant performance improvements over the
state of the art techniques.

Perhaps a notable merit of our formulation is that it integrates semantic knowledge
to the features but follows the conventional word embedding pipeline where training
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does not require any human intervention. This is an important remark to obtain vectors
in a manageable time since most of the embedding architectures require a human in
the loop, significantly slowing down the training procedure. We conclude that state of
the art vectors do not have any guarantee to learn semantic relevancies especially when
the amount of training data is scarce for a given language in which Sem2Vec embedding
approach provides a not only stable but also time-efficient embeddings to learn these
semantic relevancies.
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BOOSTED NEGATIVE SAMPLING BY

QUADRATICALLY CONSTRAINED

ENTROPY MAXIMIZATION

5.1. ABSTRACT
Learning probability densities for natural language representations is a difficult prob-
lem because language is inherently sparse and high-dimensional. Negative sampling
is a popular and effective way to avoid intractable maximum likelihood problems, but
it requires correct specification of the sampling distribution. Previous state of the art
methods rely on heuristic distributions that appear to do well in practice. In this work,
we define conditions for optimal sampling distributions and demonstrate how to ap-
proximate them using Quadratically Constrained Entropy Maximization (QCEM). Our
analysis shows that state of the art heuristics are restrictive approximations to our pro-
posed framework. To demonstrate the merits of our formulation, we apply QCEM to
matching synthetic exponential family distributions and to finding high dimensional
word embedding vectors for English. We are able to achieve faster inference on synthetic
experiments and improve the correlation on semantic similarity evaluations on the Rare
Words dataset by 4.8%.
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5.2. INTRODUCTION
The combination of large, publicly available text collections and distributed word vec-
tor representations [13] has revolutionized our ability to study the underlying structural
patterns of language. Distributed representations, or word embeddings, operational-
ize the distributional hypothesis [125], which asserts that words acquire meaning over
time through their contexts. Embeddings approximate these contextual meanings by
mapping words to continuous vectors, so that words that occur in similar contexts have
similar vectors.

Recently, studies have shown that these vectors yield substantial representation power
and proven to be much more useful in many lingual tasks than their traditional counting
based N-Gram representations [84]. Nowadays, word embeddings are typically adopted
as fundamental building blocks for a variable set of linguistic tasks [126]. Some suc-
cessful applications of such vectors are sentiment classification [127], sarcasm detection
[85], question answering [128], cross-language text classification [129], recommendation
systems [130].

Word embeddings are typically dense and have radically lower dimensionality than
the number of words in a language, but they are nevertheless still high dimensional.
Traditional statistical estimators such as Maximum Likelihood Estimation (MLE) easily
becomes intractable for learning these high dimensional models [131]. Negative sam-
pling on the other hand, derived from the contrastive learning, easily scales up to large
embedding models. Although scalability is an attractive property itself, the user still has
to consider design issues to ensure successful learning with negative sampling. Since we
have limited data in many practical word embedding problems, it becomes crucial to
use a reasonable sampling distribution in order to fit accurate models.

In this work, we address the aforementioned problems of word embedding architec-
tures using negative sampling as the learning component. To achieve this, we propose a
relaxed Maximum Entropy based sampling principle. Main contributions of this chapter
can be summarized as follows:

• An objective is obtained which expresses the effect of a sampling distribution with
a physical analogy, as attractive and repulsive forces. This formulation lends to a
Maximum Entropy formulation.

• A surrogate smoothing objective to the original problem: Quadratically Constrained
Entropy Maximization (QCEM) is proposed, posing a computationally attractable
method for choosing sampling distributions. Our proofs show that state of the art
heuristics are simple and restricted approximations of our general maximization
framework.

• Empirical findings on learning synthetic exponential family densities are provided
for analysing the convergence rates of methods.

• The merits of our approach are further demonstrated on word vector space learn-
ing when data is scarce and limited. We report word similarity performances on a
large number of datasets containing a diverse set of query vocabularies, and find
that QCEM-trained vectors had as good or better performance in almost all of the
comparisons, and did particularly well on rare words, achieving a 4.8% increase.
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(a) Learning with prior p0
n (b) Learning with optimized pn

Figure 5.1: Toy example demonstrating the effect of negative sampling distributions on learning. Blue and red
points are samples from pd and the negative distribution. The green trajectory shows the optimization path of
the model distribution’s mean. a) Empirical selection of the sampling distribution results in a poor model fit.
b) Optimized sampling distribution pushes away pθm more appropriately and results in a more accurate fit.

5.3. QUADRATICALLY CONSTRAINED ENTROPY MAXIMIZATION
We are given T i.i.d. data samples x = {x1, x2, ..., xT } drawn from true but unknown data
density pd (u) defined on the real domain u. Similarly negative samples y = {y1, y2, ..., yT }
are drawn from the prior negative distribution p0

n(u). The goal is to fit a probability
model pθm(u), having parameters θ. Without loss of generality of the framework, one can
also learn unnormalized models which ln pθm(u) = ln p̃θm(u)+Z where p̃θm(u) represents
the unnormalized density, and Z is the normalization factor to be learned. Then, the
full parameter set to learn is {θ,Z }. This leads to the negative sampling objective:

J (θ) = Epd

�
lnσ(x ;θ)

�+Ep0
n

�
ln(1−σ(y ;θ))

�
(5.1)

Negative sampling is an instantiation of the contrastive framework. If we had un-
limited data, for any sampling distribution, estimation error would be asymptotically
normally distributed [94]. However, we are more interested in the word embedding
problems where samples are usually considered to be insufficient for learning high-
dimensional model densities. In such settings, our samples are finite, and biased.1 If
we have an unsuitable prior p0

n(u), the learned model pθm(u) can easily be inaccurate.
For illustrative purposes, consider a toy scenario in Figure 5.1a where optimization is in
the R2 space. Here, empirical samples obtained from pd are highly biased and a naive
negative sampling prior p0

n(u) is chosen for learning the model pθm(u). Negative sam-
pling can not provide sufficient repulsion to stop pθm(u) from overfitting to the empirical
samples. Instead, given a criterion to optimize the sampling distribution pn , we could
prevent the inaccurate model fits as in Figure 5.1b. This motivates one to optimize pn

before we perform stochastic updates to the embedding model.
Although Equation 5.1 is the standard formulation of the negative sampling, we want

to reformulate it to give us an intuitive understanding on the role of the negative distri-
bution. To make the dependency on pn explicit, we apply mechanical steps (provided

1Many cooccurrence statistics over word context pairs are either underestimated or overestimated.
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in Supplementary Material) and rewrite Equation 5.1 jointly in terms of the embedding
parameters θ and the sampling distribution pn :

J (θ, pn) = Epd [ln pθm(x)]−Epd [ln(pθm(x)+pn(x))]

−Ep0
n (y)[ln(pθm(y))+pn(y))]+Ep0

n (y)[ln pn(y)]
(5.2)

where we have four terms guiding the optimization of model distribution. With this
reformulation, we can express the terms using a physical analogy, as attractive and re-
pulsive forces. The first term is the fit term where we require the pθm(x) be similar to
pd (x). In the second and third terms, the mixture distribution of pθm(u)+pn(u)2 is eval-
uated under the expectation of pd (u) and p0

n(u). This means, this mixture is repulsed
to fit to these distributions and can be interpreted as terms to provide regularization to
the learning of pθm . We denote the second term as the data repulsion force, and the third
term as the prior repulsion for the mixture distribution. If we analyze a single update
on θ, model parameters, the fourth term becomes a constant. We can then illustrate in
Figure 5.2 how the combination of three terms drives the optimization of the mixture
distribution.

(a) Early Optimization (b) Late Optimization

Figure 5.2: Three forces guiding the optimization of mixture distribution pθm (x)+pn (x), shown in green con-
tours. Blue and red are data and negative samples. Blue arrows represent the fit force, purple arrows represent
data repulsion. Red arrows represent the prior repulsion. a) In early stages of optimization, fit force and prior
repulsion push the mixture towards empirical samples. b) In later stages, data repulsion prevents overfitting
to the data. Our goal here is to also optimize the data repulsion term to prevent overfitting to the data samples.

If we have not sampled any negatives from the prior p0
n(u), then the third and fourth

terms do not contribute to Equation 5.2. In this scenario, the data repulsion term is
the one preventing overfitting to the data samples. When we know that there is strong
bias while sampling the data points, we have to learn pn such that it provides sufficient
data repulsion for the mixture pθm(u)+pn(u). This means we want to maximize the data
repulsion Epd [ln(pθm(x)+pn(x))] term for pn . This is troublesome at first sight, since it
looks difficult to disentangle the pn function. Luckily, two design considerations in word
embeddings allow us to bypass this problem.

2Mixture normalization constant is 2 but not shown for the ease of notation.
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First, in many word embedding objectives, including Word2Vec [57] and GLoVe [93]
embeddings, optimization is done on sufficiently high dimensional spaces, and model
parameters are initialized randomly on the space [19]. Under this condition, we can as-
sume that the model likelihood pθm(x) for any given sample will be negligibly low right
after the initialization. Furthermore, pn is usually constructed from the empirical distri-
bution which means pn(x) is going to be the dominant term inside the mixture. These
two common design practices allow us to instead optimize an upper bound. For any
given data point x , we consider pθm(x) as a constant and inferior quantity and write the
upper bound as:

J (pn) =−Epd [ln pn(x)] (5.3)

Since we are trying to maximize the objective, this equation suggests that we want to
learn a pn such that we want to deviate away from the empirical data distribution. The
equation is underdetermined in nature; many choices are possible for selecting a nega-
tive sampling distribution pn . We make the least possible assumptions, and resort to a
Maximum Entropy [132] approach given that we satisfy distributional consistency. That
is, we want to maximize the entropy of pn , while being consistent with the empirical
data’s statistics. Optimizing the upper bound of the data repulsion term with respect to
the empirical statistics, we aim to obtain a better sampling distribution for learning pθm
as in Figure 5.1b. Reliance on the data’s empirical moments will constrain the solution.

Assume the initial word frequencies are given in a data vector d = (d1,d2, ...,dn)T in
which the entries are ordered: di ≥ di+1 and where n is the vocabulary size. Let p be the
parameters to be optimized for the pn . We constrain the deviation of p from the data
d by a quadratic constraint (p −d )TΣ−1(p −d ) ≤ βn where Σ−1 is the precision matrix.
These design considerations yield the following problem:

max
p

H[p]

s.t. p ≥ 0

1T p = 1

(p −d )TΣ−1(p −d ) ≤βn

(5.4)

where positivity and sum to one ensures that pn is a probability function. Although this
problem seeks sampling distributions with higher entropy, it is difficult to solve in prac-
tice via gradient descent updates. It frequently suffers from numerical difficulties when
many probabilities are almost zero.3 Then, the log function easily yields −∞ values caus-
ing the gradient to go infinite where Lipschitz continuity conditions do not hold any-
more. As the problem dimensionality increases, we are much more likely to encounter
such problems. To circumvent problems arising from entropy maximization, we further
want to design a surrogate for the problem in Equation 5.4.

Proposition 1. Let a probability mass function p defined with ordered probability
masses: p1 ≥ p2 ≥ ... ≥ pn > 0. Then the application of a smoothing operator increases
the entropy of p .

3We know that word-context conditional distributions are highly sparse and contain very minor probabilities
in their tail.
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Proof The key part of the proof utilizes Taylor series expansion. The full proof is
provided in Appendix B.2.

This result poses that there is a relation between the entropy and the smoothing op-
erator. Motivated by it, we relax the entropy maximization problem in Equation 5.4 to:

max
p

−
��(Ω− I )p

��
2

s.t. p ≥ 0

1T p = 1

(p −d )TΣ−1(p −d ) ≤βn

(5.5)

whereΩ is chosen as a Hankel matrix [133]. This formulation enforces that neighbor-
ing entries in p become similar, making the distribution smooth and thereby increasing
the entropy. Moreover, the problem is convex in p and known to yield a unique maxi-
mum [134]. This formulation does not make any distributional assumption on the form
of pn , nevertheless we can still favour particular solutions by setting the precision matrix
Σ. Using a Hankel matrix in its most general form results in an impractical number of
objective terms for large vocabularies. Thus, we further embed a binary structure with
Ωi j = 1 if j = i + 1 and Ωi j = 0 elsewhere4. This specialized circulant structure of Ω
reduces the number of terms in the objective to n, the vocabulary size.

Proposition 2. Let a PMF p given with ordered masses: p1 ≥ p2 ≥ ... ≥ pn > 0. Also
let 0 <λ< 1 be the density powering parameter. Then, application of powering acts as a
smoother on the density given that there exists a lower bound γ on pi that it is related to

λ with: γ=
�

1
λ

�
j pλ

j

�1/(λ−1)

Proof The proof follows by recognizing the Lipschitz condition, enforcing it to hold
by assuming a lower bound and exploiting the diminishing structure of the first order
derivative. The full proof is provided in Appendix B.3.

This result sheds light on why the heuristics [57, 93] adopted for the negative sam-
pling works moderately well in practice. As long as the minimum probability mass of
the sampling distribution is bounded, powering distributions acts as a smoother. This is
simply an approximation to our smoothing formulation.

Despite its practical consequences, the problem with powering heuristic is that, to
the best of our knowledge, there is no rationale for optimal sampling distribution to be
in the Pareto family. Unlike [57], which constrains the word frequency density to be in
the Pareto family, the formulation in Equation 5.5 yields more generality. It does not
enforce any distributional assumptions, opening up possibilities to discover better op-
tima. In the next section, we experimentally compare these heuristic approaches to our
formulation.

4As Hankel and Toeplitz matrices are closely related, one can question the effect ofΩbeing Toeplitz when using
this binary structure. In this case, we achieve the same objective with Equation 5.5 given that entries of p are
reversed. Hence for penalizing the difference of consecutive entries, choosing between Hankel and Toeplitz
matrices does not constitute a key difference in our formulation, and is a matter of reparametrization.
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Figure 5.3: Learned models (blue) for the data density (green dashed), using different sampling distributions
pc (red). Top to bottom row shows a) Univariate b) KDE c) EF d) QCEM distributions. Green points are data
samples x and red points are negative samples from pc . Gray areas highlight the fitting errors.

5.4. EXPERIMENTS
Experimental Setup. We provide two sets of experiments to demonstrate the efficiency
of our approach. For both experiments, the QCEM formulation is solved by a Splitting
Conic Solver [135] that can solve large-scale convex cone programs by using an alter-
nating directions method [136]. For synthetic experiments, we use inverse transform
sampling to sample from 1D probability distributions. The error for model fits is mea-
sured by calculating the average K L(pd ||pθm) by repeating the experiments 10 times with
different random initializations. Learning the model distribution on both synthetic and
real world experiments, we use the same stochastic gradient algorithm with the same
learning rate for all settings.

5.4.1. EXPONENTIAL FAMILY DENSITY ESTIMATION
Data Generation and Parameters. The interest in this subsection is to quantify the con-
tribution of QCEM contrastivity for the unnormalized density estimation problem. We
define a data generator signal S(θ∗,φ(u)) over the domain [−2π,2π] with sine and cosine
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bases:

S(θ∗,φ(u)) = θ∗1 sin(2πω1u)+θ∗2 cos(2πω2u)+ ...+θ∗2n cos(2πω2nu)

whereφ(.) represents the transformation to the trigonometric functions. Then the prob-
ability densities are constructed using the Exponential Family (EF) representation:

pd (u;θ∗) ∼ exp
�
S(θ∗,φ(u))

�

where trigonometric bases are interpreted as sufficient statistics. Finally, we learn the
unnormalized EF density ln pθm(u) = ln p̄m(u;θ)+Z with parameters {θ,Z }. In other
words, the goal is to learn the true canonical parameters of pd , the amplitudes of each
trigonometric statistics, plus the normalization constant of the density.

Methods. Our first baseline for the contrastive density is the univariate Gaussian
density (UNV). Although it is simple to draw samples from this distribution, it is a poor
choice for a contrastive function because it is only able to provide a limited amount of
discrimination between data and contrastive densities. Another baseline choice of pc

is a more flexible nonparametric kernel density estimate [137] (KDE), where pc is fitted
to the observations. In some applications, one might know the parametric family of the
underlying data density in advance, but not its parameters. We depict this case with an
Exponential Family (EF) baseline where we have access to the true sufficient statistics of
pd , but not the canonicals. Knowing the true sufficient statistics of pd is a very strong
assumption, making this baseline very competitive. As the synthetic experiments have
relatively low numerical complexity, we also report baseline results for the Maximum-
Entropy (ENT) baseline (solution of the Equation 5.4). Finally, QCEM corresponds to
our approach with an isotropic precision. We constructed data constraint vector d for
this problem using the Kernel Density Estimate.

Results. Figure 5.3 shows the density fits obtained with each negative sampling ap-
proach. We observe that the univariate approach can only learn the prominent peaks
of pd in locations with many samples. For instance, the data peaks on the leftmost re-
gion are not captured accurately. In contrast, EF collects samples more homogeneously
with its trigonometric bases and helps to fit more accurate models compared to the Uni-
variate approach. KDE also obtains a fit that is comparable with the EF and QCEM fits.
Using KDE, the low probability region variations are captured, but the probabilities of
data peaks are not correctly estimated. QCEM contrastivity obtains the best fits: not only
the data peaks, but also the low probability regions are captured much more accurately
compared to the KDE and EF fits.

Note that the distribution pc obtained by QCEM is relatively uniform compared to
the EF and KDE distributions. This might raise the argument that a naive uniform dis-
tribution would provide the best sampling. Indeed, without any imposed moment con-
straints on the optimized distribution, the maximum entropy distribution is the uniform
distribution. In a low dimensional setting the uniform distribution is an appropriate
choice, but in high dimensions it quickly becomes problematic. Uniform sampling from
a high dimensional volume is very inefficient, and a huge number of samples is required
to ensure that we sample from regions where the data probability is sufficiently high. In
contrast, QCEM combines the efficient sampling of data while providing homogeneous
cover for the probability domain.



5.4. EXPERIMENTS

5

59

Figure 5.4: Learning curves of each contrastivity approach.

The full learning curves of all methods are depicted in Figure 5.4. Consistent with the
findings of [138], asymptotically, all approaches are able to find the underlying density.
Nevertheless, Univariate and KDE convergence is much slower than the other methods
and they are inappropriate sampling techniques for small datasets. The EF and ENT
approaches have a moderate rate of convergence. Note that the ENT approach has
slower convergence, presumably due to the numerical difficulties of entropy maximiza-
tion [139]. QCEM objective avoids these numerical problems, yielding a faster alterna-
tive to these approaches.

5.4.2. WORD EMBEDDINGS SIMILARITY

Data and Parameters. In the word embedding problem, the joint density over the sam-
pled words and context pairs have to be learned. Following the state-of-the-art embed-
ding evaluation schemas [96], we apply standard HTML text processing to Wikipedia.
We remove words that occur less than 100 times in the whole corpus. This results in a
sequence of several billion words, with a vocabulary size around 37k. The cooccurrence
is then computed using windows of 10 tokens to each side of the focus word, following
the practices of [140]. We use the word embedding architecture [59] that is known to
be more robust for small sample sizes, dropouts and perturbations in the training set.
Learning rate is initially set similarly to the methods and decayed in a linear fashion.

Evaluation and Baselines. Despite the challenging nature of the objective evalua-
tion of learning the word vectors, recent work in [96] suggests that intrinsic tasks, such
as word similarity measurements, are a better proxy for measuring the generic quality of
word vectors than the extrinsic evaluations. We therefore follow the experimental setup
of [96, 97], and compare the Spearman’s correlation estimates of each model to human
estimated similarities. Here a higher score indicates a higher correlation to human esti-
mated word similarity judgements. For datasets containing multiple human annotators,
we simply average the annotator scores.

The WSS and WSR [97] are similarity and relatedness subsets of WordSim353 [123]
dataset. WSS contains taxonomic relations (e.g. synonymy) and WSR mainly covers top-



5

60
5. BOOSTED NEGATIVE SAMPLING BY QUADRATICALLY CONSTRAINED ENTROPY

MAXIMIZATION

20 40 60 80 100

Vector Dimension

0.3

0.4

Sp
ea

rm
an

C
or

re
la

ti
on RW

QCEM
Uniform
RGP
RG

Figure 5.5: Word Similarity performances of the methods on WSR, WSS, MEN and RW datasets.
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ical relations. These two datasets are relatively small and contain words that have rela-
tively high frequency. MEN [84] word pair dataset contains 3k randomly sampled words,
that occur at least 700 times, extracted from a freely available combined corpora hav-
ing approximately 2.7B tokens. Sampling was performed to ensure balanced range of
relatedness levels. The human similarity scores for this dataset are annotated using an
interface for the Amazon Mechanical Turk. RW [141] dataset contains 2034 word pairs,
first word randomly sampled from Wikipedia documents. Then the outliers are filtered
using WordNet entries, and second word is sampled from synonym sets. Both MEN and
RW contains many words with low frequency.

Baselines. We compare the following methods:

• RG , which uses the word frequency distribution, the data statistics, as negative
distribution pn .

• RGP , uses a power heuristic of the unigram distribution. The powered version of
the word frequencies are used ∼ pc (w )λ. This heuristic is the common baseline
that is used by the state-of-the-art method [57], where λ is a corpus dependent
parameter. For a fair comparison, we set λ accordingly to the empirical findings of
[57, 93] as it is known to yield the best results for English corpora.

• Uni (Uniform) approach. We use an uniform distribution which all words of the
vocabulary are equally probable to be picked as contrastive samples.

• QC E M , our proposed approach. For the problem construction, we use the uni-
gram frequencies as data constraints: d ∼�

r Cr where Cr are rows of word cooc-
curence matrix. For scalability considerations, we further speed up the approach
by considering the optimization over equivalence classes over words. These equiv-
alence classes are defined such that words having the same corpus frequency are
treated as the same class. This equivalence strategy yields 5.2k variables to opti-
mize instead of the 37k variables, adding an order of magnitude speed increase.
Finally, we did not assume any apriori precision and decided to use an isotropicΣ.

Figure 5.6: Agnews text classification performance of vectors trained with each sampling algorithm.

Quantitative Results. Figure 5.5 shows the word similarity performances for all ap-
proaches on all datasets. In all datasets, the RG baseline performs poorly. For simpler
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(a) RG , 38 RC (b) RGP , 52 RC

(c) QC E M , 36 RC (d) Uni , 50 RC

Figure 5.7: T-SNE dimensionality reduction of document embeddings. Each class is coded with a color. As
confusions are common in the center region, we quantify the number of confusion regions (samples from
multiple classes are present). Yellow boxes indicate Region of Confusions (RC). Less clutter is observed for
QC E M embeddings.

datasets such as WSR and WSS, QC E M outperforms all baselines, especially on the lower
dimensional regime where the correlation gain is slightly larger than the high dimen-
sional regime. Both taxonomy relations in WSS, and topical relations of WSR gain from
the QC E M sampling. The Uni approach yields competitive performance especially in
lower dimensions, but on high dimensional data the performance degrades quickly, as
in the WSR and MEN datasets.

The performance gaps become more perceivable on more difficult datasets. On the
MEN dataset, RGP is worse than Uni especially in lower dimensions, whereas in high
dimensions the powering approach is better than the uniform distribution. QC E M and
Uni perform quite alike in low dimensional MEN experiments. We believe this is due to
two reasons. First, MEN similarity scores are much more noisy than other WS datasets
due to the non-expert annotators which conceals the performance gap. Secondly, MEN
vocabulary content is much broader than other datasets and it contains words occurring
more than 700 times. This means query words are mostly from the heavy tail region in
which QC E M and Uni behaves similarly. Nevertheless, QC E M does not suffer from per-
formance losses in high dimensions like Uni approach and consistently achieves better
performance.

On the RW dataset, it is noteworthy that the uniform contrast approach outperforms
the powering heuristic with a small margin, for all model instances. For the WSS and
WSR datasets, the powering heuristic obtains a reasonable performance whereas in the



5.5. CONCLUSIONS

5

63

RW dataset it performs worse. Apparently, the constraints imposed by the powering
heuristic turns out to be inappropriate for the RW dataset. This results in a suboptimal
solution when the semantic relations of words are queried for a large set of less frequent
words. The QC E M approach, on the other hand, does not impose such constraints, and
obtains performance improvements with large margins. In the RW dataset, we finally
compute the average correlation score over all the models, resulting in a 2.0% increase
over the powering heuristic and a 4.8% over the standard baseline, a powerful quantita-
tive indicator that embeddings trained with QC E M yields more realistic structure than
the ones trained with computationally simple, but theoretically not justified heuristics.

5.4.3. REAL WORLD TEXT CLASSIFICATION

Setup. We evaluate vectors in Agnews text classification benchmark which consists of
news articles collected from multiple sources. The dataset is randomly split into 120k
training and 7k test documents and the goal is to predict the label of each document
from {world,sports,business,science-technology} classes.

We plug in trained word vectors to a standard Multi Layer Perceptron (MLP) with
logistic activation units and ensure fair comparison by fixing the embedding weights
during the training which means word vector layer does not change. This helps us to ac-
curately quantify the performance gain from input vectors. Experiments are carried with
varying number of hidden units to evaluate how vectors contribute to different type of
networks and whether provide sufficient generalization for different architectures. Each
network is then trained using a standard Stochastic Gradient Descent optimizer with
adaptive learning schema. We then compute the F-1 scores for each approach.

Results. The result of each experiment is shown in Figure 5.6. RGP approach per-
forms worse in general. Networks trained with RG vectors occasionally perform well, but
perform poorly on average. These vectors suffer from performance fluctuations suggest-
ing that they are less robust to the local minima inherent in the problem. We also observe
this phenomenon when we use vectors with RGP , illustrating another reason why opti-
mizing the sampling distribution with our approach is advantageous. Note that perfor-
mance of QC E M does not deteriorate even for networks with large number of neurons,
and produces more stable scores. We visualize the documents constructed from embed-
dings. In Figure 5.7, we show dimensionality-reduced document vectors in which each
yellow region denotes a Region of Confusion. We expect document embeddings to have
low intra-class distances, and high inter-class distances. QC E M document clusters are
more coherent, and subject to less confusion in the center region.

5.5. CONCLUSIONS
We have presented a novel framework for optimizing negative sampling distribution us-
ing our Quadratically Constrained Entropy Maximization (QCEM) approach. Our for-
mulation posed a convex and computationally attractable solution, has linear time com-
plexity with respect to the vocabulary size, and permits scaling to large word embedding
problems. Our theoretical analysis showed not only the generality but also the relation
of our work to the prior heuristic state of the art approach, that is shown to be an ap-
proximation to our general maximization framework.
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We validated our formulation both in synthetic density and real-world word vector
space learning experiments, demonstrating that QCEM obtains faster convergence rates
compared to a various competing approaches for learning exponential family probabil-
ity densities. Finally we reported the performance of QCEM in word similarity tasks, in
which the restrictive probabilistic assumptions of the heuristic methods were not ful-
filled whereas our approach with its generality performed significantly competitive than
the heuristics and entropy promoting baselines. Combination of the theoretical results
and empirical evidences obtained for the vector space learning problems suggests that
QCEM is an attractive solution to apply for determining negative sampling distributions.
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CONSTRAIN GLOBAL SAMPLE

LOCAL: FASTER AND VARIANCE

REDUCED WORD EMBEDDINGS

6.1. ABSTRACT
Word embeddings represent the words in a language with feature vectors. They are typ-
ically learned with sampling approaches that approximate the partition function of a
high dimensional probabilistic model. Nevertheless, in this chapter we first show that
ordinate sampling approaches are not guaranteed to produce robust embeddings. First
we show that in the low sampling budget regime, sampling instances produce inaccurate
approximations and does not necessarily follow the global behaviour of the infinite sam-
pling. Second, samplers are mostly designed to be context-free which does not exploit
local relevancies in the embedding space. We first address these limitations by intro-
ducing target variables which are used for imposing global constraints on low budget
sampling. This is followed by incorporating local contextual relevance to our sampling
distribution by grounding on word concreteness knowledge bases. Our experimental re-
sults show that embeddings produced by Constrain Global Sample Local (CGSL) is highly
competitive to the baseline sampling approaches on a suite of intrinsic word similarity
tasks. Furthermore, a quantitative analysis on CGSL reveals not only its potential to pro-
duce robust embeddings due to its variance reduction effect but also its apt to converge
faster to the gold standard word vectors.
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Figure 6.1: Exact Z (w ) and approximated Ẑ (w ) partition function for all words in the vocabulary. Ẑ (w ) result-
ing from the finite sampling budget frequently overshoots the Z (w ) for many words.

6.2. INTRODUCTION
Word embeddings represent the words in a language with vectors learned from the cooc-
curence statistics of a corpora. Statistical approximations enable learning of these vec-
tors from large text collections containing billions of tokens. These vectors are then con-
veniently used as low level features for a set of downstream natural language processing
tasks; such as dialogue systems [142], question answering [128], sarcasm detection [85],
and discourse relation recognition [143].

A large variety of word embedding methods are based on the exponential family word
vector space model equipped with a partition function (PF). Unfortunately this PF is al-
most always intractable in practice, due to the large number of words in the language.
This motivates sampling as the common statistical approximation for the word embed-
ding models. Sampling routines approximate the PF by drawing few negative samples
from a user specified sampling distribution. Although these routines provide practical
and efficient approximations, to the best of our knowledge, the full implications of the
word vector sampling is not understood to the full extend [144].

In this chapter, we first investigate the limitations of typical sampling under small
sampling budgets, and demonstrate that naive sampling applications does not produce
robust approximations for the PF. We show that for a large variety of word context occur-
rences, unbounded approximations of these sampling instances cause significant devi-
ations from the true value of the PF.

In Figure 6.1, we depict the usual scenario without any precautionary mechanism.
Deviations are prone to trigger overshoots in the approximation and introduce uncer-
tainty to the training that is detrimental for learning robust word vectors. Furthermore,
another prominent limitation of current sampling methodologies is their context-free
nature. They usually do not exploit local relevancies of words in the embedding space.
We hypothesize that insufficient discrimination arising from such context-free compar-
isons result in ineffective usages of the budget, harming the learning process.

We develop a novel sampling methodology that simultaneously addresses both lim-
itations of the word vector sampling. Our technique first constructs global target vari-
ables acting as steady points during the optimization. Grounding on these variables,
we globally constrain the sampling sequences, and eliminate inordinate ones that is ac-
countable for large gaps in the approximation. Given these reliable sequences, the sec-
ond aforementioned limitation is addressed by first discovering that the word concrete-
ness provides a weak form of local contextual relevance in the word embedding prob-
lem. We formulate and construct a sentence concreteness model, which is injected to
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the process by adaptively updating the sampling distributions. Unlike context-free sam-
pling, our sampling distributions considers local contextual relevance while accounting
for practical efficiency.

The potential merits of Constrain Global Sample Local (CGSL) are empirically vali-
dated on a large suite of word similarity tasks. Under varying amount of data, our em-
beddings are found to outperform the baselines on the dataset basis, and yield very com-
petitive results on the dataset average. A further quantitative analysis on our sampler
reveals how it effectively reduces the sampling variance which is an essential trait for
obtaining robust embeddings. On top of that, we demonstrate locally relevant sampling
leads to the faster convergence to the true, gold standard, embeddings.

6.3. CONSTRAIN GLOBAL SAMPLE LOCAL METHOD
In this section, we first introduce the sampling approximation gap problem, and then
propose our novel sampling algorithm.

6.3.1. SAMPLING APPROXIMATION GAP
Let V be the vocabulary size of a dataset, d the embedding space dimensionality and N
the number of training samples. Let w ,c be discrete word indicators for the context and
target vectors and, similarly, letΦ,Ψ be the context and target embedding matrices that
contain the embedded vectors �w and �c . K denotes the number of negative samples, or
the sampling budget for the sampling distribution. We consider the exponential family
word vector space model [13]:

p(w |c) = exp(�w •�c)�
cn∈V exp(�w • �cn)

(6.1)

where the conditional probability of observing a word w given a context embedding c is
an exponential map. For convenience, we call the function exp(�w • �cn) = Z (w |cn). The
denominator term

�
cn∈V Z (w |cn) = Z (w ) is referred as the partition function, a sum-

mary statistics for the exponential map taking all possible contexts into account. In par-
ticular, note that Z (w ) has to be computed for all words w which is computationally
very intensive. In order to approximate Z (w ), a negative sampling distribution pn(.) is
specified [57]. The approximation takes the following form:

Ẑ (w ) = Ecn∼pn [Z (w |cn)] (6.2)

In practice, the expectation in Eq. 6.2 cannot be computed in closed form for a large set
of the pn distributions. Rather, a sampling budget of K is maintained and few context
words are drawn from the sampling distribution pn(cn) to yield an empirical estimate:

Ẑ (w ) = 1

K

K�
n

Z (w |cn). (6.3)

Although it is feasible to approximate Z (w ) with this quantity, there is no convincing
reason for these approximations to be accurate, and it is questionable whether it does
sufficiently well for many words in the vocabulary. In Figure 6.1, we demonstrate Ẑ (w )
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for all w words in the vocabulary. Observe that the approximation easily undershoots or
overshoots the true Z (w ), it is admissible to claim that overshoots get even more critical
as the sampling budget gets significantly low. We refer to this gap as the approximation
gap, a quantity that needs to be maintained in order to guarantee an accurate estimate
of the partition function.

6.3.2. GLOBAL BANDS FOR APPROXIMATION GAP
To maintain the approximation gap, we are required to exploit the structure of the parti-
tion function. Empirically, we verify that in many contexts, Z (w |cn) concentrate around
particular values [145]. The distribution for the random variable Z (w |cn) yields a Gaus-
sian distribution with a mean Z (w ) and a finite variance. As the variance for all words
are bounded, one can safely target for shrinking this gap during the sampling step. How-
ever, since we are prohibited to access Z (w ) as the target variable directly due to the
computational reasons, we instead introduce a global target variable, that is a surrogate
quantity to it:

Z̃ (w ) = 1

M

M�
n

Z (w |cn) (6.4)

with the condition that M � K . This is a more reliable estimate of Z (w ) with a boosted
sampling budget where M is a free parameter that can be arbitrarily tuned to increase
the reliability of the estimate.

The reader here must note that using the intermediate statistic Z̃ (w ) is cheaper from
doing naive sampling with a budget of M . Thus, the contribution here is due to the fact
that Z̃ (w ) is only updated globally, while Ẑ (w ) is locally updated per training sample.
Computing Z̃ (w ) is not a bottleneck for our approach due to this lazy global update.

In order to see how the lazy surrogate Z̃ (w ) in Eq. 6.4 is a more reliable estimate for
Z (w ), we can resort to the standard argumentation of the Law of Large Numbers [146]
stating the following inequality:

|Z (w )− Z̃ (w )|≤ |Z (w )− Ẑ (w )|

which holds with high probability. Armed with this sampling argument, we can then use
Z̃ (w ) and instead perform guidances to the sampling to target for closing the gap |Z̃ (w )−
Ẑ (w )| using our target variables. There are two key benefits with this strategy. First, we
are still able to use the same K -budget sampling, on sentence basis, to generate negative
samples with a smaller gap, and thus avoid the full computation of Z (w ). Secondly, and
more importantly, we can interpret shrinking the gap |Z̃ (w )− Ẑ (w )| as doing variance

reduction [147] which variance of the estimator is E
�

(Z̃ (w )− Ẑ (w ))2
�

for the negative

sampling. This feature is expected to give more reliable results during optimizing the
word vectors.

6.3.3. LOCAL CONTEXT RELEVANCE VIA CONCRETENESS
In the previous subsection, we addressed the approximation gap by introducing global
target variables and aiming to shrink the estimation gap. This methodology prevents
large overshoots in the sampling by eliminating inordinate sequences. Since a global
constraint over the word space is imposed, we reassure an amount of global consistency
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Figure 6.2: Histograms for the concreteness difference of a word with its local neighbours (shown with blue
tones) and random words (shown with red tones). Observe that densities are separable, and word concreteness
provides strong contextual relevance. The relevance is especially greater for nouns and verbs.

during the sampling. Nevertheless most of the natural languages are characterized by a
vast number of words, and the sampling distributions constructed from the vocabulary
has a heavy tail. In this circumstance, random sampling disregards the contextual de-
pendencies between words. In a context free setting with a large number of words, there
are vast possibilities for sampling a negative word but no binding factors for obtaining
sufficient discrimination. In [148], similar difficulties were discussed and the problem is
identified as the zero gradient problem, suggesting that contextually inappropriate up-
dates are uninformative for learning and waste the sampling budget in upcoming train-
ing iterations.

We hypothesize a more appropriate sampling should introduce a form of contextual
dependency by exploiting local word relevancies, to ensure sufficient discrimination. We
want to quantify the contextual relevance of a negative sample in order to avoid afore-
mentioned problems and incorporate the context back to the sampler. For this reason,
we utilize the concept of word concreteness, which is defined as the degree to which the
concept denoted by a word refers to a perceptible entity [149]. However, we need to check
whether we can associate word concreteness to the local relevance.

In Figure 6.2, we downloaded well-trained large scale GoogleNews word vectors [150],
interpret the word neighbourhood in high dimensional embedding space as its local
context, and measure the difference of concreteness score [151] the word and its neigh-
bouring words. We repeat the analysis for hundreds of random words having four stan-
dard part-of-speech tags, and plot the histogram of concreteness differences. Histograms
obtained for local neighbourhood are drawn in blue tones, and histograms obtained
from a random neighbourhood are drawn in red tones. Observe that the concreteness
difference is much lower for blueish histograms, especially for nouns and verbs in which
the large differences are observed for the context-free sampler.
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Since concreteness of words provides us clues on their local relevance in our frame-
work, the inefficient sampling pairs are those that contrast abstract space words to con-
crete words. It is reasonable to claim that abstract entities such as democracy should be
contrasted to the freedom of speech or citizenship rather than words of physical objects,
and same holds for words referring to physical objects. By using concreteness scores, our
globally constrained but also locally-aware sampler is expected to avoid such insufficient
sampling pairs.

6.3.4. LOCALLY RELEVANT SAMPLING MODEL
We model the concreteness of each word with a Gaussian distribution and obtain the
concreteness of a training sentence Sw using the following:

Δ(Sw ) =
�

c∈Sw

K L
�
N (Δw ,σw )||N (Δc ,σc )

�
(6.5)

where {Δw ,σw } are the concreteness mean and variance of the word w . The sentence
concreteness in Eq. 6.5 is then computed in closed form [152], and used for constructing
the probability p

�
cn |Δ(Sw )

�
. We then construct the novel sampling distribution which

is factorized by this locally-aware density and context-free frequency distribution:

pΔ(cn) ∼ pn(cn)p
�
cn |Δ(Sw )

�

which generates samples locally relevant to the word of interest w . Finally we are ready
to provide the full form of our sampling algorithm. Remember that we had Z̃ (w ) avail-
able for each word w . Given few burn-in negative samples, our sampling addresses the
gap |Z̃ (w )− Ẑ (w )| in a time dependent manner. By τe we denote the Z̃ (w ) which the
sampling sequence should reach at the end of negative sampling process, and let τi de-
notes the initial sampling value Ẑ (w ). Given these initial and final references, we define
a linear band over time:

L (t ) = τi + t (τe −τi )/T

A sampling sequence is valid if it satisfies the enveloping condition:

|Z̃ (w )−L (t )| <ω
Here, the bandwidth ω of the linear function L (t ) is directly determined from the sam-
ple variance of Z̃ (w ), which we denote as V̄[Z (w |cn)]. This is done for each time step
t , and the sampling process terminates when the budget is filled. The pseudo-code of
CGSL algorithm is provided in Algorithm 1.

Although it might be attractive to learn the context-dependent function, such as in
[153], there are certain disadvantages of such a strategy. In fact, it is quite difficult to
know and interpret what the sampling function learns especially when it has heavy tails.
It is also not trivial to set the correct regularization parameters for learning architecture
to enable efficient learning. Our strategy is to circumvent these approaches and stick to
a sampling distribution which is more interpretable.

Computational Complexity. The usual bottleneck of sampling based statistical ap-
proximations is their computational complexity. We aim to retain the computational ad-
vantages of simple sampling techniques. Our CGSL sampler an instance of non i.i.d sam-
pling, fast and achieves a time complexity of O(V M +N K ). The additional overload of
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Algorithm 1: CGSL Sampling Algorithm

1: Input: (w ,c) ∈ X : word-context pairs,
2: K : sampling budget, G : max epoch
3: Output: Ψ̂word embedding matrix
4: Initialize matrix Ψ̂with burn-in iteration.
5: repeat
6: τe ← Z̃ (w ) using Eq. 6.4.
7: ω← V̄[Z (w |cn)]
8: for all (w ,c) ∈C do
9: Apply positive gradient of (w ,c) to Ψ̂.

10: Draw i.i.d budget cn ∼ pn(cn).
τi ← Ẑ (w ) using Eq. 6.3.
L (t ) = τi + t (τe −τi )/T

11: Compute Δ(Sw ) using Eq. 6.5
12: for all t to T do
13: Draw cn from pΔ(cn) if |Z̃ (w )−L (t )| <ω.
14: Update Ẑ (w ).
15: end for
16: Apply negative gradients (w ,cn) to Ψ̂.
17: end for
18: until g >G is tr ue

O(V M) is negligible due to the nature of word embedding problems, where the training
set size is orders of magnitude larger than the vocabulary size in many languages [154].
Thus, the overall complexity is dominated by the term O(N K ). Consequently, our global
update step that computes Eq. 6.4 does not pose a bottleneck and O(V M+N K ) ≈O(N K )
holds.

6.4. EXPERIMENTS
Setup. We train our embedding models using the Wikipedia 2017 July snapshot. Our
corpus preprocessing follows the standard state of the art practices for Wikipedia and
the training parameters are set similarly as in [113]. For a fair comparison, same learning

Table 6.1: Mean and standard deviations of most, average and least concrete words of the dataset.

Word MV Rating Word MV Rating
apple 5.0±0 recompile 2.92±1.23
boat 4.93±0.37 surrogate 2.83±1.28
milk 4.92±0.39 sharpness 2.69±1.34
side 3.68±1.33 legalism 1.3±0.76
symbol 3.11±1.37 infinitive 1.27±0.58
clean 3.07±1.41 agnostically 1.19±0.5
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Figure 6.3: Distribution of word concreteness scores.
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Figure 6.4: Word similarity performances of our approach on various datasets. We plot the learning curves;
x-axis is the number of training bytes for the embeddings and y-axis is the correlation of embedding scores to
the human judgements.
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rates are applied for samplers with linear decays. Stochastic Gradient Descent is used
for applying the gradient updates. We refer the negative sampling which acts as the state
of the art baseline sampler as NS [99]. Also CG as the sampler which only uses Global
Constraints, and finally CGSL as our approach.

We use the concreteness database [151] in which 40k English words have concrete-
ness ratings from 1.0 (indicating fully abstract), to 5.0 (indicating fully concrete) col-
lected from 30 human annotators with their standard deviations. In Figure 6.3, we il-
lustrate the distribution of concreteness scores in the dataset. Table 6.1 shows examples
of most, average and least concrete words of the dataset.

6.4.1. PERFORMANCE ON WORD SIMILARITY

As the off-the-shelf standard extrinsic word vector evaluation, we follow the standards of
[96], but use a test suite by using the following datasets: MC30 [116], MEN [117], MT287
[118], MT771 [119], WordSim-353 [123]. We then vary the number of bytes of the training
corpus, and measure the Spearman Correlation Coefficient after repeating the experi-
ments for multiple times. The results are shown in Figure 6.4 and 6.6. For a collection of
datasets such as MEN, MT771, WSR, WSS; we observe it takes sampler some amount of
preliminary data to reach a satisfactory performance. This is to be expected since when
the amount of training bytes is not significantly greater than the vocabulary size, it can be
characterized as the unconfident regime for the non-standard samplers. As the amount
of training data keeps increasing, embedding instances trained with CGSL approach out-
performs its baselines with perceivable performance gains and on the dataset average.
We also analysed bandwidth size’s influence, where observations showed there is a lin-
ear relation between the number of rejected sampling sequences due to the global con-
straint and the specified bandwidth coefficient. Nevertheless, we found out that word
similarity performances were insensitive to the specification of the bandwidth.

6.4.2. VARIANCE REDUCTION

After training the word vectors, we draw the same number of samples from the sampling
distribution pn(cn) and calculate its Ẑ (w ) approximation for all words in the vocabu-
lary. After repeating this experiment multiple times, we report the sampling variances
in Figure 6.5. Observe that variances are much lower, especially for the infrequent rare
words w , for our case suggesting that addressing the approximation gap is more critical
for these words.

In terms of the bias-variance tradeoff, our sampler reduces the variance of the es-
timate, at the cost of a small increase in bias. In fact, this is precisely what we aim for
large text corpora learning as word embeddings samplers are already possesses bias to
some extend [155]. Furthermore, we noticed that the word similarity results are not very
sensitive to the specification of the M parameter. We plot this phenomenon in Figure
6.4 where M = 0 corresponds removing our global constraints. Since the performance
is stable with varying values for M , the choice usually depends on the computational
resources.

From an optimization point of view, variance reduction for a word embedding sam-
pler is advantageous. When embeddings are optimized using online gradient techniques,
learning rate specification is an empirically driven process that requires extensive ex-
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Figure 6.5: Sampler variances of NS and LPG.

Figure 6.6: Effect of M to the performance.

perimentation. Techniques such as dynamic learning rates on words [156], or adop-
tion of memory based gradient optimizers [157] explicitly address this difficulty. On the
other hand, variance reduction implicitly maintains it, and motivates training with larger
learning rates, due to more reliable updates of the CGSL.

6.4.3. CONVERGENCE RATES
In subsection 6.4.1, we measured how our embeddings correlate to the human judge-
ments. Another desideratum for embeddings is how fast they are learned. Here, we
quantitatively measure the convergence rate by first training embeddings long epochs
on the corpus and obtain embedding matrixΨ that is assumed to be the gold standard,
true embedding. Then we train embeddings but similarly to the settings in [158] apply
early-stopping to measure which methods can reach the gold standard solution faster
despite seeing the same amount of reduced training set.

We use the matrix discrepancy
���Ψ− Ψ̂

��� to measure the rate of convergence. As the

underlying norm of convergence for word embeddings is not known in advance, we re-
port the quantitative results under multiple norms; �1, �2, �F and �F (Frobenius norm).
Since these exponential embedding models are usually evaluated using cosine similarity
metric, we also report mean cosine similarity between rows of the estimated matrix and
the true matrix. The results are presented in Figure 6.7.

Observe how controlled sampling achieves faster convergence to the true Ψ under
�1 and �F and noticeably fast under �2 norm. Since concreteness based sampling distri-
bution draws samples relatively closer to the positive pair, we can interpret that negative
updates possess more continuity in the embedding space in contrast to the random vec-
tor updates in the whole embedding space. These structured updates consequently have
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Figure 6.7: Convergence rates to the true Ψ matrix. We measure the error by a) �1 norm b) �2 norm c) �F
Frobenius Norm d) average cosine similarity between rows of true and estimated Ψ̂matrices. CGSL instances
reach gold standard embeddings faster.

a noticeably positive effect on the rate of convergence. Along with �p convergences, the
results are further supplemented by Figure 6.7d, which is an invariant measure to the
vector lengths, CGSL vectors point to the similar directions with true matrices hinting
the learning effectiveness of the sampler.

6.5. CONCLUSIONS AND DISCUSSIONS
We have now investigated the limitations of standard low budget samplers, and over-
came the unreliable approximations by introducing our global target variables acting as
steady points during the optimization. These constraints eliminated inordinate sam-
pling sequences for the word embedding problem. Furthermore, in order to tackle the
context-free nature of the sampling, we introduced a local relevancy strategy based on
word concreteness which allows us to obtain more representative sampling distribu-
tions. Along with reasonable practical performance on word similarity tasks, our novel
sampling approach enjoyed variance reduced updates, with promising convergence rates.

For the future work, it is a promising direction to explore how global parameter M
can be automatically adjusted during the optimization. Developing an automatic mech-
anism can provide further convenience for using CGSL. Besides, availability of concrete-
ness datasets are also increasing in other languages such as German [159] and Dutch
[160]. This motivates flexible extensions to the multilingual settings where word con-
creteness between languages can provide further information to the training. Finally,
since we bounded our sampling sequences using a linear class of functions for ease, it is
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also particularly interesting to explore more richer and sophisticated class of functions
for characterizing the valid sequences.



7
MARKOV RANDOM SUITABILITY

FIELD FOR WIND FARM PLANNING

7.1. ABSTRACT
Many countries aim to integrate a substantial amount of wind energy in the near fu-
ture. This requires meticulous planning, which is challenging due to the uncertainty in
wind profiles. In this cghapter, we propose a novel framework to discover and investi-
gate those geographic areas that are suited for building wind farms. We combine the
key indicators of wind farm investment using fuzzy sets, and employ multiple-criteria
decision analysis to obtain a coarse wind farm suitability value. We further demonstrate
how this suitability value can be refined by a Markov Random Field (MRF) that takes the
dependencies between adjacent areas into account. As a proof of concept, we take wind
farm planning in Turkey and demonstrate that our MRF modeling can accurately find
promising areas and the suitability level of investment there.
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7.2. INTRODUCTION
Over the last decades, our society has developed a more comprehensive understanding
of environmentally-friendly approaches to energy generation, urging us to focus more
on sustainable energy sources, such as wind energy. As a result, the integration of renew-
able energy goals into their long-term policies has been the priority of many countries.
One example is the policy by the Ministry of Energy and Natural Resources of the Turkish
Republic [161], which aims to attain a wind farm capacity of 20 GW by 2023.

A large-scale integration of wind farms will challenge the main power grid, which
once was built without renewables. Thus, power grid operators must carefully analyze
the expansion scenarios for wind farms and plan the necessary improvements to ensure
that the electric power grid will not succumb to a large reflex to renewable energy.

In recent years, many studies have been conducted to evaluate potential geographic
areas for wind farms [162], [163]. A subset of these studies considers only wind speed
measurements as a basis for the assessment [163], [164], ignoring any economic or en-
vironmental restrictions for wind farms. Some studies propose including a list of envi-
ronmental criteria for a more realistic integration [165], [166], [167], but the accuracy of
these criteria-based methods depends directly on the input data, such as the wind power
characteristics, which are hard to determine exactly. Inaccuracies in input parameters
can propagate easily leading to imprecise modeling. Moreover, the assessments are usu-
ally carried out for each area independently, ignoring any neighboring relations, while
the surrounding geographic factors and investments, play a role in deciding on the in-
vestment in a wind farm [168]. Motivated by such reasons, we have developed a novel
spatially-aware model for the wind farm suitability of areas.

The remainder of this chapter is organized as follows. In Section 7.3, we construct
a grid-based model on the Cartesian plane for representing a geographic area. Sub-
sequently, we model the indicators of wind farms via fuzzy sets and obtain an initial
suitability value using multiple-criteria decision analysis. In Section 7.4, we explain our
Markov Random Field (MRF) approach for providing a refined spatially-aware suitability
value for wind farms. To the best of our knowledge, we are the first to combine the fuzzy
logic and multiple-criteria decision analysis with MRF to find promising areas for wind
farms. Finally, a comprehensive case study is provided in Section 7.5. The results of the
case study suggest that our wind farm suitability methodology provides a fine-grained
information for a wind farm investment.

7.3. MODELING WIND FARM SUITABILITY
In this section, we adopt a grid-based reconstruction of geographic areas and quantify
the key criteria involved in wind farm investment.

7.3.1. A GRID-BASED MODEL ON THE TWO-DIMENSIONAL CARTESIAN PLANE

We propose to use a two-dimensional grid-based model of equally-sized rectangles to
represent the spherical geographic area under consideration. We assume that we are
given a set N of points k in spherical-world coordinates, composed of latitude φ(k) and
longitude λ(k) values. Each k ∈ N of these spherical points is projected onto a two-
dimensional plane using a linear mapping, where the horizontal X (k) coordinate is ob-
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tained using the degree of longitude λ(k) of k and the vertical Y (k) coordinate of point
k can be computed based on the degree of the latitude φ(k):

X (k)−1 =λ(k)+βX

αX
(7.1)

Y (k)−1 =φ(k)+βY

αY
(7.2)

whereαX (αY ) is the scaling between the degree of longitude (latitude) and the horizon-
tal (vertical) coordinate, and βX (βY ) defines the value of longitude (latitude) of the first
coordinate on the two-dimensional plane1.

7.3.2. QUANTIFYING THE ELEMENTARY CRITERIA FOR WIND FARMS
The decision to invest in a wind farm at a certain location depends on two main cri-
teria: wind power potential and investment disincentives. The wind power generative
potential of an area can be captured by indicators such as average wind speed, wind
power density, and the capacity factor of a prospective wind turbine. On the other hand,
disincentive indicators can include high values of land cost and altitude levels, and the
proximity to urban areas.

Ideally, an investor should review all M indicators {r1(k), . . . ,rM (k)} before investing
in a wind farm at an area k. However, in practice, this review process is often not per-
formed due to the difficulty in dealing with the uncertainty, vagueness, or the lack of
information in the practical decision process. In this chapter, we model those indicators
of a wind farm investment using fuzzy sets [170], which enables us to explicitly deal with
uncertainty. Different than the Boolean logic, in which the truth value can only be the
integer values 0 or 1, fuzzy logic can handle the concept of partial truth during a decision
process.

We use increasing fuzzy function F
�
ri (k)

�
in (7.3) and decreasing fuzzy function F

�
ri (k)

�

in (7.4) to evaluate the satisfaction degree of each indicator ri (k) for a wind farm in area
k. The increasing fuzzy function represents the incentive indicators, whereas the de-
creasing fuzzy function represents the disincentive indicators. The resulting fuzzy mem-
bership degrees take values between 0 and 1 corresponding to the unsatisfactory and
full-satisfactory evaluations of an area k, respectively.

F
�
ri (k)

�=





0 if ri (k) < qi ,
ri (k)−qi

pi−qi
if qi ≤ ri (k) ≤ pi ,

1 if ri (k) > pi ,

(7.3)

F
�
ri (k)

�=





1 if ri (k) < pi ,
ri (k)−qi

pi−qi
if pi ≤ ri (k) ≤ qi ,

0 if ri (k) > qi ,

(7.4)

where for each indicator ri , qi and pi correspond to the thresholds of unsatisfactory and
full-satisfactory evaluations, respectively.

1Although the linear projection is not an accurate representation of the Earth’s surface, the projection has the
advantage of being geometrically simple and therefore is widely used [169].
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7.3.3. MULTIPLE-CRITERIA DECISION ANALYSIS OF WIND FARMS
Since we have to deal and optimize for multiple fuzzy parameters, we focus on multiple-
criteria decision analysis in this section.

The perspective of an investor is important when assessing the criteria for a wind
farm. For instance, an investor could consider a worst-case scenario of the related in-
dicators or could, as the other extreme, consider a best-case scenario. Following [165],
[166], we employ fuzzy logic aggregation operators to allow for variability in perspective.
We use the and ∧ and the or ∨ aggregation operators to map two extreme cases of an
investor’s stance on multiple-criteria decisions: The and operator of the fuzzy member-
ship degrees requires the satisfaction of all desired criteria, in other words, a conservative
perspective when evaluating the satisfaction degrees of the related indicator:

∧(k) = min
1≤i≤M

F
�
ri (k)

�
(7.5)

The or operator ∨ is appropriate to model a more optimistic or lenient perspective.
The implementation of the or operator in (7.6) passes over the less satisfactory indica-
tors:

∨(k) = max
1≤i≤M

F
�
ri (k)

�
(7.6)

Lastly, to model the perspective of an investor in between those two extreme cases,
we can use a weighted mean operator µ in (7.7):

µ(k) =
M�

i=1
wi F

�
ri (k)

�
(7.7)

where the ultimate decision is the convex combination of the satisfaction degrees of the
decision indicators, such that

�
i wi = 1.

By applying this aggregation operator to each rectangle k ∈N , we obtain an elemen-
tary suitability value ẑk ∈ [0,1] of an individual area bounded by that rectangle k. How-
ever, such elementary suitability values are not fully representative yet, due to reasons
mentioned in the next section, where we describe a random field approach to model a
more fine-grained spatially-aware suitability.

7.4. SPATIAL SUITABILITY MODELING WITH

MARKOV RANDOM FIELD
The suitability values ẑk calculated in the previous section provide an initial suitability
estimate for a rectangle k in the grid-based model. However, we have to take the fol-
lowing into account: Firstly, input parameters to calculate an elementary suitability can
exhibit significant measurement noise and the parameters related to wind energy poten-
tial can deviate due to inaccurate measuring instruments [171]. Secondly, the proposed
elementary suitability value may not be unique, since different degrees of freedom exist
in the specification of the decision making process. Lastly, the construction of a grid-
based model requires the projection of a geolocation onto the Cartesian plane, intro-
ducing quantification errors that must be dealt with. Motivated by these reasons, in this
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Figure 7.1: Different Markov blanket neighborhoods for the center node. Black links indicate a 4-node neigh-
borhood, and black + red links represent an 8-node neighborhood.

Figure 7.2: An illustration of a Markov Random Field over the grid-based model of Turkey.

section, we refine the computed elementary suitability values ẑk by modeling the true
suitability values in a MRF.

We first assume that there exist some underlying unobserved suitability values x =
{x1, x2, ..., xk , ..., xN }, but we observe a noisy version of them: ẑ = {ẑ1, ẑ2, ..., ẑk , ..., ẑN }.
Thus, the correlation among xk and ẑk is expected to be high. Let B(k) be the Markov
blanket of a node k.2 Different Markov blanket functions are shown in Figure 7.1. Then,
if we assume the conditional independence of xk , given the suitability values of the
neighboring nodes B(k), xk can take a value independently of the other nodes: N \
B(k).

For our scenario, we adopt a 4-node neighborhood, and denote the Markov blanket
of k as B4(k). This defines a Markov Random Field over our grid-based model. Figure
7.2 illustrates a Markov Random Field modeling for Turkey. Horizontal links are pairwise
interactions between nodes and vertical links represent the terms that force similarity
between observed elementary and unknown spatially-aware suitability values.

Due to the conditional independence properties of the Markov blanket, we can write
the likelihood p(ẑ |x) as

p(ẑ |x) =
N�

k=1

S�

j=1
p(ẑk |xk = j )� j (xk ) (7.8)

where p(.) is the probability function, S is the number of discrete suitability states a node
can take, and �(xk ) is the indicator vector, where all components are zero except for
component xk , which is one.

To measure the suitability state compatibility between neighboring nodes in the graph,
we specify a prior, data-independent, rule. Deciding this measure of compatibility for all

2Rectangle k refers to an element of the grid-based model on the two-dimensional Cartesian plane, whereas
node k refers to the corresponding element of the Markovian graph over our grid-based model (See Figure
7.2).
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links of the graph defines the marginal probability p(x). For this purpose, we use the
Ising model [172], which penalizes the state incompatibility between different nodes:

p(x) =
N�

k=1

�

s∈B4(xk )
ψ(xk , xs ) (7.9)

where potentialψ encourages smoother solutions by forcing xs and xk to be in the same
suitability state configuration:

ψ(xk , xs ) =
γexp

�
−
��xk −xs

��
�

G
(7.10)

where G is the normalization term that sums over all possible state configurations of
{k, s} ensuring that ψ(xk , xs ) probabilities sum to one, and γ is the smoothness factor.
The smoothness factor controls the strength of the imposed prior. For instance, γ = 0
corresponds to using no prior at all.

Adopting the pairwise interaction model along with Ising Priors, our goal is to maxi-
mize the posterior of p(x |ẑ), which can be computed with the help of Bayes theorem:

p(x |ẑ) = p(ẑ |x)p(x)

p(ẑ)
(7.11)

Since we maximize over x , we ignore the term p(ẑ) and write the Maximum A Poste-
riori (MAP) estimate xMAP of x as:

xMAP = argmax
x

p(ẑ |x)p(x) (7.12)

Such a spatial modeling through MRF combines the local elementary suitability es-
timates ˆ̂z to achieve globally-consistent suitability values x .

To derive MAP suitability estimates, (7.12) has to be maximized: a brute-force search
is out of the question even for medium-sized problems, where N is in the order of hun-
dreds, since S discrete suitability states lead to SN different configurations. Thus, for the
solution of the multi-state case (S > 2), an exact MAP solution is often not applicable.3

Then, we can resort to an Iterated Conditional Modes (ICM) algorithm for finding the
MAP solution. ICM uses a greedy strategy to find the local maximum of (7.12). The idea
can be stated as follows: the algorithm starts with an initial estimate of the suitability
values, and then for each node k ∈ N , the state configuration that gives the highest in-
crease in the posterior probability is chosen to be the current state. This suitability-state-
update procedure is continued until there are no changes in the state configuration of
the nodes. This convergence is guaranteed by the ICM algorithm [175]. Even for prob-
lems with many states and nodes, the convergence of the ICM algorithm is fast, since the
convergence rate is linear in S and N .

3Although performing maximization over the general random fields is shown to be NP-Hard [173], in the binary
problem case, i.e., when S = 2, it was shown that maximization in (7.12) can be treated as a combinatorial
maximum-flow minimum-cut problem on a graph [174].
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Figure 7.3: The membership functions of the selected indicators of wind farms.
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Figure 7.4: The CDFs of the membership degrees of selected indicators in Turkey.

7.5. CASE STUDY
In this section, we present a case study to demonstrate the merits of our framework. We
obtained country-wide wind data of Turkey. Additionally, we collected the geographic
locations in Turkey where licenses for wind farm construction are held by an investor.
More details on our data collection procedure can be found in [176].

7.5.1. A GRID-BASED MODEL OF TURKEY
Based on our wind measurement data set, each rectangle in the grid-based model cor-
responds to a 6 km × 6 km area. As the length of a degree of latitude does not change
(approximately 111.2 km); the scaling factorαY of vertical coordinates to a degree of lat-
itude in (7.2) is taken as 6

111.2 � 0.053. On the other hand, the length lλ(φ�) of a degree of
a longitude depends on its degree of a latitude φ� and can be approximated as

lλ(φ�) = cos(φ�)×111.3 km. (7.13)
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Figure 7.5: The CDFs of elementary suitability values in Turkey.

Using (7.13), around the southern points of Turkey at 36◦, the length of a degree of
a longitude is approximately 90 km. For ease of demonstration, in this study, we set
the length of a degree of a longitude at 90 km, thus, the scaling factor αX of horizontal
coordinates to a degree of longitude in (7.1) is taken as 6

90 � 0.066. For other purposes, it
is possible to decrease the projection error by choosing variable lengths of a degree of a
longitude.

The degrees of the latitude and longitude at the first coordinate on the two dimen-
sional plane are defined according to the position of the geographic area. To fully enclose
Turkey in our projection, we choose 43◦ latitude and 25◦ longitude as the first coordinate
(1,1). The final equations to construct the grid-based model onto a two-dimensional
Cartesian plane are given in (7.14) and (7.15).

X (k)−1 =λ(k)−25◦

0.066
(7.14)

Y (k)−1 =43◦ −φ(k)

0.053
(7.15)

7.5.2. QUANTIFYING THE WIND FARM POTENTIAL IN TURKEY

Key indicators [177] to capture the wind energy potential at an area k are the average
wind speed ν(k), the wind power density ρ(k), and the capacity factor η(k) of the prob-
able wind turbine at that area. Due to the positive correlation between the promising
wind energy potential and the investment criteria for wind farms, the increasing fuzzy
function in (7.3) is used to calculate corresponding satisfaction degrees of those indica-
tors.

The landscape of Turkey contains heterogeneously distributed mountainous regions
with varying altitudes. High altitude regions and high slope lands are undesirable for
establishing wind farms. Thus, we use the altitude α(k) of a geographic area k as a dis-
incentive indicator for wind farms. Due to the negative correlation between the altitude
and the investment criteria for wind farms, the decreasing fuzzy function in (7.4) is used.

The resulting membership functions of selected indicators are shown in Figure 7.3.
The full-satisfactory and unsatisfactory thresholds of indicators are determined based
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(a) Tekirdağ (b) Çanakkale (c) Muş

Figure 7.6: Local patches extracted from various regions in Turkey. Patches in the first and second rows cor-
respond to the the elementary and the spatially-aware suitability map for wind farms obtained by our MRF
modeling, respectively. The dark blue coloured rectangles in (a) and (b) have zero suitability values which are
outside of Turkey.

on related work [167], [176].
Next, for each area k, we calculate the membership degrees of the selected indicators

for wind farms. The Cumulative Distribution Functions (CDF) corresponding to all areas
in Turkey are shown in Figure 7.4. For each indicator, approximately 15% of all areas have
0 membership values, corresponding to the unsatisfactory evaluations for wind farms.

Finally, to represent the preference of an investor for the multiple-criteria decision,
we use the three aggregation operators presented in Section 7.3.3. In the weighted mean
operator (7.7), each of the 4 indicators is given an equal weight of 0.25. Figure 7.5 depicts
the Cumulative Density Functions of the elementary suitability values with different ag-
gregation operators. The and operator represents the conservative evaluation: 35% of
the areas in Turkey have the minimum (0) elementary suitability value, whereas the or
operator represents the optimistic evaluation: 25% the areas in Turkey have the maxi-
mum (1) elementary suitability value. On the other hand, the weighted mean operator
represents a smoother evaluation: Almost none of the areas has an extreme {0,1} ele-
mentary suitability value.

7.5.3. SPATIALLY-AWARE SUITABILITY FOR WIND FARMS IN TURKEY
We apply the Markov Random Field described in Section 7.4 to obtain the spatially-aware
suitability values of wind farms in Turkey. Elementary suitability values for wind farms
in Turkey are determined using the weighted mean operator. Our ICM algorithm visits
the nodes sequentially. The number of nodes in the Markovian graph N = 21,983 and
the number of states a node can take is set to S = 256.

Qualitative Results: Figure 7.6 depicts local patches extracted from distinctive re-
gions in Turkey. The rectangles in the grid-based model are colored according to their
suitability value for wind farms. Lighter colors represent higher suitability values. We
observe that the suitability values for wind farms are particularly high in the Çanakkale
region. This Aegean region benefits from the strong south-westerly wind, Lodos. On the
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Figure 7.7: The normalized histogram of the suitability values in all geographic areas in Turkey. The red dashed
line (x = 0.42) corresponds to the mean value of the spatially-aware suitability values of all geographic areas in
Turkey.

other hand, the Muş region has lower suitability values as a consequence of its relatively
high altitude and continental climate.

The spatially-aware suitability values for wind farms in the second row of Figure 7.6
include not only the individual characteristics of a specific area, but also its neighboring
areas. Thus, the suitability map by MRF seems more smooth and more globally con-
sistent. As an example, even though an area surrounded by disincentives (such as high
mountains) can have higher values of elementary suitability, its spatially-aware suitabil-
ity value could be lowered due to the neighboring disincentives (See Figure 7.6 (c)).

Quantitative Results: To investigate the practicability of the proposed spatially-aware
suitability values for wind farms, we investigate the suitability values of licensed wind
farm locations in Turkey. Figures 7.7 and 7.8 depict the histograms of the suitability val-
ues in all geographic areas and in the licensed areas for wind farms in Turkey, respec-
tively. The spatially-aware suitability value distribution for licensed wind farm locations
in Figure 7.8 follows an increasing behavior. In particular, most of the licensed wind farm
locations have high suitability values. However, there are few regions where the suitabil-
ity values are extraordinarily small. The calculated suitability values are insufficient for
a full explanation of the license acquisition behavior in those regions. These might be
overcome by augmenting more socio-economic indicators in the suitability analysis.

Next, we compare the elementary and spatially-aware suitability values of the li-
censed geographic locations of wind farms to analyze whether a spatially-aware suitabil-
ity modeling with MRF captures additional clues about the investing behavior. Using all
the regions, we first compute the expected E[x] suitability of all areas. The expected E[x]
suitability of Turkey, the vertical dashed-red line in Figure 7.7, corresponds to the suit-
ability for a wind farm given that an investor made a random choice for a geographic
area.

Subsequently, we calculate the tail probability FT in (7.16) that is the license acqui-
sition event of an area whose suitability is smaller than the expected E[x] suitability. We
hypothesize that investors have access to a diverse set of common and privileged sources
of information, such that their license acquisition behavior is a measure of true suitabil-
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Figure 7.8: The normalized histogram of the suitability values in the licensed areas for wind farms in Turkey.

ity and they make a better decision than a random choice for an area for wind farms.
Thus, we expect a lower value of tail probability FT in the licensed geographic locations
of wind farms if we can better capture the true suitability values using MRF.

FT = p(xl < E[x]) (7.16)

where xl is the suitability value of a licensed area.
The tail probabilities FT in (7.16) are calculated as 0.11 and 0.08 in elementary and

spatially-aware suitability models for the licensed geographic locations of wind farms.
Thus, the suitability model with MRF decreases the tail probability more than 12% com-
pared to an elementary suitability model for wind farms in Turkey. In addition to the
reasons in Section 7.4, i.e., decrease in measurement noise and quantification errors,
this decrease in the tail probability can be further explained by the spatial dependence
of wind characteristics and warm farm investments. Investors could have a tendency to
acquire a license of a region where the neighboring areas are already licensed and have
a high suitability value. As a result, we can conclude that our spatially-aware modeling
can help to estimate the effects of the unknown socio-economic factors on the wind farm
suitability and investment decision process.

7.6. CONCLUSION
In this paper, we have proposed a framework to calculate the suitability of a geographic
area for wind farms. Given the wind energy potential and the disincentive indicators
of wind farms, initial suitability values for wind farms have been formed via fuzzy logic
and multiple-criteria decision analysis. Subsequently, we refined those initial suitability
values by a Markov Random Field model that can include the effects of the spatial rela-
tions on the wind farm suitability. Our results from a case study in Turkey show that such
a spatially-aware modeling can estimate the suitability of a geographical area for wind
farms accurately.
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CONCLUSION AND DISCUSSIONS

This thesis proposes novel word embedding techniques. In this section, we summarize
our contributions, discuss the potentials and limitations, and provide promising future
extensions of our solutions.

Research Question 2 addressed the limited data availability issue for training word
embeddings. We developed a regularized model that penalized the discrepancy between
target and context embeddings. Our approach obtained a more symmetric powered de-
composition than Skip Gram. Recently, [178] suggested that these context and target
matrices are noisy copies of each other. This point of view gives another interpretation
of our method. Our discrepancy regularization term might be interpreted as a noise
reduction. This view is supported by our sensitivity analysis where we saw that when
training samples are randomly dropped out, the regularized versions are less affected.

In Research Question 1, our hypothesis was that we can automatically distinguish
different word senses from the given context. For this purpose, we derived a new em-
bedding model with a novel mixture-based objective function to take polysemy into ac-
count and is able to distinguish different senses of words automatically. We were able to
achieve better performance on word similarity datasets, such as the SCWS dataset where
many query pairs consist of polysemous words. Consequently, polysemy relations can
be automatically discovered while retaining the speed of a neural word embedding ar-
chitecture. This preserves the scalability of our embedding model and enables future
extensions to large datasets.

Fully addressing the polysemy accurately with zero supervision might, however, be
problematic, certainly, when there are many polysemous words (e.g. Semitic languages).
Further work in polysemy modelling should seek whether it is possible to relax the zero
supervision assumption and include a tolerable amount of expert annotation. We be-
lieve that this would be the direction for a more robust and generalizable modelling for
the polysemy phenomenon.

In Research Question 3, we investigated a methodology for fusing the lexical sources
with varying structure in order to specialize embeddings for the semantics. Our method
first highlighted the weakness of Distributional Hypothesis when specializing to the se-
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mantic structure of the sentences and then introduced soft and hard constraints for mix-
ing data sources of different informativeness and data availability. Finally, a refining step
of bidirectional constraint flows between light and heavy sets increased the overall reli-
ability of our light constraints, and increased the number of heavy constraints.

Our experimental results showed that semantic specialized vectors achieved much
higher scores on almost all word similarity tasks. Perhaps more importantly, leveraging
different informativeness of semantic sources yielded a much more stable embedding
model in which word neighbours do not change arbitrarily when varying training in-
stances. This suggests that it is difficult for traditional embedding approaches to handle
the syntactic information together with semantic information in the sentences automat-
ically. Hence, we conclude that the syntactic structure in sentences should be treated
separately if we are to obtain stable word embeddings.

In our semantic learning framework, we treated all the dictionary sources equally.
However, a more sophisticated embedding model can automatically optimize the contri-
bution weights of lexical dictionaries for a semantic task at hand. Since the performance
improvements we obtain with our method are quite promising, applying our semantic
embedding model to other languages is a direction we suggest for further investigation,
especially to the languages with richer syntactic structure.

We provided answers to Research Question 2 and Research Question 3 by proposing
models complying with the varying amount of available training data. Although obtain-
ing more and more data is helpful for learning of the word embeddings, additional solu-
tions based on attention mechanism of text can supplement the performance of models
including our semantics specialized embedding model.

In Research Question 4 we do not ground on variations on the training data size, but
rather question the possible improvements on the learning phase of the word embed-
ding model. For this purpose, we sought a principled approach to efficiently optimize
the negative sampling distributions, rather than following the commonly used heuristic
specifications.

Our reformulation of the word embedding objective function expressed the opti-
mization with a physical analogy, where negative sampling acts as a repulsive force. The
optimization of the negative sampling distribution then boiled down to optimizing the
repulsion term where we follow the the Maximum Entropy principle. Following this prin-
ciple for the optimization, we made the least amount of assumptions to find the nega-
tive sampling distribution. Our surrogate quadratically constrained maximum entropy
approach then posed a convex and computationally attractable solution. Since the tech-
nique has linear time complexity with respect to the vocabulary size, it permits scaling
to the large-scale word embedding problems.

The performance gain was most perceivable for word similarity datasets composed
of rare words which are sparsely present in the training set. We conclude that joint op-
timization of the model and negative distribution is indispensable if we are given new
word similarity test datasets. Interestingly, the extra optimization of the negative distri-
bution implied much faster convergence rates as shown by our synthetic experiments,
which was also our intention with.

In Research Question 5, our purpose was to develop a negative sampler for learning
embeddings much faster. We highlighted that the negative sampling approach is a tech-
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nique to approximate the partition function of the exponential word embedding model.
However, unlike maximum likelihood based estimators, the negative sampling approx-
imation is designed for reducing the training time to a manageable amount. Empirical
evidence of our study showed that when the sampling budget is not large, there exists an
approximation gap for the negative sampler, which can be viewed as a quantity that we
can correct. To imitate the intractable but true partition function, we aimed to minimize
this gap online via our guided sampling mechanism. Since we eliminated unfit sampling
candidates generated by the negative sampling quickly during the training, this strategy
resulted in reducing the sampling variance and enabled faster convergence to gold stan-
dard embeddings. Promising future direction in this work is the investigation of richer
function classes to exploit occurring sampling patterns to obtain further speed-ups.

In order to address Research Question 6, we proposed MRF for spatially-aware wind
farm planning and obtained insights about which potential wind farms to use for Turkey.
Assuming that human investors have privileged information on wind farm planning, our
model had better alignment with investor decisions. This agreement shows that not only
the noise in text but also measurement noise in wind energy scenarios can be efficiently
dealt with random field modelling. Since the aforementioned approach is found to be
so effective in this particular application, we also raise the question of whether spatial-
awareness property of MRF can benefit word representations even further. For instance,
word usage changes in neighboring regions can be characterized by such spatial model-
ing in future work.

8.1. FUTURE RESEARCH
In this section, we briefly elaborate and discuss some future directions. For many em-
bedding models achieving state of the art performance, the number of embedding di-
mensions is set to very high. The intrinsic motivation for this design is that we can’t
accurately represent distances arising from nodes having multiple neighbors in a few
dimensional spaces. Higher dimensional spaces give us the essential freedom for repre-
senting such relations. But, do we really need to train models with so many dimensions?
Is it possible to adjust the capacity of the model dynamically? Providing a reasonable
answer to this capacity problem would not only reduce the possible risks of overfitting
but also reduce the amount of time spent on training the embeddings.

In the introduction section, we have touched upon the difficulty of a formal defini-
tion of the meaning of a word, which complicates the evaluation of word embeddings
severely. Consequently, there exist no ground truth data. We advocate that the inherent
subjectivity of word meaning needs to be addressed fundamentally. This is hard since
even humans will disagree based on cultural differences, personal beliefs, and even that
state of mind when annotating.

For one, we believe that the size of the word similarity measurement sets should be
enlarged both in the dimension of the number of words and the number of experts. If we
are to compromise between collecting more query word pairs and asking more annota-
tions from experts, we believe that collecting more expert opinions is going to be rela-
tively more helpful. But we need to take into account the background of the experts to
avoid diversity biases. Hence, it is necessary to include expert profiles into the datasets,
to reassure the objectivity in the end.
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The embedding models in this thesis were primarily developed and tested for the En-
glish language. There are two primary reasons for this. First, there are plenty of publicly
available text data on the internet in English. Second, English enjoys a clear standard-
isation of the language [179]. But, the native speakers of English represent only 5.52%
of the world population [180]. Consequently, we do not leverage the vast information
available in other languages. When we want to obtain word embeddings for other lan-
guages, it turns out that such an extension is not straightforward for many reasons. There
is often much fewer data available. But also, other languages often have a much more
complex grammatical and morphological systems which yield the per-word embedding
representations insufficient.

For example, within the families of both Germanic and Indo-European languages,
there exist some forms, such as cases, injections, and conjugations that are much more
prevalent than in comparable families [181]. And, this grammatical gap increases even
more radically if we look beyond Germanic or Indo-European languages.

One such example is the Malay language, in which derivational morphology is ex-
tensively used. Also, new words can be formed through axes, compounding or redu-
plication. We foresee that naively using these words as a basic unit will pose problems
for current embedding representations. Interestingly, Bojanowski et al. [113] general-
ize the word level embeddings to sub-word representations which is potentially a more
appropriate model for developing embeddings for morphology-rich languages. But, it is
still an open question of how to design grammar and morphology aware priors for these
sub-word representations for obtaining more appropriate embeddings for the language
of interest.

Another future prospect is the exploration and quantification of the reliability of the
training set samples. We believe that this is especially critical for multi-author content
text corpora. For instance, text corpora such as Wikipedia consists of thousands of arti-
cles where virtually any user can sign up and are allowed to create or modify with little
or no constraints. It is, however, impossible to assign reliability levels to this gigantic
amount of text using human annotators. It would be helpful to at least know what is the
minimal human labor limit on the amount of regulation such sources should exhibit.

Alternatively, we may opt for weaker reliability requirement, and associate the re-
liability of a text source with the bias of its author. We may utilize the author profile
and page modification statistics in order to obtain a biased estimate for the articles and
quantify the overall bias of the system. There might be even dependencies between
authors, leading to system-wide biases. For example, one can claim that page modifi-
cations might be well-organized, and collaborative long term efforts of particular user
groups [182]. Given biased sources, and author dependency estimates, bounding the
overall bias changes would provide a useful answer for quantifying the reliability of text
sources.
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APPENDIX A

A.1. VARIATIONAL BAYES FOR LDA
Full posterior of LDA is p(θ, z , w |a,β). In order to obtain model evidence (also called log
marginal likelihood), we first integrate over model parameters θ and sum over hidden
variables z 1

log p(w |a,β) = log
��

z
p(θ, z , w |a,β)dθ (A.1)

We will use a variational distribution q(θ, z |φ,ψ) to match this marginal likelihood.
By introducing this function on nominator and denominator, we obtain:

log p(w |a,β) = log
��

z

q(θ, z |γ,Ω)p(θ, z , w |a,β)

q(θ, z |γ,Ω)
dθ (A.2)

Since all individual factors in the LDA posterior is in exponential family distribu-
tions yielding LDA posterior to be in exponential family also. Also we make the assump-
tion that any chosen q distribution will be also in the exponential family. The resulting
log p(w |a,β) will be a convex function and we can apply Jensen’s inequality:

log p(w |a,β) ≥
��

z
q(θ, z |γ,Ω) log

p(θ, z , w |a,β)

q(θ, z |γ,Ω)
dθ

≥
��

z
q(θ, z |γ,Ω) log p(θ, z , w |a,β)dθ−

��
z

q(θ, z |γ,Ω) log q(θ, z |γ,Ω)dθ (A.3)

We now see that RHS is the lower bound over log p(w |a,β). The first term of RHS is
recognized as the KL Divergence between the q and p distributions. The second term
is recognized as the entropy functional of q function. In the best case, this bound can
be equal to log p(w |a,β) which indicates a perfect variational fit. For simplification, lets

1Since the posterior over documents factorizes and latent variables are document-specific, we carry the deriva-
tion for only one document.
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alias right hand side of the equation as the Lower Bound L(ψ,φ|a,β). If we expand this
lower bound, we will obtain a set factors each having an expectation under q :

L(γ,Ω|a,β) = Eq [log p(θ|a)]+Eq [log p(w |z ,β)]+Eq [log p(z |θ)]+H(q) (A.4)

Now, after learning variational parameters, we can query the probability of a given data
point which we could not do in the original posterior. Finding best variational parame-
ters boils down to the following optimization problem:

(γ∗,Ω∗) =−argmin
γ,Ω

L(γ,Ω|a,β) (A.5)

A.2. LOWER BOUND
The lower bound for the posterior under Variational Bayes can be given as follows:

L(γ,Ω|a,β) = E�log p(θ|α)
�

q� �� �
T1

+E�log p(z|θ)
�

q� �� �
T2

+E�log p(w|z,β)
�

q� �� �
T3

+H[Q]� �� �
T4

(A.6)

where T1 is

K�

k=1

�
ak −1

�
E[logθk ]Q + log

�
Γ(
�

ak )
�
−
�

log
�
Γ(ak )

�
(A.7)

since we assumed Q(θ, z|γ,Ω) =Q(θ|γ)
�N

n=1 Q(zn |Ωn) (Mean Field assumption).
For Q(θ), Dirichlet distribution, we know the log expectation is DiGamma function.

T1 becomes:

T1 =
K�

k=1

�
ak −1

�
�
�(γk )−�(

�

k �
γk � )

�
+ log

�
Γ(
�

ak )
�
−
�

log
�
Γ(ak )

�+cons (A.8)

For the second term,

E
�
log p(z|θ)

�
q = E

�
log

N�
n

K�

k
θ

zk,n

k

�
= E

�
�
n

�

k
zk,n logθk

�

Q

(A.9)

we see that first factor requires expectation on Q(z|φ) and second Q(θ|γ):

=
�
n

�

k
E[zk,n]Q(zn |φn )E[logθk ]Q(θ|γ) (A.10)

Since Q(z|φ) factorizes into words (exchangability), we only have to evaluate w.r.t Q(zn |φn).

T2 =
�
n

�

k
φn,k

�
�(γk )−�(

�

k �
γk � )

�
(A.11)
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For the third term we have

T3 = E[log p(w|z,β)]Q =
�
n

�

k
E[zk,n logβk,wn ]Q =

�
n

�

k
φn,k log(βk,wn ) (A.12)

For the last term of entropy:

H[Q] =−
��

z
q(θ, z|γ,φ) log q(θ, z|γ,φ)dθ (A.13)

The good thing of mean field variational inference here is the factorization of the entropy
distribution:

H
�
Q
�=−

�
q(θ|γ) log q(θ|γ)−

�
z

q(z|φ) log q(z|φ)

=−E�log q(θ|γ)
�

Q −E�log q(z|φ)
�

Q

T4 =−
K�

k=1

�
γk −1

�
�
ψ(γk )−ψ(

�

k �
γk � )

�
− log

�
Γ(
�

k
γk )

�
+
�

k
log

�
Γ(γk )

�−
�
n

�

k
φn,k logφk,n

A.2.1. γ VARIATIONAL UPDATE
Variational problem is:

γ∗ = argmin−L(θ, z|γ,φ) (A.14)

We have contributions from T1, T2, T4:

∂L

∂γk
=
∂
��K

k=1

�
ak −1

��
ψ(γk )−ψ(

�
k � γk � )

��

∂γk
+

∂
��

n
�

k φn,k
�
ψ(γk )−ψ(

�
k � γk � )

��

∂γk
+

∂
�
−�K

k=1

�
γk −1

��
ψ(γk )−ψ(

�
k � γk � )

�− log
�
Γ(
�

k γk )
�+�

k log
�
Γ(γk )

��

∂γk

rewrite into:

∂L

∂γk
=
�

k

�
(ak −1)+

�
n
φk,n − (γk −1)

��
ψ(γk )−ψ(

�

k �
γk � )

�
(A.15)

∂L
∂γk

should be 0 for γk term giving closed form θk update

γk = ak +
�
n
φn,k (A.16)

A.2.2. φ VARIATIONAL UPDATE
Variational problem is:

φ∗ = argmin−L(θ, z|γ,φ) s.t .
�

k
φn,k = 1 (A.17)
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We have contributions from T2, T3, T4. We write the lower bound first:

Lφ =
�
n

�

k

�
ψ(γk )−ψ(

�

k �
γk � )

�
+
�
n

�

k
φk,n log(βk,wn )−

�
n

�

k
φk,n logφk,n +λ

�
�

k
φk,n −1

�

by denoting subtraction of ψ functions as S(ψ) rewrite into:

Lφ =
�
n

�

k
φk,n

�
S(ψ)+ log(βk,wn )− logφk,n

�+λn

�
�

k
φk,n −1

�
(A.18)

Although I omit in the notation, each Lφn contributes |wn | times to the loss. Now, the
gradient of this bound becomes::

∂L

∂φk,n
= �

S(ψ)+ log(βk,wn )− logφk,n −1
�+λn

Since Lφ bound is convex, this equation has closed form solution, we can set LHS to
0 and obtain:

logφk,n = S(ψ)+ log(βk,wn )−1+λn

we exponentiate this and absorb the constants into normalization factor, giving us

φk,n ∼ exp
�
logβk,wn +S(ψ)

�

Running this update and then normalizing the φ.,n will complete the variational update.
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B.1. NEGATIVE SAMPLING OBJECTIVE
The negative sampling objective is given as follows:

J (θ) = Epd

�
lnσ(x ;θ)

�+Ep0
n

�
ln(1−σ(y ;θ))

�
(B.1)

Here, σ is the sigmoid function:

σ(u;θ) = 1

1+exp
�−G(u;θ)

�

where G is the difference between the log likelihood of the sample under the model and
the negative sampling distribution:

G(u;θ) = ln pθm(u)− ln pn(u)

Substitution of σ and G functions gives us the following:

JT (θ) = Epd

�
ln

pθm(x)

pθm(x)+pn(x)

�
+Ep0

n

�
ln

pn(y)

pθm(y)+pn(y)

�

Using logarithmic properties and expectation additivity, we decompose this objective
into:

J (θ, pn) = Epd [ln pθm(x)]−Epd [ln(pθm(x)+pn(x))]

−Ep0
n (y)[ln(pθm(y))+pn(y))+Ep0

n (y)[ln pn(y)]

where fourth term is constant in θ. �
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B.2. SMOOTHING THE DISTRIBUTION
Assume we have a probability mass function, with ordered entries:

p1 ≥ p2 ≥ ... ≥ pn > 0 (B.2)

with
�n

i=1 pi = 1. We smooth PMF p slightly, by modifying two neighbouring probabil-
ities with a small probability Δi . This defines a new PMF p̃, with p̃i = pi −Δi , p̃i+1 =
pi+1+Δi , and all other probabilities remain the same. The entropy change: H(p̃)−H(p)
can be stated as:

= −(pi −Δi ) log(pi −Δi )− (pi+1 +Δi ) log(pi+1 +Δi )

+pi log pi +pi+1 log pi+1

= −pi (log(pi −Δi )− log pi )−pi+1(log(pi+1 +Δi )− log pi+1)

+Δ1 log(pi −Δi )−Δi log(pi+1 +Δi )

= −pi (log(1− Δi

pi
))−pi+1(log(1+ Δi

pi+1
))

+Δi log(pi (1− Δi

pi
))−Δi log(pi+1(1+ Δi

pi+1
))

The logarithms are of the form log(1+ x) for which the Taylor expansion around x = 0
can be used:

log(1+ x) = 0+x +O(x2) (B.3)

Therefore, the substitution gives:

H(p̃)−H(p) = pi
Δi

pi
−pi+1

Δi

pi+1

+Δi log pi −Δi
Δi

pi
−Δi log pi+1 −Δi

Δi

pi+1
+O(Δ2

i )

= +Δi log pi −Δi log pi+1 +O(Δ2
i )

= Δi log
pi

pi+1
+O(Δ2

i ) > 0 (B.4)

The first two terms cancel, the forth and the sixth are of order O(Δ2
i ), and only the third

and fifth term remain. Because pi > pi+1, this difference between the entropies H(p̃)−
H(p) is larger than 0. �

B.3. POWERING THE DISTRIBUTION
Assuming we have a probability mass function, as defined in Equation (B.2). We define
a power λ, 0 <λ< 1, and rescale the PMF:

p̃i =
pλ

i�
j pλ

j

(B.5)

This new distribution is more smooth when

Δ̂i ≤Δi (B.6)
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where Δi = pi −pi+1 That would mean:

pλ
i −pλ

i+1�
j pλ

j

≤ pi −pi+1

pλ
i −pλ

i+1 ≤ (
�

j
pλ

j )(pi −pi+1) (B.7)

pλ
i −pλ

i+1 ≤ C (pi −pi+1) (B.8)

This is actually the definition of Lipschitz continuity [183]. Unfortunately, for f (x) = xλ

where x ∈ [0,1] and 0 < λ < 1 function f is not Lipschitz continuous, because for very
small values of x the derivative goes to infinity.

If we now assume that γ < pi < 1, our purpose is to derive a lower bound γ for pi

such that (B.7) actually holds. First, we define the function f :

f (x) = = xλ x ∈ (0,1), γ<λ< 1

f �(x) = λxλ−1 is always positive

f ��(x) = λ(λ−1)xλ−2 is always negative

in other words: the derivative is always positive, but each derivative becomes smaller
and smaller. Because we have that x > γ, and forh > 0:

f �(γ) > f �(x) = lim
h↓

f (x +h)− f (x)

(x +h)−x
> f (x +h)− f (x)

(x +h)−x
(B.9)

Using f �(x) =λxλ−1, and rewriting gives:

f (x +h)− f (x) <λγλ−1((x +h)−x) (B.10)

Substitution of x +h = pi and x = pi+1 and solving γ reads:

pλ
i −pλ

i+1 <λγλ−1(pi −pi+1) (B.11)

Now we can identify γ using Equation (B.7):

λγλ−1 =
�

j
pλ

j (B.12)

γ =

 1

λ

�

j
pλ

j




1/(λ−1)

(B.13)

Now, γ gamma is lower bounded as such, powering the distribution acts as a smoother.
�





SUMMARY

The digital era floods us with an excessive amount of text data. To make sense of such
data automatically, there is an increasing demand for accurate numerical word repre-
sentations. The complexity of natural languages motivates to represent words with high
dimensional vectors. However, learning in a high dimensional space is challenging when
the amount of training data is noisy and scarce. Additionally, lingual dependencies com-
plicate learning, mostly because computational resources are limited and typically in-
sufficient to account for all possible dependencies. This thesis addresses both challenges
by following a probabilistic machine learning approach to find vectors, word embed-
dings, performing well under aforementioned limitations.

An important finding of this thesis is that by bounding the length of the vector that
represents a word as well as penalizing the discrepancy between vectors representing
different words make a word embedding robust, which is especially beneficial when
noisy and little training data is available. This finding is important because it shows how
current word embedding methods are sensitive to small variations in the training data.
Although, one might conclude from this finding that more data is not necessary any-
more, this thesis does show that training on multiple sources, such as dictionaries and
thesaurus, improves performance. But, each data source should be treated carefully, and
it is important to weigh informative parts of each data source appropriately.

To deal with lingual dependencies, this thesis introduces statistical negative sam-
pling with which the learning objective of a word embedding can be approximated.
There are many degrees of freedom in the approximated learning objective, and this the-
sis argues that current embedding strategies are based on weak heuristics to constrain
these freedoms. Novel and more theoretical founded constraints are being proposed to
constrain the approximations that are based on global statistics and maximum entropy.

Finally, many words in a natural language have multiple meanings, and current word
embeddings do not address this because they are built on a common assumption that
one vector per word representation can capture all word meanings. This thesis shows
that a representation based on multiple vectors per word easily overcomes this limitation
by having different vectors representing the different meanings of a word.

Taken together, this thesis proposes new insights and a more theoretical foundation
for word embeddings which are important to create more powerful models able to deal
with the complexity of natural languages.
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Het digitale tijdperk overlaadt ons met een overmatige hoeveelheid tekstgegevens. Om
dergelijke gegevens automatisch te begrijpen is er een toenemende vraag naar nauwkeu-
rige numerieke woordrepresentaties van documenten. Hierbij is het natuurlijk om een
hoog-dimensionale representatie van woorden te kiezen vanwege de complexiteit van
natuurlijke talen. Echter, het leren in een hoog-dimensionale ruimte is een uitdaging
wanneer de leerset onnauwkeurig en schaars is. Bovendien maken linguïstische afhan-
kelijkheden het leren heel moeilijk. Vooral omdat bronnen beperkt zijn en er meestal
onvoldoende rekening gehouden wordt met alle mogelijke afhankelijkheden. Dit proef-
schrift behandelt beide uitdagingen. Het stelt voor om een probabilistische leermethode
te volgen voor het vinden van de juiste vectoren om woorden te representeren, de woor-
dinbedding, die goed presteert onder de bovengenoemde beperkingen.

Een belangrijke conclusie van dit proefschrift is dat door zowel de lengte van de
woord vectoren, als het verschil tussen woord vectorenen van vergeljkbare woorden te
begrenzen, woorden robuust ingebed kunnen worden. Dit is vooral voordelig wanneer
de leerset onnauwkeurig en schaars is. Deze bevinding is belangrijk omdat het laat zien
hoe de huidige inbeddingsmethoden gevoelig zijn voor kleine variaties in de leerset.
Hoewel je uit deze bevinding zou kunnen concluderen dat meer gegevens niet meer
nodig zijn, laat dit proefschrift zien dat leren aan de hand van meerdere bronnen, zo-
als woordenboeken en thesauri, de prestaties verbetert. Maar elke gegevensbron moet
zorgvuldig worden behandeld en het is belangrijk om de informatieve delen van elke
gegevensbron op de juiste manier te wegen.

Om met linguïstische afhankelijkheden om te gaan, introduceert dit proefschrift ne-
gatieve samplingstrategieën. Daarnaast worden nieuwe en meer theoretisch gefundeerde
beperkingen voor de vele vrijheidsgraden in de leermethoden geïntroduceerd, die geba-
seerd zijn op globale statistieken en maximale entropie. Ten slotte hebben veel woor-
den meerdere betekenissen. De huidige woordinbeddingsmethoden modeleren dit niet
omdat ze zijn gebaseerd op de algemene aanname dat één vector per woord alle beteke-
nissen kan bevatten. Dit proefschrift laat echter zien dat een representatie gebaseerd op
meerdere vectoren per woord beter om kan gaan met de verschillende betekenissen van
een woord.

Kortom, dit proefschrift biedt nieuwe inzichten en meer theoretische basis voor woor-
dinbeddingen, die belangrijk zijn om krachtigere modellen te maken die kunnen om-
gaan met de complexiteit van natuurlijke talen.
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