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1 Abstract

Observed accidents have been the main resource for road safety analysis over the past decades. Although such
reliance seems quite straightforward, the rare nature of these events has made safety difficult to assess, especially
for new and innovative traffic treatments. Surrogate measures of safety have allowed to step away from traditional
safety performance functions and analyze safety performance without relying on accident records. In recent years,
the use of extreme value theory (EV) models in combination with surrogate safety measures to estimate accident
probabilities has gained popularity within the safety community.

In this paper we extend existing efforts on EV for accident probability estimation for two dependent surrogate
measures. Using detailed trajectory data from a driving simulator, we model the joint probability of head-on and
rear-end collisions in passing maneuvers. We apply the Block Maxima method and estimate several extremal
univariate and bivariate models, including the logistic copula. In our estimation we account for driver specific
characteristics and road infrastructure variables. We show that accounting for these factors improve the head-on
and rear-end collision probabilities estimation. This work highlights the importance of considering driver and road
heterogeneity in evaluating related safety events, of relevance to interventions both for in-vehicle and
infrastructure-based solutions. Such features are essential to keep up with the expectations from surrogate safety
measures for the integrated analysis of accident phenomena, which show to significantly improve from the best
known stationary extreme value models.

Keywords

Road safety; Small probability estimation; Block Maxima; Multivariate EV distribution; Passing maneuvers; Non-

stationary model
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2 Introduction

2.1  Motivation

Prediction of accidents has been a major topic in traffic safety for the last couple of decades. Despite the huge
efforts that researchers have put in developing accident prediction models (Bonneson, 2010), there is a great
tendency in the last decades to develop new proactive methods for safety evaluation that are not based on accident
records (Archer, 2004; Kraay & Van der Horst, 1985). Evaluating conflicts and risky situations between road users
has been the main alternative and multiple methodologies can be found in the literature: the Swedish traffic conflict
technique (Hydén, 1987), DOCTOR method (Kraay & Van der Horst, 1985), and the use of surrogate safety
measures (Archer, 2004). The main challenge is the link between these measures and the number of accidents.
Zheng, Ismail, and Meng (2014) indicate that the validity of surrogate safety measures is usually determined by
its correlation with accident frequency which is usually assessed using regression analysis. However, regression
analysis still incorporates accident counts which are known to suffer from underreporting and quality issues, and
thus this approach is limited. Besides, it is difficult to insure the stability of the accident-to-surrogate ratio, and
this relationship also hardly reflects the physical nature of accident occurrence (Zheng et al., 2014). Therefore,
there is a need to develop an alternative approach to predict the number of accidents based on surrogate safety
measures. Songchitruksa and Tarko (2006) proposed a new and more sophisticated approach based on the Extreme

Value (EV) theory to estimate the frequency of accidents based on measured accident proximity.

2.2 Extreme Value (EV) Approach

The EV approach has three considerable advantages over the traffic conflict technique: (a) it abandons the
assumption of fixed ratio converting the surrogate event frequency into accident frequency; (b) accident risk given
the surrogate event is estimated based on the observed variability of accident proximity without using accident
data; (c) the accident proximity measure precisely defines the surrogate event.

The implicit assumption of the EV theory is that the stochastic behavior of the process being modeled is sufficiently
smooth to enable extrapolation to unobserved levels (De Haan & Ferreira, 2006). In the context of road safety, the
more observable traffic conflict events are used to predict the less frequent accidents, which are often unobservable
in a short time period (Zheng et al., 2014). The field of EV theory, pioneered by Fisher and Tippett (1928), is a
commonly applied theory in many fields, such as in meteorology, hydrology, finance (Zheng et al., 2014) and very
recently, road safety analysis Songchitruksa and Tarko (2006). Songchitruksa and Tarko (2006) used an EV

approach to build up relationships between occurrences of right-angle accidents at urban intersections and
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frequency of traffic conflicts measured by usingtpencroachment time. A major improvement of tiefestudy
is that it links the probability of accident ocoemce to the frequency of conflicts estimated frobsevved
variability of accident proximity, using a probasiic framework and without using accident recoi®e generic
formulation of the application of EV to road safetyalysis was then proposed by Tarko (2012) ancét only
very recently applied to other accident types aatd dets (Jonasson & Rootzén, 2014; Zheng edl4; Asljung
et al., 2017; Orsini et al., 2018; Wang et al.,@0The formulation relies usually, but not excledy, on time-
based surrogate measures and estimates the pitybab#ccident occurrence using the EV fitted dlsition of
such measures (see Appendix 1 for formulation #tdihese studies have relied mostly on univafitenodels,
and only very recent studies have explored theofisaulti(bi)-variate approaches: Jonasson and Ron2014)
applied the bivariate block maxima approach tosnehr-crashes selection bias in a naturalistidrdyisetting,
focusing on the relationship of different surrogateasures in rear-end collisions. In a series ofrestudies
published during the revision of this manuscrigigég et al. (2018. 2019a, 2019b) explored the tibévariate
EV to combine multiple surrogate safety measuresiobd from the same pair of vehicles to predi@ th
probability of specific crash events. In Zhengle{2018) post encroachment time (PET) and lengbip@rtion of
merging (LPM) are used in a bivariate thresholdessanodel to estimate collision probability in feag merging
scenario. Later, in Zheng et al. (2019a) focusedimating the best pair of severity-specific surrtegaafety
measures to estimate the probability of crashgatadized intersections and validates it with actirash data.
Finally, Zheng et al. (2019b) compares univariabel divariate GEV and GP for left turning vehicles a
intersections. This application series provide aceoted evidence of higher accuracy of bivariatairesy
univariate EV predictions.

In this paper, we extend the EV -based road safgjication state-of-the-art with the first nontitaary bivariate
and copula-based EV models as a way to formalieedépendencies in events resulting from two intkeld

phenomenon’s and illustrate it for the context aéging maneuvers.

2.3 Risk of Passing Maneuvers

Passing maneuvers on two-lane roads (one laneégyel tirection) carries several types of riskse Phocess of
passing involves, synchronizing the vehicle’s spe#l that of the vehicle in front, estimating taeailable gap
on the opposite direction and evaluating its silitglio successfully perform the passing maneuead finally

return to the main driving lane while keeping afisiént safe gap from the passed vehicle, as velfram the
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vehicle on the opposite direction. The gap fromghssed vehicle at the end of the passing mané&utezmed in
this study as "'THW'. It reflects the time headwagween the front of the passed vehicle and theofedhe passing
vehicle — a measure for rear-end and side-collssioith the passed vehiéleThe gap from the vehicle on the
opposite direction is termed in this study ‘TTCr fane-to-collision between the passing and theosfip vehicle
— a measure for head-on collisions. Both of theges@re calculated at the end of the passing maneunthis
study both measures will be used: the THW was tatled as the remaining distance between the passidg
passed vehicle at the end of the passing maneivided by the driving speed of the passed vehigtgle the
TTC was calculated as the remaining distance betilee passing and opposing vehicle divided by the ef

their speeds.

opposite vehicle

O THW Orre

encroachment line

Figure 1 Schematic figure of maneuver and surrogatsafety measures of interest

2.4  Drivers' Characteristics

Several studies have shown that there are signifidiéiferences in passing behaviors among diffedgivters.
Farah (2011) using a driving simulator found thettder and age have a significant impact on thermmabshavior.
She found that male drivers pass more frequendly famale drivers. They also maintain smaller feitg time

gaps from the front vehicle before initiating aging maneuver and accept shorter gaps in the dppoesific for

! Note that the THW measure used in this papertslegp the PET during a lane change maneuver betivee
merging subject vehicle and the following passelicte in the target destination lane. It is defireedthe time
difference between the end of the subject veh@deihg the encroachment line and the front of desed vehicle
arriving at the encroachment line. Similarly to case, the encroachment line is a virtual line @edicular to the
lane dividing marker and crossing the intersecpiomt of the lane dividing marker and the lane cfeatrajectory

(Zheng et al., 2014).
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passing. Younger drivers have significantly lowati@al gaps and higher desired driving speeds @eg to
older drivers. They also keep smaller gaps fromftbet vehicle at the end of the passing maneuvEnsse
behaviors increase the risk of collisions. Llor&arcia, Moreno, and Perez-Zuriaga (2013) reachetlasi
conclusions using an instrumented vehicle. The aatliound that young male drivers have shown a more
aggressive behavior when passing compared to gtbeps of drivers. Passing times were around 1sddkan
other drivers, while average speed difference wlas/ higher. Farah, Polus, Bekhor, and Toledo 72@€sted
the significance of including driving styles in tiassing behavior model, and found that drivers \ah®
characterized by an anxious driving style and/aiiepa and careful driving style have larger criticmps.
Vlahogianni and Golias (2012) emphasize that theatiers of young male and female drivers duringsjves
maneuvers are different and this is because oérdifices in the process of scanning and evaluatiaijghle
opportunities for passing.

To summarize, the integration of drivers’ charasta&s and driving styles in accident predictiorvaduable and
have the potential to contribute to understandeaident causation. Previous EV models did not aetfor such

factors.

3 Research Method

The aim of this study is to test two different noath to estimate accident probability in passing enaars. The
first approach analyzes the risk of individual tyé accidents during passing maneuvers, includitighead-on
collisions using the proximity measure of the minimTTC to the vehicle in the opposite direction; i@ar-end
collisions using the proximity measure of the minmTHW measured from the front of the passed velicthe
rear-end of the passing vehicle. The second appraiacs to analyze the joint risk of colliding witie opposite

or passed vehicle during passing maneuvers usityh surrogate safety measures (THW and TTC).

3.1 Modeling Approach

There are two families of EV distributions whicHléev two different approaches to sample extremenesig(1)
the Generalized Extreme Value (GEV) distributiorickhis used in the block maxima or minima (BM) aggrh,
in which maxima over blocks of time (or space)@asidered; (2) the Generalized Pareto (GP) digidh which
is used in the peaks over threshold (POT) appr¢@ctes, Bawa, Trenner, & Dorazio, 2001), wherevalues
above a certain threshold are used. In this papdbeus our attention on the application of the Bpfroach for
estimating the risk of a single type of accidemad-on or rear-end collision), while for estimatthg risk of both

types of collisions jointly, the bivariate distrifian with copula approach was considered. We ofiethe BM
5
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in favor of the POT following, (a) our previous dimgs in terms of stability for the univariate cgfarah and
Lima Azevedo, 2016), (b) weaker consistency in ltesiitom POT trials considered at an earlier staféhis
research (c) BM favorable conditions in case of kvdapendence and (d) that a detailed comparatiwey st
between BM and POT in a multivariate setting is @uscope for the present manuscript although rmesded
(Biincher and Zhou, 2018). Note that the univarl®@r is well known and has been extensively disalibe
Haan & Ferreira 2006) and the estimation proceg®tto the bivariate POT is much similar to theecaggoing
from the univariate to bivariate BM discussed bekmvd also be found in recent applications (seeekample

Zheng & Sayed 2019).

3.2 The BM Approach

Mathematically, the standard GEV function is afofek (von Mises, 1936; Zheng et al., 2014):

-1
G(x) = exp (— [1+€(x—u)]g) (Eq. 3)

o +
Following the Block Maxima approach, the observadiare aggregated into fixed intervals over timspace,
and then the extremes are extracted from each Hbgckdentifying the maxima in each single block. If
{X{,X,, .., X, } is a set of independently and identically distritnli random observations with unknown
distribution functionD(x) = Pr(X; < x), the linearly normalized maximum,, = max{X;,X,, ..., X} will
converge to a GEV distribution when— o. Three parameters identify this distribution: tbeation parameter,
—oo < u(z) < oo; the scale parameter,> 0; and the shape parametero < ¢ < co. If the shape paramete,
is positive, then this would yield the Frechet Clative Distribution Function (CDF) with a finitewer endpoint,
(u—0a/&), if &is negative, this will yield the (reversed) Welb@DF with finite upper endpoirtu + ¢/|¢]),
and if¢ = 0 this yields the Gumbel CDF. In a non-stationaky Biodel several factorg, can be included in the
location parameter to account for their impacttongrobability of the extreme events, u€z). More details on
the GEV properties can be found in (Tarko, 2012Xal)s on the statistical properties of EV candaenfl in (Coles
et al., 2001; Dombry & Ferreira, 2018), and onttieoretical background of its applicability for magate (road)

safety analysis in (Tarko, 2012).

3.3 Parametric Bivariate EV distributions

In some applications, the study of accident prditghising multivariate distributions is of intete3 raditionally,
single surrogate safety measures are used to éstinsngle type of events. However, it is expetiat in some

of the complex accident phenomena, multiple predaet events can play an important role in a p@éatcident.

6
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Passing maneuvers are a typical case where botipfiesite and passed vehicles are key stimulusgldriver's
decision making. The bivariate model aims to edenameasure of risk that not only takes into actole
possibility to collide with the opposite vehiclettalso with the passed vehicle.

Given a bivariate random sam®&,, Y,), ... Xy, Yn), much of extreme value theory is concerned wighithiting
behavior of a suitable normalization of the compunveise maxima(M; ,, M, ,,), whereM; , = max(Xy, ..., X;,)
andM,; , = max(Y;, ..., Y,). More precisely, it is assumed that there existeradegenerate bivariate distribution

functionBG such that, aa — oo:

M,, —b M, —b
P{ CLUERELPY 2'“Sy} - BG(x,y) (Eq. 4)

a1,n A2n
for sequences;, > 0,b; , € R, j = 1,2 (Capéraa & Fougeres, 2000). To analyze separttelgehavior of the
marginals and the dependence structure of thehiigtin, it is convenient to write
BG(x,y) = C{F(x), G(y)} (Ea. 5)
in terms of univariate extreme value marginendG, and a dependence functi6r{Capéraa & Fougéres, 2000;

De Haan & Ferreira 2006) defined for @l w,v < 1 by:

Clw,v) =P{FX) <w,G(Y) <v}= log( )AM (Eg. 6)
w,Vv) = <w, < v} =-exp|logwv Tog(wv) g.

whereA(-) is a convex function of0,1] such thaimax(t,1 —t) < A(t) <1 for all0 <t < 1 (Pickands, 1981).
Given this representation and except for the marghe bivariate extreme value distributi®s for component
wise maxima is characterized by a one-dimensionattfonA(-). Common used functions are the logistic,
asymmetric logistic, negative logistic, asymmetniggative logistic, bilogistic and negative bilogistThese
extreme-extreme value specification for the depeodefunction along with common assumptions on the
distribution for both marginals (e.g. Gumbel, Expotial, Fréchet or Weibull) allow for the formulati of well-
defined parametric models. Information on the stigél properties of the estimation methods thatehldeen
developed in the context of bivariate EV can benfbin (Capéraa & Fougéres, 2000; Pickands, 19819.féw
recent bivariate models found in the literature dedcribed in Section 2 follow this approach (as,example,
the logistic case in Zheng & Sayed, 2019b). Extegdhis line of research, here we estimate a laageof
stationary and non-stationary parametric EV modedihg the maximum likelihood (ML) method in R (03)

using theexTr emes andevd packages (Gilleland and Katz, 2011).
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3.4  Copula-based Bivariate distributions

Here, we focus our attention on the bivariate ifistron with a copula method as alternative apphnodue to the
uncertain form of dependence (not necessary lineetiveen the two surrogate safety measures. Whitbe
previous section, well defined parametric bivarigi models rely on a clear predefined structur€@©f, F(*)
angG(+), the Sklar's Theorem (1959) ensures that it isids to estimate a multivariate distribution bpaeately
estimating the marginal distributions and the capsgparately. As in eq. 6, the copdl@) is a multivariate
distribution whose marging(-) andG(-) are all uniform over (0,1), and can be defined as

Cw,v) = P{FX) < w,G(Y) < v} (Eq. 7)
The copula not only provides a structure for theethelence between the two variables but also reitealsto be
invariant under strictly monotone transformatiodsing copulas allows to test and select differéstrithutions
for the marginals and for the copulas in a two-statatistical procedure, thus relaxing some ofpitealefined
assumptions needed for the parametric multivagstémation case. In our particular overpassing gvegre
represented by the two interlinked phenomenon&ktfve trajectories of subject-passed and sulgpptsite
vehicles), the dependence structure of the twagate safety measures is unclear and the assungftsirong
extremal dependence may not be valid. For surrcgsfety measures computed for the same phenomasan (
the existing literature mentioned above) the depeod function may have a clearer dependence steuaithe
measures come from the same vehicle trajectorg.pHire two most frequently used copula familiesedliptical
copulas, extreme-value copulas, Archimedean anghpatial copulas. More details on these copula fasitan
be found in Fang, Kotz, and Ng (1990), Nelsen (208id Genest and Rivest (1993). To assess ifengiopula
is well fitted to the data under analysis, a gosdref-fit test is performed based on statistichsag the rank-
based versions of the Cramer-von Mises or the Kgbnav-Smirnov. An example of goodness-of-fit tegtin
overview are given in Berg (2009). In this studycapula models’ were estimated in R (v3.0.3) gdime package

Vi neCopul a (Brechmann & Schepsmeier, 2013) angul a (Yan, 2007).

3.5 Data Collection

The data for this study was obtained from a drixdimgulator experiment developed by Farah, Bekhud, Rolus
(2009) for modelling drivers’ passing behavior avoilane rural highways. In this experiment the SMS
(Rosenthal, 1999) driving simulator was used. SNWI& a fixed-base interactive driving simulator,iefhhas a
60° horizontal and 40° vertical display. The driyiscene was projected onto a screen in front ofitiver with a

rate of 30 frames per second. A total of 16 sinmulatenarios were designed in order to have arhettierstating
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of how different infrastructure and traffic relatéactors affect drivers’ passing behavior. The iedent
scenarios are the result of an experimental dakgnincluded 4 factors in 2 levels, which are: $peed of the
front vehicle (60 or 80 km/h), the speed of theagiie vehicle (65 or 85 km/h), the opposite laadfitr volume
(200 or 400 veh/h), and the road curve radius @@®-or 1500-2500 m). However, all the scenariosewer
composed of 7.5 km of two-lane rural highway settidth no intersections, and good weather condsti@ach
driver drove 4 scenarios out of the 16 scenariosimvere selected following a partial confoundingthod that
was adopted (Hicks & Turner). A more detailed infiation about this experiment can be found in (Fa2ai.3;
Farah et al., 2009).

A total of 100 drivers (64 males and 36 femaleghwait least 5 years of driving experience partigigan the
driving simulator experiment on a voluntary base.dgivers are with an age between 22 and 34 yddrs26
drivers with an age between 35 and 49 years oldifteenremaining 12 with an age between 50 and @6syad.
Prior to participating in the driving simulator exqoment each driver filled a questionnaire compaxfdwo parts:
the first part included questions on the driverspeal characteristics (including questions suclgasder, age,
and driving experience), while the second partudetl the Multidimensional Driving Style InventoiMDSI)
developed by Taubman Ben-Ari et al. (Taubman-Beindikulincer, & Gillath, 2004). The MDSI is a 6-pd
scale, which consists of 44 items that are usathéwacterize four factors that represent diffeckiving styles:
(1) Reckless and careless driving styldnich refers to deliberate violations of safeshgy norms, and the seeking
of sensations and thrills while driving. It chaexizes persons who drive at high speeds, racer#) pass other
cars in no-passing zones, and drive while intogidaprobably endangering themselves and othergr(®pus
driving style which reflects feelings of alertness and tena®well as ineffective engagement in relaxing dtais/
during driving; (3)Angry and hostile driving stylavhich refers to expressions of irritation, raged hostile
attitudes and acts while driving, and reflectsralncy to act aggressively on the road, curse, htow, or “flash”
to other drivers, and (4yatient and careful driving stylavhich refers to planning ahead, attention, paten
politeness, and calmness while driving, as wetitzeddience to traffic rules. Factor scores wereutated for each

respondent on each of these four driving styles.

4  Results and Analysis

The data set from the driving simulator experimesulted in a total of 1287 completed passing meersy 9

head-on collisions and 2 rear-end collisions. Tégited vehicle movement from the simulator waspssed to
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obtain the two surrogate safety measures of irtatete end of passing maneuvers: the TTC witlogpmosing

vehicles and the THW between the passed and pagsinges.

4.1  Univariate Model

In the univariate model, a separate distributios fitted to the minimum TTC and THW measuremengsiliang
from the1287 passing maneuvers. In the GEV apprasath passing maneuver is represented by one fdock
which we take its minima for each of the surrogatfety measures considered. Note that accident\atgms
were not used in the estimation procedure. GEV isoglertain to continuous random variables that giem
mass to any real value, hence to zero. But acaddmhappen and can be recorded with zero vallepaiitive
mass. The continuous random variables do not ta&le galues into account and, thus, recorded actsideere

not considered in the estimation dataset.

4.1.1 Head-on collisions

Aiming at estimating the probability of a head-atlision for a single passing maneuver, the minimbiiC was
considered as a head-on accident surrogate med$relata was then filtered to account only fouealsmaller
than 1.5s (Hyden, 1987; Jonasson & Rootzén, 20&gel 2003), leading to a total of 463 observatigimowing

that 9 maneuvers ended with actual head-on caissithe empirical probability of a head-on collisia a passing
maneuver given that a critical TTC (i.e. TTC lowban 1.5 s), is 9/(463+9)=0.0191, with 95% binomial
confidence interval (0.0089,0.0366). Note thated#ht filtering conditions were also tested inreation (see
Appendix 2).

We start with an existing stationary BM model depeld by Farah and Lima Azevedo (2016). The authors

estimated that the parameters of the univariate Gi¥ulative distribution function age= —0.993 (0.0212),

6 = 0.0383 (0.0163) andgé = —0.236 (0.0500). Figure 1. presents the probability density fumetiof the
empirical and modeled negated TTupger lefj and the simulated QQ platgper righ). This model was then
upgraded by the authors to a non-stationary BM motleey concluded that the covariatgsmassinggap’
‘tailgatetp’, ‘speedfront’,'curvature’ as defined belowrelated to the infrastructure and traffsignificantly
contribute to the prediction of the probability afhead-on-collision during a passing maneuver. &Vtiie
covariate speedpvwas not found to be significant. Variables rethte drivers’ personal characteristic (gender,
age, and driving style) were not tested. In thisdgt we will test whether drivers’ personal chagaistic
significantly contribute to the model in additiom the traffic and road variables. The variables defined as

following:

10
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» passinggapis defined as the time gap between the opposshicle and the subject vehicle, at the time that
the lead vehicle encounters the subject vehicle;

« tailgatetp:time gap between the subject vehicle and the frehicle at the moment of start passing (s);

 speedfrontspeed of the front vehicle at the moment of giassing (m/s);

* curvature road curvature (1/m);

 speedpvspeed of the passing vehicle (m/s);

» gender:gender of the driver (1-male; 0-female)

* age:categorical variable, with ranges 22-34; 35-49 5« 0;

« drivingstyle:angry & hostile; anxious; reckless & careless;g#t& careful (Taubman-Ben-Ari et al., 2004);
A driver was considered to have started the oventginaneuver when the front left wheel crossedcthgerline
and to have completed the overtaking maneuver wWeerear left wheel crossed the road centerlineat2016).
A set of a non-stationary models considering défféicombinations of covariates were estimated.€elalpresents
the four best non-stationary models with a rangkkefihood ratio p-value betweeh773 x 107 and1.931 x
1078 (Model #1 to #4). The estimated likelihood ratsts are shown in Table 2. The previously estimated
stationary model by Farah and Lima Azevedo (20p8@sented as Model #0, is used as a benchmaakd$essing

the performance of the other models.

Table 1 Estimation results of the non-stationary Bl approach for head-on collisions

Non-stationary #0 #1 #2 #3 #4

model Est. (Std. Error)  Est. (Std. Error) Est. (Std. ExroEst. (Std. Error)  Est. (Std. Error)
fo -1.045 (0.137) -0.983 (0.139) -0.927 (0.145) -0.6%:345) -1.107 (0.139)

i, (speedFront) 0.024 (0.006) 0.026 (0.006) 0.027 (0.006) 0.02606) 0.027 (0.006)

i, (tailgatetp) 0.002 (0.002) 0.003 (0.002) 0.003 (0.002) 0.0060B) 0.003 (0.002)

[ (passinggap) -0.022 (0.004) -0.023 (0.004) -0.023 (0.004) -0.02804) -0.023 (0.004)

i, (curvature) -33.653 (13.519) -34.304 (13.419) -34.068 (13.403)34.090 (13.488) -34.139 (13.397)
fis (Gender) - -0.097 (0.042) -0.080 (0.043) - -

f¢ (Angry&Hostile) - - -0.021 (0016) -0.029 (0.015) -

A, (F2234) - - - - 0.116 (0.044)

é 0.3639 (0.0145)  0.3616 (0.0143)  0.3607 (0.0142) 6D(8.014) 0.361 (0.014)

é -0.2196 (0.042) -0.2176 (0.0413)  -0.216 (0.041)  216.(0.041) -0.217 (0.041)
Neg.LL 208.6541 206.0598 205.2183 206.8908 205.2379
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Analyzing the results presented in Table 1, itdeaduded that the inclusion &ender(model #1) improves the
accuracy of the model when compared to the noieetaty model (#0). The significance of this varald given
by the p-value of the likelihood ratio test, whishequal to 0.023 as presented in Table 2, with 86%idence

level.

Table 2 Likelihood Ratio Test (and p-value) for thenon-stationary BM models for head-on collisions

Model  #0 #1 #2 #3 #4
#0 -

#1 5.189 (0.023) -

#2 6.872 (0.032)  1.683 (0.194) -

#3 3.527 (0.060)  -1.662 (1.000) 3.345(0.067) -

#4 6.832 (0.008)  1.644 (2.2E-16).039 (0.843)  3.306 (2.2E-16) -

The contribution of the variables representing idgvstyles Angry&Hostile Anxious Reckless&Carelesand
Patient&Carefu) was tested considering all the possible comhinatof these variables besides the ones included
in model #1. Comparisons between the different fsodere based on the likelihood ratio test. Thiscpdure
resulted in the inclusion of one driving styfngry&Hostile as presented in model #2. Analyzing the cormetati
between the different driving styles and the soerodgraphic variables, a small but significant saneplrrelation

of 0.29 was found betweémgry&HostileandGender For modelling purposes, and in order to test tiariable
among the two has a larger influence, the varigdederwas excluded from model #2, creating model #3.
Comparing the results of models #1 to #3, it isobeted that the model that only includesnder(model #1) has

a better fit based on the p-value of the likelihoatib test. Althougiingry&Hostilecould have higher explanatory
power in other samples, a reason to prefer thisatiedhe simplicity of collecting data on drivezrgler compared

to drivers’ driving styles, which requires the cdetn of the MDSI survey.

Aligned with the conclusions achieved by Farah @Qind Llorca et al. (2013) regarding the impacagé, this
variable &ge was found to improve the accuracy of the modedmvbompared to the stationary model but turned
out to have a non-significant contribution if gende also included. After several attempts, we udeld the
interaction variable between gender (female driv@endej with age (range 22-34,2234 and the final model
(model #4) is shown in Table 1. This model consdenew variable that takes 1 if the driver isradke with age
range between 22 and 34, and zero otherwise.

To estimate the probability of a head-on collisddong with the conclusion about which model isdhe with the
better fit (models #1 and #4), two different apmlues were considered. The first approach consittetsthe

location parameter value is calculated using thadates from the data, achieving the estimatetiabiities of
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0.0195 and 0.0198 for models 1 and 4, respectiweityh 95% confidence level (0.0192; 0.0198) an®195;
0.0201), respectively. These confidence intervélsstimation were computed assuming a normal digtion
under regular parameters’ conditions, a simulataperiment size of x 10° and its simulated distribution
guantiles. The second approach considers the ewtintd the location parameters based on the eitimdataset,
where normal distributions with means (standardat@ns) of -0.989 (0.123) and -0.988 (0.125),fmdels #1
and #4, respectively were considered. The Kolmog&@mirnov test statistic of 0.0444 and 0.0479, eetipely
was achieved. This procedure simulates the vald9@ and 0.0202 for the probabilities of head-allisions of
models 1 and 4, respectively, with 95% confidemeerival of (0.01939, 0.0199) and (0.0199, 0.02@x)mparing
the probabilities of these two methods with thebatulity for a head-on collision assuming a neaadien
collision in a passing maneuver of 0.0191, resnltaodel #1 give a slightly better estimation conggbto model
#4 and the estimation performance is not signifigasheteriorated.

According to the results of model #1 presentedabl@& 1, if the speed of the front vehicép€edfrontincreases,
or if drivers start their passing maneuver fronamér gap from the front vehicleaigatetp, the negated TTC
increases (corresponding to a decrease in the TTi@pse are logical results since it is more diffito end the
passing maneuver if the front vehicle has a highieing speed. Similarly, starting the passing masme from a
larger gap from the front vehicle results in a lentime to finish the maneuver and consequentiflsmaTrC. If
the passing gappéssinggapthat is accepted is larger, or the curvaturdefbad §urvature is larger, the negated
TTC is lower and the TTC is higher. This shows tiraters adapt their behavior in a passing maneifitiee road
is too complex (i.e. sharp curves). Finally, malwets have smaller TTC. This result is supportgglevious
studies (Farah et al., 2007; VIahogianni & Gol@312), where it was found that male drivers usuddiye faster,
have shorter passing gaps, and conduct a higheemofh passing maneuvers when compared to females.
The probability density function of the empiricaidamodeled standardiz&thaximum negated TTC and the
simulated QQ-plot for the best non-stationary BMdelo(model #1) are shown in Figure 2. From thegerés it

can be concluded that the modeled GEV distributias satisfactory fitting results to the empiricatad

2 For non-stationary models, it is common practiceansform the data to a density function thatsdust depend

on the covariates, using the following function= —log(l + g X (X; — #i)) ¢ , Gilleland and Katz (2011).
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Figure 2 Probability Density plots (left) and simdated QQ-plots (right) for the stationary BM model (top)

and the best non-stationary BM model (model #1, btam) for head-on collisions.

4.1.2 Rear-end collisions

In order to estimate the probability of rear-endisions, the headway between the passed vehiddtenpassing
vehicle at the end of the passing maneuver (THW)sid as accident surrogate. Similarly to the pritiba
estimation process for head-on collisions, the mimh THW should be smaller than a limit to be usefulan
accident surrogate. Based on the literature, thigevvaries between <0.6s (Vogel, 2003) and <X9ar(s &
Wasielewski, 1982; Vogel, 2003). Considering thésesholds, several BM stationary models were ez

and evaluated (see Appendix 2) and the value af\®a® ultimately adopted.
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With a total of 492 observations with a THW smatlesin 2.0s and knowing that 2 rear-end collisiotsuared,
the theoretical probability of a rear-end collisimas calculated as 2/(492+2)= 0.00405, with a 9%86rhial
confidence interval (-0.00155, 0.00964).

The estimation of the stationary BM for the modethe negated values of the THW as carried outgutie

Gumbel distribution as the stable region for thapghparameter around the 2.0s THW filter resultefi= 0.
Further, as explored in Appendix 2, we use the atimed dataseX, = —X; — max (_{Xi};l:l)' X; being the

THW for observation, that was proven to provide a better predictionfggenance. Thus, we obtained the
parametersi = —1.456 (0.0121) ,4 = 0.256 (0.0093) and £ = 0. The density function of the empirical and
modeled negated THW and the simulated QQ plot hosvs in Figure 3. Due to the small sample and high
variance of the surrogate measure at stake (low YHW non-normalized BM estimation resulted in pesi
shape parameter for low filtering conditions.

Using the fitted Gumbel distribution to the normaali data, the estimated probability of this statigrmodel is
0.00334 with 95% confidence interval (0.00317, G4®). This interval was computed assuming a normal
distribution under regularity conditions of the ganreters, simulating an experiment with a siz&xif0® and its
simulated distribution quantiles. This estimatedbability is relatively close to the empirical peddility of
0.00405. Notwithstanding, the passing maneuver neagffected by specific passing conditions, suchpaeds
of the vehicles surrounding the subject vehicleer€fore, several linear combinations of covariatese tested
according to a non-stationary BM model approachs Pinocess was conducted in a similar way to theeho
developed to estimate the probability of a heaa:alfision.

Taking this into account, we start with the nortistaary BM model #0, which includes the covariatated with
the maneuver and the environment that were fourmb teignificant during the estimation: passing elehspeed
(speedpy and the passing gap timpaSsinggajp Testing this non-stationary model against tlatiatary one
through the likelihood ratio test, a p-value of@Q is achieved with a direct value of 17.508 (n@tdegrees of
freedom). We then estimate the probability of a-exad collision for a single passing maneuver @&ppendix
2). This distribution with a mean of -1.454, a stamd deviation of 0.0232 and a Kolmogorov-Smirntest
statistic of 0.025, lead to a simulated rear-enlistmn probability of 0.00339 with 95% confidendeterval
(0.00328, 0.00351), resulting in a slightly betstimation than the stationary model. The probgtidensity plot

as well as the QQ-plot for model #0 are shown guFe 3.
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Table 3 Estimation results of the non-stationary B1 approach for rear-end collisions

Non-stationary #0 #1 #2
model

Est. (Std. Error) Est. (Std. Error) Est. (Std. Exro
fo -1.42 (0.0626) -1.37 (0.0653) -1.42 (0.0694)

fi, (speedpv)
[z (passinggap)

0.00587 (0.00193)  0.00686 (0.00198)  0.00673 (0.0P19

-0.00916 (0.00263)  -0.0101 (0.00267)  -0.0107 (07092

As (Gender) - -0.0590 (0.0282) -0.0753 (0.0296)
(e (Angry&Hostile) - - 0.0185 (0.00992)
é 0.254 (0.00914) 0.253 (0.00910) 0.252 (0.00906)
é 0 0 0

Neg.LL 104.09 101.98 100.26

Table 4 Likelihood Ratio Test (and p-value) for thenon-stationary BM models for rear-end collisions

Model

#0 #1 #2

#0
#1
#2

4.23(0.0398) -
7.657 (0.0218) 3.43(0.0640) -

From all models including driver’s characteristi¥gble 3 presents the two best models for reareefigions,

which actually relied in the same key co-variatethe head-on collision estimation results. Whie eelated co-

variates didn’t bring any improvement in the estioraresults GenderandAngry&Hostile co-variates managed

to improve it. Again, the significance of theseiahle is given by the p-value of the likelihoodogests presented

in Table 4. We note again the correlation foundveen these two variables and as previously disdyéséowed

with model #1 in the rest of this paper.

Similarly to the head-on estimates, two differgopr@aches were considered for probability estinmafidhe first

approach considers that the location parameteevaloalculated using the covariates from the déta.second

approach considers the estimation of the locatiarameter distribution based on the estimation éatdhe

estimated probabilities of 0.00333 and 0.0033heesvely, with 95% confidence level (0.00322; (RB88) and

(0.00326; 0.00349) were obtained. All confidenceervals of estimation were computed assuming a abrm

distribution under regular parameters’ conditioassimulation experiment size @fx 10° and its simulated

distribution quantiles.
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Figure 3 Probability Density plots (left) and simdated QQ-plots (right) for the stationary BM model (top)

and the non-stationary BM model (model #1, bottomjor rear-end collisions.

In summary, the univariate fitting resulted in anrstationary GEV withspeedFront, tailgatetp. passinggap,
curvature and Genderas scale-specific covariates for head-on collsiand a non-stationary Gumbel with
speedpv, passinggamdGenderas scale-specific covariates for rear-end coltisias the best models. One can
interpret that the scale is larger in TTC and #iks {shape) are much lighter (close to 0) for TMMIch shows a
significant different behavior between the two.ehaistingly, Zheng and Sayed (2019b) also repotiradas
findings for the univariate GEV of similar surrogadafety measures but in a very different contesdsiSing
maneuvers). Ultimately and as shown in Annex 2 ewstdnding the behavior of the fitted distributi@m its
theoretical suitability for each application atketaneeds to be carefully handled both at the lef/@nproving

estimation or/and at the level of defining the safiedex, as very little applications to road sgfete yet available.
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4.2 Bivariate Model

It is aimed to estimate a measure of risk thabmby takes into account the possibility to collidih the opposite
vehicle but also with the passed vehicle. Perfognairpassing maneuver requires a split of attertjotie driver
regarding its location relative to the surroundusdpicles, and in this case mainly the oppositelaad vehicle.
As drivers attempt to keep larger gap from the @as®hicle, this directly means that the gap froendpposite
vehicle will be smaller, assuming constant spedédseoopposite and passed vehicles. In other wahése might
be a correlation between these two surrogate safedsures. In this paper, it is assumed that thertkence
between the TTC and the THW is unknown. Furthermareintegrated analysis is possible to be develdfpe
and only if, a relationship of dependence can lmddbetween TTC and THW. When examining the cdiitzia
between these two variables with using the whotas#d, a Pearson-correlation value of 0.186 wasdoilihis
value shows the lack of linear correlation betwdenTTC and THW. However, this does not mean tfiat @nd
THW are independent (Embrechts, McNeil, & Strauma002). To further examine potential correlatitre
Kendall's rank correlatiom was computed and found to be significantly gretii@n zero, indicating the existence
of dependence between TTC and THW(Q(192, p-value<2.2x1¥). This statement is corroborated by the
independence test Global Cramer-von Mises, wheigrdficant p-value close to zero (p-value=0.0004§i9es

evidence against the null hypothesis of indepenglenc

4.2.1 Stationary Marginals

Due to Sklar’'s Theorem (Sklar, 1959) any multivegridistribution can be expressed in terms of itegmals and
the copula (see Section 3.3). Hence, in a firgjestae estimated the marginals separately, consigldhie
stationary univariate BM distributions for eachiaate. By the probability integral transform the ngiaals turn
to approximately uniform variables, used next tpuda estimation that contains all the dependenfcerration.
Depending on the selected copula-parametric maddalependence parameters are consequently edfindtis
integration estimates the probability of an accidemditioned on TTC and THW being smaller tharirtfikers
(1.5s and 2.0s, respectively). Recall that thdsmrdiare the established limits for the varialtéebe useful as an
accident surrogate. Since a marginal fitting isassary prior to the dependence fitting, we think fhore coherent
to use only the specific sample information relatedccident surrogate. Thus, to perform the esiimdor the
remaining TTC and THW sample, other distributiomsthe margins should be tested (e.g., gamma llisions).
This is mainly due to the reported non-extreme &alistribution of safety measures beyond surrogafety

analysis conditions.
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Using the R packagevd (Stephenson, 2002), we explored different bivarfainctions: logistic, asymmetric
logistic, Husler—Reiss, negative logistic, asymiaetregative logistic and bilogistic. For furthertaiés on its
formulation and implementation in R the readeeferred to thevd package documentation (Stephenson, 2002).
Here we present the results for the distributioith the highest AIC and predictive power: logisticymmetry
logistic and asymmetric negative logistic distribns. The bivariate logistic distribution functibas underlying
dependence parameter(within the dependence functiohin Eq. 6 above) where complete dependence is
obtained in the limit as approaches zero (and independence is obtainedmkerl). It is a special case of the
asymmetric logistic model where two additional aeyetry parameters are considered witlin Here,
independence is obtained when= 1 or when the asymmetry parameters equal 0. Complependence is
obtained in the limit when the asymmetry parametees equal to 1 andapproaches zero. The asymmetric
negative logistic distribution is equivalent to thegative logistic model. Independence is obtaindtie limit as
eitherr or the asymmetry parameters approaches zero. @enependence is obtained in the limit when the
asymmetry parameters are equal to 1atehds to infinity (Capéraa & Fougeres, 2000; Dam& Ferreira
2006). The results are presented in Table 5. Tlima®d probability was obtained from the estimgdt
cumulative distribution function and considerinther and both of the surrogate measures equatsthan zero

(see Appendix 1).

Table 5 Estimation results for the stationary paranetric bivariate BM model for the Logistic, Asymmetric

Logistic and Asymmetric Negative Logistic and the bst Copula based model (Joe-Frank)

Parameter Logistic Asym. Log. Asym. Neg. Log. Joe-Frank Copal
frre -0.886 (0.031)  -0.877 (0.031) -0.883 (0.031) -0.886 (0.031)
Grrc 0.431(0.024)  0.445 (0.026) 0.431 (0.024) 0.432 (0.025)
é Erne -0.417 (0.060)  -0.424 (0.069) -0.415 (0.062)  "0-432(0.059)
§ - 1417 (0.021)  -1.422 (0.021) -1.421 (0.021)  -1.417(0.019)
Grw 0.280 (0.016)  0.283 (0.016) 0.280 (0.016)  0-280(0.014)
Ern -0.0008 (0.060) -0.0059 (0.061) -0.0017 (0.058) -
. r 0.865 (0.039)  0.774 (0.100) 0.580 (0.154) -
= Asym, - 0.497 (0.328) 0.379 (0.199) -
% Asym, : 0.999 (2x169) 0.999 (2x16) :
g 0 - - - 1.815 (1.101)
5 - - - 0.729 (0.384)
AIC 419.197 422.948 421.043 418.4
Estimated Probability 0.0141 0.0190 0.0149 0.0209
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The empirical probability for comparison was cadtatl by knowing that a maximum of 5 (4 head-on anelar-
end collisions) out of the total 11 collisions the other surrogate safety measure value belofiltés (i.e., if

head-on collision, then THW was below 2.0 s, an@afr-end collision, then the TTC was below 1.5ag) that
the sample of size is given by the number of doltis plus the 256 observations where both TTC and/Twere
below 1.5 and 2.0, respectively. Therefore, theigagb collision probability is 0.0191 (0.0025, @88). Despite
slightly higher AIC, the asymmetric negative logigtistribution was able to provide better probipistimates.

Note again the obtained shape parameter for the Thé'ginal close to zero.
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Figure 4 Probability density contours for stationay bivariate EV distributions and the observed data

Further explore non-EV copula families to model tependence between the negated values of TTC fand o

(normalized) THW using the range of families avaliéain the R packages neCopul a andcopul a (namely,
Gaussian, Student t, Clayton, Gumbel, Frank, JoeGumbel, Joe-Clayton, Joe-Frank and their ratajioTo
explore these families the marginals are estiméitetl(as per the previous section 4.1 of this papend the
copula is here estimated subsequently. We firstlodeed that the copula with the best AIC is the-Boank
(Brechmann & Schepsmeier, 2013), with paramet&s and 0.71. This result was also confirmed byqgrering
the goodness-of-fit test based on Kendall's pro¢@ss7 for both p-values of Cramer-von Mises stiatiand
Kolmogorov-Smirnov statistics). Simulating elemefds the copula distribution analyzed in this explory
approach, with a Joe-Frank copula and GEV (TTC)@uuhbel (THW) distributions for the margins, a nraxim
log likelihood of -202.2. Using this fitted disttibon (see Table 5), the estimated probabilityafihg an accident,

conditioned that both surrogate measures are btdeiw filter, was slightly overestimated at 0.02@0206,
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0.0212). For head-on collisions the obtained praityalis 0.0178 (0.0175, 0.0181) and for rear-emdlisions
0.0033 (0.0032, 0.0034).

The probability density function of this bivariateodel is displayed in Figure 5. The dependencig¢sioéd for
both the full maximum likelihood estimation undketivariate EV distribution functions or the now-Eopula-
based estimation for the Joe-Frank copula revehkeduitability of our approach to estimate thaefgirobability
of an accident based on the two surrogate meaguiigs and THW). Yet, as previously mentioned, furthe
analysis should be performed with approaches ssdireer EV and non-EV copulas together with théuision

of other distributions for the margins should bplered (Capéraa, Fougéres, & Genest, 1997).

0.0
1

-0.5
1

Normalized min{THW}
-1.0

-1.5

-2.0

min{TTC}

Figure 5 Probability density contour for the statbnary Joe-Frank copula and the observed values.
4.2.2 Non-stationary Marginals
As in the univariate case, we now aim at studymgimportance of driver characteristics in thereation of
collision probability under the bivariate approa€luch analysis allows us to shed light on thesmbiss in the
interactions between the driver, the opposing Aedgossed vehicle. We consider again the covasatested in
the best univariate BM models and we estimateltheetbivariate EV distributions from section 4.2bikariate
BM model was fitted to the joint distribution of s{al TC} and (normalized as detailed in as in Append)
max{-THW}, achieving the parameters shown in Tabknd the contours shown in Figure 6. Both the depece
and the predictive power improve significantly, lehHieeping the signs and magnitude of the covarietesistent
with the phenomenon at stake and the previous astins. All confidence intervals for the estimapedbabilities
were again computed assuming a normal distributioder regular parameters’ conditions and a sinuati

experiment size of x 10°.
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Table 6 Estimation results for the non-stationary livariate BM model for the Logistic, Asymmetric

Logistic and Asymmetric Negative Logistic

Parameter Logistic Asym. Log. Asym. Neg. Log.
prre -1.004 (0.177)  -1.018 (0.177) -0.958 (0.170)
A arront 0.028 (0.009) 0.028 (0.009) 0.025 (0.009)
AfaSatety 0.004 (0.002) 0.0033 (0.002) 0.033 (0.002)
AT inggap -0.022 (0.006) -0.021 (0.005) -0.021 (0.006)
AITC e -31.193 (19.231)  -34.777 (19.44) -34.790 (18.505)
ALz -0.076 (0.060) -0.061 (0.061) -0.063 (0.061)
6Tre 0.400 (0.023) 0.398 (0.023) 0.397 (0.023)
Erre -0.366 (0.068) -0.371 (0.071) -0.381 (0.068)
ArHw -1.353 (0.115) -1.358 (0.116) -1.312 (0.114)
AT oy 0.014 (0.004) 0.014 (0.004) 0.013 (0.004)
0 hssinggap -0.016 (0.005) -0.016 (0.005) -0.017 (0.005)
aLHw -0.103 (0.045) -0.104 (0.046) -0.110 (0.045)
GTHW 0.281 (0.015) 0.283 (0.015) 0.277 (0.014)
ETHW -0.008 (0.049) -0.083 (0.050) -0.073 (0.049)
r 0.907 (0.037) 0.813 (0.099) 0.456 (0.195)
Asym, - 0.277 (0.202) 0.350 (0.336)
Asym, - 0.999 (2x16) 0.999 (2x16)
AlC 395.396 397.553 397.85
0.0180 0.0179 0.0153

Estimated Probability (0.0178,0.0183)

(0.0176,0.0181)

(0.0149,0.0154)
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Figure 6 Probability density contour plot for the best non-stationary bivariate distributions and the

observed data.
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In Figure 7 we present the summary of the estimptetiabilities for all best models presented abewel its

empirical values.

0,025

0,02 l
||

0,015
0,01
0,005
. | m m m
Stationary ParametriStationary Parametrigtationary Parametric Stationary Copula  Non-Stationary Non-Stationary Non-Stationary
EV Logistic EV Asym. Log. EV Asym. Neg. Log. Joe-Frank Parametric EV  Parametric EV AsynParametric EV Asym.
Logistic Log. Neg. Log.

mTotal mHead-on mRear-end

Figure 7 Probability estimates for all best bivarate models (empirical values as horizontal lines).

As a final comparison, and as in the previous eastiwe look at the obtained AIC, the amplitudéhefestimates'

confidence interval reflecting higher precisiongddhe prediction power (estimated probabilitiesgath model.

The non-stationary parametric asymmetric logistivcabate EV seems to perform better overall. More

interestingly, and having in mind the consideredagate safety measures, the models that perfostiféerms
of these three criteria are not the ones with ttengest dependence, especially noticing thatdheesmodel with
covariates increases the degree of independencs, We are consistently observing weak dependegtvecbn
the two indicators. Also, adding the covariateswa#ld once again to improve the overall performamicell

models.

5 Conclusions

This paper analyzed the individual and joint pralitéds of head-on collisions and rear-end colligdhrough the
Block Maxima approach using the Univariate and Bate distributions to model dependence betweerivtioe
surrogate measures that capture those types @fiocnf during passing maneuvers.

We investigated the fitting of EV models allowirgy finy real extreme value index, to understandinfavmative

these models may be in respect to the extreme adiiees pertaining to surrogate measures of safety

The univariate non-stationary estimation alloweddnclude that aspects linked to drivers’ charésties, namely
the driving style/gender, have a significant impawstthe prediction of collisions. Furthermore, wew how

different measures may have different behaviors tieed for careful EV theoretical and applicatipedfic

attention. In future application, understandingrsibehavior of the fitted distributions and its thetical suitability
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for each application at stake needs to be handiéd &t the level of improving estimation or/andtat level of
defining the safety index, as very little applioat to road safety are yet available. Furthermaitg,the increased
availability of comprehensive naturalistic datasets hope that EV approaches will be able to pmddobust
quantified link between driver's characteristicetailed surrogate safety measures and the instahabpility of

different types of accidents.

The bivariate model approach integrated the twieint surrogate measures, TTC and THW, in ordestionate
the risk of colliding with the opposite or with tpassed vehicle in a single passing maneuver. Adgthohe linear
correlation between the two surrogate measureproaed to be weak, the bivariate distribution eation shown
the existence of dependency between these twogaieroneasures, relative improved the predictivegpafithe
EV model and set the ground for further the exgloraof multi-variate and copula EV approachesamplex
road safety phenomena. However, the models th&drpeibest in terms of fit and prediction power acg the
ones with the strongest dependence, especiallgingtihat the same model with covariates incretiseslegree

of independence. Also, adding the covariates alibtwémprove the overall performance of all models.

In terms of future work, and regarding the rear-eaflisions model estimation, we suggest that ttiend must

concentrate on the more theoretically consistemhiBal or Weibull distributions under the BM approacid GP
distributions restricted to non-positive extrem&ueandex under POT approach to improve precisivaccident
probability estimation especially under small sagsplFurther exploration of the wide range of Cogalaily

models should also be explored in the field of ro@dh probability estimation based on surrogdtysaeasures.
To sustain the preliminary conclusions that botitCTand THW are good surrogate safety measures far ne
accidents, head-on collisions and/or rear-endsioiis, further analysis should be developed inroi@®alidate
through simulated data and/or data from other eéxpattal scenarios the conclusions drawn by thesgetao
Finally, following the very recent univariate apaltions (Wang, Xu, Xia, Qian & Lu, 2019), the prepd
multivariate probabilistic surrogate safety modslsould be integrated in traffic microscopic simigat
frameworks and advanced vehicle control and drigssgjstance systems for promising safety assesswigerte
the estimation of safety for individual maneuversud not need to rely on accident records nor erlithitations

of simulation’s and algorithm’s premise of accidéee models.
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6  Appendix 1: Probability of Collision

The maximum domain of attraction condition hold$daf {—X;, ..., —X,} ani.i.d. sample of the surrogate measure
of safetyx,
1
max —X;—bp, _(1+M) ¢
34,50, bp € R: lim P(‘s"a—sy)ze a J+ ,EER (Eq. 8)
n-oo n

with 1 + E@ always positive. This formulation simplifies tstndard EV in the limit i&,, andb,, are chosen

appropriately. Hence under the BM approach we defin

max X;—bn
Pgy (collision) = lim P (‘S”a— > O) = lim P (maXXi > bn) (Eq. 9)
n—oo n n—-oo i=n
and estimate it by,
N
Py (collision) = 1 — e~ (1-53) (Eq. 10)

The above equation can also be interpreted asatsigrthe probability until achieving that “leastaf value” of
the surrogate safety measure before collisionppraximately the probability of this measure beaggclose to

zero up to the actual observed sample maximum.

7  Appendix 2: Summary of the Stationary Model Estimaton and Filter Sensitivity Analysis

To validate the TTC and THW filter used in Sectigra sensitivity analysis was performed. This asialgllows
not only to analyze the stability of the estimatiotthe selection of the filter, but also to exgldine range of shape
parameter values to be expected in non-statiorstipation. It also allows to evaluate the predicti@rformance
of a simplified stationary approach. We also coragiuthe estimates for the normalized model {a,, b,} =
{1, —min(X;)} with i € 1, ...,n for the BM and study it's performance comparedh&® non-normalized model.
Such normalization can be of particular relevanogen small samples and increased variability ofabeerved

variables.

In Figure 8 we present the results for BM approddie red curve in the bottom plot represents thpiecal

conditional collision probability from the used datVe first highlight the stable region for theimsite of the
shape parameter for TTCs between 0.6 and 1.5s -@readllision). The normalized model does not pdevi
significant prediction improvement nor differentiesates (as the dark blue and light blue curvesp@mameter
estimates are overlapping), likely due to a largenber of surrogate observations. From the analyalises
between 1.2 and 1.5 s are likely to provide bothdgstatistical properties and prediction perfornesnd he value

of 1.5s was thus selected for further analysistdiies smaller variance.
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Figure 8 ML estimates of the univariate stationaryBM location, scale and shape parameters and the
resulting probability of collision for the TTC (left) and the THW (right) for the original (dark blue) and
normalized (light blue) model for different filteri ng criteria. In red is the empirical conditional cdlision

probability.
A first stable region for the estimate of the shppeameter for THWs happens between 1.0 and 1e3s-énd

collision). However, within this region the sha@@ameter has positives values (between 0.35 a®)l hérefore
conflicting with the theory, since a positive shagagameter implies an infinite right-endpoint foetunderlying
distribution of THW (as explained in Section 3.Zhese results are mainly due to the small sampl®Qd<
observations) and the high variability of THW withihis region. Thus, we further explore the staielgion

between 2.0 and 2.4s where the shape parameteah&s close to zero (between 0.06 and -0.05).Gumabel
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1 distribution (GEV withé = 0) was tested within this region and used for furthealysis. Finally, due to
2 limitations of the THW dataset mentioned abovés ivorth noting the increased prediction perforngantthe

3 normalized model.
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