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Abstract

The continuous growth of air traffic, together with limited existing airport infrastructures, have resulted in air
traffic demand-capacity imbalances, airport congestion and arrival/departure flight delays. To address this, large
European airports implement strategic flight schedules, i.e., up to 6 months prior to the day of the flight execution,
flights are assigned arrival and departure time slots. The allocation of slots is performed by airport slot coordina-
tors, which strive to accommodate the requests of airlines for arrival/departure slots, while taking into account
airport’s capacity and current IATA slot allocation guidelines. To support this process, several deterministic opti-
misation models for slot allocation have been proposed. However, the resulting flight schedules assume ideal con-
ditions, .i.e., potential flight delays or cancellations are not considered. In this paper we propose for the first time
a machine learning-based approach to assess the strategic flight schedules in terms of potential arrival/departure
flight delays and cancellations. We first propose algorithms to classify the strategic, scheduled flights as delayed
or cancelled. Further, we use these results as input for a generic flight schedule assessment methodology based
on a relative on-time airport performance comparison of the considered strategic schedules. We demonstrate our
methodology by assessing 10 strategic flight schedules in the period 2013-2018 at London Heathrow Airport, one
of the busiest airports in Europe. Together with the development of dedicated strategic flight schedule optimiza-
tion models, our proposed approach supports an integrated strategic flight schedule assessment, where strategic
flight schedules are evaluated with respect to flight delays and cancellations.

Keywords: Strategic flight schedule, Delay prediction, Cancellation prediction, Machine learning, Schedule
ranking

1. Introduction

The continuous growth of air traffic, together with
limited airport expansion possibilities, have resulted
in air traffic demand-capacity imbalances and ar-
rival/departure flight delays at the largest airports in
Europe. As an example, in 2017, the number of flights
in Europe has increased by 4.3% relative to 2016 (EU-
ROCONTROL, 2017). This corresponds to an addi-
tional 1191 flights per day on average. At the same
time, 20.4% of the flights in 2017 experienced an ar-
rival delay of 15min or more (EUROCONTROL, 2017).

To manage the demand-capacity imbalances, the
busiest European airports make use of administra-
tive demand management strategies to limit the num-
ber of flights scheduled to arrive/depart during busy
hours. The main administrative demand manage-

ment strategy currently in use is the airport slot al-
location process, which follows the International Air
Transport Association (IATA) Worldwide Slot Guide-
lines (International Air Transport Association, 2017).
The IATA slot allocation process takes place two times
per year (the Winter and the Summer season) and
gives airlines the permission to use the full range of
an airport’s infrastructure to arrive or depart at a spe-
cific date and time at the airport. (Zografos et al., 2017;
Pellegrini et al., 2017; Ribeiro et al., 2018) provide a
detailed overview of the slot allocation process. The
main inputs of the slot allocation process at an airport
are 1) the requests of the airlines to access an airport’s
infrastructure for arrival or departure at a specific date
and time, and 2) a deterministic, pre-defined airside
and terminal capacity of the airport in terms of, for in-
stance, maximum number of movements per day, per
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hour and per 15min. Following the IATA guidelines,
the output of the slot allocation process is a strategic
flight schedule containing the scheduled arrival and
departure flight date and time up to 6 months prior to
the day of the flight execution. The strategic schedule
is in the form of a series of scheduled arrival and de-
parture times. These series are commonly recurrent
over a period of time, e.g., flight 123 is scheduled to
arrive at 10AM every day from Monday to Thursday,
in the months April and May.

In the past decade, several optimisation models to
allocate slots to arriving/departing flights, have been
proposed. (Zografos et al., 2012; Ribeiro et al., 2018)
have developed optimization models for slot alloca-
tion at a single European airport. Network-wide slot
allocation optimization models have been developed
by (Castelli et al., 2012; Corolli et al., 2014; Pellegrini
et al., 2017). The main objective of these models is to
minimize the difference between the airlines’ slot re-
quests and the slots granted at the airport, following
the IATA guidelines and taking into account the de-
clared capacity limits of the airport. However, these
models assume ideal conditions: the flights are as-
sumed to be able to arrive and depart exactly within
their scheduled slots, and the capacity of the airport
is considered to be fixed, deterministic. In the day
of the execution, however, flights often experience ar-
rival/departure delays or cancellations. The strategic
flight schedules, currently obtained following optimi-
sation of the slots requests and the IATA guidelines up
to 6 month prior to the day of the flight execution, do
not give an indication on the potential flight delays
and cancellations associated. In turn, the impact of
the strategic schedules on the airport on-time perfor-
mance is unknown at the moment of schedule gen-
eration. To address this, a methodology is needed to
assess strategic flight schedules with respect to poten-
tial flight delays and cancellations and to provide air-
ports with insights into potential performance bottle-
necks. Such insights are particularly important to sup-
port the airport coordinators in developing strategic
schedules that not only meet the IATA guidelines, but
also enable a smooth and robust air traffic that bene-
fits both airlines, airports and passengers.

In this paper we propose a machine learning-based
approach to assesses the impact of strategic, IATA
guidelines-compliant flight schedules on the on-time
performance at an airport. In particular, we propose
classification algorithms to predict whether flights
scheduled in the strategic phase (6 months prior to the
day of the execution) are subject to arrival/departure
delays and cancellations during execution. Using

the obtained flight delay and cancellation results, we
propose a generic methodology to rank the strategic
schedules by comparing and contrasting the associ-
ated flight delay and cancellation predictions. This
analysis provides a means to assess strategic sched-
ules based on their predisposition to have flight delays
and cancellations. We demonstrate our assessment
methodology using 10 strategic flight schedules from
2013-2018 at London Heathrow Airport (LHR), which
is one of the busiest airports in Europe.

The contribution of this paper is three-fold. Firstly,
we propose a machine learning-based algorithm to
classify strategic, scheduled flights as being delayed or
cancelled having a prediction horizon of 6 months. To
the best of our knowledge, this is the largest prediction
horizon assumed for flight delay and cancellation ma-
chine learning-based predictions. Most existing ma-
chine learning algorithms for flight delay and cancel-
lation predictions assume a prediction horizon of only
a few hours to a few days prior to the flight execu-
tion. Secondly, we characterize and compare the con-
tribution of the classification features to a flight being
classified as delayed or cancelled. Thirdly, we apply a
generic methodology to assess strategic flight sched-
ules and changes-to-schedule based on target Key
Performance Indicators (KPIs) which are derived from
the results of the flight delay and cancellation classifi-
cation algorithms. The generality of our proposed as-
sessment relies on the fact that we use a relative per-
formance comparison between the assessed strategic
schedules, rather than assigning user-defined weights
to the target KPIs.

In summary, this paper provides an approach to as-
sess the performance of strategic flight schedules with
respect to associated flight delays and cancellations
up to 6 months prior to the flight execution. To the
best of our knowledge, we assess for the first time the
robustness of strategic, IATA-compliant flight sched-
ules with respect to delays and cancellations. To-
gether with the development of dedicated optimiza-
tion slot allocation models that minimize slot dis-
placement in the presence of airport capacity con-
straints, our approach provides the airport coordi-
nators with an integrated assessment of the perfor-
mance of the IATA-compliant, airport slot allocation
process.

The remainder of this paper is organized as fol-
lows. Section 2 discusses existing machine learning
approaches for flight delay and cancellation predic-
tions and their performance. Section 3 describes the
flight schedules and the flight delay and cancellation
data from LHR in the period 2013-2018. Section 4
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presents our proposed machine learning approach for
flight delay and cancellation classification. Section 5
describes a generic approach to assess strategic flight
schedules based on KPIs that are derived in Section
4 using machine learning-based predictions for flight
delay and cancellation. Section 6 discusses the impli-
cations of our results. as Section 7 provides conclu-
sions and outlines future research directions.

2. Related work

The analysis of flight delays has been extensively
addressed in the literature. (Mueller and Chatterji,
2002; Wu, 2014; Tu et al., 2008) propose data-driven
models to estimate flight delay distributions at non-
European airports. (Mueller and Chatterji, 2002) de-
termines flight delay statistics for 10 major US air-
ports by analyzing historical fight data. Based on
these statistics, departure and arrival delays have
been model as a Poisson process and a normal distri-
bution, respectively. (Wu, 2014) estimates the proba-
bility density function of departure and arrival delays
at Beijing Capital International Airport using histor-
ical flight delay data and an optimal generalized ex-
treme value model. (Tu et al., 2008) proposes a statis-
tical model to estimate flight departure delay distribu-
tions and seasonal trends at Denver International Air-
port. The authors consider in their model a seasonal
trend, daily propagation patterns and random residu-
als. (Abdel-Aty et al., 2007) develops a frequency anal-
ysis to detect flight delay patterns at Orlando Interna-
tional Airport.

In the last years, an increasing number of stud-
ies have analyzed flight delays using machine learn-
ing approaches (Sternberg et al., 2017). Several stud-
ies (Kim et al., 2016; Choi et al., 2017; Alonso and
Loureiro, 2015) consider a short prediction horizon of
up to 1 day before the flight execution. (Kim et al.,
2016) classifies delays at several US airports using re-
current neural networks and several weather-related
features. The models achieve a classification accuracy
of 0.874. (Choi et al., 2017) employs random forests
and weather-related features to classify flight delay
with an accuracy of 0.828.(Alonso and Loureiro, 2015)
develops a multi-class classification algorithm to pre-
dict flight departure delay at Porto airport, achieving
an accuracy of 0.57. One of the most important fea-
ture used for classification is the amount of delay ex-
perienced by the previous flight arrival.

(Choi et al., 2016; Belcastro et al., 2016; Horiguchi
et al., 2017) propose machine learning approaches
to classify flight delays with a prediction horizon of

several days prior to the day of the flight execution.
(Choi et al., 2016) achieves an accuracy of 0.268 us-
ing weather forecasts available 5 days prior to the
day of the flight execution. The authors employ ran-
dom forests classifier that are exclusively trained with
weather-related features. (Belcastro et al., 2016) pro-
poses a model to classify flights as being delayed ex-
clusively as a result of unfavorable weather condi-
tions. The authors use a balanced flight dataset, where
a random under-sampling algorithm is used to de-
crease the number of delayed samples. The features
considered are the scheduled departure/arrival time,
the origin/destination airport and the weather condi-
tions. The proposed random forests classifier obtains
an accuracy of 0.858, with a recall of 0.869 with a 60
min delay threshold (a fight considered to be delayed
if it has a delay of 60 min or more relative to the sched-
uled arrival time). (Horiguchi et al., 2017) considers
a flight delay prediction horizon of 5 months before
the day of the flight execution. A XGBoost classifier
achieves an area under the ROC curve (AUC score) of
0.534 when predicting flight delay for 20 airports in
Asia for a low-cost airline.

Several studies analyze flight delay cancellations at
an airport. (Sridhar et al., 2009) proposes a neural net-
work approach that aims at predicting the total aggre-
gate number of flight cancellations. The accuracy of
the predictions obtained is r = 0.79. Many studies also
propose logit models to explain the influence of sev-
eral variables on a flight being cancelled (Rupp and
Holmes, 2006; Xiong and Hansen, 2009).

This paper expands this previous work on flight
delay and cancellation prediction by developing ma-
chine learning classifiers to predict flight delays and
cancellations with a 6-month prediction horizon at a
large European airport. These flight delay and cancel-
lation predictions are further used to assess strategic
flight schedules on their impact on the airport’s on-
time performance.

3. Description of the case study data

The case studies presented in this paper are based
on the strategic flight schedules, i.e., scheduled ar-
rival and scheduled departure flight times, at London
Heathrow Airport (LHR) in the period 30 March 2013 -
30 March 2018. These scheduled arrival and departure
times correspond to 10 strategic slot allocation sched-
ules, i.e., for each year in the period 2013-2018 there
is a 6-month Summer Season schedule (end March to
end September) and a 6-month Winter Season sched-
ule. These schedules are the result of the IATA slot al-
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location process at LHR: airlines submit requests for
arrival/departure slots; the airport coordinator grants
slots while taking into account the available capacity
at LHR and the IATA guidelines for slot allocation (In-
ternational Air Transport Association, 2017).

Table 1 gives an example of scheduled flights
at LHR, following the IATA slot allocation pro-
cess. Each arrival/departure flight is assigned
an arrival/departure time between 6:30-24:00,
an interval of dates when the flight is scheduled
for arrival/departure, the frequency of the ar-
rival/departure over the indicated interval of dates,
an LHR terminal (at LHR there are 4 passenger
terminals and a cargo terminal), and the destination
(origin) airport for an flight departing from (arriving
at) LHR. The type of aircraft assigned to a scheduled
flight is also known from the slot request submitted
by the airline. For example, flight KL1031 in Table 1 is
scheduled for arrival at 17:55 every day from Monday
to Saturday in the period 01.04.2013-01.07.2013.
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KL1031 Arr. 1755 01.04.2013 01.07.2013 123456· 4 AMS 73W
BA830 Dep. 0930 01.04.2013 20.06.2013 12··567 1 DUB 320
DL100 Arr. 0800 01.04.2013 13.05.2013 1·· 45 ·7 3 JFK 764

Table 1: Example of strategic flight schedule with flights scheduled
to arrive at/depart from LHR.

We consider 2.3 million flights scheduled to ar-
rive and depart from LHR in the period March 2013
- September 2018. There are 177 types of aircraft
assigned for these flights and a total of 542 dis-
tinct origin/departure airports for the flights arriv-
ing/departing from LHR. Moreover, 25% of these
flights are short-haul, with a flown distance of at most
700 km, 25% of the flights have a flown distance of
700−1400 km, 30% of the flights 1400−6000 km, and
20% of the flights more than 6000 km.

Flight Imbalance ratio Delay STD (min)
Arrivals 3.15 44.68
Departures 3.70 32.87
Cancellations 58.88 -

Table 2: Actual delays and cancellations of flights that have been
scheduled in the 2013-2018 strategic schedules.

We say that an arrival (departure) flight has an ar-
rival/departure delay if, during execution, this flight
arrives (departs) 16min or more after the scheduled
time of arrival (departure) (EUROCONTROL, 2017).

We say that an arrival (departure) flight is cancelled
if this flight is not executed in the day when it was
scheduled to arrive (depart).

4. Machine learning algorithms for flight delay and
cancellation prediction

In this Section, we present a machine learning ap-
proach to predict whether strategic, scheduled ar-
rival/departure flights are delayed or cancelled. These
predictions are based on strategic flight schedules
from LHR and assume a 6-month prediction horizon,
i.e., we predict whether flights are delayed or can-
celled 6 months prior to the day of the flight execu-
tion. We make use of classification algorithms to pre-
dict: arrival flight delay, departure flight delay and
flight cancellation. In Section 4.1 we discuss the selec-
tion of features used as input for the flight classifica-
tion algorithms. Section 4.2 presents the performance
of three flight classification algorithms: LightGBM,
multilayer perceptron (MLP) and random forests (RF).
In Section 4.3 we make use of model-agnostic inter-
pretability methods to explain the predictions yielded
by the classification algorithms.

4.1. Feature Selection

In this section we discuss the selection of features
used to classify strategic, scheduled flights as being
delayed or cancelled.

We select the features used for the flight delay and
cancellation classification algorithms using the recur-
sive feature elimination (RFE) method (Guyon et al.,
2002), which recursively eliminates weak features us-
ing cross-validation and scoring of features subsets.
Table 3 shows the RFE-based features selected to clas-
sify an arrival/departure flight with a 6-months pre-
diction horizon. Table 4 provides a detailed descrip-
tion of these features.

The features Airline, Terminal, Aircraft, Airport,
Year, Month, Hour, Day of year, Day of month, Day
of week are obtained directly from the strategic flight
schedules, which are compliant with the IATA slot al-
location guidelines. The features Distance, Country
and Seats are derived after processing the 6-months
strategic schedules. We have also considered sev-
eral other features such as the number of aircraft
present at the airport at the moment of/1 hour be-
fore/1 hour after the flight arrival/departure time,
the arrival stack, the standard instrumental departure
(SID) route, the turnaround time determined as the
difference between the scheduled departure time and
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the scheduled arrival time. However, these features
have been eliminated by the RFE feature elimination
algorithm, i.e., these features did not further improve
the performance of the classification algorithms.

Classifier Features

Departure Delay
Airlinea, Terminala, Aircrafta,
Distance, Airportc, Countrya,
Seats, Year, Monthb, Hourb,
Day of yearb, Day of month,
Day of week

Arrival Delay
Airlinea, Terminala, Aircrafta,
Distance, Airportc, Countrya,
Seats, Year, Monthb, Hourb,
Day of yearb, Day of month,
Day of week

Flight
Cancellation

Airlinea, Terminala, Aircrafta,
Distance, Airporta, Countrya,
Year, Hourb, Day of yearb, Day
of month, Day of week

a Feature prepossessed with the target encoding
method
b Feature transformed by trigonometric functions
c Categorical feature encoded using geographic coor-
dinates

Table 3: Feature selection for flight delay and cancellation classifiers
with a 6-months prediction horizon.

Features
Feature

type
Feature description

Airline C airline operating the flight
Terminal C arrival/departure airport terminal assigned to a flight
Aircraft C aircraft type
Distance N distance between origin and destination airport (km)
Airport C origin/destination airport of the flight
Country C country of origin/destination airport
Seats N number of seats of the aircraft assigned to a flight
Year N scheduled year of flight arrival/departure
Month N scheduled month of flight arrival/departure
Hour N scheduled hour of the day of flight arrival/departure
Day of year N scheduled day of the year of flight arrival/departure
Day of month N scheduled day of the month of flight arrival/departure
Day of week N scheduled day of the week of flight arrival/departure
Arrival ATFM delay N daily average ATFM arrival delay (min)

Table 4: Description of features used for flight delay and can-
cellation classification algorithms - 6 months prediction horizon.
C=Categorical, N=Numerical.

The categorical features Airline, Terminal, Aircraft
and Country are encoded using the target encoding
method (Micci-Barreca, 2001). The categorical fea-
ture Airport has been encoded both using the geo-
graphic coordinates of the airport and target encod-
ing. Binary encoding and one-hot encoding methods
have not been employed due to the high cardinality

of the categorical features. Ordinal encoding has not
been used either since it misleadingly assumes an or-
der within a feature. For example, an ordinal encoding
of the airlines such as 1,2,3, ... would mean that an air-
line encoded as 1 is more similar to an airline encoded
as 2 than an airline encoded as 8. Table 5 gives an ex-
ample for each of the mentioned encoding methods,
where one-hot encoding uses strings of bits with only
one high bit (1) and the rest low bits (0) for each air-
line type, ordinal encoding uses ordered integers for
each airline type, binary encoding uses binary strings
of bits for each airline type. Lastly, the target encoding
method (Micci-Barreca, 2001), taking the case of de-
parture delay classifiers, encodes an airline type based
on the probability that a flight from this airline is de-
layed (the target). For example, in Table 5, the airline
BA is encoded as 2

3 = 0.67 since there are 2 BA flights
delayed from a total of 3 BA flights.

Airline Delayed
One-hot
encoding

Ordinal
encoding

Binary
encoding

Target
encoding

TAP Yes 100 1 00 0.5
KLM No 010 2 01 0
BA Yes 001 3 10 0.67

TAP No 100 4 00 0.5
BA Yes 001 5 10 0.67
BA No 001 6 10 0.67

Table 5: Example of encoding methods for feature Airline and clas-
sifier departure delay. Here we consider 3 airlines, i.e., TAP, KLM,
BA, and a total of 6 flights.

The features Hour, Day of year and Month have
been transformed by trigonometric functions to ac-
count for periodicity (Horiguchi et al., 2017). For ex-
ample, for a specific hour of the day t , we use the
trigonometric functions si n

( 2πt
24

)
and cos

( 2πt
24

)
to en-

sure a 24hrs periodicity. As a consequence, t=24:00
and t=1:00 become sequential hours. Similarly, we en-
sure a periodicity of 365 days for the feature Day of the
year and a periodicity of 12 for the feature Month.

The feature Arrival ATFM delay is a daily average
feature, i.e, assumes the same value for all flights in
a specific day of operations, and corresponds to the
duration between the last Estimated Take-Off Time
(ETOT) and the Calculated Take-Off Time (CTOT) al-
located by the European ATM Network Manager. A
positive value of this parameter indicates traffic con-
gestion due to, for instance, weather conditions.

The feature Seats has a range between 4 seats (for
regional jets) to 800 seats (for A380-800). This feature
has been derived from the type of aircraft assigned to
a flight.
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4.2. Flight delay and cancellation classification algo-
rithms

In this Section we present three machine learn-
ing classification algorithms to classify flight delays
and cancellations 6 months in advance of the day of
the flight execution: LightGBM, multilayer percep-
tron (MLP) and random forests (RF). These three al-
gorithms belong to different machine learning types
of algorithms: gradient boosting decision tree, neural
networks and random decision forests, respectively.
We make use of three different classification algo-
rithms to cross check our results.

LightGBM (Ke et al., 2017) is a tree-based machine
learning algorithm where ensembles of decision trees
are trained in sequence by fitting negative gradients
of the loss. LightGBM uses Gradient-based One-Side
Sampling, which excludes data instances with small
gradients, and Exclusive Feature Building, which bun-
dles mutually exclusive variables, thus, reducing the
number of features. To estimate the hyperparameters
that yield the best performance, we use the Python li-
brary hyperot (Bergstra et al., 2013) to optimize the
f 1-score metric Duda et al. (2012), i.e., the harmonic
mean between precision and recall, by performing
Bayesian optimization. Table 6 shows the hyperpa-
rameters of the LightGBM classifiers. The best perfor-
mance is achieved with a high learning rate and with
a relatively small number of decision trees.

Classifier
Number

input
features

Learning
rate

Max
depth
of tree

Trees Subsample
Weight
positive

class

Dep. Delay 18 0.1 15 300 0.578 2.265
Arr. Delay 18 0.1 39 200 0.573 2.100
Cancellation 14 0.1 30 100 0.781 7.300

Table 6: Hyperparameters of LightGBM flight delay and cancella-
tion classifiers with a 6-month prediction horizon.

Multilayer perceptron (MLP) (Hinton, 1990) is a
feed-forward neural network that has consecutive lay-
ers with adaptive weights. The vector of inputs of
MLP was normalized N (0,1). The initialization of the
weights follows a normal distribution N (0,0.01). To
increase the stability of the neural network, all the hid-
den layers have batch normalization. Table 7 shows
the hyperparameters of the MLP classifiers. All classi-
fiers produced superior results when trained with two
hidden layers and with the Adam optimizer (Kingma
and Ba, 2014). Additionally, dropout layers were in-
cluded to reduce overfitting. The small learning rate
used increased the computational time of the MLP

classifiers when compared with the LightGBM mod-
els, as shown in Table 10.

Classifier
Number

input
features

Number
neurons
for each

layer

Batch
size

Dropout
rate

Learning
rate

Dep. Delay 18 100 → 100 1000 0.15 1.0×10−4

Arr. Delay 18 110 → 110 1000 0.05 1.0×10−3

Cancellation 14 150 → 150 1000 0.05 1.0×10−6

Table 7: Hyperparameters of MLP flight delay and cancellation clas-
sifiers with a 6-month prediction horizon, Adam optimizer.

Random Forests (RF) (Breiman, 2001) is an ensem-
ble learning method that aggregates dissimilar deci-
sion trees. When building a forest tree, only a random
part of the training set is used to build each tree. To
increase the ensemble diversity, further randomness
is introduced when building each tree by selecting a
fraction of the the total number of features. Once all
forest trees are created, the classification of each sam-
ple in the test set is executed by combining the pre-
dictions of each tree through majority voting. Table 8
shows the hyperparameters of the RF classifiers.

Classifier
Number

input
features

Number
trees

generated

Max depth
of tree

Percentage
features for
each split

Dep. Delay 18 500 11 0.60
Arr. Delay 18 1000 12 0.55
Cancellation 14 500 10 0.60

Table 8: Hyperparameters of RF flight delay and cancellation classi-
fiers with a 6-month prediction horizon.

Before presenting the results of the classification al-
gorithms, we introduce the following metrics. We con-
sider the True Negatives (TN), the False Positives (FP),
the False Negatives (FN) and the True Positives (TP)
(Marsland, 2011; Duda et al., 2012; Hossin and Su-
laiman, 2015), where TN is the number of actual non-
delayed flights that are predicted to be non-delayed,
FP is the number of actual non-delayed flights that are
predicted to be delayed, FN is the number of actual
delayed flights that are predicted to be non-delayed
and, TP is the number of actual flights that are de-
layed and are predicted to be delayed. Then, we de-
termine Accuracy = T P+T N

T N+F P+F N+T P , Recall = T P
T P+F N ,

Precision = T P
T P+F P , f 1-score is the harmonic mean

between Precision and Recall, and AUC, i.e., the area
under the curve determined by the rate of TP and FP
Marsland (2011).
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Table 9 shows the performance of LightGBM, MLP
and RF to classify arrival/departure flights as being
delayed and cancelled. We note that the prediction
horizon is 6 months prior to the day of the flight ex-
ecution. A 5-fold cross validation is performed using
the data on the flights arriving and departing in the
period 2013-2018 from LHR. Among the 3 classifica-
tion algorithms, LightGBM performs the best with re-
spect to accuracy, precision, recall and area under the
ROC curve (AUC) (Duda et al., 2012).

LightGBM MLP RF
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Accuracy 0.794 5.8×10−3 0.772 3.8×10−3 0.771 9.3×10−4

Precision 0.516 2.1×10−3 0.467 7.6×10−3 0.460 2.4×10−3

Recall 0.516 2.2×10−3 0.488 1.0×10−2 0.455 2.7×10−3

f 1-score 0.516 1.4×10−3 0.478 2.8×10−3 0.458 1.9×10−3

AUC 0.786 1.0×10−3 0.754 2.4×10−3 0.744 8.3×10−4
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Accuracy 0.791 5.0×10−4 0.771 3.9×10−3 0.759 8.0×10−4

Precision 0.567 2.2×10−3 0.525 9.3×10−3 0.500 3.0×10−3

Recall 0.553 2.2×10−3 0.527 1.1×10−2 0.515 1.3×10−3

f 1-score 0.560 1.6×10−3 0.526 3.6×10−3 0.507 1.8×10−3

AUC 0.803 1.2×10−3 0.774 2.1×10−3 0.758 1.4×10−3

C
an

ce
ll

at
io

n Accuracy 0.987 1.8×10−4 0.984 2.0×10−4 0.984 8.5×10−5

Precision 0.608 3.8×10−3 0.532 1.5×10−2 0.529 7.0×10−3

Recall 0.592 2.0×10−3 0.530 1.0×10−2 0.529 3.0×10−3

f 1-score 0.600 1.8×10−3 0.531 8.3×10−3 0.529 4.1×10−3

AUC 0.929 4.3×10−3 0.840 7.2×10−3 0.862 3.3×10−3

Table 9: 5-fold cross validation results for machine learning models
with 6-month prediction horizon.

All classifiers achieve an accuracy of 0.75 or higher
for flight delay classification and 0.98 or higher for
cancellation classification. We note that the pre-
diction horizon is 6 months prior to the day of the
flight execution. Given that the training and test data
consists of a larger number of negatives, i.e., not-
delayed/not-cancelled flights, than positives, i.e., de-
layed/cancelled flights (see also the imbalance ratios
in Table 2), it is necessary to analyze closely both the
recall, i.e., how many of the true positives are pre-
dicted as positive, and the precision, i.e., how many
of the predicted positives are correctly predicted. As
such, when estimating the hyperparameters of the
classification algorithms, the aim has been to obtain
the highest value of the f 1-score and similar values
for precision and recall, i.e., an equal number of false
negatives and false positives.

Figures 1, 2 and 3 show the ROC curves achieved us-
ing LightGBM, MLP and RF for the three classifiers: ar-
rival flight delay, departure flight delay and flight can-
cellation classifiers. Again, the results obtained us-
ing LightGBM show the largest AUC, i.e., the ability to
identify actual delayed (not delayed) flights as delayed
(not delayed) Duda et al. (2012).

The computational times required for the Light-

GBM, MLP and RF classifiers are given in Table 10. All
the three classifiers have been trained and tested on
the same dataset (see Section 3). The RF classifiers re-
quire the most computational time, despite the small
depth of the trees generated and the low percentage of
features considered for each split (see Table 8).
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Figure 1: ROC curves of flight arrival delay
classifiers.
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Figure 2: ROC curves of flight departure
delay classifiers.
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Figure 3: ROC curves of flight cancellation
classifiers.

4.3. Model-agnostic interpretability - LightGBM flight
classification algorithms

In this Section we interpret the results yielded by
the LightGBM flight classifiers, which has the best per-
formance with respect to accuracy, precision and re-
call (see Table 9).
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Classifier LightGBM (sec) MLP (sec) RF (sec)

Departure Delay 55.91 715.43 943.97
Arrival Delay 33.66 1554.75 1874.01
Cancellations 27.31 2131.48 1849.15

Table 10: Computational time for LightGBM, MLP and RF classi-
fiers.

To determine the impact of a feature on the output
of the LightGBM classifiers, we determine the Shap-
ley additive explanations (SHAP) value (Lundberg and
Lee, 2017) of a feature i , which we denote as φi , for
every flight classified, as follows (Lundberg and Lee,
2017):

φi =
∑

S⊆F {i }

|S|!(|F |− |S|−1)!

|F |! [ f (S ∪ {i }− f (S))],

where F is the set of all features considered for the
classification algorithm, S ⊆ F is a subset of features
obtained from the set F except feature i , and f (S) is
the expected classification output given by the set S of
features.

The SHAP values show which features have a
significant positive or negative impact on the de-
lay/cancellation flight classification and what is the
magnitude of the impact, i.e., how much a specific
feature value drives the classification of a flight as
delayed/cancelled. For a specific flight, a large pos-
itive (large negative) SHAP value of a feature indi-
cates that this feature has a large contribution for the
flight to be classified as delayed/cancelled (not de-
layed/cancelled). A SHAP value of a feature close
to zero indicates that this feature does not con-
tribute/does not help deciding in classifying a flight
as being delayed/cancelled or not. In this paper, the
SHAP values are expressed in log odds, where the log
odd of a variable A is defined as:

log

(
P (A)

1−P (A)

)
, with P (A) < 1.

Figures 4, 5 and 6 are summary plots that show the
SHAP values for all features for all flights considered
for classification, i.e., these figures show an aggrega-
tion of dots, where each dot corresponds to a flight.
For a given feature, each dot corresponds to a flight
and an associated SHAP value. For a given feature, the
color blue of a dot (flight) indicates that, for this flight,
the value of the feature is small, while the color red
indicates that the value of the feature is large. For ex-
ample, in Figure 4, for the feature Arrival ATFM Delay,
the dots (flights) colored red have large Arrival ATFM

delays, while the dots (flights) colored blue have small
Arrival ATFM delays. For a given feature, an accumu-
lation of dots indicates that there is a large number of
flights that have similar SHAP values. As an example,
in Figure 4, for the feature Arrival ATFM Delay, there
is a significant number of flights where this feature
has a SHAP value between -1 and 0, i.e., an accumu-
lation of blue dots corresponding to a SHAP value be-
tween -1 and 0. Again, the color blue indicates that
all these flights have a low Arrival ATFM delay. The
blue dots (flights) that have a negative SHAP value
are those flights with a low Arrival ATFM delay (blue
color) and that are classified as not delayed (negative
SHAP). In particular, for the blue dots (flights) where
the SHAP value is close to zero, the Arrival ATFM delay
is low (blue color), but it does not significantly impact
the classification of these flights (SHAP value close to
zero).

In Figures 4, 5 and 6, the features are sorted by the
sum of the SHAP values magnitudes over all samples
such that the feature at the top of the graph has the
highest impact on the flight classification, whereas
the feature at the bottom of the graph has the lowest
impact. For example, in Figure 4, the feature Arrival
ATFM delay is at the top of the graph since it has the
highest impact on the flight delay classification. The
features Hour and Airline have the second and third
largest impact on the flight delay classification. Sim-
ilarly, Figure 5 shows that the features Arrival ATFM
Delay, Airline and Hour have the highest impact on
the arrival flight delay classification. Both Figures 4
and 5 show that the feature Seats also has a high im-
portance for both arrival and departure delay classi-
fiers. The feature Terminal has the lowest feature im-
portance for departure flight delay classification. For
the arrival flight delay classification, however, the fea-
ture Terminal has a larger importance, whereas the
features Month and Day of the month have the low-
est feature importance. Figure 6 shows that the fea-
tures origin/destination Airport and Airline have the
highest feature importance for the flight cancellation
classification algorithm. The feature Aircraft also have
a high importance in the cancellation classifier when
compared with the flight delay classifiers. The fea-
ture Day of the month shows the lowest feature im-
portance from for the cancellation classifier.

Figures 4, 5 and 6 also allow for a detailed analysis
of the impact of each feature. For a given feature, the
color red used of a dot, i.e., flight, and a correspond-
ing large SHAP value shows that large values (red) of
this feature are very significant (large SHAP value) for
the classification. For example, Figure 4 shows that for
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the feature Arrival ATFM Delay, there are several dots,
i.e., flights, that are red and that have a positive and
large SHAP value. This means that a large (red) value
for the Arrival ATFM Delay is very significant (large
SHAP value) and drives the classification of a depar-
ture flight as being delayed (positive SHAP value). In
Figure 4 there is a larger accumulation of blue dots
(flights), with SHAP values between -1 and zero. The
color blue indicates that these departure flights have
low Arrival ATFM Delays. Here, the blue dots (flights)
with negative SHAP values away from zero indicate
that, for these flights, small (blue) Arrival ATFM De-
lays drive the classification of these departure flights
as being not delayed (negative SHAP value). Also, the
blue dots (flights) with negative SHAP values close
to zero indicate that, for these departure flights, the
small (blue) Arrival ATFM Delays do not significantly
impact the classification of these flights. In Figure 4,
for feature Arrival ATFM Delay, we also note that for
the dots (flights) with SHAP values around zero, i.e.,
the feature does not significantly drive the classifica-
tion of a flight as being delayed or not delayed, the
values of the Arrival ATFM Delay are low (blue color).
Thus, low Arrival ATFM Delays have a low classifica-
tion importance.

A similar analysis can be made for all feature in Fig-
ures 4, 5 and 6. We note that for the categorical fea-
tures Airline, Country, Aircraft, Terminal which are en-
coded using the target encoding method, high feature
values means high probabilities of delay. Here, it can
be seen that, for these features, high values of these
features, i.e., high probabilities of delay, correspond
to high SHAP values. For the features encoded with
trigonometric functions (see also Section 4.1), we note
that a detailed analysis of the summary plots is not
straightforward as we apply si n and cos transforma-
tions. As such, for these features, we make use of the
summary plots to determine the feature importance,
as discussed above.

5. Assessing strategic flight schedules using
machine-learning flight delay and cancella-
tion predictions

In this Section we present a generic approach to
assess strategic flight schedules in terms of associ-
ated flight delays and cancellations. In Section 5.1 we
present a generic method to assess flight schedules
based on a set of general KPIs. Rather than assign-
ing weights to the considered KPIs, which are user-
specific and may be difficult to define, we propose a
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Figure 4: SHAP values (log odds) of the features used for delayed
departure flight classification using LightGBM - 6 months prediction

horizon.
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Figure 5: SHAP summary plot (log odds) of the features used for
delayed arrival flight classification using LightGBM - 6 months

prediction horizon.

generic ranking of the schedules based on the rela-
tive improvement in KPIs of some schedules against
others. However, in the case of strategic flight sched-
ules, i.e., 6 months prior to the flight execution, the
value of flight delay and cancellation-related KPIs are
not known. In fact, a strategic flight schedule does not
give any indication on the associated number of de-
layed/cancelled flights. To address this, in our pro-
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Figure 6: SHAP values (log odds) of the features used for flight cancel-
lation classification - LightGBM, 6 months prediction horizon.

posed schedule assessment we make use of KPIs de-
rived from the flight delay and cancellation predic-
tions (see Section 4). In Section 5.2 we apply this as-
sessment method to rank 10 strategic schedules us-
ing KPIs derived from machine learning-based flight
delay and cancellation predictions. The numerical
examples in this section are based on strategic flight
schedules from LHR in the period 2013-2018.

5.1. Generic schedule assessment methodology

In this Section we apply an assessment methodol-
ogy for strategic flight schedules using a set of general
KPIs. This assessment can be done both before and af-
ter the execution of the flights, as long as the values of
the KPIs are known. When assessing the flight sched-
ules, we make use of the notion of schedule domi-
nation, which we define below, rather than assuming
user-defined weights for the KPIs considered. Thus,
we propose a generic assessment methodology that
does not depend on the weights of the KPIs, which are
user-specific.

We characterize a strategic flight schedule i by a set
of n KPIs, i.e. Si : (K PI i

1, . . . ,K PI i
n). We are interested

in those schedules where the values of all n KPIs are
minimal. To this end, we define the concept of sched-
ule domination as follows. We say that schedule i ,
Si : (KPIi

1,KPIi
2, . . . ,KPIi

n), dominates schedule j , S j :

(KPI j
1,KPI j

2, . . . ,KPI j
n), if: ∀u ∈ {1,2, . . . ,n}, KPIi

u É KPI j
u

and there exists at least one KPI Km ,m ∈ {1,2, . . . ,n}

such that KPIi
m < KPI j

m (Boyd and Vandenberghe,
2004).

We consider the set S = {S1, . . . ,SN } of N schedules.
The Pareto front of the schedules i ∈S ,1 ≤ i ≤ N , with
respect to the KPIs K PI1, . . . ,K PIn , is the subset S1 of
schedules that are not dominated by any other sched-
ule (Boyd and Vandenberghe, 2004), where S1 ⊂ S .
We say that layer 1, which we denote by L1, consists
of all the schedules in S1. We next partition the set
of remaining schedules S \ S1 into additional layers.
We define layer 2, i.e., L2, of the schedules i ∈ S ,1 ≤
i ≤ N as the set of schedules that are in the Pareto
front of the schedules S \ S1,S \ S1 6= ;. In general,
we define layer m, denoted by Lm , of the schedules
i ∈ S ,1 ≤ i ≤ N as the set of schedules in the Pareto
front of the schedules S \(S1∪∪S2∪. . .∪Sm−1), with
S \ (S1 ∪S2 ∪ . . .∪Sm−1) 6= ;.

Figure 7 shows an example of dominance relation-
ships between 6 schedules S1,S2 . . . ,S6. Schedules
S1,S2,S3 form layer 1. Schedules S4,S5 form layer 2.
Schedule S6 is layer 3. Figure 7 also shows the domi-
nance boundaries for each schedule, i.e., the bounds
of the set of points that a schedule dominates. All the
schedules i ,1 ≤ i ≤ 6, located within the dominance
boundaries of a given schedule j 6= i ,1 ≤ j ≤ 6, are
dominated by schedule j . Here, schedules S1, S6 and
S3 do not dominate any other schedule, schedules S4

and S5 dominate schedule S6, schedule S2 dominates
schedules S4, S5 and S6.
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Figure 7: Example of schedule dominance for 2 KPIs.

We next define the dominance power of a sched-
ule i ∈ S ,1 ≤ i ≤ N , as introduced in Valkanas et al.
(2014). We say that the dominance power of schedule
i , i ∈S , which we denote by D(Si ), is as follows:

D(Si ) =
N∑

k=1
k 6=i

1

L j
1(Si dominates Sk )∩(Sk∈L j ),1 ≤ j ≤ m, (1)

where 1A is an indicator function that takes value 1 if
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A is true and zero otherwise.
As an example, in Figure 7, D(S2) = 1

2 + 1
2 + 1

3 since
S2 dominates S4 from layer 2, S5 from layer 2 and
S6 from layer 3; D(S4) = D(S5) = 1

3 because both
S4 and S5 dominate S6 from layer 3; and D(S1) =
D(S3) = D(S6) = 0 since S1,S3,S6 do not dominate
other schedules.

Lastly, we rank the strategic flight schedules i ∈
S ,1 ≤ i ≤ N based on their dominance power.

We are interested in those schedules with the high-
est dominance power. We assign a ranking position
of 1 for the schedule(s) with the highest dominance
power, a ranking position of 2 for the schedule(s) with
the second highest dominance power and so on.

5.2. Assessing strategic flight schedules - results

In this Section we assess 10 strategic flight sched-
ules using the methodology introduced in Section 5.1.
In doing so, we consider 5 KPIs, which are commonly
used in practice to analyse flight schedules: 1) per-
centage of flights cancelled, 2) percentage of depar-
ture flights delayed, 3) percentage of arrival flights de-
layed, 4) percentage of days in which the number of
flights delayed is equal or higher than 25% (percent-
age departures yellow days) and, 5) percentage of days
in which the number of flights delayed is equal to or
higher than 25% (percentage of arrivals yellow days).

Since the strategic flight schedules do not give an
indication on the potential flight delays and cancel-
lations, the KPIs above are unknown prior to the exe-
cution of the flights, when the schedules are defined.
As such, the schedule coordinators do not have an
insight into potential flight delays and cancellations
when setting the strategic schedules. To address this,
we derive the flight delay and cancellation-related
KPIs above using machine learning flight delay and
cancellation classification algorithms (see Section 4).

Figure 8 shows the percentage of predicted can-
celled flights and the percentage of predicted delayed
arrival flights for each of the 10 strategic schedules.
Layer 1 consists of schedules {S1,S3,S4,S9}. Layer 2
consists of schedules {S2,S5,S6,S7,S8}. Layer 3 con-
sists of schedule {S10}. Using Equation 1, we de-
termine the dominance power of these 10 strategic
schedules when taking into account the percentage
of cancelled flights and the percentage of delayed ar-
rival flights. Table 11 shows the dominance power of
the schedules. Table 11 shows that schedules S3,S1,S4

have the best performance with respect to flight can-
cellations and delayed arrival flights. We note that all
three schedules are part of the Pareto front (layer 1).
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Figure 8: Layers of the strategic flight schedules when considering
the percentage of predicted flights cancelled and the percentage of
predicted delayed arrival flights.

S3 S1 S4 S2 S6 S8 S10 S5 S7 S9

D(Si ) 2.33 1.83 1.33 0.33 0.33 0.33 0 0 0 0

Table 11: Dominance power of the 10 strategic schedules S1, ...,S10,
when considering the percentage of cancelled flight and percentage
of delayed arrival flights.

Table 12 shows the ranking of the 10 strategic
schedules based on the dominance power of the
schedules (see Equation 1). When the dominance
power of two or more schedules is the same, we fur-
ther discriminate between these schedules by ranking
them based on the percentage of predicted flight can-
celled, where the schedule with the lowest percent-
age of flight cancellations is preferred. Table 12 shows
the schedule ranking obtained using i) the predicted
values KPIs, as a result of the machine learning algo-
rithms, and ii) the values of the KPIs from the actual
flight data. The results show that the best-ranked 4
schedules when considering the actual flight data are
also captured by the schedule ranking when using the
predicted values of the KPIs.

Ranking position 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

KPIs prediction
models

S3 S1 S4 S2 S6 S8 S10 S5 S7 S9

KPIs real-data S1 S3 S2 S4 S7 S5 S6 S8 S10 S9

Table 12: Schedule ranking with respect to percentage of flights can-
celled and percentage of arrival delays under schedule Si .

Figure 9 shows the percentage of predicted can-
celled flights and the percentage of predicted delayed
departure flights for each of the 10 strategic schedules.
Layer 1 consists of schedules {S1,S3,S4}. Layer 2 con-
sists of schedules {S2,S5,S6,S7,S8}. Layer 3 consists of
schedules {S9,S10}.

11



0.50 0.75 1.00 1.25 1.50 1.75
Percentage flights cancelled

under schedule i, i = 1, 2, ..., 10

16

18

20

22

24

P
er
ce
nt
ag
e
d
ep
ar
tu
re

fli
gh
ts

d
el
ay
ed

u
n
d
er

sc
h
ed
u
le
i,
i
=
1,
2,
..
.,
10

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10
L1

L2

L3

Figure 9: Layers of the strategic flight schedules when considering
the percentage of predicted flights cancelled and the percentage of
predicted delayed departure flights

Table 13 shows the dominance power of the sched-
ules, where schedules S3,S1,S4 have the best perfor-
mance with respect to flight cancellations and delayed
departure flights.

S3 S1 S4 S6 S8 S7 S2 S10 S5 S9

D(Si ) 2.67 1.83 0.83 0.33 0.33 0.33 0 0 0 0

Table 13: Dominance power of the 10 strategic schedules S1, ...,S10,
when considering the percentage of cancelled flight and percentage
of delayed departure flights.

Table 14 shows the ranking of the 10 strategic
schedules based on the dominance power of the
schedules. When the dominance power of two or
more schedules is the same, we further discriminate
between these schedules by ranking them based on
the percentage of predicted flight cancelled, where the
schedule with the lowest percentage of flight cancella-
tions is preferred. Table 12 shows the schedule rank-
ing obtained using i) the predicted values KPIs, as a
result of the machine learning algorithms, and ii) the
values of the KPIs from the actual flight data. The
results show that the 2 best-ranked schedules when
considering the actual flight data are also captured
when considering predicted KPIs.

Ranking Position 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

KPIs prediction
models

S3 S1 S4 S6 S8 S7 S2 S10 S5 S9

KPIs real-data S3 S1 S2 S4 S10 S7 S5 S6 S8 S9

Table 14: Schedule ranking with respect to percentage of flights can-
celled and percentage of departure delays under schedule Si .

Figure 10 shows the percentage of predicted per-
centage of delayed departure and arrival flights for
each of the 10 strategic schedules. Layer 1 consists of

schedules {S3,S9}. Layer 2 consists of schedule {S7},
Layer 3 consists of schedule {S1}. Layer 4 consists
of schedule {S5}. Layer 5 consists of schedules {S8}.
Layer 6 consists of schedule {S4,S6}. Layer 7 consists
of schedules {S2,S10}.
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Figure 10: Layers of the strategic flight schedules when considering
the percentage of predicted delayed departure and arrival flights.

Table 15 shows the dominance power of the sched-
ules, where schedules S3,S7,S9 have the best perfor-
mance with respect to delayed departure and arrival
flights.

S3 S7 S9 S1 S5 S8 S6 S4 S10 S2

D(Si ) 1.90 1.40 1.40 1.07 0.82 0.62 0.29 0.29 0 0

Table 15: Dominance power of the 10 strategic schedules S1, ...,S10
when considering the percentage of delayed departure and arrival
flight.

Table 16 shows the ranking of the 10 strategic
schedules based on the dominance power of the
schedules. When the dominance power of two or
more schedules is the same, we further discriminate
between these schedules by ranking them based on
the percentage of predicted delayed departure flights,
where the schedule with the lowest percentage of de-
layed departure flight is preferred. Table 16 shows
the schedule ranking obtained using i) the predicted
values KPIs, as a result of the machine learning algo-
rithms, and ii) the values of the KPIs from the actual
flight data. The results show that 3 from the 4 best-
ranked schedules when considering the actual flight
data are also captured when considering predicted
KPIs.

Figure 11 shows the predicted performance of the
10 strategic schedules when considering 3 KPIs: the
percentage of cancelled flights, the percentage of yel-
low departure days and the percentage of yellow ar-
rival days. Layer 1 consists of schedules {S1,S3,S4}.
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Ranking position 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

KPIs prediction
models

S3 S7 S9 S1 S5 S8 S6 S4 S10 S2

KPIs real data S5 S7 S1 S3 S10 S9 S2 S8 S4 S6

Table 16: Schedule ranking with respect to percentage of delayed
departure and arrival flights under schedule Si .

Layer 2 consists of schedules {S2,S6,S8}. Layer 3 con-
sists of schedules {S5,S7,S9,S10}.
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Figure 11: Pareto Front (L1) obtained using 3 predicted KPIs: the
percentage of cancelled flights, the percentage of departure yellow
days and the percentage of arrival yellow days.

Table 17 shows the dominance power of the sched-
ules, where schedules S3,S1,S4 have the best perfor-
mance with respect to delayed departure and arrival
flights.

S3 S1 S4 S2 S6 S8 S10 S5 S7 S9

D(Si ) 2.83 1.33 0.83 0.33 0.33 0.33 0 0 0 0

Table 17: Dominance power of the 10 strategic schedules S1, ...,S10
when considering the percentage of cancelled flights, the percent-
age of yellow departure days and the percentage of yellow arrival
days.

Table 18 shows the ranking of the 10 strategic
schedules based on the dominance power of the
schedules. When the dominance power of two or
more schedules is the same, we further discriminate
between these schedules by ranking them based on
the percentage of predicted cancelled flights, where
the schedule with the lowest percentage of cancelled
flights is preferred. Table 18 shows the schedule rank-
ing obtained using i) the predicted values KPIs, as a
result of the machine learning algorithms, and ii) the

values of the KPIs from the actual flight data. The
results show that the 4 best-ranked schedules when
considering the actual flight data are also captured
when considering predicted KPIs.

Ranking position 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

KPIs prediction
models

S3 S1 S4 S2 S6 S8 S10 S5 S7 S9

KPIs real data S3 S1 S2 S4 S10 S7 S5 S6 S8 S9

Table 18: Schedule ranking with respect to the percentage of can-
celled flights, the percentage of yellow departure days and the per-
centage of yellow arrival days under schedule Si .

6. Discussion

To address the lack of insight into potential flight
delays and cancellation at the moment when flight ar-
rival and departure slots are allocated at an airport, we
propose to rank the strategic slot schedules based on
KPIs derived from flight delay and cancellation pre-
dictions. We determine the values of these KPIs us-
ing machine learning-based predictions for flight de-
lay and cancellation with a prediction horizon of 6
months prior to the flight execution day.

In practice, the implications of being able to as-
sess strategic airport slot schedules with respect to
potential flight delays and cancellations are multilat-
eral. One implication is that airport slot coordinators
are able to identify at an early stage potential airport
on-time performance bottlenecks associated with the
strategic schedules. Such bottlenecks can be in the
form of congested days, i.e., days where the sched-
uled flights are expected to experience many delays
and cancellations, as well as in the form of more de-
tailed indicators such as the type of airline or the type
of terminal associated with large delays and cancella-
tions. Most important, in the case when airport per-
formance bottleneck are expected, airport coordina-
tors are provided with support to propose, in the lim-
its of the IATA slot allocation guidelines, changes to
schedule such as alternative arrival/departure slots
or aircraft size. Thus, the results of this assessment
provide an early, quantified motivation for potential
schedule alternatives in the slot allocation negotiation
between airport coordinators and airlines.

From a methodological point of view, when ranking
the strategic slot schedules, in this paper we consider
5 flight delay and cancellation-based KPIs, which are
often considered in practice. However, our proposed
methodology supports the analysis of larger sets of
schedule-related KPIs. In fact, the larger the size of the
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KPI set, the more detailed the dominance relationship
between schedules is defined. Also, for our sched-
ule ranking methodology, we do not assume weights
for the considered KPIs, since these weights are user-
specific and. However, in the case when the weights
are known, our ranking methodology can still be ap-
plied for weighted KPIs.

7. Conclusion

We have developed a machine learning approach
to classify scheduled flights as being delayed and
cancelled with a horizon of 6 months prior to the
day of the flight execution. We have implemented
our proposed model on a representative set of flights
scheduled to arrive and depart to and from London
Heathrow Airport in the period 2013-2018. Our pro-
posed prediction models have achieved an accuracy
of 0.79 or higher, with the LightGBM decision-trees
achieving better prediction results than feed-forward
neural networks and random forests. We have ana-
lyzed the impact of the model features on the outcome
of the prediction algorithms. In particular, we have
determined the Shapley additive explanation values
for all the features used in the prediction models. We
have shown that for the delay classification of both
arriving and departing flight, the features with the
highest feature importance are the Arrival ATFM de-
lay, hour of the day, the airline type and the number
of seats of the aircraft executing the flight. For flight
cancellations predictions, the features with the high-
est feature importance are the origin/destination air-
port and the airline executing the flight.

Further, we have proposed a generic approach to
rank strategic flight schedules based on pre-defined
Key Performance Indicators (KPIs). We have used
this approach to rank 10 strategic flight schedules
considering as KPIs the predicted flight cancellations
and delays associated with the strategic schedules.
Together with flight schedule optimization models,
this approach supports an integrated strategic flight
schedule assessment, where strategic flight schedules
are evaluated with respect to on-time airport perfor-
mance.

As future work, we consider extending the set of fea-
tures for the prediction algorithms to improve the ac-
curacy of the predictions. In addition, we will evaluate
the impact of considering flight delay and cancella-
tion predictions in the flights scheduling optimization
models, at the strategical phase.
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