
 
 

Delft University of Technology

Scalable Data Processing System for Satellite Data Mining

Speretta, Stefano; Ilin, Anatoly

Publication date
2017

Citation (APA)
Speretta, S., & Ilin, A. (2017). Scalable Data Processing System for Satellite Data Mining. Abstract from
68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening
Security, IAC 2017, Adelaide, Australia.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-B1.6.6

Scalable Data Processing System for Satellite Data Mining

Stefano Sperettaa*, Anatoly Ilinb

a Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands, s.speretta@tudelft.nl
b Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands, a.ilin@student.tudelft.nl
* Corresponding Author

Abstract
This paper describes the development of a new ground station infrastructure targeted towards massive swarms and
constellations. Mission trends are first analyzed to derive the design drivers for such a system and then the general
architecture is analyzed. The target architecture, based on “Big Data” processing architectures is presented, clearly
showing how to re-use current data processing state-of-the-art systems for satellite operations. This paper also describes
the ongoing developments to integrate standard data mining and artificial intelligence software frameworks in the
data acquisition system to develop a complete system capable of acquiring data from multiple sources, autonomously
process them and deliver them to users.
Keywords: CubeSat, swarm, constellation, ground station, data mining

1. Introduction

Satellite swarms and constellations are becoming more
and more widespread thanks to hardware and launch cost
reduction. Nano-satellites are proving extremely suited
for such big constellations where the single satellite has
very limited capabilities but, when combined, very pow-
erful systems could be created (capable for example of ob-
serving the whole Earth once a day). One of the problems
arising from this trend is the constant increase in data to
be transmitted to ground and the increased complexity in
running a constellation with more than 100 satellites.

Several institutions have invested consistent effort in
the development of more capable ground systems to ac-
quire and process all the data. The geographical distribu-
tion of such infrastructure is becoming critical and so does
the capability of aggregating data from multiple sources
(the spacecrafts): this infrastructure is getting more and
more similar to the one used by most web companies (like
Facebook, Google, etc...) to process analytics coming
from web pages. Both infrastructures need to swallow
big amounts of data (or “Big Data”) in quasi-real-time:
in both cases further data analysis (or mining) could help
identifying hidden trends (such as, for example, possible
failures). All these points lead to the design of this sys-
tem, trying to re-use part of the existing data processing
infrastructure and applying it to satellite data analysis. By
coupling together a data-gathering section (acquiring data
from the different ground stations) and a data analysis sec-
tion, we aim at developing a full ground system capable
of supporting massive constellation, up to the point where
human operators would have problems running it.

In the following sections we will analyze the current

trends in satellite systems (see Section 2 to justify our
attention towards massive constellations). We will then
analyze the architecture of such system by starting from
the experience gathered with nano-satellites and looking
at extending it to big constellations (see Section 3). Pro-
posed Lambda architecure will be presented (see Section
4), together with some future work (see Section 5) and
conclusions (see Section 6).

2. Space Mission trends

The steep decrease in launch cost in the past decade
lead to an increase in satellite launches per year, as also
shown in Figure 1. In particular, nano-satellites saw a
tremendous increase in launches per year (264 CubeSats
were launched in the first 3 quarters of 2017, as com-
pared to the total number satellites launched between 2015
and 2016)[2]. But unfortunately the performances of a
single satellite are still limited when compared to big-

Fig. 1: Nano/Microsatellites launch trends[1].

IAC-17-B1.6.6 Page 1 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

ger missions and this lead, together with the dramatic
launch cost reduction, to the diffusion of multi-satellite
missions[3][4], that are also being proposed for several
purposes, like climate science [5][6], atmospheric obser-
vations [7][8][9] or disaster monitoring[10]. At the same
time, constellations and swarms are becoming as big as
197 satellites for Earth observation, such as the Flock con-
stellation from Planet, whose goal is imaging the whole
Earth at coarse resolution once a day[11].

The ground infrastructure for a massive swarm needs
to handle a high number of satellite passes per day (ap-
proximately 350 with a fleet of 50 satellites[12], expected
to grow to 1400 with the full constellation of approxi-
mately 200 satellites) from different locations worldwide.
Multiple locations would be fundamental to achieve such
goal (see Figure 2, for example) and a strong and fast data
processing network will be fundamental too.

A lot of research going into massively distributed
ground systems, as can be seen in [14][15][16][17]. But
beside the pure data collection and archiving, handling
massive amounts of data poses challenges in itself (sys-
tem scalability, flexibility and fault tolerance) that are cur-
rently being addressed. Operations of such big swarms
and constellations proves also critical, having the opera-
tors a huge number of satellites to monitor and control.
All these reasons lead us to study the architecture of a
massively distributed ground infrastructure, which will be
presented in the next sections.

3. System architecture evolution

3.1 The legacy, no scalability
As a starting point of the discussion and to a famil-

iarize the reader with the core framework functionality,
consider the legacy implementation outlined in Figure 3.
Telemetry processing system has been developed for an
educational nano-satellite mission (Delfi-n3Xt): relying
on the Delft ground station, as well a set of third party
radio-amateurs submitting data through an ad-hoc client

Fig. 2: Spaceflight distributed ground station
network[13].

Fig. 3: Delfi Legacy architecture[21].

application [18]. The client application performed de-
modulation, decoding and limited data visualization [19].
Upon successful client authentication, received satellite
data (data frames[20]) is injected directly to the SQL
database on the Delfispace server. A set of processing
scripts, controlled by a scheduler, decoded binary data
frames to set of satellite metrics and store the latter in
the database. Finally, the satellite functional parameters,
filtered by client permissions, are made accessible to the
stakeholders via a simple web server[21]. The legacy sys-
tem in Figure 3 is a classic example of a “monolithic ar-
chitecture” [22]. The limited scalability expresses itself in
two ways: data processing and server scalability. Process-
ing is limited to a single data frame definition and cannot
be extended. Server scalability can achieved vertically,
by allocating more resources, or horizontally, by running
additional servers in parallel. In practice, horizontal scala-
bility is preferred due to redundancy concerns. Arguably,
aforementioned can be accomplished by deploying the
legacy database in load-balanced configuration [23], with
additional monitoring of processing scripts and load bal-
anced web servers. This effort will grossly under perform
compared to purpose built scalable systems [24][25].

3.2 Scale by leveraging clients
It should be noted, that in the case of Delfi-n3Xt mis-

sion, clients submitting data frames, simultaneously acts
as clients retrieving processed data. A possible evolu-
tion of the previous system is shown by Figure 4, where
the system relies entirely on a distributed database system
for data transport and it is based on the unique server-
side Couch DB and client-side Pouch DB ecosystem.
PouchDB is a javascript implementation of CouchDB, a
no-SQL, document database with out-of-the-box enabled
sharing and data replication capability[26][27]. Being
written in javascript, PouchDB runs in the web browser,
serving database-stored web pages and performing data
visualization, even while offline. By deploying this
ecosystem, satellite data and web pages can be replicated
to the clients, reducing the load on the central server. Any
newly received satellite data by any ground station will

IAC-17-B1.6.6 Page 2 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 4: Proposed client cluster architecture.

be replicated to the central server and replicated to all the
clients.

To increase system stability, a load balancer is intro-
duced and configured to perform write operations only to
one node, and “read” on two dedicated nodes.

This correlates to the CAP theorem[28]: any data stor-
age system can only ensure two out of three character-
istics: Consistency, Availability or Partition Tolerance.
Originally proposed by Marz[29], as a solution to reduce
the system complexity by “the use of mutable state in
databases and the use of incremental algorithms to up-
date that state”, provides a solution to the problem. This
facilitates the partition tolerance (P) and availability (A).
CouchDB[30], like many other no-SQL databases, prefers
A and P over the Consistency (C), meaning that at a par-
ticular time after new data ingestion or data change, there
will be nodes serving different versions of the data [28].
Hence the terminology “eventual consistency”.

The choice of a single “write” and double “read” node
is not arbitrary. Architecture is by design “read” centered,
demanding a low latency for data replication to the clients.
As a bonus, this contributes to the higher availability. The
single “write” node eliminates issues with document du-
plication on the server side. To further streamline data
replication between clients, especially replication to the
new clients, peer-to-peer protocols have been studied[31].

Both CouchDB and PouchDB are document-based
database systems. In this design, documents are equiva-
lent to the row in SQL-like databases, but provide great
flexibility by not enforcing any schema. This is required
to facilitate flexible data frame design[20] and tolerate

missing or corrupt data due to bit-flips. The satellite data
frames database uses key-value pairs defined as JavaScript
objects, e.g. JSON.

As stated earlier, PouchDB can serve complete
HTML5 web pages and run JavaScript applications from
its own database. Using this technique, clients can be
configured to process the data, store in the client-specific
PouchDB database, and replicate it back to the central
server. The central server can perform a MapReduce
operation[32] on all client-processed data, eliminating
any inconsistencies, before adding to the main storage.
MapReduce is a well-studied and understood parallelized
data processing approach and literature provides numer-
ous successful applications as well challenges faced by
using this method[33][34]. The method is designed and
therefore well suited for recurring queries and data pre-
processing: batch-processing[35]. It should be stressed
that setting up mappers and reducers for an on-demand
one-time query is convoluted and performance is slower
compared to the classical SQL querying (provided that the
data fits into a single machine).

Any architecture relying heavily on client-side data
generation requires an extensive security analysis that is
beyond the scope of this paper. For the sake of argument,
running a JavaScript based database and processing scripts
makes reverse-engineering of the code and the authentica-
tion methods trivial. Additionally, the running system can
be modified by a malicious user in runtime. Losing the
edge on the data ingestion means that a single malicious
machine would be able to 1) ingest a tremendous amount
of data into the framework saturating the central database,
2) inject executables into the frame data, possibly compro-
mising the central database or other client applications via
a peer-to-peer connection.

Additional to the security threats, the architecture is a
classic example of a vendor-lock-in: shifting to a different
database system would require significant efforts reducing
the flexibility of the future system development along with
adding a set of risk factors[36][37].

3.3 Lessons learned
Merging the challenges faced with the production

grade legacy system[38] with the experimental CouchDB-
PouchDB partial implementation revealed a list of atten-
tion points to be addressed by the final system design and
listed in the following sub-sections.

3.3.1 Security
It is evident that the system security should be con-

sidered in the earliest stages of the study. Considering a
broader picture entailing data protection and recovery is
especially important. As well the quantifying and cate-
gorizing users based on data access permissions and data

IAC-17-B1.6.6 Page 3 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

querying.

3.3.2 Client-side data replication and processing
Client-side data processing introduces many variables

to the system and not necessarily pays off in the long run.
Various client environments oppose different challenges,
in case of PouchDB, the operating system and browser
contain security features interfering with operations. As
an example, the browser local storage is limited to 5Mb
on iOS devices and on Safari (MacOS) requests users to
validate the local storage permissions incrementally.

JavaScript has the capability to run in parallel, but
executing scripts negatively affects the data replication
speed. Additionally, after a browser restart, the earlier
replicated data could be invalidated, requiring a complete
re-download.

3.3.3 Data ingestion
The analysis of the historical data revealed that radio

amateurs are sparsely scattered around the world, with a
density peak in proximity to the Delft ground station, re-
sulting in data duplication. A similar result could also
happen due to the non optimal planning in a distributed
ground station network or due to redundancy in receiving
stations. Different network performances (or the tempo-
rary unavailability of network connection) could also re-
sult in out-of-order data frame ingestion on the database
side. Data processing scripts may contain errors, requir-
ing re-computation of the complete datasets.

3.4 Transition to Big Data: Lambda architecture
Looking at previously described systems exposes a

common flaw. Telemetry frames received by the teleme-
try server, are processed and added to the central server, at
which point the data distribution to the clients take place.
Running both systems revealed that next to machine-
tolerance, system should have human-tolerance, as bugs
in data processing are frequent [38] and arguably unavoid-
able. Additionally, the system faces a more general chal-
lenge: on the one hand, near-real time data processing is
required, while on the other hand, datasets are expected to
be consistent and reliable. This correlates back to the CAP
theorem [28]: any data storage system can only ensure
two out of three characteristics: Consistency, Availabil-
ity or Partition Tolerance. Originally proposed by Marz
[29], as a solution to reduce the system complexity by “the
use of mutable state in databases and the use of incremen-
tal algorithms to update that state”, provides a solution to
the problem. A common implementation is an architec-
ture consisting split into two parts, one for incremental
state update: speed layer and one containing immutable
data used for analysis: batch layer [39]. The system ar-
chitecture following this approach is commonly known as

Fig. 5: Lambda Architecture

Lambda architecture. Figure 5 provides a high level func-
tional overview. It should be noted that each node on the
diagram represents a server cluster.

3.4.1 Data consumption
As shown in figure 5 data consumption is the data

entry point to the system. Architecture does not oppose
requirements on the design of this component, however,
all incoming data has to be split into two identical streams,
one consumed by batch layer, one by speed layer.

3.4.2 Batch layer
The batch layer has two functions, appending new data

to the immutable data storage, and computing the batch
view. It should be stressed that all received data is stored
permanently, preferably without the ability to be modified,
preventing data corruption due to human interaction. Once
stored, data ought to be processed in batches, eliminat-
ing the data inconsistencies such as duplicates and out-of-
order frames.

3.4.3 Streaming layer
Running large batch jobs is both time and resources

consuming, and is therefore expected to be executed on in-
tervals. The streaming layer, designed to compensate for
the data between the batch intervals, depends on the real-
time data arriving the system and is therefore completely
independent of the immutable storage. An interesting con-
sequence of this is that the stream processing generates
own stream views, potentially containing out-of-order and
duplicate data.

3.4.4 Serving layer
Serving layer is responsible for running queries on the

collection of the streaming and batch views. As previously
stated, all historic data is present in the batch view, while
all the newly received data can be found in the stream
views. The techniques of executing the queries and re-
moving redundant stream view data upon batch comple-
tion are not enforced by the architecture and is part of the
implementation.

IAC-17-B1.6.6 Page 4 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 6: Kappa Architecture

3.5 Transition to Big Data: Kappa architecture
When introduced, Lambda architecture relied heavily

on MapReduce as batch processor and Apache Storm
and Apache Flink for stream processing layer. With the
maturity of Spark Streaming API, a number of alternatives
architectures has been proposed, Kappa architecture as
the most popular one. As shown in Figure 6, Kappa is
a simplification of Lambda architecture, with the batch
processing and stream processing aggregated to a single
Spark cluster. Spark batch processing, sharing the code
base with Spark Streaming, can be executed on demand
to reprocess the complete historic data set. While for
the day-to-day operations system would utilize the Spark
streaming. This approach simplifies the serving layer,
removing the double views.
When working with stream processing, it is important to
keep transactions stateless whenever possible. Relying on
database reads to validate the data, to remove duplicates
or out-of-order frames, is not welcomed. In some cases
batch processing will be required to remove or update
past event states, what in its turn invalidates earlier
streaming views, requiring extra complexity to mitigate
the downtime.

4. Selected architecture

The data processing system is designed with two main
functions in mind: provide satellite monitoring function-
ality and facilitate data mining. The satellite monitoring
entails telemetry data processing and visualization. Data
mining entails identifying data sources, building and val-
idating data models iteratively, and potentially embed-
ding data model outcome in the monitoring dashboard.
From the earlier proposed architectures, only Lambda and
Kappa can be considered as viable options. For data trans-
formation and visualization purposes, Kappa architecture
proves as well suited candidate, due to its streamlined and
lean approach. However, by oposing data mining require-
ments, frequent batch jobs become a necessity for build-
ing, validating and improving of the data models. Ad-
ditionally,by regularly recalculating the complete historic

data set, ensures data consistency in the serving layer,
making data more accessible for querying by satellite op-
erators. The abstraction of the Batch layer opens oppor-
tunities to run jobs on separate (cloud compute) clusters,
cutting processing time for resource demanding computa-
tions without affecting satellite operations. This leads to
the selection of Lambda architecture for the project.

Following sections cover high-level decisions and
framework selection. The groundwork of available ap-
plications is well covered in the literature [40] [41]
[42],therefore only high-level description will be pro-
vided.

4.1 Serving layer
The serving layer is designed to aggregate and serve

data from streaming and batch layers to the client appli-
cation. This function can be fulfilled in many ways, for
example by running a single database system or a query
engine on two different database systems. The implemen-
tation depends on the user requirements, in scope of this
project, users require near-real-time graphical and tabular
views of the satellite status (dashboard). Additionally, the
user should be able to execute custom, on-demand queries
for data analysis and satellite troubleshooting.

Since the satellite telemetry is techincally time-series
data, the majority of the existing log data visualization
frameworks can be applied out of the box. Kibana and
Grafana are two most popular and powerful open-source
visualization tools [43]. Grafana is designed with a time-
series database on the backend in mind, while Kibana uti-
lizes ElasticSearch. Grafana supports multiple databases
following strict time-series schema, while Kibana, only
supports ElasticSearch but allowing more flexible schema.
Recently published work [44] proves both frameworks
comparable on the visualization aspects but requiring fur-
ther research on graphing capabilities for the actual satel-
lite telemetry. ES enables users to execute queries and
calculations within Kibana. While querying time-series
database, such as InfluxDB, requires an additional inter-
face to bind to the database API. Providing this functional-
ity to users over the internet increasing overall complexity
and requires careful design and implementation.

For the project Kibana and ElasticSearch has been se-
lected, due to its operational simplicity, features and ease
of implementation and maintenance.

Utilizing Kibana requires both Streaming as Batch
processed data to be stored in ElasticSearch. Aggregating
this data requires removal of redundant Streaming Data
upon Batch completion. This is not a unique problem [45]
and can be resolved using ElasticSearch Curator by as-
signing retention to the streaming data. Another solution
to the problem is to overwrite all data in ElasticSearch on
Batch completion, actively removing all Streaming Data.

IAC-17-B1.6.6 Page 5 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 7: HDFS Architecture [46]

Further research is required to determine the optimal tech-
nique.

4.2 Batch layer
The batch layer is introduced to the Lambda architec-

ture with the purpose of bulk data processing and retention
of the immutable data set.

4.2.1 Immutable data
The storage of the immutable data set requires a sys-

tem that ensures file integrity while allowing access to
multiple (simultaneous) readers. This can be achieved us-
ing (distributed) file system or a database system. Hadoop
Distributed File System has been selected over databases
systems due to

• Tolerance to unstructured data: satellite data can use
different formats, from binary blobs to image and
video file(streams)

• Scalability: deployed and extended to multiple ma-
chines without configuration changes to the client ap-
plications

• Analytics: HDFS, as part of Hadoop ecosystem, is
universally supported for data processing, includes
API’s and query engines for custom data processing
systems.

Hadoop Distributed File System (HDFS) is a dis-
tributed file system designed to provide scalable, fault-
tolerant and consistent data storage across large clusters.
Ability to store files greater than server capacity, while
providing parallel access on multiple machines in a clus-
ter, makes HDFS an attractive choice for Big Data appli-
cations.

As shown in the figure 7, HDFS cluster consists of
two components: a Name Node (NN) and a set of Data
Nodes (DN). HDFS exposes a file system, allowing clients
to store files that are automatically broken up into blocks
with the predefined size (128Mb by default) and stored
redundantly on the Data Nodes. The Name Node acts
as a controller, splitting data into blocks and managing
blocks location while optimising read and write perfor-
mance. CRUD as well file open and close operations are
handled by Name Node. In this master-slave architecture,
only a single Name Node is allowed at all times, making
it a weak point of the system. To mediate this issue a sec-
ondary Name Node is assigned by Yarn containing a copy
of the edit log, reducing the recovery time of the system.

4.2.2 Batch processing: MapReduce, Apache PIG and
Apache TEZ

MapReduce is briefly covered in section 3.2 as part of
CouchDB stack. In scope of BigData MapReduce runs na-
tively within Hadoop stack, on top of the HDFS. The gen-
eral concept is similar, and processing depends on Map-
pers to transform and Reducers to filter the data. Typically,
MR batch job is controlled by Yarn (resources) and sys-
tems like Oozie for execution (time allocation). MR fol-
lows a master-slave approach , inherited from HDFS, with
a single Node Manager running MR Application Master
controlling, determining and allocating Map and Reduce
tasks over the cluster. It performs an optimization of the
job based on resources (CPU, RAM) as well the nodes lo-
cally available data to minimize the network bottlenecks.
The Application Master is monitored by Yarn and in case
of failure, will be relaunched automatically on a differ-
ent node along with required information to resume the
job. The Reduce jobs often, if not always, require ag-
gregation of data from multiple Mappers, likely executed
on different nodes, all handled by MR without being pro-
grammed in the query. The main drawback of MR is
the two-stage process limitation, that can be medicated
by chaining multiple MR operations, but decreasing the
overall efficiency. Furthermore, the intermediate Mapper
results are stored on the nodes hard drive, further degrad-
ing the performance [47]. Apache PIG is an infrastruc-
ture and a high-level language, PIG Latin, for data analy-
sis programs, evaluating directly on MapReduce and Tez.
Apache TEZ is a high-performance MapReduce alterna-
tive that relies on complex directed-acyclic-graphs (DAG)
and Hadoop Yarn [48].

MapReduce, being part of the Hadoop ecosystem, is
added automatically to the data analytics toolset by select-
ing HDFS as persistent storage. Due to limited perfor-
mance of MR and processing limitation of PIG, both sys-
tems will not be utilized for batch processing use. How-
ever, PIG in conjunction with TEZ serves purposes for

IAC-17-B1.6.6 Page 6 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

data analytics and troubleshooting of the system.

4.2.3 Data analytics: Apache Hive and HBase
While Apache PIG is designed with scripting in mind,

other abstractions have been developed to emulate a SQL
database. Apache Hive is an analytics querying frame-
work within Hadoop ecosystem. By design, Hive is opti-
mized for analytics: online analytical processing (OLAP).
In short, Hive provides a SQL-like interface (HiveQL) to
access the data stored in HDFS file while only enforcing
a schema on read. It should be noted that Hive does not
provide record-level updates, inserts or deletes.
Apache HBase, a No-SQL alternative, is designed for on-
line transaction processing (OLTP), similar to Google Big
Table. Data records, stored in HDFS, are parsed to column
and column families to mitigate missing data.
Nor Hive or HBase is required for batch processing. Hive
is part of the Hadoop ecosystem, and will be available for
the data analytics.

4.2.4 Apache Spark
Apache Spark is a popular framework used for big

data analytics. Spark is deployed as a cluster applica-
tion and can be monitored by YARN. In contrast to the
two stage MapReduce, Spark executes multi-stage jobs in-
memory, drastically improving the overall system perfor-
mance. The core of Spark relies on the resilient distributed
datasets (RDD) [49], abstraction for the partitioned collec-
tion of records. This ensures fault-tolerance and an abil-
ity to recompute damaged partition with data distributed
over the cluster. The fault-tolerance is achieved by keep-
ing all RDD’s read-only, ensuring that every transforma-
tion creates a new RDD, making each RDD traceable and
re-computable. The key to performance is DAG and the
policy of transforming the RDDs only when directly de-
pendent downstream RDDs are requested: lazy transfor-
mation.
The Spark stack consists of Spark Core, Spark Streaming,
Spark SQL, MLlib and GraphX. Spark Core exposes high-
level RDD and dataset API for batch data manipulation.
Spark API supports a number of programming languages,
Scala and Python being the most popular. Spark SQL ex-
poses a SQL-like language for interaction with RDD, uti-
lizing the structured data API. Spark MLlib is a module
for machine learning utilizing the RDD abstractions. ML-
lib provides classification functionality, for example, K-
Means clustering, providing the necessary frameworks for
basic anomaly detection.
Spark is one of the most versatile batch processing tool
available. This is required since the satellite data frame
format [20] requires additional processing or decoding
tools such as AVRO. Additionally, Spark Streaming al-
lows the majority of code (structured data API) to be

reused for both stream and batch processing.

4.3 Speed Layer
The speed layer requires fast processing while ensur-

ing fault-tolerance and reliability to deliver data timely to
the connected clients. At the time of writing, three dis-
tributed stream processing framework dominate the scene:
Apache Storm, Apache Spark and Apache Flink. The
frameworks are well studied and number of publications
are made on the trade-off and benchmarks. [50] [51] For
the purpose of this project Apache Spark has been se-
lected. The core of data frame processing is identical for
Speed and Batch layers; utilizing the same data process-
ing framework, allows reuse of the code as well cluster,
reducing the overhead.

4.4 Ingestion layer
Ingestion layer ought to provide a secured interface for

the client applications to communicate with, undepend-
able from server implementation and frameworks used.
The API design is out of the paper scope and will be ig-
nored for the discussion. The ingestion layer should be
horizontally scalable and provide (temporary) data storage
in case of immutable storage malfunctions (resilience).

4.4.1 API + HDFS
Hadoop Distributed File System (HDFS) exposes a

programming interface that can be easily connected to
the API used for client communication (data ingest), en-
abling direct data consumption by the cluster. This so-
lution, however, requires high availability HDFS deploy-
ment to cover for any malfunctions, and a system to feed
the streaming data to the Speed Layer.

4.4.2 Kafka
Defacto framework used for the ingestion layer in

lambda architecture is Apache Kafka. Designed as a
system to deliver high volume event data to subscribers,
Kafka utilizes a write-ahead commit log on persistent
storage and provides a pull-based messaging abstraction
to allow both real-time subscribers such as online services
and offline subscribers such as Hadoop and data ware-
house to read these messages at arbitrary pace. [52].

The stream of records, published by API, are cate-
gorised in topics. Topics are used to define data pipelines
and are consumed by subscribers: Speed layer and Batch
layers. In case of clustered deployment, topics are build
up from partitions, collectively called log. As shown in
the Figure 8, each partition is an immutable sequence of
received data. Offset, the unique id of each record is used
to keep track of the last retrieved record per subscriber.

IAC-17-B1.6.6 Page 7 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 8: Kafka Log Anatomy [53]

This enables topic subscribers to consume data at differ-
ent rates. To keep track of offset and subscribers Kafka
utilizes Apache Zookeeper. Additional to the messaging
broker, Kafka contains Connect framework, an extensive
set of ready-to-use Sink and Source connectors for inte-
grating with the majority of existing databases and data
providers. The framework is optimal for data migration
from legacy system and load testing of the complete sys-
tem implementation.
The choice for Kafka is made due to the following consid-
erations:

• Horizontally scalable

• Ability to serve multiple data consumers at different
rates

• Resilient data log, redundancy for temporarily HDFS
system failures.

• Data delivery guarantee

4.5 Final Architecture
Selection process briefly outlined by previous sections,

leads to the architecture shown by the Figure 9.
Satellite telemetry data submit through client application
and API, is appended to commit log of Apache Kafka.
Log serves as a temporarily data storage, until it is con-
sumed by Spark Streaming and inserted to HDFS file sys-
tem by Apache Connect HDFS Sink. Spark batch pro-
cessing is executed on regular intervals, result of which
overwrites all entries in the ElasticSearch system. Apache
Spark Streaming is executed in micro batches with sub
minute intervals. Processed data is appended to Elastic-
Search with retention period. Kibana is configured to con-
sume ElasticSearch data.

The architecture ensures interoperability with different
components, for example an additional No-SQL database
for specific customer needs, withouh major code over-
haul. The batch layer, with aid of Spark can be used for a

Fig. 9: Proposed Architecture including frameworks

wide range of tasks, from model fitting (K-means) to full
fledged machine learning.

5. Future Work

One of the main long-term goals of the work presented
here (and still under development) is the use of satellite
data (including payload data as well as on-board teleme-
try) for data mining and autonomous operations. Data
mining is defined as the analysis of large amounts of data
to extract further information from it: a clear example
could be the analysis of performances indicators to pre-
dict system maintenance[54]. Spacecrafts could, for ex-
ample, benefit from a predictive model calibrated around
selected telemetry parameters, to predict eventual faults
and implement corrective strategies in a completely au-
tonomous way. This latter approach can be very fascinat-
ing, especially for deep-space probes that experience long
communication delays and requires complex autonomous
operations, but it would have to be ported to the satellite
hardware.

Using historic telemetry data coming from space
probes has also been exploited recently by the Mars Power
Challenge[55], where the best modeling techniques were
compared to predict 1 year worth of telemetry on the Mars
Express probe based on 3 years worth of data. Possi-
ble artificial intelligence applications in this case would
have to be integrated either on the satellite hardware or in
the ground station infrastructure, leading to further imple-
mentation work. In our case, a future implementation of
data mining algorithms will be simple to add because we
already relied on standard applications used in the artifi-
cial intelligence / data mining field to realize the database
and the data distribution system since this could be im-
plemented by the processing layer already present. This
approach will allow us to perform further research even
during normal mission operations with the clear goal of
creating an automated system to handle common anoma-
lies.

6. Conclusions

In this paper we looked at the current trends in space
missions, especially looking at nano-satellites, and fo-

IAC-17-B1.6.6 Page 8 of 11



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

cused on swarms and constellations. From these mis-
sions, we looked at the required ground segment to ful-
fill the mission requirements of handling up to thousands
of passes per day. This requires the development of a
distributed ground station system capable of scaling in a
simple way. We presented an architecture to achieve such
goals based on industry standard applications in the do-
main of data analytics and mining. We also presented
some preliminary results on the implementation of such
a system to clearly show the advantages of the selected
architecture.

We also highlighted possible future developments
making use of the described infrastructure to perform data
mining and possibly autonomous operations by adding a
data mining / artificial intelligence application to the exist-
ing distributed database. This new concept could provide
huge benefits to big constellations by heavily reducing the
operators work.

References

[1] “2017 Spaceworks Nano/Microsatellite Market
Forecast.” http://spaceworksforecast.
com. (accessed 01.09.2017).

[2] “Gunter’s space page.” http://space.
skyrocket.de. (accessed 02.09.2017).

[3] N. Crisp, K. Smith, and P. Hollingsworth, “Launch
and deployment of distributed small satellite sys-
tems,” Acta Astronautica, vol. 114, pp. 65 – 78,
2015.

[4] R. Sandau, Implications of new trends in small satel-
lite development, pp. 296–312. Vienna: Springer Vi-
enna, 2011.

[5] J. Esper, P. V. Panetta, M. Ryschkewitsch, W. Wis-
combe, and S. Neeck, “Nasa-gsfc nano-satellite
technology for earth science missions,” Acta Astro-
nautica, vol. 46, no. 2, pp. 287 – 296, 2000. 2nd
IAA International Symposium on Small Satellites
for Earth Observation.

[6] L. Dyrud, S. Slagowski, J. Fentzke, W. Wiscombe,
B. Gunter, K. Cahoy, G. Bust, A. Rogers, B. Er-
landson, L. Paxton, and S. Arnold, “Small-sat sci-
ence constellations: why and how,” in Proceedings
of the 27th Annual AIAA/USU Conference on Small
Satellites, (Lugan, UT), American Institute of Aero-
nautics and Astronautics (AIAA), 8 2013.

[7] D. J. Barnhart, T. Vladimirova, A. M. Baker, and
M. N. Sweeting, “A low-cost femtosatellite to en-
able distributed space missions,” Acta Astronautica,
vol. 64, no. 11, pp. 1123 – 1143, 2009.

[8] R. Sandau, K. Brie, and M. DErrico, “Small satel-
lites for global coverage: Potential and limits,” IS-
PRS Journal of Photogrammetry and Remote Sens-
ing, vol. 65, no. 6, pp. 492 – 504, 2010. ISPRS Cen-
tenary Celebration Issue.

[9] W. Saylor, K. Smaagard, N. Nordby, and D. Barn-
hart, “New scientific capabilities enabled by au-
tonomous constellations of smallsats,” in Proceed-
ings of the 21th Annual AIAA/USU Conference on
Small Satellites, (Lugan, UT), American Institute of
Aeronautics and Astronautics (AIAA), 8 2007.

[10] D. J. Barnhart, T. Vladimirova, and M. N. Sweet-
ing, “Very-small-satellite design for distributed
space missions,” Journal of Spacecraft and Rockets,
vol. 44, no. 6, pp. 1294 – 1306, 2007.

[11] “Planet web page.” https://www.planet.
com. (accessed 04.09.2017).

[12] K. Colton and B. Klofas, “Supporting the flock:
Building a ground station network for authonomy
and reliability,” in Proceedings of the 30th Annual
AIAA/USU Conference on Small Satellites, (Lugan,
UT), American Institute of Aeronautics and Astro-
nautics (AIAA), 8 2016.

[13] “Spaceflight web page.” http://
spaceflight.com. (accessed 04.09.2017).

[14] B. Klofas, “Planet labs ground station network.” 13th
Annual CubeSat Developers Workshop, 4 2016.

[15] C. Venturini and T. McVittie, “Current and fu-
ture ground systems for cubesats working group,”
in Ground Systems Architecture Workshop, The
Aerospace Corporation, 3 2014.

[16] E. F. Moreira, A. Ceballos, C. Estvez, , J. C. Gil,
S. Kang, J. Guiney, , and V. Ivatury, “Architect-
ing oneweb’s massive satellite constellation ground
system,” in Ground Systems Architecture Workshop,
The Aerospace Corporation, 3 2017.

[17] K. Casey, W. Al-Masyabi, and M. Nagengast, “A
visit to 2037,” in Ground Systems Architecture Work-
shop, The Aerospace Corporation, 3 2017.

[18] “Delfi Space: TU Delft Small Satellite Pro-
gram.” http://www.delfispace.nl/
operations/radio-amateurs. (accessed
02.09.2017).

[19] M. Kuiper, “DUDe Telemetry Client Software De-
sign ,” tech. rep., Delft University of Technology,
2013.

IAC-17-B1.6.6 Page 9 of 11

http://spaceworksforecast.com
http://spaceworksforecast.com
http://space.skyrocket.de
http://space.skyrocket.de
https://www.planet.com
https://www.planet.com
http://spaceflight.com
http://spaceflight.com
http://www.delfispace.nl/operations/radio-amateurs
http://www.delfispace.nl/operations/radio-amateurs


68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

[20] R. Schoemaker, “Robust and flexible command &
data handling on board the delffi formation flying
mission,” Master’s thesis, Delft University of Tech-
nology, 2014.

[21] G. van Craen, “Design of the telemetry server,” Mas-
ter’s thesis, Delft University of Technology, 2011.

[22] J. Lewis and M. Fowler, “Microservices: a definition
of this new architectural term,” 2014.

[23] D. Haney and K. S. Madsen, “Load-balancing for
mysql,” Kobenhavns Universitet, 2003.

[24] M. Villamizar, O. Garcés, H. Castro, M. Verano,
L. Salamanca, R. Casallas, and S. Gil, “Evaluat-
ing the monolithic and the microservice architecture
pattern to deploy web applications in the cloud,” in
Computing Colombian Conference (10CCC), 2015
10th, pp. 583–590, IEEE, 2015.

[25] M. Villamizar, O. Garces, L. Ochoa, H. Castro,
L. Salamanca, M. Verano, R. Casallas, S. Gil, C. Va-
lencia, A. Zambrano, et al., “Infrastructure cost com-
parison of running web applications in the cloud us-
ing aws lambda and monolithic and microservice ar-
chitectures,” in Cluster, Cloud and Grid Computing
(CCGrid), 2016 16th IEEE/ACM International Sym-
posium on, pp. 179–182, IEEE, 2016.

[26] J. Justin and J. Jude, “Go offline,” in Learn Ionic 2,
pp. 79–97, Springer, 2017.

[27] “Pouchdb: The database that syncs.” https://
pouchdb.com. (accessed 02.09.2017).

[28] S. Gilbert and N. Lynch, “Perspectives on the cap
theorem,” Computer, vol. 45, no. 2, pp. 30–36, 2012.

[29] N. Marz, “How to beat the cap theorem,” nathan-
marz. com, 2011.

[30] “Couchdb: the definitive guide.” http://guide.
couchdb.org/draft/consistency.html.
(accessed 02.09.2017).

[31] R. Leeds, “Chrome to chrome pouchdb.” CouchDB
Conf Berlin, 2013.

[32] J. Dean and S. Ghemawat, “Mapreduce: simplified
data processing on large clusters,” Communications
of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[33] S. N. Khezr and N. J. Navimipour, “Mapreduce
and its applications, challenges, and architecture: a
comprehensive review and directions for future re-
search,” Journal of Grid Computing, pp. 1–27, 2017.

[34] S. A. Thanekar, K. Subrahmanyam, and A. Bagwan,
“A study on mapreduce: Challenges and trends,”
Indonesian Journal of Electrical Engineering and
Computer Science, vol. 4, no. 1, pp. 176–183, 2016.

[35] R. Singh and P. J. Kaur, “Analyzing performance
of apache tez and mapreduce with hadoop multin-
ode cluster on amazon cloud,” Journal of Big Data,
vol. 3, no. 1, p. 19, 2016.

[36] D. S. Kusumo, M. Staples, L. Zhu, H. Zhang, and
R. Jeffery, “Risks of off-the-shelf-based software ac-
quisition and development: A systematic mapping
study and a survey,” 2012.

[37] A. Shvets, Design Patterns Explained Simply.
Source Making, 2017.

[38] S. van Kuijk, “Delfi-n3xt forensics: A hybrid
methodology,” Master’s thesis, Delft University of
Technology, 2016.

[39] N. Marz and J. Warren, “Big data: principles and
best practices of scalable real-time data systems,”
2013.

[40] V. Chavan and R. N. Phursule, “Survey paper on big
data,” Int. J. Comput. Sci. Inf. Technol, vol. 5, no. 6,
pp. 7932–7939, 2014.

[41] D. Singh and C. K. Reddy, “A survey on platforms
for big data analytics,” Journal of Big Data, vol. 2,
no. 1, p. 8, 2015.

[42] V. B. Bobade, “Survey paper on big data and
hadoop,” Int. Res. J. Eng. Technol, vol. 3, no. 1,
pp. 861–863, 2016.

[43] A. Yigal, “Grafana vs. kibana: The key dif-
ferences to know.” https://logz.io/blog/
grafana-vs-kibana. Accessed: 2017-09-02.

[44] I. Nurgaliev, E. Karavakis, and A. Aimar, “Kibana,
grafana and zeppelin on monitoring data,” Aug.
2016.

[45] P. Kleindienst, “Building a real-world logging infras-
tructure with logstash, elasticsearch and kibana,”

[46] “Hdfs architecture guide.” https://hadoop.
apache.org/docs/r1.2.1/hdfs_
design.html.

[47] P. Kannan, “Beyond hadoop mapreduce apache
tez and apache spark,” San Jose State Uni-
versity. URL: http://www. sjsu. edu/people/robert.
chun/courses/CS259Fall2013/s3/F. pdf.

IAC-17-B1.6.6 Page 10 of 11

https://pouchdb.com
https://pouchdb.com
http://guide.couchdb.org/draft/consistency.html
http://guide.couchdb.org/draft/consistency.html
https://logz.io/blog/grafana-vs-kibana
https://logz.io/blog/grafana-vs-kibana
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html


68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

[48] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan,
A. Murthy, and C. Curino, “Apache tez: A unifying
framework for modeling and building data process-
ing applications,” in Proceedings of the 2015 ACM
SIGMOD international conference on Management
of Data, pp. 1357–1369, ACM, 2015.

[49] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pp. 2–
2, USENIX Association, 2012.

[50] A. Shukla and Y. Simmhan, “Benchmarking dis-
tributed stream processing platforms for iot ap-
plications,” in Technology Conference on Perfor-
mance Evaluation and Benchmarking, pp. 90–106,
Springer, 2016.

[51] S. Chintapalli, D. Dagit, B. Evans, R. Farivar,
T. Graves, M. Holderbaugh, Z. Liu, K. Nusbaum,
K. Patil, B. J. Peng, et al., “Benchmarking stream-
ing computation engines: Storm, flink and spark
streaming,” in Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International,
pp. 1789–1792, IEEE, 2016.

[52] G. Wang, J. Koshy, S. Subramanian, K. Paramasi-
vam, M. Zadeh, N. Narkhede, J. Rao, J. Kreps, and
J. Stein, “Building a replicated logging system with
apache kafka,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 12, pp. 1654–1655, 2015.

[53] “Kafka documentation.” https://kafka.
apache.org/documentation/.

[54] P. Bastos, I. Lopes, and L. Pires, “A maintenance
prediction system using data mining techniques,”
in World Congress on Engineering 2012, vol. 3,
pp. 1448–1453, International Association of Engi-
neers, 2012.

[55] “Mars express power challenge.”
https://kelvins.esa.int/
mars-express-power-challenge. (ac-
cessed 01.09.2017).

IAC-17-B1.6.6 Page 11 of 11

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kelvins.esa.int/mars-express-power-challenge
https://kelvins.esa.int/mars-express-power-challenge

	Introduction
	Space Mission trends
	System architecture evolution
	The legacy, no scalability
	Scale by leveraging clients
	Lessons learned
	Security
	Client-side data replication and processing
	Data ingestion

	Transition to Big Data: Lambda architecture
	Data consumption
	Batch layer
	Streaming layer
	Serving layer

	Transition to Big Data: Kappa architecture

	Selected architecture
	Serving layer
	Batch layer
	Immutable data
	Batch processing: MapReduce, Apache PIG and Apache TEZ 
	Data analytics: Apache Hive and HBase 
	Apache Spark

	Speed Layer
	Ingestion layer
	API + HDFS
	Kafka

	Final Architecture

	Future Work
	Conclusions

