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The Game of Reciprocation Habits

Gleb Polevoy and Mathijs de Weerdt and Catholijn Jonker1

Abstract. People often have reciprocal habits, almost auto-
matically responding to others’ actions. A robot who interacts
with humans may also reciprocate, in order to come across
natural and be predictable. We aim to facilitate decision sup-
port that advises on utility-efficient habits in these interac-
tions. To this end, given a model for reciprocation behavior
with parameters that represent habits, we define a game that
describes what habit one should adopt to increase the utility
of the process. This paper concentrates on two agents. The
used model defines that an agent’s action is a weighted com-
bination of the other’s previous actions (reacting) and either
i) her innate kindness, or ii) her own previous action (inertia).
In order to analyze what happens when everyone reciprocates
rationally, we define a game where an agent may choose her
habit, which is either her reciprocation attitude (i or ii), or
both her reciprocation attitude and weight. We characterize
the Nash equilibria of these games and consider their effi-
ciency. We find that the less kind agents should adjust to the
kinder agents to improve both their own utility as well as the
social welfare. This constitutes advice on improving coopera-
tion and explains real life phenomena in human interaction,
such as the societal benefits from adopting the behavior of the
kindest person, or becoming more polite as one grows up.

1 Introduction

Interaction is central in human behavior, e.g., at school, in file
sharing over networks, and in business cooperation. While in-
teracting, people tend to reciprocate, i.e., react on the past
actions of others [9, 11, 14]. Imagine software agents owned
by individuals repeatedly competing with the same people on-
line. People expect reciprocal behavior and tend to behave so
themselves. Virtual assistants also need to be reciprocal in or-
der to be credible. Countries at an arms race or arguing friends
also tend to be nicer if the other side is nicer [7, 27, 13]. In
these and other cases of repeated interaction, we can help peo-
ple and artificial agents obtain more from the interaction by
providing decision support. The decision is how to reciprocate.
Reciprocating efficiently includes defining to one’s software
agent or other artificial agents how to reciprocate with hu-
mans. In order to help people strategically choose efficient ap-
proaches for reciprocating, and to predict that strategic choice
of how to reciprocate, a model is needed that is amenable to
analytical analysis and has enough predictive power.

Consider the following example of an arms race.

Example 1 Consider n countries 1, 2, . . . , n; each country
can put a certain arsenal of weapons at the border with its

1 Delft University of Technology, email: g.polevoy@tudelft.nl

neighbors. What a country approximately does with respect to
another country at a given year is what was done in the pre-
vious year, adjusted to react to what the other countries did.
If they armed themselves against us, we also will, and if the
others aimed at us less, so shall we. This process is often re-
ciprocal with linear reactions [7, 27]. Perhaps, one reason for
that is that politicians can explain a reciprocal action as a
proper reaction to the nation. A crucial question is how to
make this process efficient, so that one’s country, and, prefer-
ably, everyone incurs the least possible cost.

In this example, an action had a negative influence on the
other country. We can also consider a positive influence on
the other side in this context; for instance, a concession.

Software agents can reciprocate automatically.

Example 2 Consider software agents running on computers
in a cloud. They need to agree on how much resources each
is allocated. Since their owners may want to be nice to others
reciprocally, it is reasonable to make them reciprocate. Every-
one wants her agent to reciprocate as efficiently as possible,
and also the society can save much money by efficient recip-
rocation.

Companies can reciprocate while achieving mutual gain.

Example 3 Reciprocation is useful in business life [25]. Re-
ciprocating means helping the other, for example, by redirect-
ing potential clients to another company. It is definitely eco-
nomically important to make this reciprocation efficient.

The existing studies of reciprocation (sometimes repeated)
either attempt to explain why reciprocation is there in the
first place [4, 3, 26, 10], or, given that reciprocation exists,
they analyze what happens in a short interaction where being
reciprocal pays off [5, 9, 23]. We, on the other hand, consider
a lengthy interaction, that is (naturally) bound to be recip-
rocal, but changing the approach of reciprocation is possible,
in order to receive more and do less.

To study such interactions, we employ the model from
Polevoy, de Weerdt and Jonker [22]2, which formally defined
and analyzed repeated intrinsic reciprocation, to understand
how reciprocity makes interaction evolve with time. We briefly
summarize the model. Actions, which are influences of an
agent on another one, are represented by weight, where a
higher value means a more desirable contribution to its re-
cipient. That model was mainly inspired by arms race mod-
els [7, 27] and a model of spouses arguments [13]. Given the
model, the paper [22] analyzes the interaction it engenders.

2 The full version can be found at http://arxiv.org/abs/1601.
07965.
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This model consists of two reciprocation attitudes, where the
action of an agent is a convex combination3 between i) one’s
own kindness or ii) one’s own last action (mental inertia), and
the other’s last action (reaction). The combination is deter-
mined by the agent’s reciprocation coefficient. Since the last
own action is, recursively, a product of previous actions, it
represents the agent at a given time, including her history.
Attitude i), which is connected to kindness, is called fixed,
and ii) depending on one’s own last action is called floating.

A reciprocation process converges, and in many cases, the
actions in the limit are found in [22]. We aim to to provide de-
cision support and predict the strategic reciprocation. A nat-
ural question to ask here is in what way the agents can strate-
gically influence the reciprocation process for their own good,
and what the social welfare will become when every individ-
ual behaves strategically. Setting one’s way of reciprocating
resembles Mastenbroek’s [17, Chapter 14] recommendation to
know one’s own negotiating style and adjust it. Assuming peo-
ple strategically choose each action is unrealistic, since peo-
ple usually act on habits [15], and a strategic choice consists
of choosing a habit for the reciprocal interaction. Here, the
habit, chosen after deliberation, can be the balance between
reacting and being faithful to oneself, as defined in the model.
It is also easy to prescribe a “habit” to a robot.

Choosing habits resembles bounded rationality, especially
that of procedures of choice [24, Chapter 2]. Indeed, our agent
follows the procedure of rationally choosing among the pos-
sible habits. The difference is that choosing a habit does in-
clude a rational step, and is, therefore, amenable to a stan-
dard game-theoretic analysis, like NE and price of anarchy
and stability. Choosing habits resembles metagames as well,
when an agent chooses a representative to play the underlying
game for her. For instance, Rubinstein [24, Chapter 8] and [21,
Chapter 9] define a machine game, where an agent wants a
well-paying strategy that is simple to implement. This trade-
off is modeled by choosing a finite deterministic automaton to
play the repeated game, where the agent’s utility increases in
the utility of the underlying game and decreases in the num-
ber of the states of the chosen automaton. The equilibria in
this game are found for the case of the utility of the repeated
game being defined as the limit-of-means or with discounting
in [6]. A player in a machine game chooses a finite automa-
ton, while our player chooses a habit. Choosing an automa-
ton, however, considers the bounding effect of finiteness and
attempt to minimize the automaton’s state space, while we
simply consider a best possible habit, all habits being equally
simple. Therefore, our model neither generalizes theirs nor is
our model generalized by theirs. Additionally, no finite au-
tomaton is able to model reciprocation, though it is possible
to approximate it arbitrarily.

To model strategically setting one’s habits, we define the
utility of an agent and then we consider the one-shot game of
setting one’s own reciprocation attitude or coefficient, each of
which represents a habit. We analyze changing reciprocation
attitude for a pairwise interaction. Pairwise interactions still
allow for many agents provided assuming that the agents do
not mix one relationship with the other ones.

All the agents choose their reciprocation habits and then
the reciprocation process plays itself. Our contributions in-

3 A combination is convex if it has nonnegative weights that sum
up to 1.

clude a characterization of this game’s Nash equilibria (NE)
and a discussion of their efficiencies. We consider only pure
NE in this paper. Analyzing this game provides an insight
into how people and machines could change their behavior to
achieve a more desirable behavior in the limit of the interac-
tion process. This desirability can be to themselves or to the
society. In addition to predicting the strategic reciprocation
and advising on what to do, the analysis explains the follow-
ing known phenomena. First, in reciprocation, we often notice
that when the example of the kindest person is followed by
others, it makes the group more successful [2]. We also notice,
that people tend to become more polite as they grow up [12],
which is yet another example of the utility of learning from
the behavior of the kindest.

We present the model in Section 2. To make this paper self-
contained, Section 2.3 provides the necessary background. We
consider the game of choosing the reciprocation attitude in
sections 3, 4 and 5, proving the central Theorems 4 and 5.
We also model in Section 6 what happens if an agent can
choose both own attitude and reciprocation coefficient. The
answers are given in the key Theorems 6 and 7.

We briefly describe the model and the results for n agents
in Section 7. We deal with convergence of the best response
dynamics to a NE in Section 8 and conclude in Section 9.

2 Modeling Reciprocation

We first model agents, times and actions. We conclude the
section by sharpening the model and providing explanatory
examples. Let N = {1, 2} be n = 2 interacting agents. Time

is modeled by a set of discrete moments t ∈ T
Δ
= {0, 1, 2, . . .}4,

defining a time slot when the agents act.
Denote the weight of an action by agent i ∈ N on another

agent j ∈ N at moment t ∈ T by xi,j : T → R. For example,
when interacting by file sharing, the actions of sending a valid
piece of a file, nothing, or a piece with a virus are decreasing
in weight. Since only the weight of an action is relevant, we
usually write “action” while referring to its weight.

We now define two reciprocation attitudes, which define
how an agent reciprocates. We need the following notions.
The kindness of agent i is denoted by ki ∈ R; w.l.o.g., k2 ≥ k1
throughout the paper. Kindness models inherent inclination
to help others; in particular, it determines the first action
of an agent, before others have acted. We model agent i’s
inclination to mimic the other agent’s action by reciprocation
coefficients ri ∈ [0, 1]. Here, ri is the fraction of xi,j(t) that
is determined by the last action of j upon i. Conceptually,
reacting to last actions, one reacts to the actor, since “who
you are is what you do” [18].

Intuitively, with the fixed attitude, actions always depend
on the agent’s kindness, while the floating attitude moves
freely in the reciprocation process, and kindness directly influ-

ences such behavior only at t = 0. In both cases xi,j(0)
Δ
= ki.

Definition 1 For the fixed reciprocation attitude, agent i’s
action on another agent j is determined by j’s last action
weighted by ri and by the agent’s kindness weighted by 1− ri.

4 Allowing agents to be non-synchronized is possible, but we assume
synchroneity for the sake of clarity.
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That is, for t ∈ T ,

xi,j(t)
Δ
= (1− ri) · ki + ri · xj,i(t− 1).

Definition 2 In the floating reciprocation attitude, agent i’s
action is a weighted average of that of the other agent j, and
of her own last action. To be precise, for t ∈ T ,

xi,j(t)
Δ
= (1− ri) · xi,j(t− 1) + ri · xj,i(t− 1).

The relations are (usually inhomogeneous) linear recur-
rences with constant coefficients, but many variables. We
could express the dependence of xi,j(t) only on xi,j(t

′) with
t′ < t, but then the coefficients would not be constant, besides
the case of two fixed agents. We are not aware of a method
to use the general recurrence theory to improve our results.

2.1 Context and Examples

Compared to the other reciprocation models, our model takes
reciprocal actions as given and looks at the process, while
other models either consider how reciprocation originates,
such as the evolutionary model of Axelrod [4], or take it as
given and consider specific games, such as in [5, 8, 9, 23].

In Example 1, let the reciprocation coefficients be r1 =
0.2, r2 = 0.7. Assume the kindness to be k1 = 0 and k2 = 0.5.
At t = 0, every country’s action on every other country is
equal to her kindness value, so xi,2 = 0 and x2,1 = 0.5. If
all countries rely on their previous action, meaning that they
are floating, then, at t = 1 they act as follows: x1,2(1) =
(1− 0.2) · 0+0.2 · 0.5 = 0.1, x2,1(1) = (1− 0.7) · 0.5+0.7 · 0 =
0.15. Theorem 2 implies they converge to the common limit

0.7
0.2+0.7

· 0+ 0.2
0.2+0.7

· 0.5 = 1/9. This is closer to k1 than to k2,
since country 1 is less responsive, in the sense that r1 < r2.

Consider modeling tit for tat [3]:

Example 4 In our model, a tit for tat agent with two op-
tions: cooperate or defect is easily modeled with ri = 1, ki = 1,
meaning that the original action is cooperating (1) and the
next action is the current action of the other agent. If one of
two tit-for-tat agents makes a mistake and begins with defec-
tion (k2 = 0), then they will alternate.

If the agents are human, this example predicts an indefinitely
long alternation, which seems unrealistic to us. Similarly, an
agent that sticks to his actions regardless the other seems
highly implausible. This provides evidence that extreme val-
ues of the reciprocation coefficients are uncommon in life.

2.2 Utility Definition

An agent’s utility at a given time moment is the action one
receives minus the effort incurred by the action one performs.
Colloquially, this is what the agent gets minus what she gives.
This classical way of defining utility is expressed, for instance,
in the quasilinear preferences of auction theory [20, Chap-
ter 9.3]. Formally, we define as follows.

Definition 3 The utility of agent i at moment t, ui,t : R ×
R→ R, is defined as

ui,t (xi,j(t), xj,i(t))
Δ
= xj,i(t)− βixi,j(t),

where βi is the relative importance of the effort incurred by
performed actions for i’s utility. The personal price of acting
is higher, equal or lower than of receiving an action, if β is
bigger, equal or smaller than 1, respectively.

Denote x(t)
Δ
= x1,2(t) and y(t)

Δ
= x2,1(t). Thus, at time t,

agent 1’s utility is y(t)−β1x(t) and 2’s utility is x(t)−β2y(t).
We take acting with a minus sign, to account for the ef-

fort it takes (a negative βi would mean that the agent enjoys
making effort). According to this formula, when βi > 0, a
negative action would suddenly contribute to the utility; we
needed to take the absolute value. Instead, we will assume
that actions are always non-negative, which is equivalent to
all kindness values being non-negative. We still can have neg-
ative influence, we have simply mathematically transformed
all the original kindness values by adding a sufficiently large
number so that they all have become nonnegative.

To model the utility in the long run, we give the fol-
lowing Define the asymptotic utility, or just the utility, of

agent i, ui : R
∞ × R

∞ → R, as ui

(⋃∞
t=0 {xi,j(t), xj,i(t)}

) Δ
=

limt→∞ ui,t (xi,j(t), xj,i(t)). When the parameters in the
parentheses are clear from the context, we may omit them.

This is the utility we consider in the paper. The utility
might be defined otherwise, like a discounted sum, though
since we have an exponential convergence, it is possible to sim-
plify it to looking at the limit, assuming that the discounting
is not extremely quick. It can be proven that our definition is
also equivalent to the other models from Osborne and Rubin-
stein [21, Chapter 8.3], which are limit of arithmetic means
and overtaking. We omit this for lack of space.

2.3 Background

In order to analyze utility in the long run, we use the following
convergence theorems from [22], representing what takes place
once the actions have stabilized. For two fixed agents, they
prove:

Theorem 1 If the reciprocation coefficients are not both
1, which means r1r2 < 1, then we have, for i ∈ N :

limt→∞ xi,j(t) =
(1−ri)ki+ri(1−rj)kj

1−rirj
.

For two agents, in the floating case, they show:

Theorem 2 If the reciprocation coefficients are neither both
0 and nor both 1, which means 0 < r1 + r2 < 2, then, as
t→∞, x(t) and y(t) converge to a common limit, which is

1

2

(
k1 + k2 + (k2 − k1)

r1 − r2
r1 + r2

)
=

r2
r1 + r2

k1 +
r1

r1 + r2
k2.

For a fixed and a floating agent, the following holds:

Theorem 3 If agent i employs fixed reciprocation and the
other agent j employs the floating one, assume that ri < 1
and rj > 0. Then, both limits exist and are equal to ki. The
convergence is geometrically fast.

The following holds for two agents with any attitudes:

Proposition 1 If k1 ≤ k2 and both action sequences con-
verge, then limt→∞ xi,j(t) ≤ limt→∞ xj,i(t).
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3 Utility Maximization

As a first step to analyzing strategic choices, consider how an
agent can maximize her utility by choosing either her recipro-
cation coefficient or reciprocation attitude, before the interac-
tion begins. This can be expected from a rational agent, who
reciprocates, but chooses her reciprocation habits. In the case
of Example 1, this models a country setting a smart foreign
policy with respect to arming. Since in reality the behavioral
parameters of others are unknown, choosing an optimal be-
havior will probably be harder, through trial and error, and
the theory predicts the trend of these choices. Some (parts of)
proofs are omitted for lack of space.

First, suppose that the only available option of agent i to
modify the reciprocation process is by setting its reciprocation
coefficient ri. We therefore analyze how i’s utility depends on
ri. In the results of this section, the asymmetry of the agents
stems from k2 ≥ k1.

For the fixed reciprocation attitude, we prove:

Proposition 2 In the fixed reciprocation attitude, the fol-
lowing holds: If r2 < 1 and agent 1 wants to maximize his util-
ity by choosing his reciprocation coefficient r1, then he should

set r1 to be

⎧⎪⎨
⎪⎩
1 if r2 > β1,

anything r2 = β1,

0 r2 < β1.
If r1 < 1 and agent 2 wants to maximize his utility by

choosing his reciprocation coefficient r2, then he should set r2

to be

⎧⎪⎨
⎪⎩
0 if r1 > β2,

anything r1 = β2,

1 r1 < β2.
These choices are the only utility maximizing ones.

The idea of the proof is to express the utility of an agent
and differentiate it by her reciprocation coefficient, to find
candidates for the extrema.

Proof. Let us prove for agent 1 choosing r1. We first express
1’s utility and then maximize it. Since r2 < 1, we have r1r2 <
1, and from Theorem 1,

lim
t→∞

x(t) =
(1− r1)k1 + r1(1− r2)k2

1− r1r2
,

lim
t→∞

y(t) =
(1− r2)k2 + r2(1− r1)k1

1− r1r2⇒ u1 =

(1− r2)k2 + r2(1− r1)k1
1− r1r2

− β1
(1− r1)k1 + r1(1− r2)k2

1− r1r2
.

To find a maximum point of this utility as a function of r1,
we differentiate:

∂(u1)

∂(r1)
= . . . =

(r2 − β1)(1− r2)

(1− r1r2)2
(k2 − k1).

Therefore, if r2 = β1, then the derivative is zero, and the
utility is constant. Otherwise, the maximum is attained at an
endpoint: at the right endpoint, if the r2 > β1, and at the left
endpoint if r2 < β1.

The case of agent 2 choosing r2 is proven by analogy. �

For the floating reciprocation attitude, we prove:

Proposition 3 In the floating reciprocation attitude, the fol-
lowing holds: If r2 < 1 and agent 1 wants to maximize his util-
ity by choosing his reciprocation coefficient r1, then he should

set r1 to be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if r2 > 0 and β1 < 1,

0 if r2 > 0 and β1 > 1,

anything if r2 > 0 and β1 = 1,

0 if r2 = 0 and β1 > 0,

anything positive if r2 = 0 and β1 < 0,

anything if r2 = 0 and β1 = 0.
If r1 < 1 and agent 2 wants to maximize his utility by

choosing his reciprocation coefficient r2, then he should set r2

to be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if r1 > 0 and β2 < 1,

1 if r1 > 0 and β2 > 1,

anything if r1 > 0 and β2 = 1,

anything positive if r1 = 0 and β2 > 0,

0 if r1 = 0 and β2 < 0,

anything if r1 = 0 and β2 = 0.
These choices are the only utility maximizing ones.

The idea of the proof is as in the previous proof.
If the kindness values and reciprocation coefficient are set,

and an agent may only choose between fixed or floating recip-
rocation, we prove:

Proposition 4 If 0 < r1, r2 < 1, then, if agent 1 wants to
maximize her utility, and she may only choose whether to em-
ploy fixed or floating reciprocation, then she should choose

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fixed if (2 is fixed ∧ {β1 ≥ r2})
∨(agent 2 is floating ∧ {β1 ≥ 1}),
floating if (2 is fixed ∧ {β1 ≤ r2})
∨(agent 2 is floating ∧ {β1 ≤ 1}).

If agent 2 wants to maximize his utility by choosing fixed
or floating reciprocation, then he should choose

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

floating if (1 is fixed ∧ {β2 ≥ r1})
∨(agent 1 is floating ∧ {β2 ≥ 1}),
fixed if (1 is fixed ∧ {β2 ≤ r1})
∨(agent 1 is floating ∧ {β2 ≤ 1}).

Supposing k1 < k2, an attitude choice given in this proposi-
tion is the only best one if and only if the relevant inequality
on the right-hand side of the conditions holds strictly.

The idea of the proof is to compare the possibilities, to see
when which option is best. For β1 = β2 = 0, which is when
both agents want only to receive more, all the results from this
section are intuitive, since a less kind agent should choose to
be very reciprocating, while the other agent should choose to
be completely non-reciprocating, thereby remaining kind and
pulling the other agent to act more.

In Example 1, if countries 1 and 2 have r1 = r2 = 0.5,
β1 = 0, β2 = 0.2 (acting is cheap), then, whatever attitude 2
employs, 1 should employ floating, to maximize its utility.

We have prepared the analysis of the game of choosing re-
ciprocation habits. To prepare the ground for analyzing the
efficiency of NE, our next step will be finding how the social
welfare can be maximized.

G. Polevoy et al. / The Game of Reciprocation Habits420



4 Maximizing Social Welfare

Maximizing the social welfare is relevant for analyzing the
whole interaction of agents maximizing their own utilities as a
game, to see how good equilibria are for the society relatively
to the best possible social welfare. Regardless of the game,
the manager (say, the boss of a group of interacting workers)
wants to maximize the social welfare by influencing agents’
behavior through propaganda or an incentive mechanism.

We now define the social welfare.

Definition 4 The social welfare at time t (SWt : R
2 → R) is

defined as the sum of utilities at time t, i.e.,

SWt
Δ
= u1,t + u2,t = (1− β1)x(t) + (1− β2)y(t). (1)

For the whole process, we define the (asymptotic) social wel-

fare, SW:
(
R

2
)∞ → R, as SW

Δ
= limt→∞ SWt.

In Example 1, changing the behavioral parameters to in-
crease the social welfare models the United Nations trying to
spread good practices among countries.

We first suppose that the only available option to influence
the interaction network is through choosing the reciprocation
coefficients of the agents, and ask what is the most efficient
setup of the r1, r2 parameters. To this end, we now analyze
how the asymptotic social welfare depends on these param-
eters. Recall that k2 ≥ k1. For given reciprocation attitudes
(not necessarily the same attitudes for both agents), we prove

Proposition 5 We can maximize the social welfare by set-
ting r1 and r2 to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r1 = 1, r2 = 0 if max {β1, β2} ≤ 1,

r1 = 0, r2 = 1 if min {β1, β2} ≥ 1,

r1 = r2 = 0 if β1 ≥ 1, β2 ≤ 1,

r1 = 1, r2 = 0 if β1 ≤ 1, β2 ≥ 1, β1 + β2 ≤ 2,

r1 = 0, r2 = 1 if β1 ≤ 1, β2 ≥ 1, β1 + β2 ≥ 2.

(2)

The idea of the proof is to consider, what limits should be
maximized, to maximize the social welfare.

Proof. If max {β1, β2} ≤ 1, then if we maximize both
limt→∞ x(t) and limt→∞ y(t), we maximize the social wel-
fare. For r1 = 1, r2 = 0, we obtain5 limt→∞ x(t) = k2 and
limt→∞ y(t) = k2, which are the maximum possible. Thus,
r1 = 1, r2 = 0 maximizes the social welfare.

We skip the easy cases, concentrating on the hard one.
If β1 ≤ 1, β2 ≥ 1, we first express the social welfare in a

handier form, and subsequently show how we can maximize

it. Denote δ
Δ
= 1 − β1 ⇒ δ ≥ 0 and ε

Δ
= 2 − β1 − β2. Then,

we have 1− β2 = −(δ − ε) and SW = (1− β1) limt→∞ x(t) +
(1− β2) limt→∞ y(t) = δ limt→∞ x(t)− (δ − ε) limt→∞ y(t) =
δ(limt→∞ x(t)− limt→∞ y(t)) + ε limt→∞ y(t).

Now, if β1 + β2 ≤ 2, then ε ≥ 0 and thus, if we max-
imize limt→∞ x(t) − limt→∞ y(t) and limt→∞ y(t), we max-
imize the social welfare. For r1 = 1, r2 = 0, we obtain5

limt→∞ x(t) = limt→∞ y(t) = k2, thus maximizing the first
(since by Proposition 1, limt→∞ xi,j(t) ≤ limt→∞ xj,i(t), the
first is non-positive) and the second. Thus, r1 = 1, r2 = 0
maximizes the social welfare.

5 This is evident from the definition of fixed or floating reciproca-
tion, without a convergence theorem.

r1 − 1/r2(β1 − 1) 1− r1(β1 − 1)

1 plays floating, 2 fixed. Both play fixed. 1 plays fixed, 2 floating.
β2

2− β1

1 plays floating, 2 fixed. 1 plays fixed, 2 floating.
β2

Figure 1: The upper figure is for β1 − 1 ≥ 0, and the lower
figure is for β1 − 1 < 0. The strategy profile written above
denotes a profile to maximize the social welfare, based on
where the value of β2 resides.

Now, if β1 + β2 ≥ 2, then ε ≤ 0 and thus, if we maxi-
mize limt→∞ x(t) − limt→∞ y(t) and minimize limt→∞ y(t),
we maximize the social welfare. For r1 = 0, r2 = 1, we ob-
tain5 limt→∞ x(t) = limt→∞ y(t) = k1, thus maximizing the
first and minimizing the second. Thus, r1 = 0, r2 = 1 maxi-
mizes the social welfare. �
Note that this proposition holds also if we may influence both
r1, r2 and the attitudes of the agents, since the proof maxi-
mizes and minimizes expressions for any possible attitudes.

Suppose now that the reciprocation coefficients are set, and
the manager only chooses whether the agents employ fixed or
floating reciprocation.

Proposition 6 If 0 < r1, r2 < 1, then the social welfare is
maximal by reciprocating as follows:

⎧⎪⎪⎨
⎪⎪⎩
1 floating, 2 fixed. if β2 ≤ 1−max

{
1
r2
(β1 − 1), β1 − 1

}
,

1 fixed, 2 fixed. if 1− 1
r2
(β1 − 1) ≤ β2 ≤ 1− r1(β1 − 1),

1 fixed, 2 floating. if β2 ≥ 1−min {r1(β1 − 1), β1 − 1} .

The statement of the proposition can be expressed geomet-
rically. We can maximize the social welfare depending on the
real interval where β2 is: Figure 1 shows a profile to maximize
the social welfare, based on the segment where the value of
β2 belongs.

The omitted proof compares the various options.
For β1 = β2 = 0, this result (agent 1 plays floating, 2 fixed)

is intuitive, since the less kind agent aligns to the kinder one.
Also the previous results of this section show that for β1 =
β2 = 0, the less kind agent should align to the kinder one,
to maximize the social welfare. By now, the preparation for
analyzing the whole interaction as a game are completed, so
we proceed to define and to analyze the game.

5 Reciprocation Attitude Game

We have considered an agent choosing her reciprocation co-
efficient or her fixed or floating reciprocation attitude, each
choice yielding certain (asymptotic) utility to the agent. This
situation is naturally modeled as a game where the strate-
gies of each agent are the above choices and the utility is the
asymptotic utility of the interaction. Recall that the utility
of agent i is limt→∞ {xj,i(t)− βixi,j(t)}. This is a one-shot
game, the attitude being chosen once, before the interaction
commences. Analyzing this game allows predicting the situa-
tion, supplying some advice to an external party (such as the
boss who wants to influence her employees) or to the agents
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themselves. As explained after Example 4, human agents usu-
ally neither completely mimic the others’ behavior, nor do
they completely ignore it, which means 0 < r1, r2 < 1. We
call this game the reciprocation attitude game (RAG). Theo-
rems 4 and 5 summarize our findings about RAG.

We first characterize the existence of pure NE in this game
and subsequently look into their efficiency. Then, we consider
how stable these NE are with respect to the best response
dynamics. We assume that k2 > k1 (strictly) in this section;
when the kindness is equal, everyone always keeps acting with
this equal value.

Theorem 4 The NE of RAG are characterized as follows:

(fixed, fixed) is an NE ⇐⇒ β1 ≥ r2 and β2 ≤ r1.
(float, fixed) is an NE ⇐⇒ β1 ≤ r2 and β2 ≤ 1.
(fixed, float) is an NE ⇐⇒ β1 ≥ 1 and β2 ≥ r1.
(float, float) is an NE ⇐⇒ β1 ≤ 1 and β2 ≥ 1.

The proof utilizes Proposition 4 about utility maximization
to see when no deviation is profitable.

Proof. Assume that β1 ≥ r2 and β2 ≤ r1. If the strategy
profile is (fixed, fixed), then, according to Proposition 4, no
agent will have an incentive to unilaterally deviate, meaning
this strategy profile is indeed an NE.

Assume now that (fixed, fixed) is an NE. We prove that β1 ≥
r2 and β2 ≤ r1 by contradiction. If β1 < r2, then Proposition 4
would imply that agent 1 would like to deviate, contradictory
to the profile being an NE. If β2 > r1, Proposition 4 would
imply that 2 would like to deviate, contradictory to the NE.

The remaining 3 cases are proven by analogy. �

Remark 1 (Existence of NE) If no characterizing condi-
tion holds, then no NE exists. For example, no characterizing
condition holds when β1 = 0.8, β2 = 0.9, r1 = 0.5, r2 = 0.2,
so no pure NE exists in this case. Since the game is finite, a
mixed NE always exists by the classical result by Nash [19].

We now illustrate the theorem for certain parameter values.

Example 5 Let β1 = 0.3, β2 = 0.6. Theorem 4 states that

(fixed, fixed) is an NE ⇐⇒ 0.3 ≥ r2 and 0.6 ≤ r1.
(float, fixed) is an NE ⇐⇒ 0.3 ≤ r2.

No other Nash equilibria exist.

5.1 PoA and PoS

The manager or the government may want to know how far
the social welfare in an equilibrium is from the maximum
possible social welfare. To this end, we consider the famous
measures of the efficiency of an equilibrium, namely price of
anarchy [16] (PoA) and price of stability [1] (PoS). PoA is the
smallest ratio of a social welfare in an NE to the optimum
social welfare, and PoS is the largest such ratio.

Theorem 4 provides all the NE, for each set of parameters.
Using Proposition 6, we know for each set of parameters what
the maximum social welfare is. Calculating the social welfare
at each of the Nash equilibria and finding its ratio to the
optimum social welfare enables us to find the price of anarchy
and stability in the following theorem.

Conditions: PoA = PoS :
1 + r2 − r2β2 > β1 > r2

∧{β2 < r1}
∑2

i=1 (1−βi)
(1−ri)ki+ri(1−rj)kj

1−rirj

(2−β1−β2)k2

{β1 > 1 + r2 − r2β2} ∧ {β2 < r1}
∧ {1 + 1/r1 − β2/r1 > β1} 1
β1 > 1 + 1/r1 − β2/r1

∧{β2 < r1}
∑2

i=1 (1−βi)
(1−ri)ki+ri(1−rj)kj

1−rirj

(2−β1−β2)k1

{β1 < r2} ∧ {β2 < 1} 1
{β1 > 1} ∧ {1 + r1 − β1r1 > β2}
∧ {β2 > max {1 + 1/r2 − β1, r1}} (2−β1−β2)k1

∑2
i=1 (1−βi)

(1−ri)ki+ri(1−rj)kj
1−rirj

{β1 > 1}∧
β2 > max {1 + r1 − β1r1, r1} 1

{β1 < 1} ∧ {2− β1 > β2 > 1} r2
r1+r2

k1
k2

+ r1
r1+r2

{β1 < 1} ∧ {β2 > 2− β1} r2
r1+r2

+ r1
r1+r2

k2
k1

Table 1: The efficiency of NE in reciprocation attitude game.

Theorem 5 The efficiency of the equilibria is given in Ta-
ble 1. In the case of equality in the conditions, the highest
entry from our conditions that border the equal value is the
price of stability, and the lowest entry is the price or anarchy.

In particular, if β1 < r2, β2 < 1, then PoA = PoS = 1. We
now illustrate the efficiency ranges on Example 5.

Example 5 (Continued) Recall that β1 = 0.3, β2 = 0.6.
For these values, Theorem 5 implies the following.

Conditions: Price of anarchy and stability:

{0.3 > r2} and {0.6 < r1}
∑

i=1,2;j �=1 (1−βi)
(1−ri)ki+ri(1−rj)kj

1−rirj

1.1k2{0.3 < r2} 1

Consider Example 2. If agents 1 and 2 have r1 = r2 = 0.5,
β1 = 0, β2 = 0.2 (acting is cheap), then, as just mentioned,
PoA = PoS = 1 and the only NE is (float, fixed). This is
intuitive, since agent 1 will align to the kinder 2, thereby each
agent maximizes the total action and, since acting is cheap,
also her own utility and the social welfare.

This completes the analysis of the agents setting their own
reciprocation attitudes. The next section considers agents who
set both their own reciprocation attitudes and coefficients.

6 Reciprocation Attitude and Coefficient
Game

In the previous section we looked at the game of choosing a
reciprocation attitude. It is also natural to consider what hap-
pens when the other habit, namely, the reciprocation coeffi-
cient, is chosen as well. Analyzing this game allows predicting
the situation of more choice than the situation analyzed in
RAG; for instance, the participants have more willpower or
knowledge than in RAG. As before, this is a one-shot game,
the attitude and reciprocation coefficient being chosen once,
before the interaction commences. As we did for RAG, since
people usually neither completely mimic the others’ behavior,
nor do they completely ignore it, we assume 0 < r1, r2 < 1.
We call this game the reciprocation attitude and coefficient
game (RACG). This game is analyzed in Theorems 6 and 7.

G. Polevoy et al. / The Game of Reciprocation Habits422



We first characterize the existence of pure NE in this game
and then look into their efficiency, by finding the price of anar-
chy and stability. This section assumes that k2 > k1 (strictly).

Theorem 6 The only Nash equilibria of RACG are charac-
terized as follows:

An equilibrium profile : Condition :
(fixed, fixed, r1 = β2, r2 = β1) ⇐⇒ 0 < β1, β2 < 1.

(float, fixed, 0 < r1, r2 < 1, β1 ≤ r2) ⇐⇒ β1 < 1 ∧ β2 ≤ 1.
(fixed, float, 0 < r1, r2 < 1, r1 ≤ β2) ⇐⇒ β1 ≥ 1 ∧ β2 > 0.

(float, float, 0 < r1, r2 < 1) ⇐⇒ β1 = β2 = 1.

The proof is based on Theorem 4, which narrows down the
set of possible Nash equilibria, on Proposition 2 and Proposi-
tion 3 about utility maximization, and on convergence results
from [22] (See Section 2.3.)

Proof. We go over all the NE for RAG from Theorem 4
and look at all the possible choices of r1 and r2 to have an
equilibrium in the new game. No other equilibria exist, since
if no condition of Theorem 4 is satisfied, then even deviating
by changing only the attitude is possible.

We begin with (fixed, fixed), an NE in RAG if and only
if β1 ≥ r2 and β2 ≤ r1. Given these reciprocation attitudes,
Proposition 2 implies that to prevent the only best choice of
r1 being 0 or 1, we must have (r2 − β1) = 0, and to avoid
the situation where the only best choice of r2 is 0 or 1, we
must have (β2 − r1) = 0. This implies the necessity of the
conditions for an NE with fixed attitudes. Theorem 4 and
Proposition 2 imply that these conditions are also sufficient
to prevent deviations of only the attitude or only the recip-
rocation coefficient. If agent j simultaneously deviates to an-
other attitude and rj , then Theorem 3 implies that any rj > 0
yields the same utility, and therefore, this deviation may be
considered to consist of attitude only, which is known to be
not profitable. This proves the sufficiency.

Consider the profile (float, fixed) now, an NE in RAG if
and only if β1 ≤ r2 and β2 ≤ 1. Since r2 < 1 implies that
β1 ≤ r2 < 1, we have the necessity of the conditions for a
NE with floating and fixed attitudes. Theorem 4 implies that
deviating in attitude only is not profitable. By Theorem 3,
any r1, r2 ∈ (0, 1) suffice for a best response, and so deviat-
ing in reciprocation coefficient only is not profitable as well.
Consider a deviation of an agent to another attitude and re-
ciprocation coefficient simultaneously. Unless this includes r2
becoming less than β1, we still know from what we have just
proven that for this new profile, a deviation by the attitude
only would not benefit agent 2, and since changing r2 has not
been profitable, the whole deviation is not profitable. The only
remaining option is agent 2 becoming floating and changing
r2 to be less than β1. This would yield agent 2 the utility of
(1 − β2)(

r2
r1+r2

k1 + r1
r1+r2

k2), by Theorem 2, while he previ-
ously had, by Theorem 3, (1 − β2)k2. Since 1 − β2 ≥ 0 and
k2 > k1, the previous profit is not smaller than the new one.

The two remaining cases are similar. �

Remark 2 (Existence of NE) When no characterizing
condition holds, no NE exists. For instance, if β1 < 1 < β2,
no characterizing condition holds, and therefore, no (pure)
NE exists.

6.1 PoA and PoS

We now look at the efficiency of these equilibria, proving

Theorem 7 The efficiency of the NE is given in Table 2.

We find the possible NE from Theorem 6, and compare their
social welfare with the optimal social welfare, found based on
the proof of Proposition 5. We only use the ideas of what one
should minimize or maximize to maximize the social welfare
from the proof of Proposition 5, since the proposition sets re-
ciprocation coefficients to 0 and 1, so we cannot use it directly.
To calculate the social welfare, we use the definition of utility
and the limit values from Theorems 1, 2, and 3.

Proof. If 0 < β1, β2 < 1, Theorem 6 implies that there
exist exactly two Nash equilibria, namely (fixed, fixed, r1 =
β2, r2 = β1) and (float, fixed, 0 < r1, r2 < 1, β1 ≤ r2). For the
optimal social welfare, we need to maximize both limt→∞ x(t)
and limt→∞ y(t), as does, for instance, the second NE above,
yielding the social welfare of (2−β1−β2)k2. Taking the ratios
of the social welfare values gives row one in the table from the
statement of the theorem.

The remaining cases are proven using the same idea. �

For an RAG, Theorem 5 implies that small enough β1, β2

guarantee that all the NE are optimal. In RACG, however,
when 0 < β1, β2 < 1, the proof of Theorem 7 shows that
along with a socially optimal NE, the social welfare of the
NE (fixed, fixed, r1 = β2, r2 = β1) relative to the optimum is
∑

i=1,2;j �=i (1−βi)
(1−βj)ki+βj(1−βi)kj

1−βjβi

(2−β1−β2)k2
. When the efforts of acting

approach zero for both agents, this expression approaches

lim
β1→0,β2→0

∑
i=1,2;j �=i (1− βi)

(1−βj)ki+βj(1−βi)kj

1−βjβi

(2− β1 − β2)k2

=

∑
i=1,2;j �=i ki

2k2
=

k1 + k2
2k2

=
1

2
(
k1
k2

+ 1).

That is, allowing more freedom (setting own reciprocation at-
titude and coefficient), we may lose up to half of the efficiency,
if k1/k2 is small. However, Theorem 7 leaves a sparkle of hope:
if at least one agent acts completely effortlessly or even enjoys
it, meaning that βi ≤ 0, then all the NE are socially optimal.

We now turn to the case of n agents, being done with 2.

7 Arbitrarily Many Agents

The original model of [22] is defined for any number n ≥ 2 of
reciprocating agents, where every agent has both ri and r′i,
the second reciprocation coefficient being the fraction of the
action, determined by reacting to the average of all the other
agents’ actions. They prove convergence, but find the limit
only when all the agents are floating, and that is the technical
obstacle to generalize this paper to n agents. We can, however,
assume n floating agents and analyze the game of choosing
only the reciprocation coefficient, called reciprocation coeffi-
cient game, by finding its equilibria and their efficiency.

In this case, we discover again that when acting is easy
(βi = 0), then the kinder agents should pull the less kind
ones to act more while not reacting much to the actions they
receive by acting less. The results also imply that if all the
1− βis have the same sign, then PoA = 1.
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Conditions: Price of anarchy: Price of stability:

0 < β1, β2 < 1

∑
i=1,2;j �=i (1−βi)

(1−βj)ki+βj(1−βi)kj
1−βjβi

(2−β1−β2)k2
1

β1 < 1 and β2 ≤ 1 but not 0 < β1, β2 < 1 1 1

β1 ≥ 1 and 0 < β2 ≤ 1 but not β1 = β2 = 1 (1−β1−β2)k1
(1−β1)k1+(1−β2)k2

(1−β1−β2)k1
(1−β1)k1+(1−β2)k2

β1 ≥ 1 and β2 > 1 1 1
β1 = β2 = 1 1 1

Table 2: The efficiency of NE for a reciprocation attitude and coefficient game.

In addition to the just described game, there exist many
other variations, even for two agents. For instance, for two
agents we are able to analyze the game of choosing the re-
ciprocation coefficient for the not floating case too. Another
variation would be choosing the reciprocation coefficient in a
closed segment [a, b], for any 0 < a < b < 1. This would limit
the domain, but the compactness of the domain may facili-
tate existence of NE. On the other hand, allowing the extreme
points ri = 0 or 1 with a proper handling of the cases of no
convergence is also an alternative. We can never cover every
possible model, but we believe our model sheds light on the
general phenomena.

8 Converging to NE

To analyze the stability of Nash equilibria, we recall the fa-
mous best response dynamics [21, Section 2.2], where each
agent best responds to the current profile of the others. A
reasonable question is when and whether this process con-
verges to a NE. For reciprocation attitude games, we prove
that given a NE and any profile, we can let each agent si-
multaneously choose her reciprocation attitude to maximize
her utility, such that it ends up in this NE. The same can be
proven for reciprocation coefficient games, described in Sec-
tion 7. For reciprocation attitude and coefficient game, how-
ever, the non-compactness of the domain does not allow a best
response to always exist. Therefore, the best response process
may be undefined. Details are omitted for lack of space.

9 Conclusions and Future Work

We aim to predict and advise on strategic behavior in recip-
rocation, in both human-human and human-machine interac-
tions. A reciprocal action is modeled as a balance between
the inner self and a reaction to others’ actions. We define
an agent’s utility asymptotically. We then consider choosing
the reciprocation attitude or coefficient to maximize her own
utility. We finally model the strategic behavior of the recipro-
cating agents in several games, characterize the NE and their
efficiency. We also show that NE may always be achieved by a
natural process, the best response dynamics [21, Section 2.2],
besides in a RACG. This gives hope for achieving a situation
that is stable to unilateral deviations without any regulation.

Our main advice is that both for maximizing own util-
ity and for maximizing the social welfare, if contributing is
cheaper than receiving, then, both in choosing the reciproca-
tion attitude and coefficient, the kinder agent should be most
stable (be fixed or have the reciprocation coefficient ri = 0),
and the opposite should be done if contributing is costlier
than receiving. When contributing is much cheaper than re-
ceiving (βis are smaller than all the other parameters), then,

for the reciprocation attitude game and for the reciprocation
coefficient game, the price of anarchy is 1, so rationally recip-
rocating agents will play socially optimally. In such equilibria,
the kinder agents are stable and the less kind agents follow
the kinder ones. For the reciprocation attitude and coefficient
game, the price of stability is 1, but the price of anarchy is
positive, meaning that rationally reciprocating agents may
play socially optimally, but may also play suboptimally, so
that coordination would be useful.

Comparing Theorem 5 for choosing only the reciprocation
attitudes to Theorem 7 for choosing the coefficients as well,
we observe that more freedom of choice allows for a socially
suboptimal equilibrium, achieving as little as about half of the
optimal social welfare, if the kindness values are very different.
This pitfall emphasizes the importance of cooperation, if more
freedom and power lies at our disposal. Like Churchill said6:
“Where there is great power there is great responsibility”.

The analysis also relates to some real-life phenomena. Our
results regarding maximizing utility and social welfare show
why in life, if acting is not too hard, then following the exam-
ple of the kindest makes the individuals and the society thrive,
which has already been observed [2]. Since being polite usu-
ally consists of words and simple gestures, and is therefore
quite easy for many people, this explains why people choose
this strategy with experience, becoming more polite, as is in-
deed observed [12]. In diplomacy (Example 1), these results
predict that diplomats will be polite to each other, since this
does not take much effort. Being polite benefits the individual
and the society by making people feel better easily.

Many interesting directions for further research exist:
a) Modeling changes in the reciprocity coefficients, attitudes,
or βs during the interaction and not only before it starts.
b) Modeling probabilistic reaction. c) Looking how the man-
ager can really influence the behavior of the agents. d) Real
agents often join and leave the interaction dynamically. For
example, people get born and immigrate to a country, some
die and emigrate. Therefore, dynamic interaction is very in-
teresting. e) We used others’ research, based on real data, as a
basis for the model. Therefore, verifying the model on relevant
data, like the arms race actions, would be interesting.

Our analysis provides behavioral advice and predicts recip-
rocation phenomena. It lays the foundation for further mod-
eling of reciprocation, required to even better anticipate and
improve the individual utilities and the social welfare.
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