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Stable force control and contact transition of a single link
flexible robot using a fractional-order controllerI

Abstract

The control of robots that interact with the environment is an open area of research.

Two applications that benefit from this study are: the control of the force exerted by

a robot on an object, which allows the robot to perform complex tasks like assembly

operations, and the control of collisions, which allows the robot safely collaborate with

humans. Robot control is difficult in these cases because: 1) bouncing between free

and constrained motion appears that may cause instability, 2) switching between free

motion (position) controller and constrained motion (force) controller is required being

the switching instants difficult to know and 3) robot control must be robust since the

mechanical impedance of the environment is unknown. Robots with flexible links may

alleviate these drawbacks. Previous research on flexible robots proved stability of a PD

controller that fed back the motor position when contacting an unknown environment,

but force control was not achieved. This paper proposes a control system that combines

a fractional-order D tip position controller with a feedforward force control. It attains

higher stability robustness and higher phase margin than a PD controller, which is the

integer-order controller of similar complexity. This controller outperforms previous

controllers: 1) it achieves force control with nearly zero steady state error, 2) this

control is robust to uncertainties in the environment and motor friction, 3) it guarantees

stability (like others) but it also guarantees a higher value of the phase margin, i.e.,

a higher damping, and a more efficient vibration cancellation, and 4) it effectively

removes bouncing. Experimental results prove the effectiveness of this new controller.

Keywords: force control, flexible robots, fractional-order control, hybrid systems

control, robust control
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1. Introduction

The efficient control of the interaction of robots with the environment broadens the

range of application of robotics. Two applications that are benefited from this are: force

control, which allows the robot to perform complex tasks like assembly operations, and

collision control, which allows the robot to safely collaborate with humans.5

The control of a robot interacting with the environment is difficult because: 1)

bouncing between free and constrained motion appears that may cause instability, 2)

switching between a free motion (position) controller and a constrained motion (force)

controller is required being the switching instants difficult to obtain, and 3) robot con-

trol must be robust since the mechanical impedance of the environment is unknown.10

Flexible robots are characterized by having at least one flexible element in its me-

chanical configuration. Flexible links are mostly utilized because they allow for robot

designs with reduced weight, which involves some significant advantages over stan-

dard rigid robots: a lightweight flexible robot can perform faster movements than its

equivalent in dimensions rigid counterpart, it is more easily transportable, its energy15

consumption is lower, and its payload-to-arm weight ratio is higher (see e.g. [1]).

Interaction with the environment is better dealt by flexible robots than by standard

rigid robots, e.g, in force control tasks [2] or in cooperative tasks with humans [3]. The

following advantages can be ascertained in the case of flexible link robots:

1. When a rigid robot and a rigid object collide, the contact force grows very20

quickly (in µs), reaching a very high value before the control system acknowl-

edges the contact. Then, the object or a robot component may be broken. When

a flexible link collides, instead, part of its kinetic energy is gradually transformed

into link elastic potential energy. The contact force grows then more slowly (in

ms) and the control system can timely detect the impact and switch from position25

to force control, reducing the harming effects of the impact.

2. When a rigid robot performs tasks involving contact with the environment, like

assemblies, small errors in the robot end effector position yield high contact

forces that often impede the execution. This is overcome using complex sensory

systems, computer-aided design models of the environment and complex task30

2



planning systems. Instead, flexible link robots absorbe these errors by slightly

deforming their links, yielding moderate values of the contact force that facilitate

these tasks. This deflecting feature has been exploited in industry, in which com-

pliant mechanisms are inserted at certain points of the robot to achieve assembly

tasks, e.g., the Remote Center of Compliance Device [4].35

3. Impedance control is a useful technique that combines position-force control in

robotics [5], being quite stable in transitions from free to constrained movements.

It can be easily implemented using robots with flexible links, in which part of the

impedance control is passively performed by the compliant structure of the robot.

4. Damage on an operator of the impact of a robot would be drastically reduced.40

For example, the head injury criterion HIC [3], [6] is defined as:

HIC = 2
✓
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◆ 3
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4

v
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where vrob is the speed of the robot, Mrob is the mass of the robot, Moper is the

mass of the impacted operator, and Kcov is the lumped stiffness of a compliant

cover on the arm (in our case, it is assimilated to the compliance of the flexible

link). HIC index is much smaller in a flexible link robot than in a rigid one45

because Mrob and Kcov are smaller. Moreover, control systems can be designed

taking into account previous issues 1) to 3) to further reduce collision harm.

However, undesired vibrations and deflections appear in the structure of flexible

link robots that make their control significantly complicate. A survey on free motion

control techniques of these robots is [7].50

Several strategies were proposed to control rigid robots interacting with the envi-

ronment. They can be grouped into impedance control [8] and hybrid position-force

control [9], and have also been extended to flexible robots. Examples for robots with

two flexible links are impedance control [10] and hybrid position-force control [11].

Research has been carried out on contact detection mechanisms for rigid robots55

[12], [13] and flexible link robots [14]. Thresholds of some functions of generalized

robot momenta and motor torques were used to trigger the change of the control law.

In these control systems, after the contact had been detected, the robot was stopped in
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a position in which no contact was established with the object (preventing harming a

person) or in a position in which some force was exerted on a soft object. In all these60

cases, rebounds were minimum and did not deteriorate the control performance.

Control of rigid robots interacting with the environment has been proposed, that

switches from position to force control in function of a contact detection mechanism,

e.g., [15]. However, these robots had to approach the object slowly because of the

above mentioned problems. One of the first applications of this kind of controllers to65

single link flexible robots was [16]. This controller was later extended to a two links

- three degrees of freedom 1 (DOF) flexible robot in [18], in which a hybrid position-

force control combined with a collision detection algorithm was developed. These

flexible robots could approach faster to the object. Contact detection mechanisms for

flexible link robots were proposed that switched between controllers [19] or between70

references for a given controller [2]. The second controller was more robust than the

first but less efficient. In [20], a contact detection mechanism was combined with a

force control of two flexible fingers of a gripper of a 6 DOF manipulator in order to

manipulate fragile objects. Finally, [21] described a hybrid position-force control of a

sensing antenna that slides on a surface and recognizes an object by repetitive control.75

In all these works, rebounds may appear in the collision. Moreover, control robustness

when contacting objects of unknown rigidity has not been addressed in most of them.

Previous methods switched controllers only once: the first time that the robot

changed from free to constrained motion. If subsequent rebounds appeared, the control

law was not varied (with the exception of [15] in which the contact detection mecha-80

nism remained ever active, switching controllers in the rebounds). Then robust asymp-

totic stability is required in the rebounds. Moreover, control should be robust to the

unknown impedance of the collided object. In [22], the stability of a PD controller of a

single link flexible robot that fed back the motor position in the case of rebounds with

an unknown environment was proven, but force control was not achieved. Moreover,85

controlling motor position is not as efficient in removing vibrations of a flexible link as

1The number of degrees of freedom that a manipulator possesses is the number of independent position
variables which would have to be specified in order to locate all parts of the mechanism (see e.g. [17]). In
the case of a flexible link manipulator it has to be also specified that external forces would not be applied.
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controlling tip position or the moment at certain points of the link.

We address the control of a single link flexible robot that has to exert a programmed

force on an object. A fractional-order D tip position controller is combined with a feed-

forward position/force control. It cancels link vibrations better than [22] because it con-90

trols the tip position, which is clearly affected by link vibration, unlike the mentioned

work that controls the motor position, which barely reflects link vibration. Moreover,

the proposed control system attains higher stability robustness and phase margin than

a PD tip position controller, which is the integer-order controller of complexity similar

to the proposed one. Our control system also attains force control with nearly zero95

steady state error and is robust to nonlinear joint friction.

Fractional-order operators have been used to implement robust controllers. Ap-

plications to damping vibrations on flexible links are: a fractional-order proportional-

derivative control (FPD) of the attitude of a flexible spacecraft [23]; controls that in-

clude proportional and two fractional-order derivative terms of different orders for a100

planar two degrees of freedom flexible robot [24]; a FPD for a single link flexible

robot robust to payload changes [25]; and a fractional-order proportional-integral con-

troller for a flexible link implemented by an analog device denoted fractor [26].

Fractional-order hybrid position-force control of a rigid robot with compliant joints

has been studied in [27]. Fractional-order controllers were also used in cooperation105

tasks between two manipulators with compliant joints in [28]. Our paper addresses for

the first time the fractional-order force control of flexible link robots in contact tasks,

that is robust to rebounds, environment uncertainties and joint friction.

Asymptotic stability in the case of rebounds is guaranteed by using a recent result

on hybrid fractional-order systems developed in [29]. Robustness to joint friction is110

achieved by implementing a two nested loops control scheme. A relevant result of

this paper is that, by using the proposed fractional-order D controller, higher phase

margin, i.e. higher damping, than with a PD controller is guaranteed in all circum-

stances. Robust phase margin in contact tasks has not been proven in the previously

mentioned controls neither others that can be found in the scientific literature. Flexible115

link robots are relatively fast systems that require efficient real-time implementations of

their controls. Several software packages are available for analysis, design, simulation
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and implementation of fractional-order controllers (see [30]).

The remainder of this paper is organized as follows. Section 2 describes the dynam-

ics of a single link flexible robot in the cases of free and constrained motion. Section 3120

proposes our robust control scheme. Section 4 presents the experimental platform and

some experimental results. Section 5 draws some concluding remarks.

2. System Modelling

We address the control of a single link flexible robot moving in a horizontal plane.

Owing to the mass distributed through the link, the dynamics of this robot is described125

by the Euler-Bernoulli partial differential equation (PDE) of a beam, e.g. [31],

EI
∂ 4

w(x, t)

∂x4 +r ∂ 2
w(x, t)

∂ t2 +ul

∂w(x, t)

∂ t
= f (x, t) (2)

where f (x, t) is a distributed external force and w(x, t) is the elastic deflection measured

from the undeformed beam. Moreover, a flexible beam with uniform linear mass den-

sity r , uniform bending stiffness EI, and a constant damping coefficient ul is assumed.

Dynamics described by this PDE has infinite vibration modes, i.e., it has transfer func-130

tions of infinite order. However, since the amplitude of the vibration modes decreases

as their frequency increases, as much as four vibration modes are usually taken into ac-

count. The special case of a beam with a mass significantly lower than the mass of its

payload has some specific features: 1) only one vibration mode (in the case of a pay-

load with mass and without rotational inertia) or two vibration modes (payload with135

both mass and rotational inertia) are apparent, and 2) the dynamic model is simpler

yielding transfer functions of second, fourth or sixth order (see e.g. [32]).

The following assumptions about our flexible link robot are made in this article:

a) Uniform link section I and elasticity coefficient E through the link.

b) A link of negligible mass, length l, and rotational stiffness coefficient c = 3EI/l,140

which is rotated by a motor in a horizontal plane and is not affected by gravity.

c) A payload mass of value of m is concentrated at the tip (in our experimental setup,

the mass of the payload is several times the mass of the link).
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d) No rotational inertia of the payload at the tip.

2.1. Motor dynamics145

The dynamic model of the motor with a reduction gear of ratio 1 : n is

Ĝ(t) = K̂mv(t) = Ĵ
¨̂q m(t)+ ĥ ˙̂q m(t)+ ĜCoul(t)+ Ĝc(t) (3)

where v(t) is the voltage supplied to the servo-amplifier and q̂m(t) is the motor an-

gle. As it is assumed that the motor is endowed with a servo-amplifier of very fast

dynamics, the current of the motor and, then, the motor torque Ĝ(t), are assumed to be

proportional to the previous control signal v(t). K̂m is the motor constant that defines150

such proportionality, ĥ is the motor viscous friction coefficient, and Ĵ is the motor ro-

tational inertia. Ĝc(t) is the coupling torque between the motor and the link seen from

the motor side of the gear. ĜCoul(t) is the Coulomb friction term which is non-linear.

Variables and parameters with upper hat are referred to the motor side of the gear. The

same variables and parameters without the upper hat are referred to the link side of the155

gear. For example, the conversion between angles of the motor is q̂m(t) = nqm(t), and

the conversion between torques is Ĝ(t) = G(t)/n.

2.2. Link dynamics

Consider assumptions a) to d). Assumption b) implies that r = 0 in (2). Consider

that only the tip mass touches the surface of a stationary object and, hence, a force Fl160

appears on the contact point, exerted by the environment on the link tip, as shown in

Fig. 1. Then no forces are exerted at intermediate points of the link and it is therefore

verified that f (x, t)= 0 in (2). Moreover, assume that the link has no internal distributed

damping caused by elasticity. Then ul = 0. Consequently, equation (2) becomes

EI
∂ 4

w(x, t)

∂x4 = 0 (4)

whose solution is a deflection function w(x) that is a third order polynomial in x and165

its coefficients depend on t. Taking this into account together with the boundary condi-

tions at the two ends of the link, the dynamic model of multiple lumped-masses flexible
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robots is obtained, see e.g. [33]. Our robot is the simplest case: it has a single lumped

mass at the tip. Then its dynamics can be easily obtained from simple well-known

mechanical equations as follows.170

From the balance of moments with respect to the rotatory axis, the following model

is defined for the link dynamics:

ml
2 d

2ql(t)

dt2 +u0l
2 dql(t)

dt
= Gc(t)+ lFl(t) (5)

where ql is the angle of the tip of the link (and the angle of the payload) and u0 is

the damping coefficient of the link. The damping term of (5) is different from the dis-

tributed damping term presented in (2). This damping depends only on the tip velocity,175

and experiments have shown that it often provides a good approximation of the overall

damping of the link. In this expression, Gc(t) represents the coupling torque between

the motor and the link.

Moreover, from modeling the deflection of the bar under assumptions a) and b),

and taking into account the deflection model yielded by (4), the coupling torque Gc(t)180

can be expressed as [33]:

Gc(t) = c(qm(t)�ql(t)) (6)

Substituting (6) in expression (5) and rearranging terms yields the link dynamics

model

d
2ql(t)

dt2 +
u0

m

dql(t)

dt
+

c

ml2 ql(t) =
c

ml2

✓
qm(t)+

l

c
Fl(t)

◆
(7)

which has one output ql and two inputs qm and Fl . Taking Laplace transforms in there

and equating the output yields185

Ql(s) =
w2

0
s2 + u0

m
s+w2

0

✓
Qm(s)+

l

c
Fl(s)

◆
(8)

where w0 =
p

c/(ml2).
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Figure 1: Flexible link actuated by a motor in constrained motion

2.2.1. Free motion

In the case that the robot moves freely, link dynamics can be obtained from equation

(7) or (8) by just making Fl = 0. Then (8) becomes

Ql(s)

Qm(s)
=

w2
0

s2 + u0
m

s+w2
0

(9)

Moreover, taking Laplace transforms in (6) and substituting (9) in there, the following190

transfer function is obtained:

Gc(s)

Qm(s)
= c

s
2 + u0

m
s

s2 + u0
m

s+w2
0

(10)

2.2.2. Constrained motion

Assume that, in the constrained motion, the robot-environment contact is produced

at the link tip and the environment presents a mechanical impedance given by the well

known spring-damper model:195

Fl(t) = K(yc � yl(t))+u d(yc � yl(t))

dt
(11)

where K and u are the stiffness and damping characteristics of the environment, yl = lql

is the tip position and yc = lqc is the position of the obstacle, being qc the angular po-

sition of the impacted surface at the moment of the collision (which is the equilibrium
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position at which the obstacle is not compressed neither stretched). This can be ex-

pressed in terms of angular displacements as200

Fl(t) = Kl(qc �ql(t))+u l

✓
dqc

dt
� dql(t)

dt

◆
(12)

Due to the fact that yc is a fixed point and dqc/dt = 0, (12) reduces therefore to

Fl(t) = Kl(qc �ql(t))�u l
dql(t)

dt
(13)

Substituting (13) in (5) and operating yields

ml
2 d

2ql(t)

dt2 +(u0 +u)l2 dql(t)

dt
+Kl

2(ql(t)�qc) = Gc(t) (14)

Defining 4ql(t)= ql(t)�qc and taking into account that q̈c = q̇c = 0, (14) becomes

Gc(t) = ml
2 d

2

dt2 (4ql(t))+(u0 +u)l2 d

dt
(4ql(t))+Kl

24ql(t) (15)

On the other hand, (6) can be expressed as

Gc(t) = c(qm(t)�qc �ql(t)+qc) = c(4qm(t)�4ql(t)) (16)

being 4qm(t) = qm(t)�qc. Moreover, equation (13) can be expressed as205

Fl(t) =�Kl4ql(t)�u l
d

dt
(4ql(t)) (17)

Applying Laplace transforms to (15)–(17), it is obtained:

Gc(s) =
�
ml

2
s

2 +(u0 +u)l2
s+Kl

2�4Ql(s) (18)

Gc(s) = c(4Qm(s)�4Ql(s)) (19)

Fl(s) =�(Kl +u ls)4Ql(s) (20)
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The combination of (18) and (19) yields:

4Ql(s)

4Qm(s)
=

w2
0

s2 + u0+u
m

s+
�
w2

0 +
K

m

� (21)

and substituting (21) in (19) and (20), the following transfer functions are also obtained:

Gc(s)

4Qm(s)
=

c
�
s

2 + u0+u
m

s+ K

m

�

s2 + u0+u
m

s+
�
w2

0 +
K

m

� (22)

Fc(s)

4Qm(s)
=

lw2
0 (K +us)

s2 + u0+u
m

s+
�
w2

0 +
K

m

� (23)

where Fc(t) is the force exerted by the link on the environment which, as consequence

of the Newton’s Third Law, is Fc(t) =�Fl(t).210

The free motion dynamics can be obtained from (21) and (22) by making K = u = 0

and changing incremental by absolute angles. Transfer functions (21) and (22) will

thereafter be used to describe all the cases. They will be denoted as Gp(s,K,u) and

GG(s,K,u) respectively, and the free motion case will be described by these transfer

functions making K = u = 0.215

Fig. 2 includes a block diagram representation of the link dynamics in both free

and constrained motion cases. They are expressed by the interconnection of equations

(6), (8) and (20).

3. Control System

This section develops a new fractional-order robust control system for single link220

flexible robots. It aims to control the tip position in the free motion case and the force

exerted by the tip on the environment in the constrained motion case. In order to

achieve this, the entire control problem is divided into three parts: 1) free motion con-

trol; 2) constrained motion control; and 3) contact detection algorithm.

A unique closed-loop controller is used all the time in order to provide with more225

robustness to the whole system. Switching between reference trajectories instead of

between controllers is carried out when the first contact is detected, as it was done
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in [2]. The controller must therefore perform adequately in both free and constrained

motion cases, and must be robustly asymptotically stable to:

1. Changes in working operation: from free to constrained motion and vice versa.230

2. Rebounds.

3. Unknown mechanical impedance of the environment.

4. Unknown Coulomb friction in the motor of the robot.

The proposed control system must also exert a force on the environment with nearly

zero steady state error. Moreover, this controller must yield relatively high values of235

the phase margin, i.e. relatively high damping, in all the cases. This feature has never

been achieved by any of the hybrid position-force control systems already existing for

either rigid or flexible link robots.

The contact detection algorithm triggers changes in the reference and the feedfor-

ward term of the control system the first time that the robot environment changes, i.e.,240

the first time that the robot changes from free to constrained motion. This algorithm

remains inactive during the subsequent state transitions caused by rebounds.

In the proposed control system:

1. The measured variables are Gc(t) and qm(t).

2. The input of the system is 4qm(t) = qm(t)� qc. The variable that can be con-245

trolled is the motor angle, qm(t). However, qc is unknown a priori since it is the

angle at which the contact occurs. Therefore, such variable has to be estimated

during the contact process in order to adapt the controller, or a controller has to

be designed insensitive to that variable.

3. The output variable that is fed back in the closed-loop control system is ql(t) in250

both the free and constrained motion cases. However, an additional open-loop

control is implemented in the constrained motion in order to achieve the desired

force value Fc or, equivalently, a desired Gc (note that Fc = Gc/l).

In order to fulfill the fourth robustness specification (unknown Coulomb friction),

a nested double control loop scheme is proposed. The inner-loop is closed with high255

gains around the motor. It feeds back the motor position and removes the effects of
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the nonlinear Coulomb friction of the motor as well as the effects of time varying

viscous friction. The outer-loop is devoted to remove link vibrations. This scheme

has demonstrated to be very stable and effective in removing motor friction effects in

flexible link robots (e,g. [2], [18], [25], [33]).260

The methodology to design the control system is as follows:

1. Design the inner-loop control system in order to remove the friction effects and

achieve a motor closed-loop response as fast as possible without saturating the

actuator. Standard integer-order controllers have shown to be quite effective in

attaining this. Then no further improvements are needed in this control loop and265

a fractional-order controller is not proposed here. The control structure proposed

in [34] is used, which includes a feedback of the coupling torque that makes the

dynamics of the controlled motor be insensitive to mechanical changes in the

link (including changes in the operating mode: free or constrained motion). This

feedback of the coupling torque drastically simplifies the motor dynamic model270

that is used to design the motor controller, making such design relatively simple.

2. Subsequently, design the outer-loop control in order to robustly damp the link

vibrations and carry out the force control. Since robustness concerns 1) to 3)

have to be fulfilled and a high phase margin is desired in all cases, a fractional-

order controller is designed for this loop.275

3. The contact detection mechanism proposed in [2] for a robot similar to the one

considered here is implemented.

Figure 2 shows the scheme of the proposed control system, in which C1(s) and

C2(s) are the controllers of the inner-loop, and C(s) is the fractional-order controller of

the outer-loop. The tip angular position, which is fed back in the closed-loop control,280

is estimated from the measured variables by equating expression (6):

ql(t) = qm(t)�
1
c

Gc(t) (24)

This control scheme is subsequently detailed.
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3.1. Motor inner-loop

PID controllers with a low pass filter term ensure good trajectory tracking, com-

pensate disturbances such as unmodeled components of the friction, and are robust to285

parameter uncertainties, providing precise and fast motor positioning responses. An

algebraic methodology is used to tune the parameters of these controllers.

C(s)

✓⇤m
C1(s)

Motor

C2(s)

!2
0

s2+ ⌫0
m s+!2

0

✓m

�cc

✓c

l2

c (K ⌫s)

No

Y es

0

✓l

Motor inner � loop M(s)

1
nK̂

Link dynamics

(Free
motion)

(Constrained
motion)

u

dynamics

Fl

F (s)
✓dl

1
c

✓dm

m

✓l

Tip angular position

estimator

Figure 2: Control scheme of a single-link flexible arm. q d
m
(t) and q d

l
(t) are the desired motor and tip angular

trajectories, respectively. C(s) is the fractional-order controller robust against changes in the mechanical
impedance of the contacted object, and C1(s) and C2(s) are the PID controllers with low-pass filters for the
motor inner-loop

The PID controller is combined with a feedback term of the coupling torque Gc(t).

Its rationale is the following. Consider the motor dynamics given by (3). If this feed-

back term is implemented, the input to the motor becomes290

v(t) = u(t)+
Gc(t)

nK̂m

(25)

where u(t) is the control signal provided by the combination of controllers C1(s) and

C2(s) (see Figure 2) and, substituting this in (3), the motor dynamics reduce to

K̂mu(t) = Ĵ
¨̂q m(t)+ ĥ ˙̂q m(t)+ ĜCoul(t) (26)

Moreover, if the Coulomb friction is regarded as a step like disturbance that can be
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compensated by the loop closed around the motor, the transfer function from the ficti-

tious input, u(s), to the motor angular position, q̂m(s), can be obtained:295

q̂m(s)

u(s)
= Ĝm(s) =

K̂m

s · (Ĵ · s+ ĥ)
(27)

The transfer function Gm(s) between the motor angle at the link side of the gear, qm(t),

and the fictitious control signal, u(t), is given by Gm(s) = Ĝm(s)/n. The proposed PID

controller is shown in Figure 3 and is defined as:

n1(s) = a2s
2 +a1s+a0; n2(s) = b2s

2 +b1s+b0; d(s) = s(s+h) (28)

The four closed-loop poles of this system can be arbitrarily placed following the alge-

braic method described in [35], where all the closed-loop poles were placed in the same300

location p. Two zeros of the closed-loop are placed in p in order to cancel two poles of

the closed-loop. Then the closed-loop transfer function that results for the motor is:

M(s) =
qm(s)

q ⇤
m
(s)

=
1

(1+ e · s)2 ; e =�p
�1 (29)

✓⇤m n1(s)
d(s)

Motor

n2(s)
d(s)

✓m

�c
nK̂m

C1(s)

C2(s)

u
dynamics

Figure 3: PID applied to the motor.

3.2. Trajectory generation

The control system shown in Figure 2 includes a reference for the outer-loop control

- which is the desired trajectory of the tip angle q d

l
(t) - and a feedforward term - which305

is the desired trajectory of the motor angle q d

m
(t) - that is added to the output of the

outer-loop controller C(s). The following lemma proves that the accurate tracking

of the desired tip position trajectory q d

l
(t) can be achieved by the proposed control

15



system if reference signals q d

l
(t) and q d

m
(t) are properly computed by inverting the

robot dynamics.310

Lemma 1. Let us denote as q d

l
(t) the reference trajectory to be tracked by the robot

tip position ql(t) in a free motion mode. Assume that the dynamics of the robot under

free motion are given by (9), (10) and (29), and that no disturbances neither modeling

errors are present. Moreover, consider the control scheme of Fig. 2. If the feedforward

term were315

q d

m
(t) = q d

l
(t)+

u0

mw2
0

q̇ d

l
(t)+

1
w2

0
q̈ d

l
(t) (30)

and F(s) = M(s), then the tip position would describe a trajectory ql(t) given by

ql(t) = m(t)⇤q d

l
(t). (31)

where m(t) is the inverse Laplace transform of the M(s) given by (29) and ⇤ is the

convolution operator.

Proof. The closed-loop transfer functions that relate the output ql(t) with the com-

mand signals q d

l
(t) and q d

m
(t) in the free motion mode are obtained from operating the320

transfer functions of the scheme of Fig. 2:

Ql(s) = M(s)
Gp(s,0,0)Qd

m
(s)+C(s)M(s)Gp(s,0,0)Qd

l
(s)

1+C(s)M(s)Gp(s,0,0)
(32)

Taking into account that the Laplace transform of (30) is Qd

m
(s) = G

�1
p
(s,0,0)Qd

l
(s),

making F(s) = M(s) and simplifying the resulting equation yields that

Ql(s) = M(s)Qd

l
(s) (33)

Taking inverse Laplace transforms in this expression proves the lemma. ⇤

In equation (29), M(s) tends to 1 if p !�• and then, from (33), Ql(s)! Qd

l
(s)325

and hence ql(t)! q d

l
(t). It is therefore advisable to close the inner-loop with high gain

controllers in order to obtain high absolute values of p in M(s) and, then, achieve an

accurate tip angle tracking of the reference trajectory q d

l
(t).
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3.3. Robot outer-loop

It has already been stated that a unique outer-loop controller is used for free and330

constrained robot motions. Consider a force control scheme in which the process

transfer function (22) is used (note that a direct contact force control based on model

(23) can not be implemented because the contact force is not measured). It has two

lowly damped poles at p1,2 =�u0+u
2m

± j

q
K

m
+w2

0 �
�u0+u

2m

�2 and two zeros at z1,2 =

�u0+u
2m

± j

q
K

m
�
�u0+u

2m

�2 in the constrained motion. Since w0 has usually a small335

value, often K/m >> w2
0 , and poles p1,2 are therefore close to zeros z1,2. These two

poles can therefore be only slightly modified by a closed-loop control. Then this con-

trol scheme can hardly add damping to these two poles, which are the dominant ones.

Consider instead closing a control loop of the angular tip position of the robot.

This signal could be accurately estimated from (24) if modelling assumptions b) and340

c) were verified, and the transfer function to be used in the controller design would

be (21). This transfer function has no zeros. The poles of the closed-loop system can

therefore be easily placed in desired locations, allowing us to move the poles p1,2 far

away from the imaginary axis, and add damping to the closed-loop system. For this

reason Figure 2 presents a scheme that implements a control system of the robot tip345

angular position instead of the force or torque. The manner in which this control may

be used to achieve force control will be described later. Then the link dynamics will

thereafter be described by (21) for control purposes.

Due to rebounds, controller C(s) of Figure 2 has to face dynamics that switches

between (9) (or (10)) and (21) (or (22)) at unpredictable instants. This controller has350

therefore to be designed in the framework of the switching (hybrid) systems theory. It

is noted that the inner-loop is not affected by this changing dynamics since the motor

is connected with the environment only through the link, and the effects of the link on

the motor have been compensated by implementing the feedback loop (25).

The design of the robustness issues of the outer-loop control are detailed next.355

3.3.1. The Quadratic Stability Condition for our Hybrid System

This article recalls the following result given in [29] on control of fractional-order

switching systems, which is an extension of a previous theorem proposed by [36] on
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the quadratic stability of stable linear multi-model SISO systems of integer-order.

Consider a multimodel system composed of n fractional-order subsystems, whose360

transfer functions Hi(s), 1  i  n, switch among them at unpredictable instants. Then

this system is quadratically stable (i.e. there exists a Lyapunov function which guaran-

tees the stability) if it were verified that:

1. All the Hi(s) are of the same order.

2. All the Hi(s) are quadratically stable.365

3. It is fulfilled that

|arg(Hld( jw))� arg(Hkd( jw))|< p
2
, 8w, 8l,k, 1  l,k  n (34)

where Hld(s) and Hkd(s) are the denominators of Hl(s) and Hk(s), respectively.

In this study, the closed-loop transfer functions H are obtained from the tip angular

position transfer functions Gp(s,K,u), which depend on the contacted object rigidity

K and damping u . A multimodel system Hi(s), 1 i n, is assumed of n environments370

defined by n pairs (Ki,ui). Moreover, it is considered that H1(s) is the free movement

case, which corresponds to K1 = 0 and u1 = 0.

This result applied to our robot states that the asymptotic stability of our closed-

loop control system robust to rebounds and indeterminate mechanical impedance of the

contacted object is guaranteed if the following conditions are simultaneously fulfilled:375

1. The closed-loop controlled robot is stable for all the models, which include free

motion and tip contacts with any of the considered environments (rigid, elas-

tic...). These environments are characterized by n pairs of values Ki � 0 and

ui � 0. The closed-loop transfer functions are

Hi(s) =
C(s)M(s)Gp(s,Ki,ui)

1+C(s)M(s)Gp(s,Ki,ui)
, 1  i  n (35)

2. Condition (34) is verified.380
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Moreover, since Gp(s,0,0) and Gp(s,K,u) (for any K,u > 0) are of the same order,

Hi(s), 1  i  n, are of the same order too, and the result [29] can therefore be applied.

Subsequently, two theorems are proposed that guarantee the fulfillment of the ro-

bust quadratic stability condition (34) by a controller C(s) in the case of rebounds.

The first theorem deals about the switching condition needed to obtain a stable re-385

bound control between two constrained movements with different contacted objects,

i.e., with different mechanical impedances (one of them can be free movement). The

other states a sufficient condition to obtain quadratic stable control in the case that the

robot switches among a set of objects with different and unknown but bounded stiffness

K and damping u values, i.e., robust switching condition.390

In the following, Cn(s) and Cd(s) stand for the numerator and denominator polyno-

mials of C(s), respectively.

Theorem 1. Consider a hybrid system that switches between two linear time in-

variant systems Hl(s) and Hk(s), belonging to the set (35) of the multimodel system, a

finite number of times at unknown instants. Then the fulfillment of the condition395

|arg(Hld( jw))� arg(Hkd( jw))|< p
2
, 8w, (36)

where Hld(s) and Hkd(s) are the denominator polynomials of Hl(s) and Hk(s) respec-

tively, is equivalent to the fulfillment of the following inequality:

�
Xr(wn)�w2

n
+K

0
k

��
Xr(wn)�w2

n
+K

0
l

�
+

�
Xi(wn)+(u 0

0 +u 0
k
)wn

��
Xi(wn)+(u 0

0 +u 0
l
)wn

�
> 0, 0  wn < • (37)

where wn is the normalized frequency wn = w/w0, K
0
{l,k} = K{l,k}/(mw2

0 ), u 0
{0,l,k} =

u{0,l,k}/(mw0), X( jwn) = 1+C( jwn)M( jwn), Xr(wn) = ¬{X( jwn)} and Xi(wn) =

¡{X( jwn)}, denoting ¬ and ¡ the real and imaginary components of X respectively.400

Proof. See Appendix A.

Consider the multimodel system case, in which the previous stability condition

must be verified when the robot switches among object impedances that belong to a
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region defined by the stiffness and damping lower and upper bounds
�
K,K

�
and (u ,u)

respectively. In this case, condition (37) must be verified for all the possible combi-405

nations of pairs (Kl ,ul), (Kk,uk) that belong to such region. Checking this condition

for all the possible cases with a computer is a quite time consuming procedure. The

following theorem proposes an equivalent condition that significantly reduces this com-

putation time.

Theorem 2. Consider a hybrid system that switches among a set of linear time410

invariant systems described by transfer functions Hi(s), given by (35), a finite number

of times at unknown instants. Assume that the mechanical impedances of this set of

systems are unknown but they belong to a bounded region defined by K  Ki  K and

u  ui  u . Then condition (34) is verified for any switching sequence inside this

region if the following condition is fulfilled:415

�
Xr(wn)�w2

n
+K

0
m

�2
+
�
Xi(wn)+(u 0

0 +u 0
m
)wn

�2
> d 0

K

2
+w2

n
d 0

u
2
, 0  wn < •

(38)

for any pair of values (K0
m
,u 0

m
) included in the intervals

K

mw2
0
 K

0
m
 K

mw2
0
,

u
mw0

 u 0
m
 u

mw0
(39)

where the values d 0
K

and d 0
u are given by

d 0
K
= min

✓
K
0
m
� K

mw2
0
,

K

mw2
0
�K

0
m

◆
� 0, d 0

u = min

✓
u 0

m
� u

mw0
,

u
mw0

�u 0
m

◆
� 0

(40)

wn is the normalized frequency wn =w/w0, u 0
0 =u0/(mw0), X( jwn)= 1+C( jwn)M( jwn),

Xr(wn) = ¬{X( jwn)}, Xi(wn) = ¡{X( jwn)}.

Proof. See Appendix B.420

Remark 1. Note that this theorem reduces the number of times that condition (37)

has to be checked - in order to guarantee the switching condition in the region
�
K,K

�

and (u ,u) - from 1
2 n

2(n� 1)2 to 1
2 n(n� 1), being n

2 the number of nodes of the dis-
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cretized region, i.e, the region is assumed to be divided in a rectangular grid in which

the length of the sides of a cell is
�
K �K

�
/(n�1) and (u �u)/(n�1).425

Remark 2. Since the free movement case is included in the multimodel system, the

bounds of the impedance region are
�
0,K

�
and (0,u).

3.3.2. Design of Controllers Robust to an Uncertain Environment

This subsection discusses the structure of the controllers that achieve asymptotic

closed-loop stability in the cases K � 0 and u � 0. The design of a controller that430

verifies the robust phase margin specification is also addressed.

Consider an uncertain environment (K,u) such that 0  K  K̄ and 0  u  ū ,

being K̄ and ū the maximum values for the foreseen contacted objects. A controller

has to be designed such that, besides verifying the quadratic stability condition (34):

1. The closed-loop system must be asymptotically stable in the defined range of435

mechanical impedances, i.e. robust asymptotic stability.

2. The closed-loop system must have a desired dynamic performance in the free

movement.

3. The phase margin of the system must be relatively high for any pair (K,u) that

belongs to the defined range of impedances, i.e., robust phase margin condition.440

A control system that fulfills these specifications is designed next. Since this article

is focused mostly on the contact task, the control scheme of Fig. 2 is considered only in

its contact mode. This mode is triggered by the contact detection mechanism and, once

it has been set on, it will be never switched off. Switching on this mode only implies

changing the reference of the tip angle q d

l
(t) (removing prefilter F(s) at certain instant)445

and the feedforward term q d

m
(t) in the manner that will be discussed in a subsequent

subsection. Fig. 4 is a simplification of Fig. 2 that will be used thereafter to design the

closed-loop controller.
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Figure 4: Simplified control scheme of the tip angular position, acting in the contact situation. q d

l
is

the desired (constant) angular tip position, C(s) is the controller robust against changes in the mechanical
impedance of the contacted object, and M(s) is represented by its expression (29).

The frequency response of the open-loop system is L( jw) = M( jw)Gp( jw,K,u).

The first path of its Nyquist diagram is represented in Fig. 5. Since a very small value450

is chosen for the coefficient e of M(s), usually M( jw) ' 1 at low and medium fre-

quencies, and the open-loop frequency response L( jw) can be approximated at these

frequencies by Gp( jw,K,u). The first path of this approximate Nyquist diagram is also

represented in Fig. 5 in the case of zero damping of the link (u0 = 0) and the contacted

object (u = 0), which is the worst-case scenario for closed-loop stabilization.455
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Figure 5: First path of the Nyquist diagram of the robot (with and without including the inner-loop dynamics).

Fig. 5 shows that the approximate system Gp( jw,K,0) is marginally stable and

the complete system M( jw)Gp( jw,K,0) would yield an unstable closed-loop system.

This figure also shows that the controller C( jw) has to add phase to the previous

Nyquist plots - at least in the range of frequencies from zero to the gain crossover

frequency wc - in order to increase the phase margin of the system. Increasing the460

phase margin produces increasing the relative stability and damping of the system.

This suggests that these controllers have to be phase-lead compensators. Moreover,

Fig. 5 suggests that, in order to obtain a closed-loop stable system, the gain crossover

frequency wc must be higher than the resonant frequency wr.

We use two specifications to define the closed-loop dynamic performance in the465

free movement case: damping and settling time. Since these values are related to fre-

quency specifications: damping to phase margin f and settling time to gain crossover

frequency wc, e.g. [37], the pair (f0, wc0) will be used as control design specifications.
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These can be achieved by fulfilling the following complex condition

C( jwc0)M( jwc0)Gp( jwc0,0,0) =�e
jf0 (41)

Since two specifications are searched, the simplest phase-lead controllers that can470

be used must provide two parameters to be tuned. Then two controllers are proposed:

Ci(s) =
kds+ kp

(1+µs)2 (42)

which is the standard phase-lead controller (a PD controller) with parameters kd and

kp to be tuned, and

Cf (s) =
k f s

a

(1+µs)2 (43)

which is a fractional-order phase-lead controller (a D
a controller) with parameters k f

and a to be tuned. Denominators have been added to the two controllers in order to475

make them proper and, more important, filter the noise that is present in the feedback

signals provided by strain gauge sensors (coupling torque Gc(t)). Parameter µ is chosen

small enough so that it only slightly influences the frequency response in the range of

frequencies from zero to the gain crossover frequency.

Condition (41) particularized to controller (42) becomes480

jkdwc0 + kp

(1+ jµwc0)2
w2

0

(1+ jewc0)
2 �w2

0 �w2
c0 + j

u0
m

wc0
� =�e

jf0 (44)

which yields, after operating, that

jkdwc0 + kp = c (45)

being

c =�
e

jf0 (1+ jµwc0)
2 (1+ jewc0)

2 �w2
0 �w2

c0 + j
u0
m

wc0
�

w2
0

(46)

a complex number that is calculated from the specifications, the process transfer func-
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tion and µ . Denoting cr and ci as the real and imaginary components of c respectively,

and equating apart the real and imaginary components of (45), the parameters of the485

PD controller are calculated from the expressions

kp = cr, kd = ci/wc0 (47)

It is easy to check that this closed-loop system can be stabilized only if kd > 0. This

implies that the phase of c must be between 0 and 180 degrees. Imposing this condition

on (46) gives an inequality that must be fulfilled by the specifications in order to yield

a stable system:490

0 < f0 +2arctan(µwc0)+2arctan(ewc0)�arctan

 u0
m

w2
c0 �w2

0

!
< p (48)

in which it has been assumed that wc0 > w0. Since it must be verified that wc0 >

wr =
q

w2
0 �
� u0

2m

�2 and u0 is usually very small, we have that w0 ' wr and the above

assumption is suitable.

Condition (41) particularized to controller (43) becomes

k f ( jwc0)a

(1+ jµwc0)2
w2

0

(1+ jewc0)
2 �w2

0 �w2
c0 + j

u0
m

wc0
� =�e

jf0 (49)

which yields, after operating, that495

k f ( jwc0)
a = k f e

j
p
2 a wa

c0 = c (50)

being c given also by (46). Denoting |c| and \c as the magnitude and phase of c

respectively, and equating apart the magnitudes and phases of (50), the parameters of

the D
a controller are calculated from the expressions

a =
2
p
\c, k f = |c|/wa

c0 (51)

It is easy to check that this closed-loop system can be stabilized only if 0 < a < 2

and k f > 0. This last condition is always verified as it is apparent from (51). Besides,500
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the condition on a implies that the phase of c must be between 0 and 180 degrees

which is verified if inequality (48) is fulfilled.

Assume that controllers Ci(s) and Cf (s) have the same value µ and are designed

to fulfill the same pair of specifications (f0, wc0). Then both controllers are designed

using the same c value. Equating (45) and (50) yields that505

jkdwc0 + kp = k f ( jwc0)
a = jk f sin

⇣p
2

a
⌘

wa
c0 + k f cos

⇣p
2

a
⌘

wa
c0 (52)

Equating apart the real and imaginary components of this equation yields

kp = k f cos

⇣p
2

a
⌘

wa
c0, kd = k f sin

⇣p
2

a
⌘

wa�1
c0 (53)

These expressions show that if a > 1 in Cf (s), then kp < 0 in Ci(s), and vice versa.

Theorem 3. Consider the linear time invariant system Gp(s,0,0)M(s) that describes

the free movement case, given by (21) and (29). Let a control system be implemented

by either using controller Ci(s) given by (42) or controller Cf (s) given by (43). Assume510

that both controllers are designed to attain the same frequency specifications (f0,wc0)

using the same µ value. Then the region of specification points (f0,wc0) that can be

attained using controllers Cf (s) is larger than using controllers Ci(s) because, besides

the common condition (48), Ci(s) must verify an additional condition:

kp >�1 (54)

Proof. See Appendix C.515

This theorem states that, given a pair of specifications (f0,wc0) that verify (48), a

controller Cf (s) - with parameters k f , a - can be always found. In the case that a < 1,

the equivalent Ci(s) controller (the one that verifies these specifications) also exists.

However, in the case that a > 1, the equivalent controller Ci(s) only exists if it were

verified that520

k f wa
c0 <� 1

cos
�p

2 a
� (55)

This inequality is easily obtained from substituting the first equation of (53) in (54).
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Subsequently, the robustness of the integer and fractional-order controllers to changes

in the parameters of the robot-environment system is analyzed. In many works, only

stability robustness is assessed. This study goes beyond in the sense that it seeks to as-

sess, besides stability robustness, phase margin robustness of the closed-loop system.525

Parameter µ is thereafter made zero since it should be chosen such that the denomi-

nators of Ci(s) and Cf (s) influence minimally the frequency response of the open-loop

system in the range of frequencies of interest. This simplification facilitates the subse-

quent calculations.

First, two lemmas about the stability of the considered controllers in the case of530

contact with stiff objects are presented.

Lemma 2. Consider the linear time invariant system Gp(s,K,u)M(s) given by (21)

and (29), and that a control system is implemented using a controller Ci(s) given by

(42) in which µ = 0. Assume an environment without damping, i.e., u = 0. Assume

too that u0 = 0 since the damping of the robot link is usually very small. Then the535

necessary and sufficient conditions required to stabilize such closed-loop system are

kd <
2

ew2
0

(56)

kd

2e

✓
1�0.5ew2

0 kd � e2
✓

K

m
+w2

0

◆◆
> kp >� K

mw2
0
�1 (57)

Consequently, the gain kp would be negative in the case of values of K that verify

K > m

✓
1�0.5ew2

0 kd

e2 �w2
0

◆
(58)

Proof. The characteristic equation of the closed-loop system assuming zero damp-

ing (u = u0 = 0) is

✓
s

2 +
K

m
+w2

0

◆
(1+ es)2 +w2

0 (kds+ kp) = 0 (59)

The stability conditions yielded by the Routh table are:540
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1�0.5ew2
0 kd > 0

kd

✓
1� e2

✓
K

m
+w2

0

◆
�0.5ew2

0 kd

◆
�2ekp > 0

K

m
+w2

0 +w2
0 kp > 0 (60)

The first two conditions are the inequalities stated in the lemma and the third condition

is always verified. ⇤
Lemma 3. Consider the linear time invariant system Gp(s,K,u)M(s) given by (21)

and (29), and that a control system is implemented using a controller Cf (s) given by

(43) in which µ = 0. Assume an environment without damping, i.e., u = 0. Assume545

also that u0 = 0. Then a necessary condition to stabilize such closed-loop system is,

provided that k f > 0, that

a >
4
p

arctan

 
e
r

w2
0 +

K

m

!
(61)

Moreover, the fractional order a would be higher than 1 if it were verified that

K > m

✓
1
e2 �w2

0

◆
(62)

Proof. The frequency response of the closed-loop system assuming zero damping

(u = u0 = 0) is550

Gp( jw,K,0)M( jw)Cf ( jw) =
w2

0 k f ( jw)a

(1+ jew)2 �w2
0 +

K

m
�w2

� (63)

Since the gain crossover frequency wc must be higher than the resonant frequency wr =q
K

m
+w2

0 , the phase at this frequency would be p
2 a �2arctan(ewc)�p and the phase

margin would be f = p
2 a � 2arctan(ewc). Taking into account that arctan(ewc) >

arctan(ewr), it is obtained that f < p
2 a �2arctan(ewr). Closed-loop stability implies

a positive phase margin which forces the right side of the previous inequality to be555

positive. This yields condition (61). Condition (62) easily follows from (61). ⇤
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The previous lemmas show that, in order to obtain robust stability when the contact

is produced with stiff objects (high values of K), the PD controller needs a negative

gain kp and the D
a controller needs a value a > 1. The two following lemmas are

devoted to demonstrate that, in these two cases, adding damping to the object increases560

the phase margin.

Lemma 4. Consider the linear time invariant system Gp(s,K,u)M(s) given by (21)

and (29), and that a control system is implemented using a controller Ci(s) given by

(42). Assume an environment without damping, i.e., u = 0. Assume also that u0 =

0. Then adding damping to the mechanical impedance of the contacted object, i.e.,565

making u0 +u > 0, produces a decrease of the gain crossover frequency and, in the

case that kp < 0, an increase of the phase margin of Gp( jw,K,u)M( jw)Ci( jw).

Proof. See Appendix D.

Lemma 5. Consider the linear time invariant system Gp(s,K,u)M(s) given by (21)

and (29), and that a control system is implemented using a controller Cf (s) given by570

(43). Assume an environment without damping, i.e., u = 0. Assume also that u0 =

0. Then adding damping to the mechanical impedance of the contacted object, i.e.,

making u0+u > 0, produces a decrease of the gain crossover frequency and an increase

of the phase margin of Gp( jw,K,u)M( jw)Cf ( jw) if k f > 0 and a < 2.

Proof. See Appendix E.575

Subsequently, two theorems are provided that compare the phase margin robustness

of controllers Ci(s) and Cf (s) in the case of a system without damping in the confidence

that, according to lemmas 4 and 5, adding damping increases the phase margin in both

cases.

Theorem 4. Consider the linear time invariant system Gp(s,K,u)M(s) given by580

(21) and (29), and that a control system may be implemented using either a controller

Ci(s) given by (42) or a controller Cf (s) given by (43), in both cases with µ = 0.

Assume: 1) an environment without damping, i.e., u = 0, 2) no damping in the link,

i.e., u0 = 0 and 3) the motor dynamics of the inner loop can be made very fast so that

e = 0 (and then M(s) = 1). Moreover, assume that both controllers are designed for the585

nominal plant which is the free movement case, i.e., K = 0, using the same frequency

specifications (f0,wc0). Then the robustness of both control systems (with respect to
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the nominal plant) to changes in the stiffness K verify that:

• If a < 1 or, equivalently, kp > 0: 1) controller Ci(s) yields higher gain crossover

frequencies than Cf (s), and 2) Ci(s) yields higher phase margins than Cf (s), for590

any stiffness value K > 0.

• If a > 1 or, equivalently, kp < 0: 1) controller Cf (s) yields higher gain frequen-

cies than Ci(s), and 2) Cf (s) yields higher phase margins than Ci(s), for any

stiffness value K > 0.

Proof. See Appendix F.595

According to Lemmas 2 and 3, stable contact with stiff objects is obtained only

using integer order controllers Ci(s) having kp < 0 or fractional-order controllers Cf (s)

having a > 1, respectively. Moreover, Theorem 4 has shown that Cf (s) provides more

phase margin and a higher gain crossover frequency to the system for any stiffness

value K than Ci(s) if a > 1. Then the following theorem, which pursues to generalize600

the results of Theorem 4 to the case of e > 0, is focused only on the case that a > 1.

Theorem 5. Consider the linear time invariant system Gp(s,K,u) given by (21),

and that a control system may be implemented using either a controller Ci(s) given

by (42) with kp < 0, or a controller Cf (s) given by (43) with a > 1, in both cases

with µ = 0. Assume an environment without damping, i.e., u = 0, and that u0 = 0.605

Moreover, assume that both controllers are designed for the nominal plant which is

the free movement case, i.e., K = 0, using the same frequency specifications (f0,wc0).

Then the robustness of both control systems with respect to changes in the stiffness K

verify that:

1. Controller Cf (s) always yields a higher gain crossover frequency than Ci(s) for610

any K.

2. Controller Cf (s) yields a higher phase margin than Ci(s) for any K if the follow-

ing sufficient conditions were simultaneously verified:

k 
�
1+ V2�

 
1�
✓

w0

wc0

◆2
!

(64)
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in which V = ewc0 and k = w2
0 w2

c0k f , and

k 
⇣

a4 a3 a2 a 1
⌘

Y

0

BBBBBBBBBBBB@

V5

V4

V3

V2

V

1

1

CCCCCCCCCCCCA

(65)

in the intervals 0 < V  1, 0 < k  2 and 1.05  a  1.95, where615

Y=

0

BBBBBBBBB@

�222.63 628.55 �632.333 259.465 �21.67 �11.22

1376.54 �3885.34 3908.39 �1603 132.93 69.2

�3192.55 9017.28 �9091.644 3743.78 �322.29 �158.92

3291.44 �9313.29 9436.3 �3921.25 366.07 160.28

�1273.93 3616.9 �3694.8 1561.6 �165.59 �58.36

1

CCCCCCCCCA

(66)

Proof. See Appendix G.

Remark 3. The considered range 0 < V  1 is reasonable since the dynamics of the

actuator (inner motor loop), which is represented by a cutoff frequency of an approx-

imate value e�1, should be faster than the response achieved by the controller in the

overall system, which may be approximately represented by wc0. This yields the above620

upper limit for V .

Remark 4. Since condition (64) implies that k  1+ V2, and taking into account

the range of V indicated in Remark 3, the range 0 < k  2 is justified.

Remark 5. Values of a higher than 2 are inappropriate because noise and the ne-

glected high vibration modes of the robot may be undesirably amplified by the con-625

troller. This justifies using fractional orders in the range 1 < a < 2.

3.4. Contact detection mechanism

The real time contact detection mechanism is described here. The control system

of Figure 2 switches its reference q d

l
and the feedforward term q d

m
when the robot tip
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contacts an object. This mechanism is very simple, and is based on detecting significant630

differences between the desired coupling torque Gd

c
(which is the torque that has to be

transmitted to the link by the motor in order to follow the desired trajectory, and it

is easily calculated from q d

l
and q d

m
using expression (6)) and the coupling torque Gc

measured by the strain gauges. If this difference is noticeable, it means that an external

force is being exerted at the tip, and contact happened. The detection algorithm is:635

|Gd

c
�Gc|> g (67)

where g is a threshold which depends on the maximum trajectory tracking error allowed

during the free motion. This algorithm has been successfully used in [2].

Subsequently, the collision detection mechanism is deactivated and the controller

has to achieve the desired contact force with nearly zero steady state error while dealing

with rebounds.640

3.5. Control of the force exerted by the tip on the environment

In this subsection, a new methodology is proposed to control the force exerted

by the robot tip on the environment in the constrained motion case, using the control

scheme of Figure 2. The objective is to exert a force F
d

c
or, equivalently, a torque

Gd

c
= F

d

c
· l. The idea is to change the references q d

m
and q d

l
in different instants,645

once the impact has been detected, with the objective of controlling the contact force.

The advantage of changing the references instead of changing the control scheme or

the controller law is that the stability of the system is not affected by environment

impedance changes, provided that conditions presented in Section 4 are fulfilled. The

methodology has therefore the following stages:650

1. The link moves freely using the proposed control scheme until it hits an object.

2. At the instant t1 at which the collision is detected by the mechanism (67): 1)

the control state is changed from the free motion mode to the constrained motion

mode, 2) the collision detection mechanism is turned off and 3) the link continues

moving trying to follow the commanded trajectory. After the contact has been655
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established, the coupling torque Gc(t) keeps increasing as consequence of the

motor movement.

3. At the instant t2 at which Gc(t) reaches the reference value Gd

c
: 1) the value of the

tip angle reference is changed to q d

l
= ql(t2), 2) prefilter F(s) is removed and 3)

the value of the feedforward term is changed to q d

m
= q d

l
+ Gd

c

c
. These values are660

maintained until the coupling torque has reached its steady state. The condition

used to determine when such steady state has been reached is

s(Gc(t))

|Gc(t)|
< L (68)

being s(Gc(t)) and Gc(t) the standard deviation and the mean values respectively

of the coupling torque in a time window [t �D, t] whose length, D, is adjusted

experimentally. L is a threshold that is also experimentally determined. Note that665

if the steady state motor and tip positions coincided with q d

m
and q d

l
respectively,

the steady state coupling torque would coincide with Gd

c
, in accordance with (6),

and the force control process would not require any further step.

4. Consider the instant t3 at which condition (68) is reached. If Gc(t) = Gd

c
, this

stage would not be required while if Gc(t3) 6= Gd

c
, this stage would have to be670

carried out. Such difference appears because the state of the link is distinct at

instant t2, at which the robot is moving and the coupling torque has components

due to the tip mass inertia and the damping of the environment, that at instant t3,

at which the robot is quiet and these components are not present. In the case that

such difference is apparent: 1) the reference value is changed to q d

l
= ql(t3) and675

2) the value of the feedforward term is changed to q d

m
= q d

l
+ Gd

c

c
. These updating

laws were obtained under the assumption that the tip position q d

l
that would

yield the desired coupling torque Gd

c
is approximately ql(t3). This assumption

was made because when the link is in contact with an object in its steady-state,

the angle of the motor may be varied producing a significant variation in the680

coupling torque, whereas the variation of the angle of the tip is very limited

by the stiffness of the environment. Notice that if K ! •, the variation of the

angle of the tip would tend to zero when the angle of the motor varies. The
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above mentioned moment components caused by the tip mass inertia and the

environment damping, that are present in Gc(t2), yield a value Gc(t3) different685

of Gd

c
. This difference is noticeable but, however, small in many cases because

accelerations and velocities of the tip in the contact situation are small. Then,

since Gc(t3) is close to Gd

c
, small robot changes are required, and the assumption

that the tip angle negligibly varies during the stage of fine adjustment of the

contact torque is acceptable (however, the motor angle may change significantly690

in order to attain the desired contact force value).

4. Experimental Setup

4.1. Description of the platform

In this work, a slender antenna made of carbon fiber has been used as lightweight

flexible link in order to verify the proposed control scheme. The link is attached to695

a DC mini servo actuator PMA-5A motor set (from harmonic drive) which includes

a reduction gear n = 100. The sensory system has an incremental optical encoder to

measure the angular position of the motor, qm, and a sensor in the base of the link

which measures the forces and the torques in the three abscissas (F-T sensor). This

sensor is used to measure the coupling torque, Gcoup. Movements are produced only700

in the horizontal plane. Then gravity effects are not considered in this movement and

only the component of the coupling torque in the vertical direction is used. Figure 6 is

a photograph of the experimental platform impacting with the object used in this work.

A central processing unit (CPU) is used to implement the controller. All the devices

are connected together through the data acquisition (DAQ) driver software NI PCI-6229705

Board. The system runs under Microsoft Windows 7, Intel Core (TM) 2 Quad CPU,

Q660 2.4 GHz with 3 GB of RAM. The data acquisition and control algorithms are

programmed using Labview 10.0. The sampling time of the system data acquisition

(control signals, measurements and written data) is Ts = 0.001 s. System simulations,

identification and comparisons are performed using Simulink/MATLAB R2010a.710
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Figure 6: Experimental platform impacting with the object.

The characteristics of the link are shown in Table 1, where its stiffness constant, c,

and the vibration frequency, w0, were obtained experimentally. r is the linear density

of the link, l is the length of the link, r is the radius of the circular section of the link

and m is the mass at the tip of the link.

Table 1: Flexible-link characteristics.

Feature Value Unit

l 0.505 m
r 0.001 m
r 4.7 ·10�3 kg/m
m 9.98 g
c 0.5686 Nm
w0 14.95 rad/s

The assumption b) made in Section 2 of a massless link and that only the tip payload715

mass has to be considered in the robot dynamics is therefore valid because the mass of

the payload (mp = 9.98 g) is several times the weight of the link (ml = 2.37 g).

Table 2 shows the parameters of the motor. Vs and VCoul are the saturation and the

Coulomb friction of the motors respectively, in terms of voltage. VCoul is the 33.3 % of

the saturation limit Vs. Then, Coulomb friction is very noticeable in our motor.720

Table 2: Parameters of the motors.

K̂(Nm/V ) Ĵi(kgm
2) n̂i(kgm

2/s) VCoul(V ) Vs(V ) n

0.21 6.18⇥10�3 3.04⇥10�2 0.4 1.2 100
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4.2. Identification of the flexible link

The transfer function Gp(s,0,0) has been identified experimentally. The method

described in [38] has been employed here because it is easy to use and is well suited

to systems with little damping and very decoupled vibration modes. This identification

process was performed using a Chirp signal as input, which stimulated the different vi-725

bration modes. This signal has an amplitude of 0.02 V and a range of frequencies from

0.01 Hz to 50 Hz in 80 s. Model (9) was then fitted to the frequency response exper-

imentally obtained. In order to obtain the frequency response data of the tip position,

the tip position was estimated from motor position and coupling torque measurements

using (24). The model approximated to such experimental data is:730

Gp(s,0,0) =
14.12

s2 +0.6s+14.12 (69)

The magnitudes of the frequency responses obtained in experimentation and from the

approximated model are shown in the upper half of Figure 7 and the phases are shown

in the lower half of this figure.
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Figure 7: Identification of the flexible link.

Figure 7 shows that:

1. Only one vibration mode is observed (a single resonant peak in the magnitude735

and a single sharp change of 180� in the phase). Since flexible links with dis-
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tributed mass have an infinite number of vibration modes, this experimental re-

sult supports the hypothesis of a massless link with all the robot mass concen-

trated at its tip. Moreover, if a massless flexible link had a mass at its tip that

exhibits rotational inertia, the frequency response would had shown two vibra-740

tion modes. Since only one mode is apparent, the hypothesis of zero rotational

inertia at the tip is justified.

2. Model (9) fits very well the experimental data. Then all the hypotheses made in

the Modelling section about the mechanical part of our robot are supported by

experiments and the assumed values of the mechanical parameters are correct.745

4.3. Identification of the environment

A soft and elastic object made of foam was used in this work. The impedance of

the object (stiffness and damping characteristics) was identified carrying out two kinds

of experiments:

1. The antenna impacts the object using only motor control. The damping is de-750

termined by estimating the damping of the coupling torque response from the

instant of the impact to the instant at which the response reaches its steady-state.

2. The tip of the link is placed in contact with the object but without exerting any

force (Gc = 0). Then the angle of the impacted surface is obtained as qc = qm

since in this case the motor position coincides with the tip position and with the755

contact angle. The control system is used to move the tip of the link into the

object. Then a step reference of the tip position is commanded which produces

an interaction with the environment measured by the coupling torque. Once the

steady state has been reached, equation (14) yields the relationship Kl
2(ql �

qc) = Gc. This expression allows to estimate K since Gc is measured and ql is760

estimated from (6) and the measurement of qm.

Table 3 presents the values of the impedance of the environment for different forces

(or coupling torques) exerted to the object. It shows that the damping and stiffness of

the object vary with the exerted force. Our control system has therefore to face switch-

ing among the different impedances existing in our foam, besides switching with the765
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free movement dynamics (rebounds case). This justifies the interest of our Subsec-

tion 3.3.1 about switching in a multimodel system with more than two models.

Table 3: Object impact characteristics.

ne Gc K(N

m
) n(N·s

m
)

1 0.067 6.60 0.16
2 0.076 7.34 0.17
3 0.101 8.48 0.18
4 0.145 9.44 0.19
5 0.161 9.67 0.19
6 0.183 9.91 0.20

4.4. Controller design

Choosing p = �60 (the closed-loop poles of the inner-loop), and following the

algebraic method of Subsection 3.1, the parameters of the controller (see Figure 3) are770

given in Table 4.

Table 4: Motor controller parameters (inner-loop)

a2 a1 a0 b2 b1 b0 h

74.16 8899.2 267000 347 8899.2 0 235

A filter 1/(1+ 0.01s)2 was found adequate to remove the high frequency noise

present in Gc(t). Then, it was made µ = 0.01 in controller (43).

The controller of the outer loop was designed to achieve a phase margin f0 = 60�

for the nominal system (free movement case). The gain crossover frequency and, there-775

fore, the parameters of the controller (through expressions (46) and (51)), were tuned

choosing a value of wc0 such that: 1) wc0 > w0, 2) the closed-loop system remains sta-

ble for all the impedances presented in Table 3, 3) the quadratic stability condition is

verified for our multimodel system that includes the free movement model and all the

models of the robot-environment interaction defined by Table 3 and 4) fractional order780

a is as low as possible in order to prevent amplification of the sensor noise. Lemmas

2 and 4 helped to check condition 2) and Theorem 2 was used to assess the quadratic

stability condition 3). The gain crossover frequency obtained after this design process
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is wc0 = 30 rad/s and the controller yielded by the pair of frequency specifications is:

C(s) = 0.018
s

1.6

(1+0.01s)2 (70)

Note that the condition of Theorem 3 is not verified (it can be checked that inequal-785

ity (55) is not fulfilled). Then a PD controller equivalent to the designed D
a controller

does not exist for the pair of chosen nominal specifications.

Figure 8 shows the region where the system (69) under interaction with the envi-

ronment and controlled by (70) is quadratically stable for different values of K and n .

The values of the impedances of Table 3 and the zero impedance case (which corre-790

sponds to the free movement) are also depicted. This figure shows that all these cases

are included in this region.
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Figure 8: Quadratically stable region.

The difference of phases existing between the characteristic polynomials of the free

and constrained motion closed-loop systems is illustrated in Fig. 9 for three represen-

tative impedances among the ones presented in Table 3: a) K = 6.60, n = 0.16, b)795

K = 8.48, n = 0.18 and c) K = 9.91, n = 0.2. It can be seen that specification (34) is

fulfilled and, then, rebounds between free and constrained motion are avoided.
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Figure 9: Absolute value of the phase difference between the free and constrained motion characteristic
polynomials of the closed-loop system when impacting objects having different stiffness and damping

Figure 10 shows the Bode diagrams of the open-loop system in the cases of the

free motion and the three constrained motions previously mentioned. Note the low

magnitude at low frequencies caused by the fractional derivative of the numerator of800

the controller.
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Figure 10: Bode diagrams of the open-loop system C(s)M(s)Gp(s,K,u) in the cases of free motion and
constrained motion with the three mentioned impedances

Figure 11 shows the Bode diagrams of the control system of Figure 2 in the cases

of the free motion and the three constrained motions previously mentioned. The repre-
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sented closed-loop transfer functions are

Ql(s)

Qd

l
(s)

= M(s)
Gp(s,K,u)G�1

p
(s,0,0)+C(s)M(s)Gp(s,K,u)

1+C(s)M(s)Gp(s,K,u)
(71)

The magnitude at low frequencies is now higher than in the previous plot as conse-805

quence of the feedforward signal injected in q ⇤
m

. The magnitude is one at zero fre-

quency in the free motion case, allowing for a good tracking of a tip position trajectory.

In the contact motion cases, this magnitude is lower than one, but it is not relevant since

the control system has switched to follow a force reference.
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Figure 11: Bode diagrams of the closed-loop system (35) in the cases of free motion and constrained motion
with the three mentioned impedances

Figure 12 depicts the gain crossover frequencies and the phase margins for the810

constrained motion cases of Table 3.
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Figure 12: Frequency specifications attained by the robot in contact with the impedances of Table 3: (a) gain
crossover frequency, (b) phase margin
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4.5. Experimental Results

This section reports experiments carried out moving our flexible antenna in a con-

trolled manner using the control scheme of Fig. 2 with controller (70). The angle of

the tip of the link is controlled in the free movement and the force exerted by the link815

tip on the environment is controlled when it contacts an object. Three experiments

were carried out: 1) free movement, 2) movement impacting with an object of variable

impedance programming a torque reference Gd

c
= 0.1Nm and 3) movement impacting

with an object of variable impedance programming a torque reference Gd

c
= 0.13Nm.

In the last two cases, the object was placed at the height of the antenna and in the mid-820

dle of its horizontal trajectory, in such a way that the tip of the link impacted with the

object. The initial location of the link and the location of the object did not change in all

the experiments. Since Table 3 shows that the impedance of the environment changes

in function of the exerted force (or the exerted coupling torque), two different coupling

torque references were used to demonstrate the efficiency of our control system.825

Figure 13 illustrates the results obtained for Experiment #1. In Fig. 13a, the refer-

ence of the angle of the tip q d

l
(t), the reference modified by the prefilter F(s) = M(s),

m(t) ⇤ q d

l
(t), the angle of the tip ql(t) and the angle of the motor qm(t) are repre-

sented. This figure shows that a good tracking of the trajectory of the flexible link tip

is achieved. In fact, the tracking of the modified reference is quite accurate showing a830

tracking time delay of about 25 ms. This justifies the interest of applying Lemma 1.

Figure 13b shows the reference of the coupling torque Gd

c
(t) and the coupling torque

Gc(t). This figure shows that the vibrations of the link are effectively removed.

Figure 14 shows the results of the experiment of the link impacting with our foam

object having programmed a torque reference Gd

c
= 0.1Nm (Experiment #2), whereas835

Figure 15 shows the results of impacting the same object having programmed a torque

reference Gd

c
= 0.13Nm (Experiment #3). These figures include plots of the reference

of the tip angle, the motor and tip angles, and the coupling torque. It is remarked

that the values of the torque references of Experiments #2 and #3 are included in the

range of the Table 3, for which it was demonstrated that the closed-loop system fulfills840

the quadratic stability conditions for hybrid multiple systems. In both cases, a good

trajectory tracking is observed until the link hits the object. At this moment, the im-
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pact detection algorithm (67) detects the impact and the force control system starts to

work. Figures 14 and 15 depict vertical dashed lines that separate the four stages of the

methodology explained in the subsection 3.5.845

Several positive aspects of the proposed control have been illustrated by these ex-

periments:

1. The closed-loop system is robust to uncertainties and changes in the Coulomb and

viscous friction of the motor. In particular, steady state errors caused by the

Coulomb friction have been removed.850

2. The impact detection algorithm performs adequately in both cases.

3. A good trajectory tracking of the tip of the link is obtained until the link impacts

with the object.

4. A good force control is achieved after the impact has been detected, by using the

methodology explained in 3.5.855

5. The stage 4 of the force control methodology is necessary to make the error in the

steady-state negligible.

6. The system is stable in all the cases. The experiments have therefore confirmed the

stability of the system in free and constrained motion.
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Figure 13: Results for Experiment #1 (free motion): (a) angles, (b) torques
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Figure 14: Results for Experiment #2: (a) angles, (b) torques
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Figure 15: Results for Experiment #3: (a) angles, (b) torques

4.6. Implementation of the fractional-order controller860

Controller (70) has been implemented as follows. First, the error signal is passed

through the low-pass filter k f /(1+µs)2 yielding an output signal f (t). The fractional-

order derivative operator s
a is subsequently applied to this signal yielding the output

of the controller yc(t). Operator s
a is implemented using the following expression:

yc(t) = T
�a

s

N�1

Â
n=0

(�1)n

✓
a
n

◆
f (t �nTs) (72)

where N is the number of terms involved in this discrete convolution, a is the fractional865

exponent, Ts is the sampling period and the combinatorial has been generalized in the

following respect:

✓
b
l

◆
=

b (b +1)...(b � l +1)
l!

. (73)

Expression (72) has been obtained using the Grünwald-Letnikov (GL) definition of
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the discretized fractional operators (e.g. [39]). Moreover, the short memory approxi-

mation described in [40] has been applied with N=500.870

5. Conclusions

This paper has investigated the force control of a single-link flexible manipulator.

Control of flexible robots is of interest in several applications like assembly tasks and

collision minimization when the robot works with humans.

A fractional-order controller combined with a collision detection mechanism has875

been designed and implemented in order to accomplish five main control objectives:

1) the manipulator must exert a programmed force on the environment, 2) it must be

robustly stable to uncertainties in the mechanical impedance of the contacted object,

3) efficient damping of vibrations must be attained in free and constrained movements

(phase margin and gain crossover frequency have been used in this paper to assess this),880

4) the control system must remain stable when transitions between free and constrained

movements are produced (rebounds) and 5) the control system must remain stable when

transitions among constrained movements with different mechanical impedances are

produced.

All this has been achieved using the controller designed following the methodology885

proposed in Section 3. This methodology combines the obtention of a fractional-order

robust controller to cope with unknown environment mechanical impedances with the

fulfillment of some design conditions of hybrid fractional-order multimodel systems

that guarantee the manipulator stability in the case of having rebounds or changes in

the object impedance.890

The proposed methodology has the advantage over other control methods of ad-

dressing by the first time the robust vibration damping control of flexible robots in

contact with objects, besides guaranteeing stability to rebounds like in [22]. Experi-

mental results show the effectiveness of the designed controller.

This article has demonstrated in Theorems 3 to 5 that the proposed D
a fractional-895

order controller has some advantages over standard PD controllers: it provides more

phase margin, i.e, more damping and a higher gain crossover frequency, i.e, a faster
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response in the cases of (a) free motion and (b) motion in contact with an object with

a given stiffness K. It must be noticed that: 1) PD controllers are the ones for which

robust asymptotic stability has been proven for flexible robots in the case of rebounds900

and 2) these are the controllers that have a similar degree of complexity as the D
a (two

parameters to tune), then a fair comparison has been carried out in the theorems.

We mention that it is also the first time that the control of a robot that switches

among free movement and movements constrained by an object with variable me-

chanical impedance has been studied. Previous works only addressed the problem905

of switching between free movement and movement contacting an object of constant

but possibly unknown impedance (rebounds). We have considered here the case of an

object whose impedance varies in function of the exerted force, and experiments of

force control in this case have been provided.

The usual simplification that the contact is produced at the robot tip has been as-910

sumed in this paper. Our future work will consider the study of contact at any point of

the link. Moreover, we plan to extend this strategy to a flexible link robot with several

degrees of freedom.

Appendix A. Proof of Theorem 1

Condition (36) can be expressed as915

¬

(
Hkd(s)

Hld(s)

����
s= jw

)
> 0, 8w (A.1)

which, after substituting (35), (21) and (29) and operating subsequently yields

¬

8
><

>:

⇣
s

2 + u0+uk

m
s+ Kk

m
+w2

0

⌘
(1+ es)2

Cd(s)+w2
0Cn(s)

⇣
s2 + u0+ul

m
s+ Kl

m
+w2

0

⌘
(1+ es)2

Cd(s)+w2
0Cn(s)

������
s= jw

9
>=

>;
> 0, 8w (A.2)

Dividing the numerator and denominator of (A.2) by (1+ es)2
Cd(s), substituting s =

snw0, defining the new parameters K
0
{i,k}=K{i,k}/(mw2

0 )� 0, u 0
{0,i,k}=u{0,i,k}/(mw0)�
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0 and e 0 = ew0, denoting X(sn) = 1+C(sn)/(1+ e 0sn)
2, and operating, it is obtained

that920

¬

(
s

2
n
+(u 0

0 +u 0
k
)sn +K

0
k
+X(sn)

s2
n
+(u 0

0 +u 0
l
)sn +K

0
l
+X(sn)

����
sn= jwn

)
> 0, 8wn (A.3)

where wn = w/w0. Particularizing sn = jwn in (A.3), denoting ¬{X( jwn)}= Xr(wn)

and ¡{X( jwn)}= Xi(wn), and operating yields condition (37). The proof of the theo-

rem is completed.

Appendix B. Proof of Theorem 2

Proof. Consider any pair of models Hl(s) and Hk(s) that belong to the region. Their925

impedances, normalized according to Theorem 1, can be expressed as K
0
l
= K

0
m
± d 0

K
,

u 0
l
= u 0

m
± d 0

u and K
0
k
= K

0
m
⌥ d 0

K
, u 0

k
= u 0

m
⌥ d 0

u being K
0
m
= (K0

l
+K

0
k
)/2, d 0

K
= |K0

l
�

K
0
k
|/2, u 0

m
= (u 0

l
+u 0

k
)/2 and d 0

u = |u 0
l
�u 0

k
|/2.

Substituting these expressions in condition (37) gives

��
Xr(wn)�w2

n
+K

0
m

�
±d 0

K

���
Xr(wn)�w2

n
+K

0
m

�
⌥d 0

K

�
+ (B.1)

��
Xi(wn)+(u 0

0 +u 0
m
)wn

�
±d 0

u
���

Xi(wn)+(u 0
0 +u 0

m
)wn

�
⌥d 0

u
�
> 0,

0  wn < • (B.2)

which, after operating and rearranging terms, yields inequality (38).930

It is self-apparent that K
0
m

and u 0
m

, which are the mean values of the stiffness and damp-

ing of the two systems, are always inside the intervals
⇣

K

mw2
0
, K

mw2
0

⌘
and

⇣
u

mw0
, u

mw0

⌘
,

respectively. It is also self-apparent that deviations of the two models with respect

to the impedance mean values are always bounded by d 0
K
 d 0

K
and d 0

u  d 0
u , being

d 0
K
= min

⇣
K
0
m
� K

mw2
0
, K

mw2
0
�K

0
m

⌘
and d 0

u  min

⇣
u 0

m
� u

mw0
, u

mw0
�u 0

m

⌘
.935

Assume a pair of values K
0
m

and u 0
m

and their corresponding maximum deviations

d 0
K

and d 0
u . If inequality (38) was verified by these deviation values, it is self-apparent

that the condition would also be verified by any smaller deviation values d 0
K
 d 0

K

and/or d 0
u  d 0

u . Consequently, verification of (38) in all the range of mean values
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(39) with the corresponding maximum deviations (40) implies its verification in all the940

range
�
K,K

�
and (u ,u). The proof of the theorem is completed.

Appendix C. Proof of Theorem 3

Frequency specifications have to fulfill the stability condition (48), which is inde-

pendent of the form of the controller.

The closed-loop characteristic polynomial equation in the case of using (42) is945

(1+µs)2 (1+ es)2
⇣

s
2 +

u0

m
s+w2

0

⌘
+w2

0 (kds+ kp) = 0 (C.1)

whose independent term is w2
0 +w2

0 kp. A necessary condition for stability is that this

term must be positive, which yields statement (54) of the theorem.

However, the closed-loop characteristic polynomial equation in the case of using

(43) is

(1+µs)2 (1+ es)2
⇣

s
2 +

u0

m
s+w2

0

⌘
+w2

0 k f s
a = 0 (C.2)

whose independent term is w2
0 , which is always positive. Then, in this case, an addi-950

tional stability condition does not appear.

This difference can also be assessed from the inspection of the Nyquist plots of both

control systems, which are shown in Fig. C.16. Fig. C.16a shows that Cf (0)L(0) =

0. Then the only stability condition would be (48) if Cf (s) were used. However,

Ci(0)L(0)= kp, and Fig. C.16b shows that the Nyquist plot surrounds the point (�1, 0)955

in the case of using Ci(s) if kp <�1, being the closed-loop system unstable. The proof

of the theorem is completed.
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Figure C.16: First path of the Nyquist diagram of the robot using: (a) Cf (s) with a > 1 and (b) Ci(s) with
kp < 0 (kp <�1 in this case).

Appendix D. Proof of Lemma 4

The magnitude of the open-loop transfer function of the system with damping is

��Gp( jw,K,u)M( jw)Ci( jw)
��= 1
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�2 w2

(D.1)

which has a gain crossover frequency wc. The magnitude of the open-loop transfer960

function of the same system without damping is

��Gp( jw,K,0)M( jw)Ci( jw)
��= 1
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1

1+µ2w2

w2
0

q
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2
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�� (D.2)

which has a gain crossover frequency w 0
c
. Then both magnitudes can be related:

��Gp( jw,K,u)M( jw)Ci( jw)
��=

��Gp( jw,K,0)M( jw)Ci( jw)
��
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m
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m
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Since
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�� must therefore be higher than 1.

In expression (D.2), 1/
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over, it is subsequently demonstrated that
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which is apparent that is always negative and, then, this function is decreasing. Conse-

quently, (D.2) is decreasing because it is the product of two decreasing functions and,

since
��Gp( jw 0

c
,K,0)M( jw 0

c
)Ci( jw 0

c
)
�� = 1, wc must be lower than w 0

c
in order to ob-970

tain that
��Gp( jwc,K,0)M( jwc)Ci( jwc)

��> 1 (note that both wc and w 0
c

are higher thanq
w2

0 +
K

m
and (D.4) is therefore verified at these two frequencies). Then the first part

of the lemma is proven.

The phase margin of the open-loop transfer function of the system with damping

and a given K is975

f = p +\Gp( jwc,K,u)M( jwc)Ci( jwc) = p �2arctan(µwc)
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The phase margin of the open-loop transfer function of the same system without

damping and the same K is

f 0 = p +\Gp( jw 0
c
,K,u)M( jw 0

c
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c
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The phase margin difference is
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It is always verified that p � arctan

✓ u0+u
m

wc

w2
0+

K

m
�w2

c

◆
. Since w 0

c
> wc, it is verified that

arctan(µw 0
c
)> arctan(µwc) and arctan(ew 0
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)> arctan(ewc). Moreover, it is verified980

that arctan
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> arctan
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c
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⌘
if kp < 0 and kd > 0. It is then apparent that

f �f 0 > 0 and the second part of the lemma is proven.

Appendix E. Proof of Lemma 5

The magnitude of the open-loop transfer function of the system with damping is
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which has a gain crossover frequency wc. The magnitude of the open-loop transfer985

function of the same system without damping is
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which has a gain crossover frequency w 0
c
. Then both magnitudes can be related:
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Since
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which is apparent that is always negative if k f > 0 and 0 < a < 2 and, then, this

function is decreasing. Consequently, (E.2) is decreasing because it is the product of

two decreasing functions and, since
��Gp( jw 0

c
,K,0)M( jw 0

c
)Cf ( jw 0

c
)
�� = 1, wc must be995

lower than w 0
c
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�� > 1 (note that

both wc and w 0
c

are higher than
q

w2
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K

m
and (E.4) is therefore verified at these two

frequencies). Then the first part of the lemma is proven.

The phase margin of the open-loop transfer function of the system with damping

and a given K is1000
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The phase margin of the open-loop transfer function of the same system without

damping and the same K is
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The phase margin difference is
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It is always verified that p � arctan

✓ u0+u
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◆
. Since w 0

c
> wc, it is verified that

arctan(µw 0
c
)> arctan(µwc) and arctan(ew 0

c
)> arctan(ewc). It is then apparent that1005

f �f 0 > 0 and the second part of the lemma is proven.

Appendix F. Proof of Theorem 4

Assume that both Ci(s) and Cf (s) are designed to yield the same pair of frequency

specifications. The gain crossover frequency wci yielded using Ci(s) verifies the condi-

tion1010
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which is obtained by making e = µ = 0, substituting parameters (53) in (D.2) and

imposing that the value of this function must be 1. Taking into account that wci >q
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m
and solving for K in (F.1), it is obtained that
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Let us denote the right-hand side of this expression as fi (w) so that K = fi (wci).

The gain crossover frequency wc f yielded using Cf (s) for the previous value of K1015

verifies the condition

w2
0 k f wa

c f���w2
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m
�w2

c f

���
= 1 (F.3)
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which is obtained by making e = µ = 0 in (E.2) and imposing that the value of this

function must be 1. Taking into account that wc f >
q

w2
0 +

K

m
and solving for K in

(F.3), it is obtained that

K = m
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c f
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Let us denote the right-hand side of this expression as f f (w) so that K = f f

�
wc f

�
.1020

For values w > wc0, it is easily seen that
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which implies that f f (w)> fi (w) if a < 1, and f f (w)< fi (w) if a > 1. Taking into

account that f f (w) and fi (w) are bijective functions in the interval
q

w2
0 +

K

m
<w <•,

the previous result allows us to state that for a given stiffness value K: 1) if a < 1 then

wc f < wci and 2) if a > 1 then wc f > wci, which proves the results of the theorem about1025

the gain crossover frequency.

The difference between the phase margins fi and f f , yielded using Ci(s) and Cf (s)

respectively, is determined combining (D.6) and (E.6), making e = µ = 0 there, and op-

erating. Taking into account that kd/kp = tan
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2 a
�
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Since always wci/wc0 � 1, it is apparent from this expression that fi � f f > 0 if

tan
�p

2 a
�
> 0, i.e., 0 < a < 1, and fi � f f < 0 if tan

�p
2 a
�
< 0, i.e., 1 < a < 2, and

the theorem has been proven.
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Appendix G. Proof of Theorem 5

Assume that both Ci(s) and Cf (s) are designed to yield the same pair of frequency1035

specifications (f0,wc0). Then relations (53) would hold.

The gain crossover frequency wci yielded by Ci(s) in the case of a stiffness K > 0

verifies the condition
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which is obtained by substituting parameters (53) in (D.2), making µ = 0 and imposing

that the value of this function must be 1. Taking into account that wci >
q
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m
and1040

solving for K in (G.1), it is obtained that
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The gain crossover frequency wc f yielded by Cf (s) for the previous K value verifies

the condition
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which is obtained by substituting parameters (53) in (E.2), making µ = 0 and imposing

that the value of this function must be 1. Taking into account that wc f >
q

w2
0 +

K

m
and1045

solving for K in (G.3), it is obtained that

K = m

 
w2

c f
�w2

0 �
w2

0 k f wa
c f

1+ e2w2
c f

!
= f f

�
wc f

�
(G.4)

For values w > wc0, it is easily seen that
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⌘✓ w

wc0

◆2
+ sin2
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2

a
⌘

i f a > 1 (G.5)
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which implies that f f (w)< fi (w) if a > 1. Taking into account that f f (w) and fi (w)

are bijective functions in the interval
q

w2
0 +

K

m
< w < •, the previous result allows

us to state that, for a given stiffness value K, if a > 1 then wc f > wci. Then the first1050

statement of the theorem has been proven.

Equation (G.4) can be expressed in terms of the new parameters defined in the

theorem as

✓
w0

wc0

◆2
+

K

mw2
c0

=

✓
wc f

wc0

◆2
�k

⇣
wc f

wc0

⌘a

1+ V2
⇣

wc f

wc0

⌘2 (G.6)

Since (G.6) must be verified for all values wc f � wc0, making wc f = wc0 yields that

✓
w0

wc0

◆2
+

K

mw2
c0

= 1� k
1+ V2 (G.7)

and taking into account that K � 0 and operating, condition (64) is obtained.1055

Equating expressions (G.2) and (G.4) for a given stiffness K and introducing the

new parameters yields
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which defines the relation between wci and wc f for the same value of K.

The difference between the phase margins fi and f f yielded for the same K using

Ci(s) and Cf (s) respectively, is determined combining (D.6) and (E.6), making µ = 01060

and operating taking into account that kd/kp = tan
�p

2 a
�
/wc0, arctan

⇣
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�p

2 a
� wci
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The regions for which f f �fi � 0 8wc f � wc0 have been calculated numerically

from this expression for the ranges 0 < V  1, 0 < k  2 and 1.05  a  1.95. The

procedure has been:1065

1. For all the gain crossover frequencies wc f � wc0, the corresponding wci, i.e., the

gain crossover frequency wci yielded by Ci(s) for the same K that yielded wc f

with Cf (s), have been obtained from (G.8). This calculation is not difficult since

it basically involves solving a fourth order polynomial for each wc f .

2. f f � fi is calculated for each wc f by substituting this value and the before cal-1070

culated wci in (G.9). A point is included in the searched region if f f � fi �

0 8wc f � wc0, i.e., if this inequality is verified for all K � 0.

3. The border of the region obtained for a given a , k = h(V), is approximated by a

fifth order polynomial.

4. The coefficients of the polynomials obtained for each a are approximated by1075

fourth order polynomials in a .

5. Coefficients of the resulting matrix Y have been slightly modified in order to

represent regions in which it is guaranteed that f f � fi 8wc f � wc0.

And the last part of the theorem has been proven.
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