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ABSTRACT:

Up-to-date 3D building models are important for many applications. Airborne very high resolution (VHR) images often acquired
annually give an opportunity to create an up-to-date 3D model. Building segmentation is often the first and utmost step.
Convolutional neural networks (CNNs) draw lots of attention in interpreting VHR images as they can learn very effective features
for very complex scenes. This paper employs Mask R-CNN to address two problems in building segmentation: detecting different
scales of building and segmenting buildings to have accurately segmented edges. Mask R-CNN starts from feature pyramid network
(FPN) to create different scales of semantically rich features. FPN is integrated with region proposal network (RPN) to generate
objects with various scales with the corresponding optimal scale of features. The features with high and low levels of information
are further used for better object classification of small objects and for mask prediction of edges. The method is tested on ISPRS
benchmark dataset by comparing results with the fully convolutional networks (FCN), which merge high and low level features by
a skip-layer to create a single feature for semantic segmentation. The results show that Mask R-CNN outperforms FCN with around
15% in detecting objects, especially in detecting small objects. Moreover, Mask R-CNN has much better results in edge region than
FCN. The results also show that choosing the range of anchor scales in Mask R-CNN is a critical factor in segmenting different
scale of objects. This paper provides an insight into how a good anchor scale for different dataset should be chosen.

1. INTRODUCTION

Up-to-date 3D building models are crucial for many
applications, such as water management, flooding simulation
and urban planing. The rich geometric and spectral information
in very high resolution (VHR) aerial images, which are
often updated annually, gives an opportunity to create an
up-to-date 3D model. However, due to the complexity of
texture of building rooftops in VHR images, it is difficult to
extract buildings. Convolutional neural networks (CNN) draw
increasingly attention in interpreting VHR images (Yuan, 2018,
Marmanis et al., 2018) due to their ability to automatically
learn the most useful features for classification, instead of
hand-crafting features manually. However, there are still
several problems that need to be solved in order to utilize
CNNs for building extraction. Firstly, neural networks (NN)
are often data hungry and domain specific (Wang et al.,
2017). The state-of-the-art performance of deep NNs is mostly
due to training on large-scale benchmark datasets. However,
benchmarks for VHR aerial images are limited and NNs trained
on one dataset do not generalize well to similar types of image
data. Secondly, instead of texture complexity, buildings often
have diverse sizes, introducing also a scale problem. If small
patches (for training) are selected, they tend to cover only parts
of large buildings. The complete features of buildings can
hardly be captured. If large patches are selected, the coarse
resolution of the output from CNN due to pooling, which
intends to extract high level features, is prone to losing small
objects (Yuan, 2018, Ren et al., 2018). Thirdly, for similar
reasons, low level features (e.g.,edges), often disappear in the
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higher level features as a large receptive field is used. Due to
the deep layers of CNNs, if these features are not combined
efficiently, edges are often poorly detected.

Topographic maps have been used to generate training samples
automatically for VHR images (Maggiori et al., 2017, Kaiser
et al., 2017, Chen et al., 2018). However, the topographic
maps are often mismatched with images due to time differences.
Transfer learning shows successful result in VHR images by
fine tuning networks trained in ImageNet and COCO with less
training samples.

Object-based image analysis using image pyramids has been
proven by many researches to demonstrate good results in
recognizing different scales of objects in VHR images using
hand-engineered multi-scale features (Blaschke, 2010). The
advantage is that image pyramids produce multi-scale features
with strong semantic meanings in each level. For example,
large objects, such as forest, are better to be classified in
the coarse level of the image, while small objects, such as
cars, are better to be classified in the finer level of the image.
However, image pyramids are often only applied to CNNs
for testing on ImageNet and COCO benchmark dataset (He
et al., 2016). Training with image pyramids is often not
feasible in term of memory of modern GPUs (Lin et al.,
2017). In fact, the downsampling steps from pooling or strided
convolution in deep layers of CNN already produce different
level of features. The low level features are semantically
week features, such as edges and boundaries, while the high
level features are semantically strong features with contextual
information. Fully convolutional networks (FCN) (Long et
al., 2015) and U-net (Ronneberger et al., 2015) use the skip
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Figure 1. The framework of Mask R-CNN (He et al., 2017, Lin et al., 2017), which combines FPN, RPN and Fast
R-CNN.

.

layer techniques to merge high and low resolution level feature
maps for semantic segmentation. However, different scales of
objects are predicted from a single high level features map of
a fine resolution. (Yuan, 2018, Marmanis et al., 2018, Bittner
et al., 2018) reported that the FCN with the most impact on
semantic segmentation (Long et al., 2015) do not perform well
in detecting building edges from VHR images.

Feature pyramid network (Lin et al., 2017) was proposed to
create a feature pyramid with strong semantics in each level.
It adopts a top-down architecture to merge high level feature
maps with low level feature maps iteratively to create semantic
rich feature maps at all levels for independent predictions.
Mask R-CNN (He et al., 2017) utilizes region proposal network
(Ren et al., 2015) to select the optimal level feature maps
from pyramid for each region (object) detected. Further, Fast
R-CNN (Girshick, 2015) is borrowed to refine regions and
classify the region. In each region of interest (RoI), an FCN
is applied to the optimal feature map to predict a pixel-wise
segmentation/classification mask. The low level features of
small objects and edges are well preserved for detecting small
objects and for deriving masks with good edges in each RoI.
The detail of the network is described in Section 2.

The paper is organized as follows: Section 2 illustrates the
details of Mask R-CNN. In Section 3 experimental results are
presented followed by discussion. Finally, conclusions and an
outlook to future work are provided in Section 4.

2. MASK R-CNN

Mask R-CNN consists of three networks: feature pyramid
network (FPN), regional proposal network (RPN) and fast
R-CNN. The network design is shown in Figure 1. FPN consists
of two pathways as shown in Figure 1. The bottom-up pathway
is used to extract feature maps using ResNet (He et al., 2016).
The output feature maps with different resolutions are from
conv2, conv3, conv4, conv5 (C2, C3, C4, C5) with stride of {4,
8, 16, 32}. The high resolution feature maps is derived from
low level features with less semantics, while the low resolution
feature maps is derived from high level features with strong
semantics. The top-down pathway is to merge high level feature
maps with low level semantics feature maps from top to down
iteratively. The pathway starts from putting the top feature map
C5 through a 1 × 1 convolution layer to create a feature map
P5 with 256-d. Then the merged map P5 is upsampled by a
scale of 2 and merged with the lower level feature map C4 by
element-wise addition after applying 1× 1 convolution layer to

reduce dimension of C4 to 256-d. This process continues until
5 feature maps {P2, P3, P4, P5} are derived, corresponding to
{C2, C3, C4, C5}. Finally, a 3 × 3 convolution is applied on
each merged feature maps to reduce aliasing effects due to
upsampling. This merit of this approach is to assign semantics
to each level of features.

In original RPN, a small network using two sibling fully
connected layers to performing object versus non-object
classification and bounding box regression using the feature
map in the last conv layer. A 3 × 3 sliding window over
the feature map is applied to extract 256-d vector to be fed
into two fully connected layers. The reference bounding
boxes, also called anchors, are generated through multiple
scales and aspect ratios. The FPN is adopted with RPN by
replacing the single feature map with feature pyramid maps.
The multi-scale anchors are naturally obtained by assigning
anchors of a single scale to each level. Five levels of feature
maps {P2, P3, P4, P5, P6} are often used to include a wider
range of anchor scales. P6 is sub-sampled by stride of 2 of
P5. When an anchor is predicted, the corresponding optimal
scale of feature maps is simply selected for the anchor. This
mechanism is not only capable of extracting small objects, but
also provides a optimal scale of feature map for further small
object classifications and mask prediction with sharp edges.

Fast R-CNN uses the feature maps in each candidate boxes
from RPN by RoIPool. RoIPool uses max pooling to aggregate
any these region of interest (RoI) to a smaller 7 × 7 feature
map. The smaller feature maps are vectorized and fed into
two fully connected layers to predict the class and box offset.
Mask R-CNN adopts Fast R-CNN and add a FCN network
to predict mask in each RoI. However, RoIPool introduces a
small misalignment of the smaller feature maps to the inputs,
resulting in misalignment of final predicted mask. Mask
R-CNN uses RoIAlign to align the aggregated feature maps
to the inputs. Mask R-CNN defines a multi-task loss for
each RoI to design a single stage training for three tasks: box
classification, regression and mask segmentation, contributing
to high computational efficiency in the training stage. The
structure decouples box classification and mask segmentation.
In each RoI, a binary segmentation is performed. Without
competing with multi-classes in semantic segmentation, the
binary segmentation also contributes to a good edges in the
segmentation.
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Figure 2. The building segmentation results of Mask R-CNN-S for test dataset with small anchor scale of [162 − 2562].
.

3. EXPERIMENT AND RESULT

3.1 Experiment

The experiment is performed on ISPRS benchmark Vaihingen
data. Due to the relief displacement of buildings in the images,
the DSMs interpolated from dense matching point clouds are
used for correction of the distortion, especially for buildings.
There are 33 areas for semantic segmentation contest, but only
16 images have ground truth labels. These 16 images are split
for training, validation and test. The training set consists of
10 images (areas: 1, 3, 5, 7, 13, 15, 17, 21, 23, 28). The
validation set consists of 3 images (areas: 28, 30, 32) and test
set also consists of 3 images (areas: 26, 34, 37). In training
samples, the smallest bounding box of objects is 21 × 21,
while the largest bounding box is 598 × 477. All these images
are split into 800 × 800. If there are parts left near image
boundaries, these parts are merged to adjacent patches. The size
is chosen to include one or more buildings and their contexture
for extracting good features. If the patch size is chosen too
large, the patch should be down-scaled in order to be handled by
GPUs. The down-scaling approach will lose details in images.
Finally, there are 59, 18 and 13 image patches for training,
validation and testing.

Building segmentation program is written in python using
TensorFlow and Keras libraries by customizing the Mask
R-CNN program (Abdulla, 2017). One Tesla P100 graphics
card with 12G RAM was used in this application. Two images
with size of 1024 × 1024 fit to the RAM of the GPU as a
mini-batch for training. Images of different sizes were rescaled
to 1024 × 1024. As we wanted to detect buildings of different
scales in the image, the choice of a good anchors scale was
critical. When the images are rescaled, the smallest and largest

bounding boxes becomes 27× 27 and 765× 610. As described
in Section 2, the multi-scale anchors are defined by assigning
a single scale to each level of feature map in the pyramid.
In order to detect different scales of objects between 27 × 27
and 765 × 610, the natural choice is to set anchor scales to
322, 642, 1282, 2562, 5122 with three aspect ratios: 1 : 2, 1 : 1
and 2 : 1. However, in such settings, many small boxes
with anchor scale of 322 or its variants generated from RPN
will be lost. As RPN generates tremendous amount of boxes,
top-2000 ranked proposal boxes based on their prediction score
are often selected for further class and mask prediction due
to computational efficiency. The boxes with a small size are
not easy to predict, resulting in low prediction scores. They
are easy to be removed in this process. Therefore, an anchor
scale of 162, 322, 642, 1282, 2562 is chosen to make sure the
boxes with areas of 322 can be preserved. However, the
large objects may not be completely included in the largest
box. Two experiments, Mask R-CNN-S with smaller scale
[162, 322, 642, 1282, 2562] and Mask R-CNN-L with larger
scale [162, 322, 642, 1282, 2562], are conducted. The result
of Mask R-CNN-S is shown in Figure 2. The smaller
anchor scale range made a trade-off in detecting small and
large objects. Many small objects are detected, however, the
segmentation within some big objects is not complete. The
detailed comparison results with different anchor scales are
shown in Section 3.3. The results in Figure 2 also show that
the edges in the segmented buildings are sharp.

We trained the considered approach using one GPU with batch
size of 2 for 90 epoches in Mask R-CNN. The pre-trained
network on the COCO dataset is used for fine tuning. In the
first 40 epoches, we trained the network with learning rate of
0.001, and in the last 50 epoches, we decreased the learning
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Table 1. Quantitatively building segmentation result in ISPRS. (NOGT: number of objects (ground truth); NOCD:
number of objects correctly detected; NOWD: number of objects wrongly detected). Mask R-CNN-L: Mask R-CNN

with large anchor scale of [322 − 5122]; Mask R-CNN-S: Mask R-CNN with small anchor scale of [162 − 2562].

Pixel-based precision recall F1 Object-based
NOGT NOCD NOWD precision recall F1

FCN 0.843 0.947 0.892 131 91 7 0.694 0.929 0.785
Mask R-CNN-L 0.833 0.979 0.900 131 106 4 0.809 0.964 0.869
Mask R-CNN-S 0.838 0.976 0.901 131 112 4 0.855 0.966 0.896

Figure 3. The results of the object-based building segmentation on three areas. Green: correctly detected objects. Red:
miss-detected objects. Yellow: partially detected area in miss-detected objects. Blue: wrongly detected objects. Blue
boxes in the result of Mask R-CNN-L show more correctly detected objects than FCN. Red boxes in result of Mask

R-CNN-S show more correctly detected objects than Mask R-CNN-L.
.

rate to 0.0001. The weight decay of 0.001 and a momentum
of 0.9 were set as the same with the original paper. Fully
convolutional network was used for comparison with the Mask
R-CNN in terms of segmentation on small objects and edges.
FCN-8s was employed using skip layer mechanism to merge
feature maps from layer: pool3, pool4 and conv7 in VGG16
(Simonyan , Zisserman, 2014). FCN-8s was tested with best
performance on segmentation with details in the original paper.
The pre-trained VGG-16 was used in FCN-8s. The same dataset
was used for training, evaluation and testing. All images were
also rescaled to 1024 × 1024 with a batch size of 2 for 100
epoches in FCN. The learning rate was set to 1e-5 according
to (Chen et al., 2018). The same weight decay and momentum
were defined as in the case of the Mask R-CNN. Mask R-CNN
ran 7 hours for training, while FCN ran 2 hours for training.

3.2 Evaluation

Both pixel-based and object-based evaluation was performed.
In both evaluation, three metrics are selected: precision, recall,
F1 score.

precision =
TP

GP
, recall =

TP

TP + FP
, (1)

F1 = 2× precision× recall
precision + recall

(2)

TP , FP and GP denote the true positives, false positives and
positives of ground truth, respectively. Precision quantifies the
correctness of building segmentation, while recall describes the
completeness of building segmentation. The F1 score is the
harmonic average of the precision and recall. In pixel-based
evaluation, the TP and FP are calculated based on intersection
of building pixels between segmentation result and the ground
truth. In object-based evaluation, the intersection between
segmented building objects is calculated. Because the results
from FCN segmentation are noisy, a connected component
labelling is performed and the objects with less than 10 × 10
pixels are removed. TP is the number of objects correctly
detected (NOCD). These objects are from the ground truth and
have at least 60% area overlap with the detected objects. FP
is number of object wrongly detected (NOWD). These objects
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are the detection which have at most 40% area overlap with the
ground truth objects.

3.3 Result

3.3.1 Result on object-based evaluation In object-based
evaluation in Table 1, FCN has the worst precision and
recall with values of 0.679 and 0.929. Only 91 out of 134
buildings are detected and 7 buildings are wrongly detected.
Mask R-CNN-S with anchor scale of [162 − 2562], and
Mask R-CNN-L, with anchor scale of [162 − 2562], detected
15 and 21 buildings correctly, with 11% and 15% higher
precision, respectively. Comparing the results of FCN and
Mask R-CNN-L, all buildings found by FCN are found by
Mask R-CNN-L and Mask R-CNN-S. An interesting finding
is that all buildings detected by Mask R-CNN-L, shown in
blue boxes in Figure 3, are partially detected by FCN, while
Mask R-CNN-S finds more smaller buildings, shown in blue
boxes in Figure 3, which are missed more by FCN. The skip
layer structure in FCN do show its ability to use low level
features to detect small objects partially, but FCN will perform
worse when objects become smaller. With smaller anchor
scale, Mask R-CNN-S shows better results in detecting very
small objects. These detected small objects show relatively low
detection confidence. This explains that if the smallest anchor
scale is chosen as 322 in Mask R-CNN-L, these boxes generated
from RPN are more likely to be ranked lower than 2000 due
to their low confidences. They are removed before feeding to
object classification and mask prediction. If the smallest scale
is chosen as 162 in Mask R-CNN-S, these sizes of boxes are
more likely to be removed instead of boxes with the size of 322.
The FCN detects wrongly 3 more buildings compared to Mask
R-CNN(-L and -S). The reason is also the skip layer structure
does not manage to leverage low and high level features, while
Mask R-CNN extract the optimal level of features for each
objects for further object classification.

3.3.2 Result on pixel-based evaluation As shown in Table
1, FCN has around 1% higher precision in pixels, 0.843, than
the Mask R-CNN with different anchor scales with precision
of 0.833 and 0.838, but the recall, 0.947, is around 3%
lower than two Mask R-CNN results. The lower recall of
FCN shows that the the skip layer architecture produces more
noisy results, while feature pyramid in Mask R-CNN improves
correctness in building segmentation. As shown in Figure 4,
the FCN produced more wrongly classified pixels (shown in
blue), compared to Mask R-CNNs. The reason for little higher
precision of FCN is that FCN has a bit better completeness in
classifying large buildings, while the mask derived in R-CNN
relies on object detection. Large anchor scales [32-512] have
tendency to miss small buildings which has been discussed in
Section 3.3.1, while small anchor scale [16-256] have tendency
to detect less pixels in large buildings. As shown in blue
boxes in Figure 4, the pixels segmented in large building in
Mask R-CNN with a small anchor scale are a bit worse than
Mask R-CNN with a large anchor scale. Due to the trade-off
in segmenting small and large objects, Mask R-CNN with
different anchor scales of Mask R-CNN do not show significant
differences in pixels. When comparing the results for edge
regions, FCN has much more noisy results than Mask R-CNNs
as shown in the yellow boxes in Figure 4. The result matches
with worse small objects detection discussed in Section 3.3.1,
the skip layer in FCN loses detailed information, such as small
objects and edges.

4. CONCLUSION

In this paper, we employed Mask R-CNN to solve two problems
in building segmentation in airborne VHR images: detecting
buildings in different scales and segmenting accurately building
edges. Standard CNNs have a tendency to lose low level
features due to pooling or stride. Skip layer structure merges
the low and high level features for prediction, however, different
scales of objects can hardly be classified using the same scale
of features. Mask R-CNN starts from feature pyramid network
creating different scales of semantically rich features. The
feature pyramids are used by the region proposal network to
generated objects with various scales with the corresponding
optimal scale of features. The features with high and low levels
of information are used for better object classification on small
objects and mask prediction on edges. The results on ISPRS
benchmark dataset show that Mask R-CNN outperforms FCN
with around 15% in detecting objects, especially small objects.
The significant difference between FCN and Mask R-CNN is
not in segmenting pixels, however, when comparing the results
in edge regions, Mask R-CNN produces much better results.
The another important finding in our paper is that anchor scale
in Mask R-CNN is a critical factor that influences the results
of segmentation of objects on different scales. This paper also
gives an insight on how to choose the good anchor scale for
specific type of data.

In further work, there are two posible extensions to improve the
building segmentation on small objects and edges: (1) the DSM
can be added in the same framework as several small buildings
are hardly to be distinguished using color information. (2) More
accurate training samples should be provided. The training
samples from ortho-rectified VHR images using DSMs from
dense matching. However, the dense matching suffers from
shadows and low textures. The edges in many building are
severely distorted. In (Zhou et al., 2018), an old LiDAR data
is used to guide dense matching while detecting the changes
between LiDAR data and images. In this approach, the training
samples with better quality can be used to improve the quality
of building segmentation.
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