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SUMMARY

In designing an optical instrument, computer simulations can help to better understand
and improve the system. A commonly used simulation method is the exit pupil diffrac-
tion integral (EPDI). It uses ray tracing to propagate the light from the object until the
exit pupil in the final medium, thereby accounting for the full geometry and all aber-
rations of the optical system. The propagation from the exit pupil to the focal area is
performed using a wave optical propagator. The EPDI accurately describes the effects
of aberrations, but assumes all the diffraction to occur at the exit pupil. This exit pupil
approximation fails for systems that experience a cascade of diffraction effects. In this
thesis, we are primarily interested in simulating such systems without neglecting the ef-
fects of aberrations. This requires a simulation method that goes beyond the exit pupil
approximation.

To this purpose we investigate two Monte Carlo ray-based diffraction methods. The
advantage of ray-based methods is that they accurately account for the aberrations of
the optical system. Ray-based diffraction simulations start by initiating rays at the in-
put plane. For Monte Carlo methods the set of all possible rays is sampled randomly.
These rays are then traced through part of the optical system until they reach a diffract-
ing surface like an aperture. At this surface secondary rays are initiated based on a
physical principle that is specific to the ray-based diffraction method at hand. These
secondary rays, which in a Monte Carlo method are again sampled randomly, are then
traced through the next part of the system. At every diffracting surface new rays are
initiated and then traced further through the system until the rays reach the plane of
interest, where they are used to calculate the electric field. Although the procedures for
ray-based diffraction simulations are very similar, the theory behind the methods and
the quantity carried by the (secondary) rays differ between the methods. In this thesis
we focus on one method that transports the Wigner distribution function using rays and
one method that combines the Huygens-Fresnel principle with ray tracing.

The Wigner distribution function (WDF) can be used as a mathematical representa-
tion of the scalar electric field in spatial and frequency coordinates. Upon propagation
through a paraxial optical system (i.e., a system where all rays remain close to the axis of
symmetry) the WDF undergoes a coordinate transformation. If one relates a ray to ev-
ery point in the four dimensional coordinate system of the WDF (two position and two
frequencies or direction coordinates), this ray undergoes the same coordinate transfor-
mation as the WDF. In other words, the WDF along a paraxial ray remains constant.

In Wigner-based ray tracing (WBRT) this property is used to transport the WDF using
rays. The intensity can be calculated by summing the WDF of all the rays arriving in
a pixel. These WDF values are real but not necessarily positive. The idea of WBRT is
to capture the diffraction effects by use of the WDF while capturing the full geometry
of the system by using ray tracing. We show that WBRT can accurately model lenses
with low numerical apertures, but that it can lead to inaccurate and even unphysical
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results in the presence of aberrations. The latter is explained using an analytical model
of WBRT. Although our results do not allow drawing conclusions about Wigner-based
methods in general, they do demonstrate that WBRT is unsuited for the simulation of
both diffraction and aberrations.

Huygens-Fresnel path integration (HFPI), the second method presented in this the-
sis, combines the Huygens-Fresnel principle with ray tracing. The Huygens-Fresnel prin-
ciple states that the propagation of light can be described by placing point sources on a
wavefront and summing the fields of all these point sources. HFPI applies this principle
at surfaces that introduce diffraction (e.g., apertures) and uses Monte Carlo ray tracing
to propagate the fields of the point sources. The rays in an HFPI simulation have a phase
determined by their optical path length. The field in a pixel is the sum of the complex
amplitudes of all the rays passing through the pixel. By using vectorial amplitudes, HFPI
can also account for polarization.

The Huygens-Fresnel principle gives an intuitive understanding of HFPI, but for a
more rigorous theory we turn to a physical interpretation of diffraction integrals. Scalar
HFPI is based on the Rayleigh-Sommerfeld diffraction integral, vectorial HFPI on the m-
theory integrals. We show that these integrals can be interpreted as a decomposition
of the field in a plane into (magnetic) dipole fields. These secondary fields are of such
nature that they can be propagated using geometrical optics.

We simulate the propagation of plane waves, spherical waves, and a Gaussian beam
through a range of (aberrated) systems with one or more diffracting surfaces. The HFPI
results are shown to be in good agreement with those of reference methods. We explain
that the use of a Monte Carlo ray tracer causes a small systematic error and a statistical
error whose variance is inversely proportional to the number of rays. A big advantage of
the Monte Carlo procedure is that it eliminates the need for an explicit (re)sampling.

HFPI is a robust method that can account for aberrations and cascaded diffraction.
It is relatively easy to implement if one has access to a Monte Carlo ray tracer that can
keep track of optical path lengths. A disadvantage of the method is that it is computa-
tionally demanding, but this drawback is strongly reduced by the perfect scalability of
the method on modern parallel architectures (e.g., cloud computing). We also present
several techniques to reduce the computational demand of the method. One of these
associates a plane wave to every ray in the focal region, which reduces the simulation
times by about two orders of magnitude.

With HFPI we introduce a method that can be used to simulate the propagation of
coherent fields (e.g., laser beams) through optical systems for which the aberrations can-
not be neglected and where diffraction effects are introduced at one or more surfaces.
We believe that the method can aid in developing new optical instruments.



SAMENVATTING

Bij het ontwikkelen van optische systemen kunnen computersimulaties helpen om de
systemen te begrijpen en te verbeteren. Een daarvoor veel gebruikte simulatiemethode
is de uittreepupil diffractie-integraal (EPDI). Deze methode transporteert het licht, vanaf
het object naar de uittreepupil in het laatste medium van het optische systeem, met be-
hulp van stralen. De paden van de stralen worden door de geometrie van het optische
systeem bepaald waardoor de aberraties van het systeem correct worden gesimuleerd.
Vanaf de uittreepupil wordt het licht verder naar het brandpunt getransporteerd met
behulp van een fysisch-optische methode. De EPDI neemt de effecten van aberraties
correct mee, maar de methode veronderstelt dat alle diffractie zijn oorsprong heeft in
de uittreepupil. Deze uittreepupilbenadering is onjuist voor systemen met meervou-
dige diffractie. In dit proefschrift concentreren wij ons op het simuleren van systemen
met meervoudige diffractie zonder daarbij de effecten van aberraties te verwaarlozen.
Daarvoor zijn simulatiemethodes nodig die geen gebruik maken van de uittreepupilbe-
nadering.

Hiertoe onderzoeken we twee straaloptische Monte-Carlo-diffractiemethoden. Het
voordeel van straaloptische methoden is dat zij de aberraties van optische systemen cor-
rect modelleren. Bij straaloptische diffractiesimulaties worden allereerst in het startvlak
van het systeem stralen geïnitieerd. Monte-Carlo-methoden doen dit door willekeurig
stralen te kiezen uit de set van alle mogelijke stralen. Daarna worden deze stralen tot het
eerste diffractieve oppervlak (bijvoorbeeld een apertuur) van het systeem getranspor-
teerd, waar vervolgens secundaire stralen worden gestart. Dit gebeurt op basis van een
fysisch model dat per methode verschilt. Monte-Carlo-simulaties genereren deze stralen
met een toevalsgenerator. De stralen vervolgen daarna hun weg door het systeem, waar-
bij in elk diffractief vlak de inkomende stralen stoppen en nieuwe stralen starten. Met
behulp van de stralen die het laatste oppervlak van het systeem (bijvoorbeeld de sensor)
bereiken, wordt het lokale elektrische veld berekend. Deze afloop van een diffractie-
simulatie is weliswaar hetzelfde voor de verschillende straaloptische methoden, maar
de achterliggende theorie en de waarde die door de (secundaire) stralen wordt getrans-
porteerd verschillen van methode tot methode. In dit proefschrift onderzoeken we een
methode die de Wignerdistributie met behulp van stralen transporteert en een methode
die het principe van Huygens-Fresnel combineert met een straaloptische simulatie.

De Wignerdistributie (WDF) is een reële functie waarmee we een scalair elektrisch
veld kunnen beschrijven middels coördinaten in het ruimtelijk en het frequentie do-
mein. Een bijzondere eigenschap van deze functie is dat het effect van de voortplanting
door een paraxiaal optisch systeem (oftewel een systeem waarin alle stralen dicht bij
de symmetrieas blijven) middels een coördinatentransformatie kan worden beschreven.
De vierdimensionale coördinaten van de WDF kunnen we ook gebruiken om de positie
en de richting van een straal te beschrijven. Bij de voortplanting door een paraxiaal sys-
teem ondergaat deze straal dezelfde coördinatentransformatie als de WDF. Met andere
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woorden, langs de baan van een paraxiale straal blijft de WDF constant.

De Wigner straalsimulatie (WBRT) gebruikt deze eigenschap om de WDF met behulp
van stralen te transporteren. De intensiteit kunnen we berekenen door de WDF van alle
stralen die op een pixel vallen bij elkaar op te tellen. Deze WDF-waarden zijn reëel, maar
niet altijd positief. Het concept achter WBRT is om de diffractie middels de WDF en
de geometrie van het optische systeem middels de straalsimulatie te modelleren. In dit
proefschrift tonen wij aan dat men met WBRT systemen met lage numerieke aperturen
correct kan simuleren, maar dat de methode onjuiste en zelfs onfysische resultaten kan
genereren wanneer het systeem aberraties heeft. Dit laatste verklaren we nader met be-
hulp van een analytisch model van WBRT. Op basis van onze resultaten zijn weliswaar
geen algemene conclusies te trekken over methoden die de Wignerdistributie gebruiken,
maar de resultaten tonen wel eenduidig aan dat WBRT niet geschikt is voor het simule-
ren van zowel diffractie als aberraties.

Huygens-Fresnel pad integratie (HFPI), de tweede methode die we in dit proefschrift
behandelen, combineert een straaloptische voortplanting met het principe van Huygens-
Fresnel. Volgens dit principe kan de propagatie van licht gemodelleerd worden door
puntbronnen op het golffront te plaatsen en de velden van deze puntbronnen bij elkaar
op te tellen. HFPI past dit principe toe op locaties waar diffractie ontstaat (bijvoorbeeld
in aperturen). De velden van de puntbronnen worden met behulp van een straalop-
tische Monte-Carlo-methode getransporteerd, waarbij de fase van elke straal door zijn
optische weglengte wordt bepaald. We kunnen het elektrische veld berekenen door per
pixel de complexe amplitudes van de stralen bij elkaar op te tellen. Wanneer we de stra-
len een vectoriële amplitude geven houden we ook rekening met polarisatie.

Het principe van Huygens-Fresnel helpt om het concept van HFPI te begrijpen. De
theoretische onderbouwing van de methode baseert echter op een fysische interpretatie
van diffractie integralen. Scalaire HFPI is gebaseerd op het Rayleigh-Sommerfeld diffrac-
tie integraal en vectoriële HFPI op de integralen van de m-theorie. We laten zien dat men
deze integralen kan interpreteren als een decompositie van het elektromagnetische veld
in een vlak in (magnetische) dipoolvelden. Deze secundaire velden kunnen vervolgens
met behulp van geometrische optica worden getransporteerd.

In dit proefschrift simuleren we de voortplanting van vlakke golven, bolgolven en
een Gauss-straal door verschillende systemen met en zonder aberraties en met één of
meerdere diffractieve vlakken. De resultaten van HFPI komen daarbij goed overeen met
die van referentiemethoden. Het gebruik van een straaloptische Monte-Carlo-methode
resulteert in een kleine systematische fout en een statische fout waarvan de variantie
omgekeerd evenredig is met het aantal stralen. Een groot voordeel van de Monte-Carlo-
methode is dat er geen expliciete bemonstering nodig is.

HFPI is een robuuste methode waarmee men de effecten van aberraties en meervou-
dige diffractie correct kan simuleren. De methode is relatief eenvoudig te implemente-
ren mits men over een straaloptische Monte-Carlo-simulator beschikt die de optische
weglengte van stralen kan berekenen. Een nadeel van de methode is dat zij veel reken-
tijd vraagt. Daar staat tegenover dat HFPI bij uitstek geschikt is voor parallellisatie op
moderne computerarchitectuur (bijvoorbeeld cloud computing). Bovendien presente-
ren we meerdere methoden om de rekentijd voor HFPI te verminderen. Bij een van deze
methoden wordt elke straal van een vlakke golf voorzien. Dit reduceert de rekentijd met
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ongeveer twee ordegroottes.
Met HFPI, de methode ontwikkelt in dit proefschrift, kan men de voortplanting van

coherente velden (bijvoorbeeld een laserstraal) door optische systemen simuleren, ook
wanneer meerdere vlakken in het systeem diffractie veroorzaken. Vanwege deze toege-
voegde waarde denken we dat de methode een rol kan spelen bij het ontwikkelen van
nieuwe optische systemen.





1
INTRODUCTION

This thesis addresses simulation methods for the propagation of light through an optical
system (e.g., a microscope). Such simulations have to describe two types of effects: aberra-
tions and diffraction. Section 1.2 introduces these effects and the simulation methods that
are used to describe them. The heart of this thesis, as explained in Section 1.3, is the intro-
duction and analysis of two methods that aim to describe both aberrations and diffraction
within a single ray-based simulation. This chapter only provides a brief introduction to
this thesis. An outline of the rest of the thesis is given in Section 1.4. Before starting the
technical discussion, Section 1.1 briefly places the research in the context of the mutually
reinforcing advances in science and optical instruments.

1.1. SHORT HISTORIC PERSPECTIVE
Optical instruments have enabled many scientific breakthroughs, and science has en-
abled many breakthroughs in optical instruments. Perhaps one of the most prominent
examples of this bidirectional influence is the work by Johannes Kepler. Using his ob-
servations through a telescope he determined the laws of planetary motion, and using
his observation of the telescope he wrote Dioptrice, a book with great influence on the
theory and practice of telescope making [1]. Many of the other great scientists of the sev-
enteenth century (e.g., Isaac Newton and Christiaan Huygens) used optical instruments
for their research and contributed to the development of optics and optical instruments.
Until the nineteenth century the production of optical instruments still mainly relied on
trial-and-error methods [2]. During the eighteen hundreds, scientists like Gauss, Sei-
del, Fraunhofer, Maxwell, and Abbe contributed to a better understanding of optical
instruments and devised ways to build them according to mathematical calculations.
Nowadays, the development of optical instruments is guided by such calculations and
numerical simulations. Much like advances in science and in optical instruments mutu-
ally reinforced each other, the improvement in optical lithography (a crucial step in the
manufacturing of computer chips) led to more computational power which was used
to improve lithographic machines. These developments enabled the optical simulation

1
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methods presented in this thesis, which in turn may enable the development of new
optical instruments and machines.

1.2. SIMULATING ABERRATIONS AND DIFFRACTION IN OPTICAL

SYSTEMS
When designing a technical product, computer simulations help to better understand
and improve the design without having to build a prototype. For optical systems one
can distinguish between two phenomena that affect the optical performance of the sys-
tem: aberrations and diffraction. In aberration-free imaging systems, all light rays com-
ing from an object point will be concentrated in an image point. This is called perfect
imaging within geometrical optics. In real optical systems, which use lenses and mir-
rors to concentrate rays, perfect imaging is usually not achieved and the rays are spread
out over a small region. The way the rays are distributed is described by the aberrations
of the system. In reality, light is a wave and rays are just a simplified model to under-
stand how light propagates. As a result, light can never be concentrated in an infinitely
small point, even if all the rays pass through a single point as depicted in Fig. 1.1a. This
deviation from geometrical optics is what is known as diffraction.

(a) Ray tracing through a singlet.

(b) A wave optical simulation of a singlet.

Figure 1.1: A comparison between a geometrical and a wave optical simulation of the propagation of light
through a singlet. According to geometrical optics, when there are no aberrations all rays intersect at a single
point. This causes a very local energy concentration in this perfect image point. In reality, the light is spread out
over a small region due to diffraction. The wave optical simulation shows this diffraction effect, but, compared
to geometrical optics, most wave optical methods require a stronger simplification of the optical system. In
the depicted wave-optical model the lens is replaced by a thin plate that approximates its effect.

Aberrations and diffraction are usually treated separately in optical simulations. The
aberrations are simulated by tracing rays and diffraction is described using a wave op-
tical model. Ray tracing can be used to propagate light through a series of lenses using
a simplified model of light propagation [3] which neglects part of the wave nature of
light, i.e., diffraction. Wave optical models (e.g., the Collins integral [4]) on the other
hand need a simplified model of the optical system (as illustrated in Fig. 1.1b), because
the wavelength of light is extremely small compared to the size of optical components.
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Most simulation methods can therefore only accurately describe either aberrations or
diffraction. Some methods can, to some extent, switch between the ray and the wave
model. The exit pupil diffraction integral [5] for instance uses ray tracing to propagate
light through all the lenses of an optical system until the final uniform medium. It then
uses a wave optical method to propagate the light through this medium to the image
plane. This method assumes that all diffraction effects are only important for this final
propagation step. For some systems, this assumption is not valid.

It was already mentioned that due to diffraction, light cannot be concentrated in an
image point. Another diffraction effect is that light to some extent bends around corners.
If you illuminate a small hole, the light will not only continue straight through the hole
(as the ray model predicts), but will radiate in all directions. Therefore, if we simulate
a system with multiple small holes (i.e., apertures) behind each other we observe a cas-
cade of diffraction effects. This is not compatible with the assumptions of the exit pupil
diffraction integral. Therefore cascaded diffraction has often been analyzed for systems
that were strongly simplified or had very specific optical properties (e.g., in [6, 7]). It is
the aim of this thesis to develop a simulation method for cascaded diffraction that also
accurately describes the aberrations of the system.

1.3. TWO RAY-BASED DIFFRACTION METHODS
This thesis is an investigation into two methods for simulating aberrations and cascaded
diffraction. Both methods are Monte Carlo ray-based diffraction methods. Ray-based
diffraction methods use ray tracing and can therefore propagate light through a series
of lenses or mirrors. In order to describe diffraction, these methods initiate secondary
rays at the surfaces that introduce diffraction (e.g., an aperture), as shown Fig. 1.2. Some

Figure 1.2: A graphical representation of a ray-based diffraction simulation. Rays are traced until the aperture
where they initiate secondary sources to describe the wave optical effect of diffraction.

prior ray-based diffraction methods, used as reference methods in this thesis, are the
Gaussian beam decomposition [8], Beam Synthesis Propagation [9] in the commercial
software package CODE V, and the vectorial ray-based diffraction integral [10]. Contrary
to those methods, the methods developed in this thesis are Monte-Carlo methods. This
indicates that the sampling is random, which means that the starting position and/or
direction of every ray is chosen randomly. The common simulation procedure for Monte
Carlo ray-based diffraction simulations is depicted in the flow chart shown in Fig. 1.3.

The two methods investigated in this thesis are Wigner-based ray tracing (WBRT)
and Huygens-Fresnel path integration (HFPI). Although the procedures for these simu-
lation tools are very similar, the theory behind the methods and the quantity carried by
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Figure 1.3: A flow chart illustrating the steps of a Monte Carlo ray-based diffraction method like Huygens-
Fresnel path integration or Wigner-based ray tracing. The methods differ in the quantities carried by the rays.

the (secondary) rays differ between the methods.
In WBRT, rays transport the Wigner distribution function. This distribution func-

tion [11] is a transformation that can be applied to the electric field (i.e., to light). It
has the special property, that for many systems it follows the same propagation rules
as geometrical optical rays, yet it still accounts for diffraction effects [12]. The idea of
Wigner-based ray tracing (WBRT) is therefore to use ray tracing to transport the Wigner
distribution function.

The second method, HFPI, relies on the Huygens-Fresnel principle. This principle
states that the propagation of light can be described, by placing point sources on a wave-
front of the light and summing the fields of all these point sources [13, p. xxvii-xxviii].
HFPI applies this principle at surfaces that introduce diffraction and uses ray tracing to
propagate the point sources.

The research presented in this thesis is the first extensive study of Wigner-based
ray tracing and Huygens-Fresnel path integration for the simulation of optical systems.
WBRT had been applied in the field of computer graphics, where it was used to render
images that included diffraction effects (e.g., of a light reflecting of a CD [14]). We imple-
ment the method, apply it to the simulation of optical systems, and compare the results
to those of other physical models. Our numerical results and analytical model show that
WBRT is unable to simultaneously describe the effects of aberrations and diffraction.

The domain of validity of HFPI turns out to be much broader than that of WBRT.
This thesis describes the numerical procedure and provides the theoretical foundation
for HFPI. The method is developed for both scalar and vectorial optics, and is validated
against multiple reference models for both cases. It is a robust method that can accu-
rately describe the effects of aberrations and diffraction beyond the exit pupil approxi-
mation.

1.4. OUTLINE OF THIS THESIS
Since the topic of this thesis is the simulation of light propagation, Chapter 2 gives an
overview of the most important propagation methods in the context of this thesis. It
starts with the description of diffraction integrals (i.e., the m-theory [15], Rayleigh-Som-
merfeld diffraction integral, and the Collins integral [4]), a commonly used wave optical
model for the propagation of light through a uniform medium or a strongly idealised
optical system. We then present geometrical optics and ray tracing, its numerical im-
plementation. Ray tracing is the main method for simulating the effect of the shape
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of lenses and mirrors in optical systems. Since the theoretical basis for Huygens-Fresnel
path integration is the combination of a diffraction integral and geometrical optics, these
models are explained in detail. The chapter continues with methods that are used for
reference simulations in later chapters: the exit pupil diffraction integral [5] and some
ray-based diffraction methods [8–10]. The final topic of Chapter 2 is the Wigner distri-
bution function [11], which is the basis of Wigner-based ray tracing.

The three following chapters treat the methods which are the core topic of this the-
sis: Wigner-based ray tracing in Chapter 3, the scalar version of Huygens-Fresnel path
integration in Chapter 4, and its extension to vectorial optics in Chapter 5.

Wigner-based ray tracing relies heavily on the theory presented in Section 2.7, so the
method can be concisely presented in Chapter 3. The chapter continues by comparing
the results of WBRT to those of reference simulations for the propagation through free-
space, a lens, and an idealised so called thin lens. An analytical model of WBRT is used
to support the findings of the numerical model. The chapter finishes with a discussion
of the finding that WBRT produces unphysical results in the presence of aberrations.

The topic of Huygens-Fresnel path integration is split over two chapters: Chapter 4
treats the scalar case and Chapter 5 presents the method for vectorial optics. Both chap-
ters follow roughly the same outline as the chapter on WBRT: treating first the theory
behind the method and its numerical implementation, then comparing its performance
to that of reference methods, and concluding with a discussion on the method and its
applications. Furthermore, Chapter 4 also contains a section on strategies to reduce the
computational load of HFPI. The most useful of these strategies is also applied to vecto-
rial HFPI in Chapter 5.

Huygens-Fresnel path integration is probably most easily understood if one reads
Chapter 4. On the other hand, Chapter 5 on vectorial HFPI offers a more fundamental
derivation of the method. Since scalar and vectorial HFPI share most of their properties,
these properties are only listed once in the discussion in Section 4.6. The discussion of
the chapter on vectorial HFPI is used to compare the concept of the method to that of
other simulation tools. If the reader is going over this outline to find how to get the most
out of this thesis with the smallest effort, the discussion in Section 4.6 and the method
description in Section 4.2 are strongly suggested.

The main findings, a discussion on their merits, and some suggestions for future re-
search are presented in Chapter 6, the final chapter of this thesis.

The reader that has overlooked the introduction of an abbreviation, notation, or
mathematical or physical quantity, can find them listed in Appendix A. A very compact
overview of the main simulation methods treated in this thesis is provided in Appendix B.





2
SIMULATION METHODS FOR

OPTICAL SYSTEMS

This chapter gives an overview of methods used for simulating optical systems. Many of
the methods treated in this chapter will reappear in later chapters, either as the basis for
Wigner-based ray tracing and Huygens-Fresnel path integration or as a reference method.
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2.1. INTRODUCTION

The challenge in simulating macroscopic optical systems is the large discrepancy be-
tween the wavelength of light and the size of the systems. Since these differ by many
orders of magnitude, it is difficult to capture both the wave nature of light and the full
geometry of the optical system in a single simulation method. The classical methods
have therefore treated the two phenomena separately, either simplifying the optical sys-
tem as a series of thin elements to capture the wave optical effects, or simplifying the
propagator to capture the full geometry of the system and thereby losing some of the
wave optical effects. The first is done by diffraction integrals, which is the topic of Sec-
tion 2.3, and the second by geometrical optics, treated in Section 2.4. These two sections
will be referred to frequently in later chapters, since they form the basis for the methods
developed in this thesis.

The problem in simulating imaging systems is that both the geometry of the optical
system and the wave nature of light affect the image quality of the optical system. In
the exit pupil diffraction integral, the topic of Section 2.5, this is addressed by first prop-
agating the light through the optical system using geometrical optics and then using a
diffraction integral for the final propagation step in free space. This way the geometry of
the system is captured fully, and the wave optical effects related to the focussing of the
light are also simulated correctly.

For some systems diffraction already significantly affects the field before the final
propagation step. This can for instance happen if the input field is diffracting (e.g., a rel-
atively strongly diffracting laser beam) or if the field passes through a pinhole. Cascaded
diffraction is the phenomenon where such a diffracted field is diffracted yet again (e.g.,
by an aperture). Several ray-based diffraction methods have been developed to simulate
these types of systems. The methods developed in this thesis also belong to this cate-
gory. Section 2.6 gives an overview of some of the more prominent ray-based diffraction
methods.

The division between wave and geometrical optics is an inelegant feature of optics.
The Wigner distribution function (WDF) is a phase-space distribution that has been
used to bridge these two theories. In Section 2.7 it will be shown how the WDF captures
the wave nature of light, while adhering to the simple propagation laws of geometrical
optics.

A large number of simulation methods are touched upon in this chapter and the
chapters to come. Appendix B provides a very compact overview of the main methods,
including references to the relevant sections in this thesis.

Before proceeding to any of these optical propagation methods, the fundamental
laws of electro-magnetism will first be derived in Section 2.2.
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2.2. FUNDAMENTALS OF ELECTROMAGNETISM
Light is an electromagnetic wave and its behaviour is fully described by the Maxwell
equations

∇× Ẽ =−∂B̃

∂t
, (2.1)

∇× B̃ =µ0ε0
∂Ẽ

∂t
+µ0 J̃ , (2.2)

∇· Ẽ = q

ε0
, (2.3)

∇· B̃ = 0, (2.4)

where Ẽ is the electric field, B̃ the magnetic flux density, ε0 the permittivity of vacuum,
µ0 the permeability of vacuum, J̃ the current density and q the charge density. Note
that throughout this thesis, all vectors are indicated by bold symbols (e.g., A) and the
tildes are used for time-varying quantities1. These relations are not very convenient
when dealing with electromagnetic fields in matter, if we do not know the distribution
of currents and charges within the material. It is therefore common practice to treat the
charges and currents that are due to the interaction of the electromagnetic field with the
material, the bound charges (qb) and currents (Jb ), separate from the free charges (q f )
and currents (J f ). This is done by defining two auxiliary fields, the electric displacement
field D̃ and the magnetic field H̃ , using the polarization density P̃ and the magnetization
M̃

D̃ = ε0Ẽ + P̃ , (2.5)

H̃ = 1

µ0
B̃ − M̃ , (2.6)

and the following relations

qb =−∇P̃ , (2.7)

J̃b =∇× M̃ + ∂P̃

∂t
, (2.8)

q = q f +qb , (2.9)

J̃ = J̃ f + J̃b . (2.10)

This results in the following form of the Maxwell equations:

∇× Ẽ =−∂B̃

∂t
, (2.11)

∇× H̃ = ∂D̃

∂t
+ J̃ f , (2.12)

∇· D̃ = q f , (2.13)

∇· B̃ = 0. (2.14)

1All conventions, abbreviations, and symbols used in this thesis are listed in Appendix A.
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So far, this only introduces an extra set of definitions, but these new equations become
convenient when combined with the following model for the material

D̃ = εẼ , (2.15)

H̃ = 1

µ
B̃ , (2.16)

where ε and µ are the permittivity and permeability of the medium. These constitutive
relations assume the material to be isotropic, linear, and without dispersion. If we fur-
ther assume the medium to be free of external sources and losses

J f = 0, (2.17)

q f = 0, (2.18)

and the solution to be time harmonic

H̃ =ℜ{
H exp(−iωt )

}
, (2.19)

where ℜ takes the real part and ω is the real and positive angular frequency of the light,
we obtain

∇×E = iωµH , (2.20)

∇×H =−iωεE , (2.21)

∇· (εE ) = 0, (2.22)

∇· (µH
)= 0. (2.23)

These are the Maxwell equations for time harmonic fields in source-free, linear, isotropic,
and dispersion-free media. Note that E and H are complex quantities and that the phys-
ical field can be obtained by multiplying with the time harmonic term and taking the
real part (as in Eq. (2.19)). The vectorial wave equations can be obtained by combining
Eqs. (2.20) and (2.21)

∇× (∇×E )−∇ ln(µ)× (∇×E )−k2E = 0, (2.24)

∇× (∇×H)−∇ ln(ε)× (∇×H)−k2H = 0, (2.25)

with k the wavenumber in matter defined by

k =ωpµε. (2.26)

For uniform media, in which the permittivity ε and the permeability µ are constant, this
reduces to

∇× (∇×E )−k2E = 0, (2.27)

which is equivalent to
∇2E +k2E = 0, (2.28)

since the field is divergence free. Equivalent equations for the magnetic field can be
obtained by substituting E for H in Eqs. (2.27) and (2.28). The scalar version of Eq. (2.28)
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is known as the Helmholtz equation. The wave equations, Eq. (2.24) and the Helmholtz
equations, are at the basis of the diffraction integrals that describe the propagation of
light through uniform media.

Before presenting these diffraction integrals we will derive the boundary conditions
for the electromagnetic field at the interface between two media. First we will derive the
boundary conditions for the tangential components and then for the normal compo-
nents of the field.

At the boundary between two media one can analyse a small surface with two edges
tangential to the interface and two edges perpendicular to the interface (see Fig. 2.1a).
Integrating Eq. (2.20), which assumes the absence of sources, over this surface S gives

(a) The surface used for the tangential
components.

(b) The box used for the normal components.

Figure 2.1: The surface and box used to derive the boundary conditions of the electromagnetic field. The
interface is drawn in light blue, the surface and box are shown in dark blue. The arrows indicate the direction
of integration, i.e. dl .

Ï
(∇×E ) · n̂ dS =

Ï
iωµH · n̂ dS, (2.29)

where n̂ is the outward pointing surface normal. The hat of n̂ indicates that the vector is
normalized (a convention used throughout this thesis). On the left side of this equation
we will apply Stokes’ theorem, which states that for any vector AÏ

(∇× A) · n̂ dS =
∮

A ·dl , (2.30)

where l is the boundary of the surface S. The right side of Eq. (2.29) can be reduced to
zero if we take the edges perpendicular to the interface to be infinitesimally small. We
thus obtain ∮

E ·dl = 0. (2.31)

Since the edges perpendicular to the interface are arbitrarily small, only the edges tan-
gential to the interface contribute to the line integral of Eq. (2.31). Therefore the tan-
gential components of the electric field must be continuous at the boundary between
two media. By substituting Eq. (2.20) for Eq. (2.21) in Eq. (2.29) one can derive that the
tangential components of the magnetic field are also continuous across interfaces.

To obtain the boundary conditions for the normal components of the electric field
we use a box with in each medium one side tangential to the interface, as illustrated in
Fig. 2.1b. Using the divergence theorem,Ñ

∇· A dV =
Ó

A · n̂ dS, (2.32)
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where A is an arbitrary vector, V is a volume with surface S, and n̂ the outward pointing
surface normal, we rewrite a volume integral over Eq. (2.22) into a surface integralÑ

∇· (εE )dV = 0, (2.33)Ó
(εE ) · n̂ dS = 0. (2.34)

By taking the thickness of the box to be infinitesimally small, the only contributions to
the integral of Eq. (2.34) come from the two sides tangential to the interface. Considering
that the normals of these two sides point in opposite directions, we find that the compo-
nent of εE normal to the interface is continuous across the interface. By performing the
same derivation using Eq. (2.23) instead of Eq. (2.22), one can show that the component
of µH normal to the interface is also continuous across the interface.

We thus find that at the interface between two media, the tangential components of
the electric and magnetic field, and the normal components of εE and µH are continu-
ous.

The relations derived in this section assume the media to be isotropic, linear, and
source free. They also neglect dispersion and losses, i.e., the materials are assumed to
be fully transparent. From here on we will also assume all materials to be non-magnetic,
i.e., µ = µ0, since this is essentially true for all media that are transparent in the visible
spectrum [16, p. 66].

2.3. DIFFRACTION INTEGRALS
The central problem of this thesis is the simulation of the propagation of light. Although
the Maxwell equations fully describe the behaviour of electromagnetic fields, they do not
in themselves provide a method to solve this propagation problem. Diffraction integrals,
which can be derived using the Maxwell equations, do provide a method for field prop-
agation. First the Rayleigh-Sommerfeld diffraction integral and its vectorial equivalent,
the m-theory diffraction integrals, are introduced in Section 2.3.1. As the name ’diffrac-
tion integral’ implies, these integrals describe the wave optical (or diffraction) effects of
field propagation. The disadvantage of these methods is that they can only describe the
propagation through a uniform medium, and therefore cannot be used to simulate the
propagation through an optical system consisting of lenses. The Collins integral, treated
in Section 2.3.2, is a diffraction integral that can deal with optical systems, but only by
greatly simplifying their effects. All diffraction integrals assume fully coherent light, a
concept explained in Section 2.3.3. Diffraction integrals are frequently used to calculate
the effects of apertures. Section 2.3.4 describes the model for apertures used throughout
this thesis.

2.3.1. RAYLEIGH-SOMMERFELD AND M-THEORY DIFFRACTION INTEGRALS

In this thesis we will extensively use the Rayleigh-Sommerfeld diffraction integral (RSDI)
and the m-theory diffraction integrals (or simply m-theory), derived by, e.g., Severin [15].
Both express the field in a point in space as an integral over the field in a plane, the former
for the scalar and the later for the vectorial field. They thus offer a way to propagate the
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field through a homogeneous medium. Before presenting the integrals, we will give an
outline of their derivation.

The starting point for the derivation of these integrals is the divergence theorem of
Eq. (2.32). For the RSDI we take

A = E∇G −G∇E , (2.35)

and for the m-theory
A = E × (∇×G)−G × (∇×E ) , (2.36)

with E or E the electric field, and G or G a Green’s function. A Green’s function is any
solution of the differential equation

LG(r ,r1) = aδ(r1 − r ), (2.37)

where L is a linear differential operator, δ is the delta function, r and r1 are positions in
space, and a is an arbitrary vector. For the scalar case, G reduces to G and the vector a is
omitted. For the RSDI one needs a Green’s function of the Helmholtz equation

LH =∇2 +k2, (2.38)

which operates on the independent variable r and not on the fixed position r1. One
solution, which will be frequently used in this thesis, is2

GH (r ,r1) = exp(ik|r1 − r |)
4π|r1 − r | . (2.39)

The differential operator of the m-theory is

Lm = k2 −∇×∇×, (2.40)

for which a Green’s function is [17]

Gm (r ,r1) =
(
1+ 1

k2 ∇∇·
)

GH (r ,r1)a. (2.41)

Using these Green’s functions in Eq. (2.32), with A given by Eq. (2.35) or (2.36), reduces
the volume integral on the left side of Eq. (2.32) to E(r1) or a ·E (r1) respectively. Since
the surface integral remains, the field in the point r1 can be determined by the integral
over a closed surface S.

Both the RSDI and m-theory are derived by splitting S into two parts, a plane S0

and a half sphere with an infinite radius S∞. The point r1 is within this volume at the
centre of the half sphere, and by convention is usually taken to be to the right of S0. The
integral over S∞ reduces to zero under conditions known as the radiation conditions.
Both in the scalar and vectorial case, these conditions state that no (superposition of)
plane waves can radiate through S∞ into the volume. Under that condition, the only

2The same function but with a negative exponential is also a valid Green’s function, as are certain linear combi-
nations of the function with the negative and the positive exponential. The desired diffraction integral cannot
be derived using the Green’s function with a negative exponential.
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remaining integral is that over S0, which has two terms. One is proportional to E (or E ),
and one to ∇E (or ∇×E ). The second term can be eliminated with the aid of a mirror
point r ′′′

1, which is the mirror image of the point r1 in the plane S0. Using this mirror
point, one can define the new Green’s functions

G−
H =GH (r0,r1)−GH (r0,r ′′′

1), (2.42)

G−
m =

(
1+ 1

k2 ∇∇·
)(

GH (r0,r1)a −GH (r0,r ′′′
1)a ′′′) , (2.43)

with r0 a point on S0 and a ′′′ the mirrored version of a

a ′′′ = a −2(a · n̂)n̂. (2.44)

These Green’s functions reduce the integrals to our final results, which depend on the
vector from the point of integration to the point of interest

ρ = r1 − r0, (2.45)

whose length will be denoted by ρ and its unit vector by ρ̂. For the scalar case we obtain
the Rayleigh-Sommerfeld diffraction integral of the first kind

E(r1) =− ik

2π

Ï
exp

(
ikρ

)
ρ

ρ̂ ··· n̂0 E dS0, (2.46)

and for the vectorial case the diffraction integral of the m-theory

E (r1) =− ik

2π

Ï
exp

(
ikρ

)
ρ

ρ̂× (n̂0 ×E ) dS0, (2.47)

where n̂0 is the surface normal of S0 that points towards the half space containing r1. In
both Eq. (2.46) and (2.47) we have neglected a term proportional to 1/ρ, which is suffi-
ciently accurate if the point of interest is many wavelengths away from S0 (1/ρ¿ k). By
taking the curl with respect to r1, one can obtain the magnetic field

H(r1) = −ik2

2πωµ

Ï
exp

(
ikρ

)
ρ

ρ̂× [
ρ̂× (n̂0 ×E )

]
dS0, (2.48)

with µ the magnetic permeability of the medium µ (which is assumed to be equal to the
permeability of free space throughout this thesis).

In the derivation of Eq. (2.46), (2.47), and (2.48) we have assumed that only the light
passing through S0 affects the field in r1 and that S0 is a plane. Furthermore, it is as-
sumed that the volume to the right of S0, which by convention contains r1, extends to
infinity; is source free; and contains a homogeneous, linear, and isotropic medium (e.g.,
air).

Under these conditions the Rayleigh-Sommerfeld diffraction integral of Eq. (2.46)
and the m-theory diffraction integral of Eq. (2.47) can be used to calculate the scalar
or vectorial electric field.
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2.3.2. COLLINS INTEGRAL
A significant disadvantage of the diffraction integrals described in Section 2.3.1 is that
they can only propagate the field through a homogeneous medium. The Collins inte-
gral [4] overcomes this issue by using a simplified model of the optical system.

The Collins integral is a generalisation of the Fresnel integral, which itself is an ap-
proximation of the Rayleigh-Sommerfeld diffraction integral, Eq. (2.46). To obtain the
Fresnel integral from Eq. (2.46), the distance ρ is approximated by the Taylor expansion

ρ =
√

(x −x0)2 + (y − y0)2 + z2 = z

√
(x −x0)2

z2 + (y − y0)2

z2 +1,

≈ z + (x −x0)2

2z
+ (y − y0)2

2z
+ ..., (2.49)

where it is assumed that z is much larger than (x − x0) and (y − y0). By using the sec-
ond order Taylor expansion in the exponential of Eq. (2.46) and the first order expansion
otherwise, we obtain

E(x, y, z) = −ik exp(ikz)

2πz

Ï
E(x0, y0,0)exp

[
ik

2z

(
(x −x0)2 + (y − y0)2)]dx0dy0. (2.50)

This assumes that the surface normal and the main direction of propagation are along
the z-axis. With a quadratic phase function one can also approximate the propagation
through a system of lenses and homogeneous media. Such a description results from the
paraxial approximation, which assumes the light to be close to the optical axis and the
direction of propagation to be nearly parallel to the optical axis. Using a notation that
may at first appear a bit arbitrary, a second order diffraction integral that describes an
optical system can have the following form

E1(x1) = −ik

2π
p|B|

Ï
E0(x0)

exp

[
ik

(
1

2
xT

0 B
−1Ax0 −xT

0 B
−1x1 +

1

2
xT

1 DB
−1x1

)]
d2x0, (2.51)

where x = (x, y), the integral is over all the components of the vector (d2x0 = dx0dy0),
capital letters in blackboard bold (e.g., A) are matrices, and a constant phase term has
been neglected. It turns out that the matrices A, B and D are part of the matrix that
describes the passage of rays through a general paraxial system without obscurations [4](

x1

p1

)
=

[
A B

−(
B−1 −ATDB−1

)T
D

](
x0

p0

)
=

[
A B

C D

](
x0

p0

)
, (2.52)

where T indicates the transpose, B−1 is the inverse of B, x0 and p0 are the ray positions
and the ray directions multiplied with the refractive index in the input plane before the
system and x1 and p1 those in the output plane after the system. The Collins integral,
Eq. (2.51), and the ray transfer matrix, Eq. (2.52), are valid for paraxial systems. Further-
more, B should have full rank, so the final position of the rays are a function of their
initial directions (i.e., the input and output planes cannot be conjugate planes). Finally,
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the system should transmit all light. Apertures can be accounted for in a multi-step pro-
cess, first calculating the field from the input plane until the aperture using Eq. (2.51)
or Eq. (2.52), then implementing the effects of the aperture (see Section 2.3.4), and fi-
nally applying the Collins integral or ray transfer matrix for the second part of the sys-
tem. Some further properties of the matrices in Eq. (2.52) are that the determinant of
the complete matrix is one, DB−1 and B−1A are symmetric and DAT −CBT = I with I the
identity matrix [18].

The wave optical propagation through any paraxial system that meets the before
mentioned criteria can thus be described by a diffraction integral, Eq. (2.51), whose pa-
rameters are closely linked to the parameters describing the propagation of rays through
the same paraxial system, Eq. (2.52).

2.3.3. SPATIAL COHERENCE
Suppose there are two radiating point sources Ei ,1 and Ei ,2 located at two points in the
input plane that generate the fields Eo,1 and Eo,2 at the output plane. If the time har-
monic part of the field, which we have omitted since Eq. 2.19, is the same for both point
sources, we call the sources fully coherent. The total squared amplitude of the field at
the output plane is then

|Eo |2 = |Eo,1 +Eo,2|2. (2.53)

The diffraction integrals presented earlier assume a more general field distribution at the
input plane but the principle is the same: the total field is a coherent sum, analogue to
Eq. 2.53, of the contributions from all points in the input plane. For this to be true the
light at the input plane must be fully coherent.

One can also assume that the phase of the two sources is completely uncorrelated.
We call this (spatially)3 incoherent light, and in that case the total squared amplitude of
the field at the output plane is

|Eo |2 = |Eo,1|2 +|Eo,2|2. (2.54)

Suppose we have a more general spatially incoherent field at the input plane and we
want to calculate the squared amplitude of the field at the output plane. We can no
longer apply the diffraction integrals since they assume fully coherent light. Instead we
can calculate the field contribution from a single point (r1) in the input plane by applying
a diffraction integral to the field Eiδ(r − r1), where Ei is the complex field in the input
plane and r the spatial coordinates in the input plane. The total squared amplitude at
the output plane can be obtained by repeating this procedure for all points in the input
plane and summing the squared amplitudes.

Finally, the electric field can also be partially (spatially) coherent. We can often model
this by starting our simulation at the actual coherent or incoherent source of the light
(instead of at the plane where the field is partially coherent).

3Light also has a temporal coherence. This expresses the ability of light coming from a point to interfere with
light coming from the same point at a later point in time. Our focus in this thesis is on simulation methods for
optical systems. Imaging systems are designed such that the light emitted from one point in the object plane
will arrive at a single point in the image plane with a constant time delay, independent of the path through
the optical system. We will therefore ignore the topic of temporal coherence.



2.4. GEOMETRICAL OPTICS

2

17

Throughout this thesis we will assume the light to be fully coherent. However, the
simulation methods presented in this thesis can be extended to spatially incoherent light
analogue to the way we applied the diffraction integrals to incoherent light: use the sim-
ulation method to calculate the field contribution from single points in the input plane
and obtain the total squared amplitude of the field by incoherently summing all these
field contributions.

2.3.4. KIRCHHOFF BOUNDARY CONDITIONS
Diffraction integrals are frequently used to calculate the electric field a certain distance
behind an aperture (for example a perfectly conducting screen with a hole in it). These
integrals can propagate the light through the free space behind an aperture, but they do
not provide a model for the aperture itself.

In this thesis we will treat apertures as binary thin elements. The thin element ap-
proximation means that the field behind the aperture (E ) is the product of a so-called
mask function (B) and the field in front of the aperture (E0)

E (x) = B(x)E0(x). (2.55)

Note that this approximation means that the effect of the element is concentrated in a
plane (of zero thickness) and is local. In general B can be a complex function (thereby
changing the amplitude and the phase of the field) but we treat apertures using a binary
function. Inside the aperture the field is unaffected (B = 1), and outside the aperture
(where the perfectly conducting screen is) the light is completely blocked (B = 0).

These approximations are known as the Kirchhoff boundary conditions4. Although
they do not correctly describe the field near the edge of an aperture, they have proven
to be sufficiently accurate for most diffraction problems dealing with optical instru-
ments [13, p. 422].

2.4. GEOMETRICAL OPTICS
Geometrical optics is one of the most commonly used methods to simulate optical sys-
tems consisting of lenses and mirrors, because it can deal with the general geometry of
the optical elements (i.e., the lenses and mirrors). Since it does not rely on the paraxial
approximation (although paraxial geometrical optical models exist, e.g., Eq. (2.52)), geo-
metrical optics can describe the propagation of light further away from the optical axis,
at large angles with the optical axis, and through non-spherical optical surfaces. Geo-
metrical optics assumes light to propagate along rays, paths that are straight in uniform
media and that can change direction at optical interfaces. Such a model is consistent
with the particle model of light, but it can also be derived from the Maxwell equations
(see, e.g., Born and Wolf [13, p. 117–127]). From this derivation it follows that rays carry
a phase, which is in correspondence with the wave nature of light. However, not all wave
effects of light are captured by geometrical optics. It fails whenever the electric field
changes significantly over a small distance. In particular it wrongly predicts infinitesi-
mally sharp transitions from shadow to light.

4Technically the Kirchhoff boundary conditions also state that the derivative of the field outside of the aperture
is zero.
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Depending on whether rays carry a phase term or not, geometrical optics describes
the propagation of light as a particle, or approximates the propagation of light waves.
Since this can be the source of some confusion, and because geometrical optics (as a
wave optical approximation) is essential for the methods presented in later chapters, a
derivation of the propagation laws of geometrical optics is presented in Section 2.4.1.
The implementation of these propagation laws in two types of simulation methods, ray
tracing and Monte Carlo ray tracing, are then treated in Sections 2.4.2 and 2.4.3.

2.4.1. DERIVATION OF GEOMETRICAL OPTICS
Sommerfeld and Runge [3, p. 289-293] derived the laws and the limits of geometrical
optics by inserting an ansatz for the electric field into the wave equation. The ansatz
they used separated a phase-only term, exp[ik0s(r )] (where k0 is the wavenumber in free
space), from the rest of the field. Although Sommerfeld and Runge used a scalar field,
the same procedure can be followed for the vectorial field (see, e.g., Born and Wolf [13,
p. 117–127]). We will treat the scalar and vectorial case simultaneously, roughly following
Sommerfeld and Runge [3] and Born and Wolf [13].

The vectorial and scalar ansatz read

E (r ) = Ē (r )exp(ik0s(r )), (2.56)

E(r ) = Ē(r )exp(ik0s(r )), (2.57)

with Ē real and where Ē can be complex to represent certain polarizations (i.e., non-
linear polarized light). The wave equations can be applied to these fields. The vectorial
wave equation is given by Eq. (2.24) and is

−∇ ln(µ)× (∇×E )+∇ (∇·E )−∆E −ω2εµE = 0.

The scalar theory uses the Helmholtz equations for the electric field,

∇2E +k2E = 0, (2.58)

which is the scalar version of Eq. (2.28). After substituting Eq. (2.56) and (2.57) into
Eq. (2.24) and (2.58) respectively, one obtains terms proportional to k0

2, k0
1, and k0

0.
Since in optics k0 À 1, it makes sense to treat these different orders separately and re-
quire that the three groups equate to zero individually.

By setting the k0
2 terms to zero one obtains, in both the scalar and vectorial case, the

eikonal equation
|∇s|2 −n2 = 0, (2.59)

where

n =
√

εµ

ε0µ0
, (2.60)

is the refractive index of the medium. Note that we assume all materials to be non-
absorbing, which means that the imaginary part of the refractive index is assumed to
be zero5. Since the phases of Eq. (2.56) and (2.57) are determined by s, surfaces with a

5Laws for geometrical optics in absorbing media have been derived, e.g., by Chang et al. [19]. They showed
that when a plane wave enters such a medium, the normals to the plane of constant phase and to the plane
of constant amplitude no longer coincide. This substantially complicates a geometrical optical propagation
of the field.
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constant value of s are wavefronts of equal phase6. The gradient ∇s will be perpendic-
ular to the wavefront and in that direction s will change proportional to the refractive
index n. In geometrical optics, this direction

ρ̂ ≡ ∇s

n
, (2.61)

is the direction of the rays.
The second group of terms, which is proportional to k0, will determine the amplitude

change of the field (see, e.g., Born and Wolf [13, p. 126]). For uniform media, these terms
reduce to

Ē ∇2s +2(∇s ·∇) Ē = 0, (2.62)

Ē ∇2s +2∇s ·∇Ē = 0, (2.63)

which are differential equations that tell us that the change in the amplitude of the field
along ∇s is proportional to the curvature of the phase function (s). We will later derive
a more practical rule governing the amplitude of the field, using the conservation of en-
ergy.

The remaining terms, proportional to k0
0, are (for materials with uniform magnetic

properties)
error =∇2Ē +∇(

Ē ·∇ ln(ε)
)

, (2.64)

and should remain small compared to k0 for geometrical optics to be valid. This assump-
tion breaks down when the amplitude of the field or ε changes abruptly, as is for instance
the case at the edge of geometrical optical shadows, in a focal region, or at optical inter-
faces. For the scalar case we already implicitly assumed the medium to be homogeneous
by using the Helmholtz equation. The scalar term proportional to k0

0 is

error =∇2Ē , (2.65)

which requires the amplitude changes to be gradual (with respect to the wavelength).
The electric field is thus given by Eq. (2.56) or (2.57) and its propagation is governed

by Eqs. (2.59) and (2.62) or (2.63) provided Eq. (2.64) or (2.65) remains small. We will now
derive the corresponding magnetic field for the vectorial case so that we can obtain the
Poynting vector, which describes the energy flow of the electromagnetic field. We will
assume that for the scalar case the same rules will govern the flow of energy.

The magnetic field can be obtained by taking the curl of the electric field

H = −i

ωµ
∇×E ,

≈
p
ε0µ0

µ
e ik0s(r )∇s × Ē ,

=
√
ε

µ
e ik0s(r )ρ̂× Ē , (2.66)

6For elliptically polarized light the concept of a wavefront is more difficult to define. One can however write
the field as a combination of two linearly polarized fields which do have wavefronts at surfaces of constant s.
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where we have used Eqs. (2.59, 2.60) and assumed

|k0∇s × Ē |À |∇× Ē |. (2.67)

This assumption states that the amplitude of the field Ē orthogonal to∇s does not change
significantly on the length scale of a wavelength.

The average flow of electromagnetic energy is given by the time-averaged Poynting
vector (see, e.g., [16, p.48–50])

S = 1

2
E ×H∗, (2.68)

where the asterisk denotes the complex conjugate and we have used that the material is
non-magnetic. Applying this to Eqs. (2.56, 2.66) gives

S = 1

2
E ×H∗,

= 1

2

√
ε

µ

[(
Ē · Ē∗)

ρ̂+ (
Ē · ρ̂)

Ē∗]
,

≈ 1

2

√
ε

µ

∣∣Ē ∣∣2 ∇s

n
, (2.69)

under the assumption of a source-free, homogeneous medium. Using that ∇·E = 0, the
term neglected in Eq. (2.69) can be rewritten as

(
Ē · ρ̂)

Ē∗ = 1

n

(
Ē ·∇s

)
Ē∗ = i

n k0

(∇· Ē
)

Ē∗, (2.70)

which is very small compared to
∣∣Ē ∣∣2

ρ̂ if Ē does not change significantly on the length
scale of a wavelength. We thus obtain a Poynting vector with a magnitude of

|S| =
√

ε

4µ
|Ē |2, (2.71)

and a direction of propagation along ρ̂.
Note that the relation between the electric and magnetic field in geometrical optics

(expressed by Eq. (2.66)) is also valid for plane waves (see, e.g., [13, p. 24]). Further-
more, Eq. (2.69) is the Poynting vector of a plane wave [13, p. 24-25]. For this reason,
geometrical optical rays are often said to carry local plane waves. This local planar ap-
proximation of the wavefront, i.e., geometrical optics, is valid if the radius of curvature
of the wavefront is large compared to the wavelength.

The concept of local plane waves is useful at optical interfaces, where the second
term in Eq. (2.64) cannot be neglected, and we thus require a modified approach. Be-
cause the field locally has all the properties of a plane wave, the transmission through
the optical surface is treated as the transmission of a plane wave passing through a plane
interface, where the plane interface is defined by the local surface normal. The validity of
this approximation was studied for sinusoidal gratings, where it was shown accurate for
radii of curvature as small as a few wavelengths [20]. Since the curvatures in lenses are
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usually several orders of magnitude larger, it seems reasonable to assume that this local
plane approximation will give accurate results. The transmission coefficients for plane
waves passing through plane interfaces are given by the Fresnel equations (see, e.g., [13,
p. 42]). The corresponding change in the wave vector of the plane wave is equivalent to
that of Snell’s law

n1 sin(θ1) = n2 sin(θ2), (2.72)

where θ is the angle between the surface normal and the wave vector, and the index 1 is
used for the quantities in front of the interface and 2 for the quantities after refraction
by the interface. Part of the field is reflected at the surface, which causes a decrease in
the amplitude of the transmitted wave. The attenuation is different for the component
of the electric field in the plane spanned by the surface normal and the wave vector (the
p-component) and for the component in the direction perpendicular to this plane (the
s-component). The amplitude transmissions through the interface are given by [13, p.
42]

Ts =
2n1 cos(θ1)

n1 cos(θ1)+n2 cos(θ2)
, (2.73)

Tp = 2n1 cos(θ1)

n2 cos(θ1)+n1 cos(θ2)
, (2.74)

for the s- and p-polarised light respectively. The phase of the electric field is the same
before and after the interface. As a result, the eikonal equation (Eq. (2.59)) is also valid
across optical surfaces. If the amplitude and phase are slowly varying functions before
the interface, they will be slowly varying functions after the interface, provided the in-
terface is slowly varying. One can thus continue propagating the field using geometrical
optics.

Until now, the conservation of energy has only been briefly touched upon by Eq. (2.62).
In the following paragraphs we derive a more generally applicable rule for energy con-
servation in geometrical optics, using the Poynting vector.

The Poynting vector is a relevant quantity because its closed surface integral de-
scribes the average rate of energy flow into a volume

dU

dt
=−

Ó
n̂ ·S dS, (2.75)

where U is the enclosed electromagnetic energy, t the time, n̂ the outwards pointing
surface normal and S the surface area (see, e.g., [13, p. 10]). If the medium does not
absorb electromagnetic energy and there are no sources inside the volume enclosed by
S, the integral reduces to Ó

n̂ ·S dS = 0. (2.76)

We take the closed surface S along a tube of rays, so that we have one surface (S1) where
all the rays enter the volume, one surface (S2) where all the rays exit the volume and the
other sides of the surfaces are parallel to the rays (Fig. 2.2). The closed surface integral
Eq. (2.76) reduces to Ï

n̂ ·S dS2 =
Ï

−n̂ ·S dS1. (2.77)
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Figure 2.2: A ray tube

Since this is valid for an arbitrary small tube of rays, we can remove the integral sign and,
using the following definition for the intensity

I ≡ |n̂ ·S|, (2.78)

the intensity law of geometrical optics

I1 dS1 = I2 dS2, (2.79)

is obtained. The intensity of the field is therefore inversely proportional to the area
spanned by the tube of rays. By combining Eq. (2.78) with Eq. (2.69), one obtains (for
non-magnetic materials)

I = n̂ · ρ̂n

√
ε0

4µ0
|E |2. (2.80)

The amplitude of the electric field is therefore

|E | =
√

2I
p
µ0

n̂ · ρ̂n
p
ε0

, (2.81)

and through its dependence on I , it is a function of the area spanned by a tube of rays.
We have derived the propagation laws of geometrical optics, both for the phase and

the amplitude of the vectorial field. The next step is the implementation of these propa-
gation laws into a numerical simulation tool.

2.4.2. RAY TRACING
Since rays propagate along straight lines in homogeneous media and change their di-
rection according to a simple relation (Eq. (2.72)) at interfaces between two media, it is
straightforward to compute their trajectories using a computer7. The phase of the ray is
computed by keeping track of the optical path length (OPL). The OPL is zero at the ob-
ject and increases at each propagation step by the geometrical length of the ray segment
multiplied by the local refractive index. The value of the OPL corresponds to that of the
eikonal (introduced in Section 2.4.1) if the eikonal is also defined to be zero at the object.
The phase is obtained by multiplying the OPL with the wavenumber of free space k0.

Finding the amplitude of the field is more elaborate and involves keeping track of the
area spanned by a tube of rays. One method is to trace an entire grid of rays simultane-
ously and calculate the areas between the grid points. A second method is to accompany

7A description of the related algorithms is beyond the scope of this thesis, so the interested reader is referred
to a paper by Spencer and Murty [21].
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every ray by a set of neighbouring rays with directions or positions that differ from the
main ray by an infinitesimally small amount. These neighbouring rays will span the sur-
face area needed for the amplitude adjustment. For a final method one needs to keep
track of the local curvature of the phase front and use (analytical) formula for the am-
plitude change of the field upon propagation. This is straightforward when propagating
from a point source through a uniform medium, but gets much more involved when the
field passes through non-spherical interfaces between two media.

The areas of the ray tubes change both upon propagation through homogeneous
media and upon refraction. The amplitude of the field of a point source in free space is
for instance proportional to the inverse of the distance to the source, since the ray tube
area increases with the square of the distance. At refracting interfaces, the area spanned

Figure 2.3: The surface area of a ray tube changes at refraction.

by a ray tube will change (see Fig. 2.3) by a factor

S2

S1
= cos(θ2)

cos(θ1)
, (2.82)

which causes an amplitude change of

|E2|
|E1|

=
√

cos(θ1)

cos(θ2)
. (2.83)

Since the Fresnel equations are energy preserving, this factor is already accounted for
in the Fresnel coefficients given by Eqs. (2.73, 2.74). In order to prevent counting these
factors double, it is convenient to use an adapted version of the Fresnel equations for ray
tracing

T ′
s =

√
cos(θ2)

cos(θ1)

2n1 cos(θ1)

n1 cos(θ1)+n2 cos(θ2)
, (2.84)

T ′
p =

√
cos(θ2)

cos(θ1)

2n1 cos(θ1)

n2 cos(θ1)+n1 cos(θ2)
. (2.85)

To perform geometrical optical simulations using ray tracing, one defines the source
by specifying the ray distribution at the initial surface and the starting power, phase,
and polarization of the rays. The rays are then transported through the optical system,
where their paths are determined by Snell’s law, Eq. (2.72), their phases by the optical
path lengths, and their amplitudes by the (adjusted) Fresnel equations, Eqs. (2.84) and
(2.85), and the intensity law of geometrical optics, Eq. (2.79).
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2.4.3. MONTE CARLO RAY TRACING
Monte Carlo ray tracing is another numerical implementation of geometrical optics. The
main difference with standard ray tracing is that a Monte Carlo ray tracer initiates ran-
dom rays from a predefined source set and traces each ray independently through the
optical system. Upon passing through a pixel, the ray weight is added to the pixel value.
The ray paths and phases are determined in the same way as in standard ray tracing, but
we will see that the intensity of the field is calculated differently.

Mathematically, a Monte Carlo ray tracer relies on the central limit theorem (see, e.g.,
Dekking [22, p. 197]). This theorem states that the averaged sum of the function values
w(xi ) evaluated at (two-dimensional) positions xi sampled from a random variable X
with probability distribution function p(x),

wN = 1

N

N∑
i=1

w(xi ), (2.86)

converges in the limit of N →∞, to the analytical expectation value

〈w(X )〉 =
Ï

w(x)p(x)d 2x , (2.87)

where the square brackets denote the expectation value. The central limit theorem also
predicts the rate of convergence, expressed by the standard deviation (σ) which is the
square root of the variance. The variance is a measure of the spread of random variables,
and is defined by

V [w (X )] = 〈(w (X )−〈w (X )〉)2〉 . (2.88)

For the estimate wN , the standard deviation is

σ [wN ] =
√

V [wN ] =
√

V [w (X )]

N
, (2.89)

which implies a convergence rate of order O (N−1/2). In other words, one can approxi-
mate the integral of Eq. (2.87) by averaging a large enough number of random samples
of w(xi ).

For Monte Carlo ray tracing, the sample points xi are the intersection points of rays
at a final or intermediate plane where the light distribution is to be determined. The
probability of sampling a certain ray is proportional to the local density of rays

p(x) = lim
∆S→0, N→∞

∆N (x , N )

∆S(x)N
, (2.90)

with ∆N the number of rays on a surface area ∆S, and N the total number of rays. By
choosing

w I (x) = I (x)

p(x)
, (2.91)

and limiting the domain of integration of Eq. (2.87) to the area of a pixel Sp , Eq. (2.87)
gives the power incident on that pixel. Since generally the intensity distribution in the
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pixel plane I (x) is not known, one can use the ray tracer to calculate it from the intensity
distribution in another plane I0(x0). Rewriting Eq. (2.79)

I (x) = I0(x0)
∆S0(x0)

∆S(x)
, (2.92)

where∆S0 and∆S are infinitesimally small surface areas connected by a tube of rays, and
the mapping between x and x0 is defined by the same ray tube. Combining Eqs. (2.90),
(2.91), and (2.92), we obtain

w I (x) = lim
∆S0→0, N→∞

I0(x0)
∆S0(x0)N

∆N0(x0, N )
= I0(x0)

p0(x0)
, (2.93)

where we have used that∆N0(x0, N ) =∆N (x , N ) if x and x0 are connected by a ray (tube).
The expectation value of a Monte Carlo ray tracer will thus be the power incident on a
plane, if each ray carries a power defined by Eq. (2.93). Since this does not involve the
phase of the rays, we will denote this type of simulation by incoherent Monte Carlo ray
tracing.

To calculate the amplitude of the field using a Monte Carlo ray tracer, one must adjust
the weight of the rays. From Eq. (2.81) we see that by choosing

w(x) = lim
∆S→0, N→∞

√
2I0∆S0N

∆N0 n̂ · ρ̂n

(
µ0

ε0

)1/4
√
∆SN

∆N
, (2.94)

the expectation value of w(X ) is

〈w(X )〉 =
Ï

Sp

lim
∆S0→0, N→∞

√
2I0∆S0N

∆N n̂ · ρ̂n

(
µ0

ε0

)1/4
√
∆N

∆SN
d2x ,

=
Ï

Sp

√
2I (x)

n̂ · ρ̂n

(
µ0

ε0

)1/4

d2x ,

=
Ï

Sp

|E (x)|d2x . (2.95)

In a simulation, different factors of the ray weight defined by Eq. (2.94) are implemented
at different steps of the simulation. At the starting surface, every ray is assigned a weight
proportional to the square root of the intensity divided by the local ray density

ws =
√

2I0∆S0N

∆N0

(
µ0

ε0

)1/4

. (2.96)

If one has access to the electric field instead of the intensity one can rewrite Eq. (2.96),
using Eq. (2.80), as8

ws =
√
∆S0N

∆N0

p
n0|E0|, (2.97)

8This assumes that the Poynting vector of the field is parallel to the local surface normal.
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with n0 the refractive index at S0. At the final surface, upon incidence on a pixel, the
weight is adjusted using the cosine of the angle between the ray direction and the surface
normal, n̂ · ρ̂, and the local refractive index

wi =
√

1

n̂ · ρ̂n
. (2.98)

Furthermore, the reciprocal of the local ray density is needed

wp =
√
∆SN

∆N
. (2.99)

As stated in Section 2.4.2, this can be obtained by tracing neighbouring rays. So far we
have assumed that the power carried by a ray remains constant, but the effect of trans-
mission losses can easily be incorporated into an additional weight w f , depending on
the adjusted Fresnel equations, Eqs. (2.73, 2.74).

To obtain the full field we must also calculate the phase of the electric field. This is
done by including the phase function exp[ik0OPL] into the ray weight w , where OPL is
the optical path length of the ray (see Section 2.4.2). If the local wavefront and the pixel
are not parallel, the phase will vary quickly over the pixel. We are not interested in the
complex integral over the pixel, but in approximating the field at the centre of the pixel.
Therefore we will approximate the field of the ray by a local plane wave and calculate its

Figure 2.4: Local plane wave approximation of a ray at a pixel.

contribution to the field in the centre of the pixel, (xp ), using the adjusted phase function

exp
[
iφp

]= exp[ik0 (OPL±dn sin(θ)] , (2.100)

where θ is the angle between the incident ray and the local surface normal (see Fig-
ure 2.4) and

d =
√

(x −xp )2 + (y − yp )2, (2.101)

is the distance between the centre of the pixel and the intersection point of the ray with
the pixel, and the sign depends on the position of x with respect to xp . Using the final
ray weight

w = ws wi wp w f exp
[
iφp

]
, (2.102)

we can approximate the complex electric field at the centre of a pixel by averaging the
electric fields of all properly weighted rays which arrive at the pixel, and dividing the
complex result by the area of the pixel.
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This Monte Carlo ray tracing procedure can be summarized in the following formula

E (xp ) ≈ 1

N Sp

N∑
j=1
Π

[
xp , x(x j )

]
w(x j ), (2.103)

= 1

N Sp

N∑
j=1
Π

[
xp , x(x j )

]
ws (x j )wi (x j )wp (x j )w f (x j )

exp
[
iφp (x j )

]
, (2.104)

= 1

N Sp

N∑
j=1
Π

[
xp , x(x j )

]√
∆S0(x j )N

∆N0(x j )

p
n0E0

(
x j

)
√

1

n̂ · ρ̂(x j )n

√
∆S(x j )N

∆N (x j )
w f (x j )

exp
[
ik0

(
OPL(x j )±d

[
x(x j ), xp

]
n sin(θ(x j )

)]
, (2.105)

where x j is the position at the initial plane of a randomly sampled ray with index j ,
x(x j )) is the position of this ray at the final plane, Π(xp , x) is a rectangular function that
evaluates to one if this ray position is within the pixel centred around xp , and Sp is the
surface area of a pixel. Note that for geometrical optics to be valid every point on the first
plane is mapped to a unique point on the second plane, which is why we can use x j to
indicate a unique ray.

Like the geometrical optical propagator, this adjusted Monte Carlo ray tracing prop-
agator is thus able to propagate the complex electric field.

2.5. EXIT PUPIL DIFFRACTION INTEGRALS
In section 2.4 it was explained how one can propagate the electric field through an op-
tical system using geometrical optics, and that geometrical optics is not accurate when
the amplitude of the field changes abruptly. Since imaging systems are designed to focus
the light from an object point into a small spot, such a fast changing amplitude occurs
within the focal region of an imaging system. As a result, geometrical optics is not valid in
this domain. To calculate the field in the focal region on can use the exit pupil diffraction
integral (EPDI), which combines geometrical optics with a diffraction integral.

In most imaging systems there exists an element that limits the bundle of rays that
can pass through the system. Usually this is the aperture, a non-transparent screen with
a hole in it. The exit pupil is the image of this aperture by all the optical elements after the
aperture. The exit pupil plays a crucial role in the EPDI since it is the boundary between
the geometrical optical simulation and the diffraction simulation.

The first step in an EPDI simulation is the propagation of the field of the object (e.g.,
a point source) to the exit pupil using ray tracing. Rays hitting the aperture are blocked,
resulting in a sharp cut-off of the field. This violates one of the conditions of geometrical
optics and is therefore a source of diffraction. In this thesis surfaces that produce such
sharp cut-offs are called diffracting surfaces. In the EPDI all the causes of diffraction in
an optical system are modelled in the exit pupil.

The second step in an EPDI simulation is the propagation of the field from the exit
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pupil to the focal region. Since the exit pupil is by definition in the same uniform medium
as the focal region, one can apply a diffraction integral for this propagation step. The

Figure 2.5: Schematic representation of the exit pupil diffraction integral. The rays are first traced to the exit
pupil (depicted in blue), which is the (in this case virtual) image of the aperture (shown in black) by the lens
behind it. The field is then propagated using a diffraction integral, which basically computes the superposition
of spherical waves illustrated in the figure.

Rayleigh-Sommerfeld diffraction integral (see section 2.3.1) could be used for this pur-
pose, but the Richards-Wolf integral [5] is also frequently used. The Richards-Wolf in-
tegral is an integral over plane waves. The direction, amplitude, and initial phase of a
plane wave starting at a point in the exit pupil depend on the same quantities of the ray
through this point.

By combining the geometrical propagation with a diffraction integral, the exit pupil
diffraction integral accounts for the full geometry of the optical systems and for the
diffraction at the aperture. It is a powerful method for calculating the intensity distribu-
tion in the focal plane of a system, the so-called point spread function (PSF). The EPDI
is therefore used by many commercial ray tracers (e.g., CODE V, OSLO and ZEMAX).

2.6. RAY-BASED DIFFRACTION METHODS
A limitation of the exit pupil diffraction method is that it assumes that all diffraction in
the optical system effectively takes place in the exit pupil. This assumption is not al-
ways sufficiently accurate when modelling systems with multiple consecutive apertures
or when propagating a coherent diffracting field (e.g., a laser beam) through an optical
systems with an aperture. This limitation is overcome by a group of methods which we
will denote as ray-based diffraction methods. These methods rely on ray tracing from
the first to the final surface of the simulation, while adjusting the standard ray-tracing
procedure to account for the effects of (multiple) diffraction. For all ray-based diffrac-
tion methods this involves the generation of secondary rays at diffracting surfaces (e.g.,
the aperture plane), but the theory behind these secondary rays and the quantity carried
by the rays differ between the methods.

In the Gaussian beam decomposition (GBD) method (see, e.g., [8]) the field is writ-
ten as a superposition of Gaussian beams. For every Gaussian beam a small set of rays
is propagated through the optical system. The field of the beam after this propagation
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step can be calculated from the positions and directions of the corresponding rays. The
total field is simply the sum of the fields of the individual Gaussian beams. The approx-
imation in the propagation step is that the part of the system through which a Gaussian
beam passes can be considered to be paraxial. This parabasal approximation is different
from the standard paraxial approximation. The standard paraxial approximation uses
the same paraxial system for the entire field, whereas in the parabasal approximation a
different paraxial system is used for every beamlet. The smaller the extent of the beamlet,
the more accurate this approximation is. A simulation with the GBD may have several
steps, each consisting of decomposing, propagating, and a rebuilding the field. Aper-
tures can be accounted for by cutting off part of the rebuilt field before the next decom-
position step. The GBD is implemented in the commercial software package ASAP [23].
The beam synthesis propagation (BSP) in CODE V [9] (another commercial ray tracer)
uses an unspecified beamlet decomposition that shares at least some of its properties
with the GBD.

The vectorial ray-based diffraction integral (VRBDI) developed by Andreas et al. [10]
decomposes an input field into plane waves or spherical waves. It then propagates these
fields using ray tracing, connecting every point of the input grid to every point of the
output grid. By adding the complex values (i.e., amplitude and phase) of all rays arriving
at the same grid point in the output plane, the method can account for the diffraction
introduced at the input plane. Andreas et al. mention that apertures could be accounted
for by first calculating the field in the aperture using a VRBDI simulation, then applying
the aperture function, and finally decomposing and propagating this field using a second
VRBDI simulation, but the authors do not present such simulations [10].

The geometrical theory of diffraction proposed by Keller [24] models diffraction by
distinguishing between the rays passing through an aperture and the rays that hit the
edge of an aperture. The former ’ordinary rays’ pass through the aperture undisturbed,
whereas the latter generate cones of ’diffracted rays’ emanating from the aperture edge.
The initial values of these diffracted rays depend on the incident field and a diffrac-
tion coefficient determined using canonical solutions to diffraction problems. For these
canonical solutions, the field after an aperture is split into an undisturbed field that
passes through the aperture and a field originating from the edge of the aperture. The
field from the edge is used to determine the diffraction coefficients. In regions where the
ordinary or diffracted rays intersect (i.e., at caustics) the method described so far would
predict an infinite amplitude of the field. Therefore an additional caustic correction fac-
tor is needed, which is again derived from canonical solutions. The geometrical theory
of diffraction is mostly used for solving problems relating to waveguides and reflector
antennas [25] for radio waves. An overview of the method is given by James [25].

Some of the other ray-based diffraction methods are stable aggregate of flexible el-
ements [26–30] and Heisenberg uncertainty ray bending [31–33]. The former provides
accurate results but has so far only been developed for two-dimensional space. The lat-
ter, which initiates secondary rays in the neighbourhood of the aperture edge, does treat
diffraction in three-dimensional space. However, a distribution of the secondary rays
over the radiation cones that consistently gives correct results could not be determined
conclusively [31–33].

The methods which are the main topic of this thesis, Wigner-based ray tracing and
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Huygens-Fresnel path integration, are also ray-based diffraction methods that initiate
secondary rays at diffracting surfaces. A thorough discussion of these methods and re-
lated literature is provided in Chapters 3, 4, and 5.

2.7. WIGNER DISTRIBUTION FUNCTION
The Wigner distribution function (WDF) is a transformation of a complex function, in-
troduced in 1932 by Eugene Wigner [11]. It is a function of both a variable and its con-
jugate (e.g., space and spatial frequency), and is therefore sometimes seen as the local
frequency spectrum of a function. This concept may be uncommon in optics, but it
should be familiar to anyone who has ever read music from a score. The WDF was first
introduced into optics in a 1964 paper by Dolin [12] and later again by Walther [34] as
a function that could describe the spatial coherence of a field, yet still remain invariant
along straight lines (i.e., rays). In 1978, Bastiaans showed that upon propagating through
a paraxial optical system, the WDF experiences the same coordinate transformation as
geometrical optical rays [35]. Since the WDF is a representation of the complex scalar
field, it was presented as a link between the wave optical description of light (discussed
in Section 2.3.2) and geometrical optics (treated in Section 2.4) [35]. This link is at the
core of Wigner-based ray tracing, the topic of Chapter 3. This section presents the basic
properties of the WDF and discusses how the WDF changes upon propagation through
a paraxial system.

The mathematical definition of the WDF is

W (x ,ξ) =
Ï

E

(
x + x ′′′

2

)
E∗

(
x − x ′′′

2

)
exp

[−iξ · x ′′′]d2x ′′′, (2.106)

where W is the WDF, x = (x, y) represents a point in a plane in ordinary space, ξ= (ξ,η) is
a point in its reciprocal plane, E is a scalar complex field, E∗ its complex conjugate, and
the integral is over all the elements of the vector d2x ′′′ = dx ′dy ′. The WDF is always real,
but not necessarily positive (see e.g., [18]). When used in optics, the WDF can serve as a
representation of the scalar complex electric field, which is how we will use it from now
on.

As an example we discuss the WDF of a plane wave. The electric field of a plane wave
in a plane (with a constant coordinate z) is given by

E(x) = A expik ·x , (2.107)

with k = (kx ,ky ) the vector containing the two dimensional spatial frequencies and A
the amplitude. Applying the transformation Eq. (2.106) gives

W (x ,ξ) =
Ï

Ae ik ·(x+x ′′′/2) A∗e−ik ·(x−x ′′′/2)e−iξ·x ′′′
d2x ′′′, (2.108)

=
Ï

|A|2e ix ′′′·(k−ξ)d2x ′′′, (2.109)

= (2π)2|A|2δ(ξ−k), (2.110)

where we have used the exponential representation of the dirac function

δ(x) =
Ï

exp
[−2πix ′′′ · x

]
d2x ′′′. (2.111)
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So in the phase-space representation of the WDF, the plane wave will be a delta function
in frequency coordinates with a uniform amplitude along the spatial coordinates.

If E represents the scalar electric field, the integral over the frequency coordinates
of the WDF gives the intensity, and the integral over the spatial coordinates gives the
intensity of the plane wave expansion of the field [35]

I (x) = 1

(2π)2

Ï
W (x ,ξ) d2ξ, (2.112)

|F̃ (ξ)|2 =
Ï

W (x ,ξ) d2x , (2.113)

with F̃ (ξ) the complex amplitude of the plane wave corresponding to spatial frequency
ξ. Applying these integrals to the WDF of a plane wave, Eq. (2.110), we find an intensity
of I = |A|2 and an intensity of the plane wave expansion of |F̃ (ξ)|2 = (2π)2|A|2δ(ξ−k).
Although the inverse Wigner transformation exists (see Appendix C.1), we will not use it
in this thesis since Eq. (2.112) already provides us with a direct way to obtain the intensity
from the WDF.

So far it was shown that the WDF is simply another representation of the electric
field from which one can easily obtain the intensity. What makes this representation
particularly useful, is that the propagation of a WDF through a paraxial optical system is
governed by some very simple rules. We first derive the WDF of a field propagated using
the Fresnel integral and then give the more general solution for a field propagated by the
Collins integral (see Section 2.3.2 for a description of these integrals).

The Fresnel diffraction integral, given by Eq. (2.50), describes paraxial propagation
through a uniform media. Let E0 be the field before propagation and let W0 be its WDF.
The WDF of the Fresnel propagated field is then

W (x ,ξ) =
Ï −ik exp(ikz)

2πz

Ï
E0(x0)exp

[
ik

2z

∣∣∣∣x + x ′′′

2
−x0

∣∣∣∣2
]

d2x0

ik exp(−ikz)

2πz

Ï
E∗

0 (x̄0)exp

[
−ik

2z

∣∣∣∣x − x ′′′

2
− x̄0

∣∣∣∣2
]

d2x̄0

exp
[−iξ · x ′′′]d2x ′′′, (2.114)

= k2

4π2z2

Ï Ï Ï
E0(x0)E∗

0 (x̄0)

exp

[
ik

2z

(|x0|2 −|x̄0|2 +2x · (x̄0 −x0)
)]

exp

[
ik

2z
x ′′′ ·

(
2x −x0 − x̄0 −

2z

k
ξ

)]
d2x ′′′d2x0d2x̄0. (2.115)

By using the dirac delta function, Eq. (2.111), and its property

δ
( x

a

)
= a2δ (x) , (2.116)

the integral over x ′′′ reduces toÏ
exp

[
ik

z
x ′′′ ·

(
x − x0 + x̄0

2
− z

k
ξ

)]
d2x ′′′ = 4π2z2

k2 δ

(
−x + x0 + x̄0

2
+ z

k
ξ

)
. (2.117)
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Using this delta function and the coordinate transformations (with unit Jacobian)

x0 = x̃0 +
x̃ ′′′

0

2
, (2.118)

x̄0 = x̃0 −
x̃ ′′′

0

2
, (2.119)

gives the final WDF

W (x ,ξ) = k2

4π2z2

Ï Ï
E0

(
x̃0 +

x̃ ′′′
0

2

)
E∗

0

(
x̃0 −

x̃ ′′′
0

2

)
exp

[
ik

z

(
x̃0 · x̃ ′′′

0 −x · x̃ ′′′
0

)]
4π2z2

k2 δ
( z

k
ξ−x + x̃0

)
d2x̃0d2x̃ ′′′

0, (2.120)

=
Ï

E0

(
x − z

k
ξ+ x̃ ′′′

0

2

)
E∗

0

(
x − z

k
ξ− x̃ ′′′

0

2

)
exp

[−iξ · x̃ ′′′
0

]
d2x̃ ′′′

0, (2.121)

=W0

(
x − z

ξ

k
,ξ

)
. (2.122)

So the WDF of the field after Fresnel propagation over a distance z (W ), is the WDF of the

field before propagation, evaluated at the coordinate x0 = x−z ξk . A propagation through
a uniform media thus affects the WDF through a coordinate transformation

x = x0 + z
ξ

k
, (2.123)

ξ= ξ0, (2.124)

where the index zero indicates the quantities before propagation. This is the same coor-

dinate transformation as that for a ray with initial position x0 and initial direction p0 = ξ
k ,

propagated over a distance z.
This equivalence between the coordinate transformation of the WDF and of rays is

not only valid for free space propagation, but holds for the propagation through any
paraxial system [35]. So a system that, in matrix optics, can be described by(

x0

p0

)
=

[
DT −BT

(B−1 −ATDB−1) AT

](
x
p

)
, (2.125)

which is the inverse of Eq. (2.52), will perform the following coordinate transformation
on the WDF

W (x ,ξ) =W0

[
DT x − 1

k
BT ξ,k

(
B−1 −ATDB−1)x +AT ξ

]
, (2.126)

where W0 is the WDF before and W is the WDF after propagation through the system.
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This coordinate transformation is identical to that of Eq. (2.125) if we choose

p0 = ξ0

k
, (2.127)

p = ξ

k
, (2.128)

which relates the directional cosines of the rays to the spatial frequencies of the WDF. A
proof of this property, based on the Collins integral, Eq. (2.51), is given in Appendix C.3.

An optical system will generally contain at least one aperture, but the matrix formal-
ism is unable to account for such apertures. We therefore still need to find the effect of
an aperture on the WDF.

In this thesis we treat apertures in the thin element approximation (see Section 2.3.4),
in which the effect of an element on the electric field is modelled by multiplying the field
by a mask function B . We are therefore interested in the WDF of the field

E(x) = B(x)E0(x), (2.129)

where E0 is the field before, and E the field after the element. By calculating the WDF of
Eq. (2.129), one can show (see Appendix C.2) that

W (x ,ξ) = 1

(2π)2

Ï
W0

(
x ,ξ′′′

)
WB

(
x ,ξ−ξ′′′)d2ξ′′′, (2.130)

where WB is the WDF of the mask function and W0 is the WDF of the field before the thin
element.

The definition for the WDF given in Eq. (2.106) is valid for coherent fields, but it can

be adapted to partially coherent or incoherent fields by substituting E
(

x + x ′′′
2

)
E∗

(
x − x ′′′

2

)
by the statistical average of the same quantity (which is a representation for fields of all
degrees of spatial coherence). All relations derived in this section also hold for this WDF
of partially coherent fields, which makes the WDF particularly useful for propagating
such fields.

We have seen that the WDF after propagation through a paraxial optical system is
given by a coordinate transformation of the WDF before the system, and that the WDF
behind a thin element is given by a convolution between the WDF before the element
and the WDF of the element itself.





3
WIGNER-BASED RAY TRACING

The topic of this chapter is a simulation method that uses the Wigner distribution function
to incorporate wave-optical effects in ray tracing software. The method is used to calculate
the intensity distribution in the focal region, and we show that it is accurate for paraxial
systems but produces unphysical results in the presence of aberrations. The cause of these
anomalies is explained using an analytical model.

Parts of this chapter have been published as an SPIE Proceeding [36] and an Optical Engineering paper [37].
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3.1. INTRODUCTION
Because the coordinate transformations of the WDF and of paraxial rays are identical
(see Section 2.7), the WDF remains constant along paths followed by paraxial rays. To
our knowledge, the first usage of this property for ray-based diffraction simulations, was
in the field of computer graphics [38]. Oh et al. rendered images that showed diffraction
patterns, e.g., of a light source behind a square aperture casting a diffraction pattern on
a cubic box. They also computed PSFs for two camera lenses with different numerical
apertures (NAs, the product of the refractive index and the sine of the half cone of light
in the image space) [38]. Although some of the diffraction patterns were validated us-
ing Fourier optics, the PSFs were only evaluated qualitatively. The method by Oh et al.
was further developed in the computer graphics community (e.g., [14, 39, 40]), but PSF
calculations were never validated.

The before mentioned research raises the question whether a ray-based transport of
the WDF can be used for the simulation of the propagation of coherent scalar electric
fields through optical systems. It is this question that we set out to address in the current
chapter. First, the method under investigation is presented in Section 3.2. The numerical
method is then applied to calculate diffraction in free space and the PSF of a thick and
a thin lens in Section 3.3. To substantiate the conclusions drawn from those numerical
simulations, Section 3.4 investigates an analytical model based on the same principles
as the numerical model. In Section 3.5 the results of the numerical and analytical model
are discussed. We end the chapter with the conclusions in Section 3.6.

3.2. METHOD
The principles described in references [14, 38–40] are implemented in a simulation meth-
od, which we call Wigner-based ray tracing (WBRT). The aim of WBRT is to simulate the
propagation of an electric field from an input plane, through an optical system consist-
ing of, e.g., free space, lenses and apertures, and calculate the intensity distribution at
an output plane. A simulation consists of several steps, which are illustrated in the flow
chart in Fig. 3.1 and described in the following paragraphs.

Create
random
ray(s) at

input
plane

Assign
WDF

value to
ray(s)

Ray
trace
until

aperture

Create
sec-

ondary
rays

More
aper-
tures?

Ray
trace
until

output
plane

Add
WDF

value of
rays to
pixels

Result
con-

verged?
Stop

no

yes

yes

no

Figure 3.1: A flow chart illustrating the steps of WBRT.

The first step of WBRT is to derive the WDF of the electric field in the input plane.
For some frequently used input fields, the WDF can be calculated analytically. The WDF
of a plane wave is for instance given by Eq. (2.110). WBRT performs a Monte Carlo sam-
pling of the region of the four dimensional phase space for which the WDF is non-zero
(W (x ,ξ) 6= 0). The algorithm chooses a (user defined) number of random points within
this region of phase space, using a probability distribution function that is uniform in
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spatial and frequency coordinates. Every such point in phase space is associated with a
ray with the same spatial coordinates x and directions defined by Eq. (2.128), that caries
the local WDF.

The second step is to use these rays to propagate the WDF through an optical sys-
tem, e.g., a series of lenses in free space. The lenses will affect the ray paths according
to Snell’s law, but in WBRT they will not introduce diffraction unless they are combined
with an aperture. Within the paraxial theory this procedure is exact, since the WDF re-
mains constant along the paths of paraxial rays. The underlying assumption of WBRT, is
that this property is also a good approximation beyond the paraxial domain.

At an aperture or (complex) mask, the ray tracing is interrupted. The WDF of the field
after a mask is, as mentioned in Section 2.7, given by

W (x ,ξ) = 1

(2π)2

Ï
W0

(
x ,ξ′′′

)
WB

(
x ,ξ−ξ′′′)d2ξ′′′. (3.1)

This means that the WDF directly after a mask can be calculated by a convolution of the
input WDF (W0) with the WDF of the mask (WB ) over the frequency variables [35]. Since
the mask function can be complex it can be used to describe aberrations within the thin
element approximation. Such a procedure has for instance been used to study the effect
of aberrations in the exit pupil [41], but requires an additional (ray-based) method to
calculate the aberrations. In WBRT aberrations are implicitly captured by the ray tracing
procedure whereas diffraction is explicitly introduced by convolving the WDF of the field
and the aperture function. Note that as a result of the convolution in Eq. (3.1), the WDF
is smeared out over the frequency variables but remains localized in spatial coordinates.
In our ray-based model this is implemented by letting every ray initiate a set of new
rays. These rays have the same initial position but differ in their directions and carry
a value of the WDF in accordance with Eq. (3.1). The set of secondary rays is created
using a Monte Carlo procedure similar to the one used for the creation of the initial rays.
This follows the example of the work by Oh et al. [38] and makes the method very suited
for parallel computing. In this thesis we treat apertures using the Kirchhoff boundary
conditions (see Section 2.3.4). As a result, the mask function, B(x), is a binary function
with the value 1 inside, and 0 outside of the aperture. The WDF of a square aperture can
be calculated analytically and the result is given in Section 3.4. For the WDF of circular
apertures of radius a, Bastiaans derived the integral [42],

WB

[(
x
0

)
,

(
ξ

η

)]
= 16a2ℜ

exp[−i2ξx]
∫ 1

x/a

sin
[

2aη
p

1− s2
]

2aη
exp[i2aξs]ds

 , (3.2)

which we will use.
After the aperture the electric field will be propagated further through the optical sys-

tem using the same procedure as for the propagation from the input plane to the aper-
ture: every ray carries a value of the WDF and propagates through the optical system in
accordance with the laws of geometrical optics. This procedure can be used for paraxial
and non-paraxial propagation and its validity, particularly beyond the paraxial domain,
is the topic of the following sections. If the system contains any further apertures they
too can be treated in accordance with Eq. (3.1).
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As a final step, the intensity distribution at the output plane (or any other plane of
interest) is calculated. Since the intensity distribution is given by the frequency marginal
of the WDF (see Eq. (2.112)), the intensity in a pixel can be calculated by summing the
values of the WDF carried by each ray that hits the pixel. Using these principles, one can
obtain an intensity distribution in a plane caused by the propagation of a coherent field
through an optical system.

3.3. RESULTS
The procedure described in the previous section is implemented in MATLAB, and used
to simulate diffraction at an aperture in free space and the propagation of a plane wave,
through a thick and through a thin lens, for wavefronts with and without aberrations.

3.3.1. DIFFRACTION AT AN APERTURE IN FREE SPACE
The diffraction patterns of a circular aperture illuminated by a plane wave and a rectan-
gular aperture illuminated by a point source are calculated using WBRT. The parameters
of the two simulated systems are listed in Table 3.1 and the results shown in Figs. 3.2

Table 3.1: The parameters of the systems used for free-space diffraction simulations.

Parameter system 1 system 2
source point source plane wave

distance to aperture 500 mm -
aperture shape square circular

aperture size 1x1 mm 1 mm (radius)
propagation after aperture 1000 mm 100 mm

wavelength 600 nm 600 nm

and 3.3. The cross sections of the intensity patterns also show the results of a numeri-
cal Rayleigh-Sommerfeld diffraction integral (see Section 2.3.1), which match well with
those of the WBRT simulations apart from some fluctuations which are due to statistical
noise. Considering WBRT is to some extend based on the paraxial approximation of the
Rayleigh-Sommerfeld integral (i.e., the Fresnel integral), this result was to be expected
for these paraxial problems and it mainly validates the numerical implementation of the
method.

3.3.2. THICK LENS
The results of the propagation of a plane wave through a thick lens are shown in Fig. 3.4a
and 3.4b (the parameters of the thick lenses are listed in Table 3.2). Apart from the WBRT
results, the figures also show the results of a Rayleigh-Sommerfeld exit pupil diffraction
integral (RSED) [43] (see Section 2.5) obtained with a Zeiss internal optical simulation
software package. For both figures the WBRT results are averaged over the polar angle.
As a result the convergence is better at larger distances from the origin, because the av-
erage there is taken over a larger number of Monte Carlo samples. Fig. 3.4a shows the
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(a) Normalized intensity distribution (b) Cross section at y=0
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Figure 3.2: The diffraction pattern of a spherical wave passing through a rectangular aperture, simulated using
WBRT. The cross section shows the result from a numerical Rayleigh-Sommerfeld diffraction integral (RSDI)
as a reference. Intensities are normalized with respect to the maximum intensity. The system parameters are
listed in Table 3.1.

(a) Normalized intensity distribution (b) Cross section at y=0

−2 0 2

−2

0

2

x [mm]

y
[m

m
]

0

0.2

0.4

0.6

0.8

1

0 1 2
0

0.2

0.4

0.6

0.8

1

x [mm]

n
o

rm
al

iz
ed

in
te

n
si

ty

WBRT
RSDI

Figure 3.3: The diffraction pattern of a plane wave passing through a circular aperture, simulated using WBRT.
The cross section shows the result from a numerical Rayleigh-Sommerfeld diffraction integral (RSDI) as a ref-
erence. Intensities are normalized with respect to the maximum intensity. The system parameters are listed in
Table 3.1.

results for axial imaging by a singlet with an NA of 0.2 that introduces no third or fifth
order spherical aberrations to the wavefront. The results from WBRT and the RSED are
in very good agreement. For the other singlet, which has an NA of 0.04, and wavefront
aberrations with root mean square (rms) values1 of 0.23 wavelengths for defocus and
0.12 wavelengths for primary spherical aberrations, WBRT results in negative intensi-
ties, which is clearly unphysical. It also indicates that WBRT results in a distribution
other than the WDF, since the marginals of the WDF are always non-negative (see, e.g.,
Ref. 18).

1The rms wavefront error or aberration is defined as the square root of the average of the squared wavefront
errors.



3

40 3. WIGNER-BASED RAY TRACING

Table 3.2: The parameters of the simulated thick lenses. The distance from the object to the first lens surface
is D0, R1 and R2 are the radii of curvature of the first and the second lens surface, D1 is the distance between
these surfaces, and D2 is the distance from the last lens surface to the image plane (all in mm). The stars
indicate conical surfaces. Alle lenses have a refractive index of 1.51 and all simulations are performed at a
wavelength of 600 nm.

System name D0 R1 D1 R2 D2

Singlet with def. and sph. aber. ∞ 281.67 10 −1603.53 465
Aberration-free singlet 800 333.69 10 −297.01∗ 501

Spherical ∞ 298.21 10 −1904.02 500
Asphere A ∞ 298.14∗ 10 −1890.19∗ 500
Asphere B 800 333.69 10 −297.01∗ 501
Asphere C ∞ 298.21 10 −1904.03∗ 500

(a) Aberration-free singlet (b) Singlet with defocus and spherical
aberrations.
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Figure 3.4: Cross sections of the PSF of a singlet with an aperture radius of 100 mm and an NA of 0.2 (left) and
of a singlet with an aperture radius of 20 mm and an NA of 0. 04 (right). The wavefront of the singlet with an
NA of 0.2 is practically free of primary aberrations, whereas the singlet with an NA of 0.04 has a defocus and
spherical aberrations.

These results indicate that the validity of WBRT mainly depends on the wavefront
aberrations. This is further supported by Figs. 3.5 and 3.6, where the agreement between
the WBRT and RSED simulation is quantified in the L2A-difference of the simulated PSFs,
defined by

L2A =

√√√√∑
p

(|E ′(p)|− |E(p)|)2∑
p |E ′(p)|2 , (3.3)

where |E ′(p)| is the amplitude at pixel p predicted by the RSED and |E(p)| the corre-
sponding amplitude given by WBRT. The figures show the results for one spherical and
three aspherical singlets with varying aperture radii. For these singlets, the radius at
which the WBRT and RSED results start to diverge (see Fig. 3.5) varies between 10 mm
and 120 mm, corresponding to NAs of 0.02 and 0.23. In Fig. 3.6 the same results are plot-
ted, but with the rms wavefront error (excluding tip/tilt and defocus) instead of the aper-
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ture radius on the horizontal axis. From rms wavefront errors of around 10−2 wavelength
onwards, the L2A-difference between the WBRT and RSED results starts to increase for
all four singlets. Although the rms wavefront error at which this occurs is different for
every system, simulations at different NAs and for different spherical and aspherical sin-
glets show similar results: the results of WBRT and the RSED are in good agreement un-
til spherical aberrations start influencing the PSF. Unless future research finds a way to
solve this difficulty with an approach that differs significantly from the present one, it is
safer not to use WBRT for thick lenses that suffer from aberrations. Other simulations
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Figure 3.5: The L2A -difference between WBRT and RSED simulations of four thick lens designs at varying
aperture radii. All systems consist of a singlet followed by a circular aperture and a free-space propagation
over roughly 500 mm (see Table 3.2 for further system parameters). The systems are illuminated at 600 nm by
a plane wave or a point source 800 mm in front of the lens (asphere B). The error increases sharply at aperture
radii of around 10 mm, 90 mm and 120 mm respectively.
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Figure 3.6: The L2A -difference between WBRT and RSED simulations of the four lens designs used in Fig. 3.5
simulated at the same aperture radii as for Fig. 3.5. The horizontal axis shows the rms wavefront error (ex-
cluding tip/tilt and defocus). For all four systems the L2A -difference starts to increase significantly for rms
wavefront errors onwards of 10−2 wavelength.

show that for systems with very small aberrations and NAs larger than 0.3 the results
from WBRT and RSED also diverge, indicating the limits of WBRT due to nonparaxial
effects. For the aberration-free wavefronts we did not encounter negative intensities.
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3.3.3. THIN LENS

To study the effects of aberrations on WBRT, the simulation of a singlet is repeated us-
ing a thin-element model. Within the thin-element approximation all effects of the lens
(i.e., phase changes or changes in ray direction) occur in a plane (see Section 2.3.4). The
effect of a thin lens that introduces aberrations can be modelled by two separate stages.
First, the lens will change the direction of each ray in accordance with perfect imaging.
Second, the aberrations will cause small additional directional changes of the rays.

Results of the thin-lens model for lenses with NAs of 0.20, 0.45 and 0.9 are shown in
Fig. 3.7 and Fig. 3.8. The WBRT results in the focal plane of aberration-free lenses are
in very good agreement with those of reference methods at NAs of 0.20 and 0.45. At an

(a) Focal plane for NA=0.45 (b) Defocused for NA=0.45
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Figure 3.7: Cross section of the PSF of an ideal thin lens and the PSF of a thin lens that introduces spherical
aberrations calculated using WBRT (left) and a cross section of the intensity in a defocused plane for the ideal
thin lens (right). The lenses have an NA of 0.45, an aperture radius of 5 mm, and the wavelength is 600 nm.
The result of the ideal thin lens is in good agreement with the corresponding Airy disk, the spherical aberration
produces unphysical negative intensities. In the defocused plane the WBRT results do not match the EPDI
results.

NA of 0.9 one notices only a small deviation between the WBRT results and those of the
EPDI. Away from the focal area, the WBRT and EPDI results match when the NA is 0.20,
but not when it increases to 0.45. When spherical aberration is introduced, WBRT gives
unphysical results in the form of spatial regions with a negative intensity, even at an NA
as low as 0.20. In summary, for an ideal thin lens WBRT produces the right PSF until
very large NAs whereas defocused PSFs are only accurate at small NAs and spherical
aberration can cause WBRT to produce negative intensities at all NAs.

3.3.4. CONVERGENCE

We simulated a thin and a thick lens with a varying number of rays to determine the
convergence of WBRT. The difference between the WBRT results and those of an RSED
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(a) Focal plane for NA=0.9 (b) NA=0.20
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Figure 3.8: The PSF for a thin lens with a high NA (left) and a low NA (right). For the low-NA lens the intensity in
the focal plane and in the defocused plane predicted by WBRT match those from the EPDI. The WBRT results
for the low-NA lens with spherical aberrations show unphysical negative intensities. For the high-NA lens the
WBRT results agree fairly well with those from the EPDI. Both lenses are illuminated by a plane wave with a
wavelength of 600 nm and the aperture radii are 2 and 20 mm, respectively.

simulation is quantified using the L2I -difference, defined by

L2I =

√√√√∑
p

(
I ′(p)− I (p)

)2∑
p I ′(p)2 , (3.4)

where I ′(p) is the intensity at pixel p predicted by the RSED and I (p) the correspond-
ing intensity given by WBRT. The results, shown in Fig. 3.9, demonstrate that the L2I -
difference is inversely proportional to the square root of the number of rays (N ). This
convergence rate of order O (N−1/2) is a general property of Monte Carlo integration (see
Section 2.4.3).

3.4. ANALYTICAL MODEL

The numerical results of Section 3.3 suggest that the negative intensities observed in
WBRT simulations, are the effect of an inaccurate model of aberrations. In order to rule
out other causes, e.g., inadequate sampling, we investigate an analytical model based on
WBRT.

The analytical model is derived for the simplified case of a thin lens with only one
spatial dimension perpendicular to the optical axis. The WDF of the one-dimensional
plane wave with spatial frequency kx incident on the lens, is given by

W1(x1,ξ1) = 2πδ(ξ1 −kx ). (3.5)
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(a) Thick lens (b) Thin lens
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Figure 3.9: The L2I -error, defined by Eq. (3.4), of a WBRT simulation is proportional to one over the square root
of the number of rays. The thick lens (left) is Asphere A from Fig. 3.5 with an aperture radius of 20 mm, the thin
lens is the same as used for Fig. 3.8 with an aperture radius of 2 mm. Both lenses have an NA of 0.2.

The one-dimensional aperture is a slit of width 2w with a WDF of

WB (x,ξ) =
{

2
ξ sin[ξ2(w −|x|)] if |x| ≤ w

0 if |x| > w
. (3.6)

The result of the convolution (see Eq. (3.1)) between these two WDFs is

W2(x2,ξ2) =
{

2sin[(ξ2−kx )2(w−|x2|)]
ξ2−kx

if |x2| ≤ w

0 if |x2| > w
. (3.7)

The propagation through the thin (aberrated) lens to the image plane is treated in two
steps. First, the effect of the aberrations is modelled by a coordinate transformation of
the ray direction

W3(x3,ξ3) =W2(x3,ξ3 − f (x3,kx )), (3.8)

where the function f , in accordance with geometrical optics, is the derivative of the
wavefront aberration with respect to the spatial pupil coordinate (x3). For spherical
aberration this is f (x3,kx ) = ax3

3 , with a a constant. The rest of the system can now be
considered to be an ideal imaging system, which maps a spatial frequency in the pupil
plane (ξ3) to a position in the image plane (xi ). Characterizing this mapping by a mag-
nification factor M , the intensity in the image plane is given by

I (xi ) =
∫

W3(x3, xi /M)dx3, (3.9)

=
∫ w

−w
sin

[( xi

M
− f (x3,kx )−kx

)
2(w −|x3|)

]
2

xi
M − f (x3,kx )−kx

dx3. (3.10)
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For the aberration-free case this results in the sinc (sinc(t ) ≡ sin(t )/t ) pattern, famil-
iar from the Fraunhofer diffraction pattern of a square aperture (see, e.g., [44, p. 76])

I (xi ) = 4w2sinc2 [(xi /M −kx ) w] . (3.11)

In the case of aberrations, an analytical evaluation of Eq. (3.10) is nontrivial. A numerical
evaluation of the integral, using the integral function of MATLAB, for different types of
aberrations is shown in Fig. 3.10, along with the result for the aberration free imaging.
Negative intensities can be observed for spherical aberration and coma, whereas the
results for the ideal and defocused systems remain strictly positive.
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Figure 3.10: Numerical solutions of Eq. (3.10) for different aberrations. The half-width of the slit, w , and the
magnification factor, M , are set to one. Both the result for coma and spherical aberrations (Spher.) show
negative intensities, although the minimum intensity for spherical aberrations is only −0.02. When adding
some defocus to the spherical aberration (Comb.), the negativity is more pronounced. The result for the ideal
lens corresponds to Eq. (3.11). Intensity patterns for the ideal lens were calculated for a wide range of defoci.
All these defocused intensity patterns were strictly positive. The figure shows one typical result (Def.).

3.5. DISCUSSION
The fact that the analytical model reproduces the effects observed in the other WBRT
simulations, indicates that the unphysical results are inherent to the underlying model of
WBRT and not related to the (numerical) implementation of the method. In simulations
over a wide range of NAs, the negative intensities were only encountered in the presence
of aberrations. It therefore appears that specifically the model of aberrations in WBRT is
inaccurate.

Before proceeding to discuss the model of aberrations, it is helpful to take a step back
and regard how diffraction is accounted for in WBRT. In every point in the focal region,
rays originating from the entire aperture converge. The summation of the positive and
negative values carried by these rays determines the local intensity. Since the WDF of
an aperture is a fast oscillating function, the values and signs of the rays in WBRT vary
quickly depending on their position and direction after the aperture. It is therefore not
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surprising that small errors in the WBRT model can cause erroneous intensity distribu-
tions.

The most obvious erroneous result observed in WBRT, the negative intensities, can
be explained by the simplified model of aberrations. In the thin element approximation,
aberrations can be introduced using a phase mask. The effect on the WDF is a convolu-
tion between the WDF of the phase mask and the input field (Eq. (3.1)). The WDF of a
function with a complex quadratic exponent, e.g., the quadratic phase function of parax-
ial defocus, reduces to a (double) delta function. As a result, the effect on the WDF of,
e.g., defocus is a coordinate transformation. This coordinate transformation is implicitly
implemented in WBRT by ray tracing and explicitly introduced in the analytical model
by Eq. (3.8). However, coma and spherical aberration have third and fourth order phase
functions. It was shown by Lohmann et al. [45], that the effect of such aberrations in the
exit pupil on the WDF is twofold. First they lead to a coordinate transformation in accor-
dance with geometrical optics (Eq. (3.8)), and second they lead to differential operators
that change the shape of the WDF. For a cubic phase function, this results in a WDF con-
centrated around a quadratic function, but blurred by the Airy integral [46]. In WBRT
the coordinate transformation is implemented but the blurring by the differential oper-
ators is neglected. Our results show that for the simulation of PSFs, this second effect is
of crucial importance. But since in WBRT a ray only carries the local value of the WDF,
one cannot apply the differential operators on the individual samples but must first re-
build the entire WDF. This would complicate the model and increase the computational
load of WBRT to a great extent. Furthermore, an additional simulation method would be
needed to calculate the aberrations. Some WDF simulations might benefit from mod-
elling aberrations by coordinate transformations and differential operators or by a di-
rect convolution with a WDF describing the aberrations, but we consider it infeasible for
WBRT due to the above mentioned reasons. Contrary to hopes expressed elsewhere in
the literature [14, 47], our results show that it is insufficient to model aberrations by mere
coordinate transformations of the WDF.

Although WBRT is unsuited for systems with aberrations, it can be used for modelling
aberration-free systems with moderate NAs. We have validated WBRT for the propaga-
tion of a coherent field through an aperture and a single lens, but expect the method to
hold for any combination of paraxial lenses, mirrors and multiple apertures. As has been
stated before, the effect of paraxial systems (i.e., systems for which all wavefronts, prop-
agators, and optical surfaces are approximated by quadratic functions) on the WDF is a
coordinate transformation [35], which is implemented in WBRT by ray tracing. There-
fore, WBRT in the paraxial limit can be seen as the Monte Carlo integration method of
paraxial wave optical propagators. For the Fresnel propagator for instance, this equiva-
lence is shown numerically in Section 3.3.1 and analytically in Section 2.7.

Interestingly, our results show that WBRT produces accurate results for the focal field
of thick lenses with NAs up to at least 0.2 (see Fig. 3.4a) and thin lenses with NAs as high
as 0.45 (see Fig. 3.7). The quadratic approximation of paraxial optics is inaccurate at an
NA of 0.2 and clearly violated at an NA of 0.45. It thus appears that WBRT can be used
for the simulation of systems beyond the paraxial limit, if they are free of aberrations
and there is no defocus. However, determining the exact limits of the validity of WBRT
for aberration-free thin and thick lenses with and without defocus, requires further re-
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search.
An advantage of WBRT is that the WDF can easily be adjusted for the representa-

tion of spatially partially coherent light. The WDF can be defined in terms of the mutual
coherence function by replacing the product of the fields at the positions x + x ′′′/2 and
x − x ′′′/2 in Eq. (2.106), by their correlation over time [18, 35]. A question that deserves
a separate research (inspired by work of Alonso [48]) is whether the negative intensities
observed in WBRT in the presence of aberrations are less pronounced for partially co-
herent fields. Compared to numerical implementations of paraxial wave propagation
methods (i.e., the Collins integral treated in Section 2.3.2), WBRT has a relatively high
computational demand but an extremely low memory usage, which makes it very suited
for parallel computing. Simulation times can be significantly reduced by using impor-
tance sampling (i.e., placing more samples where the value of the WDF is higher) and
performing calculations on the GPU [14].

3.6. CONCLUSIONS
We have implemented a Wigner-based ray tracing tool for diffraction calculations. The
WDF of the input field is sampled using a Monte Carlo algorithm, the effect of lenses is
assumed to be the coordinate transformations encountered in geometrical optics, and
apertures are treated using the Kirchhoff boundary conditions. We evaluated whether
this model can be applied for the simulation of optical systems. Our simulations lead
to the conclusion that aberration-free systems with moderate NAs can be modelled cor-
rectly. In the presence of aberrations with rms wavefront errors as small as 10−2 wave-
length or NAs of 0.3 and higher, the assumption that the propagation can be modelled
by coordinate transformations breaks down. This conclusion is supported by the results
from an analytical model. We thereby establish that the domain of validity of WBRT is
limited to simulations in and near the paraxial domain.





4
SCALAR HUYGENS-FRESNEL PATH

INTEGRATION

We present a method for simulating multiple diffraction in imaging systems based on the
Huygens-Fresnel principle. The method accounts for the effects of both aberrations and
diffraction and is entirely performed using Monte Carlo ray tracing. We compare the re-
sults of this method to those of reference simulations for field propagation through opti-
cal systems and for the calculation of point spread functions. The method can accurately
model a wide variety of optical systems beyond the exit pupil approximation.

Parts of this chapter have been published in Applied Optics [49].

49



4

50 4. SCALAR HUYGENS-FRESNEL PATH INTEGRATION

4.1. INTRODUCTION
In his book Traité de la lumière [13, p. xxvi-xxvii] from the seventeenth century, Chris-
tiaan Huygens proposed to model the propagation of light by considering secondary
spherical light sources originating on the wavefront. More than a century later Augustin-
Jean Fresnel added the idea of interference to this principle, changed the radiation distri-
bution of the secondary sources, and showed that this could correctly model diffraction
effects [13, p. xxvii-xxviii]. The Huygens-Fresnel principle was put on a solid mathemati-
cal basis with the introduction of the Kirchhoff diffraction integral [13, p. 421-422], which
can be performed over an arbitrarily shaped surface. If diffraction occurs in a plane,
the Kirchhoff diffraction integral can be modified to obtain the Rayleigh-Sommerfeld
diffraction integral (RSDI) of the first kind, described in Section 2.3.1. Staying closer to
the original concept of Huygens by performing the integral over a wavefront, the sec-
ondary sources can be shown to have a simple dipole-like form that only depends on the
local field [50]. The previously mentioned methods are for scalar optics. For vectorial
optics one can also perform a diffraction integral over the wavefront, which has been
used to simulate diffraction in free space [51, 52].

Since all the above mentioned diffraction integrals involve highly oscillatory phase
terms, they are difficult to evaluate numerically. Therefore numerical diffraction simula-
tions often involve approximations of the phase term, like the Collins integrals described
in Section 2.3.2 or Fourier optics [44]. Heisenberg uncertainty ray bending, first pro-
posed by Heinisch and Chou in 1971 [53], completely neglects the phase term and limits
the cone of radiation of the secondary sources based on their distance to the aperture
edge and the Heisenberg uncertainty principle. Clearly this cannot predict destructive
interference, but it can indicate the areas where diffracted light strikes using a ray tracer.
Later, efforts were made to include destructive interference in Heisenberg uncertainty
ray bending by coherently summing the rays [32, 33]. A correct distribution of the sec-
ondary rays over the radiation cones could however not be determined conclusively.

Another series of papers by Fischer, Prahl, and Duncan, implemented the Huygens-
Fresnel principle in a Monte Carlo ray tracer. They mainly treated the propagation in
two-dimensional space, where a point source emits a circular instead of a spherical
wave. The simulations they performed were for free-space propagation, diffraction at
an aperture, and imaging by a phase mask [54–56]. A later paper [57] treats the diffrac-
tion at a small (20 by 20 wavelengths) square aperture in the Fraunhofer regime and the
propagation through a scattering phase plate [57]. The effect of scattering particles in the
focal region was investigated by Ranasinghesagara et al. by ray tracing Huygens sources
from the wavefront in the exit pupil to the focal region [58]. None of these papers [54–58]
used the ray tracer to propagate through one or more lenses.

The effects of diffraction at an aperture in front of a lens were investigated by Ferré-
Borrul and Bosch [59]. They included optical path lengths in an integral based on the
Rayleigh-Sommerfeld integral to calculate the field near the focal region of a singlet. In
this paper [59] and a subsequent paper [60] they only considered rotationally symmetric
problems for a single lens and a single aperture. No details were given on the proce-
dure to determine the optical path length, so it is unclear whether the method can be
applied to non-rotationally symmetric problems. Another method, the vectorial ray-
based diffraction integral (VRBDI) by Andreas et al. [10], simulates the propagation of
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a diffracting beam (i.e., a laser) through a non-diffractive optical system. The method
decomposes a field into point sources or plane waves and uses ray tracing to propagate
these subfields through several lenses.

Like the work by Fischer et al., the scalar Huygens-Fresnel path integration (HFPI)
presented in this chapter combines Monte Carlo ray tracing with the Huygens-Fresnel
principle. But like the work on Heisenberg uncertainty ray bending and the work by
Ferré-Borrul and Bosch and Andreas et al., it is used for simulating the effects of diffrac-
tion in optical systems. Unlike any of the previously mentioned methods, HFPI is de-
veloped to find the field in the focal plane of a multiple-diffracting optical system. The
use of the Monte Carlo ray tracer greatly aids in this effort, since it eliminates the need of
explicit (re)sampling.

We will introduce scalar HFPI in Section 4.2 and compare the results obtained with
HFPI to those from reference methods in Section 4.3. A more detailed comparison be-
tween HFPI and beamlet propagation methods (i.e., the Gaussian beam decomposition
and CODE V’s BSP) is given in Section 4.4. Since HFPI is a computationally intensive
method, we discuss several strategies to decrease the computational load in Section 4.5.
The chapter is concluded by a discussion in Section 4.6 and the conclusions are pre-
sented in Section 4.7.

Scalar HFPI and vectorial HFPI, which is the topic of Chapter 5, are closely related
and share many properties. Since light is a vectorial quantity, Chapter 5 provides a more
fundamental derivation of HFPI, but the concept behind the method and its character-
istics are probably easier understood by reading the present chapter.

4.2. METHOD

This section provides the physical reasoning behind scalar Huygens-Fresnel path inte-
gration and explains its implementation in a Monte Carlo ray tracer. The same reasoning
also explains vectorial HFPI, the topic of Chapter 5, and the more formal derivation pro-
vided in that chapter is also valid for scalar HFPI. The aim of this section is to clearly
explain HFPI, without getting lost in mathematical and physical details.

Figure 4.1: A graphical representation of Huygens-Fresnel Path Integration: At diffracting surfaces (e.g., the
aperture) new sources are initialized and sampled using a ray tracer. The directional amplitude distribution of
each source is determined using the Huygens-Fresnel principle (not explicitly shown in this figure).

That being said, we start this section with the Rayleigh-Sommerfeld diffraction inte-
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gral (RSDI), Eq. (2.46), derived in Section 2.3.1 and repeated below for convenience

E(r1) =− ik

2π

Ï
exp

(
ikρ

)
ρ

ρ̂ · n̂0 E(r0) dS0. (4.1)

The RSDI is over a flat surface S0 with a forward pointing surface normal n̂0, the vec-
tor ρ connects the point of integration r0 to the point of interest r1 and has a length ρ

and normalized direction ρ̂. An interpretation of this integral using the Huygens-Fresnel
principle is that the original field E(r0) initiates secondary sources of the form

G(n̂0,r0,r1) =− ik

2π

exp
(
ikρ

)
ρ

ρ̂ · n̂0. (4.2)

These fields are similar to those of point sources but they include an attenuation factor
that depends on the direction between the observer and the surface normal.

Since we are interested in the propagation of a coherent field through an optical sys-
tem, we could use diffraction integrals such as Eq. (2.46) to propagate the field from sur-
face to surface, initiating new elementary fields at every surface. However, since these
integrals have phase terms that vary on the scale of the wavelength, this can be numer-
ically challenging for macroscopic systems. Furthermore, the RSDI is only valid for flat
surfaces of integration, whereas optical surfaces generally are curved.

In the method presented here, this problem is addressed by a physical interpreta-
tion of the RSDI using Huygens’s principle. The RSDI can be viewed as if every point on
the surface S0 initiates a new point source with a shape defined by Eq. (4.2) and an initial
amplitude and phase given by the local field E(r0). Since the field defined by Eq. (4.2) has
a slowly varying amplitude and a smooth surface of constant phase (i.e., the wavefront),
it can be propagated accurately using geometrical optics (see Section 2.4). Such a prop-
agation step can proceed through several optical elements (i.e., lenses and mirrors) until
an element (e.g., an aperture) causes a sharp cut-off of the field. Since geometrical op-
tics cannot accurately propagate the field past such a plane, we use the field determined
by geometrical optics as the input field for another diffraction integral in the form of
Eq. (2.46). The elementary fields associated with this integral are again propagated us-
ing geometrical optics until another diffracting surface or the output plane is reached.
The electric field in the output plane is determined by the complex sum of all elementary
fields.

We have implemented the principle, of initializing elementary fields at diffracting
surfaces and propagating them between those surfaces using geometrical optics, in a
Monte Carlo ray tracing program. The reader is referred to Section 2.4.3 for the details
on Monte Carlo ray tracing, here we provide an overview of the entire HFPI simulation
procedure.

The starting point of the simulation is a user defined coherent field. If this input field
cannot be propagated using geometrical optics (e.g., a diffracting beam), the input field
initializes elementary fields of the form of Eq. (4.2). These are sampled by starting rays
with random directions and random positions in the input plane. Both the direction and
position coordinates are uniformly sampled. The initial complex amplitude of a path
(ws (m)), where the integer m indexes a Monte Carlo sample point, is proportional to the
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complex amplitude of the electric field (E) in the starting point (r0(m)), multiplied by an
additional obliquity factor from the Huygens-Fresnel principle:

ws (m) ∝p
n0E(r0(m))n̂0 · ρ̂(m), (4.3)

where ρ̂(m) is the initial normalized direction of the ray, n0 is the local refractive index,
and n̂0 is the forward facing surface normal of the input plane. In general, the initial path
value also depends on the local ray density (see Eq. (2.97)), but for uniform sampling this
is a constant factor omitted in Eq. (4.3). For input fields that can be propagated using
geometrical optics (e.g., a plane wave), random geometrical rays are started in the input
plane. The complex amplitudes of these rays correspond to the electric field in their
starting point. For both the diffracting and the non-diffracting input fields, the samples
are then traced through the optical system using regular ray tracing, until they reach a
diffracting surface (e.g., the aperture).

During the ray tracing, the phasor of each path is determined using the optical path
length and further amplitude factors can arise from the ray tracing procedure. The com-
plex amplitude of a sample after a number of propagation steps, is given by

w(m) = ws w f exp[ik0OPL], (4.4)

with w f the amplitude factor due to transmission losses (i.e., based on the Fresnel co-
efficients) and OPL the optical path length. To obtain the contribution to the local elec-
tric field, the complex amplitude of a path that terminates at a diffracting surface or at
the final surface is multiplied with the additional factors wi (m) (Eq. (2.98)) and wp (m)
(Eq. (2.99)) related to the angle of incidence and the intensity law of geometrical op-
tics respectively. The factor wp is not implemented in our numerical implementation of
HFPI since it requires a method like tracing neighbouring rays (see Section 2.4.2) that is
not standard present in Monte Carlo ray tracers. The final complex path amplitude is

we (m) = wp wi ws w f exp[ik0OPL], (4.5)

where the current implementation uses wp = 1. All these factors are explained in detail
in Section 2.4.3.

Every single path that reaches a diffracting surface will initiate a secondary Huygens-
Fresnel source with a field of the form of Eq. (4.2). This secondary field is again sampled
using Monte Carlo techniques, where the samples are distributed uniformly in angu-
lar coordinates, and propagated until the next diffracting surface (e.g., a pinhole) us-
ing regular ray tracing. Note that a path used for HFPI is split up into a bundle of new
paths1 with random directions at each diffracting surfaces whereas a geometrical ray
would continue through such a surface in a straight line. To emphasize this difference,
we prefer to use the term paths instead of rays. The initiation of secondary sources is in-
dependent for each individual path arriving at a diffracting surface. Therefore HFPI does
not require the field at the diffracting surface to be explicitly calculated or resampled.

1Our current implementation only samples one of these secondary paths since the ray tracer cannot split a
single ray into multiple rays. This is in principle only a difference in sampling that does not affect the outcome.
It only increases the computational demand of the implementation.
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The paths are traced further through the system, initializing new sources at every
diffracting surface until the final plane is reached. In the final plane, e.g., the image
plane, the electric field on a grid point is calculated by coherently summing all paths that
arrive within a pixel. The phase of every path obtains a phase shiftφd to approximate the
phase at the centre of the pixel using a local plane wave approximation (see Section 2.4.3
for more details). The electric field at a pixel in the final plane, due to the coherent input
field, is then given by

E(rp ) = 1

A

N∑
m=1

we (m)exp[iφd (m)]ΠSp [r (m)] , (4.6)

where we is the complex amplitude of a path, rp is the coordinate of the pixel center,
r (m) the coordinate of the path at the final plane, A an overall normalization factor, and
ΠSp is a rectangle function that evaluates to one if a path passes through the pixel and to
zero otherwise. The procedure is repeated with more paths until the noise levels in the
results are deemed acceptable. The simulations presented in this chapter require 109 to
1010 paths.

The procedure outlined above is for the propagation of a coherent field through an
optical system. The propagation of incoherent sources (see Section 2.3.3) can be mod-
elled by choosing random points on the input plane and propagating the corresponding
fields individually, using the methods described in this section. For every point on the in-
put plane we can thereby calculate a field at the output plane. By taking the squared ab-
solute amplitude of each of these fields and summing them, we obtain the total squared
amplitude in the output plane due to the incoherent source.

4.3. RESULTS

We show the results of HFPI and compare them to those of reference methods for several
cases. In Section 4.3.1 we show the results for a single diffraction occurring at an aperture
in free space and within an optical system. Both simulations apply the Huygens-Fresnel
principle at a single plane (the aperture). In Section 4.3.2 we use HFPI to propagate a
Gaussian beam through an optical system, utilizing the Huygens-Fresnel principle at the
input plane and the aperture. Section 4.3.3 shows the point spread function (PSF) for a
system with cascaded diffraction, i.e., a system where the field diffracted by one surface,
is again diffracted by one or more of the following surfaces. The system in Section 4.3.3
contains three diffracting surfaces.

For every simulation, the L2-norm of the relative error of the calculated field is shown.
This error is defined as

L2 =

√√√√∑
p

(|E ′(p)−E(p)|)2∑
p |E ′(p)|2 , (4.7)

where E ′(p) is the electric field at the pixel p as calculated by the reference simulation,
E(p) is the result from the HFPI simulation, and the sums run over all pixels. The depen-
dence of the relative error on the number of paths will be discussed in Section 4.3.4.
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4.3.1. DIFFRACTION AT A SINGLE APERTURE
The field after an aperture can be calculated using a diffraction integral like the Rayleigh-
Sommerfeld diffraction integral (Eq. (2.46)). When diffraction occurs at an aperture in
free space, one can directly apply this integral using the field at the aperture as the in-
put field. In such cases, HFPI can be seen as a Monte Carlo integration of the RSDI. For
the case of diffraction at an aperture in free space the factor wp (Eq. (2.99)), which we
normally approximate to be one, can be calculated analytically and accounted for in the
HFPI simulation. Fig. 4.2 shows the results of such a simulation. In the figure the inten-
sity of the field on the optical axis in the case of free space diffraction of a convergent
spherical wave at a circular aperture is plotted. For this configuration, an analytical so-
lution was derived by Aarts et al. [61]. The results from HFPI are in excellent agreement
with the analytical formula (see Fig. 4.2). Note that the point of highest intensity does not
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Figure 4.2: The intensity on the optical axis of a spherical wave (λ = 550 nm, the focal distance is 150 mm
behind the aperture) after diffraction by a circular aperture with a radius of 0.313 mm. The analytical results
were derived by Aarts et al. [61]. The L2-norm of the relative error is 0.01.

coincide with the geometrical optical focal point. This so called focal shift is particularly
pronounced at small Fresnel numbers [62], defined as

F# =
a2

λR
, (4.8)

where a is the aperture radius and R the distance from the aperture to the geometrical
optical focal point. Since HFPI can be seen as a Monte Carlo integration of the RSDI,
which is valid at small Fresnel numbers, it can accurately describe the propagation at
small Fresnel numbers if the factor wp (Eq. (2.99)) is accounted for.

Since the RSDI is derived using the Green’s function for a homogeneous medium, it
cannot be applied directly to apertures within optical systems. A common practice is
to use an exit pupil diffraction integral (EPDI) (see Section 2.5). This group of methods
uses geometrical optics to propagate the light to the exit pupil (the image of the aperture
stop in image space), and uses a diffraction integral from there to propagate the field to
the image plane. In contrast to exit pupil diffraction methods, HFPI introduces diffrac-
tion at the aperture where it is physically present inside the system. It was demonstrated
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by Ferré-Borrul and Bosch [63, 64] that this can be important when modelling optical
systems where the aperture is not in the image space, especially if the output plane sig-
nificantly deviates from the Gaussian image plane.

In order to compare our results with those of an EPDI, we simulate the field in the
image plane of a Cooke triplet. This imaging system, depicted in Fig. 4.3, has a numerical
aperture of 0.2 in image space (see Table 4.1 for the system parameters). Since the

Table 4.1: System parameters of the Cooke triplet designed for an object at infinity. The aperture, indicated
by *, has a radius of 4 mm, the other elements do not clip any ray paths.

Surface Radius Distance Refractive
number (j) [mm] [mm] (j to j+1) index (after j)

0 ∞ ∞ 1
1 21.5 2.00 1.62
2 -124.1 2.62 1
3* ∞ 2.62 1
4 -19.1 1.25 1.62
5 22.0 4.69 1
6 328.9 2.25 1.62
7 -16.7 43.11 1
8 ∞

Figure 4.3: A schematic representation of the Cooke Triplet whose parameters are listed in Table 4.1. The exit
pupil is shown in light blue.

system has a moderate NA and only a single diffracting surface, the exit pupil diffraction
method provides a correct solution. The results of the methods, shown in Fig. 4.4, match
very well.

4.3.2. FIELD PROPAGATION
By applying the Huygens-Fresnel principle in the input plane, HFPI is able to propagate
general coherent fields2 through an optical system. As an example, an aspherical singlet
is used to image a Gaussian beam. The beam has a wavelength of 600 nm and a minimal

2Spatially incoherent sources (see Section 2.3.3) can be propagated using the procedure outlined at the end of
Section 4.2.
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Figure 4.4: The PSF of a Cooke triplet for a plane wave incident at 14° with a wavelength of 546.1 nm. The
normalized intensity calculated using the RSDI in the exit pupil (left) and using HFPI (right) are in very good
agreement. The L2A -norm of the relative error is 0.06. Note that for this example we compute the difference
between the absolute amplitudes (as defined by Eq. (3.3)). Since the object point is off-axis the phase of the
PSF is varying very fast. This makes it numerically challenging to compare the phases computed with different
methods (as is done by Eq. 4.7).

beam waist of 1.5 mm. The distance between the plane of minimal beam waist and the
aperture of the system is 100 m. The circular aperture, with a radius of 20 mm, is immedi-
ately followed by an aspherical singlet with a focal distance of 100 mm. The image plane
is in the focal plane of the singlet. The first surface of the singlet has a radius of 554.7 mm,
the second surface has radius of -67.2 mm and a conical constant of -3.0. A schematic
representation of the system is shown in Fig. 4.5. To generate a reference result, we con-

Figure 4.5: A schematic representation of the singlet and the Gaussian beam (λ= 600 nm) it images. Note that
the distance between the starting plane and the aperture is 100 m and has not been drawn to scale.

volve the Gaussian input beam with the PSF of the system, which is calculated using the
EPDI. Since the PSF is the response of the optical system to a delta function in the ob-
ject plane, this provides us with the correct result. The results of the convolution with
the PSF and the HFPI simulation are in good agreement, as can be seen in Fig. 4.6. Note
that for HFPI, we have used the rotational symmetry to average the results in the output
plane in order to reduce the effect of noise.

4.3.3. POINT SPREAD FUNCTION FOR DIFFRACTION AT MULTIPLE SURFACES
In contrast to the exit pupil diffraction method, HFPI can model diffraction at multiple
surfaces within an optical system. This can be important in modelling systems with low
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Figure 4.6: Cross section of the intensity in the image plane of a singlet imaging a Gaussian beam with a beam
waist of 1.5 mm and a wavelength of 600 nm. The L2-norm of the relative difference between results of the two
methods is 0.08.

Fresnel numbers as encountered in microscopy. As an example we simulate the effect of
placing a pinhole in an intermediate image plane. This technique is sometimes used in
microscopy to limit the light from out of focus planes. The pinhole is usually about the
size of an Airy disk to limit diffraction at the pinhole. Using HFPI, we are able to simu-
late the diffraction occurring at the pinhole and investigate the effect of decreasing the
pinhole size. The system we simulate consists of two spherical lenses and a pinhole with
a diameter of 0.2 mm in the intermediate focal plane between the lenses (see Fig. 4.7).
The first lens has diameters of 0.4 mm, the second lens one of 0.8 mm and the lenses
are 500 mm apart. We use an axial object at infinity with a wavelength of 500 nm. The
second lens focuses the pinhole in a plane 50 mm after the lens. The systems parameters
are listed in Table 4.2. Only the focal distances are listed for the lenses since the system
can be accurately modelled using paraxial optics. For the same reason we use a numer-

Table 4.2: System parameters of the pinhole system for light with a wavelength of 500 nm.

Element Diameter Distance [mm]
[mm] after the element

Lens (f = 250 mm) 0.4 mm 250 mm
Pinhole 0.2 mm 250 mm
Lens (f = 41.67 mm) 0.8 mm 50 mm
Image plane - -

ical implementation of the Collins integral (see Section 2.3.2) to propagate the field from
the input plane to the image plane and thereby obtain a reference result. For the results
shown in Fig. 4.8, the field at the edge of the pinhole has an intensity of 0.8 times the
maximum intensity. In a cross section of the intensity in the output plane, the results
from HFPI and the Collins integral overlap very well, whereas the exit pupil diffraction
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Figure 4.7: A schematic representation of the pinhole system. The system parameters are listed in Table 4.2.

method gives a result that strongly deviates from these results.
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Figure 4.8: Cross section of the intensity in the image plane after the pinhole system calculated using HFPI,
the Collins integral and the exit pupil diffraction integral (EPDI). See Table 4.2 for a system description. The
L2-norm of the difference between results of HFPI and the Collins integral is 0.02.

4.3.4. CONVERGENCE

The convergence of scalar HFPI is investigated by repeating the simulations of the Cooke
triplet (presented in Section 4.3.1) and the pinhole system (presented in Section 4.3.3)
using fewer paths. As a measure for the convergence of the pinhole system we take the
L2-norm of the relative field difference between the HFPI and reference results, as de-
fined in Eq. (4.7). For the Cooke triplet we use the L2-norm of the amplitude differences,
as defined in Eq. (3.3), since the phase in the image plane is varying very fast due to the
off-axis illumination. The results of these simulations are shown in Fig. 4.9. The relative
error (L2) is inversely proportional to the square root of the number of paths (Nt ) for
both the Cooke triplet and the pinhole system. Note that the Cooke triplet has a single
diffracting surface whereas the pinhole system has three diffracting surfaces. This sug-
gests that the 1/

p
Nt convergence is a general property of HFPI simulations. Since the

L2-norm is proportional to the square root of the variance (defined by Eq. (2.88)), this
corresponds to the statement in Section 2.4.3 that the variance of a Monte Carlo integral
is inversely proportional to the number of samples (see Eq. (2.89)).
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Figure 4.9: The L2-norm of the relative error is proportional to one over the square root of the number of paths.
This holds for both the amplitude error (Eq. (3.3)) used for the Cooke triplet and the field error (Eq. (4.7)) used
for the pinhole system.

4.4. HFPI COMPARED TO BEAMLET PROPAGATION

In section 4.3 the results of scalar HFPI simulations were compared to those of the exit
pupil diffraction integral and the Collins integral. These are established simulation meth-
ods, but both conceptually and in its domain of application, HFPI is closer related to
the ray-based diffraction methods described in Section 2.6. In this section we will com-
pare scalar HFPI to a MATLAB implementation of the Gaussian Beam Decomposition
(GBD) [8] and CODE V’s beam synthesis propagation (BSP) [9] for the simulation of the
propagation of a Gaussian beam through a singlet.

We apply the three simulation methods for the propagation of a Gaussian beam
(wavelength of 600 nm, beam waist of 1.5 mm) over 100 m to a circular aperture with
a diameter of 20 mm, followed by a singlet with an NA of 0.1. All the methods perform
a field decomposition at the aperture and do not make use of the exit pupil. The inten-
sity at the aperture and the intensity in the image plane are shown in Fig. 4.10. Since all
methods employ the Kirchhoff boundary conditions (see Section 2.3.4), we expect the
field after the aperture to have a Gaussian profile that is sharply cut off at the aperture
edge. However, both the GBD and BSP have smooth aperture edges. This is the result of
using elementary beams with a finite width. A sharper aperture edge can be achieved by
reducing the beam widths, but narrower beams will diverge stronger upon propagation,
which can cause problems in the simulation [8]. The aperture intensity as predicted by
the GBD also shows some rippling around the intensities predicted by the other meth-
ods. This is an artefact commonly encountered in this method, which can be reduced by
increasing the sampling [8]. The small deviations between the methods in the aperture
do not lead to substantial differences in the image plane (see Fig. 4.10). The error in the
image plane, as a result of the deviations in the aperture, should correspond to the field
produced in the image plane when propagating these deviations. A closer inspection of
these differences suggests that their effect is limited due to their small amplitudes and
because some of them are strongly diffracting.

The fastest method is BSP with a few core seconds, followed by the GBD with about
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Figure 4.10: The normalized intensity of a Gaussian beam propagated through the singlet shown in Fig. 4.5
using three ray-based diffraction methods. The intensity in the aperture (left) changes smoothly for BSP and
the GBD, whereas HFPI shows a sharp cut-off. In the image plane (right) there are only small differences in
the intensity profiles of the three methods. The L2-difference between BSP and the GBD is 0.04 in both the
aperture and the image plane. The L2-difference between the HFPI results and those of the other methods is
0.08 in the aperture and 0.06 in the image plane.

three core minutes. Regarding the GBD we must note that the method is currently imple-
mented in MATLAB and one should be able to improve its computational efficiency by
implementing the GBD in a dedicated ray tracing program and by improving the Gaus-
sian fitting routine. HFPI requires about 8 core hours, which is significantly slower than
the other methods. This is not surprising considering it uses a field decomposition in
smaller, strongly diverging elementary fields. It is however very easy to parallelize HFPI,
so practical simulation times can be significantly reduced.

In simulating the propagation of a Gaussian beam through an aperture and lens, all
the investigated methods produced nearly identical results in the image plane. In the
aperture, BSP and the GBD do not result in a hard cut off of the field and the GBD shows
some rippling. HFPI requires significantly longer simulation times but does not suffer
from these artefacts in the aperture.

4.5. INCREASING THE CONVERGENCE

The primary drawback of HFPI is its high computational demand. In this section several
techniques to increase the convergence of HFPI simulations are discussed. First we treat
the merit of variance reduction schemes, of which importance sampling is a prominent
example. Then we present two variations on HFPI that use intermediate resampling, and
a version of HFPI that associates infinitely extended plane waves to the rays. Finally we
suggest some other methods to increase the convergence.
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4.5.1. VARIANCE REDUCTION SCHEMES
Huygens-Fresnel path integration performs a Monte Carlo integration of a complex func-
tion. This section therefore investigates some of the commonly used techniques to in-
crease the convergence of Monte Carlo integrals.

Monte Carlo integration approximates an integral by averaging random samples of
the integrand:

wN = 1

N

N∑
i=1

f (xi )

p (xi )
≈

∫
f (x)dm x , (4.9)

where xi is an m-dimensional coordinate sampled from a random variable X with a
probability density function (PDF) p(x). The use of vectors serves to emphasize that
this also holds for multi-dimensional integrals (see Section 2.4.3 for more details). The
variance of such an estimator is given by Eq. (2.89):

V [wN ] = V [w (X )]

N
, (4.10)

with

w (X ) = f (X )

p (X )
. (4.11)

Many techniques to reduce the computational load of Monte Carlo integration (e.g., im-
portance sampling) rely on reducing the variance of the estimator (V [w (X )]).

One way to obtain a small variance is by using a p that strongly correlates with the
function f . Since p is a PDF, it should be strictly positive and integrate to one. Nor-
malizing a PDF that correlates perfectly with f involves an integral like the one we are
trying to evaluate (Eq. (4.9)) and therefore defeats the purpose. A PDF which reduces
the variance to zero might not be practically achievable, but any PDF that reduces the
variance of Eq. (4.11) and which is non-zero when f (x) is non-zero, will lead to a better
convergence. This can be as straightforward as using two uniform distributions in two
domains of the integral, and placing more samples in the domain where f (x) is larger.
Intuitively this makes much sense: we simply place more samples in those parts of the
integral that we know to contribute more to our result. This is why the method is known
as importance sampling.

Some other variance reduction schemes change the estimator itself. Suppose we are
integrating a monotonously increasing function f (x) over the scalar variable 0 < x <
xmax. Instead of integrating f (x), one can integrate

f ′(x) = 1

2

(
f (x)+ f (xmax −x)

)
, (4.12)

which would strongly reduce the variance. This is a simple example of what is known
as the antithetic variates method (see, e.g.,[65, p. 1158]). Another strategy modifies the
estimator even stronger, by subtracting from f (x) a function h(x) that approximates f (x)
and for which one knows the integral:∫

f (x)d2x = 〈 f (X )−h(X )

p(X )
〉+

∫
h(x)d2x , (4.13)



4.5. INCREASING THE CONVERGENCE

4

63

where the brackets indicate the expectation value (Eq. (2.87)). If the variance of f (X )−
h(X ) is lower than that of f (X ), this method of control variates (see, e.g., [65, p. 1157-
1158]) will increase convergence.

The question is if these variance reduction schemes can be applied to HFPI. HFPI
performs an integration of complex ray values over different paths between the source
and the detector. The complex integral of HFPI can be written as two real integrals (one
over the real and one over the imaginary part of the ray values). The variance in the sam-
ples is mainly due to the phase terms of these integrals, which depend on the optical path
length and are highly oscillatory. These fast variations make it difficult to apply variance
reduction schemes. The strategies described in this section require prior knowledge of
the function to be integrated and can decrease the convergence if misapplied [65]. This
makes them difficult to implement for HFPI, since the prior knowledge on the function
is very limited, as will be shown using the example of importance sampling.

In the case of importance sampling, the PDF should follow the oscillations of the
function in order to substantially reduce the variance of the estimator. But at the time of
sampling (i.e., when a path is initiated or changes direction) the final phase of the ray is
unknown, which means that one cannot construct a PDF that matches the oscillations
of the function. It might be possible to generate a PDF that correlates with the amplitude
term of the samples (e.g., a PDF that is lower for paths that pass through the edge of an
aperture than for paths that remain close to the optical axis), but its effect on the variance
will probably be fairly small. It therefore appears that a straightforward implementation
of importance sampling to HFPI may not be very promising.

A method that can improve the convergence of HFPI is called stratified sampling.
It divides the domain of integration into subdomains, and samples each subdomain
individually. The total variance of this estimator is the sum of the variances of all the
subdomains [65]. Uniform stratification divides the domain of integration into equally
sized subdomains and samples the integrand with the same number of samples in every
domain. Uniform stratification can only decrease the variance [66] and could be imple-
mented in HFPI by dividing the cone of all possible ray directions into subcones and
initiating a ray into each subcone3. To enhance the gains from uniform stratification
one can combine stratified sampling with algorithms that adjust the stratification on the
fly. These adaptive techniques can substantially increase the convergence but can also
suffer from systematic errors [67]. Alternatively to stratified sampling, one could apply
quasi-Monte Carlo sampling (e.g., digital nets) which could be described as a more so-
phisticated version of stratified sampling (see, e.g., [68]).

Although a detailed study of Monte Carlo integration techniques is beyond the scope
of the current research, we can draw some preliminary conclusions. The use of variance
reduction schemes seems to have little potential for HFPI. However, the implementation
of adaptive sampling techniques may substantially increase HFPI’s convergence.

4.5.2. STEPWISE AND BIDIRECTIONAL HFPI
This section presents two methods that can reduce the computational load of an HFPI
simulation by splitting the simulation into multiple steps. The first method is a step-

3The implementation as described here does require ray splitting, where a single ray initiates multiple new
rays. This is not possible in our current implementation.
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wise HFPI simulation, where the system is split into subsystems and HFPI simulations of
the subsystems are performed consecutively. The second method is bidirectional HFPI
which merges a simulation from the object to the aperture with a simulation from a point
in the image plane to the aperture.

STEPWISE HFPI
In a stepwise HFPI simulation, the system is split into subsystems and HFPI simulations
are performed for every subsystem. The output of the previous step (i.e., subsystem) is
used as the input for the following HFPI step.

Before starting a stepwise HFPI simulation one must divide the system into subsys-
tem. It makes sense to make the divisions at diffracting surfaces, but in principle one
is free to place them almost anywhere. For the pinhole system of Fig. 4.7, which will be
used as an example, one could for instance split the system at the pinhole and the final
aperture to create three subsystems, or at one of those planes to create two subsystems.

After creating the subsystems, the first simulation step is a regular HFPI simulation
from the input plane to the output plane of the first subsystem. After tracing sufficiently
many paths, one obtains the field at this intermediate output plane (e.g., at the pinhole
of our example system). This field then serves as the input field for the second simulation
step. The simulation of this subsystem is identical to the simulation of a general input
field (e.g., a Gaussian beam) in standard HFPI simulations (see Section 4.3.2). Any fol-
lowing subsystem is treated similarly, each time using the output of the previous subsys-
tem to modify the starting values of the paths in the following system, until one obtains
the output field of the final subsystem. The results of two stepwise HFPI simulations of
the pinhole system are shown in Fig. 4.11. For one of the stepwise HFPI simulations the
system was split into two parts at the pinhole. Its results are in very good agreement with
those of a standard HFPI simulation. The other simulation consistent of three steps: one
from the input to the pinhole, one from the pinhole to the final lens, and one from there
to the output plane. The results show some small errors (not related to statistical noise),
the origin of which is still undetermined.

Stepwise HFPI has some advantages over standard HFPI. A first advantage is that
one can combine stepwise HFPI with other simulation methods. This allows the user
to include models for specific optical components into an HFPI simulation. A second
advantage of stepwise HFPI is that one can allocate the computational resources to the
subsystems according to their need. If the first and third step converge quickly, one can
simulate them using fewer paths and focus the computational time on simulating the
second subsystem. This is not possible in standard HFPI, since every initiated path will
be traced until the output plane of the system4. Such a redistribution of the computa-
tional load can be seen as a crude form of stratified sampling, which was described in
Section 4.5.1. The drawback of stepwise HFPI is that it involves a discretization at the
interfaces of the subsystems, which can lead to aliasing in the final result. This can to a
large extent be avoided by determining the initial phase and amplitude of a path through
interpolation between the fields in pixel centres. As long as one avoids splitting up a sys-
tem in a plane with a strongly oscillatory field, stepwise HFPI is a more versatile version

4Using ray splitting in standard HFPI one can allocate more computational resources to the later subsystems
than to the earlier ones (see Section 4.5.4), but this is significantly less flexible than stepwise HFPI.
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(a) Normalized amplitude 2-step HFPI (b) Phase 2-step HFPI
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(c) Amplitude error 2-step HFPI (d) Phase error 2-step HFPI
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(e) Amplitude error 3-step HFPI (f) Phase error 3-step HFPI
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Figure 4.11: The amplitude and phase for stepwise simulations of the pinhole system with cascaded diffraction
of Fig. 4.7. For the 2-step simulation the system is split at the pinhole, for the 3-step system it is split at the
pinhole and the last aperture. The top row shows the normalized amplitude and phase of the 2-step HFPI. The
second and third rows show the errors with respect to the standard HFPI simulation.

of HFPI that can provide computational benefits.

BIDIRECTIONAL HFPI
Bidirectional HFPI is based on the observation that a ray follows the same path when
traced forward, as when traced backward (i.e., from image to object). Standard HFPI
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simulations trace rays from the object to the aperture and then continue to the image
plane. In bidirectional HFPI, this is split into a forward simulation from the object to a
diffracting plane, and backwards simulations from each point of interest in the image
plane to the same diffracting plane.

Let us consider how the field in a point of interest in the image plane is calculated
using bidirectional HFPI. First a forward simulation is performed to calculate the field at
the centres of the pixels in the aperture due to the field in the input plane. We denote
the calculated complex field at pixel m by Am,fw. Then the backwards simulation is per-
formed, tracing paths from the point of interest in the image plane until the aperture.
This also results in a complex value for every pixel in the aperture: Am,bw. Multiplying
the two complex values for one pixel

Am = Am,fw Am,bw, (4.14)

gives the contribution to the field in the point of interest, from all paths that pass from
the object through that particular pixel. The total electric field in the point of interest ri

is calculated by summing the contribution from all pixels:

E(ri ) =
∑
m

Am,fw Am,bw. (4.15)

This method of bidirectional HFPI is schematically depicted in Fig. 4.12.

Figure 4.12: A graphical representation of bidirectional HFPI. Both the forward and backwards simulation
result in a complex value at every pixel in the aperture plane. The field in the point of interest is then calculated
by multiplying the two values at every pixel and then summing over the pixels (see Eq. (4.15)). The figure shows
how the field on the optical axis in the image plane due to an off-axis object point is calculated.

Bidirectional HFPI calculates the field at distinct (user defined) points in the output
plane, e.g., at ten unequally spaced points on the line y = 0. In contrast, a regular HFPI
simulation calculates the field on a uniform square grid in the output plane. If the user
does not require knowledge of the field on the entire grid (e.g., due to rotational symme-
try of the system), bidirectional HFPI can significantly decrease the computational time
by only tracing the paths necessary to calculate the field in the points of interest. Like
stepwise HFPI, bidirectional HFPI involves a discretization of the field in the intermedi-
ate plane.

The Cooke triplet, shown in Fig. 4.3, is simulated with bidirectional HFPI and the for-
ward and backward simulation are performed from object to aperture and image plane
to aperture respectively. The simulation is performed for different field positions and
with different discretizations at the aperture. The results are shown in Fig. 4.13. For this
system, the results agree with the HFPI results when using a grid at the aperture of 40 by
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40 pixels or more. One can check the convergence of a bidirectional simulation by either
redoing the simulation with a different number of grid points, or by eliminating part of
the grid points.

(a) Cross section of PSF for an object at 0°.
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(b) Cross section of PSF for object at 6.9°.
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Figure 4.13: Comparison between the HFPI results and the bidirectional HFPI results for the Cooke triplet of
Table 4.1. The bidirectional simulations are performed with a grid of 10x10, 40x40 and 100x100 pixels in the
aperture plane, which is the plane where the forwards and backwards simulations end. The origin of the plot
for the off-axis simulation, Fig. b, lies at y = 6.050 mm. The results of a simulation with the exit pupil diffraction
integral are also shown.

For a system with multiple diffracting surfaces, one can either include a diffracting
surfaces in the backward (or forward) simulation or combine bidirectional HFPI with
stepwise HFPI described in Section 4.5.2. The results of both methods for the pinhole
system (see Fig. 4.7), which has three diffracting surfaces, are shown in Fig. 4.14.

We can draw some interesting conclusions from the bidirectional HFPI simulation
of the Cooke triplet (Fig. 4.13). The only diffracting plane in this simulation is at the in-
terface between the forward and the backward simulation. Although we performed the
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Figure 4.14: A cross section of the PSF for the pinhole system of Fig. 4.7. For the bidirectional method (bidir.)
the interface between the forward and the backward simulation is at the pinhole. For the combined method
(comb.) the stepwise simulation consists of a first simulation from the object to the pinhole followed by a simu-
lation from the pinhole to the second lens (which is the final diffracting surface), and the backward simulation
is from the image plane to the second lens. Both methods use a grid of 101x101 for the backward simulation.
The results for plane wave HFPI (see Section 4.5.3) are also shown.

simulations using Monte Carlo ray tracing, one could also obtain the field in the aper-
ture by standard ray tracing combined with ray aiming. The forward simulation can
be performed by shooting a ray from the object point to every grid point in the aper-
ture. Equivalently, the backwards propagation can be achieved by tracing rays from the
point of interest to the grid points (or vice versa). The success of bidirectional HFPI thus
hints at the potential of an implementation of HFPI that employs standard ray tracing
combined with ray aiming instead of Monte Carlo ray tracing. Such a non-stochastical
implementation of HFPI might require the tracing of fewer rays, but can lead to wrong
results when the aperture is not sampled densely enough.

4.5.3. PLANE WAVE HFPI
The concept of plane wave HFPI (PW-HFPI) is to approximate the spherical wavefronts
of the secondary HFPI sources by plane waves. This may appear to be a very bold ap-
proximation, but it turns out to be very effective within the focal region of most systems.

Suppose we are simulating a system with an aperture in image space and we are
interested in finding the field in the focal region. In an HFPI simulation, rays would be
propagated from the object to the aperture, where they would initiate secondary rays.
In Fig. 4.15 one such ray and the corresponding secondary rays are drawn. In a PW-
HFPI simulation the primary ray continues propagating until the output plane, where it
is assumed to carry a plane wave that affects all pixels.

The error made by approximating the spherical wave of radius R by a plane wave can
be calculated using the quantities shown in Fig. 4.15. The distance from a point at the
edge of the aperture to a point a distance x away from the optical axis in the image plane
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Figure 4.15: Plane wave HFPI approximates the spherical field of a secondary source as a plane wave. Usually
the region of interest is only a few wavelengths large, much smaller than x pictured above.

is

s =
√

R2 +d 2 ≈ R + d 2

2R
, (4.16)

where we have used a second order Taylor expansion around d = 0. When using the
plane wave approximation, this length is approximated by R. The error in the length is
then

∆s =
d 2

2R
= x2R

2z2 , (4.17)

where we have used that x

d
= z

R
, (4.18)

for
p

d 2 −x2 ¿ z. In practise we are only interested in a very small region around the
optical axis. The Airy disk is the circular area that includes the central peak and the first
zero of a PSF. It has a radius approximated by [16, p. 469]

xAiry = 0.61
zλ

a
, (4.19)

with λ the wavelength in the medium. Taking twice this radius as our area of interest,
applying Eq. (4.17) and dividing by the wavelength, one obtains the following error for
the optical path length (expressed in wavelengths)

∆sλ ≈ 0.7
λR

a2 = 0.7

F#
, (4.20)

with F# the Fresnel number [13, p. 417]. The plane wave approximation is thus valid for
systems with a Fresnel number substantially larger than one.

The results of a PW-HFPI simulation, for the PSF calculation of the earlier presented
Cooke triplet (see Table 4.1), are shown in Fig. 4.16. By using PW-HFPI instead of HFPI,
the simulation times can be reduced from over 2 core-hours to about two core minutes
while improving the accuracy (see Table 4.3). This performance gain is due to the fact
that in a PW-HFPI simulation each ray contributes to all pixels, whereas for a regular
HFPI simulation each ray only affects a single pixel.
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(a) Amplitude (b) Absolute error of complex field
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Figure 4.16: Results for plane wave HFPI simulations of a Cooke triplet (see Table 4.1, F# = 865) for a plane wave
incident at 0° with a wavelength of 546.1 mm. The error is with respect to the exit pupil diffraction integral. The
PW-HFPI simulation uses 105 paths and has an L2-error of 2.0%.

Table 4.3: Errors and convergence times (on a 2.5 GHz Intel Xeon CPU) of plane wave HFPI compared to HFPI.
The methods are used to simulated the PSF of the Cooke triplet (see Table 4.1) for on-axis illumination at a
wavelength of 546.1 mm. The listed L2-errors are with respect to results from the EPDI.

Method Number of paths CPU time L2-error
HFPI 109 2h17m 3.5 %
PW-HFPI 105 2m11s 2.0 %
PW-HFPI 104 13.6s 6.6 %
PW-HFPI 103 1.5s 19.9 %

To investigate the effect of the Fresnel number on the accuracy of PW-HFPI, the aper-
ture size of the Cooke triplet is reduced from 4 mm to values between 0.04 mm and 1.0
mm, thereby reducing the Fresnel number from 865 to values between 0.06 and 32. For
PW-HFPI, the L2-differences with respect to the EPDI results increase with decreasing
Fresnel numbers, whereas they remain constant for the HFPI results (see Fig. 4.17). As-
suming that the results for the Cooke triplet can be generalised to other systems, PW-
HFPI is accurate when simulating systems with a Fresnel number higher than roughly
10. For the results shown in Fig. 4.17, the error of PW-HFPI is purely in the phase of
the field. The difference between the amplitude of the PW-HFPI and the EPDI results,
quantified in the L2A-difference of Eq. (3.3), is in fact constant at 0.006 for all Fresnel
numbers.

Plane wave HFPI can also be applied in systems with multiple diffracting surfaces.
The result for such a simulation of the pinhole system (see Fig. 4.7) are plotted in Fig. 4.18.
For this simulation the first two diffracting surfaces initiate secondary sources according
to the standard HFPI procedure. At the final diffracting surface however, the algorithm
does not initiate secondary sources and the paths are allowed to propagate further to
the image plane (unless they are blocked by the aperture), where a plane wave that af-
fects all pixels is associate to every ray. The error made in this approximation depends
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(a) Amplitude at y = 0 for F# = 0.06 (b) Phase at y = 0 for F# = 1.0
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(c) Error as a function of the Fresnel number
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Figure 4.17: The influence of the Fresnel number on the accuracy of PW-HFPI is demonstrated with simulation
results for the PSF of the Cooke triplet (see Table 4.1) with aperture sizes varying from 0.04 mm to 1.0 mm
(corresponding to 0.06 ≤ F# ≤ 32). The amplitude predicted by PW-HFPI matches those simulated using HFPI
and the EPDI for Fresnel numbers as small as 0.06 (top left), whereas the phase of the PW-HFPI simulation
does not match that of the other methods for Fresnel numbers as high as 1 (top right). The bottom plot shows
the L2-difference with respect to the EPDI, calculated over a square area with sides of 2λ/NA, for HFPI and
PW-HFPI. The illumination is by a plane wave parallel to the optical axis with a wavelength of 546.1 mm.

on the Fresnel number of the subsystem from the final diffracting surface to the image
plane, which in this case is 6.4. From the results obtained for the Cooke triplet (shown
in Fig. 4.17) we can expect PW-HFPI to give accurate results for the amplitude of the
field, but have some residual errors on the phase. Indeed the L2-difference between a
PW-HFPI simulation with 106 rays and those of the reference method is 0.09, whereas
the L2A-difference is only 0.02. As with the Cooke triplet with a low Fresnel number (see
Fig. 4.7), the error of the PW-HFPI results are mainly in the phases at the edge of the PSF
(see Fig. 4.18).

Plane wave HFPI can be interpreted as if every point in the exit pupil emits a plane
wave in a direction perpendicular to the local wave front. This is exactly the physical in-
terpretation Wolf gave for the exit pupil diffraction integral now known as the Richards-
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(a) Amplitude at x = 0 (b) Phase at x = 0
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Figure 4.18: A cross section of the amplitude (left) and phase (right) of the PSF for the pinhole system of Fig. 4.7.
The L2-difference between the PW-HFPI results and the results of the Collins integral is 0.09 whereas it is only
0.02 for the HFPI results. Note that the error of the PW-HFPI results is mainly in the phase.

Wolf integral [5]. For systems with a single diffracting surface PW-HFPI is thus approxi-
mately a Monte Carlo integration of the Richards-Wolf integral5, which is known to pro-
duce inaccurate results for systems with low Fresnel numbers [69].

The success of PW-HFPI appears to make the other methods described in this section
irrelevant, but the plane wave simulation does have its limitations: it can only be applied
to simulate the field near a focal plane. Still, in many cases one is interested in getting
the field at a final focal plane, and in such cases, this approach is extremely powerful.

4.5.4. IDEAS FOR OTHER CONVERGENCE STRATEGIES
Intuitively one would expect that diffraction from an aperture is primarily induced by
the electric field close to the aperture edge, whereas the field passing through the center
of the aperture is left undisturbed. The geometrical theory of diffraction and Heisen-
berg uncertainty ray bending (both briefly introduced in Section 2.6) are both based on
this principle. It is worth considering applying this concept to HFPI in order to achieve
faster simulation times. However, the example of Heisenberg uncertainty ray bending
demonstrates that this is far from straightforward.

One idea for HFPI is to divide the aperture into an undisturbed part, through which
the rays can propagate according to geometrical optical laws, and a diffracting part where
secondary sources are initiated. These two regions can have a smooth transition, along
the lines of the division proposed by Baladron-Zorita [70], where part of the power of
the ray propagates undisturbed and the rest of the power initiates a secondary source.
If this were successful one can envision combining it with the approximation, as done
by Lit [7] in combination with the geometrical theory of diffraction, that only the undis-
turbed field can be diffracted by apertures further along in the optical system. How-
ever, no undisturbed field should be allowed to propagate until a focal region since the

5The Richards-Wolf integral is actually formulated for calculating the vectorial PSF. In Chapter 5 it will be
shown that PW-HFPI is also applicable to vectorial optics.
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undisturbed geometrical optical rays would intersect there, rendering geometrical op-
tics invalid. Such an extension of HFPI could have the potential to considerably reduce
the computational load, particularly in the case of cascaded diffraction, but does require
substantial further research.

Two more straightforward methods are presented below. They have not been studied
in detail since they require a substantial modification of the current numerical imple-
mentation of HFPI. When implementing HFPI anew, they may however be useful.

We call the procedure of splitting one initial ray into multiple secondary rays ray
splitting. For HFPI ray splitting would occur at the diffracting surfaces. As with stepwise
HFPI, it allows dedicating computational resources to subsystems according to their
need. Ray splitting is however less flexible than stepwise HFPI since, once initiated, a
ray will continue through all the subsequent subsystems. Ray splitting would therefore
allow the later part of the system to have a higher sampling than the earlier part, but not
the other way around.

We denote another strategy that involves initiating multiple rays as grid tracing. Where
for ray splitting every ray only carries a local field, grid tracing would involve approximat-
ing the field between rays, thereby reducing the number of rays one needs to trace. The
disadvantage of this procedure is an increase in the complexity of the algorithm.

4.6. DISCUSSION
With Huygens-Fresnel Path Integration we perform diffraction calculations beyond the
paraxial domain and beyond the exit pupil approximation. The method introduces dif-
fraction in the planes where it physically occurs (e.g., in the aperture plane instead of in
the exit pupil) and can account for multiple diffracting surfaces. By choosing the input
field as one of the diffracting surfaces, HFPI can model the propagation of fields which
cannot accurately be propagated using geometrical optics (e.g., a Gaussian beam in its
focal plane). Since HFPI uses ray tracing, the effects of aberrations and thick optical
components are automatically included in the model. Therefore HFPI can, for instance,
be used to simulate the propagation of a Hermite-Gaussian beam through an aberrated
system with multiple diffracting surfaces.

Another advantage of HFPI is its robustness. It does not require resampling in in-
termediate planes, a common cause of errors in simulations. Since the sampling in the
input plane is performed using a Monte Carlo method, it is very easy to see if the simu-
lation has converged to a solution. The fact that a single method is used for simulating
the entire system greatly limits the input required from a user. In fact, the only critical
choice when using the method is determining which surfaces should be considered as
diffracting surfaces.

A drawback of the method is the computational cost. Calculating the PSF for the pin-
hole system with cascaded diffraction (see Section 4.3.3) required 109 paths and 4 core-
hours (on a 2.5 GHz Intel Xeon CPU) in our current implementation. Since the error in
the calculated amplitude is inversely proportional to the square root of the number of
paths, one can obtain a result with about ten times the statistical noise by tracing 107

paths in a few core minutes. The general structure of the PSF can already be seen from
such a simulation. Practical simulation times can be further reduced by distributing a
simulation over multiple cores. It is very easy to parallelize the method since every path
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is traced completely independently and the data transmission is small. This is partic-
ularly relevant in view of the increasing availability of cloud computing services, which
provide a large number of cores at very low effort and cost, even for infrequent users. Al-
though no cloud services were used for the work in this thesis, simulations in this chapter
were distributed over multiple computers and every computer used multiple cores.

The simulation time can also be reduced by adjusting the method or its numeri-
cal implementation. Regarding the numerical implementation, importance sampling
seems to be of little use due to the highly oscillatory nature of HFPI, but adaptive, strat-
ified, or quasi-Monte Carlo sampling techniques may significantly increase the con-
vergence of HFPI. A substantial adjustment of the method would involve dividing the
field into an undisturbed and a diffracted part and only initiating secondary rays in the
diffracted part. This has not yet been attempted and requires substantial further re-
search. Some other alterations of the method have been investigated and shown to be
effective. Bidirectional and stepwise HFPI split the simulation into multiple steps. They
can reduce the simulation time for specific cases, but have the disadvantage of having to
use an explicit intermediate resampling. The success of bidirectional HFPI indicates that
a non-stochastical implementation of HFPI could be interesting for diffraction simula-
tions. Plane wave HFPI reduces the simulation times by about two orders of magnitude,
by associating a plane wave to every path in the image plane. It can be used for simulat-
ing the field in the focal plane of systems with single or multiple diffracting surfaces.

Although HFPI is a robust method for propagating the scalar field through a system
of lenses, mirrors and (multiple) apertures, there are some underlying assumptions that
limit the domain of applicability. The method as described in this chapter is limited to
propagating the scalar field, but this limitation will be removed in Chapter 5. Another
restriction is that all apertures should be much larger than the wavelength because of
the use of the Kirchhoff boundary conditions. Furthermore, the light reflected at lenses
is neglected and only the forward propagating field is taken into account. Finally, the
diffraction is modelled to enter the system at distinct surfaces and it is assumed that all
propagation distances are much larger than the wavelength. As a consequence we do
not expect HFPI to be able to fully describe diffractive optical elements. However, we do
anticipate the method to be able to handle phase and amplitude gratings within the thin
element approximation.

4.7. CONCLUSION
We have introduced Huygens-Fresnel path integration, a method that incorporates dif-
fraction effects in a Monte Carlo ray tracing program, and we validated it against refer-
ence methods. By using the Huygens-Fresnel principle consecutively we can simulate
the effect of multiple diffracting surfaces in paraxial and non-paraxial systems. The the-
ory for the method was developed by combining the Rayleigh-Sommerfeld integral with
ray tracing. Since the computational load is the main drawback of HFPI, we presented
several approaches to improve the convergence and demonstrated a decrease in simula-
tion times by over two orders of magnitude. This makes HFPI not only a robust method
for simulating (cascaded) diffraction and aberrations, but also a practically applicable
simulation tool.



5
VECTORIAL HUYGENS-FRESNEL

PATH INTEGRATION

The ray-based simulation method presented in Chapter 4 is extended to vectorial optics.
Since light is a vectorial phenomenon, this extension offers the possibility of a more fun-
damental derivation of the method. The result is a Monte Carlo based simulation method
that accounts for not only aberrations and (cascaded) diffraction, but also polarization.
This is important when simulating a system with a high numerical aperture.

Parts of this chapter have been published in the Journal of the American Optical Society A (JOSA-A) [71].
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5.1. INTRODUCTION
One of the main limitations of Huygens-Fresnel path integration as presented in Chap-
ter 4 is that it treats light as a scalar phenomenon. This chapter provides the extension
of HFPI to vectorial optics.

The main motivation for the development of a vectorial method is the desire to sim-
ulate systems with high numerical apertures. These systems are characterised by the oc-
currence of large angles between the optical axis and the rays in the image space. Since
the orientation of the electric field (i.e., the polarization) is perpendicular to that of the
rays, the polarization is far from uniform in the image space and a vectorial theory is
needed to accurately describe the field in the focal plane.

A second motivation for developing vectorial HFPI is that it allows for a more funda-
mental derivation of the underlying theory. Such a derivation is provided in Section 5.2,
where HFPI is expressed as a cascaded diffraction integral.

The numerical implementation of vectorial HFPI, explained in Section 5.3, is vali-
dated in Section 5.4. This is done by comparing HFPI results to those of BSP and VRBDI,
two other ray-based diffraction methods (see Section 2.6).

In Section 5.5 it is shown that combining HFPI with a plane wave approximation, as
introduced for scalar HFPI in Section 4.5.3, can reduce the computational load by more
than two orders of magnitude.

The discussion in Section 5.6 conceptually compares HFPI with a range of other
methods. The properties of vectorial HFPI are not discussed in detail since they are very
similar to those of scalar HFPI, which were already presented in Section 4.6. The main
findings presented in this chapter are summarized in Section 5.7.

5.2. THEORY
The core idea of our method is to successively propagate the kernel of the m-theory
diffraction integrals (see Section 2.3.1) using geometrical optics. In Section 5.2.1 it will
be shown that these diffraction integrals can be interpreted as a decomposition of the
electric field into the electric fields of magnetic dipoles and that these elementary fields
are of such a form that they can be propagated using geometrical optics. In Section 5.2.2
we will apply this diffraction integral multiple times, to arrive at a cascaded diffraction
integral for multiple diffraction in an optical system. In Section 5.2.3 we elaborate on the
choice for the m-theory diffraction integral and the relation between the vectorial and
the scalar theory for HFPI.

5.2.1. GEOMETRICAL PROPAGATION OF THE INTEGRAL KERNEL

Our derivation is based on the integrals of the m-theory, Eqs. (2.47) and (2.48), repeated
below

E (r1) =− ik

2π

Ï
exp

(
ikρ

)
ρ

ρ̂× (n̂0 ×E ) dS0,

H(r1) = −ik2

2πωµ

Ï
exp

(
ikρ

)
ρ

ρ̂× [
ρ̂× (n̂0 ×E )

]
dS0,
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where ρ̂ is the vector from the point of interest r1 and the integration variable r0 and
n̂0 is the surface normal pointing towards the half-plane containing r1. These integrals
are only valid within a homogeneous medium. Since optical systems are only piece-
wise homogeneous, these diffraction integrals cannot describe the propagation through
an entire system. Applying separate diffraction integrals for every homogeneous region
(e.g., a lens or free space) is numerically challenging and requires the solution of bound-
ary value problems at every interface (e.g., between glass and air) to determine transmis-
sion losses. Furthermore, interfaces are frequently curved, whereas Eqs. (2.47) and (2.48)
require a flat plane to eliminate a term proportional to the curl of the electric field from
the integral. To simulate optical systems comprised of multiple optical media we there-
fore choose a different approach based on a physical interpretation of these diffraction
integrals.

Formula (2.47, 2.48) are integrals over r0 of the following two vector fields

E (m)(r0,r1,E (r0)) ≡−2ikGH ρ̂× (n̂0 ×E (r0)) , (5.1)

H (m)(r0,r1,E (r0)) ≡ −2ik2

ωµ
GH ρ̂× [

ρ̂× (n̂0 ×E (r0))
]

, (5.2)

with GH the Green’s function of the Helmholtz equation given by Eq. (2.39). These are
equal to the magnetic and electric far field of a magnetic dipole m in r0 (which is why
the name m-theory was introduced by Karczewski and Wolf [72])

E (md)(r0,r1,m(r0)) =−k2
√
µ

ε
GH ρ̂×m, (5.3)

H (md)(r0,r1,m(r0)) =−k2GH ρ̂× (ρ̂×m), (5.4)

(see, e.g., Jackson [73]), with dipole moment

m(r0) = 2i

k

√
ε

µ
n̂0 ×E (r0). (5.5)

The field predicted by the m-theory, Eq. (2.47), is therefore the same as the field of in-
finitely many magnetic dipoles, located in the integration plane S0

E (r1) =
Ï

E (md)(r0,r1,m(r0)) dS0, (5.6)

where the strength and direction of the dipoles are given by Eq. (5.5).
The diffraction integrals of the m-theory can be seen as a threefold process. First,

the decomposition of the field in S0 into magnetic dipoles according to Eq. (5.5), then
the propagation of these dipole fields through a homogeneous medium to the point r1

using Eq. (5.3) or (5.4), and finally adding up all these fields coherently.
Since these subfields are equivalent to the fields of magnetic dipoles, they have the

properties of physical electromagnetic fields (e.g., being divergence free). Although this
can help in physically understanding the diffraction integral, the decomposition is pri-
marily useful if the subfields are easier to propagate than the original field. It turns out
that the elementary fields of the m-theory integrals can be propagated through a series
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of homogeneous media (i.e., an optical system) using geometrical optics, due to several
properties of the dipole subfields. A more detailed description of geometrical optics is
provided in Section 2.4, but for the current discussion it suffices to know that in geo-
metrical optics the field is transported using rays along paths that are perpendicular to
surfaces of equal phase, and that the field associated with a ray locally has the properties
of a plane wave.

The first useful property of the dipole subfield is that the phases of E (md) and H (md)

are determined by the phase of the Greens function (exp(ikρ)). The surfaces of constant
phase are therefore spheres around the point r0. The phase changes fastest along the
gradient of the phase φ,

∇φ= kρ̂, (5.7)

which defines vectors perpendicular to the surfaces of constant phase and with a mag-
nitude equal to the wave number. This is consistent with the concept of a ray in geomet-
rical optics. The second useful property is that both E (md) and H (md) are perpendicular
to ρ̂, the direction of phase propagation. Furthermore, the local electric and magnetic
field can be obtained from each other by

E (md) =−
√
µ

ε
ρ̂×H (md), (5.8)

H (md) =
√
ε

µ
ρ̂×E (md), (5.9)

which are also the equations that relate the fields of a plane wave (see, e.g., Jackson [73]).
We thus conclude that the fields of a magnetic dipole, Eqs. (5.3, 5.4), and thereby those of
the kernel of the m-theory, Eqs. (5.1, 5.2), can be calculated using a geometrical optical
propagator G̃ . Using this propagator, the electric field of Eq. (5.3) can be written as

E (md)(r0,r1,m(r0)) = G̃

[−k2

4π

√
µ

ε
m(r0),r0,r1

]
. (5.10)

In free space this propagator has the simple form

G̃ [A,r0,r1] = (r1 − r0)× A
exp(ik|r1 − r0|)

|r1 − r0|
, (5.11)

which reduces Eq. (5.10) to Eq. (5.3). The advantage of propagating the magnetic dipole
field by a geometrical optics operator is that the propagation is no longer restricted to a
single homogeneous medium. Whereas Eq. (5.3) was limited to free-space propagation,
Eq. (5.10) can propagate the field through a series of optical components (e.g., lenses).

Since we are not so much interested in propagating dipole fields as we are in the m-
theory diffraction integral, we use Eq. (5.10) to write the diffraction integrals of Eqs. (2.47,
2.48) as

E (r1) =
Ï

S0

G̃

[−ik

2π
n̂0 ×E (r0),r0,r1

]
dS0, (5.12)

H(r1) =
Ï

S0

√
ε

µ
ρ̂×G̃

[−ik

2π
n̂0 ×E (r0),r0,r1

]
dS0. (5.13)
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Again, the advantage of using Eq. (5.12) over the integral of Eq. (2.47) is the ability to
propagate the field through an optical system with multiple lenses. Since Eq. (5.12) is
based on the free-space integral of Eq. (2.47), the implicit assumption is that the field
in the medium after the plane of integration can be calculated as if the medium were to
continue to infinity. At optical interfaces (i.e., lenses) we neglect the part of the field that
is reflected and only consider the forward propagating field (with an amplitude adjusted
by the Fresnel equations). Although the Fresnel equations provide the reflected fields
and these could in principle be propagated using our method, their influence is typi-
cally small whereas the associated computational cost would be substantial. We there-
fore only consider the direct path, neglecting (multiple) reflections. Under this minor
assumption, the geometrical propagation of the integral kernel thus allows us to propa-
gate a polarized field at the input surface S0, through a (sub)system.

5.2.2. CASCADED DIFFRACTION INTEGRAL
By combining the diffraction integral with a geometrical optics propagator we can cal-
culate the field after a set of lenses and account for the diffraction caused by the initial
field (e.g., if the initial field is a top hat or a diffracting laser beam). One can accurately
describe the propagation through a series of elements, as long as the geometrical op-
tical operator is valid. In broad terms, geometrical optics cannot accurately describe
the propagation of fields that change strongly in amplitude or phase over a small spatial
dimension other than the phase change in the direction of propagation (for more de-
tails see Section 2.4). Apertures often cause these abrupt changes in the field. In such a
plane one needs to perform another decomposition into secondary sources and prop-
agate them using geometrical optics. Labelling the initial plane by S0 and the second
diffracting plane by S1, we can summarize this mathematically by

E (r2) =
Ï

S1

Ï
S0

G̃

[−ik

2π
n̂1×

G̃

[−ik

2π
n̂0 ×E (r0),r0,r1

]
,r1,r2

]
dS0dS1. (5.14)

Any further planes where the geometrical optical propagator breaks down, can be treated
in a similar manner. The magnetic field can be obtained by changing the final propaga-
tor to the one defined by Eq. (5.13)

H(r2) ≈
Ï

S1

Ï
S0

√
ε2

µ
ρ̂×G̃

[−ik

2π
n̂1×

G̃

[−ik

2π
n̂0 ×E (r0),r0,r1

]
,r1,r2

]
dS0dS1. (5.15)

The result is a cascaded diffraction integral that fully accounts for the diffraction intro-
duced at multiple surfaces.

5.2.3. DISCUSSION
With some minor adjustments, the derivation presented here can also be used for scalar
HFPI. In that case one would use the Rayleigh-Sommerfeld diffraction integral (see Sec-
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tion 2.3.1) instead of the m-theory. This results in elementary fields with the form of
Eq. (4.2), repeated below

E (RS)(r0,r1,E(r0)) =−2ikGH ρ̂ · n̂0E(r0). (5.16)

This is related to the elementary vectorial fields, Eq. (5.1), by the transformation

ρ̂× (n̂0 ×E (r0)) → ρ̂ · n̂0E(r0). (5.17)

Both these sources radiate strongest in the direction perpendicular to the surface of inte-
gration, but their attenuation for other directions is slightly different. Since both Eq. (4.2)
and (5.1) depend on GH , the Greens function for the Helmholtz equation, their wave-
fronts and attenuation upon propagation are identical. The formalism of the cascaded
diffraction integral developed in this section can therefore also be applied to scalar HFPI,
resulting in

E(r1) =
Ï

S0

G̃ s
[−ik

2π
E(r0)n̂0,r0,r1

]
dS0. (5.18)

where for free space the propagator is a spherical wave with an amplitude that reduces
for directions away from the surface normal

G̃ s [An̂0,r0,r1] = An̂0 · ρ̂
exp(ikρ)

ρ
. (5.19)

Scalar HFPI is based on the Rayleigh-Sommerfeld and vectorial HFPI on the m-theory
integral(s), but these are only two of the many diffraction integrals in optics. One ad-
vantage of the RSDI and the m-theory integrals over many other diffraction integrals is
that their kernels only depend on the electric field. Many vectorial diffraction integrals
also need the magnetic field and many scalar integrals depend on the derivative of the
electric field. Additionally tracing the magnetic field or calculating the derivative of the
electric field would needlessly complicate the algorithm. Many vectorial diffraction in-
tegrals (e.g., the Stratton-Chu [74] and the vectorial Kirchhoff integral [73, p. 482–485])
are incompatible with the concept of HFPI due to a more fundamental problem. Since
in HFPI the kernel of the integral is interpreted as the field of a secondary source, this
field should be divergence-free. Second, since geometrical optics is used to propagate
this field, the local electric and magnetic field should be perpendicular to the direction
of phase propagation. For many vectorial diffraction integrals this is not the case.

An obvious exception in the vectorial case are the integrals of the e-theory, which are
analogue to those of the m-theory but for the magnetic instead of the electric field. An-
other diffraction integral that can be combined with the concept of HFPI is the Richards-
Wolf integral [5]. This integral is closely linked to the plane wave HFPI introduced in
Section 4.5.3. Section 5.5 will show the results for vectorial plane wave HFPI.

In summary, the formalism of a cascaded diffraction integral with a geometrical op-
tical propagator is also applicable to scalar HFPI. The theory does require specific prop-
erties of the kernel of the diffraction integral: the field should only depend on the electric
field and not on its derivative or on the magnetic field, the kernel of the integral should
be divergence free, and the local electric and magnetic field of the kernel should be per-
pendicular to the direction of phase propagation. This makes the theory incompatible
with many diffraction integrals.
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5.3. IMPLEMENTATION IN A MONTE CARLO RAY TRACER
In Section 5.2 we derived a method to compute a cascaded diffraction integral that sim-
ulates the effects of diffraction and aberrations. In this section we will present the indi-
vidual steps of a vectorial HFPI simulation using a Monte Carlo ray tracer.

Before any simulation one must define the optical system and the initial electric field.
Furthermore, one must define at which planes diffraction has to be taken into account
(e.g., at an aperture), and at which planes one wants to calculate the electric field.

The first step of the actual simulation consists of initiating random rays at the initial
surface. If the input field can be propagated using geometrical optics, i.e., it is non-
diffracting, the set of possible initial rays is defined by the field. Using the Monte Carlo
algorithm one chooses random starting positions for the rays, which have directions per-
pendicular to the wavefront and a polarisation parallel to that of the input field. If the in-
put field does not propagate according to the laws of geometrical optics (e.g., a Gaussian
beam in its waist) the diffraction integral of Eq. (5.12) should be applied. The initiated
rays have random starting positions and directions, and carry a field according to

Er ay =
√
∆S0∆N n0

ik

4π
ρ̂× (n̂0 ×E (r0)) , (5.20)

where E (r0) is the field in the starting point of the ray, ∆N the total number of rays dis-
tributed over the surface ∆S0, n̂0 the forward-pointing normal of the starting plane and
ρ̂ the normalized ray direction.

After initiating the rays, they are propagated through the system using standard ray
tracing procedures. At optical interfaces, the transmission coefficients are determined
using the adapted Fresnel equations for ray tracing, Eqs. (2.84) and (2.85), and the weight
of the rays are adapted accordingly.

At a diffracting surface, a ray is terminated and its complex contribution to the local
electric field is determined by adjusting the ray weight with the factors wi (Eq. (2.98))
and wp (Eq. (2.99)). Since wp is an amplitude factor related to the intensity law of geo-
metrical optics, one needs a procedure like tracing neighbouring rays to determine wp .
This is not implemented in our Monte Carlo ray tracer, so we have to neglect this term,
leading to a small error in the amplitude of the field. In Section 5.4 the effect of this er-
ror is quantified for a system with an NA of 0.7. After determining the local E-field, the
diffraction integral of Eq. (5.12) is applied on the local field of a single ray. Note that the
integral of Eq. (5.12) is over the total electric field in the plane, whereas we apply the
integral to the fields of every single ray individually (and sum the resulting fields later).
Due to the linearity of optics these two procedures (taking the integral over the sum of
local fields or taking the sum of the integrals over local fields) are equivalent. In practice
Eq. (5.12) is implemented by changing the direction of the incoming ray randomly, but
one could achieve faster convergence by initiating a set with a user-defined number of
new rays with random directions at the point of intersection of the ray and the diffract-
ing surface. The weight of the new ray is adjusted according to Eq. (5.20), where E (r0) is
the previously calculated contribution of the terminated ray to the local electric field.

These secondary rays are propagated further through the optical system. Any addi-
tional diffracting surface is treated identically to the first one, terminating the current
rays and generating new rays instead. Finally, at the last (or any intermediate) surface,
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the field is determined by having every ray contribute to the pixel it intersects. The
weight of each ray is again adjusted using the factors wi (Eq. (2.98)) and wp (Eq. (2.99)).
Furthermore, since we are now approximating the field at the centre of the pixel, the
phase of each ray is shifted using the local plane wave approximation of Eq. (2.100).

Following this procedure, a Monte Carlo ray tracer can propagate an electric field
through an optical system and include the aberrations introduced by the system and the
diffraction introduced at specific planes of the system.

5.4. RESULTS

We compare results obtained using vectorial HFPI with those of two other simulation
methods described in Section 2.6. The first method is the vectorial ray-based diffrac-
tion integral (VRBDI) of Andreas et al. [10] for which the authors have published their
MATLAB code online [75]. The second reference method is Beam Synthesis Propagation
(BSP) in the commercial software package CODE V [9]. The first simulated system is a
low NA configuration, with diffraction of the input field, whereas the second and third
system have higher NAs and demonstrate the effects of single and multiple diffraction
respectively.

The first system is one of the example systems of the VRBDI MATLAB code [75] and
consists of a singlet with in its focal plane a ring aperture illuminated by an x-polarised
plane wave with a wavelength of 632.8 nm. A schematic representation of the system is
shown in Fig. 5.1 and its parameters are listed in Table 5.1. This system can be modelled

Figure 5.1: A schematic representation of the ring aperture and singlet. The parameters are listed in Table 5.1,
the results of an HFPI simulation of the system are shown in Fig. 5.2.

using HFPI by placing secondary sources in the ring aperture. The results of HFPI and
the absolute difference between the HFPI results and those using the MATLAB code by
Birk Andreas [75] are shown in Fig. 5.2. Note that these results and the other results pre-
sented in this section are normalized by the squared amplitude. The statistical nature
of HFPI can be clearly seen in the difference plots. The difference between the meth-
ods is around 2% of the maximum amplitude for all three electrical components, even
though the y-component of the field is around six orders of magnitude smaller than the
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Table 5.1: System parameters of the singlet with a ring aperture [75] (see Fig. 5.1). The aperture is placed 1 mm
before the front focal plane of the singlet.

Quantity Value
Ring aperture radius 1.25 mm
Ring aperture width 0.01 mm

Distance aperture to lens 300 mm
Thickness lens 3 mm

Refractive index lens 1.5155
Radius of curvature first surface 308.5 mm

Radius of curvature second surface -308.5 mm
Distance lens to output plane 100 mm

Wavelength 632.8 nm
Numerical aperture 0.004

x-component. The L2-difference between the two methods is defined as

L2-dif =

√∑Np

p=1

∑
i=x,y,z

(∣∣∣E (2)
i ,p −E (1)

i ,p

∣∣∣)2

√∑Np

p=1

∑
i=x,y,z

∣∣∣E (1)
i ,p

∣∣∣2
, (5.21)

where the superscript (1) indicates the results of the reference method, the superscript
(2) those of HFPI, the subscript p runs over all Np pixels, and the subscript i runs over the
three Cartesian components of the field. An overall phase difference (i.e., a piston phase
term) between the two methods is corrected manually before calculating Eq. (5.21). For
this example, the L2-difference between the results of HFPI and those of the MATLAB
code by Birk Andreas is 2.4%. The simulation times and the number of paths drawn for
this simulation and the other simulations presented in this section are listed in Table 5.2.
The computational loads for the simulations presented in this chapter are between 12
and 306 core hours. Since the method is almost perfectly parallizable, the duration of

Table 5.2: The number of paths and simulation times for the HFPI simulations. The simulations were per-
formed on multiple (6-8) computers using a total of 36 to 48 cores simultaneously. Every path was traced from
object to image plane.

System Number of paths Core hours
ring aperture 109 12
microscope 109 23

microscope corrected HFPI 1.36 ·109 45
cascaded diffraction 1010 306

the simulation can be a fraction of that time if parallel or distributed computing is used.
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(a) HFPI |Ex | (b) Normalized difference in |Ex |
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(c) HFPI |Ey | (d) Normalized difference in |Ey |
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(e) HFPI |Ez | (f) Normalized difference in |Ez |
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Figure 5.2: The results from HFPI for a plane wave illuminating a ring aperture, followed by a singlet (see Fig. 5.1
and Table 5.1 for the system description). The amplitudes of the electric field according to the HFPI simulation
are shown in the left column, and the difference between these results and those of the model of Andreas et al.
in the right column. The difference plots are normalized w.r.t. the maximum amplitude of the corresponding
HFPI result. The L2-difference (Eq. (5.21)) between the methods is 2.4%.

Furthermore, like for scalar HFPI, the L2 error is inversely proportional to the square
root of the number of paths (see Fig. 5.3). Decreasing the number of paths (thereby de-
creasing the computational load) by 2 or 3 orders of magnitude increases the L2 error by
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Figure 5.3: The L2-norm of the relative error for a vectorial HFPI simulation is proportional to one over the
square root of the number of paths. For small path numbers the error is smaller than the theoretical curve
because the L2-norm of the relative error can never exceed two.

roughly a factor of 10 or 32. As an example, we present such results for the ring aperture
(Table 5.1) in Fig. 5.4. The plots are noisy but may suffice for many practical applications.

(a) |Ez | using 106 paths (b) |Ez | using 107 paths
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Figure 5.4: The amplitude of the z-component of the electric field in the output plane of the singlet with a ring
aperture (see Table 5.1). The simulations are performed using three (left) or two (right) orders of magnitudes
fewer rays than the simulation shown in Figure 5.2. Consequently the results are much noisier than the result
shown in Figure 5.2, and the simulation times are reduced to roughly one and roughly six core minutes. This
could offer a better compromise between accuracy and simulation time than the simulation for Figure 5.2.

In the previous example almost all the energy was concentrated in the main polari-
sation direction because the system had a very low effective numerical aperture of 0.004.
We now consider the results for a microscope with an NA above 0.7 for which the effects
of polarisation become much more pronounced. The system corresponds roughly to
the example microscope system of CODE V which is based on a patent by Tojyo [76]. It
is depicted in Fig. 5.5 and its parameters are listed in Table 5.3. The system is in reversed
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Figure 5.5: A schematic representation of the reversed microscope. The system is in reversed order compared
to the normal usage of microscopes. This results in a system with a high NA, and therefore clearly visible
polarisation effects, in the image plane. The exit pupil and the rays at the exit pupil are depicted using dashed
lines.

order compared to the original design and the normal usage of microscopes. Such a re-
versed configuration can be beneficial in the design process [77, p. 257–258] and, more
importantly for the current discussion, makes the polarisation effects clearly visible. The
results of an HFPI simulation of the system are shown in Fig. 5.6. As explained in Sec-
tions 5.2 and 5.3, propagating the amplitude of the field using a Monte Carlo ray tracer,
which is designed to propagate intensities, introduces an error. To propagate the am-
plitude correctly, the Monte Carlo ray tracers would need a correction factor wp , which
is defined by Eq. (2.99) and is proportional to the ray density. For the system discussed
above, wp does not vary significantly for different rays, and this error has little effect.
For the current system, the neglected term does vary noticeably and as a result one can
see some systematic differences between the results of HFPI and BSP in Fig. 5.7. To verify
that these differences are indeed mainly due to neglecting wp , we adjust the system such
that we can compensate for this error. This is done by letting the diffraction occur in the
exit pupil, which is the image of the aperture in image space, instead of at the aperture
itself. The two wp factors of a ray (one for the propagation to the diffracting surface and
one for the following propagation step to the image plane) are now both functions of po-
sitions of the rays in the exit pupil only. In such cases, our implementation enables us to
account for wp , by adjusting the amplitudes of the rays that pass through the exit pupil
using a thin element with a spatially varying absorption. The right column of Fig. 5.7
shows that the differences between the BSP simulation and the HFPI simulation with
correct wp are significantly lower than for the HFPI simulation that assumes wp to be 1.
This may appear to suggest that assuming wp to be constant is insufficient for simulat-
ing high NA systems but, as the cross plots in Fig. 5.8 demonstrate, the errors due to this
approximation are mainly in the secondary polarisation directions and might be accept-
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Table 5.3: System parameters of the reversed microscope. The aperture is indicated by ∗ and has a radius of
4.1 mm.

Surface Radius Distance Refractive
number (j) [mm] [mm] (j to j+1) index (after j)

0 ∞ 156.466582 1
1 -4.893054 1.235052 1.6164
2 331.759004 3.773815 1.7546
3 -7.999296 12.115041 1
4* ∞ 0.000000 1
5 ∞ 4.439448 1
6 17.811462 2.602460 1.4984
7 -6.811396 1.000946 1.7918
8 65.868865 0.140215 1
9 11.474481 3.940087 1.4984

10 -6.105357 1.470398 1.5236
11 -14.404937 0.100095 1
12 7.120780 2.202081 1.4984
13 14.369366 0.100095 1
14 4.017020 4.660603 1.7919
15 2.431637 0.672514 1
16 ∞ 0.170000 1.5246
17 ∞

able for a wide range of applications. Furthermore, as mentioned before, the method
can be adapted to account for wp by tracing closely neighbouring rays and tracking the
area spanned between these rays.

In the last example, diffraction is introduced in multiple planes. Moreover, the field
in the second diffracting plane is affected by the diffraction in the first plane, i.e., cas-
caded diffraction occurs. The system consists of a pinhole placed in the focal plane of a
singlet (see Table 5.4 and Fig. 5.9) followed by the previously described reversed micro-
scope. The y-polarised plane wave (λ= 546.1nm) passing through the singlet generates a
PSF in the plane of the pinhole. There, the semi-circular pinhole with a radius of 40 µm,
completely blocks the lower half of the PSF. The pinhole is then imaged by the reversed
microscope of the previous example (see Table 5.3). Both the object NA of the micro-
scope and the image NA of the singlet are 0.018. The system has three diffracting planes:
the aperture of the singlet, the semi-circular pinhole, and the physical aperture of the
microscope. If we apply the cascaded diffraction integral presented in Section 5.2.2 to
this problem, we need to perform three consecutive integrals. This means that the fields
are first decomposed into secondary sources at the aperture of the singlet, then decom-
posed again at the pinhole, and for a final time at the aperture of the microscope. This
is implemented in the Monte Carlo ray tracer by randomly changing the direction of ev-
ery ray, and adjusting its field using Eq. (5.20), in each of the aforementioned diffracting
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Figure 5.6: A magnetic dipole (see Eq. (5.3)) directed along the x-axis, imaged by the microscope with the
parameters listed in Table 5.3. The three rows show the amplitudes of the three components of the electric
field in the focal plane, as predicted by HFPI.

planes. The results of HFPI and the difference with a simulation with BSP are shown in
Fig. 5.10.

Simulating the triple diffraction is computationally more demanding than the pre-
vious simulations which is why one can observe stronger statistical noise (due to the
Monte Carlo nature of the method). This noise can be reduced at the cost of a longer
simulation time by sampling more rays. The cascaded diffraction simulation shows sim-
ilar differences between our implementation of HFPI and BSP as the simulation of the
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(f) Normalized difference in |Ez |
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Figure 5.7: The normalized differences between two HFPI simulations and a BSP simulation of a microscope
imaging a magnetic dipole. The left column shows the differences between the results of our HFPI implemen-
tation (shown in Fig. 5.6) and those of a BSP simulation. For the right column the amplitude factor wp , which
is usually neglected in our implementation of HFPI, is accounted for. The plots show the differences between
the HFPI and BSP simulation. They are normalized w.r.t. the maximum amplitude of the corresponding HFPI
result. Note that the left and right figures have different color scales. The L2-differences between HFPI and
BSP are 7.3% and 3.3% for respectively the uncorrected and the corrected HFPI.

microscope did (Figure 5.6), which suggests that the remaining differences are at least
partly due to taking wp constant. A simulation method that cannot describe cascaded
diffraction would produce results very different from the ones shown in Figure 5.10. To
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Figure 5.8: Cross sections of the amplitude of the field components at the focal plane of the microscope due
to a magnetic dipole oriented along the x-axis positioned on the optical axis in the object plane. In order to
include the peak amplitudes, the cross section of the x-component is at x = 2.5µm and the other components
are shown at x = 0. The plots show the results from the BSP simulation as well as the results from the standard
HFPI simulation, which neglects an amplitude factor wp (Eq. (2.99)), and the results from the HFPI simulation
that accounted for wp (corrected HFPI). It can be seen that, in comparison to the other simulations, the peak
amplitudes of HFPI are a bit lower for the x- and z-polarisation and the PSF is slightly wider.

Figure 5.9: A schematic representation of the system with cascaded diffraction. The semi-circular aperture
(shown at the top) is placed in the focal plane of the singlet and followed by the microscope (represented by
the blue box) which is depicted in Fig. 5.5. The parameters of the singlet and the microscope are listed in
Tables 5.4 and 5.3. The simulations are performed for a y-polarised plane wave with a wavelength of 546.1 nm.

illustrate this, we simulate the same system but only take the diffraction at the final aper-
ture into account. This is done using an HFPI simulation with only one diffracting plane.
In Figure 5.11 the result of this simulation is shown and compared to the result of the
triple diffraction simulation of Figure 5.10. The L2-differences between these simula-
tions is around 50%. This shows the effect of (neglecting) cascaded diffraction.

5.5. VECTORIAL PLANE WAVE HFPI
It was shown in Section 4.5.3 that the convergence of HFPI can be greatly increased by
associating a plane wave to every path in the image space. This concept of plane wave
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Table 5.4: System parameters for the first part of the system showing cascaded diffraction. The second part of
the system is the microscope with the parameters listed in Table 5.3. The aperture is indicated by ∗ and has a
radius of 4.1 mm. The simulation is performed for a y-polarised plane wave with a wavelength of 546.1 nm.

Surface Radius Distance Refractive
number (j) [mm] [mm] (j to j+1) index (after j)

0 ∞ 0.000000 1
1 244.210307 5.000000 1.5187
2 -244.210307 0.500000 1
3* ∞ 0.000000 1
4 ∞ 234.000000 1
5 ∞ 0.000000 1

HFPI (PW-HFPI) is related to the Richards-Wolf integral and can be applied if the system
has a large Fresnel number. By using PW-HFPI for the system demonstrating cascaded
diffraction (depicted in Fig. 5.9) the simulation time can be reduced from 306 core hours
for an HFPI simulation to 59 core minutes for an PW-HFPI simulation. As is evident from
the plots in Fig. 5.12, the PW-HFPI simulation is also better converged.

Polarization effects are visible in systems with high numerical apertures, which, as-
suming the aperture is much larger than the wavelength, have high Fresnel numbers.
The high NA thus requires the use of a vectorial method and guarantees that the error in
using the plane wave approximation is small. This makes vectorial PW-HFPI a particu-
larly useful method for the analysis of systems with large NAs.

5.6. DISCUSSION
The method presented here is an extension of the method presented in Chapter 4 to
vectorial optics. As such it inherits the properties of scalar HFPI, which are discussed in
Section 4.6. In the current section, we will therefore refrain from listing these properties
again and focus on a comparison between HFPI and other simulation methods instead.

Huygens-Fresnel path integration has an interesting conceptual link with Feynman
path integrals. As with the Feynman path integrals, the core idea behind HFPI is the
complex addition of paths. Path integral methods are known in quantum mechanics,
and the Schrödinger equation and its relativistic generalization, the Klein-Gordon equa-
tion, can be linked to scalar paraxial and non-paraxial optics [78]. Since the vast majority
of paths interfere destructively, one challenge in numerical path integral methods is the
exclusion of (most of) these non-contributing paths. In HFPI this is done by only sam-
pling stationary paths (i.e., the paths of geometrical optical rays) between what we call
diffracting surfaces.

On an abstract level, HFPI is also connected to the Gaussian Beam Decomposition
(GBD) [8] and related methods like CODE V’s BSP [9]. All these methods rely on decom-
posing a field into subfields, propagating these using geometrical optics, and rebuilding
the field by coherent addition of the subfields. When the geometrical optical propaga-
tion fails, these methods decompose the field into new subfields, and can thereby ac-



5

92 5. VECTORIAL HUYGENS-FRESNEL PATH INTEGRATION

(a) HFPI |Ex | (b) Normalized difference in |Ex |

−0.5 0 0.5

−0.5

0

0.5

x [µm]

y
[µ

m
]

0

5

10

15

20

−0.5 0 0.5

−0.5

0

0.5

x [µm]

y
[µ

m
]

0

5

10

·10−2
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(e) HFPI |Ez | (f) Normalized difference in |Ez |
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Figure 5.10: The amplitudes of the field components in the focal plane of the system demonstrating cascaded
diffraction (left column) and the differences with the results from the BSP simulations (right column). The
difference plots are normalized w.r.t. the maximum amplitude of the corresponding HFPI result. The L2-
difference between the methods is 13.2%.

count for diffraction. The methods differ in the type of subfield they use. Where the
GBD, as the name implies, uses Gaussian subfields, HFPI uses the fields of magnetic
dipoles. The fact that these dipoles are localized in a point makes the decomposition
step in HFPI simple, but because the subfields are strongly diverging, propagating them
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(a) |Ey | (b) Difference in |Ey |
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Figure 5.11: The figure demonstrates the effect of neglecting cascaded diffraction when simulating the system
shown in Fig. 5.9. The left figure shows the amplitude of the y-component of the electric field in the focal plane
of the system, calculated using HFPI with only the diffraction at the last aperture accounted for. The right
figure shows the difference in the absolute amplitude between these results and the results shown in Fig. 5.10,
where all three diffracting planes are accounted for.
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Figure 5.12: Cross sections of the normalized amplitudes of the field in the focal plane of the system depicted
in Fig. 5.9. The cross section of the x-component of the field is along the line x = 0.4µm to include the peak
amplitude. The other plots are along the line x = 0. The HFPI simulation has an L2-difference of 13.2% and the
PW-HFPI simulation of 5.4% with respect to the BSP simulation. A comparison with the plots for the micro-
scope (Fig. 5.8) shows that the deviations between the HFPI and the reference simulations are very similar for
both systems. As explained in Section 5.4, these deviations are due to approximating the factor wp in Eq. (2.99)
to be unity.

is computationally expensive compared to the GBD.
Another decomposition is the angular spectrum, used in Fourier optics, which de-

composes a field into plane waves [44]. One could see the angular spectrum and HFPI
as two extremes of the same concept, with HFPI sources perfectly localized in space but
infinitely extended in frequency space, and the plane waves of the angular spectrum
perfectly localized in frequency space but infinitely extending in space. The GBD adapts
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an intermediate approach with sources that have a finite extent in both ordinary and
reciprocal space.

The vectorial ray-based diffraction integral (VRBDI) by Andreas et al. [10] allows both
the decomposition into point sources and into plane waves. As with HFPI, the field in
VRBDI is propagated through an optical system using geometrical optics. Although con-
ceptually similar, VRBDI and HFPI are implemented very differently with different appli-
cations in mind. HFPI uses a Monte Carlo ray tracer and was developed to find the field
in the focal plane of a (multiple) diffracting optical system. VRBDI uses an algorithm that
iteratively finds rays connecting the grid points on the input and the output plane, i.e.,
ray aiming. Furthermore VRBDI, in its current implementation, avoids focal regions and
apertures. Andreas et al. [10] mention that apertures could be accounted for by first cal-
culating the field in the aperture using a VRBDI simulation, then applying the aperture
function, and finally decomposing and propagating this field using a second VRBDI sim-
ulation [10]. Based on our results, one can expect that such an intermediate resampling
would allow VRBDI to calculate the electric field in the focal plane of an optical system.
It is not clear to us how such a simulation would perform if the phase in the aperture is
highly oscillatory, as is the case for many optical systems. Since HFPI does not require
an explicit sampling grid, such intermediate oscillatory fields do not pose a problem for
HFPI.

5.7. CONCLUSION
We present the theory for a ray-based vectorial diffraction simulation method based on
a physical interpretation of the m-theory diffraction integrals, and compare its results to
those of other methods. Huygens-Fresnel path integration is a robust method to sim-
ulate the effects of aberrations, (multiple) diffraction, and polarization. The method is
implemented by making some small adjustments to an existing Monte Carlo ray tracing
engine, thereby hugely extending its domain of application with relatively little program-
ming effort. We have theoretically derived and numerically validated the error caused by
using standard Monte Carlo ray tracing techniques, which were designed to propagate
intensities, to propagate the amplitude of the electric field (i.e., the error caused by as-
suming wp = 1). In our simulations this error was relatively small and did not justify the
added complexity of changing the Monte Carlo ray tracer. The absence of explicit resam-
pling in HFPI not only makes the method relatively easy to implement but also makes it
robust and fairly easy to use.
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The simulation of point spread functions is essential in the design of optical instruments.
The exit pupil diffraction integral (EPDI) and Collins integral (or paraxial Fourier optics)
are often used to this purpose, but sometimes we need to go beyond the approxima-
tions of these models. The Collins integral can only simulate systems consisting of ideal
lenses. It does not give any information on the aberrations of the system, but can de-
scribe the effects of cascaded diffraction. The EPDI accounts for the aberrations of a
system, but assumes all the diffraction to occur at a single surface in the image space.
This thesis introduces two simulation methods for optical systems that aim to account
for both aberrations and cascaded diffraction: Wigner-based ray tracing (WBRT) and
Huygens-Fresnel path integration (HFPI).

The Wigner distribution function (WDF), when used as a representation of the scalar
electric field, remains constant along paraxial rays. This property was used to develop
WBRT, a Monte Carlo ray tracer that propagates the WDF using rays. Since rays are
not limited to paraxial propagation, WBRT can be applied to nonparaxial problems (i.e.,
problems that include lenses with aberrations or rays with large angles with respect to
the optical axis). The underlying assumption of WBRT is that taking the WDF to be con-
stant along rays is a good approximation beyond the paraxial domain.

The results presented in this thesis show that this is only partly true. Although lenses
with a numerical aperture (NA) of up to 0.2 were accurately modelled using WBRT, the
method breaks down dramatically in the presence of aberrations. In these cases WBRT
can predict unphysical negative intensities, even when simulating a singlet with an NA
as low as 0.04 and a root mean square wavefront error below half a wavelength. Note that
this does not mean that the WDF cannot be used beyond the paraxial domain. It means
that WBRT, the simulation method using ray tracing to transport the WDF, produces in-
accurate results in the presence of aberrations. Establishing the limit of its domain of
application is the main result of this research into WBRT.

This result can be relevant to the work in computer graphics [14, 38–40] that inspired
our investigation into WBRT. The goal of applying the WDF in computer graphics is to
render photorealistic images by including diffraction effects. Being aware of the limits of

95



6

96 6. CONCLUSION

WBRT could be important to prevent rendering erroneous images. Considering the main
goal in computer graphics is creating images that look similar to a photo, our results do
not necessarily exclude the use of the WDF beyond the paraxial domain within computer
graphics.

When physical accuracy is required the use of WBRT well beyond the paraxial do-
main, and in particular in the presence of aberrations, cannot be recommended. This is
primarily a result regarding WBRT, but it can also serve as a warning regarding the use of
the WDF beyond the paraxial domain. It was shown by Lohmann et al. [45] that the effect
of aberrations on the WDF is twofold. First they lead to a coordinate transformation in
accordance with geometrical optics, and second they lead to differential operators that
change the shape of the WDF. We have shown that for PSF simulations, only modelling
this primary effect does not approximate the correct answer but can result in unphysical
negative intensities.

That is not to say that WBRT has no potential. The WDF can be a convenient repre-
sentation of spatially partially coherent light, so it should be possible to use WBRT for the
propagation of such fields through a paraxial optical system. It might also be worthwhile
to investigate if there are problems that can benefit from the relatively low memory usage
of WBRT. One could also try to develop more elaborate methods to propagate the WDF
through a system with aberrations. Generalized versions of the WDF that remain con-
stant upon nonparaxial propagation through homogeneous media exist [79]. Further-
more, it has been shown that the main effect of refraction at a plane interface on such a
generalized WDF, corresponds to the transformation undergone by a ray [80]. However,
this is only approximately true and, to our knowledge, it has not yet been investigated to
which extent this result can be generalized to curved surfaces. This generalization of the
WDF could be a starting point for the development of a ray-based WDF transportation
through aberrated systems, but a successful outcome is far from certain.

(a)
Huygens
principle (b) Huygens-Fresnel principle (c) Huygens-Fresnel path integration

Figure 6.1: The original Huygens principle and Young’s double slit experiment illustrating the Huygens-Fresnel
principle and HFPI. Huygens principle initiates secondary spherical waves on the wavefront to construct a new
wavefront. The Huygens-Fresnel principle initiates spherical waves on the wavefront and lets them interfere
to obtain a diffraction pattern. HFPI uses the same spherical waves and samples them using rays.

HFPI on the other hand already provides a way to simulate the effects of cascaded
diffraction in an optical system with aberrations. The concept of HFPI is a straightfor-
ward extension of the Huygens-Fresnel principle to optical systems. This principle states
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that one can model the propagation of light by placing secondary spherical sources of
light on the wavefront, as illustrated in Fig. 6.1a, and propagate and coherently sum
these fields. The resulting model describes the effects of diffraction (see Fig. 6.1b). The
concept of HFPI, depicted in Fig. 6.1c, is simply to use ray tracing to propagate these
secondary sources. Since ray tracing, and thereby HFPI, can be used within an optical
system (see Fig. 6.2), this allows for the simulation of diffraction and aberrations.

Figure 6.2: Illustration of a PSF calculation for a single lens using HFPI.

The Huygens-Fresnel principle was put on a solid mathematical basis by the Kirch-
hoff diffraction integral. Likewise, HFPI obtains its theoretical foundation using the
Rayleigh-Sommerfeld diffraction integral for the scalar method, and the m-theory in-
tegrals for the vectorial method. These diffraction integrals can be interpreted as a de-
composition of the field into point, or more specifically dipole, sources which are of such
a form that they can be propagated using geometrical optics.

The choice to implement HFPI in a Monte Carlo ray tracer was motivated by their
ability to quickly trace many rays and their suitability for parallel and distributed com-
puting. Furthermore, using Monte Carlo sampling keeps the algorithm relatively simple.
The use of a standard Monte Carlo ray tracer to transport the amplitude (as opposed to
the intensity which it usually propagates) does lead to an error. For the PSF calculations
performed in this thesis these errors were small.

The numerical results presented in this thesis demonstrate that HFPI can be used for
simulating optical systems beyond the approximations used in the EPDI or the Collins
integral. HFPI was validated by comparing its results to those of a range of simula-
tion methods, including CODE V’s BSP. Like HFPI, this commercially available ray-based
diffraction integral is capable of simulating cascaded diffraction in aberrated systems.
Compared to BSP, HFPI has several advantages. First, HFPI is very robust since it does
not require an explicit resampling in diffracting planes nor does the user need to set any
parameters for a decomposition of the field. Another advantage of HFPI is that all knowl-
edge regarding the method is, with the publication of this thesis, in the public domain. It
is our experience that in performing complex simulations (like those involving cascaded
diffraction effects in optical instruments), it can be of crucial importance to understand
the working principles and limitations of the simulation method one uses. A final ad-
vantage of HFPI is that it is relatively easy to implement. Like most ray-based diffraction
integrals, HFPI requires a ray tracer capable of keeping track of optical path lengths. But
other than that, HFPI only needs a Monte Carlo algorithm whereas other methods need
an algorithm to accurately decompose a field into secondary sources. If one has access
to a Monte Carlo ray tracer that can keep track of optical path lengths, everything is in
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place to perform HFPI simulations of systems with cascaded diffraction.

Further developments of HFPI could focus on improving its accuracy and speed. As
mentioned before, the use of a standard Monte Carlo ray tracer with minimal adjust-
ments causes a small error. This error can be eliminated by adapting the Monte Carlo
ray tracer such that it explicitly calculates the changes in the field strength due to the in-
tensity law of geometrical optics. That would also allow the method to calculate absolute
energies. This can for instance be done by tracing very small bundles of rays instead of
individual rays, but this is likely to come at the cost of a higher computational load.

In this thesis several strategies were suggested to reduce the computational load of
HFPI. We showed that plane wave HFPI can reduce the computational time by about
two orders of magnitude compared to regular HFPI for system with large enough Fres-
nel numbers. For one simple optical system (i.e., the Cooke triplet) we determined a
Fresnel number of ten to be the limit for a correct simulation of the phase, whereas the
amplitude was correct for all Fresnel numbers. Further research is needed to determine
whether these results are specific for this optical system or general properties of plane
wave HFPI. The other strategies for reducing the computational load still require sub-
stantial further research. One option is to divide the field into an undisturbed and a
diffracted part and only initiate secondary rays in the diffracted part. This has not yet
been attempted and is probably not straightforward for HFPI. Bidirectional and stepwise
HFPI were already demonstrated to work in principle, but the computational benefit for
specific systems remains to be determined. It is also unclear what the sampling criterion
for these methods is. Other methods that have been identified as potentially beneficial to
the simulation times are adaptive sampling, stratified sampling, quasi-Monte Carlo sam-
pling, and ray-splitting. Adaptive sampling requires a careful implementation to prevent
systematic errors, whereas the other three techniques should be relatively easy to imple-
ment if the ray tracing engine allows such procedures. Improvements in computational
efficiency are particularly relevant for demanding simulations, like the calculation of a
field far away from a focal region.

Within this thesis we have applied HFPI to propagate the electric field from a plane
in object space to the image plane of an optical system. In practise however, optical
systems are often used to image three-dimensional scenes. The imaging of such scenes
can be simulated using rendering methods based on Monte Carlo ray tracing which do
not capture diffraction effects (see, e.g., [81]). Since HFPI is based on the same technique
of Monte Carlo ray tracing, the principles presented in this thesis could be used to adapt
rendering methods such that they correctly simulate diffraction effects. In theory such
an adaptation is straightforward, but to develop a method that can render a scene with
realistic computational effort would require more research.

The duration of an HFPI simulation depends strongly on the implementation of the
ray tracer and the type of hardware used. Recent years have seen an increasing avail-
ability of cloud computing services, big improvements in the performance of graphics
processing units (GPUs), and a reduction in the effort required to use either. Our cur-
rent implementation of HFPI uses neither cloud computing nor GPUs, but we did dis-
tribute simulations over multiple computers using several cores on each computer. This
demonstrates the perfect scalability of the method.

Even without the use of the most modern hardware, diffraction effects were simu-
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lated by summing complex paths. This success encourages the research into path inte-
gration methods for other problems in optics.

This thesis set out to develop a method for the simulation of cascaded diffraction in
optical systems for which one cannot neglect the aberrations. This has been achieved
with the introduction of Huygens-Fresnel path integration. Although only one of many
simulation tools available to physicists, it is our hope that this additional tool can enable
the development of new optical instruments.
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A
LIST OF ASSUMPTIONS AND

CONVENTIONS

Although some assumptions are specific to certain parts of this thesis, many assump-
tions are used for the entirety of this work (except in Section 2.2). By definition, the same
holds for the conventions used in this thesis. As an aid to the reader, these assumptions
and conventions, a list of physical and other quantities, as well as a list of abbreviations,
are listed in this chapter.

A.1. LIST OF CONVENTIONS
Below is a list of conventions used in this thesis.

• The Sytème Internationale (SI) is used and accordingly the Maxwell equations are
used in their SI format.

• All vectors are written in bold (e.g., E ).

• Normal vectors have a hat (e.g., n̂).

• Matrices are indicated by capital letters in blackboard bold (e.g., A).

• The negative time-convention is used (exp(−iωt )). The physical field can be ob-
tained by multiplying the complex quantity (e.g., E ) with this phase term and tak-
ing the real part.

• The integral over a surface is indicated by dS, the integral over a volume by dV .

• An integral over all components of a vector is indicated by the differential sign and
the vector (e.g., d2x = dxdy if x = (x, y)).

• The surface normal is given by n̂. For closed surfaces, it is the outwards pointing
normal, for planes it points along the main direction of propagation (usually along
the z-axis).
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• The following is a list of matrix operators

– Complex conjugate: A∗

– Transpose: AT

– Inverse: A−1

• The expectation value is indicated by brackets (e.g., < w(X ) >).

A.2. LIST OF PHYSICAL QUANTITIES
The physical quantities used in this thesis are listed in this section.

Table A.1: Physical quantities

Notation Physical quantity Units
ε Permittivity of medium Farad per meter
ε0 Permittivity of free space Farad per meter
µ Permeability of medium Newtons per ampere squared
µ0 Permeability of free space Newtons per ampere squared
λ Wavelength in the medium Meters
ω Frequency Per second
B Magnetic flux density Newtons per ampere per meter
D Electric displacement field Seconds amperes per meter squared
E & E Electric field Volts per meter
F̃ Plane wave expansion Volts meter
H Magnetic field Amperes per meter
I Intensity (Eq. (2.78)) Joules per second per metre squared
J Current density Amperes per meter squared
Jb Bound current density Amperes per meter squared
J f Free current density Amperes per meter squared
k Wavenumber in medium One over meter
k0 Wavenumber in free space One over meter
M Magnetization Amperes per meter
n Refractive index (Eq. (2.60)) Dimensionless
P Polarization density Seconds amperes per meter squared
q Charge density Coulomb per meter cubed
qb Bound charge density Coulomb per meter cubed
q f Free charge density Coulomb per meter cubed
s Eikonal Meters
S Poynting’s vector (Eq. (2.68)) Joules per second per metre squared
t Time Seconds
Ts & Tp Fresnel coefficients Dimensionless

(Eqs. (2.73, 2.74))
T ′

s & T ′
p Fresnel coefficients for Dimensionless

ray tracing (Eqs. (2.84, 2.85))
U Energy Joules
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Table A.2: Other quantities

Notation Quantity
δ(x) Delta function
θ Angle, usually w.r.t. n̂
Π(x) Rectangle function
ρ Vector between two points (ρ1 = r1 − r0)
ρ̂ Normalized ρ & ray directions (Eq. (2.61))
ρ Vector length (ρ = |ρ|)
σ[X ] Standard deviation of X
φ Phase (in radians)
ξ= (ξ,η) Spatial frequencies
B Mask function
F# Fresnel number
G & G Green’s function
GH Green’s function for the Helmholtz equation (Eq. 2.39)
i Imaginary unit
k = (kx ,ky ) or Spatial frequencies
k = (kx ,ky ,kz )
N Total number of rays
L2 L2 difference between the complex amplitudes of

two scalar fields (Eq. (4.7))
L2-dif L2 difference between the complex amplitudes of

two vectorial fields (Eq. (5.21))
L2A L2 difference between the absolute amplitudes of

two scalar fields (Eq. (3.3))
L2I L2 difference between the intensities of

two scalar fields (Eq. (3.4))
n̂ Surface normal (outwards or forwards facing)
p Probability density function of stochastic variable
p = (px , py ) or Direction cosines
p = (px , py , pz )
ℜ Real part
r = (x, y, z) Cartesian coordinates
S Surface
V Volume
V [X ] Variance of X
W (x ,ξ) Wigner distribution function
w Ray weight (for Monte Carlo simulations)
X Stochastic variable
x = (x, y) Cartesian coordinates without z

A.3. LIST OF ABBREVIATIONS

This section lists the abbreviations used in this thesis.
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Table A.3: Abbreviations

Abbreviation Meaning
BSP Beam synthesis propagation
EPDI Exit pupil diffraction integral
GBD Gaussian beam decomposition
HFPI Huygens-Fresnel path integration
NA Numerical aperture
OPL Optical path length
PDF Probability density function
PSF Point spread function
PW-HFPI Plane wave Huygens-Fresnel path integration
rms Root mean square
RSDI Rayleigh-Sommerfeld diffraction integral
RSED Rayleigh-Sommerfeld exit pupil diffraction integral
VRBDI Vectorial ray-based diffraction integral
WBRT Wigner-based ray tracing
WDF Wigner distribution function

A.4. LIST OF ASSUMPTIONS
Below is a list of the assumptions used throughout this thesis (except in part of Sec-
tion 2.2).

• All materials are

– homogeneous

– linear

– source-free

– non-magnetic (µ=µ0)

– non-absorbing

• Apertures are treated using the Kirchhoff boundary conditions (see Section 2.3.4).

• All propagation distances are much larger than the wavelength (the near field is
neglected).

• All solutions are stationary.

• All sources are fully coherent (spatial and temporal).



B
OVERVIEW OF SIMULATION

METHODS

The following table gives a very brief overview of the simulation methods treated in this
thesis. The table also lists the main application of each method, along with a brief remark
regarding the domain of validity. The aim of the table is to give a very compact overview
and is therefore far from listing all the applications, approximations, and limitations of
each method. For more information, the reader is referred to the listed sections.
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Table B.1: Simulation methods

Method Main application/ Inventor/Important See
principle assumption contributor Section

Beam synthesis Diffraction in optical systems CODE V 2.6,
propagation (BSP) 4.4
Bidirectional HFPI Needs further research This thesis 4.5.2
Collins integral Paraxial propagation through lenses S.A. Collins 2.3.2
Exit pupil diffraction Field in image space of optical system, R.K. Luneburg 2.5
integrals (EPDI) diffraction assumed at exit pupil
Fresnel integral Paraxial free-space propagation A.J. Fresnel 2.3.2
Gaussian beam Diffraction in optical systems using A.W. Greynolds 2.6,
decomposition (GBD) a parabasal approximation 4.4
Geometrical optics Propagation through optical systems, 2.4

valid if field varies slowly
(except in propagation direction)

Huygens-Fresnel Scalar/Vectorial diffraction This thesis 4/5
path integration (HFPI) in optical systems
m-theory diffraction Vectorial free-space propagation H. Severin 2.3.1
integral from a plane
Monte Carlo Typically used for intensity 2.4.3
ray tracing calculations neglecting interference
Plane wave HFPI Scalar/Vectorial diffraction in optical This thesis 4.5.3/

systems, valid for large Fresnel 5.5
numbers and near the focal plane

Ray tracing Numerical implementation of 2.4.2
geometrical optics

Rayleigh-Sommerfeld Scalar free-space propagation J.W.S. Rayleigh, 2.3.1
diffraction integral from a plane (a vectorial A.J.W. Sommerfeld
(RSDI) formulation also exists)
Rayleigh-Sommerfeld EPDI using the RSDI, no 2.5
EPDI additional assumptions
Richards-Wolf EPDI EPDI using plane waves, valid E. Wolf 2.5,

for large Fresnel numbers 4.5.3
and near the focal plane

Stepwise HFPI Needs further research This thesis 4.5.2
Vectorial ray-based Diffraction in optical systems, B. Andreas 2.6
diffraction integral all diffraction at input plane
Wigner-based Scalar diffraction in aberration-free This thesis 3
ray tracing (WBRT) optical systems with moderate NAs



C
ADDITIONAL PROOFS REGARDING

THE WIGNER DISTRIBUTION

FUNCTION

This appendix gives the derivations for some of the properties of the WDF used in this
thesis. More specifically we will treat the inverse WDF (Section C.1), the WDF of the
field after a thin element (Section C.2), and the WDF of a field propagated by the Collins
integral (Section C.3).

C.1. INVERSE WIGNER DISTRIBUTION FUNCTION

Because the WDF contains all the information of the original electric field, it is possible
to perform a back transformation using

E (x)E∗ (x̄) = 1

(2π)2

Ï
W

(
x + x̄

2
,ξ

)
exp[i (x − x̄) ·ξ]d2ξ. (C.1)

One can obtain the original field, except for an overall phase factor φ, by

E(x)exp
[
iφ

]= E(x)E∗(0)p
E(0)E∗(0)

(C.2)

=
Î

W
( x

2 ,ξ
)

exp[ix ·ξ]d2ξ√Î
W (0,ξ)d2ξ

. (C.3)

The proof of Eq. (C.1), and thereby of the fact that the frequency marginal gives the in-
tensity (Eq. (2.112)), is obtained using the difference variable x ′′′ = x − x̄ and Eq. (2.111)
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for the dirac function. Starting with the left hand side of Eq. (C.1) we obtain

E (x)E∗ (x̄) = E

(
2x + x̄ − x̄

2

)
E∗

(
2x̄ +x −x

2

)
(C.4)

=
Ï

E

(
x + x̄ +x ′′′

2

)
E∗

(
x + x̄ −x ′′′

2

)
δ(x ′′′−x + x̄)d2x ′′′ (C.5)

=
Ï Ï

E

(
x + x̄ +x ′′′

2

)
E∗

(
x + x̄ −x ′′′

2
)

)
1

(2π)2 exp
[−iξ · (x ′′′−x + x̄)

]
d2ξd2x ′′′ (C.6)

= 1

(2π)2

Ï
W

(
x + x̄

2
,ξ

)
exp[iξ · (x − x̄)]d2ξ, (C.7)

which concludes the proof.

C.2. WIGNER DISTRIBUTION FUNCTION OF A THIN ELEMENT

In Section 2.7 we stated that the WDF of the field after a thin element is given by

W (x ,ξ) = 1

(2π)2

Ï
W0

(
x ,ξ′′′

)
WB

(
x ,ξ−ξ′′′)d2ξ′′′, (C.8)

if the field is described by

E(x) = B(x)E0(x). (C.9)

In this section we will provide a proof for this statement.

The proof starts by writing out the explicit WDF of Eq. (C.9) and then uses the inverse
transform given by Eq. (C.1):

W1(x ,ξ) =
Ï

B

(
x + x ′′′

2

)
E0

(
x + x ′′′

2

)
B∗

(
x − x ′′′

2

)
E∗

(
x − x ′′′

2

)
exp

[−iξ · x ′′′]d2x ′′′

= 1

(2π)4

Ï Ï
W0

(
x ,ξ′′′

)
exp[ix ′′′ξ′′′]d2ξ′′′

Ï
WB

(
x , ξ̄

)
exp[ix ′′′ξ̄]d2ξ̄exp[−iξx ′′′]d x ′′′

= 1

(2π)4

Ï Ï Ï
W0

(
x ,ξ′′′

)
WB

(
x , ξ̄

)
exp

[
ix ′′′ · (ξ′′′+ ξ̄−ξ)]dξ′′′d ξ̄d x ′′′

= 1

(2π)2

Ï Ï
W0(x ,ξ′′′)WB (x , ξ̄)δ(ξ′′′+ ξ̄−ξ)dξ′′′d ξ̄

= 1

(2π)2

Ï
W0(x ,ξ′′′)WB (x ,ξ−ξ′′′)dξ′′′

where WB is the WDF of B and W0 the WDF of E0.
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C.3. WIGNER DISTRIBUTION FUNCTION OF THE COLLINS IN-
TEGRAL

In Section 2.7 it was stated that the WDF of a field after propagation by the Collins inte-
gral

E1(x) = −ik

2π
p|B|

Ï
E0(x0)exp

[
ik

(
1

2
xT

0 B
−1Ax0 −xT

0 B
−1x + 1

2
xTDB−1x

)]
d2x0, (C.10)

is given by

W (x ,ξ) =W0

[
DT x − 1

k
BT ξ,k

(
B−1 −ATDB−1)x +AT ξ

]
, (C.11)

with W0 the WDF of E0. In this section we will provide a proof for this property.
Before starting the derivation, we must introduce two properties of the matrices of

the Collins integral that will be used frequently in this section(
B−1A

)T =B−1A, (C.12)(
DB−1)T =DB−1, (C.13)

which are a result of the Collins integral being a second order approximation. The first
step in the actual derivation is calculating the WDF of Eq. (C.10)

W (x ,ξ) =
Ï

E1

(
x + x̄ ′′′

2

)
E∗

1

(
x − x̄ ′′′

2

)
e−iξT x̄ ′′′

d2x̄ ′′′

= k2

(2π)2|B|

Ï Ï Ï
E0(x ′′′

0)exp

[
ik

(
1

2
x ′′′T

0 B−1Ax ′′′
0

−x ′′′T
0 B−1

(
x + x̄ ′′′

2

)
+ 1

2

(
x + x̄ ′′′

2

)T

DB−1
(

x + x̄ ′′′

2

))]

E∗
0 (x̄0)exp

[
−ik

(
1

2
x̄T

0 B
−1Ax̄0 − x̄T

0 B
−1

(
x − x̄ ′′′

2

)
+1

2

(
x − x̄ ′′′

2

)T

DB−1
(

x − x̄ ′′′

2

))]
exp

[−iξT x̄ ′′′]d2x ′′′
0d2x̄0d2x̄ ′′′

= k2

(2π)2|B|

Ï Ï Ï
E0(x ′′′

0)E∗
0 (x̄0)

exp

[
ik

(
1

2
x ′′′T

0 B−1Ax ′′′
0 −

1

2
x̄T

0 B
−1Ax̄0 +

(
x̄0 −x ′′′

0

)T
B−1x

)]
exp

[
ik

(
−1

2

(
x ′′′

0 + x̄0
)T
B−1 +xTDB−1 − 1

k
ξT

)
x̄ ′′′

]
d2x ′′′

0d2x̄0d2x̄ ′′′.

Using the following coordinate transformations

x ′′′
0 = x0 +

x ′′′

2
,

x̄0 = x0 −
x ′′′

2
,



C

116 C. ADDITIONAL PROOFS REGARDING THE WIGNER DISTRIBUTION FUNCTION

and using Eq. (2.111) for the delta function, we obtain

W (x ,ξ) = k2

(2π)2|B|

Ï Ï
E0

(
x0 +

x ′′′

2

)
E∗

0

(
x0 −

x ′′′

2

)
exp

[
ik

(
1

2

(
x0 +

x ′′′

2

)T

B−1A

(
x0 +

x ′′′

2

)
− 1

2

(
x0 −

x ′′′

2

)T

B−1A

(
x0 −

x ′′′

2

)
−x ′′′TB−1x

)]

δ

[
k

2π

(
−xT

0 B
−1 +xTDB−1 − 1

k
ξT

)]
d2x ′′′

0d2x̄0

= k2

(2π)2|B|

Ï Ï
E0

(
x0 +

x ′′′

2

)
E∗

0

(
x0 −

x ′′′

2

)
exp

[
ik

(
1

2
x ′′′TB−1Ax0 +

1

2
xT

0 B
−1Ax ′′′−x ′′′TB−1x

)]
(2π)2

k2 |B|δ
[
−xT

0 +xTD− 1

k
ξTB

]
d2x ′′′

0d2x̄0

=
Ï

E0

(
− 1

k
BT ξ+DT x + x ′′′

2

)
E∗

0

(
− 1

k
BT ξ+DT x − x ′′′

2

)
exp

[
ik

((
− 1

k
BT ξ+DT x

)T

B−1Ax ′′′−x ′′′TB−1x

)]
d2x ′′′

=
Ï

E0

(
− 1

k
BT ξ+DT x + x ′′′

2

)
E∗

0

(
− 1

k
BT ξ+DT x − x ′′′

2

)
exp

[
ik

(
− 1

k
ξTAx ′′′+xTDB−1Ax ′′′−xTB−T x ′′′

)]
d2x ′′′

=
Ï

E0

(
− 1

k
BT ξ+DT x + x ′′′

2

)
E∗

0

(
− 1

k
BT ξ+DT x − x ′′′

2

)
exp

[
i
(
k

(
ATDB−1 −B−1)x −AT ξ

)T
x ′′′

]
d2x ′′′.

Comparing this result to the definition of the Wigner function

W (x ,ξ) =
Ï

Eo

(
x0 +

x ′′′

2

)
E∗

o

(
x0 −

x ′′′

2

)
e−iξT x ′′′

d2x ′′′, (C.14)

one can rewrite it into

W (x ,ξ) =W0

[
DT x − 1

k
BT ξ,k

(
B−1 −ATDB−1)x +AT ξ

]
. (C.15)

The Wigner distribution function in the output plane can thus be obtained by a coor-
dinate transformation of the Wigner function in the input plane. In matrix form, this
transformation is given by(

x0

ξ

)
=

[
DT − 1

kB
T

k(B−1 −ATDB−1) AT

](
x
ξ

)
, (C.16)

or in the other direction (
x
ξ

)
=

[
A 1

kB

−k(B−1 −ATDB−1)T D

](
x0

ξ

)
. (C.17)
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The final equation is equivalent to Eq. (2.52) when

p0 = ξ0

k
(C.18a)

p = ξ

k
. (C.18b)

This relates the directional cosines to the spatial frequencies. Within the paraxial ap-
proximation these relation correspond to the directional cosines for plane waves with
the given spatial frequencies.

Although the derivation given here breaks down if B is not invertible (e.g., if the ma-
trix describes imaging), one can show that the results still hold by taking the limit of B
going to zero [18].





ACKNOWLEDGEMENTS

The ancient Greek had the notion of walking backwards into the future. I would say
that doing a PhD research is like walking backwards, first through terrain still known
by others, then a little step out into the unknown. Although I had to do the walking
by myself, I had many people at my side along the way. Some gave me the equipment
and skill needed for the journey, some gave an overview of the 'optics landscape'that lay
behind me but in front of them, others encouraged me, helped me back on my feet or
suggested new directions to continue the journey into the unknown. This thesis would
not have been possible without their contributions, for which I would like to thank them.

First and foremost, I would like to thank Michael Wick who proposed both methods
investigated during this project. He taught me how to test quick and dirty, which ended
our research into Wigner-Based ray tracing soon after I came to Oberkochen. Thanks to
Michael, always full of ideas and energy, this did not cause a long crisis in my PhD, but
was the start of our fascinating journey into Huygens-Fresnel path integration (HFPI).
My next supervisor at Zeiss, Andreas Flesch played an important role in bringing the
research to an end. He was a pleasant and effective project manager who helped me
focus on the essential parts. He also helped implementing HFPI with his knowledge
of the in-house ray-tracing software. I would like to thank my final supervisor, Florian
Bociort, for helping me as a fresh PhD student to start my research on a completely new
topic. Florian was a true advisor, driving the project with suggestions and questions but
giving me the freedom to choose the direction of the path forwards. Paul Urbach was,
what the Germans call my 'Doktorvater'. His love and demand for analytical solutions
brought us to new insights and his critical reading (regarding both content and form)
raised the level of the presentation of our results. One cannot mention Paul, without
also thanking Yvonne van Aalst for her organizational help.

I would like to thank the Zeiss CRT colleagues in general for always being willing
to help, explain, and discuss. In particular I would like to thank Toufic Jabour for the
many discussions on optics, Steffen Siegler for all he taught me about ray tracing and
diffraction integrals, and Johannes-Maria Kaltenbach for sharing his extensive knowl-
edge in person and through the many documents he wrote. With David Abreu I pleas-
antly collaborated on three-dimensional image simulations and had many discussions
on varied topics. A great thanks goes out to George Firanescu and in particular Hans-
Joachim Frasch for implementing HFPI in the Zeiss in-house simulation software. We
occasionally were a bit late with our requests, but they were always instantly imple-
mented nonetheless. This would not have been possible without the support of Arnim
Henze who also helped to iron out the final errors by proofreading the thesis. Wolfgang
Singer gave me a good head start when I came to Oberkochen through his support and
openness for new ideas. This project would never have started without the work of Bernd
Kleemann who initiated it together with Paul Urbach. Once the project had started, Jörg
Petschulat provided me with a work environment that allowed me to completely focus

119



120 C. ADDITIONAL PROOFS REGARDING THE WIGNER DISTRIBUTION FUNCTION

on the PhD. On top of that, his critical reading improved many manuscripts.
I am thankful to the entire optics group of the TU Delft for creating such a pleasant

atmosphere and fun place to work. The team of professors was approachable and sup-
portive, and allowed me to truly focus on my thesis. The technical staff always helped
out quickly and with my fellow (PhD) students we had a lot of fun and some good collab-
orations. A particular thanks goes out to Zhe Hou, my companion in optical simulations
and ray tracing.

This project was paid for by Zeiss and the European Union FP7 people program
through the ADOPSYS project. I am grateful for their support and would like to acknowl-
edge that without the EU an international project like this, for which I moved across
borders twice, would never have been this uncomplicated. Zeiss provided me with a
stimulating work environment and all the support I needed to do this research. I be-
lieve this willingness to invest in an international project with an uncertain and public
outcome speaks for the company culture. The ADOPSYS partners have provided a very
interesting training program, were wonderful hosts at all the events, and provided for
many interesting discussions. The ADOPSYS students formed a very supportive and en-
tertaining group.

I sincerely thank Joran Kuijper for designing the cover of this thesis. As a friend he
understood what I wanted, as a designer he exceeded what I had envisioned.

Finally I would like to thank the committee members for reviewing this thesis, pro-
viding me with feedback that improved the quality of the work. I also appreciate that
they found the time to attend the defense ceremony, which for some involved lengthy
journeys.

In the above I have restricted myself to the main people and organizations that con-
tributed technically or professionally to this thesis and my professional education. There
are also a great many people who supported me personally, gave me the joy outside of
working hours needed to get through the tougher parts of the research, and about whom
I care much more than about this thesis. I hope you know that and do not need to be
listed here.



ABOUT THE AUTHOR

Beat Marco MOUT

Marco Mout was born in January of 1987 in Hengelo the Netherlands. He soon moved
to Soest, where he finished high school (gymnasium) in 2005 at the top of his class. He
then spend a gap year in West-Africa, teaching at a rural high school in Ghana for six
months before returning to Europe overland. Between 2006 and 2009 he studied me-
chanical engineering at Delft University of Technology (TUD), during which he spend
one semester in Paris at École normale supérieure de Cachan. After graduating cum
laude at the top of his class, he did a one year pre-master program to enter the master
in applied physics during which he took several philosophy classes at Leiden University.
During the academic year of 2010-2011 he was a full-time board member of the Inter-
stedelijk Studenten Overleg (ISO). This group represents the interests of the students in
the Dutch higher education system through contacts with members of parliament, the
minister and ministry of Education, Culture and Research, and the national press. In
2011 Marco started a master in applied physics at the TUD and a one year job as junior
project leader at the Platform Bèta Techniek. In 2013 he finished his master thesis at
TNO, where he investigated the potential of adaptive optics for compensating alignment
errors in optical systems. This sparked his interest in optics, which from early 2014 he
pursued as a doctoral student in the optics group of the TUD. Marco was employed by
Carl Zeiss AG for his PhD studies. He did most of his research at the Corporate Research
and Technology department of Zeiss in Oberkochen (Germany). The fruit of that labour
is the document at hand. Marco currently works as a research scientist at the Corporate
Research and Technology department of Zeiss.

121





LIST OF PUBLICATIONS

6. Marco Mout, Andreas Flesch, Michael Wick, Florian Bociort, Joerg Petschulat, Paul Ur-
bach, Ray-based method for simulating cascaded diffraction in high-numerical-aperture
systems, Journal of the Optical Society of America A 35, 1356–1367 (2018).

5. Marco Mout, Michael Wick, Florian Bociort, Joerg Petschulat, Paul Urbach, Ray tracing
the Wigner distribution function for optical simulations, Optical engineering 57, 014106
(2018).

4. B.M. Mout, A. Flesch, M. Wick, F. Bociort, J. Petschulat, H.P. Urbach, Comparison of three
ray based diffraction simulation methods, European Optical Society Annual Meeting, (2016).

3. Marco Mout, Michael Wick, Florian Bociort, Joerg Petschulat, Paul Urbach, Simulating
multiple diffraction in imaging systems using a path integration method, Applied Optics
55(14), 3847-3853 (2016).

2. B.M. Mout, M. Wick, J. Petschulat, F. Bociort, H.P. Urbach, A ray based method for diffrac-
tion simulations, Optics-photonics Design and Fabrication, (2016).

1. B.M. Mout, M. Wick, F. Bociort, H.P. Urbach, A Wigner based ray tracing method for imaging

simulations, SPIE Optical Design and Engineering VI 9626, (2015).

123

https://doi.org/10.1364/JOSAA.35.001356
https://doi.org/10.1117/1.OE.57.1.014106
https://doi.org/10.1117/1.OE.57.1.014106
https://doi.org/10.1364/AO.55.003847
https://doi.org/10.1364/AO.55.003847
http://dx.doi.org/10.1117/12.2196814

	Summary
	Samenvatting
	Introduction
	Short historic perspective
	Simulating aberrations and diffraction in optical systems
	Two ray-based diffraction methods
	Outline of this thesis

	Simulation methods for optical systems
	Introduction
	Fundamentals of electromagnetism
	Diffraction integrals
	Rayleigh-Sommerfeld and m-theory diffraction integrals
	Collins integral
	Spatial coherence
	Kirchhoff boundary conditions

	Geometrical optics
	Derivation of geometrical optics
	Ray tracing
	Monte Carlo ray tracing

	Exit pupil diffraction integrals
	Ray-based diffraction methods
	Wigner distribution function

	Wigner-based ray tracing
	Introduction
	Method
	Results
	Diffraction at an aperture in free space
	Thick lens
	Thin lens
	Convergence

	Analytical model
	Discussion
	Conclusions

	Scalar Huygens-Fresnel path integration
	Introduction
	Method
	Results
	Diffraction at a single aperture
	Field propagation
	Point Spread Function for diffraction at multiple surfaces
	Convergence

	HFPI compared to beamlet propagation
	Increasing the convergence
	Variance reduction schemes
	Stepwise and bidirectional HFPI
	Plane wave HFPI
	Ideas for other convergence strategies

	Discussion
	Conclusion

	Vectorial Huygens-Fresnel path integration
	Introduction
	Theory
	Geometrical propagation of the integral kernel
	Cascaded diffraction integral
	Discussion

	Implementation in a Monte Carlo ray tracer
	Results
	Vectorial plane wave HFPI
	Discussion
	Conclusion

	Conclusion
	References
	List of assumptions and conventions
	List of conventions
	List of physical quantities
	List of abbreviations
	List of assumptions

	Overview of simulation methods
	Additional proofs regarding the Wigner distribution function
	Inverse Wigner distribution function
	Wigner distribution function of a thin element
	Wigner distribution function of the Collins integral

	Acknowledgements
	About the author
	List of Publications

