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Summary

The downstream process development for biopharmaceuticals is faced with increas-
ing challenges. A growing market of drug candidates and new molecule families,
as well as a rising trend to personalized medicine lead to an increase in market
diversity. At the same time more purification techniques and materials become
available, resulting in an exponential growth in potential parameter combinations
and conditions to be considered and screened for.
The establishment of high throughput screening (HTS) technologies and automated
liquid handling stations (LHS) have driven standardization in experiments, data han-
dling and data quality assessment in the last decade. Despite, the establishment
of automation technologies for almost all purification process steps throughout the
field of DSP development, a miniaturization beyond the scale of 96-well plates has
not been reached, as sample handling and pipetting accuracy fell short with estab-
lished LHS.

Nevertheless, with HTS technology, more and reproducible data becomes avail-
able, providing the experimental foundation for mechanistic and empirical modeling
of purification processes, as molecular dynamic (MD) simulations and quantitative
structure activity relationship (QSAR) models. In contrast to MD simulations, which
are limited in their application range due to high computational costs, QSAR com-
bines mechanistically derived descriptors, capturing molecular features in numeri-
cal entities, and an empirical combination of these descriptors to predictive models.
Despite the wide spread application of QSAR models in other fields of research,
QSAR yet lacks suitable sets of descriptors for purification process modeling, as
published descriptors for proteins are primarily targeted on structure stability and
folding. In downstream processing of biomolecules, interactions are often orienta-
tion sensitive between molecule and a surface as in chromatography or between
identical molecules (e.g. diffusion, aggregation and crystallization processes). The
lack of suitable descriptors, modeling standards, and easy to use tools hamper a
wide application of QSAR techniques in process development.

In this work, a new approach to high throughput screening is presented, using
accurate measurements of liquid and resin volumes to overcome the limitation of
96-well plates. The applicability is presented in a 384-well based batch isotherm
process on an automated liquid handling station. Single handling and pipetting step
accuracies are measured and their impact on experimental results is calculated by
Monte Carlo simulations. Higher or comparable accuracy to similar processes es-
tablished in 96-well format is shown. The application of spectrometric methods
to resin quantification and qualification is demonstrated on SP Sepharose FF resin,
using UV/Vis spectra information to measure volumes, ligand concentration and pro-
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2 Summary

tein load based on light scattered within porous adsorbent particles without sample
interference. The further potential of miniaturized high throughput screening is
demonstrated by introduction of the µF-on-LHS interface, combining microfluidic
structures and automated LHS systems. The potential in automated handling of
microfluidic chips and fluid control by the LHS pipetting unit is shown by different
microfluidic chip designs and the realization of automated droplet microfluidics in
the volume range down to 0.7 µL.

For the utilization of HTS data in predictive modeling, sets of QSAR descriptors
were developed. These descriptors reflect the distribution of characteristics as elec-
trostatic potential and hydrophilic/hydrophobic constants on the molecular surface,
as well as different orientations of interaction, and screening effects by the sur-
rounding solvent. The applicability of these descriptor sets is demonstrated by the
predictive modeling of the Langmuir isotherm affinity parameter, a key parameter
in chromatography modeling. Found preferred orientations of the model protein
Lysozyme showed good comparability to experimentally and MD simulation derived
orientations in literature. The developed modeling approach, was applied to a set
of monoclonal antibodies in combination with model proteins to demonstrate the
use in process development for high value biopharmaceuticals. The successful pre-
diction of mAb isotherm parameters by QSAR models without training of the model
on said structure is displayed. Further, the influence of the ionic strength on the
binding orientation of mAb is investigated, showing a change from a ”head-on”
orientation, with the Fab fragment facing the adsorbent at low ionic strength to a
”flat” orientation at higher ionic strength. This result is consistent with literature
and experimental results conducted.

To make the developed descriptor calculation approach available for other ap-
plications in research and industry, the program mantoQSAR was written, which
guides the user via an graphic user interface (GUI) through the steps of predictive
QSAR modeling, including structure selection, descriptor calculation, modeling of
response values and response prediction for new observations. Emphasise was put
on the visualization of molecule features and descriptors, to allow the user to in-
vestigate preferred orientations of interaction and the corresponding projection of
descriptor values. The software was designed to be usable on all conventional com-
puter operating systems and to be run on user computers, to ensure confidentiality
of structural and experimental information, in contrast to distributed web services.

This work demonstrates the unused potential of optical methods in HTS appli-
cations for process improvement and resin sample analysis. Further, advances in
predictive modeling are demonstrated by utilising mechanistic understanding in de-
scriptor calculation. The developed methodologies have inspired ongoing research
in the fields of microfluidics, lab automation and QSAR modeling and will have a
significant impact on future downstream process development.



Samenvatting

De ontwikkeling van zuiveringsprocessen voor biofarmaceutische producten, wordt
geconfronteerd met toenemende uitdagingen. Een groeiende markt van kandidaat-
genees- middelen en nieuwe molecule families, alsook een stijgende trend voor ge-
personaliseerde medicijnen, leiden tot een toename van de diversiteit van de markt.

Tegelijkertijd worden meer zuiveringstechnieken en materialen verkrijgbaar; dit
resulteert in een exponentiële groei van de potentiële parameter combinaties en
voorwaarden, waarnaar gescreend en beschouwd moet worden. De oprichting
van high throughput screening (HTS) technologieën en geautomatiseerde vloei-
bare handling stations (LHS), hebben de standaardisatie van experimenten, data
handling en de beoordeling van data kwaliteit in het laatste decennium bevorderd.
Ondanks de oprichting van automatiserings technologieën voor bijna alle zuiverings-
stappen van het gehele gebied van DSP ontwikkeling, wordt een miniaturisatie van
deze niet verder dan de 96-wells platen bereikt. Dit komt doordat het monster
handling en het pipetteren met de gevestigde LHS, niet nauwkeurig genoeg was.

Desondanks worden door de HTS meer en reproduceerbare gegevens beschik-
baar. Deze vormen de experimentele basis voor de mechanistische en empirische
modellering van zuiveringsprocessen, in de vorm van moleculaire dynamica (MD)
simulaties en kwantitatieve structuuractiviteitsrelatie (QSAR) modellen. In tegen-
stelling tot MD-simulaties, die vanwege de hoge computationele kosten beperkt zijn
in hun toepassingsgebied, combineren QSAR modellenmechanistisch afgeleidde de-
scriptoren, die de moleculaire eigenschappen in numerieke entiteiten vastleggen
met een empirische combinatie van deze omschrijvingen in voorspellende model-
len. Ondanks de wijdverspreidde toepassing van QSAR modellen op andere ge-
bieden van het onderzoek, mist QSAR geschikte descriptoren voor het modelleren
van zuiveringsprocessen. Dit komt doordat de meest gepubliceerde descriptoren
voor proteïnen vooral gericht zijn op de stabiliteit en de vouwstructuur. Tijdens het
zuiveringsproces van biomoleculen, zijn de moleculaire interacties vaak gevoelig
voor de orientatie tussen identieke moleculen (bijvoorbeeld bij diffusie, aggrega-
tie en kristallisatieprocessen) of tussen de moleculen en een oppervlak, zoals in
chromatografie. Het ontbreken van geschikte descriptoren, modellering normen,
en gebruiksvriendelijk gereedschap, bemoeilijken een ruime toepassing van QSAR
technieken voor het gebruik in de procesontwikkeling.

In dit werk wordt een nieuwe aanpak voor high throughput screening gepre-
senteerd, die met behulp van nauwkeurige metingen van vloeistof- en harsvolumes
de beperking van 96-well platen overwint. De toepasbaarheid wordt gepresenteerd
in een 384-wells gebaseerde batch isotherm proces op en geautomatiseerde liquid
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4 Samenvatting

handling station. De nauwkeurigheden van Single handling en pipetterstapen wor-
den gemeten en hun invloed op de experimentele resultaten worden berekend met
behulp van Monte Carlo simulaties. Een gelijkwaardige of betere nauwkeurigheid
dan soortgelijke in 96-well formaat gevestigde processen, wordt getoond. De toe-
passing van spectrometrische methodes voor de kwantificatie en kwalificatie van
hars, wordt gedemonstreerd voor SP Sepharose FF-hars, waardoor gebruik van UV
/ Vis spectra de volumes, ligand concentratie en eiwit belasting op basis van het
licht verstrooid in poreuze adsorbensdeeltjes zonder monster interferentie gemeten
worden. Het verdere potentieel van geminiaturiseerde high throughput screening
blijkt uit de invoering van uF-on-LHS interfaces, die microfluïdische structuren en
geautomatiseerde LHS systemen integreren.

Het verdere potentieel van geautomatiseerde verwerking van microfluïdische
chips en vloeistofcontrole door de LHS pipetteren unit, wordt getoond door ver-
schillende microfluïdische chip ontwerpen en de realisatie van geautomatiseerde
druppel microfluidics in een volume tot een maximum van 0,7 µl.

Voor het gebruik van de HTS data in voorspellende modellen, worden sets van
QSAR descriptoren ontwikkeld. Deze descriptoren spiegelen de verdeling van ei-
genschappen zoals elektrostatisch potentieel en hydrofiele / hydrofobe constanten
op de moleculaire oppervlakte weer, evenals verschillende oriëntaties van interactie
en afschermingseffect door het omringende oplosmiddel. De toepasbaarheid van
deze descriptor sets blijkt uit de voorspelling van de Langmuir isotherm affiniteit
parameter, een belangrijke parameter in de chromatografie modellering. De ge-
vonden geprefereerde oriëntaties van het model eiwit lysozym, toonden een goede
vergelijkbaarheid met experimentele en van MD simulaties afgeleidde oriëntaties in
de literatuur. De ontwikkelde modelleringsbenadering werd op een reeks monoklo-
nale antilichamen in combinatie met modeleiwitten gebruikt, om het gebruik ervan
voor procesontwikkeling voor biofarmaceutica van hoge waarde te demonstreren.
De succesvolle voorspelling van mAb isotherm parameters door QSAR modellen
wordt zonder training van het model op de genoemde constructie weergegeven.
Verder wordt de invloed van de ionische sterkte op de adsorptie van de mAb ori-
ëntatie onderzocht. Dit toont de verandering van een ”head-onöriëntatie, van en
Fab-fragment met uitzicht op de adsorbens bij lage ion sterkte naar een ”platte-
oriëntatie bij hogere ionensterkte. Het resultaat is in overeenstemming met de
literatuur en de resultaten van de uitgevoerde experimenten.

Om de ontwikkelde benadering voor de berekening van de descriptoren be-
schikbaar te maken voor andere toepassingen in onderzoek en industrie, wordt het
programma mantoQSAR geschreven. In dit programma, dat de gebruiker via een
grafische user interface (GUI) door de stappen van het voorspellende QSAR mo-
dellering beleidt, zijn de structuur selectie, desciptor berekening, modellering van
de respons waarden en respons voorspelling voor nieuwe waarnemingen, inbegre-
pen. Nadruk lag op de visualisatie van de moleculaire functies en beschrijvingen,
om de gebruiker het onderzoek van geprefereerde oriëntatie van de interactie en
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de overeenkomstige projectie van descriptor waarden toe te staan. De software
was ontworpen om op alle gangbare besturingssystemen toepasbaar te zijn en kan
op gewone computers uitgevoerd worden, om, in tegenstelling tot gedistribueerde
web services, de vertrouwelijkheid van structurele en experimentele informatie te
waarborgen.

Dit werk toont het ongebruikte potentieel van optische methodes in HTS-toe-
passingen voor procesverbetering en harsmonster analyse. Verder wordt de voor-
uitgang in de voorspellende modellering door gebruik van mechanistische inzicht in
het berekenen van descriptoren aangetoond. De ontwikkelde methodieken hebben
lopend onderzoek op het gebied van microfluidics, laboratorium automatisering en
QSAR modellering geïnspireerd en zullen een aanzienlijke impact hebben over de
toekomstige downstream procesontwikkeling.





1
Introduction

7



1

8 1. Introduction

1.1. Background and motivation
The development of purification processes for biomolecules in pharmaceutical pro-
duction is challenged by the requirement for high purities and short development
cycles [1–3]. Pharmaceutical products for therapeutic use need to meet high pu-
rity standards, which are to be reached by downstream processing of the target
molecules. Therefore, stringent safety requirements are set by regulatory agencies
as the US Food and Drug Administration (FDA) and European Medicines Agency
(EMA) to ensure consistent product quality and patient safety. Short times to mar-
ket, are required due to patent regulations limiting the time frame in which a new
pharmaceutical product can be marketed, without competing with generic products
[2]. Given the anticipated competitive market, reducing production costs has a high
priority already in early stage process development. This is even more crucial, as
changing approved processes is burdened with extensive regulatory requirements
and additional filing [1, 4].

In recent years the development of biopharmaceutical upstream processes has
reached an increase in product titer from milligrams to several grams per liter [5].
This development is not met with comparable capacity improvements in purification
processes, thereby shifting the production bottleneck to downstream processes [2,
6].

This focus on and growth in the market of biomolecule purification prompted
a high degree of diversification in purification process technologies in the recent
decade. Liquid chromatography, which is considered the most versatile process
step in high value biomolecule separation, provides a vast variety in solid phase
materials, interaction characteristics and process parameters to choose from. This
ongoing development increases the parameter space which needs to be screened
to conclude on a viable and efficient purification process. The design space to be
investigated grows thereby exponentially given the multitude of parameter interac-
tions present.

The resulting need for strategies in bioseparation bioprocess development lead
to different approaches, varying in complexity, required mechanistic understand-
ing of the process rationale, and experimental efforts needed (see Figure 1.1). The
importance of strategic and rational process design, as well as the beneficial combi-
nation of process development approaches is extensively investigated in academic
and industrial research [7–13].

Theoretical knowledge and experience from other projects (often referred to as
”prior knowledge”), preliminary experimentation and ”one parameter at a time” or
”one factor at a time” constitute the traditional approach to product and process un-
derstanding, while multivariate methods such as design of experiments (DoE), prin-
cipal component analytics (PCA), partial least squares (PLS) methods and various
empiric, semi-empiric, and mechanistic mathematical models institute the quality
by design (QbD) approach. The importance of process understanding for process
control is also highlighted by initiatives from FDA and ICH for QbD driven approval
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of biopharmaceutical drug substances and related processes [14, 15].

Increased process understanding and increased experimental throughput can be
established by in silico process design based on mechanistic and empirical models.
By today, this technique is widely established for single process steps as chromato-
graphic separation and for multi-step optimization of purification tasks [16–19].
The description and modeling of biomolecule interactions at the level of the struc-
tural features of a single molecule is based in the research field of bioinformatics.
The correlation of such molecular structure features to processing or interaction
properties by means of molecular descriptors and empirical modeling is termed
Quantitative-Structure Activity Relationships (QSAR) and is described in more detail
in Section 1.3.

In addition to traditional in-process and specification tests, process analytical
technologies (PAT) also play an essential role in generating product and process
understanding and setting up a suitable control strategy. PAT is a term used for
a system for designing, analysing, and controlling manufacturing through timely
measurements of critical quality and performance attributes of raw and in-process
materials and processes, with the goal of ensuring final product quality. Here it is of
importance to establish a mechanistic understanding of these analytical methods to
develop fast, accurate, precise and robust analytics. The approach and techniques
used to develop this understanding are the same as in process development and
go hand in hand with these.

All process development concepts are, to varying degrees, carried by signif-
icant advances in experimental technologies. Miniaturization and automation in
experimental determination of process parameters have driven the field of process
development by continuously increasing efficiency of screening experiments and
providing the data foundation for growing insights in process fundamentals and
their modeling.

1.2. High throughput screening technology
Production process designs are often set in an early developmental stage to reduce
the time to market of a potential drug lead and to avoid costly design changes in
a later stage. To get to efficient and economic processes a broad data basis is
needed. This data provides, in an optimal case, process relevant parameters and
a good process understanding. The development of this data is subject to the pro-
cess inherent restriction of sparse sample materials in early development stages.
A solution to this is the use of automated, parallelized, and strongly miniaturized
screening processes. These three characteristics are combined in high throughput
screening (HTS) using liquid handling stations (LHS), which provide a wide range
of sample handling, storage and analytic capabilities [20, 21].

While in DSP development the use of 96 well microtiter plates is the standard
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Figure 1.1: Approaches in purification process development plotted over complexity, the need of process
understanding, and associated screening efforts.

format in HTS batch applications, 384 well and even 1536 well microplates, which
are often referred to as ultra-high throughput screening (uHTS), are available and
commonly used in forensic screening, gene databases, and blood analysis for med-
ical purposes [22].

The first downstream processes to be established on automated HTS platforms
were resin batch screening applications for chromatographic parameter estimation
[23, 24]. Accurate resin volume handling proved to be the main challenge. This
inspired, next to different approaches in pipetting resin slurry [24, 25], the de-
velopment of commercial solutions including a resin distribution system [23] and
96 well microplates with pre-distributed amounts of resin [26]. These efforts were
followed by the transfer of purification process steps into the HTS domain with
solubility, precipitation, and aqueous two-phase system (ATPS) processes being
described in literature [20, 27–29] among others. Further, an automated miniatur-
ized chromatographic column system for the use on LHS was introduced [21]. The
combination of packed columns with the pipetting system of the LHS allowed for
parallel chromatographic runs of up to 8 columns in parallel. This technology made
a fully automatic integration of chromatographic runs and analytics possible.

With the adaptation of almost all purification processes to the HTS scale and the
creation of standards, HTS methods became a tool in establishing computational
methods for improved screening efficiency. Design of Experiment (DoE) approaches
were used in miniaturized batch and column screening [28], as well as learning al-
gorithms as genetic algorithms [30, 31]. HTS scale experiments gained further
importance with the development of computational models for large scale chro-
matography runs, relying on protein-adsorbent interaction parameters [9, 32, 33].
With further optimization of miniaturized processes, complex purification tasks with
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Figure 1.2: Liquid handling station (LHS) Tecan Freedom EVO with 1) a 8 channel pipetting arm, 2) a
microtiter plate manipulator (RoMa) for transfer of plates on and to the workstation and 3) a 96 channel
pipetting unit. A centrifuge (4) is integrated and can be run automatically with up to 4 microtiter plates.
A spectrophotometer is situated beneath the workstation (5) and can be accessed by the RoMa through
a recess in the workspace. Microplates can be stored prior and after processing in the TeStack units
(6). Additional devices can be placed on the workstation as required (7), including magnetic separation
(TeMags, left) and filtration (TeVacs, center) units.

multiple chromatographic steps can be displayed on a LHS and run iteratively for a
target parameter to be optimized [34].

Reliable HTS processes moved the bottleneck to the analytical methods con-
nected, which often limited a further increase in throughput. The optimization
of established analytics, as size exclusion chromatography, towards reduced pro-
cessing times and interlaced sample processing [35] as well as the use of newly
developed optical methods for biomolecule quantification in complex mixtures [36],
allowed for high throughput throughout the developmental process and removed
this limitation.

In recent years, the data quality gained from HTS experiments, potential trade-
offs between accuracy and processing time, and transferability to production scale
came into focus. This development underlines a maturation in the use of LHS ap-
plications and HTS technology. A strong argument is made towards balancing the
need for fast results, data quality and number of experiments to reach a statistical
confidence in the data and to adapt screening approaches accordingly [37–39].

While the increase in throughput by HTS applications in the field of downstream
process development is significant compared to manual experimentation, and fur-
ther increases in sample throughput are now often limited by preparatory steps,
sample consumption can still be significant which hinders more comprehensive
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screens. The resulting task of further miniaturization experiments beyond the 96-
well format is not comparable to existing uHTS applications. These are focused
on qualitative applications or sample storage for µL analytical applications. In con-
trast, for process development quantitative answers are needed. Recent research
has shown that the accuracy in sample handling achievable with established LHS
technologies is limited [37–39].

This work states that the change of the theorem that accurate sample handling
and distribution leads to small experimental error can be replaced by an approach
based on the measurement of intermediate sample volumes and concentrations.
With analytical techniques excelling small volume handling in accuracy, an increase
in data quality can be achieved. This in consequence can be used to design pro-
cesses utilizing less sample volumes.

A second approach is the combination of complementary technologies to achieve
further miniaturization in HTS experiments while remaining or increasing through-
put and ease of use. Microfluidic systems achieve lowest volumes and a high degree
of volume control [40, 41]. Today’s manufacturing technology uses glass and PDMS
materials to facilitate complex structures within microfluidic chips. Parallel and se-
quential combinations of structures for sample modification, mixing or separation,
and analysis can be realized within single chips. The used materials are cheap and
easy to be processed, which allows fast prototyping and low operational costs. The
drawback of this fast developing field is the current lack of standards in microfluidic
devices, integrated analytics, as well as pump and control systems [42, 43]. This
often not only limits throughput due to manual sample preparation, but also pre-
vents technology transfer between research facilities and large scale applicability
within industry.

The integration of LHS and microfluidic devices, as also proposed in this work
[44, 45], is part of a strengthened focus on integrating biological processes and
biomolecule analytics in microfluidic structures. This work extends from biomole-
cule characterisation [46], HTS compatible microfluidic chips for spectrophotometric
measurements [47] to enzymatic reaction monitoring [48, 49].

1.3. Quantitative Structure Activity Relationships
The term Quantitative Structure Activity Relationship (QSAR) was coined in 1964
and has become a well established tool in the field of chemometrics. The QSAR
domain is based on three assumptions: first, biological properties are related to the
molecular structure; second, the features of molecular structures can be converted
to numerical entities, termed descriptors; third, a statistical relationship between
the biological property and molecular descriptors can be established. [50]

The development of QSAR started with the spread of computers in research
facilities and is rooted in small molecule drug research [50, 51]. Over the years,
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multiple strategies to build QSAR models have been developed. With the develop-
ment of 3D descriptors and especially comparative molecular field analysis (COMFA)
the three-dimensional features of molecular structures were captured and applied
in predicting binding modes of protein ligands [52]. Various algorithms were estab-
lished and used in descriptor selection, (e.g. genetic algorithms, regression meth-
ods [53]) and in reducing the dimensionality of the data (e.g. principal component
analysis, PCA, or partial least square regression, PLSR).

Today, different modeling algorithms are well established, applied to various
datasets, and compared against each other with detailed descriptions of strengths
and shortcomings associated with each individual approach [54, 55]. In the de-
velopment of QSAR, good models characterized by a high correlation coefficient
between experimental and modeled parameter were often mistaken for predictive
models. This discrepancy gained increasing interest in the last decades, which led
to the establishment of parameters describing model characteristics, ensuring pre-
dictive and stable models are established [52, 56]. The ongoing research in QSAR
has formed a well established technology for application to small molecules, with
thousands of descriptors being described and available online [54, 56, 57]. An
increasing standardization in tools, research and application has lead to good com-
parability between models and high confidence in predictions from these [58, 59].

In contrast, applications of QSAR techniques to large molecules as proteins are
still sparse. This is based in the fact that most small molecule descriptors are not
applicable, as approaches describing rotation angles are not suitable for structures
containing thousands of atoms, as antibodies. Further, the questions to be an-
swered by QSAR models differ. While in drug component research, potential leads
need to be identified from thousands of potential structures, in protein investigation
only dozens or hundreds of molecules are available. This is often coincident with
better curated data from a single source and the need for most accurate prediction
of molecule properties. In DSP development qualitative answers are required to
predict retention factors, diffusion coefficients, or aggregation behavior. Applica-
tion of QSAR models in DSP started with the development of descriptors, specific
for large molecules. Therein, the mapping of electrostatic and lipophilicity param-
eters to molecule surfaces became a key technique in descriptor calculation, cap-
turing the amorph property distribution within large molecules [60, 61]. Especially
the importance of molecular property distribution for describing the interactions in
chromatographic systems has been of larger focus in recent years, leading to more
sensitive models and larger insight in mechanistic interactions on a molecular level
[62–65]. The formulation of descriptors capturing electrostatic potential as a pH
dependent parameter allowed for models to be pH sensitive [66]. QSAR models
applied mainly to chromatographic separation in predicting retention volumes or
mechanistic model parameters in ion exchange chromatography, hydrophobic in-
teraction chromatography, and in chromatographic displacer screening [60, 61, 66–
70].

In parallel to the advancements in QSAR applications, MD simulations in DSP
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Figure 1.3: Depiction of a knowledge based approach to purification process development based on pa-
rameter databases and predictive modeling (QSAR). The structured documentation of previous screen-
ings and research results allows for modeling of process parameters in new purification tasks (labeled
as questions), reducing the screening space in need for experimental validation. Experimental results
are stored in the database increasing the data pool for upcoming tasks.

development have had a strong development within the last years. Simulation
tools have become more reliable and easier to apply as guidelines and graphic
user interfaces were more and more established. Full atom simulations of biomol-
ecule conditions account implicitly for all forces influencing molecule behavior in
the process step investigated, given correct force field parameters; whereas QSAR
models must rely on the applicability of the calculated descriptor to the property
investigated. Nevertheless, despite large scale computation power being easily
available via high performance computation centers at universities and companies
or cloud computing vendors, simulations of large amounts of molecular structures,
as they are processed in QSAR modeling, remains inapplicable, especially for large
molecules as antibodies.

The current challenge in QSAR modeling approaches in the DSP domain is the
lack in standards in descriptor calculation and model evaluation, which prohibits
any comparison between applications. Given the complexity of descriptor calcula-
tion from scratch on a programming level and the lack of comprehensive software
tools also hinders a wider application.

1.4. Knowledge databases
All in silico modeling of processes, independent of the nature of the model, e.g.
mechanistic or empirical, relies on experimental data. Predictive models not neces-
sarily need experimental data for the target molecule, as the knowledge for model
generation can be gained from other structures and data sources. This leads to the
possibility to gain insights into new target structures based on the prior knowledge
from similar experiments as shown in Figure 1.3. The aim is to omit or reduce
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experimental work to investigate the design space of the target molecule by pre-
dicting the properties from the accumulated knowledge from prior work.
In chemometrics, this context has led to the generation of extensive databases of
structures and experimental data of different source and nature. This is due to a
higher screening throughput available and necessary in drug compound screening
and the fact that most investigated structures and properties are not restricted from
publication. Research efforts have been targeted to provide tools for an easy access
to and sharing of structures and experimental data in small molecule search [71].
Large publicly available databases contain millions of chemical compounds tested in
various biological assays such as PubChem [72] have been made available. Exten-
sive overviews are provided to guide the user to find suitable knowledge databases
and modeling tools [73, 74].

Similar efforts have been started for protein characteristics applied in DSP de-
velopment. Databases of protein parameters and key host cell proteins are being
established [9, 75]. Also, the need for data standards in DSP are discussed and
made aware of in academia and industrial research [75–77].

1.5. Research objectives
The primary objective of this research is to integrate the potentials of high-throughput
experimentation and molecular structure based modeling into a unified workflow for
the generation of predictive models, which are to be used for purification process
parameter estimation of new molecules. This approach uses the knowledge gained
by screening of previous biopharmaceutical molecules and reference structures.
In the HTS development it is to be shown, that the established 96 well microplate
format is not the limit of miniaturization in HTS screening for downstream process
parameters. Major focus lays on developing technologies, which overcome the
problem of decreasing signal-to-noise ratios with increasing miniaturization. The
expected outcome is the establishment of a batch isotherm screening process as
technology platform showcasing the work in <100 µL volumes. Further, a platform
for efficient parameter screening in the <10 µL volume range is to be proposed as
guideline for future developments.
Gained molecular property data is to be used in predictive QSAR modeling as a
tool in efficient process development. Therefore, descriptors capturing molecular
properties in context of purification processing conditions are to be developed. A
successful modeling approach is to be showcased on model proteins and mono-
clonal antibodies as an example of biopharmaceutical purification challenges.

The aim is to provide a platform for knowledge driven process development
which spans from HTS screening to a predictive modeling approach targeted on
biomolecule purification.
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1.6. Outline of thesis
Chapter 1 as introductory chapter, provides background and motivation for this
work. A definition and state of the art overview are given on HTS application in pu-
rification process development as well as a brief definition and overview on QSAR
modeling. This provides the context for used technologies and connects the topics
theoretically. Further, the research approach followed is presented in overview.

The main part of the thesis is divided into 6 chapters, each of which is cen-
tered on a key aspect of the proposed screening and modeling framework. While
chapters 2 to 4 cover all aspects of the research undertaken in miniaturized mole-
cule property screening, chapters 5 to 7 focus on the development of an integrated
QSAR modeling framework.
Chapter 2 presents a newly developed batch isotherm screening method in 384
well microplate format, thereby accessing <300 µL scale in HTS screening in down-
stream process development on LHS. Incentive and results for the use of a devel-
oped optical resin volume quantification in favor over handling of solids, are given.
Chapter 3 extends the use of the measurements of light scattering by chromato-
graphic adsorbent volumes presented in Chapter 2 to resin characterization and non
interruptive protein load analysis. In Chapter 4 the concept of process miniatur-
ization below <1 µL scale is presented by the establishment of a microfluidic chip
on a liquid handling station. A standardized interface between microfluidic chips
and automated HTS robotic system is proposed. A successful implementation and
potential of the technology are shown with a droplet generation in chip by positive
and negative pressure control via the LHS pipetting device.
In the second part of the thesis a new QSAR modeling approach is presented.
Chapter 5 is introducing an orientation sensitive approach to descriptor calcu-
lation for biomolecules and a proof of concept QSAR model for langmuir batch
parameter in ion-exchange chromatography. In Chapter 6 this approach is ap-
plied to monoclonal antibodies and proves the applicability of orientation sensitive
QSAR technology to large molecules distinguishing minor molecular differences in
antibody 𝐹 domain and their influence on binding orientations. The developed
modeling technologies are provided in a software program for use in research and
process development, featuring a graphical user interface for molecule inspection,
model generation, and evaluation, which is presented in Chapter 7.
Finally, Chapter 8 gives an overview on the presented technologies and an out-
look on future development in the field of QSAR and HTS application in biomolecule
purification development.
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2
Robust high-throughput

batch screening method in
384-well format with optical
in-line resin quantification

High-throughput batch screening technologies have become an important tool
in downstream process development. Although continuative miniaturization
saves time and sample consumption, there is yet no screening process de-
scribed in the 384-well microplate format. Several processes are established
in the 96-well dimension to investigate protein-adsorbent interactions, utiliz-
ing between 6.8 and 50 µL resin per well. However, as sample consumption
scales with resin volumes and throughput scales with experiments per mi-
croplate, they are limited in costs and saved time. In this work, a newmethod
for in-well resin quantification by optical means, applicable in the 384-well
format, and resin volumes as small as 0.1 µL is introduced. A HTS batch
isotherm process is described, utilizing this new method in combination with
optical sample volume quantification for screening of isotherm parameters
in 384-well microplates. Results are qualified by confidence bounds deter-
mined by bootstrap analysis and an comprehensive Monte Carlo study of er-
ror propagation. This new approach opens the door to a variety of screening
processes in the 384-well format on HTS stations, higher quality screening
data and an increase in throughput.

Parts of this chapter have been published in J. Chromatogr. B [1].
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2.1. Introduction
High-throughput screening (HTS) techniques in downstream process development
have established new approaches and lead to significant advances in productivity
and time to optimized processes. High-throughput batch screening methods are
an important tool in early stage development of chromatography based purification
strategies, due to their advantage in throughput. Batch chromatography experi-
ments in HTS scale gain further importance with the development of computational
models for large scale chromatography column runs, relying on protein-adsorbent
interaction parameters [2–4]. Different batch screening technologies have been de-
veloped in recent years. Resin volumes distributed to filter plates have been used
to screen preferable binding and elution conditions for biomolecules [5–7]. Her-
mann et al. developed a method to prepare equally sized resin plaques [8] which
have been used in batch screening experiments [9]. Commercially available filter
plates with pre-packed chromatographic materials were used to determine dynamic
binding capacities [10]. Wenger et al. used pipetting tips filled with resin to purify
virus-like particles in a HTS application [11].
Despite different approaches and ongoing advances in the development of HTS
hardware, the 96-well format has remained the limit in throughput and sample
size.

Data quality remains the challenge in HTS process development, as processing
uncertainties gain significance with decreasing volumes. With increasing process
complexity, single step error propagation gains impact on data quality. Process
downscale is limited by the volumes of sample solutions and resins which can be
handled reproducible. At the same time, sample consumption per experiment of-
ten scales with the resin volume utilized, resulting in high sample consumption for
complex design spaces to be screened, despite the HTS approach.
If it is possible to overcome the limitation of erroneous, miniature volume by quan-
tification, rather than accurate volume handling, the range of 384-well would be
made accessible for applications in process development. Therefore in this work
we solved the quantification problem via light extinction measurements in the sub-
100 µL volume range. Optical measurements can be used to quantify volumes as
well as suspensions of particles. Methods to quantify volumes in microtiter plates
by vertical beam photometers utilizing the absorbance of the solvent water have
been described and utilized in extent, confirming reliability [12, 13].

Particles can also be quantified, as they absorb and scatter light, based on con-
centration and particle size distribution. In the limitation of small concentrations,
the scattering of light by particles follows the Lambert-Beer law, as light beams im-
pinge on single particles, they will most probably be represented as single spots on a
sensor plate [14]. At higher concentrations particle-particle interactions occur. The
linear correlation of particle concentration and light extinction does not hold true
as with higher particle concentrations radiation undergoes interaction with multiple
particles. Light scattered by one particle will hit a second one and so on, leading
to an increase in transmission, compared to the Lambert-Beer law. According to
the hard core model, particles at high concentrations will also expose more surface
to radiation as they do not interpenetrate each other. This results in a decrease in
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radiation transmitted to the sensor plane. [14–16]
Despite the HT approach, experimental data is limited, therefore measurements

of statistical validity for reproducibility and fits of mechanistic models should be pro-
vided for such screening processes. Re-sampling techniques, as bootstrapping and
Monte Carlo analysis, can be used to assess the distribution of experimental data
points, and parameters derived, as well as error propagation in complex processes.
Bootstrapping, a random re-sampling method, and non-parametric statistical tech-
niques in general, can be used to analyze data without assuming a particular proba-
bility distribution. Those distribution-free methods can be applied to a wide variety
of statistical problems and do not require extensive assumptions on data distribu-
tions to validate analysis. The reasoning behind and an extensive description of
this statistical method can be found in detail in [17–19].

Monte Carlo simulations allow for in silico calculation of process errors, given
the description of the process in mechanistic equations and single process step
uncertainties being quantified. This allows to analyze the influence of single pro-
cess steps, and their associated uncertainties, on the overall experimental results.
In-detail explanation of Monte Carlo techniques can be found in literature, e.g. [20–
22]. Despite their advantages, examples of statistical validation of HTS results in
literature are sparse. Kurup et al. describe a Monte Carlo error estimation in sim-
ulated moving bed chromatography [23]. Osberghaus et al. evaluated the error
propagation in a HTS isotherm process, but limited the investigation to the effects
on single measurement points, rather than isotherm parameters estimated [24].

In this work, signal extinction due to particle light scattering is utilized to accu-
rately quantify volumes of adsorbent resins, distributed to microtiter plates. The
applicability of this technique is shown for resins of different particle sizes and
backbone composition. This new approach in chromatographic resin quantification
is utilized in a newly developed automated batch isotherm HTS process in the 384-
well format. The automated batch screening process presented here features an
optical quantification of resin and volumes pipetted into a 384-well microtiter plate
and yields 384 measurement points in a run time of approximately 4 hours. Depen-
dent on sample layout, this equals 12 (32 data points each) to 24 (16 data points)
measured isotherms in one process cycle. Isotherm parameter estimations are eval-
uated by a bootstrap re-sampling method. Process uncertainties are quantified and
their impact on parameter estimation is assessed by Monte Carlo simulation.

2.2. Materials and Methods
2.2.1. Materials
Lysozyme from chicken egg white was purchased from Sigma-Aldrich (St. Louis,
MO, USA). Sodium phosphate, sodium hydroxide and sodium chloride were pur-
chased from Merck KGaA (Darmstadt, Germany). Strong cation-exchange adsor-
bent SP Sepharose FF was purchased from GE Healthcare (Buckinghamshire, United
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Kingdom), adsorbents Toyopearl SP 650M and SP 650C were acquired from Tosoh
Bioscience GmbH (Stuttgart, Germany). Microtiter plates UVStar 96-well and UVStar
384-well (both plane bottom F-shape) were obtained from Greiner Bio-One GmbH
(Frickenhausen, Germany).

2.2.2. Equipment
Resin plaques of defined volume of 7.8 and 20.8 µL, respectively, were produced
with a ResiQuot device from Atoll-Bio (Weingarten, Germany) according to instruc-
tions from [8]. The batch process was automated on a Tecan Freedom Evo 200
robotic workstation (Tecan, Maennedorf, Switzerland). Main features of this station
are a liquid handling arm (LiHa) consisting of eight separately controllable pipetting
channels, each equipped with a fixed teflon coated pipetting tip and driven by a 1 ml
dilutor. A gripper (RoMa) was used for plate transfer on the workstation. Pipetting
in 384-well plates was performed by consecutive use of a 96 channel pipetting head
(MCA96) which was equipped with disposable tips of 200 µL volume. An integrated
Hettich Rotanta 46RSC centrifuge (Hettich GmbH, Tuttlingen, Germany) was used
for centrifugation of microtiter plates. An infinite 200M spectrophotometer (Tecan,
Maennedorf, Switzerland) was utilized for optical measurements. Microtiter plates
and disposable tips were stored in two storage units (Te-Stack) at the workstation
and transferred to the worktable as needed. Pipetted liquid volumes were quanti-
fied with an analytical scale X S250 from Mettler-Toledo (Greifensee, Switzerland)
which was integrated in the workstation.
Software EVOware 2.5 was used to program automated work-flows on the liquid-
handling workstation. The spectrophotometer was controlled by the software Mag-
ellan 7.1, allowing for predefinition of measurement wavelengths and positions in
well. Data evaluation and Monte Carlo simulations were performed in Matlab 8.0
(The Mathworks, Natick, ME, USA).

2.2.3. Resin quantification
Samples in microtiter plates were centrifuged for 1 min at 2000 rpm prior to op-
tical measurement to ensure even meniscus and full sedimentation of resin parti-
cles. Light extinction due to light scattered by adsorbent particles was measured at
330 nm. A grid of 6 by 6 evenly distributed measurement points, with a distance of
50 µm to the well wall, were measured in each well as shown in figure 2.2. Mea-
surement values were averaged to account for uneven distribution of sedimented
resin beads in the well.
Extinction coefficients for adsorbent materials were determined by dilution series in
384-well plates. Resin plaques of defined volumes were prepared in 96-well plates
by use of the ResiQuot device and suspended in 300 µL buffer solution. Volumes of
suspended resins were transferred to 384-well plates by pipetting, ensuring even
distribution of adsorbent beads in suspension.
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2.2.4. Batch binding process
The initial distribution of resin to a 96-well plate was performed manually utilizing
the ResiQuot device. Resin plaques of 7.8 µL volume for Toyopearl SP 650C and
SP 650M and 20.8 µL for Sepharose adsorbent were distributed in a 96-well plate
as described in [8]. Plaques were dissolved in 300 µL 10 mM sodium phosphate
buffer at pH 7.0, with varying sodium chloride concentrations, according to sub-
sequent binding conditions. Protein stock solutions of 7.0 mgmL 1 concentration
were prepared in the same buffer.

The robotic work-flow, depicted in Figure 2.1 consists of the following process
steps:

1. Resin slurry, provided in a 96-well plate, is transferred to a 384-well plate in
30 µL buffer volume (𝑉 , ) by four consecutive pipetting steps utilizing
the MCA96 pipetting device with disposable tips of 200 µL volume. Slurry was
pipetted up and down three times prior to transfer, to ensure even distribution
of resin beads in solution.

2. Resin volume per well is quantified by optical measurement of light extinction
at 330 nm wavelength.

3. Dilution series of protein concentrations are pipetted in two 96-well plates by
means of 8-channel LiHa (𝑉 , , 𝑉 , ). A random distribution of
protein concentration within single dilution series is provided, to circumvent
potential bias due to pipetting order, associated with single pipetting needles.

4. 70 µL of protein samples are pipetted from the dilution series in 96-well plates
to 384-well plate (𝑉 , ) by consecutive use of MCA96 pipetting device.

5. Samples are sealed with adhesive aluminum foil (Sarstedt AG & Co, Nüm-
brecht, Germany) and incubated in over-head shaker for one hour, to allow
the binding equilibrium to be reached.

6. Sample plate is centrifuged for 1 min at 2000 rpm to settle resin beads and
30 µL supernatant is transferred to a 384-well UV plate and subsequently
diluted with 70 µL buffer solution.

7. Protein concentration in supernatant is determined by absorption measure-
ment of samples in measurement plate at 280 nm.

Each pipetting step is followed by a volume quantification. For this purpose
samples were centrifuged for 1 min at 2000 rpm to ensure even meniscus at vol-
ume surface. Absorption was measured at 990 and 900 nm wavelength. Volumes
were calculated based on (990 - 900) nm coefficient, and an absorption coefficient
gained from manual calibration in an identical microtiter plate with 10 equidistant
volumes from 20 to 120 µL. Pipetting and measurement steps were fully automated,
excluding manual sample preparation and sample incubation on an external over-
head shaker, which required the microtiter plate to be sealed.
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Figure 2.1: Schematic of the batch isotherm process layout for automated processing on a LHS. Left hand
side solutions were manually prepared and provided at the LHS. For sample incubation the microtiter
plate was manually sealed and stored in an over head shaker.

2.2.5. Langmuir parameter and confidence interval estimation
In batch binding to an adsorbent, protein molecule distribution at equilibrium follows
a saturation curve which can be modelled with the Langmuir isotherm equation:

𝑞 = 𝑞 ⋅ 𝐾 ⋅ 𝑐
1 + 𝐾 𝑐 (2.1)

with 𝑞 concentration of protein bound to adsorbent, 𝑞 saturation coefficient
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and 𝐾 association coefficient. Langmuir equation was fitted by least square re-
gression algorithm.

Re-sampling or bootstrapping methods can be applied were no assumptions
can be drawn for the distribution of a population. A random sample from this
population is used as an estimate for the distribution of the parent population. The
bootstrap can further be used to calculate the value and accuracy of an estimate
such as a confidence interval [25, 26]. The true estimate of a population is denoted
𝜃. A set of randomly sampled values 𝑛 from the population, yields the sample
estimate �̂�. Sampling 𝑛 values with replacement from this set provides a bootstrap
sample, with a bootstrap estimate 𝜃∗. In this study sampling is repeated 1000
times, each producing a bootstrap estimate 𝜃∗. With the random sample being a
representation of the underlying population, the Monte Carlo approximation of the
sampling distribution of 𝜃∗ − �̂� was used to estimate �̂� − 𝜃. Therefore the 2.5 and
97.5 percentiles of the distribution of 𝜃∗ − �̂� estimate the 95 % confidence interval
of the population based on the sample drawn.

2.2.6. Error quantification
UV reader measurement errors were assessed by 15 repeated measurements of
samples in a spectrophotometer. Sample plates were removed from photometer
and centrifuged for 1 min at 2000 rpm and returned to the reader in between single
measurements. Measurement parameters were set according to in-process param-
eters. Protein concentration was measured at 280 nm wavelength. Volumes were
quantified by water absorption, measured at 990 and 900 nm and calculated as out-
lined in Section 2.2.4. Samples containing adsorbent beads were put on an orbital
shaker for 30 sec to re-suspend settled particles, ensuring random re-distribution
in well. Adsorbent volume quantification by measurements at 330 nm wavelength
were laid out in a grid of 6 by 6 points as described in Section 2.2.3.
Pipetting accuracy of 8-channel liquid handler was measured in a range from 10
to 300 µL by pipetting a protein solution to an analytical scale, positioned on the
work table. Volume distributions for distinct sample volumes were calculated from
recorded weights after correction of sample density, based on 400 measurements
each.
Pipetting accuracy of 96-channel liquid handler (MCA96) for buffer and protein so-
lutions at volumes of 30 and 70 µL, as used in this batch binding process, was
quantified by measurement of the near infra-red absorbance of water in aqueous
reagents. Samples pipetted into 384-well plates by MCA96 channel pipetting de-
vice were measured at 990 and 900 nm wavelength. Path length was calculated by
(990 - 900) nm absorbance difference according to [13]. Corresponding volumes
were calculated based on well geometry.

2.2.7. Error distribution and confidence bounds
Generalized Extreme Value (GEV) distribution was fitted to the data for error es-
timation and confidence bound calculation of bootstrap results and Monte Carlo
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simulations. The GEV distribution combines three simpler distributions, namely the
Gumbel, Fréchet and Weibull families, into a single form, allowing to fit a continuous
range of possible shapes of underlying distributions. This overcomes the restric-
tion in tail behavior of standard distributions. A random variable 𝑋 is said to have
a generalized extreme value distribution if its probability density function (pdf) is
given by:

𝑓(𝑥|𝜇, 𝜎, 𝜉) = 1
𝜎 [1 + 𝜉 (

𝑥 − 𝜇
𝜎 )]

( / )

⋅ exp {− [1 + 𝜉 (𝑥 − 𝜇𝜎 )]
/
}

(2.2)

where 𝜎 and 𝜇 are respectively the scale and location parameters, and 𝜉 is a shape
parameter. 𝜉 governs the tail behavior of the GEV distribution and defines the un-
derlying distribution in use. Type I distributions are defined with 𝜉 = 0 (Gumbel
type), corresponding to exponentially decreasing tails. Type II refers to 𝜉 > 0, the
Fréchet type where tails decrease as polynomial. Type III distributions with 𝜉 < 0
correspond to Weibull type distributions with finite tail.
For experimentally determined confidence bounds in liquid volumes handled by
LiHa, normal distributions were assumed and standard deviations of multiple mea-
surements were calculated according to:

𝑠 = ( 1
𝑛 − 1∑(𝑥 − 𝑥) )

1
2

(2.3)

with 𝑥 the mean of samples and n the number of elements in the sample.

2.2.8. Monte Carlo simulation
The Monte Carlo algorithm was programmed to mechanistically simulate isotherm
binding studies on LHS according to the process depicted in Figure 2.1. This allows
to assess the effect of single process step variance and different process layouts
on Langmuir isotherm parameters. In a first step the Monte Carlo algorithm cal-
culates the initial state, sample concentration and pipetting volumina based on the
assumption of a specific equilibrium behavior described by Langmuir parameters
provided. In the second part of the simulation algorithm all deviations are applied
to the given constants, according to the distributions experimentally determined.
Errors are applied according to:

𝑉 = 𝑉 + 𝜖 (2.4)

with the independent random error 𝜖 , calculated corresponding to the underlying
distribution.
In the third step, Langmuir isotherm parameters are calculated by non-linear least
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Figure 2.2: Picture of well with SP Sepharose FF resin (approx. 1.5 to 2.5 µL resin volume), schematic
of a rectangular well in 384-well plate and measurement point (d = 700 µm) distribution in a 6 by 6
point grid, with 50 µm spacing to well wall.

square regression according to Equation 2.1. Steps two and three were repeated
10 000 times to determine variance of Langmuir parameters. Resulting Langmuir
parameter distributions were fitted by GEV formalism (see Section 2.2.7).
For Monte Carlo simulation, variances between process steps are assumed to be
independent. Error from manual sample preparation, e.g. weighing of protein and
buffer preparation as well as the influences of shaking and centrifugation of sam-
ple are not in the scope of this study. For volumes pipetted by LiHa and volumes
assessed by photometric measurements, standard deviations are assumed in agree-
ment with [24].

2.3. Results and Discussion
2.3.1. Resin quantification
To quantify adsorbent bead volumes in the µL scale in microtiter plates, photomet-
ric measurements have been performed at 330 nm wavelength. Figure 2.3 shows
the calibration of light extinction value over resin volumes for chromatographic ad-
sorbent SP Sepharose FF, SP 650M and SP 650C Toyopearl. Linear dependen-
cies could be identified for volumes up to 1.7 (SP Seph. FF), 2.1 (SP 650M), and
4.7 µL (SP 650C) per well in a 384-well plate containing 100 µL sample. The slope
of light extinction over concentration differs for individual resins investigated. An-
alyzed resins feature different backbones and different bead sizes, with the same
active group being sulfopropyl. SP Sepharose FF with a sepharose backbone shows
lowest light extinction as beads are most porous, since composed of cross-linked
agarose strings. Toyopearl resins feature a hydroxylated meth- acrylic polymer
backbone which is more dense and has a higher opacity. Toyopearl 650C with a
mean particle size of 100 µm, blocks more light from the sensor than 650M with a
mean diameter of 65 µm.
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Figure 2.3: A) Calibration of resin, deviation in calibration curve due to manual pipetting, (low errors
for reproducibility of quantification measurement); deviation for larger concentrations due to multiple
scattering and steric hindrance of particles. B) Measurement error for SP Sepharose FF quantification
by spectrophotometric measurement at 330 nm, in a 6 by 6 grid layout.

For concentrations higher than the linear range, the slope decreases, indicating
an increasing contribution of multiple light scattering. This supports the assumption
that large parts of light extinction are due to reflection, rather than absorption of
light at 330 nm wavelength.
Repeated measurements of resin volumes, with interim redistribution of adsorbent
beads in the well as described in Section 2.2.6 show high reproducibility. Figure 2.3
exemplarily shows the reproducibility for samples of SP Sepharose FF resin ranging
from below 0.5 % relative standard deviation for resin volumes above 1.0 µL. Vari-
ance remains small with relative standard deviation below 1.0 % for volumes above
0.5 µL and below 1.5 % for resin volumes as small as 0.2 µL per well. The variance
measured for the blank value 0 µL resin per well at 1.1 % rel. std. deviation shows
the reproducibility of the photometer, indicating that the variance in measurements
is due to the detection limitation of the photometer. Therefore resin redistribution
in well is covered by the introduced grid layout of multiple measurements.

2.3.2. HTS batch chromatography
Isotherm experiments were performed on a LHS according to the process descrip-
tion in Section 2.2.4. Isotherm data for Lysozyme at pH 7.0 on SP Sepharose FF resin
for varying ionic strength is shown in Figure 2.4. Confidence bounds were assessed
by a bootstrapping method described previously and are depicted in Table 2.1.
Isotherms show consistent data and good agreement of calculated Langmuir pa-
rameters to previously published results for similar conditions [27]. A comparison
of data quality was not possible as confidence intervals are rarely described in pub-
lished literature.
The process was performed in 4 hours, including manual sample preparation and
1 hour incubation of samples, thereby yielding 384 data points. Average resin vol-
ume per well was 1.8 µL, ranging between 1.6 and 2.0 µL per well. With typical
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Figure 2.4: Isotherms of Lysozyme on SP Sepharose FF, pH 6.0 and ionic strength of 60, 90 and 120 mM.
Grey lines indicate 95 % confidence bounds of fitted Langmuir isotherm equation.

IS (mM) 𝑘 coefficient 𝑞 [g L-1]
value confidence interval value confidence interval

60 20.90 16.82 27.60 89.49 87.50 92.08
90 22.53 16.67 31.39 76.55 74.48 79.68
120 12.46 9.69 15.50 68.78 66.74 70.75

Table 2.1: Langmuir isotherm parameters for Lysozyme on SP Sepharose FF adsorbent at pH 7.0 and
different ionic strengths and corresponding 95 % confidence interval.

maximum adsorber capacities in a range of 100 to 120 mg protein per milliliter ad-
sorber, this corresponds to 0.22 mg protein per well or per data point. With 16 data
points used to characterize an isotherm, 24/12 isotherms can be performed in sin-
gular/duplicate measurement with 3.46/6.91 mg protein consumed.

2.3.3. Error estimation
Overall process error results from propagated errors, introduced during single pro-
cess steps. LHS operations pipetting by LiHa and MCA96, as well as photometric
measurements, have been examined in terms of accuracy and error distribution.
Figure 2.5 A provides the relative standard deviation of volumes pipetted over the
targeted volume. Standard deviation is below 0.5 % percent for volumes above
100 µL and increases exponentially towards smaller volumes, reaching 1.0 % for
40 µL and 3.5 % for 20 µL. Figure 2.5 B shows the relative standard deviation of
volumes calculated by 990-900 nm photometric method described in Section 2.2.4.
The method’s reproducibility is comparable to LiHa pipetting, exhibiting the expo-
nential increase for volumes below 40 µL.
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Figure 2.5: A) of pipetting accuracy for LiHa 8-channel pipetting head at different volumes pipet-
ted. A sharp increase in deviation can be seen for volumes below 50 µL. B) Standard deviation of
spectrophotometric measurement with n = 20.

Figure 2.6: Histogram of volumes pipetted by MCA96, with n=1920. A) Distribution of dispensed vol-
umes, with 30 µL and B) 70 µL target volume.

Pipetting by the MCA96 multi-channel device shows a higher variance in vol-
umes pipetted. Figure 2.6 shows the distribution of volumes pipetted and 95 %
confidence bounds as calculated from 97.5 percentiles. The relative standard devi-
ation, is about 5.0 % and 3.0 % for 30 and 70 µL target volume respectively.
Pipetting errors for LiHa are in range with manufacturer specifications and published
values for comparable investigations. MCA96 pipetting device reproducibility is be-
low specifications given for small volumes. Reproducibility and accuracy could be
increased by improved liquid class conditioning. Although despite extensive pos-
sibilities of liquid class adjustment, higher variations must be assumed for more
viscous samples as well as samples that can not be characterized prior to process-
ing.
For investigated conditions the error by photometric measurement is significant
smaller than the one achieved by the liquid sample handling, independent of the
character of sample, i.e. buffers, protein solutions, or dispensed resin particles.
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Also, processes can be designed to dispense larger volumes first into a well when
combining different liquids, hence avoiding more error prone quantification of small
volumes. Based on these results, more accurate processes can be reached, if han-
dled volumes are quantified by well calibrated measurements than by - even the
best conditioned - pipetting steps.

2.3.4. Monte Carlo simulation
Monte Carlo simulations were performed according Section 2.2.8 to investigate the
accuracy of Langmuir parameters gained from experiments, conducted with the de-
veloped experimental method. Fig. 2.7 shows parameter distributions calculated
for conditions equivalent to those obtained for Lysozyme at ionic strength of 60
and 120 mM and 8/16/32 experimental data points per isotherm. It was found
that affinity coefficient 𝑘 as well as 𝑞 are strongly underestimated for condi-
tions limited to 8 data points with distribution maxima at 18.4 and 8.8 for 𝑘 and
66.2 and 66.4 mgmL 1 for 𝑞 values at low and high salt conditions. With 16 or
more data points, the parameter distribution means converge to the set values. As
expected, confidence bounds merge as the number of data points increases. Dis-
tributions of both parameters tend to be skewed towards smaller values, an effect
which is reduced with increasing data points.
Experimental data points are usually set up in an equidistant manner, concerning
the protein concentration in solvent. This leads to a higher density of data points
in the linear range of the isotherm in case of a steep slope (= high 𝑘 values).
Subsequently, shallow slopes result in a lower data density in the linear range of
the isotherm. Therefore data distribution vary between regions of the isotherm
which define the linear slope and saturation area, respectively. Mathematical fits
of Langmuir equation to data with experimental noise will therefore over- or under-
represent one over the other, 𝑘 or 𝑞 .

Both error analysis methods, Monte Carlo and bootstrapping, are suitable to an-
alyze distributions since both approaches show the skewness of distributions and
stronger tailing towards higher values for both parameters. Since both methods
lead to similar results, the method can be selected according to the knowledge
demands: Bootstrapping is the method of choice for analyzing the quality of exper-
imental data as no prior knowledge on data inaccuracy and type of error distribution
is necessary. When analyzing the influence of errors from single process steps or
when analyzing error distributions under unknown, not-sampled experimental con-
ditions, Monte Carlo simulations can be used. In MC no explicit experimental data
points are necessary as long as process steps are characterized with regard to error
distributions. When process steps are well characterized, Monte Carlo simulations
additionally are helpful for designing future experiments as expected data quality
can be assessed beforehand. Therefore screenings can be designed for most effi-
cient sample use, running only experiments with expected most gain in knowledge.
This approach increases throughput and decreases material usage which are the
central idea of miniaturized high-throughput screenings.
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Figure 2.7: Langmuir parameter distributions calculated by Monte Carlo analysis for A) and B)
parameter under strong binding conditions (equivalent to results for pH 7.0, 60 mM NaCl) and C+D)
weak binding conditions (pH 7.0, 120 mM NaCl). Dotted lines indicate 95% confidence bounds for 8/16
and 32 equidistant data points per isotherm.

2.4. Conclusion and outlook
The resin quantification method by means of light extinction measurements in the
384-well microplate format, proved to be a fast, robust, and accurate method for
smallest volumes of adsorbent particles dispensed in solution. A measurement
grid of 6 by 6 points per well showed to give reproducible results in a volume range
suitable for HTS experiments. Working volumes for resins of different structure have
been established with 0.1 to 4.5 µL per well for SP Sepharose FF and 0.1 to 1.2 µL
per well for Toyopearl SP 650M and SP 650C adsorbent. A new batch screening
process using the 384-well format was established, thereby utilizing fewer sample
volume per isotherm and increasing throughput, compared to processes described
in literature. By adapting the HTS design to the premise that small volumes can
be more accurately quantified than handled, reproducible screening processes in
384-well format thereby become available for a variety of applications. Monte Carlo
simulation of error propagation based on single process step accuracy has shown
to be an adequate tool for error propagation analysis in HTS applications.
Future work will aim to extend the method of resin quantification in microplate wells
to other resins, with focus on a variety of different backbones, as it has been shown,
that they strongly influence the amount of light scattered. This investigation will be



References

2

39

aided by the use of established in silico Monte Carlo methods to investigate material
property influence on data quality.
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3
Optical characterization of

agarose based
chromatographic resins by

UV-Vis spectra analysis

Optimization of chromatographic processes by high-throughput screening (HTS)
methodologies has become a critical part of downstream process develop-
ment. But there are still no known non-invasive optical methods to charac-
terize resin and protein-resin interaction on liquid-handling platforms. The
literature describes several approaches to automated resin screening in mi-
croplates, but all thosemethods involve indirect measurements by removal of,
and sample quantification within, supernatant volumes. In this work, we in-
troduce light extinction by scattering to directly access resin volume and den-
sity within microplates. Methods for resin characterization are described for
96 and 384-well microplates. A sample application demonstrates ligand con-
centration measurement in microplates with four commercial SP Sepharose
Fast Flow batches, a well established resin by GEHealthcare. Further, direct
quantification of biomolecules bound to adsorbent is shown by example with
kinetic protein-resin interaction measurement in a batch screening process.
This new approach is expected to promote batch-based resin characterization
and monitoring on HTS platforms and further miniaturization and intensifi-
cation of chromatographic HTS processes.

This chapter has been published in J. Chromatogr. A 1397, 52 (2015) [1].
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3.1. Introduction
Chromatographic separation is the the key unit operation in downstream process-
ing of high value biomolecules. With modes of separation being available based
upon molecule features from selective affinity, as binding to Protein A, to charge
distribution, utilized in ion-exchange chromatography. A high degree of diversifi-
cation in resin base materials, spacer and ligand characteristics are available on
the market, making material selection in early stage development a challenge. The
resulting need in increased screening throughput is reflected in the development of
multiple HTS techniques for fast characterization of chromatography based sepa-
ration. Miniaturized and automated batch binding experiments provide information
on affinity constants and capacities of product-resin interactions, as well as binding
kinetics.

Hermann et al. developed a vacuum device to produce resin plaques of defined
volumes [2] for use in high-throughput batch screening in 96 well format [3]. Com-
mercially available microplates with pre-packed resin material have been developed
and used for dynamic binding capacity determination [4]. Pipetting tips filled with
resin have been developed for parallel use within LHS and shown to purify virus-
like particles within a HTS application [5]. HTS chromatography experiments gain
further importance with the development of computational models for large scale
chromatography column runs, relying on protein-adsorbent interaction parameters
and resin batch characteristics [6, 7].

The ongoing advancements have focused in accessing molecule-resin interac-
tion, often by quantifying biomolecules not bound to adsorbent structures. There-
fore multiple limitations in HTS based chromatography process development re-
main. First, further miniaturization of batch screening processes is limited by the
amounts of resins which can be handled reproducible. As molecule volumes bound
to resin are currently assessed indirectly in supernatant, high buffer to resin volume
ratios introduce error to any protein-resin interaction measurement. Furthermore,
supernatant removal disrupts the system, multiple measurements e.g. over time
are therefore not possible within one probe, subsequently leading to increased sam-
ple consumption as multiple probes are needed.

Second, resin characteristics, as ionic capacity and pore size, can not be an-
alyzed by HTS methods available. These properties are only taken into account
by their combined influence on biomolecule separation during screening, thereby
often neglecting batch-to-batch variances. With well defined ligand structures and
functionalization processes, ionic capacity scales linear with ligand concentration
in resin. The relevance of ligand density of chromatographic resins on molecule
retention behavior was shown throughout chromatographic modes available. Wu
et al. observed a change in elution order of Cytochrome C and Lysozyme on differ-
ent cation-exchange resins with different ionic capacities [8]. Lower ligand density
resins showed broader bands, with a negative impact on resolution of the two pro-
teins. Fogle et al. investigated the effect of resins with different ionic capacities



3.1. Introduction

3

45

and same backbone properties on the separation of mAb variants [9]. They con-
cluded that the effect is not straight forward and that selectivity can improve, be
not affected or decline with increasing ionic capacity.

Ligand density not only defines available binding sites but also influences acces-
sibility, as porosity and corresponding pore diffusion are impacted [10]. Which is
expressed in effects on dynamic binding capacity, as shown for ion-exchange [11]
and affinity binding [12] chromatography. Established methods for determination
of ligand concentration, or ionic capacity in IEX chromatography, are often column
based and always time consuming. Although Failla et al. introduced an optical
method based on absorption, ligand conversion to chromophores, often based on
amino group baring ligands and amino reaction with picrylsulfonic acid, is necessary
[13].

Although, spectrophotometer are well established devices in the HTS environ-
ment, non-invasive optical assays for HTS analysis of resin batches, are not yet
described. Unspecific light attenuation due to scattering as it is caused by resin
beads and described as source of error in photometric measurements [14], can
also be used to determine resin characteristics.

Light extinction by suspended volumes of resin in microtiter plates can be de-
scribed as particles in suspension, which is defined as

( , ) ( ) ( ) ( ) (3.1)

with the initial intensity of the incident light beam 𝐼 (𝜆 ), the propagation dis-
tance 𝑙, and the extinction coefficients of the homogenous surrounding medium
𝜂 , mainly due to absorption, and particles 𝜂 . 𝜂 can include two components,
𝜂 determined by absorption of the particles and 𝜂 by scattering. All terms are
functions of wavelength. If particles are non-absorbing in the wavelength range of
consideration, 𝜂 = 0 the expression for transmittance remains as

( ) ( , )
( )

( ) ( ) ( ) ( ) (3.2)

where 𝑇 (𝜆 ) is the transmittance of pure homogeneous medium without par-
ticles. Suspensions of particles scatter light and thereby increase the apparent
optical density. The character of scattering is influenced by particle properties.
Wavelength dependent scattering by spheres of any size, smaller and larger than
the wavelength of the light beam, is described by Mie scattering and is proportional
to (1/𝜆) with 𝜂 in the range of 0 to 4 [15]. Anyway, scattering by particles smaller
than the wavelength of the light beam is often termed Rayleigh scattering, with
𝜂 = 4 and refers to the Rayleigh limit of Mie scattering [16]. For particles much
larger than the wavelength, light scattering is due to diffuse reflection which is not
wavelength dependent (𝜂 = 0) and termed Tyndall scattering.

Light extinction due to scattering is described and used within various fields of
research from analysis of water, atmosphere, to biological tissues [17]. Absorption
and scattering by solutions of macromolecules and suspensions have been reviewed
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in detail by Heirwegh et al. [18]. Light scattering with regard to multiple scatter-
ing within aggregate structures were investigated among others by Sorensen et al.
[19] and Liou et al. [20]. Turbidity and scattering measurement methods were
used to determine size and quantity of particles in suspension by [21–23].

In contrast to particles used in aforementioned studies, Sepharose beads are
inhomogeneous structures. Agarose is formed from dextran strings which build a
matrix skeleton, occupying only a small percentage of the bead volume. The dex-
tran strings are ordered in a double helix structure with 15 Å in diameter [24], and
are bundled in a side-by-side assembly from two to a few hundreds double helix
structures each [25]. Those filaments are cross-linked by junction zones, involving
non-covalent binding in ordered conformations. Agarose beads are further func-
tionalized by ligands covalently bound to the backbone. Agarose beads feature a
high variance in pore shape and size, up to 0.3 µm in diameter [25], structural dif-
ferences from gel to gel and within locations of gels as measured by their intrinsic
birefringence [26].

In this work we introduce a high-throughput compatible optical method based
on light scattering characteristics for quantification and characterization of resin
volumes in microtiter plate wells. A correlation between light attenuation and par-
ticle volumes is established in 96-well and 384-well microtiter plates. The influence
of ligand densities in Sepharose based resins on light extinction is investigated
and used for an exemplary ligand density measurement of different commercially
available batches of SP Sepharose Fast Flow (FF) (GE Healthcare), highlighting the
practical use of the presented assay in batch-to-batch variance analysis. Uptake of
biomolecules to resin structures is measured and accessed by the method proposed.
Resulting advancements in HTS method designs are illustrated with an automated
kinetic uptake experiment of Lysozyme on SP Sepharose FF, utilizing a fraction of
sample volume compared to established approaches.

3.2. Materials and methods
3.2.1. Resins
Sepharose based cation-exchange resins with varying ionic capacities were kindly
provided by GE Healthcare (Uppsala, Sweden). Resins consisted of sulfopropyl (SP)
ligands coupled to the same type of 6 % cross-linked agarose base matrix as used
in commercially available SP Sepharose FF materials. Ionic capacities of resins used
were provided by GE Healthcare and were between 25 and 250 µmol mL-1 as listed
in Table 3.1. This range of ligand densities used extends far below the commercial
specification of 190 to 250 µmol mL-1 for SP Sepharose FF. Resins used for batch-
to-batch variance analysis were purchased from GE Healthcare.
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3.2.2. Liquid handling station
Dilution series of resins in microtiter plates, protein sample preparation and photo-
metric measurements were performed automatically on a Tecan Freedom EVO 200
(Tecan, Männedorf, Switzerland) liquid handling station (LHS). The workstation was
equipped with an orbital shaker (Te-Shake, Tecan) and a Rotanta RSC 46 centrifuge
(Hettich, Tuttlingen, Germany) set-up to accommodate microtiter plates. The LHS
was equipped with an integrated microplate spectrophotometer infinite M200 Pro
(Tecan) to measure UV/Vis-spectra as well as single wavelength of suspended resin
volumes and protein samples. The LHS was controlled by the software EVOware 2.5
(Tecan).

3.2.3. Resin volume preparation
Resin plaques of defined volume of 7.8 and 20.8 µL respectively were produced
with the ResiQuot vacuum device from Atoll-Bio (Weingarten, Germany) according
to instructions from Herrmann et al. [2]. Plaques were transferred to 96-well
microplates and subsequently diluted in 200 µL buffer to prevent complete drying
and to provide slurry of defined resin concentrations.

3.2.4. Spectrophotometric measurements
Experiments including photometric measurements were conducted in 96-well UV
microtiter plates (MTP), polystyrene flat bottom (Greiner Bio-One, Frickenhausen,
Germany), with a volumetric capacity of 300 µL or in 384-square-well MTP, polysty-
rene flat bottom (Greiner Bio-One), with a volumetric capacity of 110 µL. Samples in
microplates were centrifuged for 1 min at 2000 rpm prior to optical measurement
to ensure even meniscus and full sedimentation of resin particles. Spectra mea-
surements were performed with varying data point density throughout the range of
230 to 1000 nm, to compromise between data resolution and measurement time.
In the range of 230 to 500 nm wavelength, measurements were taken with dis-
tinct points each 2 nm, between 500 and 1000 nm measurements were performed
each 4 nm. The photometer provides a bandwidth of below 5 nm and 9 nm for
wavelength below and above 315 nm.

Spectra fit was performed with two equations based on [17], describing the
wavelength dependent light scattering of particles.

( ) ( ( ( ))

( ) ( ( )) )
(3.3)

Equation 3.3 describes the wavelength dependence of scattering in terms of
the separate contributions by Rayleigh and Mie scattering at the reference wave-
length. The Rayleigh scattering is 𝑎𝑓 (𝜆/280(𝑛𝑚)) and the Mie scattering 𝑎(1−
𝑓 ) (𝜆/280(𝑛𝑚)) . 𝑏 denotes the wavelength independent Tyndall scattering.
The wavelength 𝜆 is normalized by a reference wavelength, in this case 280 nm,
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to yield a dimensionless value, which is then raised to a power 𝜂, the scattering
power. The factor a is the value 𝑎 = 𝜇 (𝜆 = 280(𝑛𝑚)), which scales the wave-
length dependent term.

( ) ( ( )) (3.4)

Equation 3.4 simplifies the wavelength dependent scattering to one term, yield-
ing a generalized scattering power 𝜂.

Single wavelength measurements of light extinction due to light scattered by
resin particles was performed at 330 nm wavelength. The measurement thereby
gains a maximized signal to noise ratio for light extinction due to scattering events,
which decreases with increasing wavelength and is not effected by wavelength
specific absorption from proteins or peptides. Measurements of resin volumes in
384-well microplates, a grid of 5 by 5 evenly distributed measurement points, with a
distance of 50 µm to the well wall, was defined in each single well. Measurements in
96-well microplates were performed with an circular layout consisting of 48 single
measurement points covering the well area, with a distance to the well wall of
50 µm, as depicted in Figure 3.1. Measurement values were averaged to account for
uneven distribution of sedimented resin beads in well. Experiments with adsorbent
prototypes of varying ionic capacities and batch comparison experiments, were
performed in 384-well microplates to account for sparsity of prototype materials.
All other experiments were performed in 96-well microplates.

3.2.5. Kinetic batch uptake measurement
Kinetic uptake experiments were also performed in 96-well microtiter plates. Sam-
ples were pipetted in duplicate and at two distinct times for increased data density.
Prior to sample pipetting, 150 µL resin slurry were pipetted into wells, resulting in
resin volumes of 2.0 and 3.5 µL well -1 which were quantified by measurements at
at 330 nm wavelength as described in Section 3.2.4. Solute protein samples were
added to working volume of 300 µL per well. In a circular workflow samples were
incubated on an orbital shaker for 40 seconds, followed by a short centrifugal step
for 30 s at 1000 rpm to settle suspended resin beads, and subsequently measured
at 330 nm as described. The experiment was fully automated on the LHS and re-
quired no interaction during experimentation.

3.3. Results and discussion
3.3.1. Light extinction spectra
Sepharose based resin beads are filament network structures of low density pri-
marily formed by dextran double helices. A single bead is therefore not considered
as one particle in terms of light scattering and light extinction. Immanent light
beams rather penetrate the bead structure and can be scattered at inner structures
of agarose and ligands. The light collides with molecules as dextran string clusters,
ligands, bound biomolecules, or clusters of those and is scattered dependent on the



3.3. Results and discussion

3

49

Figure 3.1: Pictures of wells with SP Sepharose FF resin (approx. 1.5 to 2.5 µL resin volume in 384-well
microplate (A) and approx. 2.0 to 3.0 µL in 96-well microplate (C)). Schematic of a rectangular well in
384-well (B) and 96-well (D) microplate with measurement point (d = 700 µm) distribution in a 5 by 5
point grid (384-well) and circular 9 by 9 grid (96-well) layout, each with 50 µm spacing to well walls.

matter of collision. Given the molecular and structural diversity of resin materials,
light attenuation is a result of scattering on particles of inhomogeneous structure
and size. Furthermore the high density of scattering particles can result in multiple
scattering, where a light beam, scattered on a particle, collides with further parti-
cles to be scattered again.

Figure 3.2A displays light extinction spectra in the UV/Vis-range of suspensions
with different concentrations of SP Sepharose FF adsorbent beads. Spectra of ad-
sorbents with different ionic capacities (Fig. 3.2B) and those of SP Sepharose FF with
Lysozyme bound in varying concentrations from 10 to 65 g/L (Fig. 3.2C) are shown
alongside for comparability. All spectra were measured in 96-well microplates as
described in Section 3.2.4.
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Figure 3.2: Light extinction spectra of samples of agarose based resin volumes, dispensed in microplates.
Spectra were fitted with Equation 3.4 between 300 and 800 nm. Vertical line indicates single wavelength
measurement at 330 nm as described in Section 3.2.4 A) Spectra of different volumes of SP Sepharose FF,
suspended in 96-well microplate. B) Spectra of agarose based resins with varying ionic capacities. About
2.0 µL well -1 resin were measured in 384-well microplate. C) SP Sepharose FF resin with varying con-
centrations of Ribonuclease A bound to the adsorbent. Spectra were measured in 96-well microplates.

Light extinction decreases with increasing wavelength, without wavelength spe-
cific absorption peaks in the range of 310 to 800 nm which could be related to resin
material properties. Spectra in Figure 3.2C show wavelength specific absorption in
the range from 230 to 300 nm with a peak maximum around 280 nm, which can be
attributed to protein. In the range of 900 to 1000 nm wavelength light absorption
by the water hydrogen bond is visible in all spectra. Experimental spectra in the
range of 310 to 800 nm wavelength were fit to Equations 3.4 and 3.3, describ-
ing light extinction due to scattering. The quality of fit between both equations is
comparable, therefore only the simplified Equation 3.4 was used for further charac-
terization of spectral data. This reduces the wavelength dependent behavior of light
scattering to one term, characterized by 𝜂, the power of light scattering wavelength
dependency. The development of 𝜂 for varying resin ionic capacities and protein
load at resin concentrations from 50 to 150 µL well-1 are shown in Figure 3.3.
To shorten measurement time and to cover a potential uneven distribution of resin
beads in the well cavity, a single wavelength measurement was taken at 330 nm
in a grid layout as described in Section 3.2.4. The wavelength position within the
spectra is also indicated in Figure 3.2.

Resin quantification The correlation between light extinction at 330 nm wave-
length and resin volume in microtiter plate wells is depicted in Figure 3.4. In the
range of 1.0 to 5.0 µL resin bead volume of SP Sepharose FF adsorbent a linear
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Figure 3.3: Scattering power as function of resin volume per well. A) Ionic capacity of Sepharose based
resins with sulfopropyl ligands. B) Concentration of Ribonuclease A bound to SP Sepharose FF resin.

correlation could be established. This is in agreement with the assumption, that
scattering media follow the Lambert-Beer law for light extinction in the limitation
of low concentrations. Accuracy of calibration is limited by the manual distribu-
tion of resin by pipetting and can be further increased by a higher number of data
points used. Multiple measurements of single wells show a relative standard devi-
ation below 1.0 % (3.0 %) for concentrations above (below) 2.0 µL. The method
shows to be more accurate in resin quantification in microtiter plates than described
approaches relying on reproducible resin volume handling.

Ligand density The light extinction spectra of Sepharose based resins with dif-
ferent densities of sulfopropyl ligand are depicted in Figure 3.2B, showing an in-
crease in scattering intensity with increasing ionic capacity. Linear correlations
between resin volumes in wells and light extinction at 330 nm wavelength were
established for single resins. Slope, axis intercept and quality of fit are listed in
Table 3.1. Further a linear correlation between single resin calibration slope and
ionic capacity was established and is shown in Figure 3.5. For comparison the range
of ionic capacity given by the manufacturer for commercially available SP Sepha-
rose FF batches is given as a gray area within the plot.

A high degree of light attenuation is caused by ligands bound within resin beads
or scattering centers formed by them. Only a small fraction of scattering events can
be attributed to the plain Sepharose backbone structure with a projected slope of
8.0 AU µL-1, compared to 17.5 to 21.6 AU µL-1 for resins with ionic capacities in the
range of production variance given by the manufacturer. With increasing ionic ca-
pacities, the apparent regime of scattering as determined in the factor 𝜂, changes
from values of 3.5, to 3.0 for ionic capacity of 240 µmol mL-1. This indicates, a
change of predominant scattering centers from sizes smaller than the wavelength
(𝜂 = 4.0), to comparable or larger than the wavelength within the Mie partition
of scattering. The effect of Tyndall scattering increases in consonance, which is
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reflected in a baseline shift to higher values throughout the spectrum.

Protein load Protein concentrations in dilution are often accessed by measure-
ment of sample absorption between 230 to 290 nm, which can be assigned to the
aromatic structures in the residues Tryptophan, Tyrosine and Phenylalanine. This
approach is not possible for protein quantities bound to resin volumes, as light
scattering by resin particles interferes with the absorption measurement. For that
reason established methods rely on biomolecule quantification in sample super-
natant and mass balance based calculation of concentrations bound to resin beads.

The introduced method of resin characterization by light scattering properties
can be used for a direct quantification of protein load on Sepharose based ad-
sorbents. Measurement of resin beads with protein, bound and unbound, are
displayed in Figure 3.2C. They show a protein absorption signal superposed by
light attenuation due to scattering from resin particles. While, the scattering sig-
nal throughout the spectra increases with increasing protein concentration in resin
beads, the combined signal of scattering and absorption at 280 nm increases for
samples up to 40 g L-1 protein along with the bound protein concentration, but
decreases for 65 g L-1 protein loaded to the resin. This is due to tighter packing of
protein molecules within resin beads, leading to a decrease in absorption, as single
molecules are not accessible by the light beam. From Figure 3.3B it can be seen,
that the generalized scattering power 𝜂 decreases with increasing protein load con-
centration. This indicates, a decrease in scattering in the Rayleigh domain in favor of
Mie scattering, caused by particles in the size of or larger as the wavelength. Tyndall
scattering increases with protein load concentration but remains small, compared
to the effect of volume and ligand concentration. The observations are in agree-
ment with the assumption of molecule clusters of ligand, Sepharose backbone, and
protein form scattering center of different sizes. With increasing density within
resin particles, scattering center increase in number and average size, shifting the
scattering pattern from a Rayleigh dominated one, towards Mie scattering. Further
increases in particle density promote a decrease in the number of optical centers
by affiliation, leading to wavelength independent scattering in the Tyndall domain.

The findings show, that protein load can be directly quantified within resin beads
by changes in light scattering. It has to be assumed, that proteins of different
size and shape lead to different packing within resin bead structures, influencing
the scattering pattern yielded. A protein specific calibration, comparable to single
wavelength quantification by absorption, is therefore necessary.

3.3.2. Application in process development
Batch comparison Ionic capacities of different SP Sepharose FF batches were
determined using light scattering as described in Section 3.2.4 and the calibra-
tion from Sepharose batches of varying ligand concentrations shown in Table 3.1.
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Figure 3.4: Light extinction at 330 nm wavelength as function of SP Sepharose FF resin bead volume
per well in a 96-well microplate. 95 % confidence intervals (CI) for linear fit are shown.

Results are shown in Figure 3.6 and were compared against values which the man-
ufacturer determined for each batch and provides to the customer. Ionic capacities
for tested batches are in range of 210 to 250 µmol mL-1, compared to 200 to
230 µmol mL-1, as provided by the vendor. Confidence bounds were determined
around +/- 10 µmol mL-1, based on 8 measurement points per batch sample and
the calibration on hand. Experimental results show high correlation towards the

Figure 3.5: Correlation between slope of volume calibration and ionic capacity of resins with Sepharose
backbone and sulfopropyl ligands. The gray area indicates potential range of ligand concentration of
SP Sepharose FF resin as specified by product vendor. 95 % confidence intervals (CI) of linear fit are
given, values are further listed in Table 3.1.
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ionic capacity slope stdev intercept stdev
µmol mL-1 AU µL-1

25 8.79 ± 0.242 3.762 ± 0.730
60 9.90 ± 0.206 3.262 ± 0.592
73 11.02 ± 0.439 3.804 ± 1.160
84 11.68 ± 0.137 3.532 ± 0.894
107 13.06 ± 0.216 3.451 ± 1.694
110 13.15 ± 0.530 3.396 ± 1.638
131 14.50 ± 0.299 3.776 ± 1.566
169 16.77 ± 0.491 3.998 ± 1.041
190 17.68 ± 0.785 4.043 ± 1.897
207 19.45 ± 0.430 3.844 ± 1.315
240 21.86 ± 0.600 4.235 ± 1.897
254 22.09 ± 0.426 4.036 ± 1.896

Table 3.1: Slope of absorption unit over volume [µL] for Sepharose based prototype resins of varying
sulfopropyl ligand concentrations.

provided values, with a consistent difference of about + 10 µmol mL-1. The off-
set is assumed to be due to difference in method of ionic capacity measurements,
between Sepharose of different ligand concentrations used in calibration and for
industrially produced batches of resin material. Further, a variance in backbone
structure, leading to differences in agarose content or dextran chain linkage, might
influence results as the backbone, next to ligands bound, impacts the slope of light
scattered over resin volume.

Figure 3.6: Ionic capacities of different SP Sepharose FF batches, as calculated from light extinction
measurements at 330 nm wavelength in comparison to ionic capacity values provided by GE Healthcare
for adsorber resin batches distributed. Error bars indicate 95 % confidence intervals.
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Figure 3.7: Batch uptake kinetic for Ribonuclease A on SP Sepharose FF at pH 7.0 with direct quantifi-
cation of protein bound to resin by light extinction increase at 330 nm wavelength.

Kinetic uptake measurement The ability to utilize the change in light scat-
tering characteristics due to protein bound on resin was tested in kinetic uptake
measurements. Batch uptake kinetic for Ribonuclease A on SP Sepharose FF can
be seen in Figure 3.7. The experimental set-up on a HTS robotic system as de-
scribed in Section 3.2.5 is based on findings by Bensch et al. [27], with respect to
shaking time and rate. To increase data density kinetic measurements are taken in
4 wells of a 96 well microtiter plate with equated starting times, realized by tim-
ing the initial pipetting of protein sample to resins. Average amount of resin was
1.5 µL well-1, subsequently the amount of sample was about 60 µg well-1 for a final
concentration of 40 mg mL-1 on resin.

Results are in good agreement with kinetic uptake measurements previously
published, with regard to uptake rates on SP Sepharose FF [27, 28]. Further, data
shows high quality with little variance between single data points resulting in narrow
confidence intervals, confirming the high reproducibility of measurements. Sample
consumption is significantly decreased, compared to established kinetic batch pro-
cesses. Accurate quantification of resin volumes below 2.0 µL well-1 allow for less
resin volumes and therefore less amount of sample to be used within single mea-
surements. Furthermore, established processes are based on sample quantification
within supernatant, and subsequent calculation of bound sample by mass balance.
This, not only is prone to error, as extra pipetting steps are required to remove
supernatant volumes from the well, it also disrupts the kinetic balance. Multiple
measurements over time are therefore not possible within one probe, subsequently
leading to increased sample consumption as multiple probes are needed. Light
extinction measurements are performed on samples containing resin volumes and
sample in bound and unbound conformation, rendering supernatant removal need-
less. Therefore, sample consumption scales with data density over time instead of
total data points, as with established methods.
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3.4. Conclusion and outlook
In this work an optical method for quantification and characterization of resin vol-
umes based on light extinction measurements is introduced. For resins with sulfo-
propyl ligands bound on Sepharose backbones it is shown, that light beams pene-
trate resin beads and are scattered by inner particle structures and are sensitive to
the characteristics and changes therein. Diverse scattering centers are formed by
agarose backbones, ligands, and bound molecules, resulting in complex scattering
patterns ranging from Rayleigh to Tyndall regime. This method is easily applicable
in HTS workflow, relying on established microplate spectrophotometer, providing
the potential of increased throughput and reduced sample consumption by further
miniaturization of resin batch screening applications to 384 well microplates and
less volumes to be used. Further, a batch specific characterization of adsorbent
resins becomes available within the HTS context. This allows for fast resin charac-
teristic screening and material lifetime monitoring. Next to ionic capacities, defined
by ligand concentration, resin fouling and pore blocking are parameters which could
be assessed. Above the mentioned, resin alteration by ligand leakage is a critical
parameter in Protein A resin usage, which could be monitored by the method pre-
sented.
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4
Microfluidics on liquid

handling stations
(µF-on-LHS): an industry
compatible chip interface
between microfluidics and
automated liquid handling

stations

We describe a generic microfluidic interface design that allows the connection
of microfluidic chips to established industrial liquid handling stations (LHS). A
molding tool has been designed that allows fabrication of low-cost disposable
polydimethylsiloxane (PDMS) chips with interfaces that provide convenient
and reversible connection of the microfluidic chip to industrial LHS. The con-
cept allows complete freedom of design for the microfluidic chip itself. In this
setup all peripheral fluidic components (such as valves and pumps) usually
required for microfluidic experiments are provided by the LHS. Experiments
(including readout) can be carried out fully automated using the hardware
and software provided by LHS manufacturer. Our approach uses a chip in-
terface that is compatible with widely used and industrially established LHS

Parts of this chapter have been published in
Lab Chip, 13, 2337–2343 (2013) [1] and in
Proc. SPIE 8976, Microfluidics, BioMEMS, and Medical Microsystems XII. [2]
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which is a significant advancement towards near-industrial experimental de-
sign in microfluidics and will greatly facilitate the acceptance and translation
of microfluidics technology in industry.
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4.1. Introduction
Microfluidic devices rarely use industrially established standards [3]. Although mi-
crofluidics is considered to be a solution not only for the demands of home care
diagnostics but also for industrial high throughput screening (HTS), there are still
very few successfully commercialized microfluidic products in this market. Microflu-
idic chips are mostly designed ”from scratch” with custom solutions for interfacing
and fluid handling. This makes these chips very difficult to be used outside of the
respective laboratory and even harder for industry to adapt. If standards were es-
tablished for microfluidic chips scientific exchange as well as industrial acceptance
could be dramatically increased. The issue of missing standards has been repeat-
edly discussed, most recently by Becker [4].

In addition to missing standards, there is also very little effort towards the im-
plementation of automation standards [5]. If interfaces as well as peripheral com-
ponents and automation were standardized, experiments could be translated from
one lab to another by merely sending out digital script files. The use of standard
laboratory centrifuges for operation of microfluidic chips has been suggested as one
potential means to do so [6]. Centrifuges are widely available therefore allowing
convenient translation of laboratory assays to an automated platform. However,
liquid handling on a centrifugal format has certain limitations and fluid transfer in
and out of the chips still needs to be carried out manually. In addition, readout
is usually restricted to optical means due to the fact that the rotating microfluidic
system is hard to interface, e.g., electronically.

We propose combining widely established industrial liquid handling stations (LHS)
with microfluidics. We term this combination of technologies microfluidics on LHS
(µF-on-LHS). LHS offer a high degree of freedom with respect to fluid handling and
extraction. Highly developed software modules and hardware components allow for
fully automated fluid handling using these systems. Using LHS, an experiment can,
once a microfluidic layout is fixed, be run fully automated and, if the microfluidic
chip layout is shared, be repeated in another laboratory if the same LHS is available.
LHS are standard equipment in many laboratories around the globe as well as in
industry. They were originally developed for fully automated handling of liquids in
microwell plate (MWP) format. They generally offer features such as multichannel
syringe pumps, integrated multiport valves (usually for each of the pumps individu-
ally) and numerous additional components such as detectors for readout, interfaces
for MWP racks, vibrating tables, thermocyclers, etc. Although components of LHS
(such as the automated syringes) have been used in combination with microfluidics
[7], LHS are in general considered as being support instruments for microfluidics
suitable for contactless dispensing of fluids into reservoirs [8]. Numerous examples
of such systems can be found in the literature including systems for mouse geno-
typing using electrophoresis [9], passively pumped channels for high density cell
culture [10], hydrogel microwell cavities for cell experiments [11], high-throughput
drug screening 10 or parallelized immunoassays [12]. Some of these systems are
adapted to the MWP format in order to make full usage of the LHS parallelization
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Figure 4.1: Microfluidics on a liquid handling station (µF-on-LHS) a) Photograph of a LHS type Tecan
Freedom EVO 200 with chip inserted. The pipetting needles are moved by the x/y-stage of the LHS.
Reservoirs provide liquid samples to be injected into the chip. b) Detailed view of the microfluidic chip
on a tray of the LHS. Z-stages allow for individual insertion of the pipetting needles into the chip. The
plate reader is visible in the background. c) View of pipetting needles placed in the connector ports
of the microfluidic chip. Sealing is achieved by taking advantage of the soft material characteristics of
polydimethylsiloxane (PDMS): the needles are slightly thicker than the channels, thus squeezing tight.
d) View of a computer aided design (CAD) model of the microfluidic chip as created with the newly
developed molding tool (see Fig. 4.3). The connector apron stabilizes the connector ports in which the
pipetting needles of the LHS are inserted to connect with the microfluidic structure of the chip at its rear
side.

capability [13, 14]. However, it has been repeatedly stated, that spotting of liquids
into or onto microfluidic structures per se is not enough and that effective means
for retrieving reaction products [15] or cells [16] would be required as well. The
most challenging aspect of such a closed integration of LHS with microfluidics is the
creation of a multi-channel reversibly sealing connection between pipetting needles
(which necessarily form the interface to the LHS) and microfluidic chips [17]. Al-
though such an integration of microfluidics with LHS has been stated as being of
immense interest [18] it has, to the best of our knowledge, not been implemented
in a generic way yet.

In this paper we describe a generally applicable microfluidic chip format that al-
lows the interfacing of a (freely designable) microfluidic structure to standard LHS.
This µF-on-LHS allows the creation of microfluidic assays that can be operated using
standard industrial equipment thus making use of a worldwide accepted standard
in industry and academia. We demonstrate the feasibility of this approach with a
generic chip design, which is applicable in a wide range of chemical and biomolecu-
lar screening experiments. The design, composed of the proposed µF-on-LHS inter-
face, a reaction channel, a subsequent T-connection for sample manipulation and
a measurement channel structure for readout is described. Sample quantification
is shown for a protein solution to exemplify an automated readout for biomolecular
applications.

4.2. Experimental
A liquid handling station type Freedom EVO 200 (purchased from Tecan, Switzer-
land), controlled by EVOware Standard software package V 2.4 (provided with the
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machine) was used for this work (Fig. 4.1a). It provides eight individually address-
able pipetting needles connected to syringe pumps via flexible tubing. The pumps
have a resolution of 3000 steps per stroke and can be equipped with syringes of
25 to 5000 µL volume. In this work we used 100 µL syringes, correlating to a
volume of 0.034 µL per step and a minimum speed of 0.16 µL s-1. The syringes
are connected to pipetting needles which are mounted on a robotic arm, allowing
free movement along the x/y-axes. The needles can be spaced flexibly in order to
comply with different labware designs. In this work we use a spacing of 9 mm for
the microfluidic chip, which is in agreement with the spacing of a 96 well MWP. The
needles can be moved up- and downwards individually in order to enter microwell
plates thus allowing fluids to be probed to and extracted from the microwells using
the respective syringe provided by the LHS. We used the fact that each needle can
be moved individually connect the pipetting needles to a microfluidic chip reversibly.

The microchip can be automatically transferred between functional units on the
LHS such as, e.g., an integrated spectrophotometer for read out. A robotic manipu-
lator arm (RoMa) is used to move the chip (and similar components) inside the LHS.
In this work, we used a UV-VIS plate reader of type Infinite 200 M (purchased from
Tecan, Switzerland) for assessing sample concentrations in microfluidic channels by
absorption measurement. The plate reader is integrated in the LHS and controlled
by Magellan software V 7.1 (provided by Tecan). The measurement spot size of
the photometer has a diameter of 700 mm. Absorption signal processing was done
with MATLAB V 8.0 (The Mathworks, Natick, USA).

4.2.1. Microfluidic chip design
For reversible connection of the pipetting needles of the LHS to the microfluidic chip
connector ports matching the positioning of the needles were designed (Fig. 4.1c).
The needles are guided into position via self-centering cone shapes. The material
used for the chip is polydimethylsiloxane (PDMS, two component curing system type
Elastosil 601, purchased from Wacker, Germany) as it is widely used and convenient
for replication molding. Due to its soft properties, we designed the connectors
such that the pipetting needles (once lowered) are self-sealing. These connector
ports can be conveniently replicated by using a custom-design molding tool. This
tool is designed as a composite tool that allows insertion of a classically structured
microfluidic replication master (created, e.g., by means of lithography) that defines
the shape of the microfluidic channels. This micro structured replication master
can easily be exchanged if the fluidic design needs modifications while keeping the
structure of the connector ports.

4.2.2. Molding tool
The developed molding tool is shown in Fig. 4.3. It is made of parts machined
in stainless steel and eight uniformly shaped screws which are lathed from stain-
less steel studs (iron-base alloy type X5CrNi18-10, purchased from Eisenschmitt,
Germany). Computer aided design (CAD) models of all parts are available in the
Electronic Supplementary Information to this publication [1]. These models will
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Figure 4.2: Relevant dimensions of the microfluidic replication master used in this work. This is an
example of a microfluidic structure suitable for µF-on-LHS. The only important features are given with
dimensions; the thickness of the bottom layer must not exceed 3 mm. All other structures (channels,
intersections, etc.) can be freely adapted to the application in mind. Size and location of the connector
interfaces have to match the size and pitch of the pipetting needles of the LHS. All dimensions are
displayed in millimetre.

allow redoing and modifying the µF-on-LHS design described in this work. The
molding tool defines the outer shape of the microfluidic chip particularly forming
the connector ports of the chip. For easy dismantling the molding tool is designed
of three individual parts that are screwed together. The bottom part is merely a
tray to hold the replication master for the microfluidic layout. It also features a wide
opening on one side serving as pour hole. Through this opening, PDMS prepolymer
is poured into the closed form during replication. Onto the bottom part, the so
called spacer is placed. It defines the contour of the connector apron which will
be, once replicated, in the form of a heightening on top of the chip which provides
access through connector ports for the pipetting needles.

The individual connector ports are created in the form of holes with a slope in
order to ensure sufficient degree of self-centering when the pipetting needles are
inserted. Simply providing orifices in the microfluidic chip is not sufficient: As the
needles are not perfectly aligned buckling and potential breakage could occur. The
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Figure 4.3: Computer aided design (CAD) view of the molding tool used to create chips as shown in
Fig. 4.1c). a) Assembled molding tool with three cone screws inserted and five threads left for additional
cone screws or to be sealed with stud screws. The four smaller threads are used to screw the three parts
of the molding tool together. b) Cut view of a) displaying the inside of the molding tool. The bottom
part serves as a tray for the replication master and has an opening through which polydimethylsiloxane
(PDMS) prepolymer can be poured. The spacer shapes the connector apron. The replication master
is kept in place by the cone screws which also define the cone-shaped form of the individual inlets.
Once the PDMS is cured and the chip is placed on the LHS, the pipetting needles can be connected
to the microfluidic network by these connector ports. Digital 3D models of these components can be
downloaded from the Electronic Supplementary Information (ESI).

top part of the molding tool holds up to eight specifically designed cone screws.
They are located such that they will form the described cone-shaped connector
port openings during replication. These screws feature an 8 mm long cylindrical tip
with a diameter of 1 mm (thus being slightly thinner than the pipetting needles of
the LHS) followed by a 10 mm long cone spreading the diameter to an 8 mm thread
(M8). The M8 thread on the end of the screws is 12 mm long with a hexagon socket
on its end. If less than eight connector ports are required, the remaining opening
threads in the top plate can be closed by stud screws (DIN 913 M8 x 8).

4.2.3. Microfluidic replication master
There is extensive work in the scientific literature describing replication masters for
casting of PDMS microfluidic chips. These can be generated by, e.g., soft lithogra-
phy [19] as well as numerous alternative techniques [20]. For µF-on-LHS, the only
requirements in design are that the chip’s footprint does not exceed the dimen-
sions of a microwell plate (128 x 86 mm) by width and that the fluidic inlets are at
locations defined by the microwell plate standard (ANSI/SBS 1-2004 to ANSI/SBS
4-2004). In this work, we used the format of a 96 microwell plate which allows a
maximum of eight intake interfaces of a diameter of 1 mm being placed in a line
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spaced from each other by a distance of 9 mm correlating to the minimum spacing
of the LHS employed. Fig. 4.2 shows a detailed view of its structure displaying
all dimensions relevant for shaping proper interconnection of the microfluidic chip
to the LHS. The microfluidic replication master used in this work was created via
stereo lithography. As rapid prototyping methods allow fast design changes, eval-
uation of different chip layouts can be carried out quickly. If round shaped silicon
wafer masters are to be used instead, the sides of the wafer might have to be cut
to fit the dimensions of the molding tool. If smaller wafers are used, double sided
adhesive tape applied on the back of the structure ensures proper casting with-
out unintentional moving of the replication master. Attention has to be put on the
alignment of the connector interfaces and the cone screws when assembling, as
silicon templates may break if the pressure applied via the cone screws is too high.
A detailed description of the exemplary chip design displayed throughout this work
is given in the following sections.

4.2.4. Microfluidic chip manufacturing

To create a µF-on-LHS compatible chip the microfluidic replication master is placed
into the molding tool by sliding it through the pour hole. Subsequently, the required
number of cone screws is screwed in until their tips connect to the connector in-
terfaces (1 mm in height) of the replication master. This can be controlled visibly
through the pour hole (see Fig. 4.4a). By this joint connection a channel through the
chip will be formed during replication that connects the respective pipetting needle
to the microfluidic channels formed by the replication master. PDMS is prepared
by mixing its two components in a 9 : 1 mass ratio. After mixing the prepolymer
can be processed for approximately one hour before the degree of crosslinking pro-
hibits any further processing. The mixture is then poured into the molding tool.
To speed up curing while also removing air trapped in the prepolymer the filled
molding tool is placed in a vacuum oven (type Vacutherm VT 650, purchased from
Heraeus, Germany, vacuum pressure 100 Torr) for one hour at 70 °C. Through the
oven’s window, the pour hole can be observed. As the pressure decreases, bubbles
striving towards the surface of the PDMS can be seen. The pressure is periodically
released to allow the bubbles to burst. This procedure is repeated until no more
bubbles appear. After curing the molding tool is disassembled for dismantling the
chip.

The microfluidic channel network can then be sealed by bonding against a planar
substrate [21]. This substrate may, depending on the application, also be provided
with, e.g., electrodes or similar structures for sensing or synthesis applications. At
450 kPa, the chip starts leaking at the connector port. If higher pressure is needed,
the cone screws should be made thinner in order to generate a tighter interface to
the pipetting needles.
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Figure 4.4: a) Photograph of the molding tool with microfluidic replication master inserted. The image
shows the components when looking through the pour hole. The cone screws must form physical contact
with the microfluidic replication master at the connector interfaces which can be controlled visibly (see
enlarged part of the image). During replication, a microfluidic channel is created in the chip allowing
interconnection of the channels with the pipetting needles of the LHS. b) Photograph of the created
PDMS microfluidic chip. After bonding the chip is ready to be placed into the LHS.

4.2.5. Validation of µF-on-LHS: segmented flows
In this work, the µF-on-LHS concept was extended to allow generation of droplets.
Droplet microfluidics has proven to be a suitable platform for HTS, cell-based assays
as well as for analytics. Here we show that droplets can also be created using the
µF-on-LHS concept and thus can be extended to industry-compatible instrumenta-
tion. To the best of our knowledge, droplet microfluidics has not been demonstrated
on an industrial platform as of yet and this is the first report of doing so.

The microfluidic chip employed can be seen in Fig. 4.5. The microfluidic struc-
ture is a two-fold T-junction setup that created droplets by injection of the aqueous
phase (dyed water, shown in blue) into the inert phase. In this exemplary appli-
cation, we used air as an inert phase, which can be conveniently probed using the
syringes supplied with the LHS. In the literature, several inert phases are being
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Figure 4.5: Using µF-on-LHS for droplet generation on chip. A dyed aqueous solution was used as the
exemplary aqueous phase whereas air was used as an exemplary inert phase. Naturally, commonly used
inert phases such as, e.g., fluorinated oils or aliphatic hydrocarbons are suitable alternatives. a) The
chip features a two-stage droplet generation structure which is mirrored. Dyed water is pumped into the
first injection channel where droplets are created (*) in the inert phase (air). A second channel splits
the droplets again (**).
b) View of the µF-on-LHS compatible chip with the two mirrored structures and a time-lapse series of
the droplet generation process. The two structures were probed with a short delay (about 20 s). At 2 s
in the experiment, the upper structure already creates droplets at the first intersection. At 9 s in the
experiment the second T-junction is reached which splits the droplets again by means of suction. The
same process can be observed (time-delayed) in the mirrored structure.

favored, among others, fluorinated oils, such as FC-40, and aliphatic hydrocarbons,
such as tetradecane. Naturally, these substances could be used as well.

The structures are designed such, that the aqueous phase is continuously in-
jected into the inert phase at varying pump rates. These can be set conveniently on
the LHS via the user control interface. The aqueous phase is thus split into droplets
at the first T-junction (in Fig. 4.5, this is marked with an asterix). Given the fact that
the LHS cannot only provide fluid flow due to overpressure but also fluid flow by
suction, one interesting concept can be exploited. The aqueous fluid plugs created
are passed along a second T-junction (in Fig. 4.5, this is marked with a double-
asterix) where suction is applied via the syringes of the LHS. This suction suffices
to split the droplets again by extracting portions of the liquid. In consequence,
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there is a second splitting (subsplitting) and finer droplets are created.

4.2.6. Validation of µF-on-LHS: concentration determination
using a MWP format UV-VIS spectrometer

Figure 4.6: View of a computer aided design (CAD) model of the microfluidic replication master of the
chip used for segmented flow analysis on the liquid handling station (LHS). Lysozyme from connector
port 3 and buffer from connector port 2 are mixed diffusively in the meandering reaction channel.
Droplets are formed at the T-intersection by an air stream coming from connector port 1 dividing the
sample flow and pushing it towards the analytics section of the chip. Once the droplets are in the analytics
section, the flows are stopped and the microfluidic chip is moved into the plate reader incorporated in
the LHS for automated photometric readout. Connector port 4 is used as catch basin; also, after analysis
in the plate reader individual droplets can be accessed by a pipetting needle through this port for further
examination.

As a second exemplary validation of the µF-on-LHS a microfluidic chip for sam-
ple reaction, fractionation and segmented flow analysis was designed (see Fig. 4.6).
The microfluidic structure used for this experiment is a channel with a set of three
inlet and one outlet channels. Two independent variants of this microfluidic struc-
ture (varying in channel dimensions) were incorporated on one chip. As the LHS can
operate eight pipetting needles simultaneously, this allows for two separate exper-
iments to be carried out at the same time. This parallel processing facilitates HTS
on microfluidic chips for distinct experimental tasks. Each of these two microfluidic
structures features a meandering reaction channel (250 x 250 mm in cross section)
in which two reactive components provided from their respective inlets channels
are mixed. The channel’s meandering shape allows for prolonged reaction times
and enhanced mixing, which may be further augmented using more sophisticated
mixing structures such as, e.g., Tesla mixers [22].
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Figure 4.7: a) Photograph of a standard 384 well microwell plate (MWP) and the microfluidic chip
used in this work held congruently to show microfluidic channels (for display purposes partly filled with
blue liquid) match the grid of the wells of the MWP. b) False-colour representation of the absorbance
(which correlates to the concentration of the protein, see c) of an aqueous lysozyme solution of 1.4 µL
(row J and K) and 0.7 µL (row L) volume measured on the plate reader spectrophotometer at 280 nm
wavelength. The microfluidic droplets show up as spots of high absorbance. The plate layout is displayed
for representation of measurement scheme. The microfluidic channels have been highlighted with thin
black lines. c) Calibration curve of lysozyme measured at 280 nm in a microfluidic channel of 700 µm
width and 200 µm height, with 95 % confidence interval (CI). N = 6, error bars are smaller than data
point representation and therefore not displayed.

After the reaction meander, the liquid stream is separated into droplets at a T-
intersection using an air stream (liquid in air droplets). This effectively stops sample
diffusion and allows for a time independent measurement. Instead of air, any fluid
immiscible with aqueous solutions (such as, e.g., the fluorinated oil FC-40) could
also be used for this purpose. The air stream separates the sample stream into
droplets. Different volumes in the range from 0.7 µL to 1.4 µL are created by paus-
ing the air stream. Besides pausing the air stream for intervals corresponding to
the desired volume, droplets can also be induced by altering the pipetting speed,
hence adjusting the flow-rate of the air stream. Thus, droplets of nearly any vol-
ume can be created. These droplets are moved into the analytics section of the
microfluidic chip where they are kept in place by stopping the respective pipette.
Once the droplets are placed in the analytics section of the microfluidic chip, the
microfluidic chip is moved to the plate reader integrated in the LHS by the RoMa
for offline measurement.

The spectrophotometer software is limited to MWP designs which are not di-
rectly applicable to microfluidic chips, as channels extend over multiple wells. To
overcome this limitation, the analytics section of the microfluidic chip has been po-
sitioned in alignment with well positions in a 384-well MWP (see Fig. 4.7a). The
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microfluidic channel of the analytics section features if 700 µm wide and 500 µm in
height. A predefined layout for MWP with 384 squared wells was chosen for mea-
surement in the software of the plate reader. Because the bottom of a single well in
this particular MWP extends over 3.3 x 3.3 mm (which is covered by a rectangular
grid of 8 x 8 measurement points) parts of the channel would not be visible to the
reader. To also cover the remaining spots in the channel, a second grid layout with
an offset of 2.5 mm in the x-direction to the aforementioned one was measured
to cover interstitial channel volumes between single wells. Multiple measurements
at overlapping area were averaged. The resulting readout of a solution of lyso-
zyme from hen egg white (purchased from Sigma Aldrich, USA) in 0.02 M sodium
phosphate buffer at pH 7 is displayed in Fig. 4.7b. The calibration curve of lyso-
zyme dissolved in the same phosphate buffer at different concentrations for protein
quantification in chip is shown in Fig. 4.7c.

For microfluidic channels with channel widths equal or smaller than the pho-
tometric measurement spot, the signal strength can vary as the beam extends
beyond the microfluidic channel and light bypasses the fluidic channel (and thus
the sample) resulting in higher light intensities. Analyte concentrations are hereby
underestimated. This can be corrected for aqueous samples by referencing the
light absorption of the analyte at a given wavelength (e.g. 280 nm for proteins) to
the absorption of the solvent, determining the apparent absorption path length as
described by McGown and Hafeman [23].

After screening, single droplets may be individually extracted by the pipetting
needle connected to the outlet connector port of the microfluidic structure thereby
recovering the liquid for further processing. Thus, interesting fractions of the sam-
ple can be selected based on photometric analysis to limit further analytical efforts.
Especially time consuming analysis like, e.g., chromatography or mass spectroscopy
are only applied on selected sample droplets. Of course, further analytics could be
carried out fully automated on the LHS, too. Compared to experiments in MWP, µF-
on-LHS is advantageous because it requires less sample volume. Additionally, by
forming droplets in microfluidic channels sample quantification can be carried out
in small volumes leading to accurate measurements by defined light path lengths
of the photometer, which is prevented in MWP due to meniscus formation at the
sample to air phase boundary.

Furthermore, in MWP high concentrations need dilution prior to measurement
in the reader in order to fit in the linear range of the photometer. Lysozyme for
example needs to be provided at a < 1.5 g L-1 dilution in a 96 well MWP, higher
concentrations lead to signal saturation. As short path lengths can be achieved
in microfluidic chips by defining low profile channels, no intermediate dilution of
sample is necessary. Furthermore, mixing of samples can be supported by suitable
microfluidic structures.

Different complex experimental set-ups can be fully automated in a short time
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frame by utilization of several microfluidic chips providing standardized sub-func-
tionality at microliter scale. Compared to classical microfluidics, µF-on-LHS offers
the advantage of automation and equipment standards provided with the LHS. The
use of the LHS’s infrastructure leads to decreased chip complexity, as merely passive
microfluidic structures are required. Active components, such as valves and pumps
provided by the LHS, are not required to be integrated microfluidic components.

4.3. Conclusions
µF-on-LHS allows fast, robust and simple chip manufacturing using the developed
molding tool. Our design allows almost any type of microfluidic structure to be
created in a way that any LHS can be used to operate the respective microfluidic
assay. Using this strategy allows the creation of microfluidic assays that are easy
to migrate to a different laboratory as only passive structures and software code (in
form of protocols for the respective LHS) need to be transferred. Furthermore, µF-
on-LHS allows the creation of microfluidic chips relying on industry proven and well
developed LHS components such as valves, pumps, detectors, etc. Development
of proprietary solutions for these tasks therefore becomes unnecessary which will
increase accessibility both for industry and academia.

µF-on-LHS enables microfluidic applications to be effectively deployed as rou-
tine techniques for biotechnological process development. We believe that this
strategy, in combination with the molding tool developed in this work (which can
be downloaded as 3D CAD compatible models from the Electronic Supplementary
Information) may be a critical step in providing the microfluidics community with
an industry compatible interface for HTS experiments.
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5
QSAR modeling of orientation

sensitive biomolecular
binding on ion-exchange

surfaces

Quantitative structure-activity relationship (QSAR) modeling for prediction of
biomolecule parameters has become an established technique in chromato-
graphic purification process design. Unfortunately available descriptor sets
fail to describe the orientation of biomolecules and the effects of ionic strength
in the mobile phase on the interaction with the stationary phase. The litera-
ture describes several special descriptors used for chromatographic retention
modeling, all of these do not describe the screening of electrostatic potential
by the mobile phase in use. In this work we introduce two new approaches of
descriptor calculations, namely surface patches and plane projection, which
capture an oriented binding to charged surfaces and steric hindrance of the
interaction with chromatographic ligands with regard to electrostatic poten-
tial screening by mobile phase ions. We present the use of the developed
descriptor sets for predictive modeling of Langmuir isotherms for proteins at
different pH values between pH 5 and 10 and varying ionic strength in the
range of 10 to 100 mM. The resulting model has a high correlation of calcu-
lated descriptors and experimental results, with a coefficient of determina-
tion of 0.82 and a predictive coefficient of determination of 0.92 for unknown
molecular structures and conditions. The agreement of calculated molecular
interaction orientations with both, experimental results as well as molecular
dynamic simulations from literature is shown.

This chapter has been published in J. Chromatogr. A 1482 (2017) [1].
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The developed descriptors provide the means for improved QSAR models of
chromatographic processes, as they reflect the complex interactions of bio-
molecules with chromatographic phases.
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5.1. Introduction
Chromatography is the most widely applied technique in downstream processing
of biopharmaceutical products. Due to the great interest in the underlying process
mechanistics and the consequential research, the fundamental understanding of
chromatographic separation and adsorption mechanisms have widely advanced in
the last decades. Today, a variety of modeling techniques can be applied to describe
the influence of different parameters on ion-exchange chromatography, including
mobile-phase composition, resin types, and protein characteristics.

Comprehensive studies on protein retention in different mobile phase conditions
have lead to semi-empirical approaches of protein behavior modeling. Rounds and
Regnier introduced the stoichiometric displacement model, describing the interac-
tion between proteins and counter ions [2]. The steric mass action (SMA) model
by Brooks and Cramer [3] incorporates the shielding of adsorber charges by bound
macromolecules. An extension of this model was introduced by Bosma and Wes-
selingh, who used the charge of proteins to describe protein binding at different
pH values [4]. Although, they assumed a constant electrostatic charge, neglecting
the pH dependent protonation of charged residues. These models require the de-
termination of protein and adsorbent specific parameters, and therefore can not be
applied to predict the behavior of unknown molecules. Further, they are based on
the assumption that the binding mechanistics remain unchanged throughout the
conditional space inquired.

That this is not the case in chromatographic interactions, was shown by molec-
ular dynamic (MD) simulations, which aim to describe the interaction of molecules
on the atomic level. It has been shown that specific orientations are predominant
in binding of biomolecules to charged surfaces, dependent on charge distribution
of the molecule, steric factors, charge type, and capacity of the corresponding sur-
face. The interaction energies and orientation of biomolecules in cation-exchange
chromatography were investigated experimentally and in silico via MD simulations
by Dismer et al. [5–7]. This approach was later extended to complex proteins
(i.e. including non-standard residues) and anion-exchange chromatography by
Lang et al. [8]. Dismer and Lang determined a pH dependent change in orientation
for lysozyme on a SP Sepharose FF adsorbent. The primary binding orientation was
determined by the distribution of the amino acids lysine and arginine with a change
of the main binding factor from lysine 13 at low pH towards lysine 96 and 97 at high
pH values [7, 8]. Despite fast computational development and detailed information
to be gained, MD simulations remain inapplicable to large datasets and structures,
e.g. monoclonal antibodies, due to the computational costs required.

Quantitative structure-activity relationship (QSAR) techniques aim at developing
predictive models based on descriptors derived from molecular structural informa-
tion. A critical part are the descriptors utilized to build a model, as they need to
incorporate the structural features which lead to the observed activity. To cap-
ture the molecular information corresponding to ion-exchange chromatography,
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Mazza et al. [9] introduced an approach to map electrostatic potential onto the
surface of a molecule to derive pH dependent descriptors. They predicted reten-
tion times for a variety of beta-blockers and similar chemical structures published
by Law and Weir [10].

Malmquist et al. [11] developed their own set of pH sensitive descriptors, based
on the surface mapping of atomic charges and applied them successfully in cation
and anion-exchange chromatography modeling of model proteins. Based on this
work, Yang et al. [12] developed a set of electrostatic potential descriptors, and ap-
plied them in SMA parameter modeling, wherein different pH conditions of the same
molecule were presented as separate observations to the model. All approaches
have in common that they do not reflect the orientation of the molecule and char-
acteristics of the mobile phase. This is especially the case, if predicted parameters
are subsequently applied in aforementioned semi-empirical models.

In this approach a new set of QSAR descriptors is introduced, describing the
physical proximity of biomolecules to a surface in 3D space. Thereby describing
steric hindrance and interaction as well as interaction shielding by the mobile phase.
This allows for orientation sensitive QSAR modeling over different ionic strengths
and pH values, reflecting the parameter range in ion-exchange chromatography.
The predictive capabilities are demonstrated in Langmuir isotherm parameter mod-
eling for model proteins in cation-exchange chromatography. A detailed compar-
ison of interaction orientations of Lysozyme on SP Sepharose FF to experimental
and in silico data from MD simulations, shows consistent results without the need
of comprehensive and time-consuming simulations.

5.2. Theory
5.2.1. Parameter projection
A molecular property on a given point in space is generated as the result of the
intermolecular interactions between all fragments of the molecule and the mobile
phase at the given point.

𝑀𝑃 =∑𝑓𝑓𝑐𝑡(𝑑 ) (5.1)

With MP being the molecular property at a given point 𝑘 in space, 𝑖 denotes the
fragment and N the total number of fragments in the molecule. 𝑓 represents the
parameter constant of the fragment and 𝑓𝑐𝑡 the distance function with 𝑑 being
the distance between the fragment 𝑖 and the point in space 𝑘. This applies to cal-
culation of both molecular surface properties as well as intermolecular forces as the
projection towards the representation of adsorbent surface structures as described
in this work. Three types of projections are used, namely the complete molecular
surface, a projection towards an adjunct plane, and patches of the surface.
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Molecular surface To represent the distribution and values of molecule electro-
static potential and hydrophobicity characteristics on the molecule surface, these
properties are mapped to the solvent accessible surface area (SASA) of the mole-
cule. Single values for atoms (electrostatic potential) and amino acids (hydropho-
bicity coefficient) are mapped over distance towards the surface represented by

distinct points with a density of 1 point per Å
2
. Descriptors based on the molecular

surface of the molecule are then calculated for all points on the surface. The at-
tenuation of electrostatic and hydrophobicity characteristics distance are described
in section 5.2.2 and 5.2.3, respectively.

Plane projection To represent different orientations of a molecule towards the
adsorbent surface, a representation of said surface was constructed as a grid of
points in three dimensional space, which is depicted in Fig. 5.1. This representation
can be repositioned around the molecule to capture the effects of reorientation of
molecules. To represent all possible orientations of the molecule towards a surface,
the molecule is represented by a sphere with the geometric center of the molecule
in the sphere center. Based on the sphere 120 equidistant orientations were cal-
culated. This compares to 62 grid based orientations used by Dismer et al. [7],
which lead to an overrepresentation of the sphere poles and 50 equidistantly dis-
tributed orientations used by Lang et al. [8]. Orientation vectors were calculated
based on the Thomson equilibrium of a sphere [13] with the vector origin placed
in the geometric center of the molecule, yielding equidistantly distributed orienta-
tions. For each vector a plane of 120 Å edge length and a grid point density of 5 Å
was calculated and positioned with the vector as normal vector in the plane center.
The plane was shifted along the normal vector to fit the distance to the molecular
surface, which was set to 5.0 Å, in accordance to the set-up of orientation sensitive
MD simulations performed by Dismer [7] and Lang [8].

Surface patch To capture properties on the molecular surface sensitive to the
orientation of the molecule towards an interacting surface, surface patches were
calculated. Based on the calculated planes, surface patches were defined to in-
clude the SASA with a distance of below 20 Å towards the corresponding plane
representation.

5.2.2. Electrostatic potential
It is known that charge and electrostatic potential properties govern the interactions
of molecules in ion-exchange chromatography. In fact, the adjustment of counter
ion concentration in the mobile phase to alter the long range electrostatic forces
in biomolecule-adsorbent interaction is one of the most used parameters to direct
protein separation (i.e. salt gradient). Coulomb interactions between molecules
are reduced due to the polarization of the particles in a dielectric medium as water.
Particles, depending on their character, form induced and permanent dipoles which
will be oriented around a free charge so to terminate some of the field lines origi-
nating from the charge. This effect increases with increasing concentration of ions
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in the medium, not only reducing the strength of the charge but also changing the
shape of the potential energy, approaching zero exponentially beyond a character-
istic distance. This dielectric screening of charge is one of the key parameters in
ion-exchange chromatography, which is realized by adding salt to induce desorp-
tion and therewith elution.

A detailed calculation of energies and dipole formation around biomolecules can
only be performed in MD simulations, with the known drawback of computational
power increasing exponentially with the size of the molecular system investigated.
An approximation is the calculation of the electrostatic potential EP, which for small
distances 𝑑 where there are no further charges considered, is written as

𝐸𝑃(𝑑) = 𝑞
𝜀𝑑 (5.2)

with the charge 𝑞 and relative permittivity 𝜀 = 𝜀 ⋅ 𝜀 given as the absolute per-
mittivity of the material as a ratio to the permittivity of vacuum. For long distances
the screening of charges can be described by the addition of the Debye screening
length 𝜆

𝐸𝑃(𝑑) = 𝑞
𝜀𝑑𝑒

/ (5.3)

𝜆 writes for a monovalent electrolyte (e.g. NaCl),

𝜆 = ( 𝜀𝑘𝑇2𝜌𝑒 )
/

(5.4)

with the Boltzmann constant 𝑘, the number density of electrons 𝜌, and the
charge of electron 𝑒. With the electron charge is entered squared, the ionic strength
has a strong influence on the screening length which decreases drastically with in-
creasing ionic strength. The Debye screening length, is for example 96 Å at 1 mM,
9.6 Å at 100 mM and 3.0 Å at 1 M NaCl in water at 22 ∘C.

5.2.3. Molecular hydrophobicity
The hydrophobic character of amino acids is of great interest in protein biochem-
istry, as it defines protein 3D structure and folding. Hydrophobicity is also known
to influence the interaction with adsorbent structures as especially adsorbent back-
bone structures can show hydrophilic or hydrophobic characteristics, thereby influ-
encing protein interaction.
Despite the strong interest and extensive research in the hydrophobic character of
amino acids, no consensus on hydrophobicity parameters is reached as of today.
This is primarily due to a wide range of measurement techniques used, includ-
ing partitioning, RPLC chromatographic techniques, accessible surface area calcu-
lations, site-directed mutagenesis, and physical property measurements. Compre-
hensive reviews on techniques, amino acid hydrophobicity scales and their limita-
tions were presented by Karplus [14] and Biswas [15], among others.
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The parameters by Kyte and Doolittle are one of the most frequently cited amino
acid hydrophobicity scales. They combine accessible surface area measurements
with water-vapor partitioning values as well as an extensive library of proteins for
property calculation [16].

Next to the hydrophobicity value, a distance function is needed to describe the
decrease of the hydrophilic parameter in space. At the origin of the amino acid
the value is at maximum, and approaches zero over increasing distances. Audry
introduced the concept of molecular lipophilicity potentials and used a hyperbolic
distance function [17], while Fauchère used an exponential function to study hy-
drophobicity at molecular solvent accessible surfaces [18]. Gaillard introduced a
modified Fauchère function [19] with 𝑒 / and a cut-off at 4 Å.

In this work, the hydrophobicity parameters from Kyte and Doolittle [16] were
assigned to the corresponding amino acids and projected to points on the solvent
accessible surface, which were calculated as described in 5.2.1. The original dis-
tance function by Fauchère without cut-off was used to calculate the lipophilicity
potential LP defined by the lipophilicity parameter 𝑙 within distance 𝑑 [18].

𝐿𝑃(𝑑) = 𝑙 ∗ 𝑒 (5.5)

Although the terms ”lipophilic” and ”hydrophobic” are not strictly synonymous,
they do describe similar tendencies with regard to dispersion forces and are refer-
enced as hydrophobicity parameter in this work.

5.2.4. Descriptors
The descriptors calculated are listed in Table 5.1 and are based on the descriptors
developed by Malmquist et al. [11] and Yang et al. [12]. Hydrophobicity based
descriptors were calculated based on the corresponding surface projection and sur-
face patches but not for plane based descriptors. This is to account for the short
distanced nature of hydrophobic interactions. Descriptors based on electrostatic po-
tential were calculated based on all three projections (molecular surface, surfaces
patches, and plane projection) as described in 5.2.1. From the orientation sensi-
tive descriptor sets, only those of the orientation with the highest sum of projected
electrostatic potential were selected for model generation.

5.3. Materials and methods
5.3.1. Batch isotherm experiments
The Langmuir affinity coefficients were determined experimentally for different
model proteins under varying mobile phase conditions to provide data for QSAR
model generation and evaluation. Adsorption isotherms were generated in batch
mode based on an automated high-throughput screening process in 384 well plates
as described in [20]. In these experiments protein solutions of different concen-
tration are incubated with defined amounts of resin until an equilibrium is reached.
Then, the resin is sedimented by centrifugation and the protein concentration in
the supernatant is measured. Based on concentration change in the supernatant
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descriptor definition

totalSurf surface area of the projection (Å)
nSurfP number of surface points
sum sum of mapped property
mean mean value of mapped property
median median value of mapped property
meanRes mean value corrected for resolution of surface points
max maximum value of mapped property
min minimum value of mapped property
dev value deviation
var variance of property
nPos number of points with positive value
nNeg number of points with negative value
relPos fraction of points with positive value
relNeg fraction of points with negative value
averPos average value of points with positive value
averNeg average value of points with negative value
bin0 – bin9 number of points with mapped property value in the range

of the bin

Table 5.1: Projection descriptor set with names and description of calculation. Descriptors are calculated
based on plane projection, surface patch and the full molecular surface for electrostatic potential (EP)
and hydrophobicity characteristics (hyd).

and volume ratios, the protein load on the resin is calculated.
Proteins used are listed in Table 5.2 and were all purchased from Sigma Aldrich (St.
Louis, MO, USA). Experiments were performed in the range of pH 5.0-11.0. Mobile
phase was prepared with 10 mM buffer systems of sodium acetate at pH < 6.0,
sodium phosphate in the range of pH 6 to 7.5, and bicine at pH > 7.5. Solvent
ionic capacities were adjusted with sodium chloride to values in the range of 30 to
120 mM. All buffer components and salts were purchased from Merck (Darmstadt,
Germany). The adsorbent SP Sepharose FF, a cation exchange resin, was obtained
from GE Healthcare (Uppsala, Sweden). Resulting isotherms were fitted with the
Langmuir isotherm equation:

𝑞 = 𝑞 ⋅ 𝑘 𝑐
1 + 𝑘 ⋅ 𝑐 (5.6)

where 𝑞 and 𝑐 are equilibrium protein concentrations on the stationary, respec-
tively mobile phase, 𝑞 the saturation concentration in the stationary phase and
𝑘 the equilibrium coefficient.
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Figure 5.1: Parameter projection types applied. A) Molecular properties are projected to the solvent
accessible surface of the molecule, which is represented by distinct points with a density of 1 point

per Å
2
, B) In patch orientation only a part of the surface is considered in descriptor calculation to

represent an oriented interaction between molecule and solid phase during adsorption, and C) in plane
orientation molecule electrostatic properties are projected towards a theoretical plane which is placed in
a fixed distance to the molecule, thereby reflecting the steric hindrance of charges by the 3 dimensional
structure of the molecule. Orientation sensitive projection types are calculated for equally distributed
orientations and the orientation with the strongest interaction is included in the QSAR model generation.

5.3.2. Modeling
The modeling work consisted of three major steps, namely protein structure identi-
fication and preparation, descriptor calculation, and generation of the actual QSAR
model, including its evaluation.

Protein Structure Preparation Proteins were selected based on isoelectric point,
to ensure binding on cation-exchange resin at chosen conditions, and availability of
structural information. Corresponding RCSB entries were selected based on most
complete structure and high resolution. Table 5.2 lists the chosen proteins, cor-
responding UniProt IDs and PDB IDs for structural information used for descriptor
calculation.
Structure preparation was done with the simulation software YASARA [21], which
provides a graphic user interface and is capable of parameterizing non-standard
residues (e.g. bound calcium or a heme-group) via the integrated AutoSmiles al-
gorithm [22–24]. Loaded structures were cleaned from water and substitutes, a
simulation box around the molecular structure was defined and the corresponding
pH value was set. The structure was protonated according to set pH value.
To correct the covalent geometry, an energy minimization was performed with the
AMBER03 force field [25], using a 7.86 Å cut-off. After an initial steepest descent
minimization, a simulated annealing was performed to obtain an optimized struc-
ture. Partial charges of molecule atoms were derived based on the AMBER03 force
field and saved along with molecule information in pqr file format, which captures
atomic charges and radii information. Solvent accessible surface area with probing

radius of 1.4 Å and a point density of 1 point per Å
2
surface was calculated to rep-

resent the molecular surface. The mapping of electrostatic potential on the SASA
of proteins was based on equation 5.2, while the projection to a plane as described
in 5.2.1 was based on equation 5.3 under consideration of the electrolyte concen-
tration in the medium.
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name, origin UNIProt ID PDB

lysozyme C,hen egg P00698 1LYZ
chymotrypsinogen A, bovine P00766 2CGA
-chymotrypsin, bovine P00766 1YPH
cytochrome C, equine P00004 1HRC
cytochrome C, bovine P00125 2B4Z
ribonuclease A, bovine P61823 1FS3
phospholipase A2, bovine P00593 1BP2
myoglobin, equine P68082 2V1F

Table 5.2: Proteins used in QSAR model generation and evaluation with their corresponding UniProt ID
and PDB ID selected for descriptor calculation.

Descriptors Calculated descriptor values were prepared by applying a unity-
based normalization to allow for comparison of descriptor weights in the final model.
To reflect the nonlinear character of the affinity coefficient in the Langmuir isotherm
equation, 𝑘 values were modeled in logarithmic scale.

Model The QSAR model was built as an ensemble of single regression models,
with an internal cross validation. Thereby, the dataset was repeatedly split ran-
domly into a training set (containing 80 % of protein data) and an internal test set
(20 %). 100 regression models were generated and those with an 𝑟 above 0.8
and an predictive 𝑟 above 0.6 for the internal test set were subsequently pooled
within the ensemble. This approach proved to be robust against over-fitting of sin-
gle models and the influence of outliers, especially in small datasets [26].
The enhanced replacement method (ERM) published by Mercader et al. [27] was
used for single model generation. This algorithm follows a simulated annealing
approach, which prevents sub-optimal results by local optima. It has been shown,
that the method is performing better than regression and partial-least-square (PLS)
models, and comparable to genetic algorithms (GA), without the need to set pa-
rameters beforehand [28].
Additionally, different external test sets were split from the dataset prior to model
development to demonstrate the predictive capabilities of the model.

5.4. Results and discussion
5.4.1. Model response
A successful QSAR model correlates experimentally determined molecular proper-
ties to descriptors. A model which proves to be predictive, can be used to obtain
molecular activities for experimental conditions the model was not trained on.
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Figure 5.2: Representation of surface plot generation based on electrostatic potential mapping in plane
projection approach. Originating from the molecule center 120 equidistant vectors are calculated (A).
A surface plane is constructed with the reversed vector as the normal vector. The plane is positioned
along the vector to a distance of 5 Å to the molecular surface (B). Molecular properties are projected
onto the surface and descriptors are calculated based this on projection. Descriptors from the different
orientations are mapped towards a two dimensional representation (C) of the molecule surface and
descriptor values are interpolated (D).

A model correlating the affinity coefficient 𝑘 of the Langmuir equation was
calculated for the interaction of model proteins with SP Sepharose FF at 31 differ-
ent conditions. 5 sets of descriptors were calculated, characterizing electrostatic
potential and hydrophilicity based on the presented projections. Hydrophobicity
parameter based on surface projection where not included, as a full molecule rep-
resentation of short range hydrophobicity characteristics was not considered rep-
resentative for the oriented interaction mechanistic in investigation. The model is
shown in Fig. 5.3. Experimentally determined 𝑘 values of 31 samples of proteins
at different conditions of pH value and ionic strength were used for model genera-
tion.

As proof of concept, 5 conditions not used in training of the model were used as
an external test to test model predictive ability. The conditions predicted reflect dif-
ferent molecular structures as well as combinations of high and low pH conditions
and ionic strength. In model calculation and representation experimental values
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were applied in logarithmic scale to reflect the non-linear character of 𝑘 value in
the Langmuir isotherm equation. The model correlation, described by the 𝑟 coef-
ficient was 0.816, the relative standard deviation for observations was 0.206. The
correlation for the external test set, the predictive 𝑟 was 0.922. The accuracy of
the model is within the means of the experimental data variation, which is discussed
in detail in [20]. In the forementioned study it is described, that low 𝑘 values are
easily underestimated in the fit of the Langmuir isotherm equation to experimental
data, which is in agreement with the deviation between experimental and predicted
results for 𝑘 values below 1.0, where higher values were predicted. It is therefore
concluded, that the deviation between QSAR model and experimental data fit is due
to the limitation in the experimental method for small 𝑘 values.

Predictions for external test sets are in good agreement with experimental data
and model quality is in range of experimental data accuracy [20]. The agreement of
experimental results and predicted parameters is exemplarily shown in the resulting
iostherms for ribonuclease A at high pH and low ionic strength and cytochrome C
at low pH and high ionic strength (see Fig. 5.4).

In the representation of biomolecules by descriptors, QSAR modeling relies on
the accuracy of the initial molecule structure these descriptors are based on. There-
fore the approach does not account for structural changes due to the interaction
with the solid phase or the formation of complexes as dimers. Molecular model-
ing could reflect these conditions, but seldomly is conducted over sufficient time
frames. In a preparative environment, these conditions are considered unfavorable
for chromatography.

5.4.2. Selected descriptors
Descriptors used in the calculation of QSAR models can provide insight in the mech-
anistic characteristics of the molecular property modeled. Although, this insight can
not be conclusive, as different combinations of descriptors can potentially result in
predictive models. Nevertheless, the type of descriptors utilized can confirm mech-
anistic understanding and thereby qualify the model or direct further research. The
eight main descriptors, which describe 90.9 % of the model variance based on de-
scriptor weight are listed in Table 5.1. Six out of eight descriptors are related to
electrostatic potential (EP) and two depict hydrophobicity characteristics (hyd). This
reflects the driving forces of electrostatic binding in ion-exchange chromatography.
Positive electrostatic potential have a high weight in the model with descriptors bin-
Abs 7 and 9 (descriptors 3-6). Negative electrostatic potentials (descriptors 1 and 2)
are accounted negatively, which is in agreement with a positively charged molecule
binding onto a negatively charged surface as in cation-exchange chromatography.
Hydrophobic molecule character is weighted positively in the model (descriptor 8)
and low hydrophobicity values are being weighted negatively (descriptor 7), there-
fore favoring interaction of hydrophobic areas of the molecular surface with the
stationary phase.
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Figure 5.3: QSAR model for affinity coefficient of Langmuir binding isotherm parameter with depicton
of training set (blue) and external test set (red) with molecular structures which were not part of model
training.

All three property projection types are represented in the model descriptors.
Plane based descriptors are most used with 6 out of 8 main model descriptors (1-4
and 7-8). Patch and surface based projections are represented by one descriptor
each (5 and 6). This is in agreement with different ionic strength conditions being
implemented in the model. The steric hindrance in the interaction of molecule areas
and the resin and the increasing shielding of electrostatic potential by increasing
ionic strength of the medium, i.e. the buffer system, are represented only in the
plane descriptors.

5.4.3. Molecular orientation
The position of charged amino acids in proteins define the electrostatic potential
projected to a surface close to the molecule. To represent this three dimensional
information surface plots were used, which are similar to those used by Lang et al.
[8]. The concept of the surface plots is shown in Figure 5.2.

The electrostatic potential, as projected to different plane orientations around
lysozyme is presented in Figure 5.5. It is apparent from the surface plots for pH
values from 5 to 12, that descriptor values vary dependent on the protein orien-
tation, showing preferred binding orientations. Herein, high descriptor values indi-
cate preferred binding to negatively charged cation-exchange adsorbers. Positively
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Figure 5.4: Batch isotherms of ribonuclease A (pH 9.0, 10 mM ionic strength) and cytochrome C (pH 5.0,
90 mM ionic strength), with fit of experimental data and predictions from QSAR model. Both conditions
were part of the external test set.

charged amino acids (arginines, histidines, lysines) are plotted with their index and
highlighted in corresponding structure representations to visualize their influence
on electrostatic potential projected to the plane.

Four distinct preferred binding orientations (A-D) are identified, with a change
in preference throughout the pH parameter range investigated. At pH values of 5
and 9 orientation A shows the highest descriptor value, with Lys 1, 33 and Arg 14
and 128 facing the surface plane (Figure 5.5 A). The preferred binding patch at low
pH values extends to orientation B, which is defined by the proximity of Lys 116 and
Arg 21, and 123 to the surface plane. At high pH values of 11 and 12, orientations
A and B are not longer preferred in favor of patches C and D, with C being more
distinct at pH 11. Orientation C is composed by the charged amino acids Lys 33
and 116, as well as Arg 112 and 114. Lys 13 and 96/97 and Arg 14, 21, and 73
contribute to orientation D.

The found electrostatic potential maps are in good agreement with experimental
data from Dismer et al. [6], who investigated the binding orientation of lysozyme
on SP Sepharose FF experimentally, by comparing labeling efficiency of lysines in
bound and unbound protein state at different pH values. They found steric hin-
drance of Lys 1 and 33, at low pH values with Lys 13 being especially hindered if
high saturation of resin is reached. This indicates Lys 13 being in close range to
the surface, without being hindered by the surface, rather than by other proteins in
close range. This is consistent with the found preferred orientation A. Both orienta-
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descriptor group weight
1 binAbs 4 plane, EP -0.1259
2 min plane, EP -0.0735
3 binAbs 9 plane, EP 0.0636
4 binAbs 7 plane, EP 0.0609
5 binAbs 7 patch, EP 0.1656
6 binAbs 9 surface, EP 0.1113
7 min plane, hyd -0.0972
8 sum plane, hyd 0.2109

Table 5.3: Most influential descriptors and their weight in the QSAR model. The properties mapped are
indicated with EP (electrostatic potential) and hyd (hydrophobicity). The 8 descriptors listed account for
90.9 % of model variance based on descriptor weight.

tions, A and B correspond to the previously by MD simulations identified dominating
binding orientations at low pH values [7]. Dismer et al. further described hindrance
of Lys 96/97 at pH 12, which is consistent with found orientation D, where the bind-
ing site forms around these two neighboring lysines [6] and Arg 14, 21, and 73.

The mapped electrostatic potential descriptor value expectedly decreases as the
the pH gets closer to the pI, as positively charged amino acids lysine and arginine
are deprotonated. The descriptor values are in the negative range for pH 11 and 12
with maximum values of −4 × 10 (pH 11) and −5.9 × 10 (pH 12). Nevertheless,
protein retention on SP Sepharose FF is documented experimentally [6] and in silico
via MD simulations [7, 8] at pH 11 and 12 for selected molecule orientations. This
is due to the descriptor calculation approach, which does not account for relocation
of amino acids at the molecule surface and ligands, when in close contact. MD
simulations have shown that amino acids reorient to energetically more favorable
positions away from or towards the ligand surface, depending on the charge. Lang
et al. [8] describe the strong contribution of arginines to the binding of lysozyme to
SP Sepharose FF, as they are positively charged over a wide pH range and provide
a high side-chain flexibility.

A critical parameter in protein retention on ion-exchange resins is ionic strength,
which is controlled by salt concentration. Figure 5.6 displays the influence of the
mobile phase ionic strength on electrostatic potential mapping to a surface plane for
lysozyme at pH 5 and ionic strength of 60, 90, and 120 mM, conditions applicable in
chromatographic separation. Electrostatic potential descriptor values, representing
binding strength, decrease with increasing ionic strength. The strongest potential
with 6.0 × 10 at 60 mM for orientation A, is reduced to 3.95 × 10 at 90 mM, and
2.96×10 at 120 mM ionic strength, exhibiting an exponential decay of electrostatic
potential mapped concurrent to the screening function applied. Further, a differ-
ence in screening between orientations A and B can be observed, with orientation
B being less favorable for binding at higher ionic strength (120 mM), compared to
low ionic strength (90 mM). This is consistent with the observation of a more flat
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Figure 5.5: Mapped representation of electrostatic potential as calculated by plane projection with 120
orientations. Orientations of interest are labeled (A-D). Charged amino acids close to the angle of the
projection plane are referenced, for better orientation. Labels do not indicate binding contributing amino
acids. Right hand side structures visualize selected orientations A to D. Charged amino acids lysine (red),
arginine (green) and terminal histidine (blue) are color coded.

position of lysozyme in orientation A, which brings more charged amino acids in
proximity to the surface representation. In contrast, orientation B is more upright,
where the binding strength is defined by fewer amino acids, which are closer to
the surface, but are therefore screened stronger. The screening of electrostatics
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also emphasize the impact of van der Waals forces and hydrophilic properties on
molecule binding.

Mapping results and comparison to literature show that descriptor value map-
ping provides reliable information on preferred protein orientation and contributing
amino acids. Found binding orientations are throughout consistent with compu-
tational more expensive MD simulations and experimental results. The non-linear
screening of electrostatic forces and steric hindrance of contact between charged
amino acids and ligands can result in different preferential orientations.

5.5. Conclusion and outlook
The implementation of interaction characteristics as preferred orientation, steric
hindrance and influences by the surrounding liquid phase in QSAR descriptor calcu-
lation enables a detailed representation of biomolecule retention in ion-exchange
chromatography. A predictive QSAR model to describe protein affinity on SP Sepha-
rose FF was calculated for eight model proteins over a wide pH range and varying
ionic strength conditions. Plane projection descriptors were further used to investi-
gate preferred binding orientation of lysozyme, which was found to be in agreement
with experimental and MD results. This QSAR approach is therefore robust against
changes in preferential orientations in binding of biomolecules to stationary phases
in chromatography due to mobile phase conditions.

The computational costs of descriptor calculation and modeling are low, com-
pared to MD simulations. This allows for larger datasets and large molecular struc-
tures, as monoclonal antibodies. Further, the application is not limited to ion-
exchange chromatography, as an orientation sensitive interaction of biomolecules
towards a counterpart is intrinsic to many process unit operations, e.g. other modes
of chromatography, aggregation or solubility. The presented calculation methods
are therefore a powerful tool for the prediction of molecular properties in down-
stream process development.
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6
Orientation of monoclonal
antibodies in ion-exchange

chromatography: A predictive
quantitative

structure–activity
relationship modeling

approach

Chromatographic separation of biopharmaceuticals in general andmonoclonal
antibodies (mAbs) specifically is the bottleneck in terms of cost and through-
put in preparative purification. Still, generalized platform processes are used,
neglecting molecule specific characteristics, defining protein-resin interaction
terms. Currently used in silico modeling approaches do not consider the ori-
entation of the molecule towards the chromatographic resins as a result of
the structural features on an atomic level. This paper describes a quantita-
tive structure–activity relationship (QSAR) approach to model the orientation
of mAbs on ion exchange chromatographic matrices as a function of property
distribution and mobile phase characteristics. 6 mAbs were used to build a
predictive QSAR model and to investigate the preferred binding orientations
and resulting surface shielding on resins.

This chapter has been published in J. Chromatogr. A 1510 (2017) [1].
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Thereby different dominating orientations, caused by composition of 𝐹 frag-
ments of the mAbs, could be identified. The presented methodology is suit-
able to gain extended insight in molecule orientation on chromatographic
resins and to tailor purification strategies based on molecule structure.
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6.1. Introduction
Ion-exchange chromatography is a major unit operation in biomolecule separation
processes, with anion and cation-exchange chromatography used in monoclonal an-
tibody (mAb) purification. mAb purification processes are often based on platform
processes, with the promise of less development efforts, therefore reducing the
time-to-market and early stage material consumption [2]. Nevertheless, standard-
ized processes compromise on efficiency as they restrict the design space and rely
on unchanged molecule properties within the application space. With the growing
number of mAb in development for biopharmaceutical and bioanalytical applica-
tions, optimized and scalable processes, which work outside the box of predefined
process sequences and materials, are needed [3]. This can be achieved by the use
of in silico approaches in process development. The application of semi-empirical
models to describe chromatographic separation spread wide in the last decades due
to increasing fundamental understanding of process mechanistics and adsorption
mechanisms. Today, a variety of modeling techniques can be applied to describe
the influence of different parameters on ion-exchange chromatography, including
mobile-phase composition, resin types, and protein characteristics to different ex-
tent [4–6].

These models require the determination of protein and adsorbent specific pa-
rameters, and therefore can not be applied to predict the behavior of new molecules
ab initio. Physical adsorption is affected by multiple factors as van der Waals forces,
electrostatic interaction, or hydrophobic effects, which are defined by molecular
properties, chromatographic material and mobile phase composition as pH and ionic
strength. Due to their size and structure, mAbs show different characteristics for
their subunits. The isoelectric point (IEP), which defines the pH value at which the
net charge of the molecule is zero, is generally higher for 𝐹 fragments than for
the complete antibody. In consequence, the IEP of 𝐹 fragments is smaller, com-
pared to the full molecule [7–9]. At the IEP, the 𝐹 fragments will therefore carry
a positive charge, while the 𝐹 fragment is negatively charged. The dipole moment
of antibodies was found to point from the 𝐹 to the (𝐹 ) fragments which leads to
an “end-on”/𝐹 binding orientation on positively charged surfaces. A “head-on”/𝐹
orientation was observed for negatively charged surfaces. Further, at low electro-
static forces, where van der Waals interactions dominate, mAb showed a lying flat
orientation on surfaces [10].

A shift in electrostatic potential of a mAb can therefore alter the binding orienta-
tion on surfaces as chromatographic resins. For example, a pH change from pH 4 to
8 was shown to change the preferred binding orientation of IgG from a “head-on”
to an “end-on” orientation [11]. Binding orientation is of interest in development
of assays, which use passive binding of IgG onto hydrophobic surfaces as used in
enzyme-linked immunosorbent assays (ELISA). Here, an “end-on”/𝐹 binding would
increase capture efficiency. In antibody purification, binding orientation defines key
parameter as affinity coefficients and ligand shielding, as lying flat orientations block
more space on an adsorbent surface. A higher variance in affinity is expected for
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mAb binding in a “head-on”/𝐹 orientation, compared to an interaction with the 𝐹
fragment.

The orientation of molecules on charged surfaces is subject of investigation
via different approaches, balancing the need of information with complexity of the
simulation and corresponding computational efforts, which are presented by the
size of IgG. Monte Carlo simulations were used to describe protein-surface interac-
tions in various studies for smaller molecules with varying degree of model abstrac-
tion [12, 13]. Juffer et al. used explicit atom simulations to improve orientation
matching for model proteins [14]. The united-residue model, in which each amino
acid is represented as a sphere centered at the ˛-carbon position, allowed for anal-
ysis of the effect of amino acid composition on antibody orientation [10, 15]. Brow-
nian dynamics simulation methods or molecular dynamic (MD) simulations, repre-
senting single atoms in the molecular structure and with mobile phase described
as continuous dielectric media were established for small molecules, such as pep-
tides [16]. This approach was used to investigate interaction energies and orienta-
tion of biomolecules in cation-exchange chromatography by Dismer et al. [17–19].
They used an atomistic representation of molecule and the interacting surface in-
cluding bound ligands. This approach was later extended to complex proteins (i.e.
including non-standard residues) and anion-exchange chromatography by Lang et
al. [20, 21]. Due to molecule size and an exponential increase in computational cost
with number of atoms in simulation, this approach is still prohibitive for application
to mAbs in all-atom representation and corresponding adsorber surface. A recently
introduced approach to QSAR descriptor calculation, capturing steric hindrance in
protein surface interaction as well as electrostatic potential shielding by the mobile
phase showed good predictivity regarding mobile phase properties and molecule
structures [22]. This approach is extended to describe the binding orientation of
mAb on ion-exchange chromatographic resins.

6.2. Materials and methods
Monolconal antibody structures and samples were provided by Lonza Biologics PLC.
To provide a diverse data source for model generation further model proteins were
included in lab and in silico experiments.

6.2.1. Structure preparation
Model proteins were selected based on isoelectric point to ensure binding on cation-
exchange resin at chosen conditions and availability of structural information. Cor-
responding RCSB entries were selected based on most complete structure and
high resolution. Table 6.1 lists the chosen proteins, corresponding UniProt IDs
and PDB IDs for structural information used for descriptor calculation. Structure
preparation was done with the simulation software YASARA [23], which is capable
of parameterizing non-standard residues (e.g. bound calcium or a heme-group) via
the integrated AutoSmiles algorithm [24–26].
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Name, origin UNIProt ID PDB pI

Lysozyme C, hen egg P00698 1LYZ 9.32
Chymotrypsinogen A, bovine P00766 2CGA 3.52
-chymotrypsin, bovine P00766 1YPH 6.09
Cytochrome C, equine P00004 1HRC 9.59
Cytochrome C, bovine P00125 2B4Z 6.50
Ribonuclease A, bovine P61823 1FS3 8.64
Phospholipase A2, bovine P00593 1BP2 6.10
Myoglobin, equine P68082 2V1F 7.36

Table 6.1: Proteins used in QSAR model generation and evaluation with their corresponding UniProt ID,
PDB ID, and theoretical pIs as calculated according to Bjellqvist et al. [28, 29] selected for descriptor
calculation.

Loaded structures were cleaned from water and substitutes, a simulation box
around the molecular structure was defined, and the corresponding pH value was
set. The structure was protonated according to set pH value. To correct the co-
valent geometry, an energy minimization was performed with the AMBER99 force
field [27], using a 7.86 Å cut-off. After an initial steepest descent minimization,
a simulated annealing simulation was performed to obtain an optimized structure.
Partial charges of molecule atoms were derived based on the AMBER99 force field
and saved along with molecule information in pqr file format, which captures atomic
charges and radii information.

6.2.2. Descriptor calculation
To represent the orientation of a biomolecule towards an adsorbent surface, three
types of descriptors were calculated.

Projection plane.
To capture the shielding of electrostatic potential and steric hindrance, 120 theo-
retical planes were positioned around the molecule in an equidistant manner with
a set distance of 5 Å towards the molecule surface. The plane-molecule distance
was selected according to [19, 20, 22]. Electrostatic potential was then projected
onto the plane. Descriptor values were calculated based on plane values.

Surface patch.
To capture orientation sensitive interaction potential of heterogeneous molecules
and short range hydrophic interactions, surface patches were calculated for hy-
drophobic and electrostatic properties. Surface patch sizes and orientation were
calculated according to [22]. From the 120 different orientations calculated, the
orientation with the highest electrostatic potential density as projected on a plane
was selected to be included in descriptor calculation. Further, the orientation with
highest hydrophobic potential based on a solvent accessible surface area (SASA)
patch were included in QSAR model calculation, as an alternative orientation driven
by hydrophobic interactions for high ionic strength conditions of the mobile phase.
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Descriptor Definition

totalSurf surface area of the projection (Å)
nSurfP number of surface points
sum sum of mapped property
mean mean value of mapped property
median median value of mapped property
meanRes mean value corrected for resolution of surface points
max maximum value of mapped property
min minimum value of mapped property
dev value deviation
var variance of property
nPos number of points with positive value
nNeg number of points with negative value
relPos fraction of points with positive value
relNeg fraction of points with negative value
averPos average value of points with positive value
averNeg average value of points with negative value
bin0 - bin9 number of points with mapped property value in the range of the bin

Table 6.2: Projection descriptor set with names and description of calculation. Descriptors are calculated
based on plane projection, surface patch and the full molecular surface for electrostatic potential(EP)
and hydrophobicity characteristics (hyd) as described in [22].

Full surface.
The complete surface of the molecule was considered in descriptor calculation for
a non-orientation sensitive approach for electrostatic and hydrophobic properties.
The descriptors calculated for the three different projection types and for hydropho-
bicity and electrostatic potential are listed in Table 6.2. In total, 120 different de-
scriptors were considered per experimental condition.

A detailed description of electrostatic potential and hydrophobicity property cal-
culation and their projection towards molecule surface and projection planes includ-
ing applied shielding factors is given in [22].

6.2.3. QSAR modeling
The QSAR model was built as an ensemble of single regression models with an
internal cross validation. Thereby, the dataset was repeatedly split randomly into a
training set (containing 80 % of protein data) and an internal test set (20 %). 100
regression models were generated and those with an 𝑟 above 0.8 and an predictive
𝑟 above 0.6 for the internal test set were subsequently pooled within the ensemble.
This approach proved to be robust against over-fitting of single models and the
influence of outliers, especially in small datasets [30]. An implementation of the
enhanced replacement method (ERM) published by Mercader et al. [31] was used
for single model generation. The algorithm follows a simulated annealing approach,
which prevents sub-optimal results by local optima. It has been shown that the
method is performing better than regression and partial least square (PLS) models
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and is comparable to genetic algorithms (GA), without the need to set parameters
beforehand [32]. Additionally, an external test set of 4 conditions (2 mAbs at 60
and 90 mM ionic strength) was split from the dataset prior to model development
to demonstrate the predictive capabilities of the model.

6.2.4. Batch isotherm experiments
Batch isotherm experiments were performed for QSAR model generation and eval-
uation with an automated high-throughput screening process. This process is per-
formed in a 384-well microtiter plate and based on optical quantification of resin
particles, which amount to 1-3 µL volume per well. The concentration of protein
bound on the resin is calculated based on protein concentration differences in the
supernatant before and after a 60 min incubation phase. This process is described
in more detail in [33]. Batch binding experiments of mAb were conducted at pH 5.0
and ionic strengths of 60 and 90mM, adjusted with sodium chloride. Model proteins
used are listed in Table 6.1 and were purchased from Sigma Aldrich (St. Louis, MO,
USA). Experiments were performed in the range of pH 5.0-11.0 and solvent ionic
capacities of 30-120 mM. All buffer components and salts were purchased from
Merck (Darmstadt, Germany). The adsorbent resin SP Sepharose FF was obtained
from GE Healthcare (Uppsala, Sweden).

Resulting isotherms were fitted with the Langmuir isotherm equation:

𝑞 = 𝑞 ⋅ 𝑘 𝑐
1 + 𝑘 ⋅ 𝑐 (6.1)

where 𝑞 and 𝑐 are equilibrium protein concentrations in the stationary, respectively
mobile phase, 𝑞 the maximum adsorption capacity of the solid phase and 𝑘 the
adsorption affinity coefficient. Nonbinding conditions and conditions with 𝑘 < 0.5
values were omitted in model building and analysis as those conditions have shown
to lead to erroneous binding parameters [33].

6.3. Results and discussion
6.3.1. Antibody orientation
Monoclonal antibodies show a variation of properties over their accessible surface,
due to their complex structure and shape, as compared to small proteins and pep-
tides. To capture these distributions and to identify interaction orientations, the
electrostatic potential of mAbs were mapped as described in Section 6.2.2.

Electrostatic potentials were mapped in Fig. 6.1 and orientations of interest are
displayed in Fig. 6.2. Two antibodies are compared in regard to their electrostatic
potential distribution at pH 5.0, representing the diversity of mapping results found
for antibodies investigated.
Two major different patterns of preferred binding orientations, as indicated by high
averaged electrostatic potential, to an interaction plane were found. mAb1 shows
the expected ”head-on” orientation in interaction with negatively charged surfaces.
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Figure 6.1: Representation of molecular electrostatic potential on adsorbent plane. Highest electrostatic
potential represents preferred binding orientations of mAb on a cation exchange surface. Orientations A
and B indicate “head-on” orientations preferred at conditions of high electrostatic interaction. Orienta-
tions C and D show the two opposing “flat-on” surface orientations, as found to be preferred by mAb2.
Position E corresponds to the “end-on” orientation.

The highest potential values are found in an upright position (Fig. 6.1 and 6.2 po-
sitions A and B). Electrostatic potential values found for both 𝐹 fragments are
comparable to each other, as expected in an identical 3D structure of the frag-
ments. The flat-on orientation also yielded high interaction terms (postions C and
D), although not reaching the values found in ”head-on” conformation. The ”end-
on” or 𝐹 fragment based binding orientation (E) is found to be not preferable for
mAb1 at investigated conditions.

mAb2 shows a different pattern with low electrostatic potential in the 𝐹 frag-
ment based binding orientation, which is attributed to differences in amino acid
composition (see Table 6.3). The preferred orientations here are C and D, where the
antibody is lying flat on the surface. Mapped parameters are comparable between
mAb1 and mAb2 for 𝐹 fragment based and flat-on orientation. This is expected as
the 𝐹 fragments are identical between antibodies and the influence of the active
domain in the 𝐹 fragments is low in the flat-on orientation.
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Figure 6.2: MAb orientation to surface plane. Orientations A and B show ”head-on” orientation preferred
at conditions of high electrostatic interaction. Orientation C shows a ”flat-on” surface orientation, as
found to be preferred by mAb2 and low electrostatic potential, indicating an increase in hydrophobic
interactions.

The differences in the functional domain of 𝐹 fragments in monoclonal antibod-
ies lead to a shift in binding strength and orientation considering the electrostatic
potential mapping to a charged surface representation. The number and position
of charged amino acids defines the electrostatic potential of the macromolecule in
the binding domain. Herein, the addition or depletion of charges, or even a change
of neutral amino acids influencing steric hindrance in interaction lead to a shift in
interaction potential and molecule orientation.

It is assumed that within a population of mAbs only differencing in the active
domain, a change in orientation is an on-off event occurring with the electrostatic
potential presented by the active domain dropping below the interaction term of the
flat-on orientation. Once a flat orientation is preferred, the composition of the 𝐹
fragment is assumed to have only small influence on the interaction. With increas-
ing ionic concentration in the solvent and resulting electrostatic shielding effects,
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structure charge lys/arg asp/glu

mAb1 8.547 94/30 59/52
mAb2 6.497 87/40 73/48

Table 6.3: Net charge and charged amino acid count in mAb1 and mAb2 at pH 5.0.

Figure 6.3: Langmuir batch binding iostherms of A) mAb1 and B) mAb2 on SP Sepharose FF. Predicted
Langmuir affinity coefficients (dashed lines) correlate with experimental values. Different maximum
binding capacity indicates a shift in mAb1 orientation between ”head-on” with of 40 g L 1 and
”flat-on” with of 60 g L 1 at low ionic strength (60 mM) indicating a reduced resin pore clogging
for mAb2 and for both mAb at higher ionic strength.

the contribution of short ranged hydrophobic interactions increases. This leads to
a flat-on orientation, increasing the molecule to surface interaction area.

The QSAR approach uses a fixed molecular structure to calculate descriptors.
Therefore, conformational changes induced by the interaction are not considered
to full extent. A binding conformation including both variable regions of the 𝐹
fragments is possible in a head-on orientation. This increases the overall electro-
static potential involved, although has minor influence on the electrostatic potential
density, as the surface area blocked by the second 𝐹 is considered as well.

The Langmuir adsorption affinity coefficient 𝑘 , together with the maximum
adsorption capacity 𝑞 provides the means to model retention behavior of the
molecule on different column scales at same conditions [34, 35]. Therefore, a
QSAR model predicting molecule parameters for varying pH and ionic strength con-
ditions allows for an in silico screening of retention and separation behavior on
chromatographic columns. Fig. 6.3 shows the Langmuir isotherms for mAb1 (A)
and mAb2 (B) batch binding experiments on SP Sepharose FF resin at pH 5.0 and
ionic strength of 60 and 90 mM in the mobile phase.
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6.3.2. Adsorption affinity coefficient 𝑘
At 60mM, both mAbs show higher affinity coefficients than at 90mM ionic strength.
This is expected as increasing ionic strengths shield the electrostatic interactions
between molecule and ligands and therefore results in lower affinity. Addinity co-
efficients at 90 mM are comparable between the investigated mAbs. This is con-
sistent with a ”flat-on” orientation being preferred at higher ionic strength (see
Fig. 6.1) where the impact of the differently charged 𝐹 regions decreases due to
the shielding effect of the solvent compared to the identical backbone of the mAbs.
This means that the mAb differences have lesser influence on interaction behavior,
with regards to affinity.

6.3.3. Maximum adsorption capacity 𝑞
A strong variance can be observed in adsorption capacity at 60 mM ionic strength
between the molecules. While mAb1 reaches a 𝑞 of 25 mgmL 1, mAb2 yields
double the amount with 56 mgmL 1. The difference in adsorption capacity con-
firms the modeling results (see Fig. 6.1), with mAb1 showing the preferred binding
orientation in a ”head-on”, upright position, compared to mAb2 binding in a ”flat-
on” orientation to the resin. The significant difference in adsorption capacity can
be attributed to different molecule-resin interaction aspects:

• A change in orientation alters the coverage of the resin surface, where a
”flat-on” orientation covers more interaction sites compared to a ”head-on”
orientation, thus leading to a higher binding capacity in a ”flat-on” orientation.

• However, it needs to be assumed that in a ”head-on” orientation, molecule-
resin interaction is stronger sterically hindered as bound molecules reach fur-
ther into the resin pore volume, hereby decreasing pore diameter. This ulti-
mately leads to more molecule-molecule interactions.

Decreased adsorption capacity for strong interaction scenarios of mAbs in ion
exchange chromatography are well described in literature and often attributed to
increased pore clogging. Molecules are binding at pore entrances, leading to a de-
creased availability of pore volume due to electrostatic repulsion by bound molecules
and steric hindrance. An increase of ionic strength leads to a stronger charge shield-
ing, which allows for a more efficient molecule transport into the pores and therefore
a higher adsorption [36, 37]. This is described to be more pronounced with increas-
ing ligand length and density [38]. The modeling results of different orientations
at 60 mM for mAb1 and mAb2, indicates that the molecule orientation has an im-
pact on mentioned behavior. The upright orientation of mAb1 at low ionic strength
favors clogging of pores by stronger binding to the resin and steric hindrance by
the molecule volume. In contrast, the “flat-on” orientation and weaker binding of
mAb2 allows for more molecules to reach into the pore.

6.3.4. QSAR model
The QSAR model correlates experimentally determined molecular properties to de-
scriptors. A model which proves to be predictive, can further be used to obtain
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Figure 6.4: QSAR model for binding of mAb and model proteins on SP Sepharose FF, represented as
Langmuir adsorption affinity coefficients . The model includes varying mobile phase conditions in the
pH range of 5-9 and an ionic strength of 30-120 mM for model proteins (open circle). Binding conditions
for mAbs were pH 5 with mobile phase ionic strengths of 60 and 90 mM (closed circle). New structures
in the external test set were predicted successfully (squares) with variation in range of experimental
data accuracy.

molecular activities for experimental conditions and molecular structures the model
was not trained on. A QSAR model correlating the affinity of monoclonal antibodies
and model proteins to a cation exchange adsorbent under varying conditions of pH
and ionic strength of the mobile phase was calculated for 42 conditions. The model
was then used to predict the adsorption affinity coefficient 𝑘 for two mAbs not
included in the training set. The resulting model, shown in Fig. 6.4, shows a high
correlation between experimentally determined and modeled 𝑘 values, with a 𝑟
value of 0.92 and a predictive 𝑟 value of 0.86.
The accuracy of the model is within the means of the experimental data variation,
which is discussed in detail in [33]. In that study it is described that low 𝑘 values
are underestimated in the fit, which is in agreement with the deviation between
experimental and predicted results for 𝑘 values less than 1.0, where in average
higher values were predicted.
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6.4. Conclusion and outlook
Mapping of molecule electrostatic properties confirm a preferred ”head-on” orien-
tation of mAb1 on negatively charged surfaces and a potential orientation change
to a flat-on orientation with increasing shielding by solvent ions. It is also shown,
that this does not hold true for all mAbs, as differences in the active domain of the
𝐹 fragment can lead to a flat-on orientation at high electrostatic potential condi-
tions, as shown with mAb2 at 60 mM compared to 90 mM ionic strength conditions.

The switch of preferred orientations has a major impact on surface coverage
and maximum binding capacity and therefore represents a property cliff, in experi-
ment as well as in modeling, which needs to be considered in process design. This
also shows that a generic platform approach for one mAb is not ideal for all mAbs,
as chromatographic interaction properties can change significantly, based on small
changes in the part of the molecule interacting with a resin surface.

The presented approach of orientation sensitive descriptors is shown to be capa-
ble of describing the change in electrostatic potential patterns and resulting change
in preferred orientation on atomic level. Further, a predictive model can be built and
be supported by a diverse set of model proteins. Thereby reducing experimental
efforts and model training on mAb, of which availability is not only sparse in early
process design but also expensive. The described methodology can already be uti-
lized in protein design to forecast downstreaming capabilities. This work provides
the grounds for further research on various resins in ion exchange chromatography
as well as on mixed mode adsorbents to describe the difference and shift of orien-
tation from electrostatic dominated binding conditions to hydrophobic interactions.
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7
mantoQSAR: A graphical

user interface driven software
for molecular orientation

sensitive QSAR modeling in
downstream process

development

Quantitative Structure-Activity Relationship (QSAR) modeling of biopharma-
ceuticals has been and is a fast growing research topic within downstream
process development. As an application in an industrial development setting
QSAR is compared to alternative methods, with regard to costs and time to
application. This opens the need for a standardized and easy-to-use soft-
ware platform which allows users in academia and industry to focus on
model results, rather then structure preparation and descriptor calculation
and provides an easy way of data and model transfer between institutions
and research fields. With mantoQSAR we developed an easy to use QSAR
modeling software, which gives users a graphical user interface to compose
QSAR models and investigate molecular structures without the need to pro-
gram descriptors or modeling algorithms. mantoQSAR is a JAVA framework
which can be run on computers without the need to share molecular struc-
tures with third parties. This approach will provide research and industry
a mutual platform to gain comparable results and reach short development
cycles in generating predictive QSAR models for biomolecule processing.
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7.1. Introduction
Quantitative Structure-Activity Relationship (QSAR) modeling is gaining increasing
focus in modeling of biomolecule interactions in downstream process development
[1]. With the development of miniaturized screening applications, which use a high
degree of parallelization, the amount of data available is increasing in an exponen-
tial fashion. This leads to faster development cycles, while reducing the amount of
early stage material necessary for process development.

Parallel to the amount of experimental data, knowledge on biomolecule struc-
ture is growing rapidly with more structural information being available in the pub-
lic domain. Databases as UniProt (http://www.uniprot.org/) [2], GenBank [3], and
Worldwide Protein Data Bank (www.wwpdb.org) [4] are now holding over 100.000
three-dimensional structures with new information being added daily. The number
is increasing with the advances in homology modeling and ab initio prediction of 3D
molecule formations [5] and establishment of corresponding tools [6–8]. Molecular
structure information provides the foundation for data mining studies, aiming at
new insights in molecule characteristics and parameters in downstream processing
applications [9].

Quantitative structure-activity relationship modeling aims at correlating mole-
cule properties to descriptors which are derived from the structure of the mole-
cule [10]. With QSAR originating from chemometrics and activity prediction for
small molecules, there are well established numerical features describing structure
attributes for small molecules and peptides. Over 3000 distinct descriptors are
available to be calculated for small molecules, with the most established tools and
descriptor sets being DRAGON [11], TOMOCOMD-CARRD [12], PADEL [13], CDK de-
scriptor calculator [14], ADRIANA CODE [15], CODESSA-PRO and CERIUS [16, 17].
Being developed for small molecules, most of these descriptors do not take the
three dimensional structure of the molecule into account, which has a large impact
on the characteristics of native proteins. Descriptors considering conformation, are
mostly established for applications in protein classification, similarity analysis and
function prediction, with regard to active site identification and interaction with co-
factors. [18]. Therefore, most of the 3D-structural descriptors published to date
typically capture information relating to the protein structure and are largely used
to show correlation of folding properties as folding rate constant [19–21].

With the development of QSAR models in the domain of biomolecule down-
stream processing, new sets of descriptors have been developed. Mazza et al. [22]
introduced an approach to map electrostatic potential onto the surface of a mol-
ecule to derive pH dependent descriptors. These were used to predict retention
times for a variety of betablockers and similar chemical structures previously pub-
lished by Law and Weir [23]. Malmquist et al. [24] developed a set of pH sensitive
descriptors, based on the surface mapping of atomic charges and applied them
successfully in cation and anion-exchange chromatography modeling of proteins.
Based on this work, Yang et al. [25] developed a set of electrostatic potential de-
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scriptors, and applied them in SMA parameter modeling, wherein the protein in each
pH condition was treated as a separate molecule. All approaches have in common
that they do not reflect the interaction of molecules with the containing phase. We
recently presented a new set of descriptors, which shifted the domain from de-
scribing molecule properties, to capturing molecule interaction potentials with the
surrounding phase. Therein, we consider different shielding of molecule proper-
ties based on liquid phase conditions. This approach proved successful in modeling
biomolecule solubility and precipitation. Further, the interaction with a solid phase
as present in solid-liquid chromatography is modeled to capture steric hindrance in
the binding of amorph biomolecules. Descriptor sets derived from these approaches
were successfully used in a series of studies to generate predictive models in ion-
exchange chromatography for a range of model proteins and antibodies, as well as
in prediction of solubility parameters [26–28]. While modeling antibody binding to a
cation-exchange chromatographic resin, it has been shown that binding orientation
variation between different mAbs were described in the descriptor set and resulting
model [27] (see Chapter 6).

Most present applications for descriptor calculation are realized as a web-service
tool. This requires the user to upload a molecule structure and have necessary cal-
culations being carried out on a remote server. The user has the advantage of
ease of use, as he does not need to maintain a computational set-up while avoiding
potential software dependencies or conflicts. Nevertheless, in biopharmaceutical
research, target molecules are often considered intellectual property, therefore re-
stricting the use of third party web servers. This renders these tools useless, or
requires an extensive effort for integration in internal server-client structures. A
software to be installed on the user’s hardware circumvents these restrictions, as
presented here. In this work, we present mantoQSAR, a software, which calculates
projection dependent molecule descriptors. The Java based software provides man-
agement of QSAR projects and corresponding molecular structure files, descriptors,
and model calculations.

7.2. Implementation
mantoQSAR provides a graphical user interface (GUI) (see Fig. 7.1) which gen-
erates descriptors and predictive models for proteins. The program accepts two
different input formats for molecular structures: PQR and PDB files. Loaded struc-
tures are organized in modeling projects, where corresponding experimental data
can be added and descriptor calculation parameters be set. Resulting descriptor
values can be viewed within the software as well as exported in generic formats,
like plain text and Excel tables. Further, descriptor value distribution and projection
orientations can be visualized in a dynamic three dimensional representation. The
software is implemented in JAVA (JDK 1.7) as this provides cross-platform support
for any system. The Jmol software (version 14.2) is used as a 3d party library for
structure and descriptor visualization.
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Figure 7.1: mantoQSAR window displaying structures loaded within the active project (center window),
a project overview (left side) for easy change of active projects and interactive display of the currently
selected biomolecule structure (right side).

7.2.1. Molecular descriptors
Molecule characteristics A successful biomolecule downstream processing strat-
egy uses different biomolecule characteristics in the purification process. Electro-
static potential and hydrophobicity characteristics are key parameters in the pro-
cessing of molecules and are therefore implemented with mantoQSAR and have
been proven successful in describing molecule properties [26, 28]. The molec-
ular electrostatic potential calculation is based on single atom charges provided
with structure files to the mantoQSAR software. Hydrophobicity characteristics are
based on single amino acids and the parameter values published by Kyte and Doolit-
tle [29]. Further parameter sets can be easily added to descriptor calculation by
the user.

Surface Surface based descriptors are calculated for a grid of equidistant points
on the surface of the molecule as shown in Fig. 7.2.A. Surface herein is defined as
solvent accessible surface area (SASA), which is defined by the center of a probe,
which is rotated over the outermost atoms of the molecule. While the radius of the
probe is usually set to 1.4 Å, representing a water molecule, other sizes can be set.

Surface patch To capture properties on the molecular surface sensitive to the
orientation of the molecule towards an interacting surface, surface patches can be
calculated. Herein surface patches are defined to include solvent accessible surface
areas below a defined distance towards the corresponding plane projection. The
size of the patches can be adjusted by the maximum distance in which molecule
surface points are considered. Herein, the distance is defined along the normal
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Figure 7.2: Parameter projection types applied. A) Molecular properties are projected to the solvent
accessible surface of the molecule, which is represented by distinct points with a density of 1 point

per Å
2
, B) In patch orientation only a part of the surface is considered in descriptor calculation to

represent an oriented interaction between molecule and solid phase during adsorption, and C) in plane
orientation molecule electrostatic properties are projected towards a theoretical plane which is placed in
a fixed distance to the molecule, thereby reflecting the steric hindrance of charges by the 3 dimensional
structure of the molecule. Orientation sensitive projection types are calculated for equally distributed
orientations and the orientation with the strongest interaction is included in the QSAR model generation.

vector of the plane as shown in Fig. 7.2.B. A variety of descriptors can be calcu-
lated based on the different projection matrices. Descriptors and their incentive in
capturing molecule interaction are described in [26].

Plane projection To represent different orientations of a molecule in a directed
interaction, a representation of a surface plane was constructed as a grid of points
in three dimensional space, which is shown in Fig. 7.2.C. To represent all possible
orientations of the molecule towards a surface, the molecule is approximated as a
sphere with the sphere center positioned on the geometric molecule center. Ori-
entation vectors are calculated based on the Thomson equilibrium [30] with the
vector origin placed in the center of the molecule, yielding equidistantly distributed
orientations. For each vector a plane of grid points with defined size and density is
calculated and positioned with the vector as normal vector in the plane center. The
plane is further shifted along the normal vector to fit the distance to the molecular
surface. Molecular property values are then projected from the molecule surface or
atomic/amino acid position towards the grid points of the plane.

Sphere projection The sphere projection combines the calculated descriptor val-
ues for all plane orientations, therefore giving a representation of molecule prop-
erties in a defined distance to the surface of the molecule. These descriptors have
been found to be advantageous in a series of applications including diffusion coef-
ficient [31] and protein precipitation modeling [28].

Projection algorithms While being projected from the molecule to a point of
interaction, intermolecular forces decrease in strength. This is defined by the dis-
tance between the source and target of projection as well as screening by the liquid
phase. mantoQSAR implements a variety of projection algorithms described in lit-
erature. Those include but are not limited to Coulomb’s law distance functions and
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electrostatic screening functions described by Israelachvili [32] as well as functions
applicable to hydrophobicity mapping including those described by Fauchére [33]
and Audry [34] as well as modifications thereof [35].

7.2.2. Predictive models
The modeling algorithm establishes a correlation between single descriptors and
the molecule activity to be modeled. A wide variety of modeling approaches ex-
ist, from different regression modeling and partial least square (PLS) approaches
to evolutionary algorithms in broad and genetic algorithms (GA) specifically. The
mantoQSAR software provides an enhanced replacement method (ERM) algorithm
which was presented by Mercader et al. [36].

This algorithm follows a simulated annealing approach, which prevents subop-
timal results by local optima. It has been shown, that this method is performing
better than regression and PLS models and comparable to genetic algorithms for
a variety of tasks [37]. It is considered preferable to GA as it does not require
algorithm parameters to be set prior to use.

Further, ensemble modeling with a variable number of submodels is supported
as depicted in Figure 7.3. Hereby, the dataset is repeatedly split randomly into a
training and an internal test set. The final model combines all submodels reaching a
set threshold in 𝑟 for both data sets. All parameters regarding number of submod-
els, submodel complexity, data split ratios, and quality parameters can be adjusted
to model needs and data quality on hand. This approach is proven to provide ro-
bustness against overfitting of single models, leading to low predictive capabilities.
Also, the influence of single outliers in the data set is omitted, as poorly performing
submodels are not introduced in the model ensemble. This is of special importance
when small data sets are used [38].

7.2.3. Modeling workflow
A new QSAR model can be built by defining a new project or copying an existing
project. Molecules are imported into the project folder via drag and drop of the
corresponding structure file in PQR format from another project or folder. Hereby,
structure files are copied to the project, to reduce dependencies between single
projects. The molecule setting window provides an overview of all molecules in the
current project and lets the user define further molecule properties and experimen-
tal conditions as pH and ionic strength of the mobile phase. Single molecules can
be activated or deactivated as well as set to be included in the external testset for
model validation. The molecule visualization window allows the user to confirm the
identity and integrity of the imported structure.
In the descriptor setting window, all descriptor parameters can be set. Multiple
descriptor sets can be defined and changed, as mantoQSAR allows detailed control
of all projection parameters. This includes the selection of molecule properties, sur-
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Figure 7.3: Bootstrap modeling approach in mantoQSAR software. Observations are split multiple times
in internal test and training sets. Internal models are validated against internal test sets. Models meeting
set requirements on and predictive are pooled to a final model for application on external test sets
and subsequent clearance for predicting new structure properties.

face definitions, projection type and parameters. Predefined parameters provide a
basic setup, which has been proven to be successful in QSAR modeling of different
biomolecule parameters [27, 28, 31].
The descriptor values window provides an overview of calculated descriptors and
progress during calculation. Descriptor values can be exported to txt and xlsx for-
mat for use in third party applications. Further, descriptor values can be selected
by the user to display them on the molecule structure. Hereby, descriptor projec-
tion mode and grid are displayed together with descriptor value distribution. This
allows the user to visually check preferred orientations calculated and the mapping
of descriptor values.
The model setting window provides the interface to define a single ERM model
and parameters as well as a model ensemble. During model calculation a dynamic
feedback is given on the inclusion of single models in the final ensemble, ensemble
parameters, and model responses for training and test data sets.

7.3. Conclusion and outlook
mantoQSAR is a QSAR modeling software package with an extensive graphical user
interface for modeling and visually accessing biomolecule properties. The software
provides an extensive set of descriptors and projection options for modeling of bio-
molecule interactions with focus on directed interactions. The platform can easily be
extended by the user, while a common standard in QSAR project handling and ex-
change between different research groups and industry is maintained. Established
predictive models can be extended with new observations as work progresses or
tested on new molecule structures and conditions.
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With mantoQSAR as a modeling framework in research, a first QSAR model can
be established within hours and development can be focused on areas of interest,
regarding molecule and descriptor selection, programming of new descriptors or
modeling algorithms.

7.3.1. Outlook
The mantoQSAR software is an active project in development under GLP license
which can be altered and further developed by its users as needed. Current devel-
opment activities include the integration of further modeling algorithms and import
as well as export formats for a seamless integration within existing modeling work-
flows.

Availability and requirements
Project name: mantoQSAR
Project home page: mantoQSAR.com
Operating system(s): Platform independent
Programming language: Java
Other requirements: JDK-7 or higher
License: GNU GPL
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8
Outlook

This chapter provides perspectives and views on future development direc-
tions in bioseparation process development. To date the miniaturization and
parallelization of screening experiments and the use of the resulting high data
density for in silico modeling of process steps and biomolecule properties are
major drivers in purification research.
These developments are occurring at the interface of different professions in
academia, raising a synergetic potential by introducing existing technologies
into the field of biomolecule separation engineering. This includes microflu-
idic engineering, computational sciences, and bioinformatics. Initial steps
have been taken in these fields, as outlined in this thesis. Future efforts
will focus on bringing these approaches further, increasing the potential of
screening methodologies and data driven design of purification strategies.
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The development of high-throughput screening (HTS) applications and mechanis-
tic modeling approaches in chromatographic column performances have decoupled
the scale of development and technical applications. Biomolecule characteristics
and interactions with solvents, static phases as chromatographic resins, or other
biomolecules can be theoretically miniaturized to a single molecule or resin parti-
cle.
Liquid handling stations (LHS), the state of the art in miniaturized downstream pro-
cess development, have not yet reached their limitation, as shown in chapter 2 and
3. Nevertheless, beyond the 384 well microplate format and <10 µL volume, the
challenges of accurate liquid handling have not yet been solved for conventional
LHS [citation]. Therefore, microfluidic applications which handle < 1 µL volumes
with high accuracy are the consequential step in further miniaturization [citation].
They not only provide liquid handling and conditioning, but also a wide range of
analytical methods on-chip [citation].
Currently, the lack of standardization in microfluidic technologies hinders a further
establishment of this technology. This problem has been identified within the mi-
crofluidic research community and standardized platforms are in development [cita-
tion]. With the formation of an universal development platform, a boost in request
for and development of microfluidic technologies is expected.

The increasing throughput in screening provides the data basis for investigation
in mechanistic and molecular properties, driving the development of in silico ap-
proaches to process design. A comparison to the field of chemometrics shows the
direction and potential of this development. Here, public databases for molecule
structures and properties are in place and are actively expanded and curated by re-
search and industry. Structure driven modeling is based on these large and diverse
datasets and benchmarks and quality standards are widely agreed upon [citation].
This extent and quality in quantitative modeling will be seen in biomolecule process
development, as computational power is becoming accessible by new computer
generations and distributed computing. The lack of suitable descriptors to describe
large scale molecule interactions has been identified and is topic of ongoing re-
search. Also the lack of suitable software programs for fast development cycles
extending from descriptor to prediction and deployment is addressed. These de-
velopments will indubitably lead to a higher degree in model standardization and
comparability between research projects.

These developments are not limited to a single purification technique, but are
rather paving the change from empirical and purely experimental approaches to a
model and data focused process design in biomolecule purification.
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