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Calibrating experts’ probabilistic assessments for

improved probabilistic predictions
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Abstract

Expert judgement is routinely required to inform critically important decisions. While ex-

pert judgement can be remarkably useful when data are absent, it can be easily influenced by

contextual biases which can lead to poor judgements and subsequently poor decisions. Struc-

tured elicitation protocols aim to: 1) guard against biases and provide better (aggregated)

judgements, and 2) subject expert judgements to the same level of scrutiny as is expected for

empirical data. The latter ensures that if judgements are to be used as data, they are subject

to the scientific principles of review, critical appraisal, and repeatability. Objectively evaluat-

ing the quality of expert data and validating expert judgements are other essential elements.

Considerable research suggests that the performance of experts should be evaluated by scoring

experts on questions related to the elicitation questions, whose answers are known a-priori. Ex-

perts who can provide accurate, well-calibrated and informative judgements should receive more

weight in a final aggregation of judgements. This is referred to as performance-weighting in the

mathematical aggregation of multiple judgements. The weights depend on the chosen measures

of performance. We are yet to understand the best methods to aggregate judgements, how well

such aggregations perform out of sample, or the costs involved, as well as the benefits of the

various approaches. In this paper we propose and explore a new measure of experts’ calibra-

tion. A sizeable data set containing predictions for outcomes of geopolitical events is used to

investigate the properties of this calibration measure when compared to other, well established

measures.

Keywords: structured expert judgement, performance based weighting, calibration, probabilistic

predictions

1 Introduction

Experts are consulted in a myriad of situations and inform all stages of the modelling process, from

structuring the problem to estimating facts, and quantifying uncertainty. While consulting experts

may be a valuable resource for decision-makers, it is crucial that decision-makers, stakeholders and

experts play separate roles in the decision process. The experts’ role should be limited to providing

estimates of facts and predictions of event outcomes [25].

Expert judgement is used when empirical data are unavailable, incomplete, uninformative, or
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conflicting. These judgements then inform critically important decisions. It is therefore important

that such judgements are as defensible as possible. Research into the experts’ performance when

providing such judgements reveals that expert status is not correlated with the ability of an expert to

give unbiased, error-free judgements [5]. Expert judgements are susceptible to a range of cognitive

and motivational biases, to the expert’s particular context, and to their personal experiences [23,

24, 17]. To counter such limitations, structured expert elicitation protocols have been developed.

A working definition of a structured protocol is given in [8] and slightly reformulated in [11].

It involves asking questions with operational meanings, following a traceable, repeatable and open

to review process, mitigating biases and providing opportunities for empirical evaluation and vali-

dation. The above are guidelines rather than rules for what would one consider to be a structured

and efficient protocol.

While expert interaction and the feedback provided are still discussed within the expert judge-

ment community, one of the elements that everybody agrees with is that the judgements of more

than one expert are essential in all situations. A diversity of opinions is always desirable and we

use gender, age, experience, affiliation, and world view as proxies for diversity.

Here, we restrict our attention to eliciting expert judgements of event occurrences. Eliciting

multiple judgements about the same event results in sets of probabilities, rather than one single

probability of that event occurrence which is often what is needed in further modelling. It is not

uncommon for these probabilities to differ, reflecting different knowledge bases and different mental

models used by the experts when making their judgements. While these differences are crucial to

the understanding of the problem in all its complexity and need to be recorded, they make the

aggregation of different judgements (into a single one) somewhat cumbersome.

The two main ways of aggregating different judgements are behavioural aggregation [e.g. 18],

and mathematical aggregation [e.g. 27, 8]. Behavioural aggregation typically involves face-to-face

meetings of experts who, at the end of the meetings, agree on a judgement. Discussion and consensus

seeking are often practised together. The main advantage of this approach is that experts share

and debate their knowledge. Nevertheless such interaction is prone to biases including groupthink

and halo effects [e.g. 13]. Sometimes experts do not agree to any possible consensus. When experts
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disagree, even after a facilitated discussion, attempts to impose consensus may mask the group’s

diversity of opinion.

The alternative is to use a mathematical rule to aggregate the judgements. When mathemati-

cal aggregation is used, the interaction between experts is usually limited to training and briefing.

Extensive discussion is discouraged because it may induce dependence between the elicited judge-

ments [e.g. 19]. Very few studies have been undertaken in order to investigate this effect, and even

fewer found it harmful to the process [e.g. 10]. Nonetheless, using a mathematical rule makes the

aggregation explicit and auditable, and makes the results reproducible. Different rules satisfy dif-

ferent properties and unfortunately it is impossible to have all desirable properties in one rule [7].

One well established and used aggregation rule was formulated in [8], and it is a linear combination

of judgements weighted by the experts’ prior performance on similar tasks. Cooke’s method, also

called the Classical Model (CM) of structured expert judgement (SEJ), asks experts to give esti-

mates that can be validated with data in a process that is transparent and neutral. This particular

way of aggregation makes CM satisfy all the desiderata of a SEJ protocol.

Ideally after the aggregation, the resulting single probability reflects many of the experts’ initial

judgements, and even though they do not recognise it as their own, they should have no valid

arguments against it. The consensus is not achieved by conferencing, but in a rather external

way, thorough the mathematical aggregation. This sort of consensus is what Cooke calls rational

consensus [8]. Achieving a rational consensus single probability may be very difficult in situations

when experts strongly disagree and have very little interaction and feedback from their peers.

A structured protocol which strives to deal with such situations is the IDEA protocol [e.g. 12].

IDEA builds on CM, while using elements from the behavioural aggregation techniques, which

makes it a mixed protocol for SEJ (similar to the well known Delphi protocol [22]). IDEA asks

experts for their individual estimates without allowing them to interact, presents the anonymised

set of judgements back to the group of experts, and encourages facilitated discussion and extensive

interaction, while discouraging consensus. After experts share their reasoning, (sources of) data,

and (mental) models they have the opportunity to privately modify their initial estimates (if they

so wish) in accordance with the discussion. These second estimates are then mathematically ag-
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gregated. The aggregation can be either an equally, or a differentially weighted linear combination.

If differential weights are used in the IDEA protocol, they are always proportional with measures

of prior performance on similar tasks [11].

An aggregated opinion can be viewed as that of a “virtual” expert. The same performance

measures can be then used to both evaluate this virtual expert’s performance, and to justify choosing

the aggregation which performs best. Commonly used measures of performance are designed to

be objective and conservative and focus on different attributes of good performance. They are

measured on sets of questions to ensure sustained, rather than isolated good performance. Three

of these attributes are long term accuracy, long term informativeness and calibration. Long term

accuracy and informativeness are calculated per question and averaged across questions, hence they

are average measures of performance. Accuracy measures how close an expert’s estimate is to the

truth, which is a difficult concept to interpret when the estimate is a probability of occurrence

and the truth is the occurrence or non-occurrence of the event. Informativeness may measure the

amount of entropy in what the expert says (independent of the actual occurrences of events), or

the entropy in the expert’s performance (without corresponding to the distribution that the expert,

or anyone else believes) [8]. It may also measure the departure from the uniform distribution [10].

Rather than average measures for individual questions (variables) [8] proposes and discusses the

advantages of measures for average probabilities. Calibration1 rather than accuracy is proposed as a

more appropriate measure of each experts’ performance. Measures of performance are constructed

using scoring rules. These scoring rules are random variables and analysing and comparing the

scores’ values requires knowledge about the scores’ respective distributions. An important reason

for Cooke’s proposal is that the proposed score has a known asymptotic distribution, as opposed to

(for example) the average Brier score for measuring accuracy [3], which does not. Moreover the score

is asymptotically proper, which means that its expected pay-off is maximised only when experts

express their true beliefs about the predicted event [e.g. 28]. Despite the very attractive theoretical

properties of Cooke’s calibration score, it only has a couple of real life applications for discrete

variables [9, 2]. One reason for this lack of uptake may come from its asymptotic properties which

1In later publications Cooke started using the term “statistical accuracy” instead of the term calibration. We
avoid this terminology in contexts where accuracy, defined as distance from truth, is also discussed.
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imply the need of tens of questions in order to obtain reliable scores. These questions, commonly

referred to as calibration questions, are additional to the questions of interest which are imperative,

hence they are time consuming and add to the experts’ fatigue. A reduced number is desirable.

Another disadvantage of an asymptotic score is that comparing scores of experts who answered

a different number of questions may be cumbersome and a power equalisation technique may be

needed [8]. Both disadvantages point to the need for a score with an exact distribution.

In this paper we propose one such score (see Section 2), discuss its theoretical properties and

compare it with Cooke’s calibration score on a synthetic, simulated data set (in Section 3.1), as

well as on large dataset containing predictions for outcomes of geopolitical events for the period

2011 − 2015 (Section 3.2). The dataset together with the elicitation protocol used to elicit these

data are described in Section 3.2.1. We conclude the paper in Section 4 with a discussion that

outlines potential shortcomings of the new score and future research directions.

2 Methods

Assessing the probability of occurrence for certain events of interest equates to eliciting bivariate

random variables. Nonetheless, the methodology presented in this paper can be extended to any

discrete random variable. Let X be a bivariate random variable, such that P (X = 1) = p and

P (X = 0) = 1 − p. Experts are asked to estimate p, but instead of asking directly for this

probability, they are asked to assign the event whose occurrence is modelled by X to a probability

bin2. Any number B > 2 of bins can be used. For simplicity, we assume we present the experts

with ten probability bins, denoted as B1, B2, . . . , B10. Every bin Bi is associated with a probability

of occurrence pi, for i = 1, . . . , 10. An expert assigns an event to bin B2 (for instance) if their

best estimate (about the probability of occurrence) is anywhere between 0.1 and 0.2. We choose

the middle value of this interval, that is 0.15, as the value of p2 associated with B2. Therefore, we

choose p1 = 0.05, p2 = 0.15, . . . , p10 = 0.95 and let p = (p1, p2, . . . , p10). Consider n binary random

variables, X1, X2, . . . , Xn that model the probability of occurrence of n events. Assume an expert

2It is worth mentioning that this sort of elicitation is rarely used in practice; instead experts are asked about the
direct probabilities [e.g. 12, 16] and their answers are used in conjunction with this construction in a rather artificial
way. We will discuss this issue further in Section 3.2.
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assigns ni events to bin Bi, for i = 1, . . . , 10. Then n =
∑10

i=1 ni. Given the outcome of each event,

for each bin Bi, we consider

si =

∑n
j=1Xj · 1{Xj∈Bi}

ni
,

for i = 1, 2, . . . , 10, where 1{Xj∈Bi} is an indicator function such that 1{Xj∈Bi} = 1 if Xj is assigned

to Bi and 0 otherwise. Then si accounts for the frequency of occurring events in each bin. The

vector s = (s1, s2, . . . , s10) is commonly referred to as the empirical probability vector. Ideally,

si is close to pi, for every i, hence the null hypothesis of H0 : si = pi becomes a natural way of

testing the hypothesis that the experts answer according to the designed bins and their respective

probabilities. Nonetheless, some differences are to be expected in practice. Different approaches in

quantifying these differences can be employed, which will lead to different calibration scores. We

will first present Cooke’s calibration score, which will be followed by our novel calibration score.

In Cooke’s method [8], the discrepancy between si and pi is measured using the Kullback–Leibler

divergence, also called the relative information of si with respect to pi. That is

I(si, pi) = si ln

(
si
pi

)
+ (1− si) ln

(
1− si
1− pi

)
,

for i = 1, . . . , 10. Under the assumption of having ni independent events with probability of

occurrence pi, which translates into the null hypothesis H0 : si = pi, the quantity 2niI(si, pi) ∼ χ2
1,

asymptotically, as ni →∞. Furthermore, if all X1, . . . , Xn are independent, and if for any Xj ∈ Bi,

we have P (Xj = 1) = pi, then

10∑
i=1

2niI(si, pi) ∼ χ2
10,

as ni →∞, for i = 1, . . . , 10. Let F be the distribution function of
∑10

i=1 2niI(si, pi) under the null

hypothesis. The calibration score of expert e is then defined as

Calχ2(e) = 1− F

(
10∑
i=1

2niI(si, pi)

)
. (1)

The calibration score takes values from 0 to 1 and a small discrepancy between s and p yields a
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small relative information of s with respect to p and hence a high calibration score. The calibration

score has been proven to be a proper scoring rule asymptotically [8], that is, the experts maximize

their expected scores, in the long run, if and only if they state their true beliefs. For n sufficiently

large, we can use the approximation in (1). However, what “sufficiently large” means remains

unclear. A rule of thumb has been proposed in [2]

nipi ≥ 4, and ni(1− pi) ≥ 4.

These inequalities pose serious constraints to the sample size, which would require hundreds of

question for the above approximation to render reliable results. The question is, of course, how

well does the Chi-square distribution approximate the distribution of
∑10

i=1 2niI(si, pi). Simulations

have been performed in Section 3.1, in order to investigate how accurate the χ2 approximation is for

small samples. Another approach proposed in [2] is to approximate F with an empirical distribution

Fn obtained via simulations, but this idea has not yet been put into practice. We have considered

it in this paper. We have performed 1000 simulations for random ni assignments to the bins of the

fixed n number of questions. Furthermore, the outcomes of the n events are randomly assigned to 0

or 1. An empirical distribution function is then obtained from the simulated data. The calibration

score is then defined as

Caledf (e) = 1− Fn

(
10∑
i=1

2niI(si, pi)

)
, (2)

where Fn is the empirical distribution function obtained via simulations. We anticipate that the

calibration score using the empirical distribution function is an asymptotically strictly proper scor-

ing rule, since Fn → F , almost surely, by the strong law of large numbers, as n→∞. The formal

proof will be deferred to a later manuscript.

In contrast to Cooke’s proposal, we employ a statistical hypothesis test whose test statistic

has an exact rather than an asymptotic distribution. The null hypothesis concerns the equality

between two probability vectors, i.e. H0 : s = p, and, under H0, one can observe that sini follows
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a binomial distribution with parameters ni and pi

sini ∼ Bin(ni, pi).

Let Yi ∼ Bin(ni, pi), and consider Y =
∑10

i=1 Yi, which denotes the theoretical null distribution.

Results of [6] provide the exact distribution of Y . The probability mass function of sums of binomial

distributed random variables for different n is provided in the figure below.
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Figure 1: The probability mass function of the exact distribution Y for n = 10 (a), n = 20 (b) and
n = 100 (c).

We propose a calibration score based on the exact null distribution, that is, we compute the

p-value of the hypothesis test. Note that the exact null distribution is discrete and not symmetric

for small n, as depicted in Figure (1). We therefore employ a two-sided p-value that accounts

for the the discreteness of the exact distribution of Y . A well-known approach is the two-sided

mid-p-value [14, 15, 1],

πtwo(a) = 2 ·min

(
P (Y > a) +

1

2
P (Y = a), P (Y < a) +

1

2
P (Y = a)

)
.

Then we define the calibration score of an expert e as

Calbin(e) = πtwo

(
10∑
i=1

nisi

)
. (3)
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Multiple approaches for two-sides p-values are available, some of which we initially considered. A

good recent review can be found here [21]. We decided to use the mid-p-value due to its ease of

interpretation and use, as well as its efficiency in dealing with the loss of power due to discreteness

[21].

The main advantage of the proposed calibration score is its exact distribution, which will hope-

fully substantially reduce the necessary number of questions needed in order to provide reliable

scores. As already mentioned, power equalisation techniques will also become unnecessary when

comparing scores calculated from sets of questions of different sizes, so long as one set of questions

is a subset of the other.

3 Results

We first interrogate an artificial data set to understand the behaviour of the three calibration scores

when calculated for different number of questions. The theoretical properties of the calibration

scores, such as the χ2 approximation, rely on a sufficiently large number of questions. In an ideal

situation, hundreds of questions should be answered in order to distinguish between the calibration

scores of experts. In practice, it is very unlikely for experts to answer so many questions for

calibration purposes. We expect the majority of studies to afford asking tens of questions at best.

After investigating the artificial situation, we turn our attention to a real data set collected

during a forecasting tournament. We compare and investigate properties of the three calibration

measures on this dataset.

3.1 Simulations

3.1.1 Simulated data

We have simulated expert data assuming random assignment to the ten bins, under the null hy-

pothesis. The outcome of each variable in bin Bi has been assigned to one with probability pi and

to zero with probability 1−pi. We used different dataset sizes, i.e. different numbers of calibration

questions, and performed 1000 simulations for each dataset size. We show and discuss the findings
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in the following section. We start by examining Cooke’s calibration scores, developed using both

the theoretical χ2 distribution, as well as using the empirical distribution. Then we investigate the

newly proposed calibration score based on the exact distribution of Y , the sum of ten binomial

random variables.

3.1.2 Academic findings

Figure 2 shows calibration scores from simulations for ten and 100 questions, where the former

represents the minimum allowable (and a very realistic3) number of calibration questions, and the

latter represents the ideal (yet unachievable situation).
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(a) Calχ2 distribution when using ten questions.
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(b) Calχ2 distribution when using 100 questions.

Figure 2: Histogram of calibration scores using the χ2 distribution for n = 10 questions (a) and
n = 100 questions (b).

Figure 2a shows that high calibration scores, that is, larger than 0.8 are more likely than small

calibration scores, say smaller than 0.3. Figure 2b shows that small calibration scores will be

more likely when answering 100 questions. Therefore, Figures 2a and 2b suggest very different

(almost contradictory) behaviours of the calibration score in the two situations. These differences

come from the differences in the approximations of the χ2 distribution, and maybe from the fact

that, when answering 100 questions, one is more likely to get low calibration scores by randomly

assigning events to bins. On the other hand, for a small number of questions, one would expect any

3Between eight and ten calibration questions are considered to be enough in contexts where continuous variables
and quantiles from their distributions are elicited instead [20].
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calibration score to be as likely as another. Cooke’s calibration score seems more generous when

using the χ2 distribution. The question is of course whether the χ2 distribution is appropriate for

small sample sized data. The simulated data can bring some light into this matter.
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Figure 3: Histogram of 2niI(si, ni) for n = 10 questions (a) and n = 100 questions (b).

Figure 3 shows this approximation for ten and 100 questions. As expected, the approximation

of the χ2 distribution, when only ten questions are used is very poor, as can be observed in Figure 3

(a), but it improves for 100 variables. Unfortunately asking 100 calibration questions is an academic

rather than a practical situation. For small data sets, the empirical distribution is recommended

and the histogram of the calibration scores using this empirical distribution is shown in Figure 4.
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Figure 4: Histogram of calibration scores using the empirical distribution function (edf) for n = 10
questions (a) and n = 100 questions (b).
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Two observations are worth making when investigating Figure 4. The first is that the histograms

for ten and 100 are surprisingly similar. The second observation relates to the comparison with

Figure 2 which is supposed to be its theoretical analogue. The difference is striking, raising some

questions about the appropriateness of the recommendation to use the empirical distribution instead

or how appropriate the χ2 approximation is.

For the new calibration score, developed using the exact distribution of Y , the simulation results

are presented in Figure 5 below.
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Figure 5: Histogram of calibration scores using the exact distribution Y for n = 10 questions (a)
and n = 100 questions (b).

The scores do not distinguish performance too well when only ten questions are used. We can

see, from both plots in Figure 5, that the calibration score using the exact null distribution is

somewhat conservative, that is, high calibration scores are less likely. The spikes in the histogram

for n = 10 are due to the discreteness of the exact distribution, similar to the case where Cooke’s

calibration using the empirical distribution is calculated. When looking at 100 questions, the

calibration scores using the exact distribution seem more conservative than the calibration score

obtained by using the χ2 distribution or the empirical distribution function, which is not surprising,

given that this test is more powerful than the other two, in the sense that with so many questions

it has the power to distinguish between calibration scores to a larger degree.

Assuming a set of 25 calibration questions corresponds to a realistic situation in a practical

application, we compare the three calibration scores on the simulated data when n = 25. The
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results are shown in Figure 6 below.
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Figure 6: Histogram of calibration scores for n = 25, using the χ2 (a), the empirical distribution
(b) and the exact distribution Y (c).

As expected, the calibration score using the empirical distribution is not very different than

the ones presented in Figure 4. The calibration score based on the exact test may be considered

as a good compromise between Figures 5a and 5b if it wasn’t for its unstable behaviour towards

the high end of the calibration scores. The fluctuations for scores larger than 0.9 are due to the

discreteness of the theoretical distribution; nonetheless they remain troublesome.

The advantage of using the new calibration score are, as pointed in the introduction, the use

of an exact theoretical distribution rather than an asymptotic distribution. Furthermore, the new

calibration score makes use of a p-value which takes into account (to some extent) the discreteness

of the exact distribution, as well as its asymmetry. However, more research and possibly some

adjustment are needed in order to understand and fix the above mentioned instability.

3.2 Application

As mentioned beforehand, we are not aware of any recent available data sets elicited by asking

experts to place events in bins. Most applications ask experts to give their best estimate of the

probability of an event occurrence. As part of the eliciting protocols, often experts are asked to

first think of all the reasons why this probability may be low, then they are asked to think of all

the reasons why the probability may be high and only then, balancing out the counter-factuals

are they asked to provide a best estimate for the probability. The first two questions are meant

to ensure that experts consider all possible scenarios and review all available information before
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answering. They are also sometimes used as an indication of how uncertain the experts are when

they make these estimates. The lower and upper bounds are very rarely used in the probabilistic

analysis due to the lack of their operational definitions. However the length of these intervals may

be compared with the length of the assumed bins, and this comparison may give an indication of

how appropriate the binning of the probability scale is.

3.2.1 Data

The data used in this research was collected during a forecasting project that started in 2011 as

an initiative of the US Intelligence Advanced Research Projects Activity (IARPA). Five university-

based research teams entered this forecasting “tournament” and predicted hundreds of geopolitical

events, with the aim of designing an effective elicitation protocol that predicts events with high

accuracy. Real events that resolved in the near-future were used to test the accuracy of forecasts.

Thousands of forecasters made over a million forecasts on hundreds of questions [26, 16].

The Centre of Excellence for Biosecurity Risk Analysis (CEBRA), at the University of Mel-

bourne, was part of one of these teams in the first couple of years, after which the winner of the

tournament was declared to be the Good Judgement Team (GJT)4[26]. However the other teams

still had access to the events used in the following couple of years, and as a consequence, CEBRA

continued to collected data for a total of four years using internal resources and the questions posted

by IARPA.

The collection of the data was done using the IDEA protocol (“Investigate”, “Discuss”, “Esti-

mate”, “Aggregate”) developed at CEBRA and refined through this tournament [29]. The protocol

distils the most valuable steps from existing structured protocols, and combines them into a single

and practical protocol. The full protocol has been outlined in [12]; however, briefly, the key steps

include:

1. Recruit a diverse group of experts.

2. Experts first Investigate the questions and clarify their meanings, then provide their private,

individual best estimates and associated credible intervals.

4CEBRA was part of the team that came second with only a fraction of the GJT’s participants.
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3. Experts receive feedback on their estimates in relation to other experts.

4. With the assistance of a facilitator, experts Discuss the results, resolve different interpreta-

tions of the questions, cross-examine reasoning and evidence, and provide a second and final

private Estimate.

5. The individual estimates are combined using mathematical Aggregation.

The data used in this research represent the answers to a subset of the questions developed

by IARPA. All questions considered correspond to binary variables of the following sort: “Will

the Turkish government release imprisoned Kurdish rebel leader Abdullah Ocalan before 1 April

2013?”, which were answered using the so called three-step format [e.g. 4], which asks for the best

estimate for the probability of the events’ occurrence and for plausible upper and lower bounds for

this same probability. All questions resolved within 12 months, allowing for validation exercises

and accuracy calculations. The elicitation took place remotely, initially via email, and from the

second year of the tournament through a website which provided the participants5 with a platform

where they could answer the questions and upload/download materials. Discussion was facilitated

via a discussion board that could be used to share relevant resources from outside the platform,

and to comment on and rate the quality of the information shared by others. The experts were

divided in groups. Each year, new participants joined, and other participants left the project.

There were 150 participants (in total) who answered at least one question (both rounds). A total

of 155 questions were answered by at least one participant, with no one participant answering more

than 96 questions; 84 participants answered at least ten questions; 39 participants answered at

least 25 questions. For more details about the tournament, questions and participants we refer to

[29, 12, 10, 11].

3.2.2 Practical Findings

Using the above described data set, we calculate the three calibrations scores for the participants

who answered at least ten questions. The results are presented in Figure 7.

5We will use “participants” instead of “experts” because the requirements of expertise, when recruting, were not
very strict. Anybody with an interest in the subject and a good understanding of the questions was allowed to
participate.
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Figure 7: Calibration scores of participants who have answered at least ten questions ordered by
the number of questions answered.

Often the scores agree, with the difference between the two calibration scores proposed by Cooke

being smaller than the difference between each of them and the new proposed calibration. Very

often, the new calibration score is smaller than the other two scores (79% of the times Calbin is less

than Caledf , and 63% of the times is less than Calχ2). For 82 of the 84 experts, the calibration score

using the χ2 approximation was smaller than the calibration score using the empirical distribution.

For 34.5% (29) of the experts, the differences between Calχ2 and Caledf was smaller than 0.05. For

15.5% of the experts, the differences between Calχ2 and Calbin were smaller than 0.05. Interestingly,

the same percentage, of 15.5% of the experts is registered when comparing Caledf and Calbin. Many

of the variations are caused by using a small number of questions used (see the left hand side of

Figure 7). When more than 20 calibration questions are used, less discrepancies are observed.

However there are still a couple of differences larger than 0.7 between Caledf and Calbin. We

shall investigate these (and other) differences on two subsets of scores, one calculated for experts

who answered between 20 and 25 calibration questions (see Figure 8a), and the other calculated

for experts who answered more than 60 questions (Figure 8b). The first subset corresponds to a

realistic situation (for the calibration questions set size), whereas the second one corresponds to

17



a more theoretical one. Both these sets are subsets of the calibration scores showed in Figure 7,

presented separately for better visibility.

(a) Scores of 15 experts answering no less than 20 and
no more than 25 questions.

(b) Scores of ten experts answering no less than 60.

Figure 8: Calχ2 , Caledf and Calbin for experts answering between 20 and 25 questions (a) and more
than 60 questions (b).

The large differences between scores are the ones which need further investigation. What

properties does one score reward, while the other penalises? To better understand these sort of

situations we look at the way events are placed in the probability bins and how well theoretical

and empirical probabilities of occurrence align. Table 1 shows both examples of situations where

the scores are in agreement (rightly or not), and situations where they are in disagreement, in a

variety of cases when scores are calculated based on either very few, a realistic, or a large number

of calibration questions.

18



R
ow

#
s 1

(p
1
)

s 2
(p

2
)

s 3
(p

3
)

s 4
(p

4
)

s 5
(p

5
)

s 6
(p

6
)

s 7
(p

7
)

s 8
(p

8
)

s 9
(p

9
)
s 1

0
(p

1
0
)
C
a
l χ

2
C
a
l e
df
C
a
l b
in

1
10

1
(0

.0
5)

0
(0

.1
5)

0
(0

.2
5)

0
(0

.3
5)

0
(0

.4
5)

1
(0

.5
5)

0
(0

.6
5)

0
(0

.7
5)

0
(0

.8
5
)

0
(0

.9
5
)

0
.1

9
8

0
.4

3
5

0
.8

6
0
5

2
13

0
(0

.0
5)

0
(0

.1
5)

0
(0

.2
5)

0
(0

.3
5)

0
(0

.4
5)

0
(0

.5
5)

0
(0

.6
5)

0
(0

.7
5)

0
(0

.8
5
)

1
(0

.9
5
)

0
.9

3
9

0
.9

8
3

0
.2

0
6

3
15

0(
0.

05
)

0.
28

6
(0

.1
5)

0(
0.

25
)

0.
33

4(
0.

35
)

0(
0.

45
)

0(
0.

55
)

0(
0.

65
)

0(
0.

75
)

0
(0

.8
5
)

0
(0

.9
5
)

0
.9

6
7

0
.9

9
4

0
.9

3
5

4
15

0(
0.

05
)

0(
0.

15
)

0(
0.

25
)

0(
0.

35
)

0(
0.

45
)

0(
0.

55
)

0(
0.

65
)

0.
66

7(
0.

75
)

0
(0

.8
5
)

0
(0

.9
5
)

0
.7

9
3

0
.9

3
0
.0

9
5

5
21

0(
0.

05
)

0(
0.

15
)

0(
0.

25
)

0(
0.

35
)

0(
0.

45
)

0(
0.

55
)

0.
5(

0.
65

)
1(

0.
75

)
0
(0

.8
5
)

0
(0

.9
5
)

0
.8

5
4

0
.9

6
7

0
.2

2
3

6
29

0
(0

.0
5)

0(
0.

15
)

0.
5

(0
.2

5)
0.

25
(0

.3
5)

0
(0

.4
5)

0.
45

5
(0

.5
5)

0
(0

.6
5)

0.
5

(0
.7

5)
0

(0
.8

5
)

0
(0

.9
5
)

0
.8

3
7

0
.9

5
1

0
.2

3
0

7
41

0
(0

.0
5)

0(
0.

15
)

0
(0

.2
5)

0.
08

6
(0

.3
5)

0
(0

.4
5)

0
(0

.5
5)

0
(0

.6
5)

1
(0

.7
5)

0
(0

.8
5
)

0
(0

.9
5
)

0
.0

0
2

0
.0

0
1

0
.0

0
0

8
66

0.
10

3(
0.

05
)

0.
11

1
(0

.1
5)

0
(0

.2
5)

0.
66

7
(0

.3
5)

1
(0

.4
5)

1
(0

.5
5)

0
(0

.6
5)

0.
75

(0
.7

5)
1

(0
.8

5
)

1
(0

.9
5
)

0
.6

2
7

0
.8

1
9

0
.1

9
75

0.
03

(0
.0

5)
0.

04
5(

0.
15

)
0.

33
4(

0.
25

)
0.

5(
0.

35
)

0.
5(

0.
45

)
0.

33
4(

0.
55

)
1(

0.
65

)
0.

4(
0.

75
)

1
(0

.8
5
)

1
(0

.9
5
)

0
.5

4
5

0
.7

6
6

0
.1

8
3

T
ab

le
1:

T
h

e
th

re
e

ca
li

b
ra

ti
on

sc
or

es
ob

ta
in

ed
b
y

se
ve

ra
l

ex
p

er
ts

an
sw

er
in

g
a

d
iff

er
en

t
n
u

m
b

er
of

q
u

es
ti

o
n

s
re

co
rd

ed
in

th
e

se
co

n
d

co
lu

m
n

(#
)

of
th

e
ta

b
le

.

19



When less than 25 questions are used, it is often hard to understand the behaviour of the scores.

The first four rows of Table 1 exemplify this. The first row shows an example where all of the bins’

probabilities differ considerably from their theoretical values, but both Caledf and Calbin fail to

acknowledge that through their values, with the failure of the binomial test being more flagrant.

In the second row, only the first and the last bin have recovered their theoretical probabilities, and

yet Caledf rewards this with its almost maximal value. In contrast, the Calbin value seems a little

more reasonable. In the third row all scores fail badly by giving very high calibration values to

a very poorly estimated distribution of bins. The forth row shows an example where the number

of questions answered is the same as in the previous row (15 questions), but the tests behave

somewhat differently, in that the binomial test seems to capture the poor performance, unlike the

other tests. A somewhat similar situation is shown in the fifth row, but this time, more questions

are used (21 questions). The seventh row of the table shows a good example of perfect agreement

and reasonable scores. Rows six, eight and nine are harder to discuss from the perspective of which

score behaves better. Figure 9a corresponds to the sixth row of Table 1, and Figure 9b corresponds

to the eighth row of Table 1.

(a) The empirical (si) and theoretical (pi) bins’
(Bi) probabilities, and the corresponding calibra-
tion scores for an expert who answered 29 calibra-
tion questions.

(b) The empirical (si) and theoretical (pi) bins’
(Bi) probabilities, and the corresponding calibra-
tion scores for an expert who answered 66 calibra-
tion questions.

Figure 9: Examples of he empirical (si) and theoretical (pi) bins’ (Bi) probabilities and correspond-
ing calibration scores.
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Investigating the way the empirical and theoretical bins’ probabilities match for the example

depicted in Figure 9a suggests an inflated Caledf and an appropriate value of Calbin. However,

when we shift our attention to Figure 9b, Caledf seems appropriate, but Calbin is inexplicably

small. It is hard to say if the score penalises a certain behaviour, or the small value comes from the

observed instability of the score in the upper tail. We suspect the latter. Because the test we use

for Calbin is exact, we do not necessarily expect the score behaviour to improve for a larger number

of samples. However, if the 29 questions answered by the expert from Figure 9a were a subset of

the 66 questions answered by the expert from Figure 9b, then a fair expectation is for the score to

improve.

4 Discussion

4.1 Concluding remarks

A new score for measuring how calibrated experts’ assessments of probabilities are, was introduced

and discussed. This score has a known exact distribution. We have investigated the score’s the-

oretical properties and practical performance and discussed a number of its positive and negative

attributes. The identified need for a score which uses an exact rather than an approximate distri-

bution of its test statistic is satisfied, but this comes with other shortcomings, some identified in

this paper, some yet to be discovered.

There are many unanswered questions and many properties of the new calibration score that

need to be properly investigated. The theoretical properties of the score are promising, but its

practical properties need to be equally good.

One important practicality which seems to be better when considering the new calibration

versus Cooke’s calibration is the number of calibration questions needed, since calibration scores

requiring hundreds of questions may be very interesting academically, but very impractical.

However, the instabilities Calbin exhibits in its upper tail need to be further investigated and

resolved.
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4.2 Future work

Our current research interests include proving that Calbin is a proper scoring rule, and accounting

for the non-independence of sini, due to the
∑10

i=1 ni = n constraint.

Another research interest, that we have touched upon when analysing the data from the Intelli-

gence Game, is that the probabilities of occurrence are not usually elicited using the bins, but they

are asked for in a direct manner using prompts like an upper plausible and lower plausible bound

before asking for a best estimate. When investigating those bounds, which can be thought of as the

size of the bins, very rarely do they equal 0.1. This suggests that experts would be fairly uncomfort-

able with assigning events to bins of the size we investigated. Designing elicitations where experts

are asked about placing events in probability bins, but complementing that with experiments to

establish “bin size comfort” may be very valuable.

References

[1] Alan Agresti. Categorical data analysis, volume 482. John Wiley & Sons, 2003.

[2] B. Bhola and R.M. Cooke. Expert opinion in project management. European Journal of

Operational Research, 57:24 – 31, 1992.

[3] G.W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather

Review, 78:1–3, 1950.

[4] M.A. Burgman. Trusting judgements: how to get the best out of experts. Cambridge University

Press, 2015.

[5] M.A. Burgman, M. McBride, R. Ashton, A. Speirs-Bridge, and L. et al. Flander. Expert status

and performance. PLoS ONE, 6:e22998, 2011.

[6] Ken Butler and Michael A Stephens. The distribution of a sum of independent binomial

random variables. Methodology and Computing in Applied Probability, 19(2):557–571, 2017.

22



[7] R. Clemen and R. Winkler. Combining probability distributions from experts in risk analysis.

Risk Analysis, 19:187–203, 1999.

[8] R.M. Cooke. Experts in uncertainty: Opinion and subjective probability in science. Environ-

mental Ethics and Science Policy Series. Oxford University Press, 1991.

[9] R.M. Cooke, M. Mendel, and W. Thijs. Calibration and information in expert resolution.

Automatica, 24(1):87–94, 1988.

[10] A. Hanea, M. McBride, M. Burgman, and B. Wintle. Classical meets modern in the idea

protocol for structured expert judgement. Journal of Risk Research, 2016.

[11] A. Hanea, M. McBride, M. Burgman, and B. Wintle. The value of discussion and performance

weights in aggregated expert judgements. Risk Analysis, 2018.

[12] A. Hanea, M. McBride, M. Burgman, B. Wintle, F. Fidler, L. Flander, S. Mascaro, and

B. Manning. InvestigateDiscussEstimateAggregate for structured expert judgement. International

Journal of Forecasting, 33(1):267–279, 2016.

[13] V.B. Hinsz, R.S. Tindale, and D.A. Vollrath. The emerging conceptualization of groups as

information processors. Psychological Bulletin, 121(1):43–64, 1997.

[14] HO Lancaster. The combination of probabilities arising from data in discrete distributions.

Biometrika, 36(3/4):370–382, 1949.

[15] HO Lancaster. Significance tests in discrete distributions. Journal of the American Statistical

Association, 56(294):223–234, 1961.

[16] B. Mellers, E. Stone, P. Atanasov, N. Rohrbaugh, S.E. Metz, L. Ungar, M.M. Bishop,

M. Horowitz, E. Merkle, and P. Tetlock. The psychology of intelligence analysis: Drivers of

prediction accuracy in world politics. Journal of Experimental Psychology: Applied, 21:1–14,

2015.

[17] G. Montibeller and D. von Winterfeldt. Cognitive and motivational biases in decision and risk

analysis. Risk Analysis, 35 (7):1230–1251, 2015.

23



[18] A. O’Hagan. Elicitation. Significance, 2:84–86, 2005.

[19] A. O’Hagan, C.E. Buck, A. Daneshkhah, J.R. Eiser, P.H. Garthwaite, D.J. Jenkinson, J.E.

Oakley, and T. Rakow. Uncertain judgements: Eliciting experts’ probabilities. Wiley, London,

2006.

[20] John Quigley, Abigail Colson, Willy Aspinall, and Roger M. Cooke. Elicitation in the classical

model. In Luis C. Dias, Alec Morton, and John Quigley, editors, Elicitation: The Science and

Art of Structuring Judgement, pages 15–36. Springer International Publishing, Cham, 2018.

[21] Isabelle Rivals, Léon Personnaz, Lieng Taing, and Marie-Claude Potier. Enrichment or de-

pletion of a go category within a class of genes: which test? Bioinformatics, 23(4):401–407,

2006.

[22] G. Rowe and G. Wright. Expert opinions in forecasting: the role of the Delphi technique.

In Principles of forecasting: A handbook for researchers and practitioners, Norwell: Kluwer

Academic Publishers:125–144, 2001.

[23] K. Shrader-Frechette. Value judgments in verifying and validating risk assessment models.

In C.R. Cothern, editor, Handbook for environmental risk decision making: values, perception

and ethics, pages 291–309, London, 1996. CRC Lewis Publishers, Boca Raton.

[24] P. Slovic. Trust, emotion, sex, politics, and science: surveying the risk-assessment battle field.

Risk Analysis, 19:689–701, 1999.

[25] William J Sutherland and Mark Burgman. Policy advice: use experts wisely. Nature News,

526(7573):317, 2015.

[26] L.H. Ungar, B. Mellers, V.A. Satopaa, J. Baron, P.E. Tetlock, J. Ramos, and S. Swift. The

good judgment project: A large scale test of different methods of combining expert predictions.

AAAI Fall Symposium Series, (AAAI Technical Report FS-12-06), 2012.

[27] L.J. Valverde. Expert judgment resolution in technically-intensive policy disputes. In Assess-

24



ment and management of environmental risks, pages 221–238. Kluwer Academic Publishers,

Norwell, 2001.

[28] R.L. Winkler and A.H. Murphy. ”Good” probability assessors. Journal of applied Meteorology,

7:751 – 758, 1968.

[29] B. Wintle, M. Mascaro, F. Fidler, M. McBride, M. Burgman, L. Flander, G. Saw, C. Twardy,

A. Lyon, and B. Manning. The Intelligence Game: Assessing Delphi groups and structured

question formats. In Proceedings of the 5th Australian Security and Intelligence Conference,

2012.

25


	Introduction
	Methods
	Results
	Simulations
	Simulated data
	Academic findings

	Application
	Data
	Practical Findings


	Discussion
	Concluding remarks
	Future work


