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Abstract

This paper investigates the viscoelastic/viscoplastic/fracture behavior of an epoxy resin.
A state-of-the-art pressure-dependent elastoplastic constitutive model (Melro et al. (2013)) is
expanded to include viscoelasticity, viscoplasticity and a modified damage formulation with
linear softening and shrinking pressure-dependent fracture surface. A water plasticization
model with a single degradation factor is proposed. A set of new quasi-static and fatigue
experiments is used to calibrate the model and assess its predictive capabilities. The model
correctly represents the rate dependent plasticity and fracture initiation behavior of the stud-
ied epoxy. The stiffness and strength degradations after plasticization are also accurately cap-
tured. The model is found to be less suitable in reproducing the measured loading-unloading
behavior, which displayed strong nonlinearity in combination with limited permanent defor-
mation. Nevertheless, reasonably accurate fatigue life predictions in the low-cycle regime are
obtained.

Keywords: Viscoelasticity, Viscoplasticity, Fracture, Plasticization, Epoxy

1 Introduction

Epoxy resins are widely used in industrial applications, from paints, coatings and adhesives in its
pure form to aerospace, marine and energy applications in the form of composite parts after combi-
nation with a range of synthetic or natural fibers. For the particular case of composites, the search
for realistic material models capable of reproducing their complex mechanical behavior becomes
more and more urgent. In this regard, multiscale approaches, in which each constituent material
is explicitly modeled, become interesting since complex nonlinear constitutive phenomena can
be captured and upscaled without loss of generality. These multiscale techniques are particularly
useful when devising ply-level failure criteria considering complex loading cases [1, 2] and mod-
eling inherently microscopic physical and chemical processes caused by exposing the material
to extreme environments [3, 4]. In such applications, employing high-fidelity models for each
constituent material is of utmost importance.

Accurate constitutive modeling of epoxies and other polymers is complicated by the fact that
their mechanical behavior is time- and temperature-dependent. Such viscous effects give rise
to phenomena such as strain rate dependency [5], ratcheting [6] and stress relaxation [7]. Ad-
ditionally, polymers are known to develop permanent strains through pressure-dependent plastic
yielding [8] and, in the particular case of crosslinked thermosets, undergo rate-dependent brittle
failure at relatively low strain levels [9, 10]. Finally, all of these material features are sensitive to
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physical and chemical effects caused by water absorption [11, 12], physical aging [13], oxidation
[14], among others. Therefore, despite the already large amount of literature on the subject, ex-
perimental and numerical efforts on polymer characterization often ignore such complex material
aspects.

A number of authors opt for elastoplastic constitutive models with pressure-dependent yielding
[1, 3] calibrated using experiments with fixed strain rate and temperature and therefore ignoring
the aforementioned viscous material features. The use of such models to describe material failure
in fatigue or during aging may therefore be unrealistic. Phenomenological corrections have been
proposed in order to introduce such dependencies by scaling a reference yield surface depending
on rate and temperature [15]. However, this approach becomes unsuitable in loading situations
with continuously changing strain rate or in non-isothermal conditions.

A second class of models attempts to introduce a time scale to the plastic flow rate while
keeping the original inviscid yield surface [10, 16, 17, 12, 18]. This approach is interesting for
finite element implementation since it can build upon previously implemented inviscid models.
However, the temperature dependence is still not captured.

A third option in which temperature dependency is also addressed involves using Eyring-type
rate equations [19], which consider yielding as a thermomechanically activated process [20, 21, 5,
22]. This is usually combined with a hyperelastic model in order to capture orientation hardening
at high strains [5].

Finally, a number of physically-based macromolecular constitutive models have been devised
which take into account changes in polymer chain orientation after yielding [9, 23, 24, 25, 26, 27,
28, 29, 30, 31]. In these approaches, both strain and temperature dependencies as well as orien-
tation hardening are captured and arise as a consequence of underlying macromolecular mecha-
nisms, providing a strong physical basis for the models. However, a number of drawbacks remain
for application of these models in the numerical analysis of highly cross-linked thermosetting
polymers. Firstly, most of the models are constructed with thermoplastic polymers in mind, which
are capable to attain significantly higher strain levels. Consequently, the models are seldom con-
cerned with material failure through fracture, while for highly cross-linked epoxies fracture is
indeed observed at relatively low strain levels. Secondly, the models usually assume that no plas-
tic deformation occurs before the peak stress, while experiments in epoxy show the occurrence of
pre-peak plasticity (see [9] for an adapted macromolecular model). Thirdly, the models are often
formulated in terms of principal stretches and seldom provide tangent stiffness operator expres-
sions (notable exceptions are [31, 32]), making their finite element implementation and use for
micromechanical modeling of complex stress states a difficult task.

Regarding modeling of the cyclic response of polymers, multiple works are limited to ac-
curately describing the stress-strain behavior after a small number of loading-unloading cycles
[11, 10, 18]. In those works, the viscoelastic-viscoplastic material behavior is taken into account
but no attempt is made to model material failure in fatigue. At the other end of the spectrum, a
number of works focus on high-cycle fatigue failure by phenomenologically imposing the evolu-
tion of a continuum damage internal variable with the number of fatigue cycles while ignoring
viscous contributions [33, 34]. However, experimental results by multiple authors [29, 6, 7] em-
phasize the occurrence of fatigue failure with little to no change in stiffness, particularly in the
high-cycle regime, which invalidates the use of a damage variable. It is important to note that
modulus measurements in fatigue are affected by viscoelastic contributions that relax over time
and might be erroneously interpreted as modulus degradation, in particular for tests in the low-
cycle regime. For materials showing such type of fatigue failure behavior, appropriate definitions
for the onset and evolution of damage are needed while maintaining a correct description of their
viscous behavior.
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Figure 1: Material response in a loading-unloading scenario with increasing amplitude.

1.1 Experimental motivation

Figure 1 illustrates the shortcomings of using state-of-the-art elastoplastic-damage (E-P-D) for-
mulations to model the cyclic behavior of the epoxy resin considered here. In a preliminary study,
a material sample was subjected to a number of loading-unloading cycles at 1 mm/min with in-
creasing displacement amplitudes until failure occurred. The resultant load-displacement curve
can be seen in Figure 1a, while the expected material response using either the inviscid model by
Melro et al. [1] or its rate-dependent variation proposed by Bai et al. [15] is shown in Figure 1b.

According to the model, the material behaves elastically up until the yield point Fy after which
a hardening regime is observed until the fracture load Ff is reached. The model unloads and
reloads elastically along the same path with a slope equal to the initial stiffness until damage is
activated, at which point plasticity stops evolving and the stiffness gradually decreases until final
failure. During reloading, the curve always meets its respective unloading point and the response
returns to the curve for monotonic loading even if a rate-dependent yield surface is used [15], since
the strain rate does not change throughout the test.

On the other hand, experimental unloading and reloading branches are nonlinear and do not
follow the same path, with significant hysteresis (viscoelasticity). Upon reloading, the curve does
not meet its original unloading point and further plastic strain develops (viscoplasticity). Finally,
the specimen fails without ever reaching the monotonic failure load and without a gradual stiffness
reduction, suggesting that fracture initiation is driven by plastic strain development and rapid crack
propagation leading to brittle failure. Furthermore, subjecting the material to fatigue loads in the
high-cycle regime leads to failure without any measurable loss of stiffness and after stabilization
of ratcheting, suggesting that fracture initiation is not only affected by plastic strain development
but also by phenomena occurring in the elastic regime.

Based on these preliminary investigations, a number of additional model ingredients may be
proposed in order to improve the performance of conventional elastoplastic-damage models when
dealing with time-dependent mechanical behavior while keeping as many of their original com-
ponents as possible. Firstly, the observed hysteresis behavior can be captured by adding a time-
dependent stiffness contribution to the existing elasticity formulation. Secondly, since permanent
strains develop gradually under cyclic loading, plastic strain development must be retarded by
allowing stresses to temporarily surpass the original yield surface. Finally, the existing damage
formulation must be adjusted in order to allow for fracture initiation at load levels lower than
the original fracture load by introducing a fracture surface shrink driven by both viscoelastic and
viscoplastic mechanisms.
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1.2 Outline of the study

In this paper, the state-of-the-art pressure-dependent elastoplastic formulation presented by Melro
et al. [1] is expanded into a viscoelastic-viscoplastic-damage (VE-VP-D) model. The modified
model can in turn be used in isolation or to provide more realistic predictions of the mechanical
behaviour of composite materials subjected to monotonic or cyclic loadings through microme-
chanical modeling.

Viscoelasticity is incorporated through a series of springs and dashpots. Viscoplasticity is
modeled through a Perzyna-type formulation. Fracture is modeled by a thermodynamically consis-
tent damage model with linear softening and a fracture surface that shrinks as energy is dissipated.
Finally, the mechanical model is complemented by a damage model with a single degradation
factor in order to take into account changes in polymer behavior after moisture absorption. The
formulations are presented in a way that facilitates their implementation in a finite element frame-
work. The model is calibrated using an original series of monotonic and cyclic experiments on
pure resin specimens both dry and after being saturated in water at 50 ◦C. After calibration, the
model is used to predict the rate-dependent response of the water-saturated polymer and its behav-
ior during loading-unloading and fatigue tests. The model performance is assessed by comparing
these predictions with validation experiments.

2 Model formulation

2.1 Mathematical notation

In this work, both index notation and matrix notation will be used to represent tensors and vec-
tors. When index notation is used, the indices i, j, k, l range from one to the number of spatial
dimensions of the problem being solved. In products between two entities in index notation, sum-
mation over repeated indices is implied. In matrix notation, vectors are represented by boldfaced
lower-case symbols while matrices are given by boldfaced upper-case symbols. When represent-
ing stresses and strains in matrix notation, the use of Voigt notation is implied.

2.2 Rheological model

The present model can be schematically represented by the rheological model of Figure 2. For a
given applied stress, the strain response is decomposed into elastic and plastic parts. The elastic
behavior is represented by a parallel chain of Maxwell elements with springs and dashpots to
which a long-term spring is added. The plastic behavior is represented by a sliding element on
which the stress cannot be higher than the yield stress σy. By adding a dashpot element in parallel
with the sliding element, an overstress is allowed to develop resulting in viscoplastic behavior.
Finally, damage is enforced by degrading the resultant effective stress σ̃.

In the following sections, each model component will be formulated and expressions for stress
update and tangent stiffness will be provided in order to facilitate their implementation in general
finite element codes.

2.3 Viscoelasticity

In the model, an additive decomposition of strain in elastic and plastic parts is considered:

εij = εe
ij + εp

ij (1)
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Figure 2: Schematic representation of the VE/VP/D model.

The viscoelastic stress is computed in integral form by applying the Boltzmann superposition
principle [16]:

σij(t) = D∞ijklε
e
kl(t) +

∫ t

0
Dve
ijkl(t− t̃)

∂εe
kl(t̃)

∂t̃
dt̃ (2)

where the long-term and viscous contributions are explicitly separated. The long-term elastic
stiffness D∞ijkl is given by:

D∞ijkl = G∞(δijδkl + δilδjk) +

(
K∞ −

2

3
G∞

)
δijδkl (3)

where G∞ and K∞ are the long term shear and bulk modulus, respectively. It is important to note
that the response of this back-bone elastic solid is time-independent and is therefore taken out of
the integral of Eq. (2).

The viscoelastic contribution has a similar form but is now composed of time-dependent stiff-
nesses:

Dve
ijkl(t) = Gve(t)(δijδkl + δilδjk) +

(
Kve(t)−

2

3
Gve(t)

)
δijδkl (4)

where Gve and Kve are the stiffnesses of the Maxwell elements of Figure 2 and can be expressed
as a Prony series of nr bulk elements and ns shear elements:

Kve(t) =

nr∑
r=1

Kr exp

(
− t

kr

)
Gve(t) =

ns∑
s=1

Gs exp

(
− t

gs

)
(5)

where Kr, Gs, kr and gs are bulk and shear stiffnesses and relaxation times, respectively.
In order to avoid performing the time integration of Eq. (2) at every time step and thus having

to store the whole strain history of every material point, the stress update can be represented in a
time discrete manner. Following the development in Haouala and Doghri [16], Eq. (2) becomes:

σij(tn+1) = D∞ijklε
e
kl(tn+1) +

nr∑
r=1

pve
r (tn+1)δij +

ns∑
s=1

Sve
ij,s(tn+1) (6)

where the deviatoric and hydrostatic viscoelastic stress contributions Sve
ij and pve of each Prony

element are given by:

pve
r (tn+1) = exp

(−∆t

kr

)
pve
r (tn) +Kr

[
1− exp

(−∆t

kr

)]
kr
∆t

(
εe

v(tn+1)− εe
v(tn)

)
(7)

Sve
ij,s(tn+1) = exp

(−∆t

gs

)
Sve
ij,s(tn) + 2Gs

[
1− exp

(−∆t

gs

)]
gs
∆t

(
εe
ij,d(tn+1)− εe

ij,d(tn)
)

(8)
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where ∆t = tn+1−tn is the time step, εv = εkk is the volumetric part of the strain and εij,d = εij−
1/3εvδij is the deviatoric part. In discrete form, only information about the previous converged
time step tn has to be stored. Finally, the total elastic stiffness can be found by substituting Eqs. (7)
and (8) into Eq. (6):

De
ijkl(tn+1) = D∞ijkl +Dve

ijkl(∆t) (9)

2.4 Viscoplasticity

In contrast with the stress update for viscoelasticity, an iterative procedure is necessary in order to
compute the stresses in the viscoplastic regime. At first, it is assumed that the increment of strain
is viscoelastic and a trial stress is computed. By explicitly isolating historical terms from terms
that operate on the current strain increment in Eq. (6), the trial stress is computed as:

σtr
ij = D∞ijkl

(
εkl(tn+1)− εp

kl(tn)
)

+Dve
ijkl

(
εkl(tn+1)− εp

kl(tn)− εe
kl(tn)

)
+ σhist

ij (tn) (10)

If no further plastic strain is developed, the computed trial stress is correct and the update is
completed by updating the historical stresses of Eqs. (7) and (8). However, if the amount of plastic
strain changes, the stresses must be corrected:

σij = σtr
ij − (D∞ijkl +Dve

ijkl)∆ε
p
kl (11)

and the historical stresses must be updated using the correct value for the elastic strain.
The yield surface adopted in this model is the one proposed by Melro et al. [1]:

fp(σ, εp
eq) = 6J2 + 2I1

(
σc − σt)− 2σcσt (12)

where σt and σc are the yield stresses in tension and compression, respectively, I1 = σkk is the
first stress invariant and J2 = 1

2SijSij is the second invariant of the deviatoric stress.
The hardening behavior is a consequence of the evolution of the yield stresses σt and σc, which

are functions of the equivalent plastic strain:

∆εp
eq =

√
1

1 + 2ν2
p

∆εp
ij∆ε

p
ij ⇒ σt = σt(ε

p
eq), σc = σc(ε

p
eq) (13)

where νp is the plastic Poisson ratio and the yield stresses are given by functions of equivalent
plastic strain that can take any form. The variation in plastic strains is computed through a non-
associative flow rule:

∆εpij = ∆γ

(
3Sij +

2

9
αI1δij

)
(14)

where γ is the plastic multiplier, the expression in parentheses is the plastic flow direction, and α
is:

α =
9

2

1− 2νp
1 + νp

(15)

The choice for non-associative plasticity is related to the pressure dependency of the model and is
done in order to avoid the occurrence of spurious volumetric plastic strains [1].

A viscous time scale is introduced in the model by relaxing the classic Kuhn-Tucker condi-
tions on the yield function and allowing it to attain positive values. This effectively delays the
development of plastic strains and allows for the development of an overstress above the yield
surface. In this work, the Perzyna-type formulation used in [16] is modified for the yield surface
of Eq. (12) and dictates the evolution of the plastic multiplier:

∆γ =

∆t
ηp

(
fp
σ0
t σ

0
c

)mp

, iff > 0

0, iff ≤ 0

(16)
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where the time discrete expression is obtained through a backward Euler scheme [16], the super-
script 0 indicates yield stress values for εp

eq = 0, and ηp and mp are the viscoplastic modulus and
exponent, respectively.

With the definition of the flow rule, the stresses of Eq. (11) may be written as:

σij =
Str
ij

ζs
+
Itr

1 δij
3ζp

(17)

where the factors ζs and ζp are:

ζs = 1 + 6
(
G∞ +Gve(∆t)

)
∆γ ⇒ ζs = 1 + 6Ĝ∆γ (18)

ζp = 1 + 2
(
K∞ +Kve(∆t)

)
α∆γ ⇒ ζp = 1 + 2K̂α∆γ (19)

Substituting Eq. (17) into the equivalent plastic strain expression of Eq. (13) through Eq. 14
and into the yield surface of Eq. (12), Eq. (16) becomes a function of ∆γ only and can be solved
iteratively using Newton’s method:

Φ(∆γ) =
∆t

ηp
(∆γ)

(
fp

σ0
tσ

0
c

)mp

−∆γ = 0 (20)

In order to accelerate convergence, it is also necessary to compute the derivative of Eq. (20)
with respect to ∆γ. This derivation is shown in A. Finally, the derivation of the consistent tangent
stiffness matrix for the viscoplastic part of the model is shown in B.

2.5 Damage

The formulation for the damage model starts with the definition of a measure of material free
energy [35, 10]:

Ψ = (1− d)

[
1

2

∫ t

0

∫ t

0

∂εe
ij(t̄)

∂t̄
De
ijkl(2t− t̄− t̃)

∂εe
kl(t̃)

∂t̃
dt̄dt̃

]
+ Ψh (21)

where 0 ≤ d ≤ 1 is the single damage variable adopted in this work and the plastic harderning
energy contribution Ψh has been ommited for compactness. It is worth mentioning that damage
evolution is not linked to the development of plastic strains, as adopted by Krairi and Doghri [10],
but rather evolves independently, similar to the approach adopted by Simo and Ju [35] and Melro
et al. [1].

For this particular definition of free energy, the term within brackets can be readily identified
as the thermodynamic force Y = −∂Ψ/∂d, and Eq. (21) may be rewritten as:

Ψ = (1− d)Y + Ψh (22)

In order to impose the second law of thermodynamics and assure that damage is an energeti-
cally irreversible process, the Clausius-Duhem inequality for the isothermal case is imposed:

Ξ = σij ε̇ij − Ψ̇ ≥ 0 (23)

where Ξ is the mechanical energy dissipation. Following the derivation by Krairi and Doghri [10],
the total derivative of the energy can be given by:

Ψ̇ = (1− d)

[
1

2

∫ t

0

∫ t

0

∂εe
ij(t̄)

∂t̄

∂De
ijkl(2t− t̄− t̃)

∂t

∂εe
kl(t̃)

∂t̃
dt̄dt̃

+
∂εe

ij

∂t

∫ t

0
De
ijkl(t− t̃)

∂εe
kl(t̃)

∂t̃
dt̃

]
− Y ḋ+ Ψ̇h

(24)
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Substituting Eq. (24) into the inequality of Eq. (23) and splitting the strains in elastic and
plastic parts as shown in Eq. (1), the damaged stress-strain relationship is recovered:

σij = (1− d)

∫ t

0
De
ijkl(t− t̃)

∂εe
kl(t̃)

∂t̃
dt̃ (25)

and the dissipation now reads:

Ξ = Y ḋ+ (1− d)Ξve + Ξp (26)

where Ξp is the plastic dissipation:

Ξp = σij ε̇
p
ij − Ψ̇h (27)

and Ξve is the viscoelastic dissipation, given by:

Ξve = −1

2

∫ t

0

∫ t

0

∂εe
ij(t̄)

∂t̄

∂De
ijkl(2t− t̄− t̃)

∂t

∂εe
kl(t̃)

∂t̃
dt̄dt̃ (28)

Adopting the concept of effective stress proposed by Simo and Ju [35], stresses in the undam-
aged portion of the material can be written as:

σ̃ij =
σij

1− d (29)

Using this definition and Eqs. (6) and (25), the thermodynamic force and viscoelastic dissipation
can be expressed in terms of effective stress as [10]:

Y =
S̃∞ij S̃

∞
ij

4G∞
+

(p̃∞)2

2K∞
+

ns∑
s=1

S̃ve
ij,sS̃

ve
ij,s

4Gs
+

nr∑
r=1

(p̃ve
r )2

2Kr
(30)

Ξve =

ns∑
s=1

S̃ve
ij,sS̃

ve
ij,s

2Gsgs
+

nr∑
r=1

(p̃ve
r )2

Krkr
(31)

For numerical simulation purposes, the stress update of Eq. (25) is done in a time discrete manner
in the same way as done in Eq. (6). The deviatoric and hydrostatic stresses used to compute Y and
Ξve are therefore the ones at time tn+1.

In order to control the evolution of damage, an internal variable r ∈ [1,∞] is adopted to
represent the size of a pressure-dependent paraboloidal fracture surface in effective stress space:

fd(σ̃, r) =
3J̃2

XcXt
+
Ĩ1(Xc −Xt)

XcXt
− r ⇒ fd(σ̃, r) = Λ− r (32)

which is similar to the yield surface of Eq. (12) but with the yield stresses substituted by the
fracture strengths Xc and Xt.

In order to allow for rate-dependent damage initiation, the viscosity already included in the
preceding viscoelastic/viscoplastic formulation is exploited by making the fracture surfaces Xt

and Xc general functions of an accumulated energy measure Υ which allows them to shrink as the
material dissipates energy:

Xt = Xt(Υ) Xc = Xc(Υ) (33)

where Υ includes the dissipated energy and the energy stored by hardening:

Υ(t) =

∫ t

τ=0

[
Ξve(τ) + σij(τ)ε̇p

ij(τ)
]

dτ (34)
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which allows for damage initiation both in a quasi-static or low-cycle fatigue scenarios (dominated
by Ξp) as well as in the high-cycle fatigue regime (dominated by Ξve).

As this shrink is driven by both VE and VP contributions, the present formulation is a departure
from the classic Chaboche-Lemaitre coupled plasticity-damage models that explicitly consider
damage as a function of plastic strain [36, 10]. The advantage of the proposed approach lies in
allowing for fracture initiation even after the backbone plastic yield surface is reached, for instance
after ratcheting stabilizes during a fatigue test [6]. Such a link between damage activation and
dissipated energy has also been put forward in literature both for quasi-static loading [10] and for
fatigue [6, 7]. After damage initiates, the fracture surface is kept constant in order to control the
amount of energy that is dissipated during damage development.

Using the classic loading-unloading conditions ṙ ≥ 0; fd ≤ 0; ṙfd = 0, the value of r can
be explicitly obtained:

rtn+1 = max

{
1, max

0≤t≤tn+1

Λt

}
(35)

It is worth mentioning that, in contrast with the plasticity-coupled damage evolution models used
by Krairi and Doghri [10] and Zhu and Sun [18], damage and plasticity evolve independently in
the present formulation.

Having defined an evolution law for the internal variable r, it is necessary to relate it to damage
variable d. Since it is often difficult to experimentally obtain fracture properties using axially
loaded specimens due to structural instabilities such as necking [9] and kinetic energy dissipation
due to rapid crack propagation, a damage evolution law with linear softening based on an uniaxial
tensile test is adopted for simplicity [37]:

d =


σ̃f(σ̃eq − σ̃0)

σ̃eq(σ̃f − σ̃0)
, σ̃eq ≤ σ̃f

1, σ̃eq > σ̃f

(36)

where σ̃0 and σ̃f are the effective stress levels at the onset of damage and at complete failure,
respectively:

σ̃0 = Xt σ̃f =
2G∗Ê

leXt
(37)

with σ̃eq being an equivalent stress measure that allows the treatment of multiaxial stress states, Ê
the instantaneous Young’s modulus computed from K̂ and Ĝ and G∗ an energy parameter related
to the fracture energy Gc which is regularized using the finite element characteristic length le
according to Bažant’s crack band model [38]. Depending on the element type, le can be computed
as:

l2D
e =

6

π 4
√

3

√
Ae l3D

e = 3
√
Ve (38)

where Ae and Ve are the element area and volume, respectively. These are computed as the sum of
the integration weights of each element in a mesh, yielding the area in case the element is 2D or the
volume in case a 3D element is used. Finally, the expression for σ̃eq can be found by evaluating Ĩ1

and J̃2 for an uniaxial stress state, inserting them into Eq. (32) and imposing the loading condition
fd = 0:

σ̃eq =
Xt −Xc +

√
(Xt −Xc)2 + 4XcXtr

2
(39)

It is important to acknowledge that adopting the free energy measure of Eq. (21) implicitly
assumes that the Poisson’s ratio will remain unchanged, leading to the aforementioned discrep-
ancy between G∗ and Gc. Furthermore, keeping a constant ratio may lead to undesired spurious
hardening when a band of elements is softening while being constrained by bands of elastically
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unloading elements. For a non-viscous model that accounts for this effect, the reader is referred to
[37]. Similar to the model by Melro et al. [1], plasticity is deactivated after initiation of damage
in order to guarantee that the energy dissipated during the whole fracture process (i.e. up until the
damage reaches d = 1) is equal to the input fracture toughness G∗.

After updating r, the damage variable d and the stresses can be computed using Eqs. (36) and
(25), respectively. In a numerical analysis context, it is also important to compute the algorithmic
tangent stiffness matrix, the derivation of which is shown in C.

2.6 Water concentration dependency

In this work, the mechanical models of the preceding sections are complemented by a simple
model for representing the effects of plasticization after water absorption on the mechanical prop-
erties of epoxy resins. This is of particular importance when accurate predictions of long-term
material performance during service are sought. Experimental evidence suggests that physical
processes such as plasticization promote significant changes in stiffness and strength after wa-
ter absorption [39, 3, 12]. In the present formulation, such changes are represented by a single
degradation factor dw:

dw =
d∞w
c∞

c (40)

where a linear dependency on the water concentration c is assumed and c∞ and d∞w are the con-
centration and the degradation level at saturation, respectively.

The degradation factor is then used to modify the properties as follows:

K̂w = (1− dw)K̂, Ĝw = (1− dw)Ĝ (41)

σw
c = (1− dw)σc, σ

w
t = (1− dw)σt (42)

Xw
c = (1− dw)Xc, X

w
t = (1− dw)Xt, G

∗
w = (1− dw)2G∗ (43)

where the viscoelastic relaxation times and the viscoplastic modulus and exponent are assumed
to remain constant. The validity of such simplifications will be assessed in the next section. It
is important to note that, in contrast with the damage formulation introduced in Section 2.5, the
evolution of dw is not irreversible and complete property recovery can be achieved through drying.

3 Experiments

3.1 Manufacturing and conditioning

The epoxy resin considered in this work is the Momentive EPIKOTE RIMR 135 / EPIKURE
RIMH 1366, with a ratio between monomer and hardener of 100:30 in weight. Panels with a
thickness of 3 mm were manufactured through vaccuum infusion molding (Figure 3a), with a
curing cycle consisting of 2 h at 30◦C, 5 h at 50◦C and 10 h at 70◦C.

Specimens were cut from the panels using a CNC milling machine in a custom-tailored short
dog-bone shape that induces a stress concentration at a single point at mid-length (Figure 4). In-
ducing strain localization at the center of the specimen in contrast to having a longer gauge length
reduces the influence of material imperfections on the fracture behavior of the material and limits
the influence of necking on its yield behavior by hindering its formation and propagation along
the length. It is important to note that necking (in tension) and barreling (in compression) are
structural instabilities which do not represent intrinsic material behavior and therefore do not gen-
erate useful data for model calibration [9]. Beam-shaped specimens used for Dynamic Mechanical
Analysis (DMA) tests were also extracted from the panels.
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(a) Manufacturing (b) Conditioning (c) Testing

Figure 3: Experimental procedure workflow.

90mm

20mm

35mm

15mm

Ø 42.6mm

Figure 4: Planar dimensions of the specimens used for tension experiments (thickness is 3 mm).

After cutting, part of the specimens was kept in a desiccator at 50◦C in vacuum until the time
of testing in order to guarantee a moisture-free material state and achieve stabilization of molecular
relaxation processes (physical aging) and post-curing [13], effectively creating a baseline material
state with which results in aged samples will be compared. Another set of specimens was con-
ditioned in demineralized water at 50◦C (20◦C lower than the saturated Tg [40]) and tested after
saturation at a concentration level of 3.2%. The conditioning setups are shown in Figure 3b.

3.2 Mechanical tests

For calibration of the viscoelastic moduli and relaxation times, DMA tests were conducted using
a Netzsch DMA 242 E Artemis apparatus. Dry and saturated prismatic samples (55 x 10 x 3 mm3)
were loaded in three-point bending with a deflection amplitude of 100µm at multiple frequencies
ranging from 0.1 Hz to 25 Hz, resulting in storage (E’) and loss (E’) moduli values as a function of
frequency. The reported DMA results and calibrated viscoelastic properties were obtained using
averaged measurements from two specimens.

Dry and saturated dog-bone specimens were tested in tension in an MTS universal test frame
in displacement control at three different nominal rates (0.1 mm/min, 1 mm/min and 36 mm/min).
Furthermore, dry specimens were tested in tension until failure with intermediate unloading branches
and in stress-controlled fatigue with an R ratio of 0.1. For quasi-static and loading-unloading tests,
two specimens were tested for each condition. For fatigue, four different stress levels were consid-
ered with 3 specimens being tested for each level. All tests were conducted at standard laboratory
conditions (23◦C, 50%RH). The dependency of resin properties on temperature will therefore not
be treated in this work. For relevant investigations on the matter, the reader is referred to [9, 12].

Strain in the longitudinal direction was measured through micro video-extensometry by stamp-
ing an array of dots covering an area of 1.8 x 1.8 mm2 at the center of the specimens and tracking
their positions throughout the test using a camera equipped with a microscope lens (Figure 3c).
Each frame from the resultant videos was then assigned a time stamp in sync with the load and dis-
placement signals from the test frame. Finally, the relative distances between the dots at the edges
of the tracked area were used to compute the engineering strain εx. Since the constitutive features
of interest are located in the low strain regime and measurements after global softening (strain
localization) occurs are not used for calibration, the use of engineering strains was considered a
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reasonable approach.

3.3 Model calibration

3.3.1 Viscoelasticity and moisture dependency

Calibration of viscoelastic properties was performed following Miled [41]. The dynamic moduli
obtained through DMA can be expressed as a function of the oscillatory frequency ω and the Prony
moduli and relaxation times:

E′(ω) = E∞ +

ni∑
i=1

Eiω
2

1
τ2i

+ ω2
(44)

E′′(ω) =

ni∑
i=1

Ei
ω
τi

1
τ2i

+ ω2
(45)

The value for E∞ and for the viscoelastic moduli Ei and relaxation times τi were fit to the
data through a nonlinear least squares procedure. Finally, bulk and shear values were obtained
under the assumption of a constant Poisson’s ratio [10, 16, 41]:

G∞ =
E∞

2(1 + ν)
Gi =

Ei
2(1 + ν)

gi =
τiEi
Gi

(46)

K∞ =
E∞

3(1− 2ν)
Ki =

Ei
3(1− 2ν)

ki =
τiEi
Ki

(47)

with ν = 0.37 obtained in previous experiments on the same material system [40].
Figure 5 shows the obtained values for storage (E′) and loss (E”) moduli of dry DMA samples,

with the lines representing the best attained fit. The resultant properties, comprising 4 Prony
elements, are shown in Table 1. Since the value for E∞ was also obtained from the same fitting
procedure, the resultant optimization problem features a large number of local minima. Therefore,
the least squares procedure was performed multiple times starting from random values for the
moduli and relaxation times until a final fit was chosen which featured good agreement in terms
of loss modulus without significantly sacrificing precision in terms of storage modulus. The fitted
model can describe the viscoelastic behavior reasonably well, with small deviations in storage
modulus for frequencies between 0.1 Hz and 1 Hz and in loss modulus between 1 Hz and 4 Hz.
The fitting procedure was also performed with a higher number of Prony elements, but the quality
of the fit did not improve further.

With this set of dry VE properties, another fitting procedure was performed in order to deter-
mine the moisture degradation factor d∞w using DMA results from saturated samples. The results
can be seen in Figure 6. For the present material system, a value of d∞w = 0.14 was found to
correctly represent the material behavior after saturation without having to obtain another com-
plete set of VE properties. It can be seen, however, that differences in loss moduli are slightly
higher than for the dry case, suggesting that plasticization not only promotes stiffness degradation
but also lead to a slightly more pronounced viscoelastic behavior. With the obtained degradation
factor, no additional calibration is necessary in order to describe the behavior of the saturated resin.

3.3.2 Viscoplasticity

For calibration of the viscoplastic properties, the model of Section 2 was implemented in an in-
house finite element code using the Jem/Jive C++ library [42]. In order to obtain an accurate stress
value at the center of the specimen from the force signal of the load cell, the complete geometry
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Figure 7: Evolution of stress concentration factor Kσ with strain for three different strain rates.

of the dog-bone was modeled and a stress concentration factor (Kσ) was computed in order to
account for concentrations arising from the specimen geometry and the presence of grips:

Kσ =
σnum
y A

F num
(48)

where A is the cross-sectional area at the center of the specimen and σnum
y is the longitudinal

stress at the same point resulting from the FE analysis when a prescribed displacement is applied
to the top of the dog-bone and generates an internal force Fnum. The experimental stress can then
be estimated as:

σexp
y = Kσ

F exp

A
(49)

where Fexp is the force value measured by the load cell in the test frame.
The full dog-bone model was then substituted by a single-element model of the region where

strain was measured. The experimental strain in the longitudinal direction was applied as a pre-
scribed displacement and the fitting problem was cast as the minimization of the function:

f =
∑
t

[σexp
y (t)− σnum

y (t)]2 (50)

and solved using a nonlinear optimization algorithm.
In order to take into account the difference in yield behavior in tension and compression, a

constant σc/σt ratio of 1.25 was considered based on previously obtained experimental results
[43]. Furthermore, since only longitudinal strains were used in the current calibration procedure,
the value for νp = 0.32 was also adopted from [43].

It is important to note that, due to the development of plastic strains at different rates for differ-
ent parts of the specimen, Kσ is not constant but rather depends on the shape of the yield surfaces,
the test speed and the current strain at the center of the specimen. Therefore, an iterative fitting
procedure was performed: The experimental stresses were first obtained under the assumption of
purely viscoelastic behavior. With the resultant VP properties, two additional calibration rounds
were performed while updating the factors between each of them. Figure 7 shows the final stress
concentration curves for the three different strain rates used for VP calibration as a function of
strain at the center of the specimen.

Figure 8 shows the stress-strain curves obtained experimentally for each strain rate. Curves
from different specimens tested in the same conditions exhibit low variability, similar to previous
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Figure 8: Experimental results for dry quasi-static tension in three different strain rates. Grayed
lines indicate the response after strain localization.
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Figure 10: Model response of the dry material in tension including damage. Marks represent
experimental results and gray marks indicate the response after strain localization.

observations in the same system [43] and suggesting that the performed tests have an acceptable
degree of reproducibility. The portions of the curves depicted in gray refer to stress-train data
obtained after the experimental load peak and were therefore not used for calibration since they
may not represent the intrinsic constitutive behavior of the material [9]. As expected, the present
epoxy system features nonlinear stress-strain behavior, in particular at strains higher than 0.02,
exhibits strain-rate dependency and fractures at relatively low strain levels, with higher failure
strains observed for slower tests.

Using a single curve for each strain rate, an exponential yield surface was fitted by determining
the coefficients c1 to c5 in:

σt = c1 + c2eε
p
eq/c3 + c4eε

p
eq/c5 (51)

as well as the VP parameters ηp and mp, with the resultant properties shown in Table 1. Figure 9
shows the fitted curves together with their experimental counterparts. It can be seen that a good
agreement was obtained for all rates, with only small deviations noted for the intermediate rate
test at low strains.

3.3.3 Fracture

The first step in calibrating the damage model was fixing an upper bound for Xt, since rate depen-
dency arises naturally as the material dissipates energy and the fracture surface shrinks. In view
of the available test data, a pragmatic choice would be the peak load for the highest rate test (83.8
MPa). Naturally, bounding Xt in this manner will result in early failure for the highest strain rate
test since the energy dissipation at the peak load would not be accounted for. Nevertheless, since
failure occurs after the peak load for all strain rates, energy dissipation at the onset of fracture is
not well defined and thus the practical choice of Xt = 83.8 MPa was adopted.

With a value forXt, the fracture energyG∗ = 1.9 N/mm was computed using Eq. (37), leading
to a vertical softening branch for le = 1.8mm failing at the upper bound of Xt. It is important to
note that the sudden failure observed in the experiments is in fact a dynamic event for which part
of the energy will be dissipated as kinetic energy. Since inertia effects are not taken into account
in the energy expression of Eq. (21), the calibrated value of G∗ should be interpreted with caution
and cannot be seen as a fracture energy measurement.

The last step in the calibration process was the definition ofXt as a function of the accumulated
dissipated energy measure Υ. As previously mentioned, the energy dissipation at failure is not
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Viscoelasticity
K∞ [MPa] 3205
G∞ [MPa] 912
Kr [MPa] 125 182 625 143
Gs [MPa] 36 52 178 41
kr [s] 4.16 · 10−2 2.30 · 100 4.22 · 101 3.11 · 104

gs [s] 1.46 · 10−1 8.08 · 100 1.48 · 102 1.09 · 105

Viscoplasticity
σt [MPa] 64.80− 33.6e−ε

p
eq/0.003407 − 10.21e−ε

p
eq/0.06493

σc [MPa] 81.0− 42.0e−ε
p
eq/0.003407 − 12.77e−ε

p
eq/0.06493

ηp [s] 3.49 · 1012

mp [-] 7.305
νp [-] 0.32
Damage
Xt [MPa] 83.8− 5.99 Υ

Xc [MPa] 104.7− 7.48 Υ

G∗ [N/mm] 1.9
Hygrothermal aging
d∞w [-] 0.14

c∞ [%] 3.2

Table 1: Calibrated material properties.

well defined in quasi-static tests since it takes place after the global peak load and is therefore
potentially influenced by strain localization and necking. The dissipation was therefore obtained
from the stress-controlled fatigue test with the highest peak load (and thus the shortest duration).
Since only one condition was used for calibration, a linear Xt decay was adopted:

Xt = 83.8− aΥ with a =
83.8− σmax

Υbreak
(52)

where σmax = 74.9 MPa for the highest tested fatigue load and Υbreak was obtained by running
the model for a number of load cycles equal to the average cycles at break obtained for the 3
specimens tested at this stress level.

The stress-strain response of the calibrated damage model can be seen in Figure 10. As ex-
pected, the failure strain for the curve with the highest strain rate was not correctly captured, which
also caused the peak load to be slightly (approximately 2 MPa) lower. Failure for the other two
strain rates occurred at higher strain levels, following the trend observed experimentally. It is in-
teresting to note that since the adopted rheological model couples VE and VP (σhist

ij helps drive
plastic strain development), the test with the highest strain ratio actually features a higher amount
of plastic strain than the slower ones, leading to a higher energy dissipation and consequently to
failure at a lower strain level.

3.4 Model predictions

In this section, the model is used to predict material behavior in loading scenarios not used for cali-
bration, including quasi-static tensile tests of saturated specimens at different strain rates, loading-
unloading tests with increasing strain amplitudes and stress-controlled fatigue tests. The predic-
tions are compared with further experimental results and the model performance is discussed.
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Figure 11: Tension results at different strain rates for saturated specimens. Grayed lines indicate
the response after strain localization.
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Figure 12: Saturated model results obtained by degrading the dry response. Marks represent
experimental results on saturated specimens.

3.4.1 Water concentration influence

Figure 11 shows quasi-static tensile test results for specimens saturated in water at 50◦C. Similar
to dry specimens, results for all strain rates featured low scatter both in the elastic and plastic
regimes as well as in the failure strain. Once again tests with the highest rate failed at higher
stresses but lower strains, with only limited strain localization. Plasticization due to interaction
with water molecules resulted in lower peak stresses for all rates. Interestingly enough, the failure
strains remained similar to the ones from dry specimens, although it is difficult to determine the
exact stress or strain at failure due to the occurrence of strain localization.

Using the dry VE/VP properties and the value for d∞w calibrated from DMA tests, the satu-
rated VE/VP response was predicted and is shown together with the experimental pre-peak curves
in Figure 12. The model shows excellent agreement with experiments for all strain rates, suggest-
ing that the simple degradation model of Section 2.6 can effectively describe the behavior of the
saturated resin in both VE and VP regimes, even though the viscoplastic parameters remain intact
and only the backbone yield surface is degraded. Nevertheless, the present results are limited to
quasi-static loading and further tests need to be performed in order to assess the performance of

18



0 0.01 0.02 0.03 0.04 0.05 0.06
0

20

40

60

80

Strain [-]

St
re

ss
[M

Pa
]

Figure 13: Experimental loading-unloading test with increasing amplitude (dry). Grayed lines
indicate the response after strain localization.
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Figure 14: Numerical prediction of a loading-unloading test with increasing amplitudea (dry).

the model in predicting the fatigue behavior of saturated specimens.

3.4.2 Loading-unloading tests

The next loading scenario is a revisit of the loading-unloading test of Figure 1. Specimens were
loaded in displacement control at 1 mm/min (strain rate of 4.9 · 10−4/s) and unloaded at interme-
diate steps. A special test frame control procedure was then used in order to trigger a new loading
phase when the force reached zero. Each loading cycle stopped at a linearly increasing maximum
strain value until final failure. The resultant stress-strain curve can be seen in Figure 13 and the
model prediction in Figure 14.

From the numerical response, it can be seen that all time-dependent phenomena mentioned in
Section 1.1 are now present: Non-linear reloading branches that do not meet the original curve,
hysteresis during unloading and failure at slightly lower strain and stress when compared to the
monotonic response.

However, comparing the model prediction with the experimental curve makes an important
shortcoming of the model evident. Even though the stresses at the unloading points are similar
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Figure 15: Strain relaxation after unloading from εamp = 0.035, indicating the presence of per-
manent strains.

for the two curves, the model grossly overestimates the amount of plastic strain at the points of
zero stress. The source of this discrepancy lies in the way by which the nonlinear part of the
stress-strain response is modeled. While the load-displacement response of Figure 1 suggests the
presence of significant pre-localization plastic strains, Figure 13 suggests that the greater part of
the nonlinearity is in fact viscoelastic. This observation also helps to explain the differences in
hysteresis area between model and experiments.

In order to confirm the existence of pre-localization plastic strains and rule out the possibility
of a purely viscoelastic response, the same test was repeated but including rest periods of one
minute at zero stress before reloading. Figure 15 shows the strain response obtained during one
such rest period. Despite the presence of measurement noise, an asymptotic relaxation process
towards a non-zero strain value can be clearly identified. It is concluded that the nonlinear behavior
consists of a complex combination of nonlinear viscoelasticity and viscoplasticity.

It is important to note that either a purely VE model like the one proposed by Xia et al. [44] or
the present VE/VP model are able to reproduce the quasi-static curves from the previous section,
and the complex constitutive nature of the resin would be overlooked if no loading-unloading tests
were performed. It is also interesting to note that even though the hysteresis area is underestimated
by the model, the added plastic dissipation helps to diminish the difference in total dissipation and
the damage part is activated at the same strain level at which localization starts in the experiments.
Nevertheless, the inclusion of nonlinear viscoelasticity [44, 12] would improve the predictive ca-
pabilities of the present model.

3.4.3 Fatigue tests

The last loading scenario consists of stress-controlled fatigue tests at four different stress lev-
els with an R-ratio (σmin/σmax) of 0.1 and a nominal strain rate of 2.0 · 10−2/s. Since stress is
controlled, VE creep and VP evolution become manifest in the form of ratcheting (i.e. strain accu-
mulation with fatigue cycles). It is therefore interesting to track the evolution of strains at the peak
and valley loads with the number of cycles. Figures 16 and 17 show strains at peak and valley
stress, respectively, for the four stress levels, with lines representing model predictions. Since the
model does not take into account the nonlinear viscoelastic behavior exhibited by the material,
both peak and valley strains were overestimated. This overestimation is particularly significant
for valley strains, similar to the mismatch in permanent strain observed in the loading-unloading
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Figure 16: Experimental (marks) and numerical (lines) strains at peak loads for different load
levels (dry).
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Figure 17: Experimental (marks) and numerical (lines) strains at valley loads for different load
levels (dry).

tests. As σmax decreases, the model predictions become more accurate because less plastic strain
develops.

Figures 18 and 19 show experimental and numerical curves for a complete fatigue test with
σmax = 74.9 MPa. The experimental response showed failure with no noticeable loss of stiffness
and featured a large hysteresis area that is partly obscured by the ratcheting strain that develops
with the number of cycles. The numerical response showed a significantly larger ratcheting strain,
as the model relies on plastic strains in order to correctly represent the nonlinear stress-strain
response.

Such differences in energy dissipation can be clearly seen in Figure 20, which shows stress-
strain snapshots of a fatigue test at σmax = 48.3 MPa after 1300 load cycles, when the material
is close to breaking. A large hysteresis loop can be seen in the experimental curve, while the
numerically predicted area is significantly smaller. On the other hand, the model features a larger
amount of viscoplastic dissipation, as evidenced by the higher valley strain. If the hypothesis
that energy dissipation promotes initiation of fracture is valid, it is reasonable to suppose that
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Figure 18: Experimental response in fatigue for σmax = 74.9MPa (dry).
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Figure 19: Numerical response in fatigue for σmax = 74.9MPa (dry).
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Figure 20: Dry material response after 1300 cycles with σmax = 48.3MPa.
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Figure 21: Experimental S/N curve and model prediction for dry specimens.

the erroneous viscoelastic dissipation predicted by the model will in part be compensated by its
overestimated viscoplastic dissipation.

Using the fracture surface degradation calibrated with the tests at σmax = 74.9 MPa, the model
was used to predict fatigue life at the three other stress levels, with results shown in Figure 21.
The model gives reasonable estimates for the number of cycles to failure for all stress levels,
suggesting that the dissipation-driven fracture initiation hypothesis is a valid approach for the high-
to medium-cycle fatigue regimes. A loss of accuracy can be expected for lower stress levels as the
viscoelastic dissipation will tend to dominate the material response and the present model is not
able to reproduce this in a satisfactory manner. Furthermore, the role of dissipative mechanisms
on fracture initiation might change in the high-cycle regime. More experimental data and model
development are therefore necessary.

4 Conclusions

Based on preliminary experiments on an epoxy resin, a number of time-dependent phenomena
were identified which are not taken into account by conventional elastoplastic models but may
nevertheless play an important role in the long-term mechanical response of epoxy resins, such
as hysteresis and strain-rate dependency. In this work, a viscoelastic/viscoplastic model with
continuum damage was developed that can reproduce such phenomena.

The model consists of a parallel array of elastic Maxwell elements arranged in series with a
pressure-dependent viscoplastic element. The integral viscoelastic stress update was presented in
a time-discrete manner suitable for finite element implementation. For viscoplasticity, a Perzyna-
type function was included in a non-associative plasticity model with general-shape yield func-
tions. A pressure-dependent continuum damage model was developed for which the fracture sur-
faces are made to shrink as the material dissipates energy. Finally, a simple degradation model
was presented for polymer degradation through plasticization.

The viscoelastic and viscoplastic properties were calibrated using DMA tests in bending and
quasi-static monotonic tests in tension at different strain rates. The damage model was calibrated
using static tests at a single strain rate and a short cyclic test with controlled stress. The calibrated
model was able to accurately reproduce the rate-dependent material response both in plasticity
and fracture, with good predictions for failure strain and maximum stress. The response of the
water-saturated material at different rates was also predicted with excellent accuracy. For cyclic
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tests, the model was found inadequate in its representation of the observed nonlinear stress-strain
response which was modeled as plastic but is in fact a combination of plasticity and nonlinear
viscoelasticity.
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A Derivative of the viscoplastic potential

The derivative of the viscoplastic potential of Eq. (20) with respect to ∆γ can be written as:

∂Φ

∂∆γ
=

mp∆t

ηpσ0
tσ

0
c

(
fp

σ0
tσ

0
c

)mp−1 ∂fp

∂∆γ
− 1 = V̂

∂fp

∂∆γ
− 1 (53)

where ∂f/∂∆γ is:

∂fp

∂∆γ
= −72Ĝ

ζ3
s

J tr
2 −

4K̂αItr
1

ζ2
p

(σc − σt) +
∂fp

∂εp
eq

∂∆εpeq

∂∆γ
(54)

and ∂fp/∂ε
p
eq is:

∂fp

∂εp
eq

=
2Itr

1

ζp
(Hc −Ht)− 2(σcHt + σtHc) = Ĥ (55)

where Hc and Ht are derivatives of σc and σt with respect to εpeq and representing the compressive
and tensile hardening moduli, respectively.

The only remaining term to compute in Eq. 54 is ∂∆εpeq/∂∆γ. Substituting Eq. (14) in
Eq. (13) and applying the trial stress conversion of Eq. (17), the variation of equivalent plastic
strain becomes:

∆εpeq = ∆γ

√√√√ 18
ζ2s
J tr

2 + 4α2

27ζ2p
(Itr

1 )2

1 + 2ν2
p

= ∆γ

√
Â

1 + 2ν2
p

(56)

and its derivative with respect to ∆γ is:

∂∆εp
eq

∂∆γ
=

√
1

1 + 2ν2
p

[√
Â− ∆γ

2
√
Â

(
216ĜJ tr

2

ζ3
s

+
16α3K̂(Itr

1 )2

27ζ3
p

)]
(57)

B Viscoplastic tangent stiffness

Because of the time scale introduced by the viscous plastic multiplier of Eq. (16), there is no
strict relationship between variations of stress and strain. However, since the stress update is
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performed in a time discrete manner, it is still possible to define an algorithmic tangent matrix by
differentiating Eq. (17) with respect to strain:

∂σij
∂εkl

=
1

ζs

∂Str
ij

∂εkl
− 6Ĝ

ζ2
s

Str
ij

∂∆γ

∂εkl
+

1

3ζp
δij
∂Itr

1

∂εkl
− 2K̂αItr

1

3ζ2
p

δij
∂∆γ

∂εkl
(58)

The derivatives of the deviatoric stress and first stress invariant can be readily computed:

∂Str
ij

∂εkl
= Ĝ

(
δikδjl + δilδjk −

2

3
δijδkl

)
(59)

∂Itr
1

∂εkl
= 3K̂δkl (60)

while the variation of the plastic multiplier with respect to strain is derived from differentiation of
the viscoplastic consistency condition of Eq. (17) [2]:

δΦ =
∂Φ

∂εkl
δεkl +

∂Φ

∂∆γ
δ∆γ = 0 ⇒ ∂∆γ

∂εkl
=

1

µ

∂Φ

∂εkl
(61)

where µ is the negative of the derivative of Eq. (53):

µ = − ∂Φ

∂∆γ
(62)

Differentiation of Φ with respect to strain takes a similar form as Eq. (53):

∂Φ

∂εkl
= V̂

∂fp

∂εkl
(63)

and ∂fp/∂εkl in terms of trial stresses is given by:

∂fp

∂εkl
=

6

ζ2
s

∂J tr
2

∂εkl
+

2(σc − σt)
ζp

∂Itr
1

∂εkl
+ Ĥ

∂εp
eq

∂εkl
(64)

The derivative of the first invariant is shown in Eq. (60), while the derivative of J tr
2 is given by:

∂J tr
2

∂εkl
= Str

ij

∂Str
ij

∂εkl
= 2ĜStr

kl (65)

The last term of Eq. (64) takes into account variations in yield stress with strain through
the consequent variation in equivalent plastic strain [2]. The factor Ĥ is given in Eq. (55), and
∂εp

eq/∂εkl is obtained from Eqs. (13) and (14):

∂εp
eq

∂εkl
=

1

1 + 2ν2
p
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∆εp
eq
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3Str
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+
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3ζp
δijδkl

)
= Êkl

(66)

Substitution of Eqs. (59), (60) and (61) in the tangent tensor of Eq. (58) yields:
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(67)
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which can be cast in the notation adopted by Melro et al. [1] and later by Van der Meer [2]:

∂σ

∂ε
= βIs4 +

(
φ− β

3

)
II− ρStrI− χStrStr − ψIStr − ωStrE− ξIE (68)

where Is4 = 1/2(δikδjl + δilδjk) and the coefficients are given by:
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(69)
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(70)
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s
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2αItr

1 V̂ K̂Ĥ
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(71)

C Damage tangent stiffness

Since plasticity is deactivated after damage starts, the total strain rate is fully elastic (i.e. ε̇kl = ε̇e
kl)

and differentiation of Eq. (29) yields:

∂σij
∂εkl

= (1− d)
∂σ̃ij
∂εe

kl

− ∂d

∂r
σ̃ij

∂r

∂εe
kl

(72)

which can be cast in a form similar to Eq. (68):

∂σ

∂ε
= βIs4 +

(
φ− β

3

)
II− ρS̃I− χS̃S̃− ψIS̃ (73)

with coefficients:

β = 2(1− d)Ĝ φ = (1− d)K̂ − D̂K̂Ĩ1(Xc −Xt)

XcXt
(74)

ρ =
3D̂K̂(Xc −Xt)

XcXt
χ =

6D̂Ĝ

XcXt
ψ =

2D̂ĜĨ1

XcXt
(75)

where K̂ = K∞ +Kve(∆t), Ĝ = G∞ +Gve(∆t) and D̂ = ∂d/∂r.
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