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ABSTRACT
Nonlinear Explicit Algebraic Subgrid-scale Stress

Models (EASSMs) have shown high potential for Large
Eddy Simulation (LES) of challenging turbulent flows on
coarse meshes. A simplifying assumption made to enable
the purely algebraic nature of the model is that the Subgrid-
Scale (SGS) kinetic energy production and dissipation are
in balance, i.e., P~ε � 1. In this work, we propose an
improved EASSM design that does not involve this pre-
calibration and retains the ratio P~ε as a space and time
dependent variable. Our model is based on the partial dif-
ferential evolution equation for the SGS kinetic energy ksgs
and the assumption that the ratioP~ε evolves slower in time
than ksgs. Computational results for simple cases of forced
isotropic turbulence show that the new model is able to track
the evolution of the SGS kinetic energy significantly better
than the dynamic and non-dynamic EASSMs of Marstorp
et al. (2009). Also the predicted kinetic energy spectra
and resolved dissipation evolution are in excellent agree-
ment with reference data from Direct Numerical Simula-
tions (DNS).

INTRODUCTION AND MOTIVATION
Large Eddy Simulations (LES) is based on filtering the

scales of motion in such a way that the energetic scales are
resolvable on a reasonably coarse mesh. This introduces an
extra unknown into the governing equations, the subgrid-
scale (SGS) stress tensor. Not surprisingly, the accuracy of
the LES depends on the ability of the models to represent
effects of the SGS stresses on the resolved scales of motion.

Eddy viscosity models, such as the dynamic Smagorin-
sky model (Germano et al., 1991) assume that the SGS
stress is linearly proportional to the resolved strain-rate ten-
sor, in a fashion similar to the Boussinesq approximation
employed in Reynolds Averaged Navier-Stokes (RANS)
simulations. While this assumption offers simplicity and
considerable numerical robustness, it is, strictly speaking,
invalid even for simple canonical cases such as homoge-
neous isotropic turbulence (Tao et al., 2000, Horiuti, 2003).
A typical approach to improve on this shortcoming is to in-
clude a second non-linear tensor in addition to the strain-
rate tensor, see Meneveau & Katz (2000) and Wang &
Bergstrom (2005), e.g..

More advanced, Nonlinear Explicit Algebraic Subgrid-
scale Stress Models (EASSMs) have lately demon-
strated very promising results for complex flow scenar-

ios. Marstorp et al. (2009) introduced the first EASSM for
LES by extending modeling strategies common in Explicit
Algebraic Reynolds Stress Models (EARSM, see Taulbee
(1992), Girimaji (1996), and Wallin & Johansson (2000),
e.g.). Their dynamic and non-dynamic EASSM variants
are computationally efficient and outperform classical eddy
viscosity models in particular on coarser grids (Montecchia
et al., 2017). The improvement in results are primarily at-
tributed to a better representation of the SGS anisotropy.

The general procedure to derive an EASSM for LES
is in close analogy to EARSM for RANS. Starting from
an evolution equation for the SGS stress tensor, a weak-
equilibrium assumption (Rodi, 1972) is employed to elim-
inate the material time derivative of the SGS anisotropy
stress tensor. With the help of the tensorial bases formula-
tion of Pope (1975) for expressing the SGS stress anisotropy
and additional models for the remaining terms, such as the
pressure-strain correlation and the dissipation tensor, an ex-
plicit algebraic relation for the SGS stress tensor is derived.
This relation, however, is inherently implicit and non-linear
in terms of the SGS stresses, a known difficulty in the world
of EARSM. To remove this non-linearity, Marstorp et al.
(2009) further make the assumption that the SGS turbulent
kinetic production P and the energy dissipation rate ε are
in balance.

p.
d.

f.

P~ε

Reλ � 90
Reλ � 229
Reλ � 340

f�P~ε � 0.21� � 0.75

f�P~ε � 0.21� � 0.67

f�P~ε � 0.57� � 0.57

Figure 1: Probability density function of the ratio of
subgrid-scale kinetic energy production to dissipa-
tion P~ε for homogeneous isotropic turbulence dif-
ferent Taylor micro-scale Reynolds numbers (Gnana-
sundaram et al., 2019).
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From a standpoint of mathematical complexity, this
perfect equilibrium assumption, i.e., P~ε � 1, sets the
framework for an attractive class of fully explicit and alge-
braic nonlinear models. Nevertheless, it needs to be pointed
out that this assumption significantly limits the generality of
the model. Choosing P~ε � 1 implies that ksgs is globally
conserved and its local evolution is purely driven by ad-
vection and diffusion. To determine the evolution of ksgs,
Marstorp et al. (2009) thus used algebraic closures that
adapt ksgs instantaneously to the resolved scales. A con-
sequence of this procedure is that such models are unable
to accurately capture the temporal evolution of ksgs, which
is important in non-equilibrium flows, such as laminar-
turbulent transition or adverse pressure-gradient boundary
layers.

To emphasize the importance of this point, we show
the probability density function (p.d.f.) of the ratio of
subgrid-scale kinetic energy production to dissipation, P~ε ,
for three different Taylor micro-scale Reynolds numbers
Reλ � 90, 229 and 340 in Fig. 1. We observe that the
p.d.f. is highly skewed and becomes less flat with increasing
Reλ . In all three cases, values significantly smaller than 1
are associated with the maximum probability; we measured
P~ε � 0.21 for Reλ � 340 and Reλ � 229. This indicates
a strong local (in space and in time) imbalance between P
and ε , which should be accounted for in SGS modeling.

Equilibrium of SGS production and dissipation can be
assumed only in a statistical sense for the mean quantities
in fully developed statistically stationary flows, that is, it
may be justified to assume `Pe~`εe � 1, where ` �e repre-
sents (space, time, or ensemble) averaged quantities. How-
ever, this is fundamentally different from `P~εe or requir-
ingP~ε-equilibrium locally and instantaneously. Neverthe-
less, we should note that the assumption of P~ε � 1 is not
unique to the EASSMs of Marstorp et al. (2009), but in fact
is implied by linear eddy viscosity models and consequently
rather common in SGS modeling.

In this work, we propose and evaluate an alternative
modeling approach where P~ε is not strictly fixed to unity
but can vary arbitrarily in space. While additional clo-
sure relations based on similar assumptions are common in
the context of EARSM for RANS (see Wallin & Johans-
son (2000), for example), EASSM for LES that solve for
the SGS production-dissipation imbalance are rather unex-
plored. In the following we propose an alternative way to
treat local SGS imbalance effects efficiently in LES.

A NON-EQUILIBRIUM EXPLICIT ALGEBRAIC
SUBGRID-SCALE STRESS MODEL
Definitions

Let us first introduce some notations. We are interested
in modelling the SGS stress tensor τi j that appears in the
filtered incompressible Navier-Stokes equations:

∂ Çui

∂xi
� 0 (1)

∂ Çui

∂ t
� Çu j

∂ Çui

∂x j
� �

1
ρ

∂ Çp
∂xi

�ν
∂

2Çui

∂x2
i
�

∂τi j

∂x j
� fi , (2)

where ui is the velocity component, p is the pressure, ρ and
ν are the fluid’s density and kinematic viscosity, and fi is an
external body force. The filtering operation is denoted byÈ���, and subscript indices are used to represent vectorial and

tensorial quantities, where summation over repeated indices
is implied.

The SGS terms that result from the filtering pro-
cedure that can be expressed using generalized cen-
tral moments (Germano, 1992). Given three quanti-
ties, say α1, α2 and α3, the second-order moments are
G �α1,α2� �Êα1α2 � Çα1 Çα2 and the third-order moments are
G �α1,α2,α3� � Ëα1α2α3 � Çα1G �α2,α3� � Çα2G �α3,α1� �Çα3G �α1,α2�� Çα1 Çα2 Çα3.

Following this notation, we define the SGS stress ten-
sor τi j, the SGS kinetic energy ksgs and the normalised SGS
stress anisotropy ai j as τi j � G �ui,u j� �Éuiu j � Çui Çu j, ksgs �
1
2G �ui,ui� � 1

2 �Éuiui� ÇuiÇui� and ai j � τi j~ksgs � �2~3�δi j,
where δi j is the Kronecker delta.

In the absence of any external body force, the evolution
equation for the SGS stress tensor τi j is

Dτi j

Dt
�

∂

∂xk

<@@@@@@@@>
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turbulent transport
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pressure transport
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viscous diffusion
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�2νG� ∂ui

∂xk
,

∂u j

∂xk
�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dissipation

, (3)

where D���~Dt is the material derivative, and the SGS ki-
netic energy evolution equation

Dksgs

Dt
�

∂Tk
∂xk

�P �ε. (4)

is obtained by taking half of the trace of Eq. (3), where Tk �
1
2Tiik is the transport term that combines pressure, turbulent,
and viscous effects.

From Eq. (4), we see that the term �P�ε� on the right-
hand-side (r.h.s.) drives the evolution of the volume av-
eraged ksgs. The transport term Tk is a transfer term and
vanishes when the volume average of Eq. (4) is considered.
Therefore, to capture the dynamics of ksgs, the imbalance
between P and ε must be considered.

Equation (3) provides the starting point for the deriva-
tion of any EASSM. For simplicity, we reduce Eq. (3) to a
compact form, which captures the functional equivalence of
the different terms involved:

Dτi j

Dt
�

∂Ti jk

∂xk
�Pi j �Πi j �εi j (5)

The transport term Ti jk includes the turbulent, pressure, and
viscous effects present in Eq. (3). The terms on the r.h.s.
of Eq. (5), i.e., Pi j, Πi j, and εi j are the SGS kinetic energy
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production, the pressure-strain correlation, and the dissipa-
tion tensors, respectively. Finding an algebraic relation for
τi j in Eq. (5) requires neglecting the temporal and spatial
derivatives on the left-hand-side (l.h.s.) of Eq. (5). To this
end, the first term on the l.h.s. of Eq. (5) can be rewritten
in terms of the material derivative of the normalized SGS
stress anisotropy and the SGS kinetic energy to yield

Dτi j

Dt
� ksgs

Dai j

Dt
�

τi j

ksgs

Dksgs

Dt
. (6)

Until this point, no assumptions or simplifications has been
made. The first simplification comes from the weak equilib-
rium assumption, which is borrowed from RANS Reynolds
stress models (Rodi, 1972).

Within the context of LES, our interpretation of the
weak equilibrium assumption is that ai j in Eq. (6) adjusts
so quickly to the local environment defined by the resolved
quantities that its material time derivative can be ignored.
Thus, the evolution of τi j is gouverned by the slower evolu-
tion of ksgs:

Dτi j

Dt
�

τi j

ksgs

Dksgs

Dt
. (7)

Combining the evolution equation of ksgs (Eq. (4)), and
Eq. (5), we obtain

τi j

ksgs
�P �ε �

∂Tk
∂xk

�� ∂Ti jk

∂xk
�Pi j �Πi j �εi j. (8)

After having simplified the first term on the l.h.s. of Eq. (5),
the second term is modeled as

∂Ti jk

∂xk
�

τi j

ksgs

∂T k
∂xk

. (9)

Similar to the interpretation of the weak equilibrium as-
sumption, where the evolution of τi j is captured through
the evolution of ksgs, Eq. (7), the aforementioned simplifi-
cation can be viewed in the way that one can forgo com-
puting the transport quantities in the SGS stress evolution
equation provided that it is accounted for in the evolution of
SGS kinetic energy. This leads us to

τi j

ksgs
�P �ε� � �Pi j �Πi j �εi j� . (10)

The presence of τi j and P on the l.h.s. of Eq. (10) gives
rise to a nonlinearity in terms of τi j , because P � �τi jÇSi j,
where ÇSi j � �Çui, j �Çu j,i�~2 is the resolved strain rate tensor.
Marstorp et al. (2009) circumvent this difficulty by assum-
ing P~ε � 1, which removes the non-linearity and the l.h.s.
vanishes completely.

Instead of assuming P~ε � 1, we adopt the methodol-
ogy commonly seen in RANS (Girimaji, 1996, Wallin &
Johansson, 2000), and retain P~ε as an extra unknown in
the equations. We will revisit the treatment of this ratio at
the end of this section. On the r.h.s. of Eq. (10), Pi j is ex-
pressed in terms of the anisotropy tensor ai j , rotation rate

tensor ÇΩi j � �Çui, j �Çu j,i�~2 and strain rate tensor ÇSi j as

Pi j � ksgs��4
3
ÇSi j ��aikÇSk j �ÇSikak j���aikÇΩk j � ÇΩikak j�	,

(11)
without loss of generality, whereas Πi j and εi j require ad-
ditional models.

For the modeling of the pressure-strain correlation,
Πi j, we use the LRR-QI model of Launder et al. (1975)
with the same constants and coefficients as proposed for
RANS. It must be noted that the model for Πi j is not de-
coupled from εi j. To understand this, one must look deeper
into how the model is constructed. The final expression for
the LRR-QI model stems from the separation of the models
for the slow and rapid effects of the pressure-strain term in
RANS. The joint model for Πi j acts in a way that the slow
and rapid pressure-strain tensors decrease the anisotropy of
εi j and Pi j, respectively. Based on that, the common prac-
tice in RANS is to model the deviator of the dissipation ten-
sor together with the slow pressure-strain term (see Girimaji
(1996), Lumley & Newman (1977), e.g.). So, the LRR-QI
is a model for Πi j ��ε d

i j �ε
s
i j�, which can be expressed as

Πi j ��ε d
i j �ε

s
i j� � �CRεai j �

4
5

ksgsÇSi j�

3
11
�2�3C2�ksgs�ÇSikak j �aikÇSk j �

2
3
ÇSklaklδi j��

1
11
�10�7C2�ksgs�ÇΩikak j �aikÇΩk j�� 2

3
εδi j. (12)

The first term on the r.h.s. of Eq. (12) models the slow
pressure-strain term, which includes now also the model for
ε

d . CR � 1.5 is the Rotta constant and C2 � 0.4. The last
term on the r.h.s. is ε

s
i j and the rest of the terms provide

the model for the rapid pressure-strain term. Combining
Eqs. (10) to (12), we can rewrite Eq. (10) as

�ai j �
2
3

δi j��P
ε
�1� � 1

ε
��CRai j �

8
15

ksgsÇSi j

��9C2�5
11

��ÇSikak j �aikÇSk j�ksgs

��18C2�12
33

�ksgsÇSklaklδi j

��1�7C2

11
��aikÇΩk j � ÇΩikak j�ksgs�

2
3

εδi j	 .
(13)

Explicit relations for ai j can be found from Eq. (13) by sub-
stituting the tensorial basis representation of Pope (1975)
for ai j. We restrict ourselves to the same ansatz as Marstorp
et al. (2009), i.e., ai j � G1T 1

i j �G2T 2
i j , where T 1

i j �
ÇS�i j and

T 2
i j �

ÇS�ikÇΩ�

k j �
ÇΩ�

ik
ÇS�k j, and G1 and G2 are functions that

must be determined. The superscript ���� denotes quantities
non-dimensionalized with the timescale t� � ksgs~ε , that is ,ÇS�i j � t�ÇSi j and ÇΩ�

i j � t�ÇΩi j.
Note that the tensorial expansion of ai j in terms of the

tensors T 1
i j and T 2

i j is again borrowed from RANS. In the
EARSM of Wallin & Johansson (2000), the use of two ten-
sors to form the basis for ai j is justified in the limit of two
dimensional mean flows, where more complex tensors in
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the original formulation of Pope (1975) become linearly de-
pendent or zero. This argument is generally not valid for
LES as we deal with inherently unsteady three-dimensional
velocity fields and other tensors may contribute as well.
This should be explored in future work.

The constants G1 and G2 can be derived by substitut-
ing ai j � G1T 1

i j �G2T 2
i j into Eq. (13). Although we selected

the same basis tensors as Marstorp et al. (2009), our model
definitions lead to different functionals for G1 and G2:

G1 � �
18
15

<@@@@>
� 9η

4 �
� 9η

4 �2
�2ÇΩ�

i j
ÇΩ�

ji

=AAAA?,

G2 �
4

9η
G1 , (14)

where

η �

P

ε
�1�CR (15)

includes the ratio P~ε , which was retained as an extra un-
known.

In order to close the model, we must determine ksgs, ε

and P~ε . For ksgs, we follow Yoshizawa & Horiuti (1985)
and use a modeled version of Eq. (4),

Dksgs

Dt
�

∂

∂x j
��νk �ν� ∂ksgs

∂x j
	 � �τi j

∂Çui

∂x j
�Cc

k3~2
sgs

`sgs
, (16)

where `sgs is the SGS length scale taken as the grid size,
νk �Ck`sgs

»
ksgs is an eddy viscosity and the dissipation is

modeled as ε �Cck3~2
sgs ~`sgs. The constants Cc and Ck must

be calibrated, which is the topic of the next section.
Finally, we return to the treatment of P~ε . Instead

of formulating additional closure expressions as done in
RANS, we propose an approach that uses the fact that we
resolve instantaneous quantities in LES. The ratio, P~ε can
be viewed as a measure for the deviation from the perfect
local equilibrium. Any imbalance in this local equilibrium
will add or remove kinetic energy to or from the SGS. We
assume that this imbalance evolves slowly in time, and pro-
pose to take the value of P~ε from the previous time step.
This simple approach does not impose additional restric-
tions on the spatial variation of the P~ε and does not add to
the total number of closure relations needed to solve τi j.

Because this alternative formulation of the EASSM
does not rest on the perfect local equilibrium assumption
between P and ε , we refer to it as the non-equilibrium ex-
plicit algebraic (NEA) model. This is not to confused with
the weak equilibrium assumption, which is still used to de-
rive the model.

Calibration
The next natural step is to determine the constants CR,

Ck and Cc, in Eqs. (15) and (16). For the two first constants,
we use the standard values CR � 1.5 and Ck � 0.1 (Rotta,
1951, Yoshizawa & Horiuti, 1985). To calibrate Cc, we con-
sider a reference DNS solution for a case of forced homo-
geneous turbulence. This reference solution correspond to
a fully developed turbulence flow with Reλ � 220 in a triply

E
�κ�

κ

Cc

Figure 2: The variation in the time averaged resolved
spectrum with Cc; The solid line corresponds to
Cc � 1.55 and symbols indicate the filtered and time-
averaged DNS spectrum.

periodic box of size 2π . The DNS is performed with a de-
aliased pseudo-spectral scheme (Pestana & Hickel, 2019)
with 7683 degrees of freedom. The LES runs are performed
with a staggered second-order finite-volume scheme on a
323 spatial grid and with a third-order Runge-Kutta scheme
in time.

DNS and LES are initialized with zero velocity and use
the forcing scheme of Alvelius (1999) with the same forc-
ing parameters. The force field has a Gaussian spectrum
and is designed in such a way that the box-averaged energy
input rate εI � ` fi fie~2 is independent of the velocity-force
correlation. Instead, it depends solely on the force-force
correlation, which is chosen to be statistically the same in
both simulations. To compare both the DNS and the LES
results, we filter the DNS fields with a box-filter.

Figure 2 shows the three-dimensional spherically aver-
aged energy spectrum for the the DNS and for several LES
with different values for Cc A 1. It is clear that the model
is highly sensitive on the value of Cc. We observe that high
values of Cc increase the SGS dissipation ε , but it does not
lead to a more dissipative model. In contrast, it has the op-
posite effect on the large scales: a higher ε reduces the SGS
kinetic energy ksgs and hence less energy is drained from
the resolved scales. The exact amount of energy drained
from the resolved scales ultimately depends on how well
the SGS kinetic energy production is modeled. In our for-
mulation, the modeling is such that P � ksgst�G1ÇS�i j; note
that T 2

i j does not contribute to P . An increased level of ε

leads to a slower growth of ksgs, and also lowers t� as they
are inversely related. As a results, the modelled P reduces
and the model in turn drains less energy from the resolved
scales. We also clearly see this trend in Fig. 2 where the
energy density of the resolved wave numbers increases due
to insufficient model dissipation with increase in Cc. We
find that the energy spectrum of the DNS in Fig. 2 is best
reproduced by the LES with Cc � 1.55.

Validation
In this section we test the present model for a case of

forced homogeneous turbulence with Reλ � 340. Again,
DNS simulations are performed to produce a reference so-
lution. For comparison, we also perform LES calculations
using the models of Marstorp et al. (2009), which are here-
after referred to as the SEA (standard version) and the DEA
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se~`

k r
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e

t~τL
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e

t~τL

Figure 3: Evolution of the volume averaged resolved kinetic energy (left) and SGS kinetic energy (right).

`ε re
se~`

ε
Ie

t~τL

ε
~`ε I

e

t~τL

Figure 4: Evolution of the volume averaged dissipation in the resolved scales (left) and SGS kinetic energy dissi-
pation (right).

E
�κ�

κ

Figure 5: Averaged spectrum obtained of the differ-
ent EASSMs generated using a homogeneous forcing
scheme. The DNS data is filtered using a spectral cut-
off filter with κc � 20.

(dynamic version). Our non-equilibrium model is denoted
as NEA in the following.

The numerical method and the computational domain
for DNS and LES are the same as described in the previous
section. Only the numerical resolution has changed to adapt
to the higher Reλ : the DNS runs are performed with 15363

and the LES runs with 403 degrees of freedom, respectively.

For comparison of DNS and LES, the results from the DNS
are filtered with a three-dimensional explicit spectral cut-off
filter (κc � 20).

All simulations are initialized with a flow at rest, i.e.,
ui�t � 0� � 0, and the observed slow transition to a fully de-
veloped turbulent flow field is controlled by a large scale
forcing (Alvelius, 1999) with energy input εI � const. In
Fig. 3, we show `krese and `ksgse non-dimensionalised with
their respective time averaged values at steady state, `krese
and `ksgse. Differently, the `εrese and the `εe in Fig. 4 are
non-dimensionalised using the box-averaged energy input
rate due to the forcing, i.e., `εIe. The time evolution of the
quantities are plotted for t � 5τL, where τL is the large eddy
turnover time. The presence of a prominent peak in the evo-
lution of the domain averaged quantities, both `krese~`krese
and `ksgse~`ksgse are well captured by the NEA model. Fur-
thermore, in the transient of `ksgse~`ksgse, the DNS shows a
delayed formation of the SGS scales in the simulation, i.e.,
they are formed only after about t � 0.5τL. In LES, we see
that only the NEA model captures this delay, while the DEA
and the SEA models predict a growth of the ksgs right from
the start of the simulation. The ability of the NEA model to
capture the correct transient of `ksgse~`ksgse is attributed to
the additional model equation for the evolution of ksgs. On
the other hand, algebraic closures used to determine ksgs,
as in the SEA the DEA, imply an instantaneous adaptation
of ksgs to the resolved scales, as mentioned earlier. There-
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fore, the SGS scales also start to develop instantaneously
as soon as the forcing injects energy into the large and re-
solved scales. As a result, the delayed growth observed in
DNS and with the NEA model is not captured by the SEA
and the DEA models.

The evolution of `εrese~`εIe and `εe~`εIe is shown in
Fig. 4. The level of the mean resolved dissipation is also an
indication of the energy density of the spectrum at higher
wave numbers. Higher energy density at larger wave num-
bers correspond to a higher level of resolved dissipation.
This will become more evident when we discuss the time
averaged resolved energy spectrum in Fig. 5. From Fig. 4, it
can be seen that in terms of the final steady state values, the
NEA and the DEA give similar predictions of `εrese~`εIe.
The SEA stands apart and over-predicts the level of the
mean resolved dissipation as compared to the DEA, the
NEA and the DNS. The peak in the evolution of `εrese~`εIe
is only captured by the NEA. This is also seen in the evo-
lution of `εe~`εIe, where only the NEA captures the slow
initial growth and the peak. In this aspect, the proposed
model is a clear improvement.

Finally, the time averaged three-dimensional energy
spectrum for the statistically stationary state is shown in
Fig. 5. Results for the DEA and NEA are very similar
and both closely resemble the data from the DNS. As men-
tioned, this was already expected from the very similar re-
solved dissipation at statistical steady state. Not surpris-
ingly, the SEA shows an accumulation of energy at higher
wave numbers, which indicates insufficient accuracy of the
energy dissipation from the resolved scales by the SEA.
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