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ABSTRACT:

Road surface anomalies affect driving conditions, such as driving comfort and safety. Examples for such anomalies are potholes,
cracks and ravelling. Automatic detection and localisation of these anomalies can be used for targeted road maintenance. Currently
road damage is detected by road inspectors who drive slowly on the road to look out for surface anomalies, which can be dangerous.
For improving the safety road inspectors can evaluate road images. However, results may be different as this evaluation is subjective.
In this research a method is created for detecting road damage by using mobile profile laser scan data. First features are created,
based on a sliding window. Then K-means clustering is used to create training data for a Random Forest algorithm. Finally,
mathematical morphological operations are used to clean the data and connect the damage points. The result is an objective and
detailed damage classification. The method is tested on a 120 meters long road data set that includes different types of damage.
Validation is done by comparing the results to a classification of a human road inspector. However, the damage classification of
the proposed method contains more details which makes validation difficult. Nevertheless does this method result in 79% overlap
with the validation data. Although the results are already promising, developments such as pre-processing the data could lead to
improvements.

1. INTRODUCTION

Road damage detection is important to determine road safety
and road maintenance planning. The damage of the road sur-
face, like potholes, cracks and ravelling, affects driving con-
ditions such as driving comfort and safety and increases fuel
consumption, traffic circulation and noise emission. Localisa-
tion of these damage can be used for targeted road manage-
ment and maintenance, which contributes to an improvement
of driver safety and comfort (Vittorio et al., 2014).

The traditional method for road condition surveying is that in-
spectors drive slowly on the road looking out for road surface
damages and stop the vehicle when damage is found, do mea-
surements on the damage and mark visually. This is dangerous,
time-consuming and costly (Cheng & Miyojim, 1998; Yu et
al., 2007). For improving the safety road inspectors can evalu-
ate road images. The results are, however, susceptible to human
subjectivity.

Iv-Infra has a mobile mapping car, shown in Figure 2, includ-
ing 3 laser scanners, 10 cameras for 360° photos, a GPS and an
Inertial Measurement Unit. This system has been implemented
successfully for lamp post identification. This paper is an at-
tempt to study the feasibility of using such a system for road
damage detection. In this research a method for road damage
detection is developed using laser scan data of one of the three
laser scanners of the car, a Z+F PROFILER 9012A. This laser
scanner is mounted at the rear of the vehicle such that its profile
lines are perpendicular to the driving direction. It measures the
range and the intensity, along the profile.

There are several advantages of such a system, for example no
road closure is needed for manual road inspection, which in-
creases safety and decreases costs. When the damage detec-

tion can be done automatically no differences due to subjective
judgement are obtained.

This paper is structured as follows. In the following section ad-
vantages and disadvantages of some of the popular alternatives
to manual road condition survey will be discussed. Some de-
tails about the measurement car and research area will be given
in section 3. The methodology will be explained in section 4.
In section 5, results of this method will be given and finally the
conclusion is presented in the last section.

2. BACKGROUND

Several methods have been developed to collect data of a road
surface and determine damage from such data. The methods
can be classified based on how the road surface information
is acquired. This can be vibration, image and laser scanning-
based methods. As this study focuses on investigating the fea-
sibility of laser scanning in detecting potholes, ravelling, crack
and craquelure (Fig. 1), these definitions of these damage are
first presented, and then existing methods for damage detection
are investigated.

Potholes are bowl-shaped holes with various sizes involving
one or more layers of the asphalt pavement structure. Size and
depth can increased whenever water accumulates in the hole
(Tedeschi & Benedetto, 2017). They arise due to freezing of
water in a soil, which results in expanding of the space. Thaw-
ing of the soil can weaken the road surface while traffic can
break the pavement resulting in potholes.

Ravelling is dislodging of aggregate particles due to influences
of traffic, weather and obsolescence of the binder (Kneepens &
Heesbeen, 2017; Tedeschi & Benedetto, 2017)
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Due to traffic load, freezing and expanding of water in asphalt,
cracks can be formed. Two types of cracks (longitudinal and
transverse cracks) were considered in this study. Longitudinal
cracks are cracks parallel to the road, while transverse cracks
are perpendicular to the road.

Craquelure are cracks, which develop into many-sided, sharp
angled pieces. This damage develops at the end of the structural
life of an asphalt pavement, (Bouwend Nederland and emulsie
asfaltbeton, n.d.). Craquelure at the outer 0.25 m of the pave-
ment is named as boundary damage.

Figure 1. Examples of road surface damage.

Next, a survey of techniques for data capture and methods for
processing data to determine road surface damage are present.

2.1 Vibration based methods

Accelerometers, microphones and tire pressure sensors are used
to measure vibrations caused by pavement elevation differences
and roughness. Accelerometers in mobile phones can measure
the relative movement of the car in three dimensions. Exam-
ples are the Pothole Patrol by Eriksson et al. (2008) and Wol-
frine by Bhoraskar et al. (2012). Filters and machine-learning
approaches are used to detect road damages. A disadvantage
of this data acquisition method is that the relative movement of
the car is only influenced by the small contact area between the
road surface and the four tires. So only a small parts of the road
surface along the wheel paths can be analysed.

2.2 Image based methods

There are also methods collecting images from scanning, line-
scan and video cameras of the road surface, which can be used
for detecting the damage. An example is the automated de-
tection system RoadCrack, created by the Australian Common-
wealth Scientific and Industrial Research Organization (CSIRO,
n.d.). This system is based on high speed cameras mounted
underneath the vehicle. These cameras collect high resolution
images of small patches of the pavement surface and they are
consolidated into bigger images of half-metre intervals. CSIRO
(n.d.) stated that the system can detect cracks in a millimetre
order, while driving up to 105 kilometres per hour. This is done

fully-automated with a combination of machine vision and arti-
ficial intelligence (CSIRO, n.d.). Another system based on laser
based imaging is the Digital Highway Data Vehicle (DHDV)
from Waylink (n.d.). They use their Automated Distress Ana-
lyzer (ADA) which produces crack maps in real time.

RoadCrack and DHDV are two commercial systems, which use
cameras as one of their acquisition methods. There are several
more commercial systems, most of which have not published
details on their algorithm.

2.3 Laser scan based methods

One of the advantages of using laser scanning sensors is that
3D topographic of the road surface can be captured highly ac-
curately and quickly. Guan et al. (2014) used mobile laser scan-
ning (MSL) data to detect road markings. From MSL data, they
create intensity images, which they used in a point-density-
dependent multi-threshold segmentation method to recognise
road markings.

Pavemetric inc. developed the Laser Crack Measurement Sys-
tem (LCMS), which consists of two high performance 3D laser
profilers and a camera as detector, in cooperation with govern-
ment and research partners (Laurent et al., 2014). This system
measured range and intensities, and produced 2D and 3D data.

Yu et al. (2007) developed a system using a SICK LMS 200
laser scanner for reconstructing the 3D surface model, cracks
in smaller regions can be identified from a variation of the 3D
depth measurement.

Mertz (2011) used a low cost “laser line striper” to evaluate
the unevenness of the road with a step-operator to detect road
damage. Based on the number of the data points in one line,
significant road damage is found. However, noise data can trig-
ger the larger number of the points in the line, which lead to
incorrect damage to be detected.

3. DATA

3.1 Data acquisition system

As mentioned in section 1, Iv-Infra has a measurement car with
3 laser scanners, 10 cameras for 360° photos, 3 HR cameras in
the bumper, a GPS and a IMU system (Fig. 2).

Figure 2. Measurement car
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In this research, the data from one scanner, the Z+F PROFILER
9012A is used. This is a profile scanner using the the phase-
shift method for measuring the range. An outgoing laser beam
is intensity-modulated by a sine-wave signal. This signal is re-
flected back from an object and the received intensity pattern
is compared with the original transmitted signal. A phase-shift
in the modulated signal is caused by the travelling time of light
forth and back to the measured object. The phase measurement
can be transformed directly into a distance/range: d = c

2∗f ,
with c the speed of light (with atmospheric corrections) in m/s,
f the modulated frequency in Hz.

The profile scanner produces measurement points with x, y, z
coordinates. Each measurement point (x,y,z) is geo-referenced
by the QINSy (Quality Integrated Navigation System) software
(Quality Positioning Services B.V, 2018) such that the IMU,
the GNSS locations, the vehicle odometer, the intensity and
range are taken into account. This is done in the Dutch co-
ordinate system, RD-coordinates. The z component is given in
Normaal Amsterdams Peil (NAP), the Dutch height reference.
Each measurement point contains the following data fields: in-
tensity, range, profile number and beam number. The intensity
is the amount of reflected light, which has no clear unit. The
range is the distance between the scanner and a hit point on the
object surface and it is given in meters. When the laser beam
hits multiple “targets” of different heights, for example when
the laser beam partly hits the road surface and partly falling
into a crack, the laser scanner will detect a combination of mul-
tiple reflections, one for each target. Unfortunately phase-based
ranging devices can never discern all the single vectors but only
measure the resultant vector; the geometrical sum of all vectors.
So the resultant range is a mixture of the distances to the surface
and into the crack (Mettenleiter, M. (Zoller + Fröhlich GmbH),
2019).

A profile number is given to each new line which the profiler
measures. A new profile starts nadir and the laser beam turns
anticlockwise, see Figure 3. The beam numbers are given to
each consecutive point in each profile. In this project, the laser
scanner is configured such that each profile (360°) contains 5100
points (beams), with a spindle speed of 200 rotations per second
(profiles). When the car is driving, a spiral pattern is formed,
illustrated in Figure 3. The distance between each profile de-
pends on the car velocity and the spindle speed of the laser
scanner. In this case, this results in a distance of 4 cm between
the profiles while driving 30 km/h and 14 cm at 100 km/h. The
point spacing along the profile is approximately 3 mm on the
road in nadir direction and does not depend on driving velocity,
but on range.

3.2 Research area

A road section of the R106 near Haarlem city, the Netherlands,
is selected for a pilot survey. This is a touristic and quiet road
where the driving speed is between 30 and 50 km/h. On this
road, 36 road damages are found by a road inspector from a
third party and are categorised as 2 ravelling, 7 craquelure, 2
potholes, 8 longitudinal and 11 transverse cracks and 6 bound-
ary damage, (van den Assem, 2019). Figure 4 shows the dam-
age of the road as classified by a road inspector. For this paper
a subset of around 120 meters of road is used, which includes
6 million points, given in Figure 4. Road sections 1 and 2 are
evaluated extensively in Section 5.5.

L

Figure 3. Scanning pattern of the profile. Each new colour
represents a new profile number. The driving direction is
marked with an arrow. The zoomed in section gives how

the sliding window algorithm is used.

Figure 4. Part of the research area with locations of
damages found by a road inspector. The black squares
show the locations which are discussed in more detail.

3.3 Data selection

The laser beam width defines which sizes of damages can be
measured. A large beam is more likely to hits multiple “targets”
which results in a resultant vector. Therefore, it was decided to
use only beam widths smaller than 5 mm for this research. To
avoid that the beam widths are larger than 5 mm, the theoretic
intersection of the laser beam with a horizontal was calculated
based on trigonometric properties. For this laser scanner the
beam divergence is 0.5 mrad and it has a beam diameter of 1.9
mm (at 0.1 m distance) (Zoller + Fröhlich GmbH, n.d.). In
Figure 5 it can be seen that at 42 degrees the beam width is
below 5 mm, so this is taken as the boundary angle. This results
in around 600 beam numbers on each side of the nadir, when
there are 5100 in one profile.

4. METHODOLOGY

To identify damage of the road surface from MLS data, the pro-
posed workflow includes (I) feature creation, (II) K-means clus-
tering to create training data set, (III) Random Forest classifica-
tion and (IV) Mathematical morphological operations to reduce
small damage points and connect larger damage points.
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Figure 5. Effect of the angle of the beam on the beam
width. A larger angle causes a larger beam width.

4.1 Step I: Feature creation

Various independent features are made with a sliding window
algorithm. A sliding window algorithm means that a window
with size L is moving along the points, in this case along the
profile, see figure 3. In this research the results of the calcu-
lation of a window are given to the centre point of that win-
dow. Notably, feature values of the points strongly depend on
the window size. An overview of the six different features and
their calculations is given.

4.1.1 Deviation from the mean The first feature is to cal-
culate the absolute elevation deviation of the centre point from
the mean of a window of length L. This can also be written as:

∆Z =| ZL+1
2
− 1

L

L∑
i=1

Zi |, (1)

where Z = the point data
and L = the number of the points within the window.

This can be interpreted as the surface roughness, which can be
defined as the irregularities in the surface texture which are in-
herent in the production process and wear (Taylor Hobson Lim-
ited, 2011).

This feature can also be calculated for height values as well as
with the intensity values.

4.1.2 Difference to the surrounding points Another meth-
od is to take the difference with the centre point of a window
and the neighbouring points along the profile. This can written
as:

(ZL+1
2
· L)−

L∑
i=1

Zi. (2)

This feature can be used with the height values as well with the
intensity values.

4.1.3 Standard deviation of range In this feature the range
is calculated for each beam number when the road would be
horizontal and flat. This is done by calculating the angle which
each beam number should have, by taking the fraction of the
beam number by the maximum beam number times 360°. The
range is then calculated by the height of the scanner divided by
the cosine of the above calculated angle. This calculated range
is subtracted from the measured range. This is done because the
range may vary with the angle. Over a window with length 20
points the standard deviation is taken over the range difference.

4.1.4 Standard deviation of number of points With Cloud-
Compare (Girardeau-Montaut et al., 2017) the number of neigh-
bours inside a sphere of radius R are calculated for each point.
In this case a radius of 0.02 metre is taken. Here the standard
deviation is also taken over a window of length 20 points.

4.1.5 Sum of different windows For the deviation from the
mean and difference with surrounding points different window
sizes can be used to calculate the feature. The results of dif-
ferent window lengths are added as a separate feature a new
feature is created.

4.2 Step II: K-means clustering

In this step K-means clustering is used to create a training data
set for the Random Forest classification. K-means clustering,
(Hartigan & Wong, 1979), divides M points in N dimensions
into K clusters so that each point belongs to the cluster with the
closest centroid.

In this study, K-means clustering is used to classify a small se-
lection of the data with known damage into two clusters (“no
damage” and “damage”).

But before the clustering is done, each feature is scaled. This
is done by first subtracting the mean value, and scale it by the
standard deviation of the feature.

Both scaling and clustering are done with the python scikit-
learn module (Pedregosa et al., 2011).

4.3 Step III: Random Forest classification

After clustering, the small training data set can be used for
training the Random Forest algorithm. Random Forest Clas-
sification is a supervised classification method, based on clas-
sification trees (Liaw et al., 2002). A classification tree is a
multistage approach which breaks up a complex decision into
a union of several simpler decisions (Safavian & Landgrebe,
1991). Each node in a tree makes a binary decision, and mul-
tiple decisions in a tree lead to a class label. This is done by
dividing the small training data set in 3 parts, and use 1 part for
training the algorithm.

In this research, the RandomForestClassifier from the scikit-
learn module is used (Pedregosa et al., 2011). After training, the
whole data set is classified by using this random forest classifier.

4.4 Step IV: Mathematical morphological operations

With the Python scikit-image (van der Walt et al., 2014) mor-
phology module, objects smaller than 3 points are removed as
a first step. This is done by projecting the data as a matrix
with the number of profiles as rows and the number of beams as
columns. After the small objects are removed, morphological
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closing is used. Mathematical morphological operations assign
pixels in an image based on the values of neighbouring pixels.
Mathematical morphological closing is a combination of dila-
tion followed by an erosion operation (Smith, 1997). Dilation is
an operation, which changes a “no damage” pixel into a “dam-
age” pixel when a neighbouring pixel is classified as “damage”.
Erosion is the opposite operation of dilation. Erosion gives
“damage” pixels a “no damage” value when the neighbouring
pixels are classified as “no damage”. Erosion decreases objects,
while dilation increases objects, and can merge multiple objects
into one (Smith, 1997). Mathematical morphological closing
removes gaps in connected damage pixels. As neighbouring
pixels a + shape of 1 centre point is used.

5. RESULTS

In this section, results from the proposed method are presented.
Furthermore were the results validated based on the classifica-
tion of a road inspector from a third party with no connection
to this project.

5.1 Features

For this research 22 features are calculated as described above.
For the deviation from the mean and difference to the surround-
ing points four different window sizes (5, 21, 41, 101) are used.
Figure 6 illustrates the correlation between the features. It is
clear that there is a large correlation between different window
sizes of the same feature.

Examples of different features for road section 1, can be found
in Figure 8.

Figure 6. Correlation matrix of the features. L gives the
window size which is used for calculating the feature.

5.2 K-means clustering

K-means clustering is done on road section 1. Results for this
road section are given in Figure 9. From this figure it can be
seen that large longitudinal cracks are classified as damage,
while the transverse cracks are not detected.

5.3 Random Forest

The centre figure of Figure 9 gives the results of the Random
Forest classification and morphological operations for road sec-
tion 1, and Figure 10 gives the road damage classification for
the whole research area. Figure 9 shows that less small objects
are present in compare with the K-means clustering result. The
transverse crack is as well not detected as damage.

5.4 Validation

The validation of the above described method is done with the
help of damage shapefiles of a road inspector from a third party.
The shapefiles are three files with point, line and polygon data.
These data files are converted to raster data with the GDAL
(GDAL/OGR contributors, 2018) tool gdal rasterize. This tool
rasterizes the shapefile (vector geometries) with a pixel size of
0.05 × 0.05 meter. Then the three raster files are combined to
one large raster file.

This validation data is projected to the point data, such that each
point gets a damage value. The areas of connected damage
points are calculated, such that orthogonal and diagonal point
neighbours are included. This is also done for the method data.
Through rasterising the shapefiles, some pixels are no longer
connected to each other, such that the number of damage areas
are increased. This results in 153 connected road damages in-
stead of 20 damages. The results of the method contains 3512
damage areas, most of them are smaller than 30 points. The
distribution of the damage areas (below 30 points) for the vali-
dation data and the method are given in Figure 12. Here it can
be seen that there is a large amount smaller damages detected
for the described method, and less for the road inspector. When
the larger areas (>30 points) are compared, there are 139 dam-
age areas for the method and 62 validation damage areas.

When the intersection of union should be calculated, this would
result in a low number. The intersection of union can be calcu-
lated by the area of overlap divided by the area of union. This
can explained by the large and rough damage areas of the road
inspector. The area of union is large, while the classified dam-
age of the method are detailed and relative small. So for calcu-
lating the intersection of union another more detailed validation
data is needed. This can be done by taking orthogonal photos
of the road and take the road inspector’s classification as guide.

When only method damage points are compared with validation
method points, 79% of the method points are right classified as
damage. However, the question is whether the false positives
really are false positives.

5.5 Cases

In this section, two cases are discussed in detail, road sections
1 and 2 in Figure 4.

In road section 1 (Fig. 10, between profile numbers 19360 and
19600), the proposed method classified only parts as damage,
while the road inspector (Fig. 11) the whole area classified as
damage.

Road section 2 (Fig. 10, between profile numbers 17500 and
17800) contains road markings classified as damage by the pro-
posed method. This can be explained by the higher elevation
of road markings and the higher intensity compared to the sur-
rounding points. Therefore it is important to pre-process the
point data, for example filter out high intensities.
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Also transverse cracks are difficult to detect with this method.
The change that they are not detected is large, because the spac-
ing between profiles is relative large, especially when the driv-
ing speed is high.

6. CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

This paper presented a possible technique for detecting road
damages with a Z+F PROFILER 9012A laser scanner mounted
on a mobile mapping system. This is done by making fea-
tures with a moving window method. Then K-means cluster-
ing is applied to create training data for a Random Forest al-
gorithm. After that classification mathematical morphological
operations are used to remove small objects and connect points
which are close to each other. Validation is done with the help
of a road inspector’s classification. Although this validation
data is too rough to calculate the intersection of union on areas,
when points are compared to each other 79% of the points are
correct classified as damage. However, more research is needed
for analysing the false positives.

Also road markings are classified as damages, probably due to
the high reflectivity and due the fact that road markings are ele-
vated with respect to the road which results in a deviation when
compared to the surrounding road surface.

Due to the spacing between profile lines, the probability is large
that transverse cracks are not detected.

6.2 Recommendations

To create a higher level of accuracy for this method pre-process-
ing of the point data is needed in order to remove road markings
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for example. To remove the K-means classification for extract-
ing training data for the Random Forest algorithm self made
training data can be used. Also a new and more detailed road
classification can be used for validation. This can be done by
making a detailed road damage classification by help of orthog-
onal road photos. Further, a look at the false positives is needed
and a confusion matrix can be used to distinguish which dam-
ages types can and can not be recognised well. A next step in
this research could be to identify different types of damages.
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