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Abstract 
   Automated negotiation mechanisms can be helpful in contexts where users want to reach mutually 
satisfactory agreements about issues of shared interest, especially for complex problems with many 
interdependent issues. A variety of automated negotiation mechanisms have been proposed in the 
literature. The effectiveness of those mechanisms, however, may depend on the characteristics of the 
underlying negotiation problem (e.g. on the complexity of participant's utility functions, as well as the 
degree of conflict between participants). While one mechanism may be a good choice for a negotiation 
problem, it may be a poor choice for another. In this paper, we pursue the problem of selecting the 
most effective negotiation mechanism given a particular problem by (1) defining a set of scenario 
metrics to capture the relevant features of negotiation problems, (2) evaluating the performance of a 
range of negotiation mechanisms on a diverse test suite of negotiation scenarios, (3) applying machine 
learning techniques to identify which mechanisms work best with which scenarios, and (4) 
demonstrating that using these classification rules for mechanism selection enables significantly better 
negotiation performance than any single mechanism alone. 
Keywords:  Automated negotiation, mechanism selection, scenario metrics 

1. Introduction
Negotiation - the process of finding

agreements with self-interested parties with 
differing preferences - is important in our society, 
e.g., in commerce, government, but also in
science and engineering.  In the past few

decades, the need to handle increased volumes of 
transactions, more complex negotiations, and 
larger number of stakeholders, has driven interest 
in developing computer-supported negotiation 
technologies, e.g. tools where software agents 
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facilitate negotiation on behalf of their users 
(Jennings et al. 2001, Lai and Sycara 2009). 

The majority of negotiation research has 
focused on finding good negotiation mechanisms, 
which includes a protocol for interactions and 
strategies for making and accepting offers. The 
negotiation research community has progressed 
with respect to negotiation scenarios with a 
number of independent issues for which the 
overall negotiation outcome space has an order of 
magnitude of up to 105 (Aydoğan et al. 2014, 
Chen 2012, Ammar et al. 2012, Williams et al. 
2011, Kraus 2001, Ren and Zhang 2014). 

Negotiation mechanisms that work well in 
those negotiations tend to fare poorly when 
applied to significantly bigger outcome spaces 
(Klein et al. 2003). For interdependent issues 
some effective mechanisms have been proposed 
(Klein et al. 2003, Ito and Klein 2009, 
Marsa-Maestre et al. 2012). Still, there are open 
questions in the field of automated negotiation 
with respect to what the best mechanisms 
(protocols and strategies) are, when increasing 
the number of participants, increasing the 
outcome space (e.g.1030) and dealing with 
interdependent issues (which complicates the 
shape of the negotiation outcome space). 

We argue that no single best mechanism 
exists for all negotiation scenarios, because of the 
high variability of negotiation scenarios. The 
variability comes from the variance in the size 
and shape of negotiation outcome spaces, but 
also other aspects vary, e.g., whether there is a 
time pressure, whether other outcome criteria 
hold (e.g., social welfare and fairness), and to 

what extent information from the other parties is 
available. Other complicating factors are whether 
or not human stakeholders find the mechanism 
acceptable. For example, a layman user might 
object to a mechanism because it is not 
immediately clear that the mechanism has 
appropriate properties such as guaranteeing a fair 
outcome. 

The central question pursued in this paper is 
how to select the best negotiation mechanism for 
a given problem and a set of user requirements. 
Although this research question has been around 
for some time (Kersten and Lai 2007), to date the 
only work within the context of automated 
negotiation has been done on selecting bidding 
strategies under the bilateral alternating offer 
protocol (Ilany and Gal 2016). In comparison, 
this paper broadens the scope by varying over 
protocols, and considering interdependent 
instead of independent issues. This requires a 
systematic benchmarking method. There have 
been recent efforts to benchmark negotiation 
approaches in common scenarios, like the 
Automated Negotiation Agents Competition 
(ANAC) (Jonker et al. 2017), but these efforts 
have restricted to ad-hoc domain sets and, 
furthermore, the number of nonlinear negotiation 
scenarios involving interdependent issues is still 
limited (12 nonlinear scenarios in ANAC 2014). 

This paper addresses this challenge and 
proposes a machine learning approach for 
mechanism selection in complex negotiations. 
Our contribution is threefold: 

• We create a framework for the
characterization and generation of
negotiation scenarios (Section 2) by
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defining a set of scenario metrics to 
capture the relevant features of 
negotiation problems (Section 2.1), and 
by proposing a scenario generation 
approach which allows us to compile a 
large and diverse set of negotiation 
scenarios for mechanism benchmarking 
in particular nonlinear domains (Section 
2.2). 

• We evaluate the performance of a range
of negotiation mechanisms on our
scenario test suite, demonstrating that
the relative performance of the
mechanisms varies from one setting to
another setting (Section 4).

• We build decision trees from our
experimental results to map scenario
metric values to better-suited protocols,
and demonstrate that using these
classification rules for mechanism
selection enables significantly better
negotiation performance than any single
mechanism alone (Section 4.2).

The rest of this paper is organized as follows. 
Section 3 explains our machine learning 
approach for selecting the best mechanism given 
the negotiation problem. Finally, Section 5 and 
Section 6 summarize our contributions, compares 
our work with other related approaches and 
discusses future work. 

2. Characterization and Generation of
Negotiation Scenarios 

The first step to fulfill our aim of 
determining how to select the best negotiation 
mechanisms for a given negotiation scenario 

with particular characteristics is to create an 
infrastructure which allows to systematically 
benchmark negotiation mechanisms in different 
scenarios. This infrastructure consists of the 
following components: 

• A set of scenario metrics, which
characterize the key properties
negotiation scenarios allowing us to
divide them in meaningful categories.

• A strategy for scenario generation,
which enables us to generate a variety
of negotiation scenarios in a systematic
way with respect to the specified
scenario metrics.

• A set of performance criteria that will
be used in benchmarking to evaluate
the performance of the mechanisms.
Two types of performance criteria are
investigated in this study: those related
to the negotiation outcome and those
related to the negotiation process itself.

2.1 Scenario Metrics 

A negotiation scenario is a formal 
description of a negotiation problem, specifying 
the following: 

• Negotiation domain is defined by the
set of issues, ND = {X1, ..., Xn} being
negotiated over, as well as the valid
values for each issues, Dom(Xi) =
{xi,1, ..., xi, m}. A contract is an
assignment of a value x ϵ Dom(Xi) to
each negotiation issue Xi ϵ ND.

• Agent preferences over different
contracts in the negotiation domain,
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which can be represented in many 
different ways. For our infrastructure, 
we adopt the weighted hypercube 
approach (Ito et al. 2007). According to 
this approach, a utility function is a 
collection of hypercube regions in the 
utility space, each representing a single 
constraint ck. A numeric weight or utility 
value u(ck) is associated to each 
constraint. The utility for a given 
contract s is then calculated as the sum 
of the utility values for the hypercubes 
including that contract as shown in 
equation (1). 

u (s)=∑ u(ck)ckϵ C | Satisfy (s,  ck)  . (1) 

We have generalized this representation to 
support “not” constraints, that is, constraints, 
which are satisfied when the contract s is not 
contained by the hypervolume. This allows 
expressing easily utility sinks (i.e. specific 
regions where utility drops) and “If-then” 
constraints (i.e. if X holds then Y has to hold too 
for the constraint to be satisfied). This way to 
represent preferences has the advantage of being 
arbitrarily expressive (i.e. given a sufficient 
number of constraints, we could virtually 
approximate any imaginable function). 

Figure 1 shows a sample utility function for 
a two-issue negotiation problem. This utility 
function consists of a unary constraint C1 and 
two binary constraint C2 and C3. The 
corresponding utility values associated to these 
constraints are 5, 10 and 12 respectively. 
According to this example, the contract x 
(issue1= 2; issue2=3) would yield a utility value 

u(x)=15 for the agent, since it satisfies both C1 
and C2 (that is, constraints C1 and C2 overlap, 
creating a region of higher utility). The contract 
y (issue1= 4; issue2=2), on the other hand, would 
yield a utility value u(y)=5, because it only 
satisfies C1. 

Figure 1. Example of a utility space with two issues 
and three constraints 

Over this definition of a scenario we use a 
set of metrics for characterization. Some of these 
metrics have been widely used in the literature. 
Domain size is measured as the number of 
possible contracts, and it is directly related to the 
difficulty to exhaustively search the contract 
space. Fitness distance correlation (FDC), in 
contrast, is related to how easy is to exploit the 
structural properties of the utility functions to 
find contracts for a given utility value. In 
particular, it measures the correlation between 
the utility of a contract and its Euclidean 
distance, in the contract space, from the global 
optimum (Tomassini et al. 2005). If there is a 
strong correlation between distance and utility, 
this implies a smooth utility function, where it is 
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easy to find utility optima. If the correlation is 
weak, this implies a rugged utility function with 
many “bumps” along the way. Other researchers 
have also used metrics directly related to the 
constraint-based utility representation, such as 
average number of constraints, average 
constraint size, and average constraint 
dimension (Marsa-Maestre et al. 2012). 

Apart from these scenario metrics from the 
literature, we propose a number of new ones to 
capture more characteristics of the negotiation 
problems: 

• Statistics of well-known outcome
metrics. We sample the scenario utility
functions and compute the average and
standard deviation for individual utility
optimality, social welfare optimality,
Pareto optimality and fairness as
defined in (Fujita et al 2012).
Consequently, we can account for the
quality in terms of these different
criteria for the expected outcomes if we
used random search to find agreements,
which serves as a good baseline
reference.

• Utility function cross-correlation. We
measure the correlation between utility
functions for the agents in the same
scenario. High cross-correlation means
that agent utilities tend to have high
values in the same regions, which
should allow to find agreements more
easily. Low cross-correlation, in
contrast, would account for a more
“competitive” scenario, where an agent
high-gains would imply high losses for
other agents.

• Social Welfare FDC. This metric is
analogous to FDC above, but instead of
being computed over individual agent
utilities, we compute it over the social
welfare of contracts. In this way, it
gives an indication on how rugged is
the social welfare landscape of the
scenario, which accounts for the
difficulty to find areas of high social
welfare.

• Attractor metrics. Landscape
smoothness is defined taking into
account the existence of attraction
basins towards its local optima (K.,
Fogarty, & Miller, 2003). An attraction
basin towards a solution sn is defined
as the set of solutions, B (sn) which
have a continuous trajectory to sn
where utility never decreases. The size
of the basin is given by the cardinality
of the set B (sn). The larger the
attraction basins in a landscape are, the
smoother the landscape is. We can
easily find attractors in a utility space
by running hill-climber optimizers from
random contracts in the space. If two
contracts lead the optimizer to the same
local optimum (attractor), we consider
them to be in the same attraction basin.
We measure both the attractor density
of the utility landscape and the average
and the standard deviation of the
attractor height, that is, the utility
values associated with local optima.
We compute these metrics for both
social welfare and individual agent
utilities.
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• Veto optimality. A veto hill-climber
only progresses when it can make a
move which does not decrease the
utility of any agent involved in the
negotiation (since any agent can veto
the move) (Klein et al. 2003). We
measure the average social welfare
optimality for veto-hill climbers
starting from random points. This is an
indicator of how easy is to progress
towards a negotiation optimum without
agents making concessions in their
utilities.

With all the metrics outlined above we 
implemented a set of 22 negotiation scenario 
metrics shown below: 

• Size of contract space
• Average contract utility
• Average local optimum utility
• Agent fitness distance correlation

(FDC)
• Average constraint dimension
• Average number of constraints
• Average of natural logarithm of volume

of constraints
• Density of utility function optima
• Utility variance of local optima
• Utility variance of random contracts
• Social welfare average
• Pareto average
• Variance of Pareto for random

contracts
• Variance of social welfare for random

contracts
• Social welfare attractor average height

• Variance of social welfare attractor
heights

• Social welfare fitness distance
correlation FDC

• Density of social welfare attractors
• Average Fairness: average of all

contracts
• Deviation from fairness
• Utility function correlation: for all

contracts
• Veto optimality

We have integrated all of those metrics 
into Negowiki (Marsa-Maestre et al. 2011), 
an online repository where members of the 
negotiation research community can upload 
their scenarios adopting the aforementioned 
hypercube representation and get them 
characterized according to the metric set. 
However, the existing scenario collection, 
although contained a representative set of 
scenarios used in the literature, did not cover 
a wide range of values for the different 
metrics. Therefore, a systematically created 
set of diverse negotiation scenarios was 
needed. 

2. 2 Scenario Metrics

We developed, for this work, a scenario 
generator that uses a parameterized process to 
define a wide range of utility functions (i.e. sets 
of weighted hypercubes) for the agents in each 
negotiation scenario. Hypercubes were 
generated randomly within the constraints given 
by the following four parameters: 
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• Number of issues. The size of the
contract space increases exponentially
with the number of issues, making it
computationally more challenging to
find win-win contracts. In our
experiments, we generated scenarios
with 10, 30, and 50 issues, where each
issue had a domain of 10 possible
values (0, …, 9).

• Number of shared hypercubes across
the agents. If this value is 3, for
example, that means that all the agents
in the scenario will have 3 hypercubes
with the same shape in their utility
functions. The similarity between agent
utility functions increases when there
are many shared hypercubes with equal
weights, and decreases when there are
many shared hypercubes with opposed
weights. In our experiments, every
utility function had (2 * number of
issues) hypercubes in total, with either
no shared hypercubes, 30 % of the
hypercubes shared with equal weights,
or 30 % of the hypercubes shared with
opposed weights.

• Dimensionality distribution for the
hypercubes in the utility functions. This
specifies what fraction of the
hypercubes are uni-dimensional (i.e.
constrain the value of just one issue),
bi-dimensional (i.e. constrain the values
of two issues) and so on. In general,
higher-dimensional hypercubes
produce more rugged and more
difficult-to-optimize utility functions.
In our experiments, the scenarios
included either only one and

two-dimensional hypercubes
(equi-probable), or one, two, three and 
four-dimensional hypercubes. 

• Width distribution for the hypercubes
in the utility functions. In general,
narrow hypercubes create more rugged
and difficult-to-optimize utility
functions. In our experiments, the
scenarios include either narrow
hypercubes (with equiprobable widths
of one, two, three or four) or wide ones
(with equiprobable widths of five, six,
seven or eight).

We generated 360 scenarios, consisting 
of 10 scenarios for each of 36 parameter 
combinations described above, covering a 
wide range in terms of the size of the 
contract space, the similarity of the agent's 
utility functions, and the ruggedness of the 
agent's utility functions. 

2. 3 Performance Criteria

In order to evaluate the performance of the 
negotiation mechanisms, we use the following 
criteria measuring the quality of the outcome 
from a social-welfare perspective: 

• Utilitarian Social welfare optimality:
Utilitarian social welfare is measured in
terms of the sum of the agents'
individual utilities (Endriss 2006).
Since the value of this metric may vary
according to the given scenario, we
normalized its value dividing it by the
maximum possible social welfare value
for the considered scenario.
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• Pareto optimality:  Pareto optimality
of an outcome is computed by drawing
a line between the zero utility point z in
the scenario utility diagram and the
outcome of the negotiation o, and
prolonging it until it intersects the
Pareto front at a point p. We define
then Pareto optimality for the contract
as the ratio between the length of the
segments zo�  and zp� .

• Fairness: Outcome fairness is
computed as in (Fujita et al 2012), and
then normalized to the maximum
potential fairness in the considered
scenario.

In addition to these outcome performance 
criteria, we define three process performance 
criteria: 

• Computation cost, which accounts for
the number of times the utility function
is evaluated during the course of the
negotiation.

• The number of rounds taken by each
mechanism to complete the negotiation.

• The number of messages exchanged by
agents during the negotiation.

All outcome performance criteria are 
computed by the Negowiki when 
experimental results are uploaded to the 
website. Process criteria, however, have to 
be manually uploaded by users, since they 
strongly depend on the approach 
implementation.  

3. Mechanism Selection Approach

The proposed mechanism selection benefits 
from machine learning techniques such as 
decision trees. We take the problem of 
determining which mechanism would be the best 
mechanism for a given negotiation problem as a 
classification problem where the input features 
are the set of scenario metric values 
characterizing the given negotiation scenario 
and the output is the predicted best mechanism 
for this scenario. In the proposed approach, 
decision trees are chosen as the classifier 
method. It is easy for human users to understand 
the decision trees because of their simple 
structures. Human experts can deduce important 
insights by extracting decision rules from 
decision trees. Furthermore, decision trees have 
been used for similar purposes. For instance, 
Guerri and Milano adopt using decision trees to 
select the best algorithm in an algorithm 
portfolio in the context of combinatorial 
auctions (Guerri and Milano 2004). Similarly, 
Ilany and Gal use decision trees to choose the 
best negotiation strategy in the context of the 
alternative offers protocol (Ilany and Gal 2016). 

A decision tree is an efficient nonparametric 
model, which can be used for both regression 
and classification (Alpaydin 2009). In our case, 
we use decision trees to classify the best 
mechanism for a given set of scenario metrics 
according to a chosen performance criterion.  A 
classification decision tree consists of two types 
of nodes: leaf node and non-leaf node. The leaf 
nodes hold the class labels while non-leaf nodes 
hold the test attributes. Constructing a decision 
tree for a given problem requires to use training 
instances. Each instance consists of a set of 
attributes/features with a class label.  Test 
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attributes are chosen from the set of attributes in 
the given problem. Consider that the given 
problem involves two attributes: X and Y, and 
there are three class labels: C1, C2 and C2. 
Assuming we have the training instances plotted 
in Figure 2, we may construct the decision tree 
drawn in Figure 3. 

The selection of test attributes is a crucial 
task in construction phase of the tree since it 
may affect the size of the tree significantly. 
These test attributes are used to divide the 
training instances into subsets by considering the 
(im)purity of the instances in each group. That is, 
the quality of the split is measured by the 
impurity.  The split is said to be “pure” if after 
splitting, all instances in each branch belong to 
the same class. In the literature, for measuring 
the impurity, we may use some functions like 
entropy and gini index (Leo Breiman 1984). For 
all splits, the impurity is calculated - in our work 
by using gini index, and the attribute with the 
minimum entropy is selected. After selecting a 
test attribute, tree splits and splitting continues 
until each subset is homogeneous (i.e., have the 
same class label) or there is no attribute left for 
testing. In the following part, we describe how 
decision trees are used for predicting the best 
negotiation mechanism for a given negotiation 
scenario.  

Let’s examine how we construct the decision 
trees that will predict the best mechanism for the 
given negotiation scenario. We follow the 
following steps: 

• We first generate a diverse set of
negotiation scenarios and pick a set of
different negotiation mechanisms.

• For each scenario, we test every
mechanism a number of times and
record their performance.

• For each negotiation run, we determine
the best mechanism according to the
chosen performance criterion.

• We build up the training sets by using
the estimated scenario metrics as input
features and the name of the best
mechanism for each case as the label
(i.e., class).

• Then, we create the decision trees
whose test attributes are the scenario
metrics and leaves are the predicted
best mechanism.

Figure 2.  A sample data set with their class 
information 

Figure 3.  Corresponding decision tree for the 
dataset depicted in Figure 2 
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Figure 4. The decision tree for round 

Figure 4 depicts the decision tree that has been 
constructed regarding to the number of rounds 
criterion. From this decision tree, we can extract 
some decision rules such as “If social welfare 
attractor density is less than 59.5 and utility 
function correlation is less than 0.09999, then it 
is recommended to use the mediated approach 
based on Genetic Algorithms (GA)”. Note that 
those rules can be easily interpreted by humans, 
which is the main reason why we chose to use 
decision trees.  

The decision trees will enable us to predict 
which mechanism we should pick for the given 
negotiation scenario. An automated negotiation 
system can check the prediction of the best 
mechanism for a given negotiation scenario, and 
pick the best predicted mechanism in order to 
gain the best possible outcome regarding the 
chosen criteria. Note that, such an automated  

negotiation system can fix the performance 
criterion such as social welfare and use the  

decision tree for that criterion during execution 
time.  Alternatively, it may allow the user to 
select the performance criterion from a 
predefined set of criteria dynamically. In this 
case, decision trees for each performance 
criterion should be created beforehand and the 
system picks the one regarding the chosen 
performance criterion by the user.  

Figure 5 depicts the proposed mechanism 
selection module having the following steps: 

• Extracting scenario metrics: We estimate
the predefined scenario metrics from a given
negotiation scenario. A negotiation scenario
consists of negotiating agents' preference
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profiles (i.e. utility functions) where the 
scenario metrics capture the characteristics 
of the underlying scenario (e.g. the 
complexity of the participants' utility 
functions as well as the degree of the conflict 
between participants). As outlined in Section 
2.1 for this purposes we have defined 22 
scenario metrics as explained in the previous 
section. 

• Deciding the best candidate mechanism:
We use the decision trees to find out the best
candidate mechanism for the given
negotiation. It is worth noting that for each
performance criterion, we constructed a
decision tree by using the results of a huge
number of negotiations in a variety of
negotiation scenarios. These decision trees
take the scenario metrics estimated in the
former step as inputs and output the best
candidate mechanism.

This process requires creating the decision 
trees in advance. There are a variety of 
performance criteria for negotiation mechanisms 
such as fairness, social welfare, cost and so on. 

One mechanism may be the best mechanism 
according to fairness whereas another may be 
the best with respect to social welfare. This leads 
us to create separate decision trees for each 
performance criterion. 

4. Experiment Settings and Results

The approach we have described in the 
previous section is fundamentally empirical. 
Therefore, an extensive experiment set is needed 
to validate our hypotheses. In the following, we 
describe our experimental setting and discuss the 
results obtained. 

4. 1 Experiment Settings

As discussed in Section 1, the main 
hypotheses of our work are that (1) the relative 
performance of negotiation approaches (i.e. 
which mechanism works better) varies with the 
different negotiation settings and performance 
criteria, and that (2) we can use scenario metrics 
and machine learning techniques to select which 
mechanism is more suitable to handle a specific 
scenario. To put these hypotheses to the test, we 
have performed three sets of experiments: 

• We have performed negotiations over all our
generated scenarios using a number of
relevant approaches from the literature, and
measured their performance according to the
criteria discussed above. This has allowed us
to check whether there are clear “overall
winning” approaches in these complex
scenarios.

• We have used our obtained results and the
aforementioned scenario metrics to train a

Figure 5. Proposed mechanism selection module 
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decision tree classifier for the discrimination 
of the best negotiation approach for each 
scenario for each of the different 
performance indicators. We have then used 
this classifier for mechanism selection, 
showing that it significantly outperforms any 
mechanism alone, and also a random 
selection of mechanisms. This shows how 
the machine learning approach composed by 
the metrics and the decision tree is 
effectively able to recommend negotiation 
mechanisms for known scenarios. 

• We have performed a cross-validation
analysis of the decision trees to account for
the prediction capability of the decision tree
when facing unknown scenarios. The results
show how the proposed approach effectively
minimizes the performance loss when
compared to the optimal performer at each
negotiation.

For the negotiations, we created 36 scenario 
families as described in Section 2.2, varying 
criteria such as the number of shared constraints 
across agents, constraint dimensions, constraint 
with and domain size. For each scenario family 
we generated 10 instances, for a total of 360 
negotiation scenarios. 

For each scenario, we ran 10 negotiations 
with five different negotiation mechanisms taken 
from the literature: 

• Alternating Offers Protocol (AOP).
According to the alternating offers protocol
(Rubinstein 1982), one of the agents initiates
the negotiation with an offer. Other agent
can respond by accepting this offer or

making a counter-offer or ending negotiation 
without any consensus. If one of the agent 
accepts its opponent's offer, the negotiation 
ends with the agreed offer. Otherwise, this 
process is iteratively repeated until reaching 
a deadline (in our experiments, 10000 
iterations). In this mechanism, the agents 
adopt a time-based concession strategy, as 
described in (Peyman et al. 1998). 

• Mediated approach based on Genetic
Algorithms (GA). The mediator starts with
the generation of N random contracts to
propose to the agents, and iteratively each
agent selects the top quarter contracts. At
each iteration of the mechanism, the
mediator uses the agents' selection to
recombine and mutate these contracts into a
new generation. This is similar to the
approach used in (Lin 2004).

• A randomized single text mechanism (veto)
(Klein et al. 2003), where the mediator starts
at a random contract. At each iteration, the
mediator mutates the contract by altering the
value of a randomly chosen issue and
proposes the new contract to the agents,
which will compare it to the previous
agreement (i.e. prefer or not prefer). The
mediator accepts the proposal as the current
agreement if all agents prefer it to the
previous contract.

• A simulated annealing single text mediator
(SA), which works as veto, but the mediator
may accept a non-unanimously agreed
contract with a finite probability depending
on an annealing temperature which decreases
with time. Also, agents are allowed to
strongly or weakly accept or reject the
current proposed contract at each iteration.
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• A pre-negotiation based mechanism (PN).
This is a mediated mechanism in which
agents first agree about a suitable starting
contract. In this pre-negotiation, the mediator
proposes a large number of random contracts
and the agents perform a runoff voting, i.e.,
they continue eliminating the candidates with
the least votes until just one contract is left
(Lang and Fink 2015).

For each negotiation run, we measured 
computational cost, number of rounds, number 
of exchanged messages and quality of the 
outcome (i.e. social welfare optimality, Pareto 
optimality and fairness). Then we labelled the 
best performing approach according to each of 
these six criteria and trained our decision tree 
classifier for each label set. We used these 
decision trees as mechanism selection rules and 
computed the results of doing the negotiations 
using this mechanism selection approach (MS). 
Finally, we also tried a random mechanism 
selection approach (Rand), which basically 
picked randomly which mechanism to use at 
each negotiation, to use it as a baseline reference 
for comparison. 

For the cross validation, we created ten 
disjoint validation sets comprising 10 % of the 
scenario instances (one of each family), trained 
the decision trees with the remaining scenarios 
and tested them against the validation sets, for a 
total of 3240 negotiations in each training set 
and 360 negotiations in each validation set. 

4. 2 Emprical Results and Analysis
   Table 1 shows the results of our experiments 
with the 3600 negotiation instances. For each 

negotiation approach, we show the “win count”, 
that is, the number of times this approach was 
the best performer according to each criterion. 
As mentioned above, the MS column 
corresponds to our mechanism selection 
approach, where the decision trees are trained 
using the same 3600 negotiation instances (that 
is, for known scenarios), and the Rand column 
shows the results using a random mechanism 
selection. For each row, we highlight in bold the 
approach with the highest winner count. As seen 
from the results, adopting the mechanism 
selected by the decision trees (MS) outperforms 
sticking to any single protocol for almost all of 
the performance criteria. Even in the cases when 
there is an “overall winner”, the results for our 
MS approach are quite close to that winner, 
meaning that the decision trees correctly identify 
the best approach to use most of the times. 
Furthermore, the results also support the fact 
that none of the mechanism is the best for all 
performance criteria. For instance, while 
alternating offers protocols with conceders 
(AOP) seems the best performer among the 
others according to the fairness criterion, MNP 
is the best performer with respect to the Pareto 
optimality criterion. Finally, it is worth noting 
that even when facing known scenarios we don't 
have a 100 % guarantee of selecting the best 
performer (there is no cell in the table showing 
success in the 3600 rounds, not even in the MS 
column, where we are following the MS 
recommendation). This is due to the fact that the 
mechanisms used for complex negotiation 
scenarios have a high degree of randomness (e.g. 
performance of SA may highly depend on the 
first randomly chosen contract). We see, 
however that following the MS recommendation 
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gives us a significant advantage over any other 
approach. 

In the following, we show the results of the 
cross-validation experiments. Table 2 shows 
these results for the computational cost 
performance indicator. In this case, for each 
negotiation approach we show the cost 
differences between the best performer and the 
given mechanism in each of the 10 validation 
sets. Therefore, low values in the table means 
that the approach is closer to an “omniscient” 
mechanism selector (i.e. one that knew 
beforehand what was going to happen). We can 
see that the average difference between the best 
performer and the mechanism suggested by the 
decision tree (MS) is significantly lower than the 
distance between the best performer and other 
mechanisms. It is also worth noting that no 
mechanisms achieve a zero difference, which  
means that there is no mechanism which was the 
best performer in all cases. This again accounts 
for the fact that in complex negotiation scenarios 
the degree of variability is much greater. It can 

also be seen that the different validation sets are 
consistent with each other. Therefore, for space 
limitations, we show the results for the rest of 
the performance indicators averaging all 
validation sets, as seen in Figure 6. 

It is worth noting that there is no overall 
winner for all performance criteria. For example, 
in most cases GA outperforms the other 
mechanisms in terms of the number of rounds to 
complete the negotiation and number of 
messages sent during the negotiation while PN 
outperforms the others in terms of social welfare 
optimality and Pareto optimality. Although we 
have such outlier mechanisms, it is shown that 
the average distance between the best and the 
mechanism predicted by our selection method is 
relatively less than others except the winners for 
the given criterion. This result shows that the 
decision tree picks the winning mechanism most 
of the times, and supports our claim of using 
mechanism selection has advantage over 
sticking to a particular mechanism.

Table 1 “Win count” for the different approaches in the 3600 scenarios 
Criterion AOP GA SA Veto PN MS Rand 

Round 109 3497 0 0 0 3548 730 

Cost 0 1592 1576 1652 0 2793 952 

Message 177 3425 0 0 0 3550 742 

Swopt 141 184 104 395 3089 3116 839 

Popt 153 261 140 572 3261 3152 862 

Fairness 1074 674 631 655 678 1579 746 
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Table 2. The cost difference between the best performer and a given protocol in Validation Set 

Set AOP GA SA Veto PN MS Rand 

1 1.32 M 61.85 36.99 35.66 8489.78 14.09 297797 

2 1.77 M 71.95 36.02 33.68 8477.91 10.33 387470 

3 1.56 M 75.78 31.82 30.04 8488.16 14.79 252931 

4 1.53 M 62.97 40.04 38.23 8491.99 12.36 242828 

5 1.42 M 69.58 35.17 33.39 8484.14 21.99 231511 

6 1.60 M 68.08 37.27 35.91 8484.08 19.19 356153 

7 1.60 M 62.07 42.04 40.36 8490.10 17.73 348657 

8 1.33 M 65.66 41.93 40.24 8481.62 9.59 286569 

9 1.30 M 65.87 38.33 36.79 8489.18 12.23 271273 

Figure 6. Average distances in validation sets 

5. Related Work

In many aspects, the ideas described here 
have followed the path described by algorithm 
portfolio design. Algorithm portfolio is a way 
of determining which algorithm to use 
(Leyton-Brown et al. 2003).  Leyton-Brown et 
al. emphasize that there is rarely a single 
algorithm, which performs better than all other 

algorithms for all instances of a given problem. 
That is, performance of the algorithms may 
vary depending on the instances of the given 
problem. In their work (Leyton-Brown et al. 
2002), they propose to use the domain 
knowledge to select the features indicating the 
distinction of the problem instances and to 
estimate the running time of the algorithm for 
each instance of problem. Afterwards, they can 
use regression to predict the runtime of the 
algorithm. Following this approach, for a given 
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problem instance, it is possible to calculate the 
predicted running time for each algorithm and 
pick the one that performs best. 

Ilany and Gal also point out the positive 
effects of using different algorithms in varying 
domains in order to achieve better outcomes in 
the context of automated negotiation (Ilany and 
Gal, 2016). Their work mainly focuses on 
selecting a negotiation strategy based on the 
characteristics of the negotiation scenario. 
They apply machine learning algorithms to 
predict which strategy would work better in the 
given negotiation scenario. The main 
difference between that study and our work is 
that they pick the best negotiation strategy 
guessed by a machine learning algorithm, and 
employ this strategy in the entire negotiation 
whereas our approach is aiming to find the best 
negotiation mechanism, which involves both 
negotiation protocol and agent strategies, for a 
given negotiation scenario.  

Negotiation has been studied for a couple 
of decades. Researchers have designed a 
number of negotiation protocols, which govern 
the interaction among agents during the 
negotiation. The alternating offers protocol 
(Rubinstein, 1982) is one of the most widely 
used protocols for bilateral negotiation where 
agents make offers in a turn-taking fashion. 
Aydoğan et al. proposed two extensions of 
alternative offers protocol for multilateral 
negotiation (Aydoğan et al. 2017).  There are 
some mediated based multi-party negotiation 
protocols such as mediated single text 
negotiation protocol (Klein et al. 2003), 
feedback and voting based protocol (Aydoğan 

et al. 2014) in which the mediator makes the 
offers and negotiating agents vote those offers 
and give feedback. De Jonge and Sierra 
introduced a novel multilateral negotiation 
protocol inspired from human negotiations, 
called Unstructured Communication Protocol 
(UCP) (Jonge and Sierra 2015). Bai, Zhang and 
Sim proposed to use Colored Petri Net models 
to represent negotiation protocols (Bai et al. 
2009). Wong and Fang introduced the 
Extended ContractNet-Like Multilateral 
Protocol (ECNPro) (Wong and Fang 2010) for 
multiple bilateral negotiations between a buyer 
and multiple sellers. Similarly, William et al 
proposed a concurrent many bilateral 
negotiation protocol that allows agents to 
commit and decommit their agreements 
(Williams et al. 2012).  Sanchez-Anguix et al. 
proposed an extension of alternating offering 
protocol for team negotiation (Sanchez et al. 
2014). The choice of negotiation protocol with 
compatible negotiation strategies, does not only 
depend on the dynamics of the negotiation (e.g. 
the number of negotiating parties, whether it 
requires a concurrent or single negotiation) but 
also depends on the specific instance of the 
negotiation scenario (e.g. competitive versus 
collaborative). The aim of this work is to 
provide a machine learning approach to make 
this decision wisely for bilateral negotiations. 

6. Discussion and Conclusion

From the user perspective, it is crucial to be 
able to map negotiation problems to automated 
negotiation mechanisms, that is, finding the 
most appropriate approach to handle a given 
negotiation problem. However, research works 
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so far have only addressed this challenge in a 
per-problem basis, focusing in specific 
scenarios and designing negotiation 
mechanisms suited for those scenarios. 
Although these works have been successful, 
the significance of their success cannot be fully 
assessed, because the results do not provide 
any insight about how the mechanisms will 
perform outside of the specific settings they 
have been tested in. 

An approach to allow for consistent 
comparison of negotiation approaches is 
benchmarking. A first attempt at it was initiated 
in 2010, when the first automated negotiating 
agent competition was organized (Jonker et al. 
2017). ANAC allowed to build a common 
negotiation repository comprising both 
negotiation scenarios and negotiation strategies 
for agents, and also provided an infrastructure, 
the GENIUS testbed (Lin et al. 2014), which 
allowed for the systematic comparison between 
strategies in “tournaments”. Although it is 
promising that some researchers have recently 
started using ANAC repository as a benchmark 
in order to assess how well their approaches 
work (Williams et al. 2011, Chen et. al 2012), 
the ANAC approach has some limitations. First 
of all, the ANAC scenario repository consists 
of only scenarios where the negotiating agents’ 
preferences are represented by means of linear 
additive utility functions, and this scenario 
repository is generated in a somewhat ad-hoc 
manner (i.e. competitors submit new scenarios 
every year), so it is not aimed to provide 
diversity in a systematic way. Moreover, 
ANAC agent repository provides agent 
strategies to be used in a particular negotiation 

protocol - e.g. Rubinstein's alternating offers 
protocol (Rubinstein 1982) -, but does not 
support the possibility to compare complete 
negotiation mechanisms involving different 
protocols. Finally, the tournament approach of 
the ANAC competition supports the “overall 
winner approach” assumption, which does not 
help to solve the problem from the user 
perspective, which is to be able to select which 
mechanism to use for a given negotiation 
scenario. 

To meet this need, in this paper, we have 
established a set of scenario metrics based on 
our previous work in nonlinear negotiation 
(Marsa-Maestre et al. 2014), and we have 
generated a wide set of scenarios. We have 
benchmarked a selection of negotiation 
approaches from the literature in these settings, 
and analyzed the results according to 
performance indicators such as social welfare 
optimality or negotiation cost in terms of 
computation. Our results show that no single 
mechanism is a clear winner for all 
performance criteria, neither a single 
mechanism is a winner for all scenarios. The 
results also show that we can effectively use 
the aforementioned scenario metrics and a 
decision tree classifier to map the scenarios 
onto the most suitable mechanisms to handle 
them. Finally, we have tested the predictive 
capabilities of the classification approach, 
showing that our classifier selects the best 
performing approach when facing new 
scenarios in more than 90 % of the cases. 

The experiments conducted have validated 
the hypothesis of this work, and open new 
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avenues for research. We want to explore a 
wider variety of negotiation scenarios, 
increasing the number of agents involved in the 
negotiation and adding the effect of discount 
factors, for instance.  We are also interested in 
trying different machine learning techniques, 
such as random forests and extreme learning 
machines. Finally, we would like to extend our 
dataset by adding more scenarios and more 
negotiation mechanisms from the ones 
available in the literature. We believe that 
having a large set of scenarios and mechanisms 
is crucial for the success of any 
machine-learning mechanism selection 
approach, and we count on the growing 
community of Negowiki users to achieve that. 
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