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The most precious thing in life is its uncertainty.

Kenkō, from Tsurezuregusa (Essays in Idleness)
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Preface
It is difficult to describe the amount of fun I had over approximately the last four years of
doing research. Doing research on uncertainty quantification and wind energy allowed
me to come up with some nice algorithms to solve practical problems and, much more
importantly, it allowed me to create some nice colorful pictures. I am quite proud of the
end result, which is the thesis you have just opened.

From a more practical point of view, the introduction (which starts immediately
after this preface) contains a reading guide that outlines the structure of this thesis. The
main topic of this thesis is introduced extensively there, so I refrain from doing that here.
Many of the remaining chapters are based on existing scientific publications which are,
at the time of writing, under review or already published. The details are mentioned in
a footnote at the start of each chapter. All references you find in this thesis have been
gathered in one single chapter at the end of this thesis, see page 197. Moreover an index
has been added (see page 215) that serves as a glossary, a list of nomenclature, and a
list of abbreviations. If you stumble upon a term or abbreviation that confuses you, the
index will tell you where it has been introduced and is being used elsewhere. If the
term is not in the index, you can probably safely ignore its exact definition and continue
reading.

With those practicalities out of the way, it is time to dive into the beautiful math-
ematics of uncertainty quantification and wind energy. Whether you like it or not, I
would love to hear from you, so get in touch if you happen to have any questions or
comments. For now, I hope you enjoy reading this thesis as much as I did writing it.

Laurent van den Bos
Amsterdam, September 2019





Introduction
Offshore wind farms are considered to be an essential part of the transition to renewable
energy. Many coastal countries in Europe and elsewhere in the world are constructing
wind farms on sea consisting of large numbers of wind turbines [72].

Before an expensive wind farm is constructed in the rapidly varying environment
of the rough sea, its construction, design, and maintenance are thoroughly assessed
to determine (and to a certain extent maximize) the energy output of the wind farm
and the lifetime of the wind turbines. These values can be used to determine the total
energy yield over the lifetime of the wind farm and result in a quantity known as the
cost of energy, which safeguards the financial feasibility of the wind farm.

The procedures to determine the energy output and life time of a wind farm are
standardized in the IEC standard [86]. This standard describes various situations that
should be taken into account when planning the construction of a wind farm, known as
load cases. These cases vary from regular power production cases, describing situations
in which wind farms produce energy in regular weather conditions, to extreme load
scenarios, describing conditions that can potentially severely damage the turbines and
significantly affect the power production if not properly considered beforehand.

To ensure that the predictions of the life time of the wind farm are accurate and
meaningful, the uncertain nature of the environment, such as weather conditions, must
be taken into account. In the IEC standard parameters are described that have to be
modeled as inherently uncertain. Examples of such parameters are the mean wind
speed, the wind direction, and the wave height. The variation of these parameters
makes that the forces acting on the turbines also vary, which affects the lifetime and the
cost of energy if not properly accounted for. The randomness of these parameters often
comes from external sources, such as the uncertain environmental conditions, and can
therefore not be reduced.

A different type of uncertainty arises from the unknown error (or bias) in the model
describing the wind farm. This model error follows from the basic fact that the model
is imperfect, as there are always modeling assumptions and simplifications that yield
a (possibly small) discrepancy between the real value and the modeled value. As the
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exact, real value is unknown, the error made by the model can also be interpreted as
an uncertainty. However, this uncertainty is of a different type than that arising from
the external conditions: it can be reduced by increasing the fidelity of the model, by
incorporating more physics, or by simply using a more advanced model. This often
comes at a cost: a better model must be derived, implemented, and tested or more
computational time is necessary to evaluate the model due to the increased fidelity.

The field of mathematics and engineering that studies these type of problems is often
called uncertainty quantification. It is common (and prescribed in the IEC standard) to
incorporate the uncertainties non-intrusively, which means that the variability in the
wind turbine performance is assessed by consecutive evaluations of the model. Often
this is done using only general characteristics of the model, i.e. the model is treated as a
black box. The main advantage of a non-intrusive approach is that it does not require
any modifications of the model describing the wind turbines.

A possible non-intrusive technique to model the two types of uncertainty is to draw
samples and evaluate the computational model for each sample. This approach is
commonly known as Monte Carlo sampling. It requires knowledge about the statistical
behavior of the uncertain parameters to construct the samples in the first place. The
external conditions are often known explicitly; for example, the statistics of the weather
conditions are known upfront. Statistically modeling the model error is less straightfor-
ward, but by using expert knowledge or by calibrating the model using measurement
data, samples can be computed that represent the uncertainty in the model. When both
sources of uncertainty are combined into a single probability distribution, large num-
bers of samples can be drawn from which predictions of the wind turbine performance
can be inferred.

However, estimates based on straightforward sampling often converge prohibitively
slow. In other words, a large number of samples is necessary to accurately predict the
relevant characteristics of the wind turbine. Moreover, obtaining an estimate of the
model error requires model evaluations. The computer simulations that model a wind
turbine are computationally costly, hence the number of possible model evaluations,
and thereby also the number of samples that can be used, is limited. One possible
technique to alleviate this is collocation, which consists of deterministically choosing
the samples. Hence the samples (often called nodes in a collocation setting) are not
drawn from a distribution but chosen using a deterministic algorithm. In a stochastic
framework this is often called stochastic collocation and this methodology is the key
focus of this thesis.

1.1. Stochastic collocation
Stochastic collocation generally describes a family of sampling approaches that treat a
stochastic sampling problem in a deterministic way. Various approaches to determine
the nodes have been proposed over the years, each with their own advantages and
disadvantages. The properties of the model, such as its smoothness properties, are often
leveraged to significantly improve the convergence rates of the methods (so fewer model
evaluations are necessary for an equally accurate estimate).

Many commonly used collocation methods are inefficient or even inapplicable if
considered in the setting of wind turbine calculations. They are based on the assumption
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that the underlying input parameters are independently distributed, fully known, and
easy to assess statistically. However, these assumptions do not hold for the problem of
inferring the statistics of forces on a wind turbine as sketched here. Firstly, the weather
conditions are not quantified as independent parameters, for example the turbulence
intensity of wind depends on the mean wind speed. Secondly, often these weather
conditions do not form well-known distributions, but are only known by a (possibly
large) number of measurements. Finally, the model error depends on the model itself,
which is non-trivial to assess statistically without requiring a large number of costly
model evaluations.

The main goal of this thesis is to construct collocation techniques for the cases in
which the underlying model is computationally expensive and the parametric uncer-
tainty must be (partially) inferred from data, such as the case of the problem sketched
so far. The model is treated as a black box, so generally no specific knowledge about
the underlying equations of the model are incorporated. Only general characteristics of
the model, such as whether it responds smoothly to variations in the input, are used.
Therefore the approaches are applicable to a wide variety of problems, which are not
necessarily related to wind energy.

More specifically, three objectives are addressed in this thesis. The first objective
is to derive an efficient stochastic collocation method for the purpose of uncertainty
propagation, i.e. the probability distribution of the parameters is known a priori (either
explicitly or by measurements). The second objective is to apply this method to wind
energy load calculations. Notice that these objectives are connected: the stochastic
collocation method must be applicable to load calculations. Finally, the third objective
is to derive an efficient stochastic collocation method for the case where the proba-
bility distribution of the parameters is not known a priori. In particular, calibration
problems are considered, where the distribution of the parameters depends on the
computationally expensive model.

1.2. Approach of this thesis
The approach taken in this thesis is to construct a polynomial approximation of the
model by using a finite number of evaluations and using the polynomial for further
post-processing. We will see that the post-processing step is crucial for the construction
of the polynomial. If the interest is solely in determining statistical moments of the
uncertain forces acting on the turbine, which is often the case, there is a large degree
of freedom in the exact location of the nodes. Techniques that leverage this freedom
are applicable to a vast class of problems and do not impose severe assumptions on
the model under consideration. On the other hand, if the interest is in constructing an
exact polynomial which fully approximates the model, there are severe restrictions on
the nodes. Nonetheless, globally accurate polynomial approximations might yield more
accurate results, depending on the exact quantity of interest. Therefore, the first step of
this thesis is to review uncertainty quantification techniques in order to make these type
of qualifications mathematically well-defined and to describe the statistical framework
used in this thesis.

If the interest is solely in statistical moments of the output uncertainty, such as
the mean forces acting on the turbine, it is possible to explicitly derive conditions that
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should be imposed on the nodal locations. For this purpose, quadrature rule techniques
are used, which are based on strong mathematical theory proving their efficiency and
accuracy. The conditions imposed on the nodes to ensure accuracy yield a framework
that describes addition, replacement, and removal of nodes in a quadrature rule.

The developed framework can directly be used to construct a quadrature rule tailored
to the requirements of wind energy load cases. The proposed quadrature rule, called
the implicit quadrature rule, only requires samples (instead of a distribution) for its
construction. Moreover it yields accurate estimations of statistical quantities for a broad
class of computational models.

Based on the developed theory, the focus is shifted to the uncertainty arising from
parametric model imperfection. In this case the problem becomes more subtle, as the
distribution of the uncertain parameter depends on the model and therefore cannot be
straightforwardly assessed. Two methodologies are presented to address this. The first
method is based on the construction of an accurate surrogate, designed such that it is
accurate in regions where the computational model is close to measurement data. This
method can be applied to problems of many types, but shows its true strength if the
underlying model is smooth. The second approach that is proposed reuses the implicit
quadrature rule. This approach imposes fewer assumptions on the statistical model that
describes the relation between the model and the measurement data. Since it is based
on a quadrature rule, it is very suitable to infer predictions of the quantity of interest that
directly incorporate model uncertainty. However, it cannot be used straightforwardly to
construct a surrogate of the computational model under consideration.

Numerical examples are discussed throughout this thesis to demonstrate the effec-
tiveness of each proposed algorithm. For example, the Genz test functions are employed
to assess the accuracy of the approaches and the flow over an airfoil (which is especially
relevant for wind turbine blade design) is considered to demonstrate the performance of
the approaches in complex problems. Moreover, a wind turbine test case is considered
to demonstrate the applicability of the algorithms to a standardized load case. For
this purpose, the loads acting on a benchmark offshore wind turbine are determined
numerically using offshore environmental measurements obtained in the North Sea. As
measurement data of the loads of offshore wind farms is not readily available, this case
is restricted to the propagation of uncertainty.

1.3. Outline of this thesis
The outline of this thesis follows from the approach sketched above and is depicted
in Figure 1.1 in the form of a reading guide. Chapter 2 reviews existing uncertainty
quantification techniques and briefly considers their usage in wind energy applications.
The focus is mainly on the mathematical foundation that is necessary to tackle the
challenges stated here.

In Chapter 3 quadrature rules are studied in detail with a focus on how univariate
quadrature rules can be constructed effectively. In this chapter model uncertainty is
omitted. By using the derived techniques, the focus shifts to the direct construction of
quadrature rules in Chapter 4. Here, the implicit quadrature rule is introduced, which is
a quadrature rule that incorporates multiple, correlated parametric uncertainties that
are solely known by samples in a single uncertainty propagation framework.
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Chapter 2: collocation methods

Chapter 3: a quadrature rule framework

Chapter 4: the implicit quadrature ruleChapter 6: calibration of model uncertainty

Chapter 7: calibration and propagation of uncertainty

Chapter 5: wind turbine load case

Chapter 8: conclusion

Chapter 1: introduction

Figure 1.1: Graphical outline of this thesis, where the arrows indicate dependencies
between chapters.

The implicit quadrature rule derived in Chapter 4 can readily be used to assess
the equivalent loads acting on a wind turbine. Therefore, in Chapter 5 a wind turbine
benchmark test case is discussed. For this purpose, the standardized outputs that are
commonly used in the wind energy community to assess the performance of a wind
turbine are embedded in the probabilistic framework used in this thesis.

These chapters do not incorporate (parametric) model error and therefore in Chap-
ter 6 this type of uncertainty is considered, including how this type can be used in
conjunction with a computationally expensive model. For this purpose an interpolant
of the expensive model is constructed that is adaptively tailored to the statistical model
under consideration. Subsequently, Chapter 7 is concerned with inferring predictions of
the model such that model uncertainty is incorporated. For this purpose the quadrature
rule framework is extended by exploiting the freedom in the nodal locations as proposed
in Chapter 4.

Finally, in Chapter 8 the thesis is summarized and concluded. Moreover some
suggestions for further research are discussed.





Uncertainty quantification inwind energy: preliminaries
Uncertainties are omnipresent in wind energy applications and quantifying uncertainty
in computational models forms the main topic of this thesis. The field of mathematics
and engineering that studies such problems is often called uncertainty quantification.
The goal in that field is to study how uncertainties in parameters and computational
models affect the uncertainty in quantities of interest [70, 105, 129, 174, 201]. In this
chapter the mathematical background that is relevant for this thesis is introduced and
existing uncertainty quantification techniques and principles that are used throughout
this thesis are discussed.

The central problem studied in this thesis can be summarized as propagating un-
certain parameters, denoted by a multivariate random variable X, through a model,
denoted by u. Consequently a new random variable u(X) is obtained. The random vari-
able X might be known a priori, but problems where this is not the case (e.g. calibration
problems) are also considered. To introduce this construction formally, let (U ,F ,P )
be a probability space, where U denotes the set of all outcomes, F ⊂ 2U denotes the
accompanying σ-algebra containing all events, and P denotes the probability measure.
In the context of uncertainty quantification, it is common to let P denote the uniform
distribution, but this is mathematically speaking not necessary. The random parameters
are modeled by a d-variate random variable defined in this space, i.e. X : U →Ω with
Ω⊂Rd , where d denotes the number of parameters considered. In this thesis only finite
dimensional real-valued random variables are considered. The goal is to infer statistics
such as the probability density function or expectation of u(X), where u : Ω→ Rn is a
map that describes a certain computational model.

Throughout this thesis, the underlying random space (U ,F ,P ) is omitted from
the notation. The computational model under consideration is denoted by u and
X = [X1, . . . , Xd ]T are the uncertain input parameters. Moreover it is assumed that all
input parameters have a piecewise continuous probability density function, denoted
by ρ(X) = ρ(X1, . . . , Xd ). Then the statistical properties of u(X) = u(X1, . . . , Xd ) can be
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assessed without explicit knowledge about the probability space (U ,F ,P ). For example,
determining the mean of u(X) translates into determining a weighted integral over Ω:

E[u(X)] =
∫

Ω
u(x)ρ(x)dx. (2.1)

The variance and other higher order moments can be obtained by replacing u(X) by
u(X) j (for a certain j = 1,2, . . . ).

Globally there are two types of methods to infer statistics about u(X): intrusive and
non-intrusive methods. Intrusive methods consist of expanding the uncertain parameter
in a series of known distributions [70] and replacing this expansion in the governing
model. The effect of the uncertainty is studied by assessing the obtained model, which
requires non-trivial changes to codes built to assess the original model (e.g. codes that
numerically solve a partial differential equation). On the other hand, non-intrusive
methods rely on existing models and make predictions by repeatedly evaluating the
model for various values of the parameters. The focus of this thesis is on the latter, since
such methods are most widely applied in the wind energy community. Moreover often
the complex computational model describing the wind turbine under consideration
cannot be straightforwardly modified to incorporate the uncertain variable. An example
where this is the case is considered in Chapter 5.

A key challenge of assessing u(X1, . . . , Xd ), where X1, . . . , Xd are random variables, is
that evaluating u(x) for a specific value of x ∈Ω is computationally costly. Moreover it
is assumed that no analytical expression of u is known. For example, u is the solution
of a system of partial differential equations or u describes the loads determined by a
computer code that models a wind turbine.

If ρ is known explicitly beforehand, this problem is often called uncertainty propa-
gation. Many distributions used in wind energy applications fall into this case, e.g. the
shape of the distribution describing the uncertain environment is prescribed [85, 86].
This problem is introduced mathematically in Section 2.1, where the approaches that
are used in this thesis are outlined.

On the other hand, if ρ is not known a priori, it can be obtained by calibrating the
model using measurement data. It is convenient to consider a Bayesian framework for
this purpose, as that describes a distribution for the input parameters. This problem is
known as Bayesian model calibration [95] and encompasses an inverse problem. Predic-
tions under uncertainty, known as Bayesian predictions, are among others obtained by
propagating the obtained distribution through the model. Calibration allows to infer
predictions that incorporate, besides parametric uncertainty, the uncertainty in the
model to a certain extent. This uncertainty is often the result from model assumptions,
numerical errors, or physical simplifications. Bayesian model calibration is further intro-
duced and discussed in Section 2.2, including its non-trivial computational challenges
that are tackled in this thesis.

These concepts are illustrated in Figure 2.1. The core of all methods consists of a
model accompanied with uncertain parameters, describing a quantity of interest. The
quantity of interest is depicted as u(X) and the interest is in the statistical properties of
this random variable (such as the mean). A Bayesian approach consists of formulating a
statistical relation between known measurements and a quantity of interest and exploit-
ing this statistical relation to describe the distribution of the input parameters. Bayesian
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Uncertainty Propagation

Bayesian Calibration

Bayesian Prediction

Input parameters

Model parameters

Model Quantity of interest

Statistical model

Measured output

Environmental
conditions

Aeroelastic code
BLADED

Equivalent loads

Figure 2.1: Schematic overview of the concepts considered in this thesis and their rela-
tion to wind energy load calculations.

prediction consists consequently of propagating these calibrated parameters through
the model. The concepts of Bayesian prediction and uncertainty propagation are closely
related, but subtly differ due to the usage of measurement data in the Bayesian meth-
ods considered in this thesis. The embedding of wind turbine load calculations in the
framework (which is further considered in Chapter 5) is illustrated at the bottom of the
figure.

2.1. Uncertainty propagation
If the input distribution ρ of X is known exactly, its properties can be leveraged to
accurately assess the statistical properties of u(X). Arguably the best-known methods for
this purpose are Monte Carlo methods, where large numbers of samples of X are used.
These methods are widely used in computational sciences due to their simplicity and
straightforward error analysis. These methods are briefly discussed in Section 2.1.1.

However, often the number of samples that is necessary to accurately approximate
the statistical properties of u(X) is prohibitively large. This can be alleviated by replacing
the model u with a surrogate, i.e. an approximation of the model which is compu-
tationally cheap to evaluate. In this thesis, the focus is in particular on polynomial
interpolation, which is discussed in Section 2.1.2. The accuracy of an interpolating
polynomial is highly sensitive to the choice of interpolation nodes. However, if the
polynomial is solely used to calculate weighted integrals such as (2.1), the nodal set can
be interpreted as a quadrature rule, which allows for significantly more flexibility in the
nodal locations. A large part of this thesis is devoted to the construction of quadrature
rules and the construction of such sets is discussed in Section 2.1.3.
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The goal of this section is not to provide an exhaustive review about all existing

propagation methods and there exist many methods for uncertainty propagation that
are not mentioned in this thesis. A well-known example is Gaussian process regres-
sion (or “Kriging”) [152], where a Gaussian process is fitted using evaluations of the
computational model. Other methods include using Wiener–Haar expansions [104],
employing deep neural networks [181], or clustering approaches [54]. The focus in this
thesis is on polynomials due to their strong balance between high accuracy, flexibility,
and representability using a computer.

2.1.1. Monte Carlo methods
The idea of Monte Carlo is drawing independently and identically distributed (i.i.d.)
samples from X and evaluating u for each sample. The obtained evaluations form
samples of the random variable u(X) and can be post-processed as such, for example

E[u(X)] ≈ 1

K

K−1∑

k=0
u(xk ), (2.2)

where x0, . . . ,xK−1 are K i.i.d. samples of the random variable X. The accuracy of this
method is guaranteed by the central limit theorem, which describes that the mean
as estimated by Monte Carlo converges almost surely to the exact mean, or more for-
mally [31]:

p
K

(
1

K

K−1∑

k=0
u(xk )−E[u(X)]

)
d→N (

0,σ[u(X)]2) .

Here, the convergence is in distribution and σ[u(X)] denotes the standard deviation of
u(X):

σ[u(X)] =
√
E
[
(u(X)−E[u(X)])2

]
.

The central limit theorem implies that the estimate from (2.2) converges (approxi-
mately) with rate 1/2, independently of the number of random parameters (the dimen-
sion of Ω) and the distribution of the parameters. Often the rate of convergence of
the Monte Carlo method is prohibitively slow for the problem at hand, as doubling the
accuracy of the estimation requires quadrupling the number of samples. If obtaining
an evaluation of the model u is computationally non-trivial, the number of samples
necessary to reliably obtain an accurate estimate is simply too large. Notice that this is
often the case for wind turbine models.

Monte Carlo methods have been used in wind energy related applications mainly
to assess the effect of dependent input parameters, since for mutually independent
Gaussian distributed input parameters it is common to use the so-called root-sum-
square method [101]. For example, the Monte Carlo method has been employed to study
the non-linear effect of correlated uncertainties on the energy yield of an offshore wind
farm [57, 100].

Several approaches have been proposed over the years to increase the performance
of Monte Carlo methods, either by increasing the convergence rate or by reducing
the variance of u(X) (or both). An example of an approach with generally a higher
convergence rate is quasi-Monte Carlo sampling, where the random i.i.d. samples are



2.1. UNCERTAINTY PROPAGATION 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(a) Random samples

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x 2
(b) Halton set

Figure 2.2: Random samples used for Monte Carlo (left) and a deterministic Halton set
(right) used for quasi-Monte Carlo approaches. Both sets consists of 1000
samples with x1 and x2 i.i.d. uniformly distributed on the interval [0,1].

replaced by deterministically determined samples [31], e.g. Halton sequences [183] or
Sobol sequences [25]. If the samples distribute well across Ω, an approximately linearly
converging estimate is obtained. An example of such a sequence is depicted in Figure 2.2,
where the equal distribution across the space Ω= [0,1]2 can be observed well.

A completely different approach is to incorporate various models with varying accu-
racy in (2.2) by using the fact that more accurate models are often more computationally
expensive. These models can be based on different physics, but can also be obtained
by using finer discretization meshes, which are often present if the model represents
the numerical solution of a system of partial differential equations. In the latter case
it is common to refer to multiple levels instead of multiple models. These levels can
be exploited by evaluating a large number of samples using a less accurate, but fast
mesh and only a small number of samples on the more accurate, but slower mesh. This
approach is called Multilevel Monte Carlo [71, 99]. If the number of samples that is eval-
uated on each grid is selected carefully, a significant improvement over straightforward
Monte Carlo approaches can be obtained.

2.1.2. Polynomial expansion methods
The idea of non-intrusive polynomial expansions is to replace the computationally costly
model with a significantly cheaper approximation, i.e. a polynomial in this thesis. This
cheaper approximation is called a surrogate or a response surface. It is constructed
by considering a (possibly multivariate) polynomial basis {ϕ0, . . . ,ϕN } ⊂ C∞(Ω) span-
ning the vector space ΦN ⊂C∞(Ω) and subsequently by constructing a uN ∈ΦN such
that uN ≈ u using a finite number of evaluations of u. Here, ΦN contains all linear
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combinations of ϕ0, . . . ,ϕN , i.e.

ΦN := span
{
ϕ0, . . . ,ϕN

}=
{

N∑

k=0
akϕk | a0, . . . , aN ∈R

}
.

The parameter N is a free parameter. Choosing a larger N increases the dimension of
ΦN , resulting into a more accurate uN . However, we will see that a larger N also requires
more computational effort to compute the surrogate. There exist many approaches to
construct uN and two are briefly discussed here due to their relevance for this thesis:
pseudo-spectral approaches and interpolation approaches.

The pseudo-spectral approach [70, 105, 191, 200, 201], or polynomial chaos expan-
sion, is based on projecting u onto the space ΦN . If ϕ0, . . . ,ϕN form an orthonormal
basis, the projection uN can be explicitly denoted by

uN (x) =
N∑

k=0
ak ϕk (x), with ak = 〈ϕk ,u〉L2

ρ (Ω) . (2.3)

Here, 〈ϕk ,u〉L2
ρ (Ω) denotes the well-known inner product on L2

ρ(Ω):

〈 f , g 〉2
L2
ρ (Ω)

=
∫

Ω
f (x) g (x)ρ(x)dx, with f , g ∈ L2

ρ(Ω).

Notice that we again omit the measure space (U ,F ,P ) from the notation. Since uN is a
spectral projection, it holds that [180, 188]

uN = argmin
ϕ∈ΦN

‖ϕ−u‖L2
ρ (Ω),

or equivalently: uN is the best approximation polynomial of u in the space ΦN measured
in the L2

ρ-norm.
The coefficients ak of the expansion still depend non-trivially through (2.3) on the

model u. Both intrusive [129] and non-intrusive [202] methods can be considered in
this regard. Approximating ak non-intrusively makes it a numerical integration problem
and introduces, besides the error of using a finite number of basis vectors in (2.3), a
second error term in the expansion, which is why it is often called a pseudo-spectral
expansion. The coefficients can, for example, be approximated by Monte Carlo methods
or more efficiently by means of quadrature rule approaches (which are further discussed
in Section 2.1.3).

A different approach is to define the coefficients ak by means of interpolation. In
this case, ak are defined as the solution of the following system of linear equations:

uN (x j ) =
N∑

k=0
ak ϕk (x j ) = u(x j ), for j = 0, . . . , N , (2.4)

where x0, . . . ,xN are nodes yielding an interpolant uN that is exact at the values xk .
Notice that interpolation is also a projection method, since interpolating the interpolant
leaves it unchanged.
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The linear system described by (2.4) might be singular. For univariate X the system
has a unique solution if all nodes are distinct, but for multivariate X it is less trivial to
ensure that the system above admits a unique solution, and a nodal set is called to be
poised if it does. All nodal sets constructed in this thesis are by construction poised.

By using the Lagrange basis polynomials as basis for ΦN , an exact expression of the
coefficients ak as used in (2.4) can be deduced. For this purpose, let ϕk = `N

k be the
Lagrange basis polynomials with the defining property that

`N
k ∈ΦN such that `N

k (x j ) = δk, j =
{

1 if k = j ,

0 otherwise.
(2.5)

Then the interpolation polynomial uN can be expressed explicitly as follows:

uN (x) =
N∑

k=0
u(xk )`N

k (x). (2.6)

If ΦN contains solely univariate polynomials up to degree N , i.e. ϕk (x) = xk for x ∈R,
the Lagrange basis polynomials can be expressed explicitly as follows:

`N
k (x) =

N∏

j=0
j 6=k

x −x j

xk −x j
. (2.7)

Similar expressions can be derived for multivariate interpolation, though the obtained
polynomials are significantly less straightforward. More details about multivariate La-
grange interpolation are provided in Chapter 6.

The accuracy of the interpolant is often measured in the L∞
ρ -norm by means of

the Lebesgue inequality [26, 78, 84]. To this end, let LN be the interpolation operator
that interpolates u, i.e. LN u = uN . Then for any polynomial ϕ ∈ΦN and any piecewise
continuous u it holds that

‖u −LN u‖L∞
ρ (Ω) = ‖u −ϕ+ϕ−LN u‖L∞

ρ (Ω)

= ‖u −ϕ+LNϕ−LN u‖L∞
ρ (Ω)

≤ ‖u −ϕ‖L∞
ρ (Ω) +‖LN (u −ϕ)‖L∞

ρ (Ω)

≤
(
1+‖LN‖L∞

ρ (Ω)

)
‖u −ϕ‖L∞

ρ (Ω), (2.8)

where due to continuity of u and ϕ it holds that ‖u −ϕ‖L∞
ρ (Ω) = supρ(x)>0 |u(x)−ϕ(x)|. If

the distribution ρ is clear from the context, this norm will be simply called the ∞-norm
and denoted in this thesis by

‖ ·‖∞ := ‖·‖L∞
ρ (Ω).

The L∞
ρ -norm of LN can be further expanded using the Lagrange basis polynomials

from (2.5):

‖LN‖L∞
ρ (Ω) = sup

‖ f ‖L∞ρ (Ω)=1
‖LN f ‖L∞

ρ (Ω) = max
x∈Ω

N∑

k=0
|`N

k (x)|.
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u(x) = exp

(−|x|) u(x) = 1
/(

1+75x2)
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Figure 2.3: Approximation error of a polynomial interpolant of a non-smooth and
smooth function. Left: Plot of the functions. Right: Absolute interpolation
error of both functions using Chebyshev extrema, a nodal sequence with
logarithmically growing Lebesgue constant.

The Lebesgue inequality is obtained by replacing ϕ in (2.8) by the best approximation
polynomial in ΦN measured in the L∞

ρ -norm, obtaining the following:

‖u −LN u‖L∞
ρ (Ω) ≤ (1+ΛN ) inf

ϕ∈ΦN
‖u −ϕ‖L∞

ρ (Ω), with ΛN = ‖LN‖L∞
ρ (Ω). (2.9)

The constant ΛN is known as the Lebesgue constant. It solely depends on the nodes
x0, . . . ,xN and the domain of definition Ω. On the contrary, the best approximation
polynomial depends solely on the model u but not on the nodes. This is a major power
of the Lebesgue inequality: it splits the interpolation error into a part solely depending
on the nodes and a part solely depending on the model. It is one of the most important
tools to demonstrate convergence in this thesis.

The absolute error of the best approximation polynomial can be estimated by means
of Jackson’s inequality [87, 140], which relates it to the modulus of continuity of u. In
general, it holds that if u is absolutely continuous and Ω is compact (i.e. Ω is closed
and bounded) the best approximation polynomial converges (at least) linearly to the
model (for increasing N ). If higher order derivatives of u exist and are bounded, the rate
of convergence is higher. A large number of results on this topic exists, the interested
reader is referred to Watson [188] and the references therein for more information.

Any nodal set has a Lebesgue constant ΛN that grows at least logarithmically in
N [175]. Examples of nodal sets with logarithmically growing Lebesgue constant are
Chebyshev nodes of the first kind, Gauss–Lobatto nodes, Fekete nodes, and Chebyshev
extrema (the nodes from the Clenshaw–Curtis quadrature rule). Various other types of
growth exist, for example Chebyshev nodes of the second kind have a linearly growing
Lebesgue constant and equidistant nodes have an exponentially growing Lebesgue
constant.
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The effect of the type of model on the accuracy of the interpolant is illustrated in
Figure 2.3. A smooth function (e.g. u(x) = 1

/(
1+75x2

)
) can be approximated well using

polynomials and yields spectral convergence of the interpolation error, provided that
the nodal set has a slowly growing Lebesgue constant, whereas non-smooth functions
(e.g. u(x) = exp

(−|x|)) in general exhibit algebraic convergence. Nodes with a rapidly
growing Lebesgue constant only yield a converging interpolant if the error between the
model and its best approximation polynomial (i.e. infϕ∈ΦN ‖u −ϕ‖∞) decays very fast,
which is typically the case if the model can be globally approximated well using a single
Taylor series expansion.

This topic will be further considered in Chapter 6, where interpolation will be used
to construct a surrogate tailored to Bayesian calibration problems (which are introduced
in Section 2.2).

Many models related to wind energy are computationally expensive, so polynomial
approximation has found usage in uncertainty quantification problems with wind energy
models. For instance, Petrone et al. [145] uses an interpolating surrogate to study the
effect of uncertain meteorological conditions, insect contamination, and manufacturing
tolerances. The same authors have also applied this approach to optimization under
uncertainty [83] and polynomial surrogates have also been used by various other au-
thors [59, 127, 128, 154]. However, incorporating correlated parameters and tailoring the
nodal placement specifically to the problem under consideration remains notoriously
difficult.

2.1.3. Quadrature rules
Often the interest is not directly in constructing an accurate surrogate (denoted by uN ),
but in approximating integrals over u, for example moments of u(X) such as (2.1) or
inner products used in the expansion in (2.3). The straightforward approach is to firstly
construct an interpolant uN of the model u using (2.6) and approximate integrals of u
by means of integrals of uN , obtaining

∫

Ω
u(x)ρ(x)dx ≈

∫

Ω
uN (x)ρ(x)dx =

∫

Ω

N∑

k=0
`N

k (x)u(xk )ρ(x)dx =
N∑

k=0
u(xk )

∫

Ω
`N

k (x)ρ(x)dx.

(2.10)
The obtained expression is an interpolatory quadrature rule, with nodes {xk }N

k=0 and

weights {wk }N
k=0 such that

E[u] =
∫

Ω
u(x)ρ(x)dx ≈ E[uN ] =

N∑

k=0
u(xk ) wk , with wk =

∫

Ω
`N

k (x)ρ(x)dx.

Here, E[u(X)] is abbreviated to E[u]. In this thesis, the operator that applies the quadra-
ture rule to the model u is denoted by AN , i.e.

AN u :=
N∑

k=0
u(xk ) wk .
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The accuracy of an interpolatory quadrature rule of this form can be assessed by using
the Lebesgue inequality from (2.9), obtaining the following bound:

|E[u]−AN u| = |E[u]−E[uN ]| ≤ E[|u −uN |]=
∫

Ω
|u(x)−uN (x)|ρ(x)dx

≤
∫

Ω
‖u −uN‖L∞

ρ (Ω)ρ(x)dx = ‖u −uN‖L∞
ρ (Ω) ≤ (1+ΛN ) inf

ϕ∈ΦN
‖u −ϕ‖L∞

ρ (Ω). (2.11)

This bound can be sharpened by interpreting a quadrature rule as a weighted sum and
releasing the connection with that of the interpolating polynomial. For this purpose,
let ϕ0, . . . ,ϕD be D +1 linearly independent polynomials spanning the space ΦD such
that ANϕ j = E[ϕ j ] for all j = 0, . . . ,D. Then ANϕ = E[ϕ] for all ϕ ∈ΦD . So by directly
considering a quadrature rule as a weighted average, it holds for any polynomial ϕ ∈ΦD

that

|E[u]−AN u| = |E[u]−E[ϕ]+E[ϕ]−AN u|
= |E[u]−E[ϕ]+ANϕ−AN u|
≤ |E[u]−E[ϕ]|+ |ANϕ−AN u|
≤

(
‖E‖L∞

ρ (Ω) +‖AN‖L∞
ρ (Ω)

)
‖u −ϕ‖L∞

ρ (Ω).

This derivation is similar to (2.8). The Lebesgue inequality of the quadrature rule opera-
tor AN can be obtained by noticing that

‖AN‖L∞
ρ (Ω) = ‖AN‖∞ = sup

‖ f ‖∞=1

∣∣∣∣∣
N∑

k=0
f (xk )wk

∣∣∣∣∣=
N∑

k=0
|wk |

and

‖E‖L∞
ρ (Ω) = ‖E‖∞ = sup

‖ f ‖∞=1

∣∣∣∣
∫

Ω
f (x)ρ(x)dx

∣∣∣∣= 1.

Hence the following Lebesgue inequality is obtained [24]:

|E[u]−AN u| ≤
(

1+
N∑

k=0
|wk |

)
inf
ϕ∈ΦD

‖u −ϕ‖L∞
ρ (Ω). (2.12)

Here, the sum of the absolute weights is the Lebesgue constant of the quadrature rule
operator AN . If D = N , this bound is sharper then the one obtained previously in (2.11):

N∑

k=0
|wk | =

N∑

k=0

∣∣∣∣
∫

Ω
`N

k (x)ρ(x)dx

∣∣∣∣≤
∫

Ω

N∑

k=0
|`N

k (x)|ρ(x)dx ≤ sup
x∈Ω

N∑

k=0
|`N

k (x)| =ΛN .

The key difference that is exploited here is that the weights are integral quantities that
average the Lagrange basis polynomials, whereas the Lebesgue constant as defined in
(2.9) contains the maximal values of the Lagrange basis polynomials. In particular, if
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all weights are non-negative (i.e. wk = |wk | for all k), the bound obtained in (2.12) is
independent of the exact values of the nodes and the weights:

|E[u]−AN u| ≤ 2 inf
ϕ∈ΦD

‖u −ϕ‖L∞
ρ (Ω).

Hence if a quadrature rule firstly integrates all polynomials up to high degree exactly
and secondly has positive weights, it provides an accurate means of approximating
integrals, provided that the integrand can be approximated using polynomials. So to
obtain accurate estimations for a large class of functions it is sufficient to construct a
quadrature rule such that the weights are positive and such that the quadrature rule
integrates a large number of polynomials.

Similarly, if all weights are non-negative, estimations obtained using a quadrature
rule are numerically stable. In particular, if a function u is perturbed by a numerical
error ε> 0, say ũ = u ±ε, this does not significantly affect AN u:

|AN u −AN ũ| ≤ ‖AN‖∞‖u − ũ‖∞ = ε.

This demonstrates that a quadrature rule with positive weights is numerically stable,
regardless of the nodal set under consideration. Based on this principle, it is common
to measure the stability of the quadrature rule using its condition number:

κN := ‖AN‖∞∫
Ωρ(x)dx

= 1∫
Ωρ(x)dx

N∑

k=0
|wk |. (2.13)

This definition facilitates the usage of weighting functions that are not necessarily a
probability density function, i.e. weighting functions which have

∫
Ωρ(x)dx 6= 1.

Since these properties play a central role in this thesis, the following notation is used
frequently to denote the exact integrals of the polynomials ϕ j :

µ j =
∫

Ω
ϕ j (x)ρ(x)dx, for j = 0, . . . ,D . (2.14)

Unless stated otherwise, it is assumed throughout this thesis that µ j is exactly known
for all j . Notice that in the univariate case these values correspond to the raw moments
of the distribution.

To obtain convergence based on the Lebesgue inequality and ensure numerical
stable estimates, it is sufficient to ensure that the sum of the absolute values of the
weights remains bounded, i.e. ‖AN‖∞ < A for a known A that is independent of N .
However, a major advantage of having non-negative weights is that it makes the operator
AN non-negative, so the quadrature rule estimation of a non-negative function is always
non-negative. This is is especially relevant for the purposes of uncertainty propagation:
the variance is an integral quantity with a non-negative integrand.

The Lebesgue inequality does not describe a sharp upper bound on the error of a
quadrature rule. For example, estimating the integral over a discontinuous function
by means of a quadrature rule might converge, even though the upper bound of the
Lebesgue inequality is a constant. There exist many more convergence results consider-
ing quadrature rules, which are not necessarily based on the Lebesgue inequality. The
interested reader is referred to Brass and Petras [24] and Brandolini et al. [23].
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Univariate quadrature rules
Many quadrature rules with varying properties exist and the search for more efficient
rules tailored to specific applications is ongoing [37]. Arguably the best-known univariate
quadrature rule is the Gaussian quadrature rule [74], whose nodes are defined as the
roots of the N -th orthogonal polynomial in L2

ρ(Ω). More specifically, let ϕk be the
univariate polynomial of degree k such that for all k and j it holds that

〈ϕk ,ϕ j 〉L2
ρ (Ω) =

∫

Ω
ϕk (x)ϕ j (x)ρ(x)dx = δk, j =

{
1 if k = j ,

0 otherwise.
(2.15)

Then the nodes of the Gaussian quadrature rule form the roots of these polynomials,
i.e. a rule of N nodes is obtained by solving ϕN (xk ) = 0 for k = 0, . . . , N −1. The idea of
computing quadrature rules from the roots of polynomials is explored more extensively
in Chapter 3.

The Gaussian quadrature rule has the favorable property that it has positive weights
and moreover N +1 nodes integrate all polynomials of degree 2N +1 and less exactly. To
see this, let ϕ be a polynomial of at most degree 2N +1. Then using polynomial division,
this polynomial can be written as follows:

ϕ= pϕN+1 +q,

where p and q are polynomials of at most degree N . The polynomial p can be written
as a linear combination of basis vectors ϕ0, . . . ,ϕN , so p =∑

k pk ϕk with pk ∈R. Hence
it holds that

∫

Ω
ϕ(x)ρ(x)dx =

∫

Ω

(
p(x)ϕN+1(x)+q(x)

)
ρ(x)dx

=
∫

Ω

(
N∑

k=0
pk ϕk (x)

)
ϕN+1(x)ρ(x)dx +

∫

Ω
q(x)ρ(x)dx

=
N∑

k=0
pk

∫

Ω
ϕk (x)ϕN+1(x)ρ(x)dx +

∫

Ω
q(x)ρ(x)dx

=
∫

Ω
q(x)ρ(x)dx,

where (2.15) is used, i.e. the orthogonality of the basis vectors. To demonstrate that the
Gaussian quadrature rule indeed integrates ϕ exactly, we use that

ϕ(xk ) = p(xk )ϕN+1(xk )+q(xk ) = q(xk ).

Then

ANϕ=
N∑

k=0
ϕ(xk ) wk =

N∑

k=0
q(xk ) wk =

∫

Ω
q(x)ρ(x)dx =

∫

Ω
ϕ(x)ρ(x)dx.

From this, it immediately follows that the weights are all positive. To demonstrate
that wk ≥ 0 (for any k), let ϕ= `N

k ·`N
k , where `N

k is the k-th Lagrange basis polynomial
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Figure 2.4: The Gauss–Legendre and Clenshaw–Curtis quadrature rules for various num-
bers of nodes. The colors of the nodes indicate their weight.

from (2.7). Then ϕ is a polynomial of degree 2N with the property that ϕ(x) ≥ 0 for all x
and ϕ(x j ) = δk, j . Hence

ANϕ=
N∑

j=0
ϕ(x j ) w j = wk =

∫

Ω
ϕ(x)ρ(x)dx > 0.

A different commonly used rule is the Clenshaw–Curtis quadrature rule [35], which
is formed by the extrema of the Chebyshev polynomials:

xk = cos

(
k

N
π

)
, for k = 0, . . . , N . (2.16)

The Clenshaw–Curtis quadrature rule has positive weights if the uniform distribution is
considered and for any other distribution with bounded support the sum of the absolute
weights becomes arbitrary close to µ0 for large N [24]. The quadrature rule is nested
for specific levels: it holds that XNL ⊂ XNL+1 with NL = 2L (for L = 1,2, . . . ). Analytic
expressions for its nodes and weights are known [180].

The Gauss–Legendre quadrature rule, which is the Gaussian quadrature rule of
the uniform distribution, and the Clenshaw–Curtis quadrature rule are depicted in
Figure 2.4 for increasing number of nodes. The effect of using these quadrature rules to
integrate smooth and non-smooth functions is illustrated in Figure 2.5. Here, the same
functions are used as in Figure 2.3. Similarly to interpolation, the smooth function yields
spectral convergence and the non-smooth function yields algebraic convergence. The
convergence behavior of both quadrature rules that are used is similar, even though the
Gaussian quadrature rule has a higher polynomial degree. Their performance is further
assessed later in this thesis (see page 63).

A major disadvantage of the Gaussian quadrature rule is that sequences of quadra-
ture rules for increasing N are not nested. Therefore existing evaluations of the integrand
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Figure 2.5: Absolute integration error of a smooth and non-smooth integrand, using two
different interpolatory quadrature rules with positive weights. The domain
of integration under consideration is the unit interval and the distribution
under consideration is the uniform distribution.

are not reused when refining a quadrature rule estimation by considering a larger quad-
rature rule. On the other hand, the nodes of the Clenshaw–Curtis quadrature rule are
nested, if the number of nodes grows exponentially. However, this rule does not in-
corporate the distribution of the random variable in its construction. The challenging
problem of constructing univariate quadrature rules that are nested, have high degree,
and have positive weights is further examined in Chapter 3.

Multivariate quadrature rules
Extending quadrature rules or interpolation nodes to multivariate spaces is not straight-
forward. Arguably the most naive approach is to use the tensor product of the interpola-
tion or integration operator:

AN d u =
d⊗

i=1
A(i )

N u,

where A(i )
N denotes a univariate quadrature rule that is used in the i -th dimension. A

similar expression is obtained for interpolation nodes. The tensor grid can only be
used to obtain a quadrature rule if the distributions of the random inputs are mutually
independent, which implies that ρ(X) can be decomposed as follows:

ρ(X) =
d∏

i=1
ρ(Xi ).

In this case, A(i )
N is a quadrature rule with respect to the distribution ρ(Xi ).

The input parameters of wind turbine load calculations are usually not indepen-
dently distributed. For example, the wind and wave direction are often correlated, and
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Figure 2.6: Two examples of the Smolyak sparse grid constructed using Gauss–Legendre
and Clenshaw–Curtis quadrature rules. The colors of the nodes indicate their
weight.

should be taken into account as such according to the IEC standard [86]. Therefore it is
not straightforward to apply the tensor grid to load calculations.

Notice that the number of nodes of a tensor grid increases exponentially in d : the
tensor grid has N d nodes, which significantly deteriorates the convergence rate of the
approach. If r denotes the convergence rate of the univariate quadrature rules, the
convergence rate of the quadrature rule estimate of a tensor grid is r /d . This effect
is known as the curse of dimensionality and demonstrates one of the key differences
between Monte Carlo and collocation approaches based on polynomials: Monte Carlo
converges often prohibitively slow, but its convergence rate is independent of the di-
mension, whereas collocation converges very fast for smooth functions, provided that
the dimension of Ω is not too large.

An approach to alleviate the curse of dimensionality is the Smolyak sparse grid [169].
There are many variants of such a grid, but in this thesis the combination rule is consid-
ered [134, 135], which is essentially a multivariate telescopic sum, defined as follows (in
operator notation):

SK =
∑

‖a‖1≤K

d⊗

i=1
∆(i )

ai
, with a = (a1, . . . , ad ), ∆(i )

l =
(
A(i )

Nl
−A(i )

Nl−1

)
, and ‖a‖1 =

d∑

i=1
ai . (2.17)

Here, Nl denotes the number of nodes used for the l-th level. Often Nl grows linearly
or exponentially in l . The number of nodes of a Smolyak sparse grid is greatly reduced
if a sequence of nested quadrature rules is used, which is illustrated in Figure 2.6 for a
nested Clenshaw–Curtis and a non-nested Gauss–Legendre quadrature rule.
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Similar to the tensor grid, the Smolyak sparse grid is only applicable if the distri-

butions of X1, . . . , Xd are mutually independent. On the other hand, the convergence
rate of this approach is significantly higher compared to the tensor grid. If Nl grows
exponentially in l and the univariate quadrature rules used for the construction of the
grid are interpolatory and have positive weights, then [92, 201]

|E[u]−SK u| ≤ A
(log N )(r+1)(d−1)

N r , for u ∈C r (Ω).

Here, N denotes the total number of nodes in the sparse grid and r is the smoothness of
u, i.e. u is r times continuously differentiable. The constant A is independent of d and
N . The curse of dimensionality is still present, but its effect is significantly alleviated.

The Smolyak sparse grid has the disadvantage that it does not preserve positivity of
the weights. Even if a Smolyak sparse grid is constructed using univariate quadrature
rules with positive weights, the obtained quadrature rule does generally not have positive
weights. Albeit the negative weights, the sparse grid does yield converging estimates
under weak assumptions, since the sum of the absolute values of the weights grows
logarithmically [135], i.e. ‖SK ‖∞ =O(log N ), with a little abuse of notation. However, as
stated before, this implies that the estimation of an integral of a positive integrand is
not necessarily positive.

The problem of constructing multivariate quadrature rules is further considered in
Chapter 4. In that chapter a new quadrature rule with positive weights is proposed,
called the implicit quadrature rule. It is constructed based on samples (e.g. from a
distribution), which makes it particularly applicable to wind turbine load cases. Such an
application is considered in Chapter 5.

2.2. Bayesian model calibration
Bayesian model calibration [95] is a systematic approach to calibrate the parameters
of a computational model if measurement data of its output is provided. It is based on
principles of Bayesian data analysis [65], with the key property that the statistical model
contains a (often complex) numerical model. The mathematical formulation describes
a probability density function of the parameters, the so-called posterior, which can be
propagated through the computational model to infer predictions under uncertainty.
The calibration of parameters of a model can be interpreted as calibration of the model
with respect to measurement data, i.e. the obtained posterior describes in some sense
the uncertainty or inherent error of the model and the data.

There exist various alternative ways to calibrate models, describe their uncertainty, or
model uncertain model parameters [157]. A popular method is to describe the uncertain
model parameters as intervals [55, 56, 109, 176]. In this case no probability framework
is used and it is solely assumed that the value of a parameter is encompassed in an
(possibly unknown) interval. Interval approaches have been combined with probability,
obtaining interval-valued probability measures [189]. This can be further extended to
obtain a complete framework for drawing conclusions based on weighted intervals,
as described by Dempster–Shafer theory [43, 163]. This framework has been applied
successfully to uncertainty propagation [164]. Approaches based on interval arithmetic
form viable alternatives to Bayesian model calibration and it is an ongoing discussion
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whether probability theory encompasses all alternative uncertainty frameworks that are
applied to computational problems [97, 136].

For the purposes of this thesis, the Bayesian framework is employed because it pro-
vides a solid and rich mathematical framework to calibrate parameters under uncertainty.
Moreover, since it yields a distribution of the parameters, it can be straightforwardly
combined with the presented methodologies for uncertainty propagation to obtain a
complete framework for quantification and propagation.

2.2.1. Bayes’ law
The calibration of models in a Bayesian framework follows naturally from Bayes’ law. In
the most basic setting, let u : Ω→R (with Ω⊂Rd with d = 1,2, . . . ) be a model depending
on certain closure or fitting parameters x. Here, u(x) models a physical phenomenon
where x are parameters that are often introduced to simplify the model or compensate
for lack of knowledge. Bayesian model calibration is a systematic approach to infer a
probability distribution of x using measurement data. To this end, let z = (z1, . . . , zn)T be
a vector with n measurements of the physical phenomenon. The idea is to formulate
a statistical relation between the measurement data z and the model u(x), which is
consequently used to infer the parameters x by means of Bayes’ law.

Arguably the most straightforward statistical model is the following:

zk = u(x)+εk , for all k = 1, . . . ,n,

where all εk are i.i.d. Gaussian random variables with zero mean and known standard
deviation σ, i.e. εk ∼ N (0,σ2). Based on this statistical model, a likelihood can be
derived, which describes the probability of observing certain data if the parameters x
are known. In this case, it can be derived by noticing that zk −u(x) ∼ N (0,σ2). The
likelihood, which is denoted by q(z | x) throughout this thesis, then readily follows:

q(z | x) ∝ exp

[
−1

2

‖u(x)−z‖2
2

σ2

]
, with ‖u(x)−z‖2

2 =
n∑

k=1
(u(x)− zk )2. (2.18)

Throughout this thesis, it is assumed that q(z | x) is a probability density function, which
can be used to determine the scaling factor in this definition.

Prior to calibration, there is often non-trivial knowledge available about x, e.g. up-
per and lower bounds, results from previous calibration, or expert knowledge. Such
knowledge is incorporated in a distribution called the prior, which is denoted by q(x)
throughout this thesis. For example, consider q(x) = 1 for x ∈ [−1,1]d and q(x) = 0 other-
wise, describing that the parameters x are bounded on the unit interval. The prior and
the likelihood can be combined into the posterior, by application of Bayes’ law:

q(x | z) ∝ q(z | x) q(x).

Here, the constant of proportionality is called the evidence, denoted as follows:

q(z) =
∫

q(z | x) q(x)dx.
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Hence if the likelihood is described by (2.18) and the prior is uniform as described
before, the posterior follows readily:

q(x | z) ∝
{

exp
[− 1

2 ‖u(x)−z‖2
2

/
σ2

]
if x ∈ [−1,1]d ,

0 otherwise.

Ideally, the statistical model should account for all sources of error and avoid un-
derestimation of the uncertainty. For example, the statistical model described above
does not account for systematic bias of the computational model. On the other hand,
overestimating the errors yields a statistical model whose posterior remains close to the
prior, such that the calibration procedure does not meaningfully add a benefit over the
prior knowledge. There are various statistical models accounting for various sources of
error, e.g. by incorporating model bias [95], by using non-Gaussian likelihoods [206], or
by considering a Gaussian process to describe error locality [52, 95].

The usage of Bayesian model calibration for uncertainty assessment is not wide-
spread in the wind energy community, which is possibly related to the high computa-
tional cost involved with these procedures (see Section 2.2.2 below). One of the few
results is by Van Buren et al. [182], where the focus is specifically on blade design. The
high computational cost is alleviated by calibrating a surrogate model instead of the
full model. The high computational cost of Bayesian methods is one of the key issues
addressed in this thesis.

2.2.2. Markov chain Monte Carlo
As the likelihood explicitly depends on the computational model, the posterior is a well-
known distribution only in highly simplified cases. Moreover, it is only known up to a
constant, as computing the evidence is often difficult or even impossible. Markov chain
Monte Carlo methods are Monte Carlo methods specifically tailored to sampling from
posterior distributions. The idea of these methods is not to directly compute samples
of the posterior, but to construct a sequence of samples {xk }∞k=0 such that it forms a
Markov chain with the posterior as limiting distribution. In this case, a large number of
samples forms approximately a sample set from the posterior.

Arguably the best-known Markov chain Monte Carlo method is the Metropolis–
Hastings algorithm [80, 122]. As the sequence of samples forms a Markov chain, it
is only necessary to describe the step between two consecutive samples. Therefore,
consider a given sample xk and let a sample x∗ be randomly drawn from a proposal
distribution that depends on xk , e.g. a Gaussian distribution with mean equal to xk .
Then xk+1 = x∗ with probability α and xk+1 = xk otherwise, with

α= min

(
1,

q(x∗ | z)

q(xk | z)

P (xk | x∗)

P (x∗ | xk )

)
,

where P denotes the probability density function of the proposal distribution. An
example of samples drawn using this approach is depicted in Figure 2.7, where samples
are drawn from the standard Gaussian distribution with a “bad” initial sample x0 and a
Gaussian distributed proposal distribution:

x | xk ∼N (xk ,σ2), with σ= 1/5.
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Figure 2.7: 2500 samples drawn from the standard Gaussian distribution using the
Metropolis–Hastings algorithm and a Gaussian proposal distribution with
standard deviation 1/5. The Markov chain is initiated at x0 = (10,10)T.

The convergence rate of Markov chain Monte Carlo methods is ideally equal to
regular Monte Carlo methods (as discussed in Section 2.1.1). However, often a large
number of samples is necessary to ensure that the obtained sequence forms samples
from the desired distribution P . Therefore it is common to use a burn-in, which simply
means that a certain number of initially drawn samples is neglected to “forget” the effect
of the first samples (notice that a burn-in is clearly visible in Figure 2.7). Moreover, the
sequence forms a Markov chain, which implies that subsequent nodes are correlated. It
is therefore rarely the case that Markov chain Monte Carlo methods perform as good as
regular Monte Carlo methods.

The performance of Markov chain Monte Carlo methods can be improved by using
similar approaches as applied to standard Monte Carlo approaches, e.g. by using a sur-
rogate or by replacing the sampling procedure with a quadrature rule. Both approaches
are used in this thesis. In Chapter 6 a surrogate is considered, whereas in Chapter 7 a
quadrature rule is considered.

2.3. Conclusion and outlook
In this thesis, the problem of uncertainty propagation with a computationally expensive
model is considered. Two variants are discussed: one where the distribution is known
explicitly (for instance described by a probability density function or by samples) and
one where the distribution is calibrated and therefore depends on the model.

If the distribution is known explicitly, there are various existing approaches to con-
struct nodal sets for interpolation or integration. However, many of these approaches
require stringent assumptions on the input distribution. Moreover these assumption are
not applicable in wind turbine load calculations. In this thesis alternatives are developed,
see Chapters 3 and 4. These are applicable to a wide range of problems. Mathematically,
the accuracy of the approaches is assessed using test functions. To illustrate the applica-
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bility to computationally complex problems, the example of computing the flow over an
airfoil incorporating uncertainty (which is a relevant problem for wind turbine blade
design) is considered various times in this thesis. Moreover, the approaches are directly
applicable to load calculations, which is demonstrated in Chapter 5.

If the distribution is not known explicitly, the problem is more subtle. The usual
approach, i.e. Markov chain Monte Carlo, is often not applicable if the model under
consideration is computationally complex. Recently alternatives to alleviate this have
been developed, which are further extended and generalized in this thesis, see Chapter 6
and 7. Again, the example of calculating the flow over an airfoil is considered.



A geometrical interpretation ofinterpolatory quadrature rules
Quadrature rules are collocation methods that are used oftentimes in this thesis to
determine weighted integrals such as (2.1). As discussed in Chapter 2, a quadrature
rules converges if it has positive weights and integrates a large number of polynomials,
or in other words, has high degree. Moreover, from a computational perspective we are
mainly interested in nested quadrature rules, which allow for straightforward refinement
of quadrature rule estimations. Many quadrature rules exist that have two of these three
properties (i.e. nested, high degree, and positive weights) and it is non-trivial to directly
construct rules that have all three properties. The focus of this chapter is not directly
on constructing quadrature rules, but on gaining insight and deriving procedures that
modify existing quadrature rules, which aid the construction of quadrature rules later in
this thesis.

The approach taken is to derive a mathematical framework describing modifications
of univariate interpolatory quadrature rules. More specifically, three elementary opera-
tions are proposed: the addition of nodes, the removal of nodes, and the replacement
of nodes. All operations are designed to preserve positive weights, keep the quadrature
rule interpolatory, and by construction yield nested quadrature rules. They form the key
ingredients of the proposed methodologies in subsequent chapters.

3.1. Introduction
As discussed briefly in Section 2.1.3, the best-known interpolatory quadrature rule is
possibly the Gaussian quadrature rule [74], which exists for virtually any probability

The majority of this chapter is based on the following article: L. M. M. van den Bos and B. Sanderse. A geometric
approach for the addition of nodes to an interpolatory quadrature rule with positive weights. Under review,
2019. arXiv: 1902.07477 [math.NA].

Section 3.3, that describes the removal of nodes, is based on the following article: L. M. M. van den Bos,
B. Koren, and R. P. Dwight. Non-intrusive uncertainty quantification using reduced cubature rules. Journal
of Computational Physics, 332:418–445, 2017. DOI: 10.1016/j.jcp.2016.12.011. arXiv: 1905.06177
[math.NA].

http://arxiv.org/abs/1902.07477
https://doi.org/10.1016/j.jcp.2016.12.011
http://arxiv.org/abs/1905.06177
http://arxiv.org/abs/1905.06177


28 3. THE GEOMETRY OF QUADRATURE RULES
distribution with finite moments. It has positive weights and maximal polynomial
degree. However, the nodes are not nested. The Gauss–Kronrod quadrature rule is
an extension of a Gaussian quadrature rule, such that two nested rules with positive
weights are obtained [103, 123, 185]. The Gauss–Kronrod–Patterson quadrature rule [124,
142] (or simply Gauss–Patterson quadrature rule) further extends this idea by repeatedly
applying the same algorithm, such that a sequence of nested rules is obtained. However,
it does not exist for any distribution [93, 94]. Even though many other extensions have
been proposed over the years [67, 102, 115], in general it is difficult to obtain a series of
nested quadrature rules with positive weights based on Gaussian rules [125]. Moreover
often the smallest possible granularity between two consecutive nested quadrature rules
can only be found by exhaustive search [22].

Another large group of well-known quadrature rules is formed by the Clenshaw–
Curtis quadrature rules [35], or simply those quadrature rules that are based on Cheby-
shev approximations. The Clenshaw–Curtis rule is formed by the Chebyshev extrema
and symbolic expressions of its nodes are known, i.e. see (2.16). Besides having excellent
interpolation properties [84], it is well known that these quadrature rules have posi-
tive weights if the distribution under consideration is uniform (explicit expressions are
known [180]). Moreover for non-uniform distributions, the condition number of the
quadrature rule converges to unity [24]. However, the vanilla Clenshaw–Curtis nodes
are only nested for exponentially growing numbers of nodes [79].

Both the Gaussian and Clenshaw–Curtis quadrature rules have explicitly predefined
nodes based on the roots of orthogonal polynomials. This results in accurate quadrature
rules, but the construction of an accurate nested quadrature rule with fine granularity
based on these rules remains notoriously difficult.

The goal of this chapter is to propose a geometrical framework that mathematically
describes the three elementary operations mentioned in the beginning of this chapter,
i.e. the addition, removal, and replacement of nodes. All operations are based on the
geometrical interpretation of the linear system describing the nodes and the weights [15,
41, 144], which yields necessary and sufficient conditions for a quadrature rule to have
positive weights. The removal, addition, or replacement of a single node can be deter-
mined analytically, whereas numerical methods are required to determine all sequences
of multiple nodes that can be added or replaced in a quadrature rule. The focus of this
chapter is mainly on the mathematical aspects and not on the numerical construction
of quadrature rules.

This chapter is structured as follows. In Section 3.2 the nomenclature and prob-
lem setting considered in this chapter is discussed, which is based on the notation
introduced in Section 2.1.3. Then the three operations discussed above are considered.
First, the removal of nodes is introduced in Section 3.3. It is always possible to remove
a node from a quadrature rule such that the obtained rule has positive weights. By
inverting the operation of removing a node, the addition of one or multiple nodes can
be described. The problem of adding a single node can be solved analytically, which is
done in Section 3.4. Contrary to the removal of nodes, it is not always possible to add a
node to a quadrature rule such that the obtained rule has positive weights. Therefore the
theory is extended to adding multiple nodes in Section 3.5, where the results developed
for adding a single node will be used extensively. It is always possible to add multiple
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nodes to a quadrature rule, provided that any number of nodes may be added to the
rule. The replacement of one or multiple nodes follows from combining both operations,
i.e. firstly adding a node and secondly removing a node. Any node in the quadrature
rule can be replaced by a new node and all possible values of these new nodes can be
described analytically. Section 3.6 contains numerical examples of quadrature rules to
demonstrate simple applications of the proposed framework. The chapter is concluded
in Section 3.7.

3.2. Preliminaries
The quadrature rule nomenclature relevant for this chapter is discussed in Section 3.2.1.
The relevance of positive weights and the relation between positive weights and accuracy
of a quadrature rule has been explained extensively in Section 2.1.3. However, in this
chapter a slightly different form of the Lebesgue inequality from (2.12) is used, which
is briefly considered in Section 3.2.2. The problem setting of this chapter is sketched
mathematically in Section 3.2.3.

3.2.1. Nomenclature
Quadrature rules have been introduced extensively in Section 2.1.3 and only the con-
cepts that are specifically necessary for this chapter are briefly repeated here. Since the
focus is mainly on univariate quadrature rules, let Ω= [a,b] ⊂R with −∞≤ a < b ≤∞.
In this chapter, the main interest is to approximate the weighted integral over a given
continuous univariate function u : Ω→R, i.e. to approximate the following operator:

Iu =
∫

Ω
u(x)ρ(x)dx =

∫ b

a
u(x)ρ(x)dx.

Here, ρ : Ω→ [0,∞) is a weighting function that is assumed to be known in this chapter.
A quadrature rule approximates this integral by means of a weighted average, consisting
of nodes and weights, denoted by XN = {x0, . . . , xN } ⊂ Ω and WN = {w0, . . . , wN } ⊂ R

respectively*. The quadrature rule is the following operator AN :

AN u :=
N∑

k=0
u(xk )wk ≈ Iu.

As discussed previously, the consistency of this construction is measured by means
of a polynomial space ΦD = span{ϕ0, . . . ,ϕD }. In this chapter the focus is solely on
univariate quadrature rules, so without loss of generality let ϕk (x) = xk for k = 0, . . . ,D.
Then due to linearity, the quadrature rule has degree D if

ANϕk = Iϕk , for all k = 0, . . . ,D . (3.1)

This definition is only meaningful if ρ has finite moments, so that is assumed to be the
case throughout this chapter.

*Since all quadrature rules constructed in this chapter are univariate, it holds that XN ⊂R. Therefore the
nodes are real numbers, denoted by xk , and not multi-dimensional coordinate vectors, which are denoted by
xk as in the previous chapter.
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The operators AN and I are linear, so (3.1) defines a linear system that can be used

to determine the weights, given the nodes and the moments of the distribution. In this
case, the matrix of the linear system is the well-known Vandermonde matrix, denoted as
follows: 



x0
0 · · · x0

N
...

. . .
...

xN
0 · · · xN

N




︸ ︷︷ ︸
VN (XN )




w0
...

wN


=




µ0
...

µN


 , (3.2)

with µ j the raw moments of ρ:

µ j =
∫

Ω
x j ρ(x)dx.

Throughout this chapter it is assumed that µ j is known exactly for all j . The notation
VD (XN ) denotes the Vandermonde matrix constructed using the quadrature rule nodes
XN and the polynomials up to degree D. Many quadrature rules constructed in this
chapter have D = N , so we also use V (XN ) :=VN (XN ).

It is well known that
detV (XN ) =

∏

0≤i< j≤N
(x j −xi ), (3.3)

such that, given the nodes, (3.2) defines a unique solution of the weights provided
that all nodes are distinct. A quadrature rule with distinct nodes that solves the linear
system (3.2) (and therefore has degree N ) is called interpolatory, as it can be formed by
integrating the polynomial interpolant of u using the nodes XN .

3.2.2. Accuracy of quadrature rules
In this chapter the focus is on constructing interpolatory quadrature rules with non-
negative weights (which we will call with a little abuse of nomenclature a positive
quadrature rule). An approximation of an integral by means of such a quadrature rule
converges if the integrand is sufficiently smooth [148], which can among others be
demonstrated by applying the Lebesgue inequality [24], provided that Ω is bounded.
This inequality has been discussed in Chapter 2, see (2.12) on page 16. For the purposes
of this chapter, the following form of the Lebesgue inequality is considered:

|AN u −Iu| ≤ (1+κN )µ0 inf
ϕ∈ΦN

‖u −ϕ‖∞.

Here, κN is the condition number of the quadrature rule, see (2.13). In this chapter, only
univariate interpolatory quadrature rules are constructed, so D = N and moreover it is
possible to explicitly determine infϕ∈ΦN ‖u −ϕ‖∞ using the algorithm of Remez [188].

Arguably the best-known quadrature rule with positive weights is the Gaussian
quadrature rule, a rule which is also considered in this chapter. Recall that the nodes of
the Gaussian quadrature rule [74] are defined as the roots of the orthogonal polynomials
with respect to the distribution ρ under consideration, e.g. Legendre polynomials for
the uniform distribution, Jacobi polynomials for the Beta distribution, and Hermite
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polynomials for the normal distribution. The uniquely defined rules always have positive
weights and with N+1 nodes the rule has degree 2N+1, however the rules are not nested.

The Gauss–Kronrod and Gauss–Patterson quadrature rules are extensions of Gauss-
ian quadrature rules such that upon adding M nodes (with M = N +2 for the Gauss–
Kronrod rule) to a rule of N +1 nodes, a (not necessarily positive) rule of degree N +2M
is obtained [103, 142]. The Patterson extension is also applicable to non-Gaussian quad-
rature rules, though possibly complex-valued nodes are obtained. The idea is to solve
the following problem for xN+1, . . . , xN+M , given quadrature rule nodes XN :

∫

Ω
x j

(
N+M∏

k=0
(x −xk )

)
ρ(x)dx = 0, for j = 0, . . . , M −1. (3.4)

Then the obtained rule has degree N +2M [24, Theorem 5.1.3] and is defined uniquely.
By construction, a Gaussian quadrature rule is obtained if M = N +1 (the weights of the
nodes in XN become zero). These rules are reobtained as a special case in the framework
discussed in this chapter.

3.2.3. Problem setting
The problem studied in this chapter is how to remove nodes from, add nodes to, or
replace nodes in a positive interpolatory quadrature rule such that it remains positive
and interpolatory. Replacement of nodes is an immediate consequence of the addition
of nodes. To keep the nomenclature concise, we will call these operations simply addi-
tion, removal, and replacement of nodes, without mentioning explicitly that a positive
interpolatory quadrature rule should be obtained.

Removal
The removal of nodes can be formulated mathematically in the following way. If XN

and WN are the nodes and weights of a positive interpolatory quadrature rule, the goal
is to determine all nodes xk1 , . . . , xkM such that XN \ {xk1 } is a nodal set of a positive
interpolatory quadrature rule. Hence this rule integrates all polynomials up to degree
N −1 exactly. It will be demonstrated that there always exist exactly two nodes that can
be removed from a quadrature rule, unless there are multiple nodes with zero weight.

The removal of multiple nodes is a straightforward extension: by repeatedly removing
a single node from a quadrature rule, a sequence of nested quadrature rules is obtained.
However, this construction cannot be used to determine all sequences of nodes that
result in a positive interpolatory quadrature rule upon removal of all nodes of the
sequence. Determining all such sequences requires incorporating negative weights and
is studied in great detail in Chapter 4. In that chapter, the removal of nodes is further
extended to accommodate the removal of multiple nodes, or more formally, all sequences
of M nodes XM = {xk1 , . . . , xkM } ⊂ XN (with M known) are determined such that XN \ XM

is a nodal set of a positive interpolatory quadrature rule.

Addition and replacement
To formulate addition mathematically, let a positive interpolatory quadrature rule XN ,
WN be given. Then the goal is to determine, for given M , all nodes such that the set
XN+M contains the nodes of a positive interpolatory quadrature rule and such that the
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rules are nested, i.e. XN ⊂ XN+M . Moreover the number of nodes added to a quadrature
rule should be minimal, so we are also interested in the minimal value of M such that a
positive interpolatory quadrature rule with nodal set XN+M exists.

If a positive quadrature rule is given that is not interpolatory, i.e. a quadrature rule
such that ANϕ= Iϕ for all ϕ ∈P(K ) with K < N , a positive interpolatory quadrature rule
can be deduced from this rule by repeatedly removing nodes. Therefore without loss of
generality addition and replacement are only considered for interpolatory quadrature
rules.

The approach is to formulate, for given M , a necessary and sufficient condition for
all M nodes that can be added. This condition can be used firstly to determine whether
such nodes exist for a specific M and secondly to determine the nodes themselves.
Moreover an immediate consequence is a mathematical formulation describing the
replacement of nodes. It will be demonstrated that it is not always possible to add any
number of nodes to an existing rule.

Adding M nodes with M ≥ N +1 is always possible, as it is possible to add a Gaussian
quadrature rule of N +1 nodes to a quadrature rule of N +1 nodes to obtain a positive
interpolatory quadrature rule of 2N +2 nodes. However, this yields a quadrature rule
with N +1 weights equal to zero, so this construction is not of much practical interest.

The analysis is split into three sections. The removal of nodes is considered in
Section 3.3, which yields an explicit description of all nodes that can be removed from
a quadrature rule. By reversing the removal operation, the addition of a single node
(M = 1) can be solved analytically and is discussed in Section 3.4. The addition of
multiple nodes (M > 1) can only be done analytically for special cases. Based on the
theory for M = 1, this problem is analyzed in Section 3.5.

3.3. Removal of nodes
In this section, a procedure is introduced to remove one node from a quadrature rule
with positive weights. The procedure is such that the obtained quadrature rule (again)
has positive weights and can be applied repeatedly to obtain a sequence of nested
quadrature rules with positive weights, which we call a reduced quadrature rule. The
idea derived in this section will be reversed in Section 3.4 to determine all nodes that
can be added to a quadrature rule.

The procedure to remove nodes is inspired by the proof of Carathéodory’s theorem.
The obtained procedure that describes the removal of nodes is equivalent to previously
obtained formulations [15, 38, 150, 194]. The main advantage of basing the procedure
on Carathéodory’s theorem is that existing theoretical results can be carried over to
derive the exact number of nodes that can be removed. Moreover, the linear algebra
framework can be used to accommodate the removal of multiple nodes, which is further
considered in Chapter 4.

Firstly, Carathéodory’s theorem is introduced in Section 3.3.1. Its constructive proof
explicitly describes the nodes that can be removed. Secondly, some examples of reduced
quadrature rules are presented in Section 3.3.2.
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3.3.1. Carathéodory’s theorem
To introduce the procedure, recall linear system (3.2):




x0
0 x0

1 · · · x0
N

x1
0 x1

1 · · · x1
N

...
...

. . .
...

xN−1
0 xN−1

1 · · · xN−1
N

xN
0 xN

1 · · · xN
N







w0

w1
...

wN−1

wN



=




µ0

µ1
...

µN−1

µN




, (3.5)

which describes an interpolatory quadrature rule of degree N using the matrix VN (XN ).
The goal is to find a subset of N nodes that again form an interpolatory quadrature rule.
Such an interpolatory rule, with nodes XN−1, is governed by the matrix VN−1(XN−1) and
has degree N −1. The quadrature rule described by the system (3.2) can be interpreted
as a rule of degree N −1, which is governed by the following system:




x0
0 x0

1 · · · x0
N

x1
0 x1

1 · · · x1
N

...
...

. . .
...

xN−1
0 xN−1

1 · · · xN−1
N







w0

w1
...

wN−1

wN



=




µ0

µ1
...

µN−1




. (3.6)

This system is obtained by removing the last row of (3.5). The matrix of (3.6) is denoted
as VN−1(XN ).

Each column of VN−1(XN ) is related to a node of the quadrature rule, so removing a
column from the matrix above and solving the obtained system yields a nested quad-
rature rule of degree N −1. The question remains which column can be removed such
that the system that remains has a solution with positive elements. The answer follows
from (a variant of) the well-known theorem of Carathéodory. The constructive proof
forms an algorithm to determine the columns that can be removed.

Theorem 3.1 (Carathéodory’s theorem). Let v0,v1, . . . ,vN be N +1 vectors spanning an N-
dimensional space. Let v = ∑N

k=0λk vk with λk ≥ 0. Then there exist βk ≥ 0 such that
v =∑

k∈I βk vk and I ⊂ {0, . . . , N } with |I | ≤ N .

Proof. The vectors v0, . . . ,vN are N +1 vectors in an N-dimensional space, so they must
be linearly dependent. Therefore there exist ck , not all equal to zero, such that

N∑

k=0
ck vk = 0.

Hence for any α ∈R, it is true that

v =
N∑

k=0
λk vk −α

N∑

k=0
ck vk

=
N∑

k=0
(λk −αck )vk .
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Without loss of generality, we assume that at least one ck > 0. Then the following choices
are well defined:

k0 = argmin
k=0,...,N

(
λk

ck
| ck > 0

)
and α= min

k=0,...,N

(
λk

ck
| ck > 0

)
= λk0

ck0

. (3.7)

If βk := λk −αck , it is true that βk0 = 0 so with I = {0,1, . . . ,k0 −1,k0 +1, . . . , N } the
following holds:

v =
∑

k∈I
βk vk . ■

The proof of Carathéodory’s theorem can be exploited to remove columns from
VN−1(XN ) or, equivalently, nodes from XN preserving positive weights. To this end, let
{v0, . . . ,vN } be the columns of VN−1(XN ) and rewrite (3.6) as follows:

N∑

k=0
vk wk = µN−1, for all k = 0, . . . , N −1.

Here, µN−1 := (µ0, . . . ,µN−1)T. Following the proof of the theorem, there exist elements
ck (not all equal to zero) such that for all α ∈R it follows that

N∑

k=0
vk (wk −αck ) = µN−1, for all k = 0, . . . , N −1.

Notice that the elements ck form a null vector c = (c0, . . . ,cN )T of the matrix VN−1(XN ),
which can be computed. Determining α and k0 using (3.7) yields that wk −αck ≥ 0 and
that wk0 −αck0 = 0. Hence xk0 can be removed from the quadrature rule, which yields
an interpolatory quadature rule of degree N −1 with positive weights.

The removal step is not unique. The null vector c contains both positive and negative
elements (guaranteed by the fact that the first row of the matrix contains only positive
values), so −c is also a null vector with both positive and negative elements. Both of
these null vectors can be used to eliminate a different node, provided that all weights
are non-zero. In other words, given a null vector c, there are two values of α that can be
used in the proof: the value described by (3.7) or

α= max
k=0,...,N

(
λk

ck
| ck < 0

)
= λk1

ck1

, with k1 = argmax
k=0,...,N

(
λk

ck
| ck < 0

)
. (3.8)

This non-uniqueness will be exploited various times in subsequent chapters to construct
quadrature rules with specific properties. Using the nomenclature of the problem setting
as described in Section 3.2.3, the procedure yields two nodes xk0 ∈ XN and xk1 ∈ XN

such that XN \ {xk0 } and XN \ {xk1 } are the nodes of positive interpolatory quadrature
rules. If all weights are positive, it holds that xk0 6= xk1 (otherwise one of the values of α
can be equal to 0).

It is demonstrated in Chapter 4 in a more general setting that these are the only two
nodes that can be removed, i.e. the following theorem is proved.
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Figure 3.1: Reduced quadrature rules initiated with Gaussian quadrature rules consisting
of 17 nodes. The Gauss–Hermite rule is constructed with respect to the
standard normal distribution. The colors of the nodes indicate their weight.

Theorem 3.2 (Removal of nodes). Let XN and WN form an interpolatory quadrature rule
with wk > 0 for all k. Consider the following nodal sets:

X (k)
N−1 = XN \ {xk }, for k = 0, . . . , N .

Then there exist k0 and k1 with k0 6= k1 such that X (k0)
N−1 and X (k1)

N−1 form the nodes of

positive interpolatory quadrature rules. Moreover, for k 6= k0 and k 6= k1, using X (k)
N−1 as

nodal set does not yield a positive quadrature rule.

Proof. See the proof of Lemma 4.2 on page 81, which constitutes a slightly more general
statement. ■

Notice that the removal step as discussed here can be applied straightforwardly to
multivariate quadrature rules, since these rules can also be described by means of a
single Vandermonde matrix. This is considered in Chapter 4. Moreover if the quadrature
rule nodes and weights are given, no further knowledge about the distribution ρ, domain
Ω, and moments µ j is necessary (though obviously the moments can be reobtained
from the quadrature rule).

3.3.2. Reduced Gaussian quadrature rules
The removal step can straightforwardly be applied to obtain a sequence of nested
quadrature rules given a nodal set XN . Doing so yields a sequence of nodal sets XN ⊃
XN−1 ⊃ ·· · ⊃ X0 such that each set describes an interpolatory quadrature rule with
positive weights. As mentioned before, we call this the reduced quadrature rule.

Two examples of such sequences are depicted in Figure 3.1, where the initial rule
is a Gaussian quadrature rule consisting of 17 nodes. In these examples the value of
α, i.e. either (3.7) or (3.8), is selected such that the node that is closest to the center of
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Figure 3.2: Smolyak sparse grid constructed using quadrature rules determined by re-
moval of nodes from a Gaussian quadrature rule. The colors of the nodes
indicate their weight.

the domain (1/2 or 0) is preserved. All quadrature rules depicted in these figures have
positive weights, are interpolatory, and together form a nested sequence of quadrature
rules (though limited to at most 17 nodes).

As introduced in Chapter 2, the Smolyak sparse grid significantly benefits from using
nested quadrature rules. The reduced quadrature rule is very suitable to construct
Smolyak sparse grids with a small number of nodes, alleviating the rapid growth of the
number of nodes of sparse grids generated with Gaussian quadrature rules. Moreover,
a quadrature rule determined using a Smolyak sparse grid constructed with positive
quadrature rules has a slowly growing condition number [135].

Smolyak sparse grids determined using reduced quadrature rules are depicted in
Figure 3.2 (here the quadrature rules from Figure 3.1 are used), where those nested
rules are used that coincide with the nested levels of the Clenshaw–Curtis quadrature
rule. Compared to the Smolyak quadrature rules which were determined in Chapter 2
(see Figure 2.6 on page 21), the number of nodes is exactly the same as the sparse grid
constructed using the Clenshaw–Curtis quadrature rule, though the reduced quadrature
rules are not limited to the uniform distribution.

It is clearly visible that the reduced quadrature rules used to construct the sparse
grids are asymmetric. The removal step can be extended to preserve symmetry, which
can be used to construct sparse multivariate quadrature rules. However, this requires
that the distributions of the input parameters are symmetric (such as the uniform and
normal distribution used in Figure 3.2) and that the parameters are mutually indepen-
dent. This is rarely the case for wind energy applications, so we will not consider such
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rules in this thesis. Nonetheless, the interested reader is referred to Van den Bos et
al. [15].

3.4. Addition of one node
Let XN , WN be a positive interpolatory quadrature rule. The goal is to determine all xN+1

such that XN+1 = XN ∪ {xN+1} forms the nodal set of a positive interpolatory quadrature
rule, i.e. there exists a set of non-negative weights WN+1 such that

N+1∑

k=0
x j

k w (N+1)
k =µ j , for j = 0, . . . , N +1.

Here, w (N+1)
k are the weights in the set WN+1 and µ j is defined using (2.14) and assumed

to be known for all j . Notice that in general WN and WN+1 will completely differ, so we
use the following notation for any N :

WN = {w (N )
0 , . . . , w (N )

N }.

Moreover, with a little abuse of notation we will use w (N )
k = 0 for all k > N .

In Section 3.4.1 we derive, based on the removal procedure outlined in the previous
section, a necessary and sufficient condition for such an xN+1 to exist, which depends on
the current nodes, weights, and moment µN+1. As such, the developed theory provides
practical adjustments of a quadrature rule. These constitute addition and replacement
of a node, without reducing the degree of the interpolatory quadrature rule. The details
are discussed in Section 3.4.2 and will be very useful in the remainder of this thesis. In
Section 3.4.3 the Patterson extension is discussed in light of the derived adjustments
and some basic applications of the derived procedures are discussed, including the
construction of a quadrature rule with positive weights.

3.4.1. Positive weight criterion
The key notion is that if the node xN+1 is given, it can be removed using the removal
step outlined in Section 3.3. The removal step is based on a null vector c = (c0, . . . ,cN+1)T,
which yields w (N+1)

k = w (N )
k +ck (for k = 0, . . . , N+1). If this vector is such that ck ≥−w (N )

k ,

then w (N+1)
k ≥ 0, which is the primary goal. Deriving necessary and sufficient conditions

on the vector c expressed in XN and WN is the focus of this section.
To this end, notice that the interpolatory quadrature rule XN , WN has degree N , so

after adding xN+1 the following should hold to ensure that the new rule is interpolatory:

µ j =
N∑

k=0
x j

k w (N )
k =

N+1∑

k=0
x j

k w (N+1)
k , for j = 0, . . . , N .

From this, it follows for j = 0, . . . , N that (using w (N )
N+1 = 0):

0 =
N+1∑

k=0
x j

k w (N+1)
k −

N+1∑

k=0
x j

k w (N )
k =

(
N+1∑

k=0
x j

k w (N )
k +

N+1∑

k=0
x j

k ck

)
−

N+1∑

k=0
x j

k w (N )
k =

N+1∑

k=0
x j

k ck . (3.9)
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This equation describes that c is a null vector of the matrix VN (XN+1). The goal is to
construct XN+1 and WN+1 such that they form a quadrature rule of degree N +1. Hence
with µN+1 =

∫
Ω xN+1ρ(x)dx given, it should hold that

N+1∑

k=0
xN+1

k w (N+1)
k =µN+1,

which can be expressed in terms of the vector c as

εN+1 :=µN+1 −
N∑

k=0
xN+1

k w (N )
k =

N+1∑

k=0
xN+1

k ck . (3.10)

The value of εN+1 can be interpreted as the approximation error of the quadrature rule
with nodes XN and weights WN with respect to µN+1. Combining (3.9) and (3.10) yields
the following system of linear equations for the vector c:




x0
0 · · · x0

N x0
N+1

...
. . .

...
...

xN
0 · · · xN

N xN
N+1

xN+1
0 · · · xN+1

N xN+1
N+1







c0
...

cN

cN+1



=




0
...

0

εN+1




,

or more compactly:

V (XN+1)c = ε,

with ε= (0, . . . ,0,εN+1)T. The vector ε has a large number of zeros, so it is convenient to
apply Cramer’s rule to this linear system, which yields

ck = detV(k)(XN+1)

detV (XN+1)
,

where V(k)(XN+1) is equal to V (XN+1) with the k-th column replaced by ε, where the
indexing of columns is started with 0. This expression can be simplified by noticing that

detV(k)(XN+1) = (−1)(N+2)+(k+1)εN+1 detV (XN+1 \ {xk })

= (−1)N+k+1εN+1 detV (XN+1 \ {xk }),

with V (XN+1 \{xk }) the (N +1)×(N +1) Vandermonde matrix constructed with the nodal
set XN+1 \ {xk }. By using the Vandermonde determinant from (3.3), the following is
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obtained for k = 0, . . . , N +1:

ck = detV(k)(XN+1)

detV (XN+1)
= (−1)N+k+1εN+1

detV (XN+1 \ {xk })

detV (XN+1)

= (−1)N+k+1εN+1




∏

0≤i< j≤N+1
i , j 6=k

(x j −xi )




/



∏

0≤i< j≤N+1
(x j −xi )




= (−1)N+k+1εN+1

/(
∏

0≤i<k
(xk −xi )

∏

k< j≤N+1
(x j −xk )

)

= (−1)N+1εN+1

/



N+1∏

j=0
j 6=k

(x j −xk )




= εN+1

/



N+1∏

j=0
j 6=k

(xk −x j )


 . (3.11)

The denominator of this expression can be written as L′
N (xk ), where LN (x) =∏N

j=0(x−x j )
is the nodal polynomial. To keep the dependence on xN+1 clear, this notation is used
only sparingly in this chapter.

The goal is to have positive weights, i.e. w (N+1)
k = w (N )

k + ck ≥ 0, which proves the
following theorem.

Theorem 3.3 (Addition of one node). Let XN , WN form an interpolatory quadrature rule.
Then XN+1 = XN ∪ {xN+1} forms the nodal set of a positive interpolatory quadrature rule
if and only if

−εN+1

/



N+1∏

j=0
j 6=k

(xk −x j )


 ≤ w (N )

k , for k = 0, . . . , N +1. (3.12)

If εN+1 = 0, i.e. AN xN+1 = µN+1, then the theorem yields that the new rule has
positive weights if and only if the current rule has positive weights. This is not surprising:
any node xN+1 can be added to such a rule with w (N+1)

N+1 = 0 (and with w (N+1)
k = w (N )

k for
k = 0, . . . , N ).

From a computational point of view (3.12) might not be a numerically stable way
of computing the bounds that describe all nodes that can be added. In the context of
quadrature rules, numerical instabilities are usually alleviated by changing the basis of
the Vandermonde matrix, but this is not applicable in this case since the determinant
is up to a sign independent of the basis used to construct the Vandermonde matrix.
Nonetheless, (3.12) can be evaluated in a numerical stable way using the well-known
barycentric formulation of the interpolating polynomial. It is briefly considered in
Chapter 6 (see (6.4) on page 127), but a more elaborate explanation can be found in
Berrut and Trefethen [7].
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3.4.2. Quadrature rule adjustments
Theorem 3.3 describes a necessary and sufficient condition for a quadrature rule to have
positive weights if both xN+1 and εN+1 are known. A main novelty of this chapter is to
employ a geometrical interpretation of (3.12), from which several possible adjustments
of quadrature rules can be derived. The most straightforward one is that all nodes xN+1

can be determined that yield a positive interpolatory quadrature rule upon adding one
of them to an existing quadrature rule. Moreover the formula also yields procedures to
replace nodes in a quadrature rule, keeping the weights positive. The latter adjustment
will be useful in Section 3.5, where it can be used to determine all possible M nodes
that can be added to a rule.

We proceed by further simplifying (3.12) and discussing the geometrical relation
between the new node xN+1 and the quadrature error εN+1. This geometrical relation
yields a constructive description of the addition and replacement of nodes in a positive
interpolatory quadrature rule such that positivity of the weights is preserved.

Geometry of nodal addition
The inequalities from (3.12) are N +2 linear inequalities in xN+1 and εN+1. This can be
seen by rewriting (3.11) as follows:

ck

N+1∏

j=0
j 6=k

(xk −x j ) = εN+1, for k = 0, . . . , N +1. (3.13)

If two values of xN+1, ck (for k = 0, . . . , N +1), or εN+1 are known, all other values can be
determined from these expressions, which enforces that the obtained quadrature rule is
again interpolatory. To incorporate positive weights, we use that for k = 0, . . . , N it holds
that

εN+1 = ck

N+1∏

j=0
j 6=k

(xk −x j ) = (xk −xN+1)ck

N∏

j=0
j 6=k

(xk −x j )

︸ ︷︷ ︸
Independent of xN+1

.

By combining this with (3.12) and requiring w (N )
k +ck ≥ 0 inequalities of the following

form are obtained:

εN+1 ≤−w (N )
k (xk −xN+1)

N∏

j=0
j 6=k

(xk −x j ) if
N+1∏

j=0
j 6=k

(xk −x j ) ≤ 0,

εN+1 ≥−w (N )
k (xk −xN+1)

N∏

j=0
j 6=k

(xk −x j ) if
N+1∏

j=0
j 6=k

(xk −x j ) ≥ 0.

(3.14)

These are linear inequalities describing the relation between xN+1 and εN+1 such that
w (N+1)

k ≥ 0 for k = 0, . . . , N . For k = N +1 it holds that w (N )
k = 0, so by using that ck =
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Figure 3.3: The quadrature rule error εN+1 versus the new node xN+1 using the quadra-
ture rule XN = {−1,−1/6,1} and ρ ≡ 1/2. The solid lines depict locations such
that one weight becomes zero. Left: Regions where individual weights are pos-
itive. Right: Region where all weights are positive, which is the intersection
of the left figures.

w (N+1)
k , (3.13) translates to:

εN+1 ≤ 0 if
N∏

j=0
(xN+1 −x j ) ≤ 0,

εN+1 ≥ 0 if
N∏

j=0
(xN+1 −x j ) ≥ 0.

(3.15)

Even though the rightmost inequalities are non-linear, their sign solely depends on the
location of xN+1 with respect to the other nodes. Hence the exact value of the product
is not of importance.

These inequalities are visualized as functions from xN+1 to εN+1 in Figure 3.3 for the
quadrature rule with XN and WN as follows:

XN =
{
−1,−1

6
,1

}
,WN =

{
1

10
,

24

35
,

3

14

}
.

This is an (obviously positive) interpolatory quadrature rule with Ω= [−1,1] and ρ ≡ 1/2.
The solid lines in the figures depict all (xN+1,εN+1) pairs such that one weight becomes
equal to zero (i.e. where equality is attained in inequality (3.14) or (3.15)). The region
where individual weights are positive are shaded in subfigures 3.3a, 3.3b, 3.3c, and 3.3d.
Subfigure 3.3e is the intersection of these figures and therefore depicts regions where
all weights are positive. Any (xN+1,εN+1) pair in the shaded region describes a positive
interpolatory quadrature rule that contains the original three nodes.
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The left subfigures demonstrate some key properties of the derived inequalities. The

inequalities are linear and switch sign at the node, which is the rightmost condition
of (3.14). The characteristics of the last inequality (subfigure 3.3d) solely depend on
the location of xN+1 with respect to the other nodes. A combination of all inequalities
(subfigure 3.3e) has varying characteristics between different nodes, but it is always
a system of linear inequalities. The line εN+1 = 0 is contained in all shaded regions,
because any node with weight equal to zero can be added to the rule if the next moment
µN+1 is already correctly integrated by the quadrature rule.

These figures can be interpreted in two ways. Firstly, if a new node xN+1 is given, an
upper bound and lower bound on εN+1 can be determined such that upon adding xN+1

to the quadrature rule, a positive interpolatory quadrature rule is obtained. Geomet-
rically these are the bounds of the shaded area with the x = xN+1 line. This interval is
never empty (as εN+1 = 0 is always in the shaded region). Secondly, if εN+1 is given, a
(possibly empty) set can be determined such that a positive interpolatory quadrature
rule is obtained upon adding a node from such a set. Geometrically this is equivalent to
determining the bounds of the shaded area with the y = εN+1 line.

The second interpretation can be used to add nodes to a quadrature rule, i.e. εN+1 is
known and the goal is to determine xN+1. The first interpretation can be used to replace
nodes within a quadrature rule: xN+1 is added to the node and an existing node can be
removed by setting its weight to zero.

Addition of a node
Adding a node is determining an xN+1 that solves (3.14) and (3.15) if εN+1 is known.
This is equivalent to combining the solutions x[k]

N+1 (indexed by [k] with k = 0, . . . , N ) of
the following problems:

εN+1 =−w (N )
k (xk −x[k]

N+1)
N∏

j=0
j 6=k

(xk −x j )

︸ ︷︷ ︸
L′

N (xk )

, for k = 0, . . . , N , (3.16)

hence if w (N )
k 6= 0:

x[k]
N+1 =

εN+1 +w (N )
k xk L′

N (xk )

w (N )
k L′

N (xk )
, for k = 0, . . . , N .

Here we used L′
N to make the notation more compact. The nodes x[k]

N+1 are such that,
if added to the quadrature rule, a (possibly negative) interpolatory quadrature rule is
obtained with w (N+1)

k = 0. Those x[k]
N+1 that yield positive quadrature rules describe

intervals and all nodes in these intervals can be added to the rule such that positive
weights are obtained. The bounds of these intervals, i.e. the solutions of (3.16), are
depicted in Figure 3.4a as open circles. The same quadrature rule example as in the
previous section is used and a constant valued ρ is considered. In this case, the three
solutions are (from left to right) −5/3, 0, and 7/9, of which the first is not visible in
the figure. Adding any of these nodes yields a quadrature rule with positive weights,
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Figure 3.4: Addition of a new node to and replacement of an existing node within the
quadrature rule XN = {−1,−1/6,1} and ρ ≡ 1/2.

but we emphasize that this is generally not the case for other quadrature rules. Hence
adding any node from the intervals (−∞,−5/3] or [0,7/9] yields a positive interpolatory
quadrature rule. Restricting xN+1 to the set Ω further reduces the number of possible
intervals.

The node x[k]
N+1 does not exist if εN+1 6= 0 and w (N )

k = 0. This can be derived mathe-
matically, but it also follows from the mere fact that all weights change (see (3.16)) upon
addition of a node to a quadrature rule, so w (N+1)

k = w (N )
k = 0 is not possible. If εN+1 = 0,

no node can be added to enforce that w (N )
k = 0. However, any node with weight equal to

zero can be added, hence the formula yields x[k]
N+1 = xk with w (N+1)

N+1 = 0. Technically, the
quadrature rule now has a node equal to xk with weight equal to zero. Nonetheless, this
results in a singular Vandermonde matrix (which contradicts the theory developed so
far), so we do not further study this specific case.

If Ω=R and the number of nodes is odd, it is always possible to add a single node
to a quadrature rule. Geometrically this means that the leftmost and rightmost shaded
regions grow to infinity and minus infinity respectively (or vice versa). Similarly, if Ω=R
and the number of nodes is even, it is always possible to add a single node if εN+1 ≥ 0.
However, in any other case (i.e. that of a bounded Ω or even number of nodes with
εN+1 < 0) adding a single node to a quadrature rule is not always possible. An example
is the following interpolatory quadrature rule:

XN =
{
−1,−1

6
,

1

11
,1

}
,WN =

{
29

180
,

144

595
,

1331

3060
,

17

105

}
.

Note that this example can be obtained straightforwardly by adding the node 1/11 to
the previous stated quadrature rule and redetermining the weights likewise.

Replacement of a node
The replacement of a single node can be interpreted as the addition of a node and
subsequently the removal of a (different) node or as adding a node such that an existing
weight becomes zero.
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The first interpretation follows by adding a node to the quadrature rule such that the

added node has non-zero weight. Geometrically, this is selecting a (xN+1,εN+1) in the
shaded region with εN+1 6= 0. Then by Theorem 3.2 there exist two nodes that can be
removed, with at least one node (either xk0 or xk1 ) not equal to xN+1. Or equivalently,
both XN \ {xk0 }∪ {xN+1} and XN \ {xk1 }∪ {xN+1} yield positive interpolatory quadrature
rules and one of these quadrature rules is not equal to the quadrature rule with nodes
XN .

The second interpretation follows by noticing that replacing a node is equivalent to
adding a node, with the difference that the goal is to determine this node such that the
weight of an existing node in the obtained quadrature rule becomes zero, i.e. w (N+1)

k = 0
for a k ≤ N . This is equivalent to determining a specific (xN+1,εN+1) pair that yields
w (N+1)

k = 0, which was used previously to determine all possible additions. The main
difference with addition is that the next moment µN+1 is not used, as the number of
nodes and the degree of the rule do not change. This allows to freely “choose” εN+1.

Using the latter interpretation, an explicit relation can be deduced that describes
the replacement of any node xk ∈ XN . It follows from the derived relation between εN+1

and xN+1. So by reconsidering (3.16) with the goal to determine both xN+1 and all ε[k]
N+1

(indexed by [k] with k = 0, . . . , N ) that make w (N+1)
k = 0 the following expressions are

obtained:

ε[k]
N+1 =−w (N )

k (xk −xN+1)
N∏

j=0
j 6=k

(xk −x j ), for k = 0, . . . , N . (3.17)

We will interpret this expression as a function of xN+1, denoted by ε[k]
N+1 : Ω→R. These

functions represent the solid lines in Figure 3.4b. By using εN+1 = ε[k]
N+1(xN+1), a positive

interpolatory quadrature rule with w (N+1)
k = 0 is obtained upon adding xN+1 to the rule.

It follows that for every xN+1 ∈ Ω there is an xk ∈ XN such that the quadrature
rule with nodes XN ∪ {xN+1} \ {xk } is positive and interpolatory. The node xk can be
found by determining the bounds on the shaded region and observing which node
belongs to the obtained bound. The sets Ωk describe this property mathematically: if
an xN+1 ∈Ωk is added to the quadrature rule, then XN ∪ {xN+1} \ {xk } forms the nodal
set of a positive interpolatory quadrature rule. The fact that Ω=⋃N

k=0Ωk follows from
Figure 3.4b. Mathematically, these sets can be denoted (possibly less intuitively) in the
following way:

xN+1 ∈Ωk ⇐⇒





ε[k]
N+1(xN+1) = min

j

(
ε

[ j ]
N+1(xN+1) | ε[ j ]

N+1(xN+1) ≥ 0
)

if
N+1∏

j 6=k
(xk −x j ) ≤ 0,

ε[k]
N+1(xN+1) = max

j

(
ε

[ j ]
N+1(xN+1) | ε[ j ]

N+1(xN+1) ≤ 0
)

if
N+1∏

j 6=k
(xk −x j ) ≥ 0.

(3.18)
The intersection of the lines in Figure 3.4b forms a special case. Notice that Ωk is a closed
interval, because

∏N
j 6=k (xk −x j ) = 0 forms the boundary and is included in the interval.

Combining this with Ω=⋃N
k=0Ωk yields that for each Ωk there exists at least one other

Ωl such that Ωk ∩Ωl is not empty. This means that for xN+1 ∈Ωk ∩Ωl , the quadrature
rule XN ∪ {xN+1} \ {xk } \ {xl } is positive, interpolatory, and has degree N , even though it
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consists only of N nodes. The latter result is remarkable: two nodes are removed and
one is added, but the degree of the quadrature rule is not affected. An example of such a
rule would be XN = {−1,1/3}, obtained by adding 1/3 to the quadrature rule example of
Figure 3.4b. Such rules have a non-trivial high degree and are therefore more accurate
than interpolatory quadrature rules without this property.

This special case can be further generalized by allowing negative weights, which will
be very useful in light of multiple node addition discussed in Section 3.5. To introduce
this formally, let the node x(k,l ) be such that XN ∪{x(k,l )}\{xk }\{xl } is a (possibly negative)
interpolatory quadrature rule. This node exists if and only if it satisfies the following
linear equality, that follows from (3.17):

−w (N )
k (xk −x(k,l ))

N∏

j=0
j 6=k

(xk −x j ) =−w (N )
l (xl −x(k,l ))

N∏

j=0
j 6=l

(xl −x j ). (3.19)

Notice that this linear inequality does not necessarily have a solution. Graphically there
is no solution if the lines from Figure 3.4b through xk and xl are parallel.

The node x(k,l ) is independent of xk and xl . This is not directly evident, as (3.19)
depends on these nodes. However, it can be demonstrated by using that the rule is
interpolatory, which yields:

w (N )
k =

∫

Ω
`k (x)ρ(x)dx = 1

L′
N (xk )

∫

Ω

LN (x)

x −xk
ρ(x)dx, with `k (x) =

N∏

j=0
j 6=k

x −x j

xk −x j
.

This expression follows straightforwardly from applying (2.10) (see page 15). Here, `k (x)
is the univariate k-th Lagrange basis polynomial from (2.5) (see page 13). Replacing this
expression in (3.19) and using that L′

N (xk ) =∏
j 6=k (xk −x j ) yields an equality that can be

simplified to the following:

x(k,l ) =
(∫

Ω
x L(k,l )(x)ρ(x)dx

)/(∫

Ω
L(k,l )(x)ρ(x)dx

)
, with L(k,l )(x) =

N∏

j=0
j 6=k,l

(x −x j ).

This expression is in fact a Patterson extension (consider (3.4) with j = 0). The tight
relation between the Patterson extension and the framework discussed in this chapter is
further discussed later in this chapter.

3.4.3. Constructing quadrature rules
In the previous section the theoretical foundation for extending a positive interpolatory
quadrature rule with a single node is derived. In this section, firstly it is discussed
how addition relates naturally to the Patterson extension [141, 142] of (non-Gaussian)
quadrature rules. Secondly, due to the simplicity of addition and replacement of a
node, quadrature rules based on these procedures can be derived numerically fast and
accurately. Two examples of such rules are discussed.

As discussed previously, there does not always exist a single node that can be added
such that positive weights are obtained, so it is not trivial to construct a sequence of
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positive interpolatory quadrature rules. There are various possibilities to alleviate this,
e.g. by allowing negative weights, relaxing the strict requirement that all nodes have to
be preserved, or by adding multiple nodes instead of one.

Firstly, if it is not possible to add a node to the quadrature rule such that positive
weights are preserved, a heuristic can be used to select the node instead. As example,
Leja nodes [106] are considered, which form a sequence of nodes constructed originally
for the purpose of polynomial interpolation. Leja nodes will be used extensively in
Chapter 6 and embed straightforwardly in the derived framework of nodal addition.
Secondly, a quadrature rule based on the replacement of nodes is presented. This rule
has positive weights and is interpolatory, but is strictly speaking not “fully” nested. The
addition of multiple nodes is further considered in Section 3.5.

Patterson extension
Remarkably, both the addition and replacement of a node can yield a Patterson extension
of a quadrature rule. In both cases, the focus is on the nodes that yield a zero weight
upon addition to the quadrature rule.

In Section 3.4.2 it was noticed that any weight from a quadrature rule can be made
equal to zero by exploiting the relation between εN+1 and xN+1. As example, the quadra-
ture rule XN = {−1,−1/6,1} was considered, where the nodes −5/3, 0, and 7/9 are such
that upon adding one of these to the rule, a rule of only three nodes with non-zero
weights of degree three is obtained. Notice that these nodes are Patterson extensions of
quadrature rules (as discussed in Section 3.2.2), as they can be interpreted as adding
one node (M = 1) to a quadrature rule of two nodes (N = 1), obtaining a rule of degree
three (N +2M = 3). This also holds in general: for given k, adding one node x[k]

N+1 from
(3.16) (so M = 1) to the interpolatory quadrature rule XN \{xk } (with degree N −1) yields
a quadrature rule with N +1 nodes and degree N +1 (which equals (N −1)+2M).

Recall that the notation x(k,l ) was introduced to denote nodes that, upon adding
them to the rule, yield a (possibly negative) interpolatory quadrature rule with w (N+1)

k =
w (N+1)

l = 0. These nodes also form a Patterson extension. To see this, notice that
the replacement is adding a single node to the quadrature rule XN−2 = XN \ {xl } \ {xk }.
The Patterson extension of a single node of this quadrature rule is a quadrature rule
consisting of N nodes of degree (N −2)+2M = N (adding one node means M = 1). By
construction, this rule has the nodes XN−2 ∪ {x(k,l )}.

Reconsider for example the quadrature rule with the nodes XN = {−1,−1/6,1} and
ρ ≡ 1/2. Then it is straightforward to determine using (3.19) that x(0,1) =−1/3, x(0,2) = 2,
and x(1,2) = 1/3. Hence these are three Patterson extensions of the quadrature rule nodes
{1}, {−1/6}, and {−1}. Indeed, the quadrature rules with the nodes {−1/3,1}, {−1/6,2}, or
{−1,1/3} have degree equal to 2.

Notice that x(k,l ) is not a Patterson extension of the quadrature rule that has been
used to determine it, i.e. XN , WN in (3.19). However, its definition allows for a straightfor-
ward way to determine this extension. First, add (randomly) two nodes to the quadrature
rule XN , WN , obtaining a possibly negative interpolatory quadrature rule XN+2, WN+2.
Then the node x(N+1,N+2) is the Patterson extension of the quadrature rule with nodes
XN , because upon adding this node to XN+2, the weights of the randomly added nodes
become zero. As the Patterson extension is unique, this construction is well defined.
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Naturally, this is not the preferred approach to construct a Patterson extension, but it
embeds such extensions into the framework discussed here.

The Patterson extension is also obtained as a special case if multiple nodes are added
to a quadrature rule. This will be discussed in Section 3.5.3.

Leja nodes
Leja nodes [106] are nodes obtained by heuristic optimization. Their inductive definition
is as follows. Let x0, . . . , xN be a sequence of Leja nodes with xk ∈Ω for all k. Then xN+1

is obtained as follows:

xN+1 = argmax
x∈Ω

N∏

k=0
|x −xk |.

This definition is only meaningful if Ω is bounded. Leja nodes can be extended to incor-
porate ρ and unbounded Ω, obtaining weighted Leja nodes, which will be considered in
great detail in Chapter 6.

The sequence of nodes obtained by this definition has been used extensively for
the purpose of interpolation [130, 133]. It is common to initiate the sequence with
x0 = a or x0 = b (with Ω= [a,b]). It has been demonstrated that the Lebesgue constant
of Leja nodes, as defined by (2.9), grows sub-exponentially [178], which implies that
a polynomial interpolant constructed with this sequence converges for any analytic
function (for N → ∞). However, Leja nodes do generally not form an interpolatory
quadrature rule with positive weights.

The insight gained from the framework of this chapter is that Leja nodes can be
interpreted as greedily minimizing the absolute value of the weight of the new node,
which is an approximate measure of the condition number of the quadrature rule
(since all weights add to unity). Since this number is a measure for the accuracy of the
quadrature rule and ensures numerical stability (recall its definition on page 17), ideally
quadrature rules have small condition number. To see this, recall the definition of cN+1

from (3.13):

cN+1

N∏

k=0
(xN+1 −xk ) = εN+1.

Using that w (N+1)
N+1 = cN+1, it follows that

|w (N+1)
N+1 | = |εN+1|

/(
N∏

k=0
|xN+1 −xk |

)
.

By definition, the Leja node xN+1 is such that it maximizes the denominator of this
expression. Hence Leja nodes are such that |w (N+1)

N+1 | is minimal, although this does not
guarantee positive weights.

Partially nested, positive, and interpolatory quadrature rule
The addition and replacement of a single node are straightforward procedures described
as the solutions of linear inequalities. However, there does not always exist a single node
that can be added such that all weights remain positive. In this section, this is alleviated
by relaxing the requirement that XN ⊂ XN+M .
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To this end, let XN and X̂N+1 be the nodes of two positive interpolatory quadrature

rules, possibly with XN 6⊂ X̂N+1. The nodes X̂N+1 can for example form a Gaussian
quadrature rule. The idea is to iteratively replace nodes in X̂N+1 with nodes from XN ,
i.e. removing xk ∈ X̂N+1 and adding xk ∈ XN . Ideally, all nodes xk ∈ XN can be added to
xk ∈ X̂N+1, which would yield a rule that reuses all nodes in XN .

In other words, if XN = {x0, . . . , xN } and X̂N+1 = {x̂0, . . . , x̂N+1}, for each node xk ∈
XN \ X̂N+1 the set Ωl as defined by (3.18) is identified such that X̂N+1 ∪ {xk } \ {x̂l } is the
nodal set of a positive and interpolatory quadrature rule. If there is an xk such that
x̂l 6∈ XN , we set X̂N+1 ← X̂N+1 ∪ {xk } \ {x̂l } and keep repeating this procedure until no
such xk exists anymore. If there are multiple xk that could possibly be used to trigger
a replacement in X̂N+1, the smallest one is selected in the examples presented in this
chapter.

The nodes from XN that cannot be added to X̂N+1 are reconsidered in consecutive
iterations and added again if possible. It is difficult to theoretically quantify the number
of nodes from XN that can be “added” this way to X̂N+1, though it is straightforward to
see that there exists at least a single xk ∈ XN that can be reused.

To demonstrate this procedure numerically, let X1 contain two Gaussian nodes
accompanied by the weights W1. If the uniform distribution is considered, the sequence
of quadrature rules up to N = 19 (i.e. 20 nodes) only “loses” two nodes in the process
(see Figure 3.5a). In other words, two function evaluations used to compute quadrature
rule estimations are not being reused by the rule that consists of 20 nodes. This results
seems to be somewhat independent of the distribution, since the same sequence of
quadrature rules with respect to a Beta(10,10) distribution only loses three nodes (see
Figure 3.5b).

The main advantage of this approach compared to the previously discussed Patter-
son extension and Leja nodes is that it always yields a quadrature rule with positive
weights. Moreover the expressions to compute the nodes contained in the quadrature
rule are straightforward. However, the approach does not have a significant advantage
over removing nodes from an existing quadrature rule (see Section 3.3), since both
approaches need to be initialized with an existing quadrature rules. In other words, both
algorithms do not construct quadrature rules from scratch.

3.5. Addition of multiple nodes
In the previous section a counterexample of a positive interpolatory quadrature rule
is discussed that cannot be extended by adding a single node. In this section we will
therefore study the addition of multiple nodes to a quadrature rule. The problem setting
is that of Section 3.2.3: given a positive interpolatory quadrature rule XN , WN , determine
M as small as possible and nodes XN+M with XN ⊂ XN+M such that XN+M forms the
nodal set of a positive interpolatory quadrature rule.

The first step is to extend the derivation of Section 3.4.1 for the addition of multiple
nodes. Applying Cramer’s rule is slightly more complicated in this case and requires
a bit more bookkeeping, but the key principles are the same. With the theory that is
derived in the upcoming Section 3.5.1 it is not obvious how nodes can be added to
the quadrature rule, but it provides geometrical insight in the location of such nodes
with respect to the existing nodes. Again we can derive some non-trivial adjustments
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Figure 3.5: Partially nested, positive, and interpolatory quadrature rules constructed us-
ing sequences of Gaussian quadrature rules. The colors of the nodes indicate
their weight.

one can apply to a quadrature rule. These are discussed in Section 3.5.2. Similar to the
case of a single node, there is a tight relation with the Patterson extension. In this case,
the Patterson extension for general M is recovered. This is discussed in Section 3.5.3,
including some examples of nested quadrature rules obtained with the theory derived
in this section.

3.5.1. Positive weight criterion
The idea is similar to the derivation of the addition of single node. Let XN be the initial
nodal set and let M be given. The goal is to determine XN+M with XN ⊂ XN+M such
that it forms a positive interpolatory quadrature rule.

Let w (N )
k for k = 0, . . . , N be the weights of WN and likewise let w (N+M)

k be the (un-

known) weights of WN+M . Then there exists a vector c = (c0, . . . ,cN ,cN+1, . . . ,cN+M )T

such that w (N+M)
k = w (N )

k +ck . The goal is to construct c such that the obtained rule is
interpolatory and positive.

With a similar reasoning as before it is straightforward to observe that the following
should hold for such a vector to ensure that the obtained quadrature rule is interpola-
tory:

N+M∑

k=0
x j

k ck = 0, for j = 0, . . . , N ,

and
N+M∑

k=0
x j

k ck = ε j , for j = N +1, . . . , N +M ,

where ε j is as previously introduced, i.e. ε j :=µ j −
∑N

k=0 x j
k w (N )

k . This can be written in
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the form of a linear system as follows:




x0
0 · · · x0

N x0
N+1 · · · x0

N+M
...

. . .
...

...
. . .

...

xN
0 · · · xN

N xN
N+1 · · · xN

N+M
xN+1

0 · · · xN+1
N xN+1

N+1 · · · xN+1
N+M

...
. . .

...
...

. . .
...

xN+M
0 · · · xN+M

N xN+M
N+1 · · · xN+M

N+M







c0
...

cN

cN+1
...

cN+M




=




0
...

0

εN+1
...

εN+M




.

Applying Cramer’s rule to this system requires more bookkeeping, as the right-hand
side contains multiple non-zero entries. Let ε= (0, . . . ,0,εN+1, . . . ,εN+M )T, then Cramer’s
rule prescribes

ck = detV(k)(XN+M )

detV (XN+M )
,

where V(k)(XN+M ) is equal to V (XN+M ) with the k-th column (indexed from 0) replaced
by ε. The numerator can be further expanded as follows:

detV(k)(XN+M ) =
N+M∑

j=N+1
(−1)( j+1)+(k+1)ε j detV( j ,k)(XN+M )

=
N+M∑

j=N+1
(−1) j+kε j detV( j ,k)(XN+M ),

where V( j ,k)(XN+M ) is the ( j ,k)-minor of V (XN+M ) (i.e. the matrix without its j -th row
and k-th column, where both indices start at 0). Hence for ck the following expression
is obtained:

ck =
N+M∑

j=N+1
(−1) j+kε j

detV( j ,k)(XN+M )

detV (XN+M )

=
N+M∑

j=N+1
(−1) j+kε j

detV( j ,k)(XN+M )

detV(N+M ,k)(XN+M )

/(
∏

0≤i<k
(xk −xi )

∏

k< j≤N+M
(x j −xk )

)

=
N+M∑

j=N+1
(−1) jε j

detV( j ,k)(XN+M )

detV(N+M ,k)(XN+M )

/



N+M∏

j=0
j 6=k

(x j −xk )




=
N+M∑

j=N+1
(−1)N+M− jε j

detV( j ,k)(XN+M )

detV(N+M ,k)(XN+M )

/



N+M∏

j=0
j 6=k

(xk −x j )


 .

The same derivation is commonly used to derive the determinant of a Vandermonde
matrix [64, 118], and it is well-known that the ratio of determinants obtained in this
expression is an elementary symmetric polynomial. The k-th elementary symmetric
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polynomial is generally defined as the sum of all monomial permutations of length k,
that is as follows:

σk (x0, . . . , xN ) =
∑

0≤i1<···<ik≤N
xi1 · · ·xik .

The elementary symmetric polynomials are only defined for k ≤ N + 1 and by
convention σ0 ≡ 1. Concluding, the following expression is obtained for ck (with
k = 0, . . . , N +M):

ck =




N+M∑

j=N+1
(−1)N+M− jε jσN+M− j (XN+M \ {xk })




/



N+M∏

j=0
j 6=k

(xk −x j )


 .

Here, σk is the k-th elementary symmetric polynomial as defined above. With a little
abuse of notation, we used:

σN+M− j (XN+M \ {xk }) :=σN+M− j (x0, . . . , xk−1,0, xk+1, . . . , xN+M )

=σN+M− j (x0, . . . , xk−1, xk+1, . . . , xN+M ).

We are now in a position to formulate a theorem in similar form as Theorem 3.3, but
then for multiple nodes.

Theorem 3.4 (Addition of multiple nodes). Let XN , WN form an interpolatory quadrature
rule. Then XN+M = XN ∪ {xN+1, . . . , xN+M } forms the nodal set of a positive interpolatory
quadrature rule if and only if

−




N+M∑

j=N+1
(−1)N+M− jε jσN+M− j (XN+M \ {xk })




/



N+M∏

j=0
j 6=k

(xk −x j )


≤ w (N )

k ,

for k = 0, . . . , N +M .

For M = 1, we have that the summation only incorporates j = N +1, hence we have

σN+M− j (XN+M \ {xk }) =σ0(XN+M \ {xk }) = 1,

so Theorem 3.3 is recovered, hence Theorem 3.4 is indeed a strict generalization of
Theorem 3.3.

3.5.2. Quadrature rule adjustments
Theorem 3.4 presents a necessary and sufficient condition for a quadrature rule extended
with M nodes to have positive weights. Contrary to the addition of a single node, it
cannot be used directly to determine possible nodes that can be added to the quadrature
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rule. This can be seen by rewriting it in a similar form as (3.14), i.e. for k = 0, . . . , N +M :

w (N )
k

N+M∏

j=0
j 6=k

(xk −x j ) ≥−
N+M∑

j=N+1
(−1)N+M− jε jσN+M− j (XN+M \ {xk }) if

N+M∏

j=0
j 6=k

(xk −x j ) ≥ 0,

w (N )
k

N+M∏

j=0
j 6=k

(xk −x j ) ≤−
N+M∑

j=N+1
(−1)N+M− jε jσN+M− j (XN+M \ {xk }) if

N+M∏

j=0
j 6=k

(xk −x j ) ≤ 0.

(3.20)
Notice that, if xN+1, . . . , xN+M are unknowns, an M-variate system of N +M +1 poly-
nomial inequalities is obtained. In general these systems are very difficult to solve, so
we do not directly pursue a solution of the system above. Nonetheless, the system still
provides a geometrical interpretation about where solutions reside, similar to the case
of single node addition (though less intuitive). Based on these geometrical insights,
procedures to replace nodes and to add nodes, which extend those explained previously,
can be derived.

Geometry of nodal addition
The type of the inequalities (3.20) (i.e. “greater than” versus “less than”) does not change
between two nodes and if this type is fixed, the system consists of polynomial inequal-
ities. Hence the region where M nodes can be added is described by a continuous
boundary, bounded by the polynomial inequalities of (3.20), consisting of lines, surfaces,
or “hypersurfaces” through the nodes.

If one of the right-hand sides of (3.20) changes sign, there is an addition of M nodes
such that the inequality forms an equality for a specific k. In such cases, there is an
addition such that one of the nodes obtains a weight equal to zero. This is equivalent to
the replacement operation discussed in Section 3.4.2, where a single node is added in
order to set the weights of another node equal to zero.

It is difficult to visualize the addition of M nodes in a similar way as we visualized
the addition of one node, as there are M nodes xN+1, . . . , xN+M and M quadrature rule
errors εN+1, . . . ,εN+M . Plotting the errors with respect to the nodes (as in Figure 3.4) is
therefore not viable, as this is a plot from RM to RM .

On the other hand, if the distribution ρ(x) is fixed beforehand, the values of εN+1,
. . . ,εN+M are known and contour plots of the regions encompassing all M nodes that
can be added can be made (provided that M is small enough). For example, let ρ ≡ 1/2
with Ω= [−1,1]. In Figure 3.6 lines are depicted where the inequalities from (3.20) are
equalities. The shaded area depicts regions where all inequalities are valid, i.e. any
coordinate (xN+1, xN+2) in the shaded region can be added to the respective quadrature
rule in order to obtain a positive interpolatory rule. The figure is obviously symmetric
around xN+1 = xN+2, as the order of addition (i.e. first adding xN+1 and then xN+2 or
vice versa) yields equivalent quadrature rules. Selecting a coordinate (xN+1, xN+2) on
one of the boundaries results in one weight equal to zero. Adding the coordinates on
the corners, depicted by the open circles (i.e. “the boundary of the boundary”), results
in two weights equal to zero.

The dashed lines indicate where the inequalities (3.20) with k = N +1 and k = N +2
change sign. If this happens, one of the new nodes xN+1 or xN+2 has weight equal to
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Figure 3.6: Two examples of addition of two nodes to a quadrature rule. Choosing the
two nodes in a shaded area yields positive weights. Choosing the two nodes
on the open circles yields two weights equal to zero and positive weights.
Dashed lines correspond to a zero weight for xN+1 or xN+2.

zero. This line forms everywhere a boundary of the shaded area: the node with weight
equal to zero can be replaced by any other node, while still resulting into an interpolatory
quadrature rule with positive weights. This situation is equivalent to adding a single
node xN+1 to the quadrature rule, but gaining two degrees, as discussed before.

The addition and replacement of multiple nodes follow readily from these insights.
Notice that if any coordinate (xN+1, . . . , xN+M ) is known, the replacement for M = 1 can
be used to reach any other coordinate (xN+1, . . . , xN+M ) in the same region (shaded in
Figure 3.6). Hence if all corners of those regions are determined (depicted as open
circles in Figure 3.6), the full region can be explored straightforwardly. As these corners
form a replacement of nodes, we start by discussing replacement of M nodes. Moreover,
it will be shown that these corners are a Patterson extension. Based on the algorithm to
determine all these corners, addition of M nodes follows straightforwardly.

Replacement of multiple nodes
Let XN , WN be an interpolatory quadrature rule and let indices k1, . . . ,kM be given
such that 0 ≤ ki ≤ N and ki 6= k j for i 6= j . In this section the goal is to determine the

interpolatory quadrature rule XN+M , WN+M such that w (N+M)
ki

= 0 for all ki . Notice
that this is equivalent to replacing the nodes xk1 , . . . , xkM in the quadrature rule XN by
the nodes xN+1, . . . , xN+M . The nodes with this property are the intersections of the
polynomials of (3.20) and they are depicted as open circles in Figure 3.6. Moreover, they
describe the boundary of the set of nodes that can be added to the quadrature rule.

The desired nodes xN+1, . . . , xN+M can be determined by calculating the Patterson
extension of the interpolatory quadrature rule with the nodes XN \ {xk1 , . . . , xkM }, for
which efficient techniques exist [102, 103, 141]. Such techniques require that M must be
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known a priori and they do not provide a simple geometrical interpretation. Therefore
we proceed by embedding the Patterson extension in the framework discussed here.
This yields a new alternative algorithm to determine these nodes, though the algorithm
is mostly of interest due to its geometrical interpretation.

We start by solving a slightly easier problem. Assume εN+1 = ·· · = εN+M−1 = 0 and
εN+M 6= 0. Notice that, if εN+M is neglected, any addition of M −1 nodes yields a valid
quadrature rule (as these nodes have zero weight). Geometrically, a fully shaded figure
(if drawn as Figure 3.6) is obtained. This can be exploited to determine the desired
nodes, as only the value of εN+M imposes a condition on the nodes xN+1, . . . , xN+M .

The nodes that yield w (N+M)
k1

= ·· · = w (N+M)
kM

= 0 can be found by applying Theo-

rem 3.4 with cki = −w (N )
ki

for all i or by consecutively applying Theorem 3.3. In both
cases, the following is obtained:

εN+M =−w (N )
ki




N∏

j=0
j 6=ki

(xki −x j )







N+M∏

j=N+1
(xki −x j )


 , for i = 1, . . . , M . (3.21)

In principle this system of polynomial equalities is difficult to solve, but it has a certain
structure that can be exploited. To see this, let L̂M (x) be the nodal polynomial of the
nodes xN+1, . . . , xN+M :

L̂M (x) =
N+M∏

j=N+1
(x −x j ),

which translates the system above to

εN+M =−w (N )
ki




N∏

j=0
j 6=ki

(xki −x j )


 L̂M (xki ), for i = 1, . . . , M . (3.22)

If the nodal polynomial L̂M is known, its roots equal xN+1, . . . , xN+M . The nodal polyno-
mial has degree M and it is known that its leading order coefficient equals 1. Therefore
it is useful to introduce the polynomial qM (x) := L̂M (x)− xM , which has degree M −1.
Then (3.22) can be rewritten as follows:

qM (xki ) = L̂M (xki )−xM
ki

=− εN+M

/

w (N )

ki

N∏

j=0
j 6=ki

(xki −x j )


−xM

ki
, for i = 1, . . . , M .

These are M values of a polynomial of degree M −1, which is a well-known interpolation
problem and can be solved with various well-known methods (such as barycentric
interpolation [7]). If qM is determined, the roots of the polynomial L̂M (x) = qM (x)+xM

are the nodes xN+1, . . . , xN+M . By construction these nodes are such that w (N+M)
ki

= 0 for
i = 1, . . . , M .

Even though assuming εN+1 = ·· · = εN+M−1 = 0 is not realistic in practical cases, this
procedure can readily be extended to the general case. For this we reuse the replacement
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Algorithm 3.1: Determining XN+M with zero weights

Input: Interpolatory quadrature rule XN , WN , indices k1, . . . ,kM .
Output: Interpolatory quadrature rule XN+M , WN+M such that w (N+M)

ki
= 0 for all i .

1: m ← 1
2: for k = k1, . . . ,kM do
3: Determine L̂m such that L̂m(x) = xm +qm(x) (see text) and

εN+m =−wl L̂m(x)
N+m∏

j=0
j 6=l

(xl −x j ), for both l = k and l = N +1, . . . , N +m −1

4: Let r1, . . . ,rm be the roots of L̂m , i.e. L̂m(rk ) = 0
5: XN+m ← XN ∪ {r1, . . . ,rm} and determine WN+m

6: m ← m +1
7: end for
8: Return XN+M , WN+M

step. If εN+1 6= 0, then a single node is added to the quadrature rule such that w (N+1)
k1

= 0.
This is equivalent to a replacement of a single node. Then the obtained quadrature
rule XN+1 \ {xk1 } has εN+1 = 0. By applying the procedure discussed above to these

N +1 nodes, the nodes xN+2 and xN+3 can be determined such that w (N+2)
k2

= 0 and

w (N+2)
N+1 = 0, i.e. we enforce that the weight of xk2 is zero and the weight of the previously

added node becomes zero. The obtained rule has N +3 nodes, where two nodes have
weight equal to zero. This is again a replacement, but here two nodes get weight equal
to zero. Those nodes are removed to reobtain a quadrature rule of N +1 nodes and
this process is repeated iteratively until XN+M is obtained. The obtained rule can be
interpreted as a replacement of M nodes, and yields the open circles from Figure 3.6. It
is an iterative description: a replacement of M nodes is determined using a replacement
of M −1 nodes. Geometrically, the algorithm iterates over the dimension of the figure
and iteratively determines a set of nodes that can be used as a replacement.

The obtained nodes form by definition a Patterson extension of the nodal set XN \
{xk1 , . . . , xkM }, since it holds that XN \ {xk1 , . . . , xkM }∪ {xN+1, . . . , xN+M } has degree N +M .
The existence of such a Patterson extension is directly coupled to the existence of M
nodes that can possibly be added to XN in the hope of obtaining an interpolatory
quadrature rule with positive weights: if M nodes can be added to the quadrature rule,
the Patterson extension has positive weights, since it forms the boundary of the set that
describes all additions. Moreover, if all Patterson extensions of all sets XN \ {xk1 , . . . , xkM }
for any sequences (k1, . . . ,kM ) have negative weights or are not real-valued, no addition
of M nodes exists.

The approach is outlined in Algorithm 3.1. By iterating over all possible sorted
sequences (k1, . . . ,kM ), this procedure can be used straightforwardly to verify whether
there exist M nodes that can be added to a given quadrature rule (though this is a costly
procedure).
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There are two special cases that are (for sake of simplicity) not incorporated in

Algorithm 3.1. Firstly, if w (N+m)
k = 0 at the start of an iteration, the polynomial L̂M (x)

is not well defined. This can be incorporated by selecting any non-zero w (N+m)
ki

at the

start of the iteration. If no such w (N+m)
ki

exists, then all these weights are zero, which is
the primary goal of the algorithm. Secondly, if rk ∈ XN or εN+m = 0, a quadrature rule is
obtained that has higher degree than its number of nodes. This can be incorporated by
combining all double nodes in XN and likewise adding the respective weights and by
skipping any iteration that has εN+m = 0.

Addition of multiple nodes
By combining the quadrature rule replacement of Section 3.4.2 (for M = 1) and the
replacement of the previous section (for M > 1), we obtained a naive algorithm to
firstly determine M as small as possible such that there exists a positive interpolatory
quadrature rule XN+M and secondly to explore all such M nodes (i.e. the shaded areas
of Figure 3.6).

Determining the number of nodes M that can be added to an interpolatory quadra-
ture rule can straightforwardly be done by solving (3.21) for each sequence of k1, . . . ,kM

with k1 < ·· · < kM . This gives all locations where M nodes have zero weight. If at any of
these locations all nodes have non-negative weight, then M nodes can be added to the
rule. Otherwise, M is increased and the process is repeated.

Often the value of M is unknown a priori. Besides determining the M nodes that
can be added, the goal is also to determine M as small as possible (this is also how
we formulated the problem originally in Section 3.2.3). Algorithm 3.1 can be used to
efficiently determine M , as results from previous iterations can be reused. To see this,
suppose a quadrature rule is given and by applying Algorithm 3.1 it is known that no
addition of at most M −1 nodes exist. Then during these calculations, all sequences of
nodes have been determined that make M −1 weights zero. By initializing Algorithm 3.1
with these sequences, only the last iteration of the loop is necessary, which significantly
reduces the computational expense.

It is required to repeatedly determine large numbers of polynomial roots in this
algorithm. This is nearly impossible to do symbolically, except for some special cases
(e.g. M ≤ 3 or symmetric quadrature rules). Moreover determining the roots numerically
can result in quick aggregation of numerical errors. We use variable precision arithmetic,
i.e. determine the roots with a large number of significant digits.

For large N this is a costly algorithm, as the number of sorted sequences of length
M equals

#(k1, . . . ,kM ) =
(

N +1+M

M

)
,

which grows fast for large N . Therefore using this algorithm to compute all removals is
slower than using existing techniques to compute the Patterson extension, albeit that it
is able to reuse all additions of M −1 nodes to compute all additions of M nodes.

If all sets of M nodes have been determined that can be added to the quadrature
rule, the techniques from Section 3.4.2 can be used to fully explore all nodes that can be
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Figure 3.7: The addition of 2 nodes to the interpolatory quadrature rule with the nodes
XN = {−1,−1/6,1}. The right quadrature rule is obtained by adding the right-
most highlighted node of the left figure (i.e. “the rightmost square”).

added to the rule. This requires solving linear equalities, which can be done fast and
accurately.

Notice that the possibility of adding M nodes to the quadrature rule does not guar-
antee the possibility of adding M +1 nodes to the quadrature rule. This can be observed
by revisiting the quadrature rule example from the previous section, i.e.

XN =
{
−1,−1

6
,1

}
,WN =

{
1

10
,

24

35
,

3

14

}
.

In Figure 3.7a regions are depicted where a single node can be added (similar to Fig-
ure 3.4a) and regions where, upon adding a node from that region, another node can be
added (this is the projection of Figure 3.6a). The addition of the rightmost node with
the latter property is depicted in Figure 3.7b, demonstrating that there is a single node
that can be added and that this is indeed a limiting case.

Notice that the intervals where a single node and where two nodes can be added are
independent of each other. There exist pairs of nodes xN+1, xN+2 firstly such that both
WN+1 and WN+2 are all positive (in the right interval surrounded by squares), secondly
such that WN+1 is positive, but WN+2 is not (the right interval surrounded by circles,
outside the interval surrounded by squares), thirdly such that WN+1 is not positive, but
WN+2 is (the left interval surrounded by squares), and finally such that both WN+1 and
WN+2 are always negative (outside all intervals).

3.5.3. Constructing quadrature rules
Similar to the case of addition of a single node, the Patterson extension is obtained for
specific choices of nodes that are added to the rule. In fact, the nodes determined with
Algorithm 3.1 form a Patterson extension of a quadrature rule with a smaller number of
nodes. As the Gaussian quadrature rule is a special case of the Patterson extension, this
rule also follows from the framework discussed in this chapter.
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By repeatedly applying Algorithm 3.1, a sequence of nested quadrature rules can be

determined. Even though constructing quadrature rules is not the primary focus of this
chapter, these rules are presented here.

Patterson extension
The boundary of the set that describes all possible additions is spanned by the Patterson
extension (the open circles in Figure 3.4a and Figure 3.6a). These nodes have the
property that, upon adding them to the quadrature rule, a rule of degree N + M is
obtained with M weights equal to zero. This is equivalent to the Patterson extension
of the quadrature rule without those M nodes with zero weight. For M = 1, this was
demonstrated in Section 3.4.3.

For general M , the Patterson extension can be deduced mathematically as follows.
Let XN , WN be a quadrature rule and, as before, let xN+1, . . . , xN+M be such that the
following nodes form a quadrature rule of degree N +M :

XN ∪ {xN+1, . . . , xN+M } \ {xk1 , . . . , xkM }. (3.23)

Furthermore, let XN−M be the nodes of an interpolatory quadrature rule of degree N−M ,
defined as follows:

XN−M = XN \ {xk1 , . . . , xkM }.

Upon adding {xN+1, . . . , xN+M } to XN−M , the nodes from (3.23) are obtained, that have
degree N +M . Hence M nodes are added to an interpolatory rule of degree N −M and
the obtained degree is N +M , which is by definition a Patterson extension. Notice that
the obtained quadrature rule is interpolatory, but not necessarily positive.

The Gaussian quadrature rule can be deduced as special case from Algorithm 3.1. To
see this, suppose M = N +1, which is the number of nodes of the rule under considera-
tion. In that case, there is only a single sequence of k1, . . . ,kM , defined as follows up to a
permutation:

k j = j −1, for j = 1, . . . , N +1.

By applying Algorithm 3.1, the nodes from (3.23) are obtained with M = N +1, which
are:

XN ∪ {xN+1, . . . , x2N+1} \ {x0, . . . , xN } = {xN+1, . . . , x2N+1}.

Hence the N +1 nodes xN+1, . . . , x2N+1 form a quadrature rule of degree 2N +1, which
is by definition the Gaussian quadrature rule. In other words, when adding a Gaussian
quadrature rule to an existing quadrature rule and setting all existing weights to zero a
valid addition is obtained.

To demonstrate where these rules occur in our framework, reconsider the interpola-
tory quadrature rule with the nodes XN = {−1,−1/6,1}. In Section 3.4.3 three different
Patterson extensions related to this quadrature rule were discussed: {−1/3,1}, {−1/6,2},
or {−1,1/3}. All these rules are Patterson extensions (of smaller quadrature rules) with
M = 1. To obtain a Patterson extension with M = 2 and subsequently a Gaussian quadra-
ture rule, consider Algorithm 3.1 using {k1,k2,k3} = {0,1,2}. The algorithm proceeds as
follows:

1. In the first iteration, it follows that L̂1(x) = x +5/3 and therefore the following
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quadrature rule is obtained:

XN+1 =
{
−1,−1

6
,1,−5

3

}
,

WN+1 =
{

0,
16

21
,

11

56
,

1

24

}
.

Notice that the node xN+1 = −5/3 was obtained in Section 3.4.2, where we dis-
cussed that after adding this node one obtains w (3)

0 = 0.

2. In the second iteration, it follows that L̂2(x) = x2 +2/5x −1/5. Here, the Patterson
extension with M = 2 of the quadrature rule with “nodes” {1} is obtained. Hence
the following rule is obtained (notice that the node −5/3 is removed):

XN+2 =
{
−1,−1

6
,1,

1

5

(
−1−

p
6
)

,
1

5

(
−1+

p
6
)}

,

WN+2 =
{

0,0,
1

9
,

1

36

(
16+

p
6
)

,
1

36

(
16−

p
6
)}

.

3. In the third iteration, it follows that L̂3(x) = x3−3/5x, whose roots are the Gaussian
quadrature rule or, equivalently, the Patterson extension with M = 3 of the empty
quadrature rule:

XN+3 =
{
−1,−1

6
,1,−1

5

p
15,0,

1

5

p
15

}
,

WN+3 =
{

0,0,0,
5

18
,

4

9
,

5

18

}
.

In this specific example it is possible to determine all nodes symbolically, but for larger
values of M this is generally not possible.

Considering the nodes in a different order results in different intermediate Patterson
extensions, but obviously the Gaussian quadrature rule is the rule that is finally obtained.
These steps also demonstrate the possibility to store intermediate results: only the nodes
of step 2 are necessary to deduce the nodes of step 3.

Specialized algorithms exist for specific distributions and specific values of N and
M to construct Gaussian, Gauss–Kronrod, and Gauss–Patterson quadrature rules [74,
103], but it remains a challenging topic to determine the Patterson extension for general
non-Gaussian quadrature rules. The algorithm presented in this chapter is not an
alternative for these existing algorithms, but embeds the Patterson extension in the
discussed framework and can be used to determine all M nodes that can be added to
a quadrature rule. If an efficient procedure to determine large numbers of Patterson
extensions is available, it can be readily used to determine whether an extension for a
specific M exists. By consecutively replacing the new nodes (see Section 3.4.2) all M
nodes that can be added can be found.
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Figure 3.8: Nested, positive, and interpolatory quadrature rules, initialized with XN =
{−1,−1/6,1} (left) or XN = {0,5/12,1} (right). The colors of the nodes indi-
cate their weight, except for the set of initial nodes (with N = 2), which are
depicted in black.

Nested, positive, and interpolatory quadrature rule
Algorithm 3.1 provides a straightforward procedure to determine the minimal value of M
and the positive interpolatory quadrature rule nodes XN+M such that XN ⊂ XN+M . The
replacement procedure for M = 1 of Section 3.4.2 can be used to determine all possible
nodes, given M . This is the original goal of the chapter as outlined in Section 3.2.3 and
examples of such quadrature rules are depicted in Figure 3.8. Here, each quadrature
rule is iteratively extended with a minimal number of nodes, and the nodes that are
added are selected randomly from the set containing all M nodes that can be added.
There are two main differences with the quadrature rules obtained in Section 3.4.3: the
rules obtained in this section are positive and nested, but do add more than one node
between two consecutive rules.

Both figures demonstrate that M varies significantly and does not increase mono-
tonically. This is in line with the conclusions drawn in the Section 3.5.2, as shown in
Figure 3.7. Moreover for almost all N , the value of M is significantly larger in case the
Beta distribution is considered, which is related to the “bad” initial set of nodes for this
distribution (these nodes form a quadrature rule with a negative weight). A different
initialization would lead to different values of M . We will further study the performance
of this quadrature rule in Section 3.6.

3.6. Numerical examples
This chapter is concerned with the construction of quadrature rules with positive weights
and three new quadrature rules have been introduced: one based on the removal of
nodes initiated with an existing quadrature rule, one based on the consecutive replace-
ment of single nodes (possibly resulting in a sequence of rules that is not nested), and
one by randomly adding nodes ensuring positive weights. We briefly assess the numer-
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ical performance of these quadrature rules by means of the Genz test functions (see
Table 3.1). The Genz test functions [66] are functions defined on Ω= [0,1] constructed
specifically to test integration routines. Each function has a specific family attribute that
is considered to be challenging for integration routines, that can be enlarged by a shape
parameter a and translated by a translation parameter b. These functions are used often
in this thesis to assess the accuracy of the proposed integration routines. In this chapter
the univariate Genz functions are considered and we restrict ourselves to the uniform
distribution, as in this case the exact value of the integral of the Genz functions is known
analytically.

We consider the performance of the following six quadrature rules:

1. A quadrature rule that is determined by consecutively adding and replacing nodes
originating from a Gaussian quadrature rule (see Figure 3.5a). This rule was
discussed in Section 3.4.3 and is a partially nested, positive, and interpolatory
quadrature rule. The rule is initialized with the quadrature rule nodes XN =
{0,5/12,1} (i.e. the nodes from the example as discussed before, translated to
[0,1]).

2. A quadrature rule that is determined by consecutively randomly adding M nodes
to the rule such that the obtained rule is positive. Here M is minimal, i.e. the
smallest number of nodes is added for each N (see Figure 3.8a). This rule was
discussed in Section 3.5.3 and is a nested, positive, and interpolatory quadrature
rule. The rule is initialized in the same way as the quadrature rule of the previous
point, i.e. using XN = {0,5/12,1}.

3. The Clenshaw–Curtis quadrature rule [35], where the nodes XN are defined ex-
plicitly by (2.16). It is well known that these nodes have positive weights if the
distribution under consideration is uniform, which is the case. This positive
and interpolatory quadrature rule is nested for specific levels, as discussed in
Section 2.1.3.

4. The Gaussian quadrature rule [74], where the nodes and weights are defined as
the quadrature rule with N +1 nodes of degree 2N +1. This quadrature rule is
not nested, so refining the quadrature rule results in a significant number of new
function evaluations.

5. Leja nodes [106], as discussed in Section 3.4.3. These nodes do not have positive
weights, but form a nested sequence of interpolatory quadrature rules. In other
words, it is a nested interpolatory quadrature rule with minimal M and some
negative weights.

6. The reduced quadrature rule, which was introduced in Section 3.3. The rule is ini-
tiated with a Gauss–Legendre quadrature rule of 30 nodes. Each iteration consists
of removing a node such that a sequence of positive, nested, and interpolatory
quadrature rules is obtained. There are always two nodes that can be removed
from the rule and in this numerical experiment the node that is removed is chosen
randomly.
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Table 3.1: The test functions from Genz [66], which depend on the shape and translation

parameters a and b.

Integrand Family Attribute
u1(x) = cos(2πb +ax) Oscillatory

u2(x) = (
a−2 + (x −b)2

)−1
Product Peak

u3(x) = (1+ax)−2 Corner Peak

u4(x) = exp
(−a2(x −b)2

)
Gaussian

u5(x) = exp(−a|x −b|) C 0 function

u6(x) =
{

0 if x > b

exp(ax) otherwise
Discontinuous

The error measure eN is the absolute integration error, i.e.

eN (u) = |Iu −AN u|,

where u = ug with g = 1, . . . ,6, i.e. u is one of the Genz test functions. To obtain meaning-
ful results we select the parameters a and b randomly in the unit interval and repeat the
experiment 100 times. This also affects the reduced quadrature rule: each experiment
selects the node that is removed randomly and therefore 100 different sequences of
nested quadrature rules are obtained. The errors reported here are averaged over the
100 experiments and are therefore denoted by eN .

It is instructive to compare the error with the upper bound that follows from the
Lebesgue inequality (2.12):

eN (u) ≤ 2 inf
ϕ∈ΦN

‖u −ϕ‖∞, (3.24)

where we use that µ0 = 1 in our test cases. This error is determined using the algorithm
of Remez [188, Chapter 3], with the implementation from chebfun [47]. Convergence
results for the uniform distribution ρ ≡ 1 in Ω= [0,1] are gathered in Figure 3.9.

Notice that regardless of the function under consideration all quadrature rule errors
remain far under the dashed line, that represents the right-hand side of (3.24). This
shows that the bound from this inequality is far from sharp.

The first four Genz functions can be approximated well using polynomials, as they
are analytic and have rapidly converging Chebyshev coefficients. The best approxima-
tion converges exponentially in these cases, which is also the case for the six quadrature
rules under consideration. The quadrature rules determined using the framework of this
chapter and the rule based on Leja nodes perform slightly worse than the Clenshaw–
Curtis and the Gaussian quadrature rule. This is related to the fact that these rules
exploit the structure of the underlying distribution to a large extent (e.g. symmetry and
higher-order moments), whereas the rules in this work only optimize for the positivity
of the weights. The Gaussian quadrature rule converges with the highest rate, which is
related to its high polynomial degree (a rule of N +1 nodes has degree 2N +1). However,
the Gaussian rule is not nested, so to refine the estimate of the integral for increasing
number of nodes the number of function evaluations increases significantly. If a com-
putationally expensive function is considered, using a nested quadrature rule with fine
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Figure 3.9: Convergence of the Genz test functions using various quadrature rule tech-
niques. The absolute error of the best approximation polynomial (i.e.
infϕ∈ΦN ‖u −ϕ‖∞) is dashed.



64 3. THE GEOMETRY OF QUADRATURE RULES
granularity (such as the proposed rules) significantly reduces the cost of refining the
quadrature rule estimate.

The fifth Genz test function is not differentiable and can therefore not be approx-
imated well using a polynomial. This can be observed from the best approximation
polynomial, that converges with order 1 (so we would expect that eN ∼ 1/N ). In this
case the difference between the Gaussian rule and the other rules is significantly smaller,
demonstrating that the high polynomial degree of Gaussian rules is less relevant if the
integrand is not smooth.

The sixth Genz test function cannot be approximated accurately using a polynomial
when considering the ∞-norm, as it is discontinuous. Hence the best approximation
error remains constant. However, the approximation of the quadrature rules still con-
verges with order 1/2. In this case, there is a clear difference between the integration
error (that is an averaged error) and the best approximation error (that is a uniform
error).

3.7. Conclusion
In this chapter, a novel mathematical framework is presented for the construction of
nested, positive, and interpolatory quadrature rules by using a geometrical interpreta-
tion. Given an existing quadrature rule, a constructive algorithm has been presented
to determine up to two nodes that can be removed from the rule such that the newly
obtained rule is again interpolatory and positive. Moreover, necessary and sufficient
conditions have been derived for M new nodes to form an interpolatory quadrature rule
with positive weights after addition to the quadrature rule. These conditions have been
formulated as inequalities, which are explicit if M = 1 and implicit if M > 1.

The removal of a single node from a quadrature rule is governed by Carathéodory’s
theorem and there exist at least up to two nodes that can be removed from the quadra-
ture rule such that positivity is preserved. The removal of nodes can be straightforwardly
extended to multivariate spaces and does not require any knowledge about the underly-
ing distribution. The latter property will be used extensively in this thesis to construct
multivariate quadrature rules (in particular in Chapters 4 and 7).

The addition of a single node can be treated as a special case, which can be solved
analytically. The analytical expression can be used to add nodes to and replace nodes
within a quadrature rule. The addition of multiple nodes can be determined numerically
and a naive algorithm is presented for this purpose.

The replacement of nodes follows from adding nodes such that the weights of exist-
ing nodes vanish. Replacement of a single node is always possible and for each node
there is a set of nodes that can be used as replacement while preserving positive weights.
By determining whether addition of nodes is feasible, the set that encompasses all
additions of M nodes can be explored by iteratively replacing nodes.

The well-known Patterson extension of quadrature rules forms a special case of the
framework, as it is obtained by constructing the quadrature rules with M weights equal
to zero. Also Leja nodes can be interpreted as a heuristic that describes the addition
of single nodes. As such, our proposed framework and its geometrical interpretation
are well embedded in existing theory on the addition of nodes to quadrature rules.
The framework provides various possibilities to construct and change quadrature rules
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and three examples have been discussed: one based on the removal of nodes from an
existing rule, one based on consecutively adding and replacing one node, and one based
on consecutively adding multiple nodes.

There are various options to further extend the framework set out in this chapter.
The algorithm to determine whether multiple nodes exist that can be added to the
quadrature rule depends on determining many polynomial roots and iterates over all
possible sequences of nodes that can become zero. For a large number of nodes this is
computationally very costly and therefore warrants the need to derive an efficient algo-
rithm to determine these nodes. Moreover the framework set out in this chapter does
not use the relations that exist between consecutive moments of a distribution [166],
which can possibly be used to further enhance theory behind the addition of nodes.





Constructing quadrature rules onarbitrary sample sets
The framework proposed in the previous chapter describes the addition, replacement,
and removal of quadrature nodes in a univariate setting. Whereas the removal of nodes
can be extended straightforwardly to a more general setting, it is significantly less trivial
to generalize the addition and replacement of nodes to a multivariate setting. Moreover
the framework requires the exact value of the moments under consideration, which are
rarely known if the distribution is inferred from measurement data. These shortcomings
are addressed in this chapter and result in a new family of quadrature rules, which we
call the implicit quadrature rule.

The key idea of the implicit quadrature rule is to interpret a large set of measure-
ments or samples of a distribution as a quadrature rule with constant weights (i.e. it
is a Monte Carlo estimation). By repeatedly applying the removal step, as outlined in
Section 3.3, an interpolatory quadrature rule with positive weights can be derived. The
accuracy of the sample set carries to a certain extent over to the quadrature rule, even
though the quadrature rule requires significantly less model evaluations to estimate
weighted integrals. The idea of removing nodes from a large set of samples is in the-
ory applicable to any uni- or multivariate setting and does not require an analytical
expression of the distribution that generates the samples.

However, in practice it is impossible to consider an arbitrary sized sample set, since
accurately computing the null vector that governs the removal of nodes is intractable for
very large matrices. To alleviate this, an iterative algorithm is proposed, which is based
on the replacement of nodes as outlined in Section 3.4.2. By iteratively considering the
samples, instead of considering the sample set as a whole, a multivariate nodal addition

This chapter is based on the following article: L. M. M. van den Bos, B. Sanderse, W. A. A. M. Bierbooms, and
G. J. W. van Bussel. Generating nested quadrature rules with positive weights based on arbitrary sample sets.
To appear in SIAM/ASA Journal on Uncertainty Quantification, 2018. arXiv: 1809.09842 [math.NA]. An
implementation of the algorithms discussed in this chapter is freely available: L. M. M. van den Bos. The
implicit quadrature rule. Zenodo, Software, 2019. DOI: 10.5281/zenodo.3234434.

http://arxiv.org/abs/1809.09842
https://doi.org/10.5281/zenodo.3234434
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is derived, which consequently results in a mathematical description of the replacement
of nodes (by firstly adding a node and secondly removing it). This iterative approach
significantly reduces the computational cost of constructing the rule and makes it
feasible to compute quadrature rules with large numbers of nodes that incorporate
very large numbers of samples. The obtained quadrature rule is therefore applicable to
many computationally challenging problems and will in Chapter 5 be used to assess
equivalent loads on a turbine.

In this chapter, two variants of the implicit quadrature rule are explained: a non-
nested, interpolatory variant and a nested variant which is not necessarily interpolatory.
Some numerical results are presented to demonstrate the applicability of the quadrature
rule to numerical integration problems.

4.1. Introduction
The problem of uncertainty propagation is considered (see Section 2.1), where the
interest is in the effect of uncertainties in model inputs on model predictions. The
distribution of the quantity of interest is assessed non-intrusively, i.e. by means of
collocation. Problems of this form occur often in engineering applications if boundary
or initial conditions are not known precisely. The canonical approach is firstly to identify
uncertain input parameters, secondly to define a distribution on these parameters, and
finally to determine statistics of the quantity of interest [105, 129, 201]. These statistics
are defined as integrals, such as (2.1) introduced in the beginning of this thesis (see
page 8), and various techniques exist to approximate these. However, in practice it
often occurs that the distribution of the uncertain parameters is known only through a
sequence or collection of samples and that the distribution is possibly correlated, e.g.
the distribution is inferred through Bayesian analysis or only known by a finite number
of measurements. The goal of this chapter is to construct quadrature rules that are
accurate for determining integrals when only samples of the distribution are known.

Several approaches exist to tackle problems of this type. As discussed before, in
many cases the well-known and straightforward Monte Carlo approach is not applicable
due to its low convergence rate of 1/

p
N (with N the number of model evaluations)

and instead collocation techniques based on polynomial approximation can be con-
structed to alleviate this for reasonably small dimensionality. Often these techniques
are based on knowledge about the input distribution, for example the moments that
were used to derive the quadrature rule framework in Chapter 3. A popular technique to
choose evaluation nodes in a multivariate setting is the sparse grid technique [135, 169],
which has been extended to a more general, correlated setting (mostly in a Bayesian
setting, e.g. [39, 60, 159, 206]), provided that high order statistics of the distribution are
known exactly. Other collocation techniques that can be applied to the setting in this
chapter are techniques to consider the collocation problem as a minimization problem
of an integration error [89, 167], to construct nested rules based on interpolatory Leja
sequences [18, 106, 130], or to apply standard quadrature techniques after decorrelation
of the distribution [58, 131]. All these approaches provide high order convergence, but
require that the input distribution is explicitly known.

On the other hand, procedures that directly construct collocation sequences on
samples without using the input distribution directly have seen an increase in popularity,



4.2. PRELIMINARIES 69

possibly due to the recent growth of data sets. A recent example is using a clustering
approach [54]. Another technique is based on polynomial approximation directly based
on data [137] or iteratively with a focus on large data sets [165, 199]. These approaches
do not require stringent assumptions on the input distribution, but often do not provide
high order convergence.

In this chapter, we propose a novel nested quadrature rule that has positive weights.
There are various existing approaches to construct quadrature rules with positive weights.
Examples include numerical optimization techniques [89, 96, 156], where oftentimes
the nodes and weights are determined by minimization of the quadrature rule error.
A different technique that is closely related to the approach discussed in this chapter
is subsampling [15, 146, 162, 194], where the quadrature rule is constructed by sub-
sampling from a larger set of nodes. Subsampling has also been used in a randomized
setting [199], i.e. by randomly removing nodes from a large tensor grid, or to deduce a
proof for Tchakaloff’s theorem [5, 42].

The quadrature rule proposed in this chapter is called the implicit quadrature rule,
because it is constructed using solely samples from the distribution. The nodes of
the rule form a subset of the samples and the accompanying weights are obtained by
smartly exploiting the null space of the linear system governing the quadrature weights.
Using a sample set limits the accuracy of the rule to the accuracy of the sample set, but
an arbitrarily sized sample set can be used without additional model evaluations. The
computational cost of our proposed algorithm scales (approximately) linearly in the
number of samples and for each sample the null space of a Vandermonde matrix has to
be determined (whose number of rows equals the number of the nodes of the quadrature
rule). The main advantage of using a sample set is that the proposed quadrature rule can
be applied to virtually any number of dimensions, basis, space, or distribution without
affecting the computational cost of our approach. Moreover it can be extended to obtain
a sequence of nested distributions, allowing for refinements that reuse existing (costly)
model evaluations.

This chapter is structured as follows. In Section 4.2 the nomenclature and properties
of quadrature rules that are specifically relevant for this chapter are discussed. The
setting is significantly more general than that of Chapter 3, so some new nomenclature
is necessary. In Section 4.3 the implicit quadrature rule is introduced and its mathemati-
cal properties are discussed. The accuracy of the quadrature rule is demonstrated by
integration of the Genz test functions and by determining the statistical properties of
the output of a stochastic partial differential equation modeling the flow over an airfoil.
The numerical results of these test cases are discussed in Section 4.4 and conclusions
are drawn in Section 4.5.

4.2. Preliminaries
The quantity of interest is modeled as a function u : Ω→R, as done so far in this thesis,
where Ω is a domain in Rd (with d = 1,2,3, . . . ). The parameters x ∈Ω are uncertain and
the key problem in this chapter is that their distribution is characterized solely by an
arbitrarily large set of samples, denoted by YK := {y0, . . . ,yK } ⊂Ω (with K ∈N). In other
words, the parameters form a multivariate random variable X with the following discrete
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Figure 4.1: The example used throughout this chapter: a uniform distribution restricted
to the gray sets. 1000 samples drawn from both distributions are depicted on
top of the distributions.

distribution:

ρK (x) = 1

K +1

K∑

k=0
δ(‖x−yk‖),

where δ is the Dirac delta function, i.e.
∫
Rδ(x)dx = 1 and δ(x) = 0 for all x 6= 0. Here, ‖ ·‖

denotes any norm, since the only necessary property is that ‖a‖ = 0 if and only if a = 0.
The goal is to determine statistical moments of u(X), e.g. to accurately determine

I (K )u :=
∫

Ω
u(x)ρK (x)dx = 1

K +1

K∑

k=0
u(yk ), (4.1)

where higher moments can be determined by replacing u(x) with u(x) j for given j .
Notice that if yk are samples drawn from a known (possibly continuous) distribution
ρ, (4.1) approximates an integral weighted with this distribution, i.e. the integral from
(2.1):

I (K )u =
∫

Ω
u(x)ρK (x)dx ≈ Iu =

∫

Ω
u(x)ρ(x)dx. (4.2)

We will assume throughout this chapter that a large number of samples can be
determined fast and efficiently or is provided beforehand. There exist various methods
to construct samples from well-known distributions (such as the Gaussian, Beta, and
Gamma distribution) [45], from general distributions by means of acceptance rejection
approaches, or from unscaled probability density functions by means of Markov chain
Monte Carlo methods [80, 122]. Recall that Markov chain Monte Carlo methods were
briefly introduced in Section 2.2.2. An example of acceptance rejection sampling that we
will use throughout this chapter to visualize the proposed quadrature rule is depicted in
Figure 4.1.

If K +1 samples YK = {y0, . . . ,yK } are given, (4.1) could naively be evaluated by de-
termining u(yk ) for all k. However, it is well known that such an approximation is
very computationally costly in many practical problems. Instead we approximate the
moments by means of a quadrature rule, i.e. the goal is to determine a finite number
of nodes, denoted by the indexed set XN = {x0, . . . ,xN } ⊂ Ω, and weights, denoted by
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WN = {w0, . . . , wN } ⊂R such that

I (K )u ≈
N∑

k=0
u(xk )wk =: A(K )

N u.

The operator A(K )
N is the quadrature rule operator using the nodal set XN . We omit the

number of samples K from the notation if it is clear from the context.
Three properties are relevant for quadrature rules: accuracy, positivity, and nesting.

These properties have already been considered in Chapters 2 and 3. The extensions
of these properties to the setting of this chapter are briefly discussed in Sections 4.2.1,
4.2.2, and 4.2.3. The terms nodes and samples are sometimes used interchangeably in
a quadrature rule setting. This is not the case in this chapter: samples are elements
from sample sets statistically describing a distribution (called YK ), whereas nodes are
the collocation points from a quadrature rule (called XN ).

4.2.1. Accuracy
Recall that in this thesis the accuracy of a quadrature rule is ensured by constructing it
such that it integrates all polynomials ϕ ∈ΦD exactly, with ΦD = span{ϕ0, . . . ,ϕD }. Here,
ϕ j are basis polynomials with degϕ j ≤ degϕk for j ≤ k. The quadrature rule operator

A(K )
N is linear, hence if D = N and K is given, the weights can be determined from the

nodes by solving the following linear system:

A(K )
N ϕ j = I (K )ϕ j , for j = 0, . . . ,D . (4.3)

In the univariate case, this linear system is non-singular if all nodes are distinct. This
does not hold in general in the multivariate case or if D 6= N .

Similarly as to the previous chapters, the linear system (4.3) will be used often in
this chapter to ensure the accuracy of the constructed quadrature rules. Recall that the
matrix of this system is called the (multivariate) Vandermonde matrix, as introduced for
univariate quadrature rule in (3.2) and denoted by VD (XN ). Its multivariate extension is
straightforward: if a basis ϕ0, . . . ,ϕD is given, the system of (4.3) can be written as

VD (XN )w :=




ϕ0(x0) · · · ϕ0(xN )
...

. . .
...

ϕD (x0) · · · ϕD (xN )







w0
...

wN


=




µ(K )
0
...

µ(K )
D


 . (4.4)

Here, µ(K )
j are known as the (multivariate) raw moments of the samples YK , i.e.

µ(K )
j := 1

K +1

K∑

k=0
ϕ j (yk ) = I (K )ϕ j .

Notice that using samples to determine the moments is the key difference between
the rules constructed in this chapter and the rules constructed in Chapter 3, where we
assumed that exact values of the moments are known (recall µ j as defined by (2.14) on
page 17).
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Throughout this chapter it is assumed that ΦD is a polynomial space of minimal

degree and that ϕk is a monomial for each k. Multivariate polynomials are sorted using
the graded reverse lexicographic order. All methods discussed in this chapter can also be
applied if the polynomials are sorted differently (i.e. a sparse or an orthonormal basis is
considered) or if the basis under consideration is not polynomial at all (e.g. sinusoidal).
The only imposed restriction is that ϕ0 is the constant function.

The matrix VD (XN ) might become ill-conditioned if it is constructed using mono-
mials even for small N . Since this matrix is used to construct quadrature rules in this
chapter, this can limit the applicability of the methods discussed here. In this chapter,
all quadrature rules have been constructed using (products of) Legendre polynomials,
which resulted in a sufficiently well-conditioned matrix for moderately large N and D .

4.2.2. Positivity, stability, and convergence
Any constructed quadrature rule in this chapter has solely positive weights for two
reasons: stability and convergence. Similarly as in Chapter 3, we call such a quadrature
rule simply a positive quadrature rule. Both stability and convergence follow from the
fact that the induced ∞-norm of A(K )

N equals the sum of the absolute weights (which is,

recalling (2.13), the condition number of A(K )
N as µ(K )

0 = 1), i.e.

‖A(K )
N ‖∞ := sup

‖u‖∞=1
|A(K )

N u| =
N∑

k=0
|wk |, with ‖u‖∞ := max

x∈Ω
|u(x)|.

This norm is minimal for quadrature rules with positive weights. In these cases, we have
that for all K ,

‖A(K )
N ‖∞ =

N∑

k=0
|wk | =

N∑

k=0
wk = 1 = I (K )1.

Convergence can be demonstrated by applying the Lebesgue inequality [24], i.e. see
(2.12). In this chapter, the following form is used:

|I (K )u −A(K )
N u| ≤

(
1+

N∑

k=0
|wk |

)
inf
ϕ∈ΦD

‖u −ϕ‖∞ = 2 inf
ϕ∈ΦD

‖u −ϕ‖∞, (4.5)

where it is used that all weights are non-negative.
The error of the quadrature rule A(K )

N u with respect to I (K )u does not depend on the

accuracy of the moments µ(K )
j , i.e. on whether the number of samples is large enough to

resolve µ(K )
j accurately. This can be seen as follows. Assume the samples YK are drawn

from a distribution ρ : Ω→ R and let I be the integral from (4.2) weighted with this
distribution. Even though |Iϕ j −I (K )ϕ j | can become large for increasing j , the error of
the quadrature rule is not necessarily large:

|Iu −A(K )
N u| ≤ |Iu −I (K )u|

︸ ︷︷ ︸
Sampling error

+|I (K )u −A(K )
N u|

︸ ︷︷ ︸
Quadrature error

. (4.6)

The error depends on two components. The sampling error describes whether the num-
ber of samples is large enough to approximate the integral of u (which is independent
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of ϕ j ), whereas the quadrature error describes whether the quadrature rule is accurate
(which depends on ϕ j , but not through the samples; see (4.5)). The quadrature error
is conceptually different from the sampling error and often decreases much faster in
N than the sampling error does in K . As we assume an arbitrarily sized sequence of
samples is readily available to make the sampling error sufficiently small, this chapter
will focus on the quadrature error.

4.2.3. Nesting
Nesting means that XN1 ⊂ XN2 for some N1 < N2, i.e. the nodes of a smaller quadrature
rule are contained in a larger quadrature rule. This allows for the reuse of model evalua-
tions if the quadrature rule is refined by considering more nodes. We will call such a
quadrature rule, with a little abuse of nomenclature, a nested quadrature rule (because
strictly speaking it is a nested sequence of quadrature rules).

A nested quadrature rule has the favorable property that it can be used to provide an
error estimate of the approximated integral. If the quadrature rule has positive weights
and converges to the true integral, i.e. AN u → Iu for N →∞, then

∣∣|AN1 u −Iu|− |AN2 u −Iu|
∣∣≤ |AN1 u −AN2 u| ≤

∣∣|AN1 u −Iu|+ |AN2 u −Iu|
∣∣. (4.7)

Hence the quantity |AN1 u −AN2 u| can be used to estimate the accuracy of AN2 u. If
XN1 ⊂ XN2 , this error estimate is computable without any additional model evaluations.

4.3. The implicit quadrature rule
The implicit quadrature rule is a quadrature rule that is constructed using an arbitrarily
sized sequence of samples. The crucial equation in the method is (4.3), which can be
written as

N∑

k=0
ϕ j (xk )wk =µ(K )

j , with µ(K )
j = 1

K +1

K∑

k=0
ϕ j (yk ), for j = 0, . . . ,D . (4.8)

Given a sequence of basis functions ϕ0, . . . ,ϕD , the left-hand side of this equation only
depends on the quadrature nodes XN and weights WN , whereas the right-hand side
of the equation only depends on the samples YK . The goal is to determine, based on
the K +1 samples in the set YK , a subset of N +1 samples that form the nodes XN of
a quadrature rule in such a way that (4.8) is satisfied and such that the corresponding
weights are positive. The existence of such a subset is motivated by the Tchakaloff
bound [42], which states that there exists a quadrature rule with positive weights with
N = D if ΦD encompasses polynomials (as being done in this chapter).

In principle, this problem can be solved using the removal step as explained in
Section 3.3. Even though it has only been introduced in a univariate setting, it can
be straightforwardly applied to remove columns from VD (YK ) by using the definition
from (4.4). Equivalently nodes can be removed from YK . Repeatedly removing nodes
yields a quadrature rule that satisfies (4.8) with N = D . However, accurately computing
a null vector of VD (YK ) is often computationally intractable, considering that this is a
(K +1)× (D +1)-matrix and K is large.
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A(K )
N A(K+1)

N+1 A(K+1)
N

K ← K +1

yK+1

remove

Figure 4.2: The implicit quadrature rule proposed in this chapter. Given a quadrature
rule that integrates K samples (A(K )

N ), a node yK+1 is added such that a rule is

obtained of one more node (A(K+1)
N+1 ). Finally, one or more nodes are removed

to obtain a quadrature rule of fewer nodes (A(K+1)
N ), though the accuracy of

the rule does not deteriorate.

To alleviate the high computational cost, an iterative algorithm is used to determine
the quadrature rule: starting from an initial quadrature rule, the nodes and weights are
changed iteratively while new samples yk are added. Redundant nodes are removed
while ensuring that the accuracy of the quadrature rule does not deteriorate. These two
steps essentially encompass the addition and the removal of a node from the quadrature
rule, in line with the framework set out in Chapter 3. This iterative step, which is the key
idea of the proposed algorithm, is sketched in Figure 4.2. By repeatedly applying this
step, a quadrature rule that validates (4.8) is obtained, without having to compute null
vectors of a large matrix.

Our algorithm is explained in the next two sections. First, in Section 4.3.1 we propose
a method for a slightly simpler problem: we fix D (or ΦD ) and determine at which nodes
the model should be evaluated to integrate the sample moments while preserving posi-
tivity of weights. Second, in Section 4.3.2 this method is extended to create sequences of
nested quadrature rules with increasing D , increasing K , or both. In other words, given
N model evaluations, we determine a subset of the samples such that (4.8) is satisfied
and the provided N model evaluations are reused.

4.3.1. Non-nested implicit rule
The goal is to construct a positive quadrature rule that integrates all ϕ ∈ ΦD exactly,
where D is provided a priori. The quadrature rule will consist of (at most) D +1 nodes
in this case. Without loss of generality, it is assumed that D < K , i.e. the number of
available samples is at least as large as the dimension of ΦD .

The initial step is to consider YD and to construct the following quadrature rule for
N = D :

X (D)
N = YD = {y0, . . . ,yD },

W (D)
N =

{
1

D +1
, . . . ,

1

D +1

}
.
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The upper index describes the set of samples used for the construction, in this case YD ,
and the lower index describes the number of nodes of the quadrature rule (i.e. x0, . . . ,xN ).
This initial rule simply approximates the moments by means of Monte Carlo and it is
obvious that (4.8) holds for K = D .

The iterative procedure works as follows. Assume X (K )
N , W (K )

N form the positive
quadrature rule integrating all ϕ ∈ΦD exactly as if YK was used (i.e. (4.8) holds). This
quadrature rule has the property that A(K )

N ϕ j = µ(K )
j for j = 0, . . . ,D. The goal is to

construct a quadrature rule that also has this property, but with the moments µ(K+1)
j

as the right-hand side. To this end, let yK+1 be the next sample and straightforwardly
determine X (K+1)

N+1 and W (K+1)
N+1 as follows:

X (K+1)
N+1 = X (K )

N ∪ {yK+1},

W (K+1)
N+1 =

((
K +1

K +2

)
·W (K )

N

)
∪

{
1

K +2

}
,

(4.9)

i.e. yK+1 is “added” to X (K )
N (hence xN+1 = yK+1) and the weights are changed such that

the quadrature rule again integrates the sample moments. The latter can be seen as
follows:

N∑

k=0
ϕ j (xk )

K +1

K +2
wk +

1

K +2
ϕ j (xN+1) = K +1

K +2

N∑

k=0
ϕ j (xk )wk +

1

K +2
ϕ j (xN+1)

= K +1

K +2

(
1

K +1

K∑

k=0
ϕ j (yk )

)
+ 1

K +2
ϕ j (yK+1)

= 1

K +2

K+1∑

k=0
ϕ j (yk ) =µ(K+1)

j .

Here, wk are the weights from the original quadrature rule, i.e. wk ∈W (K )
N . We will use

vk to denote the weights from the updated quadrature rule, i.e. vk ∈W (K+1)
N+1 .

If W (K )
N consists of positive weights, then so does W (K+1)

N+1 . The problem with this
simple update is that, compared to the original nodal set, the quadrature rule now
requires an additional node to integrate all ϕ ∈ΦD exactly (i.e. (4.8) holds), resulting to
a total of N +2 nodes.

In order to construct a quadrature rule that requires only N +1 nodes (while pre-
serving positive weights and integrating µ(K+1)

j exactly), one node will be removed from

the extended rule X (K+1)
N+1 , following the procedure outlined in Chapter 3. The proce-

dure is briefly repeated, since the setting in this chapter is significantly more general
than the setting in where the procedure was introduced. It still follows the proof of
Carathéodory’s theorem, as outlined in Theorem 3.1 on page 33.

The Vandermonde matrix of the extended quadrature rule, i.e. VD (X (K+1)
N+1 ), is as

follows:

VD (X (K+1)
N+1 ) =




ϕ0(x0) . . . ϕ0(xN ) ϕ0(xN+1)
...

. . .
...

...

ϕD (x0) . . . ϕD (xN ) ϕD (xN+1)


 .
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This is a (D +1)× (N +2)-matrix (with N = D), so at least one non-trivial null vector
c = (c0, . . . ,cN+1)T of this matrix exists. Moreover, any multiple of this null vector is also
a null vector. By combining this with (4.8), the following linear system is obtained for
arbitrary α ∈R:




ϕ0(x0) . . . ϕ0(xN ) ϕ0(xN+1)
...

. . .
...

...

ϕD (x0) . . . ϕD (xN ) ϕD (xN+1)







v0 −αc0
...

vN −αcN

vN+1 −αcN+1



=




µ(K+1)
0

...

µ(K+1)
D


 .

This equation can be interpreted as a quadrature rule depending on the free parameter
α with nodes X (K+1)

N+1 and weights {vk −αck | k = 0, . . . , N +1}. The parameter α can be
used to remove one node from the quadrature rule, as nodes with weight equal to zero
can be removed from the quadrature rule without deteriorating it. There are two options,
α=α1 or α=α2:

α1 = min
k

(
vk

ck
| ck > 0

)
=:

vk1

ck1

,

α2 = max
k

(
vk

ck
| ck < 0

)
=:

vk2

ck2

.

The sets {vk −α1ck } and {vk −α2ck } consist of non-negative weights and (at least) one
weight equal to zero. Both α1 and α2 are well defined, because c has both positive and
negative elements. The latter follows from the fact that ϕ0 is assumed to be a constant
and that c is not equal to the zero vector, i.e.

0 =
N+1∑

k=0
ϕ0(xk )ck =ϕ0

N+1∑

k=0
ck .

The desired quadrature rule that integrates all ϕ ∈ΦD exactly and consists of N = D
nodes can be constructed by choosing either i = 1 or i = 2 and determining the nodes
and weights as follows:

X (K+1)
N = X (K+1)

N+1 \ {xki },

W (K+1)
N = {vk −αi ck | k = 0, . . . ,ki −1,ki +1, . . . , N +1}.

This rule has N +1 nodes and integrates the moments µ(K+1)
j for j = 0, . . . ,D exactly.

Note that, to include the case of two weights becoming zero simultaneously (which is
the case for symmetric quadrature rules [15]), these sets can be implicitly defined as
follows:

X (K+1)
Q =

{
xk | xk ∈ X (K+1)

N+1 and vk >αi ck

}
,

W (K+1)
Q =

{
vk −αi ck | vk ∈W (K+1)

N+1 and vk >αi ck

}
,

with Q ≤ N ≤ D . Without loss of generality, we assume Q = N throughout this chapter.
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Figure 4.3: Examples of implicit quadrature rules for various degrees, using the same
105 samples for each degree. The colors indicate the weights of the nodes.

The correctness of this method follows from the fact that the first D + 1 sample
moments of the first K samples are integrated exactly using the constructed quadrature
rule after iteration K . All quadrature rules constructed this way are interpolatory, since
they consist of N +1 nodes and integrate all functions in the (N +1)-dimensional space
ΦN exactly. Therefore by construction the following theorem is proved.

Theorem 4.1. Let A(K )
N be a positive quadrature rule operator such that

A(K )
N ϕ j =µ(K )

j , for j = 0, . . . ,D ,

with N = D. Then after applying the procedure above, a positive quadrature rule operator
A(K+1)

N is obtained such that

A(K+1)
N ϕ j =µ(K+1)

j , for j = 0, . . . ,D .

For different sample sets, even when drawn from the same distribution, the proce-
dure constructs different quadrature rules. If desired, this non-deterministic nature of
the quadrature rule can be eradicated by using deterministic samplers, such as quasi-
Monte Carlo sequences [31], as briefly discussed in Section 2.1.1. These are not used
in the quadrature rules constructed in this chapter, as these sequences are generally
not straightforward to construct for distributions with a non-invertible cumulative dis-
tribution function. Another aspect of the algorithm that can create variation in the
resulting quadrature rules is the choice of the parameter α. It is possible to incorporate
knowledge about the integrand in the choice for α at each iteration. In this chapter the
smallest value is used and it is assumed that we do not have a priori knowledge about
the integrand.

The steps of the method are outlined in Algorithm 4.1 and examples of implicit
quadrature rules obtained using sample sets drawn from well-known distributions
are depicted in Figures 4.3 and 4.4. In Figure 4.3, the nodes and weights are shown
for various polynomial degrees D, based on Kmax = 105 samples drawn from several
common univariate distributions. For the distributions with compact support, the
nodes cluster at the boundaries of the domain. However, the nodes exhibit an irregular
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Figure 4.4: Three implicit quadrature rules of 25 nodes (using different symbols) deter-
mined using the bivariate uniform distribution restricted to the gray area,
using three different permutations of a set of 105 samples. The colors indicate
the weights of the nodes.

pattern upon increasing the degree, and determining a quadrature rule with a higher
degree does not result in a nested rule (this will be addressed in Section 4.3.2). In the
second example, nodal sets are generated in two dimensions on two different irregular
domains, see Figure 4.4. This shows a major strength of the proposed implicit quadrature
rule: it can be applied to arbitrary sample sets, including domains that are not simply
connected, and positive weights are still guaranteed. Depending on the ordering of
the samples in the set, different nodes and weights are obtained, indicating that the
quadrature rules for these sets are not unique. It is generally not possible to obtain
exactly the same quadrature rule for two permutation of the sample set, since choosing
either α1 or α2 can be exploited to preserve only a single node in the rule. Theoretically
this can be resolved by removing multiple nodes from the rule, as will be done in the
next section, though it is often unfeasible to do so.

4.3.2. Nested implicit rule
The approach of the previous section can be used to construct a quadrature rule given
the number of basis vectors D and a fixed number of samples K . For varying D these
quadrature rules are, however, not nested. In this section the algorithm is extended such
that the constructed quadrature rules contain nodes that can be provided beforehand.
By providing the nodes of an existing quadrature rule, a sequence of nested quadrature
rules can be constructed.

The problem setting is as follows. Let XN be an indexed set of quadrature rule nodes
and assume D is specified, with D ≥ N . The goal is to add M nodes to XN in order to
obtain a positive quadrature rule with nodes XN+M (so XN ⊂ XN+M ) that integrates all
ϕ ∈ΦD exactly. Note that in general all weights will differ, i.e. WN 6⊂WN+M . We desire to
add a small number of nodes, thus M to be small, but it is straightforward to observe
that M is bounded as follows:

D ≤ N +M ≤ N +D +1. (4.10)

The first bound (D ≤ N +M) describes that the number of basis vectors a quadrature
rule constructed with our algorithms integrates exactly is not larger than its number of
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Algorithm 4.1: The implicit quadrature rule

Input: Samples {y0, . . . ,yKmax }, basis polynomials {ϕ0, . . . ,ϕD }
Output: Positive quadrature rule XN = {x0, . . . ,xN }, WN = {w0, . . . , wN } with N = D

1: Initialize X (D)
N = {y0, . . . ,yD }

2: Initialize W (D)
N = {1/(D +1), . . . ,1/(D +1)}

3: for K = D, . . . ,Kmax −1 do
Add node:

4: X (K+1)
N+1 ← X (K )

N ∪ {yK+1}

5: W (K+1)
N+1 ← (K +1)/(K +2)W (K )

N ∪ {1/(K +2)}

Update weights:
6: Construct VD (X (K+1)

N+1 )

7: Determine (non-trivial) c such that VD (X (K+1)
N+1 )c = 0

8: α1 ← mink (vk /ck | ck > 0), with vk ∈W (K+1)
N+1

9: α2 ← maxk (vk /ck | ck < 0), with vk ∈W (K+1)
N+1

Choose:
10: Either α←α1 or α←α2

Remove node:
11: X (K+1)

N ←
{

xk | xk ∈ X (K+1)
N+1 and wk >αck

}

12: W (K+1)
N ←

{
wk −αck | wk ∈W (K+1)

N+1 and wk >αck

}

13: end for
14: Return X (Kmax)

N , W (Kmax)
N

nodes. The second bound (N +M ≤ N +D +1) describes that it is possible to simply add
a quadrature rule with D +1 nodes to the existing quadrature rule by setting all existing
weights to 0. This is often not desired in applications but provides a theoretical bound
on the number of nodes obtained using our algorithms.

Algorithm 4.1 can be straightforwardly extended to incorporate nodes that are pro-
vided beforehand. The algorithm proceeds as usual, with the difference that nodes can
be removed only if they were added during the algorithm, but not if provided in advance.
This approach yields a sequence of nested quadrature rules, but is not optimal because
it results in a quadrature rule with (possibly many) more nodes than necessary. In such
a case the null space of the Vandermonde matrix VD (XN ) is multidimensional. Hence
there might exist multiple nodes that can be removed together, even though removing
the nodes individually yields a quadrature rule with negative weights. For example,
removing two nodes from the rule yields a positive rule, but removing only one of the
two yields a negative rule.

In this section the focus is therefore on the removal step of Algorithm 4.1, which is
extended to incorporate the removal of multiple nodes. By combining such an algorithm
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with Algorithm 4.1 the nested implicit quadrature rule is obtained.

Sequentially removing multiple nodes that result in a positive quadrature rule can
result in intermediate quadrature rules with negative weights. Therefore the first step is
to extend the removal procedure outlined in Section 4.3.1 such that it supports negative
weights. The main algorithm that generalizes the approach of the basic implicit rule
follows readily. With this algorithm, a procedure is obtained to determine a nested
implicit quadrature rule.

Negative weight removal
The procedure from the previous section determines α1 and α2 that can be used for
the removal of a node. However, the equations for α1 and α2 were derived assuming
positive weights. In this section, similar equations will be derived without assuming
positive weights.

In this chapter, the derived equations are used to facilitate the removal of multiple
nodes such that a quadrature rule of minimal size is obtained. Notice that these results
can straightforwardly be embedded in the framework discussed in Chapter 3 or, more
specifically, in the removal procedure outlined in Section 3.3.

Let XN , WN be a quadrature rule with (possibly) negative weights. The goal is to
remove one node to obtain XN−1 and WN−1 such that the resulting quadrature rule
has positive weights and AN−1ϕ j = ANϕ j for j = 0, . . . , N − 1. As introduced before,
let VN−1(XN ) be the respective N × (N +1) Vandermonde matrix and let c ∈RN+1 be a
non-trivial null vector of that matrix. The goal is to have only positive weights, hence
with the same reasoning as before, we obtain the following bound:

wk −αck ≥ 0, for all k and a certain α.

This translates into two cases:

α

{
≥ wk /ck for all k with ck < 0,

≤ wk /ck for all k with ck > 0.

Hence the following bounds should hold for any such α:

αmin ≤α≤αmax, with

αmin = max
k

(
wk

ck
| ck < 0

)
=:

wkmin

ckmin

,

αmax = min
k

(
wk

ck
| ck > 0

)
=:

wkmax

ckmax

.

(4.11)

Such α does not necessarily exist, but if it does, either α = αmin or α = αmax can be
used to remove either the node xkmin or xkmax respectively from the rule (as their weight
becomes 0). The case with only positive weights (which was considered in Section 4.3.1)
fits naturally in this, with α1 =αmax and α2 =αmin. If all weights are positive, it is evident
that αmin < 0 <αmax.

Even a stronger, less trivial result holds: if αmax < αmin, then no node exists that
results in a positive quadrature rule after removal and if αmin <αmax, there exist exactly
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two nodes such that removing one of the two results in a quadrature rule with positive
weights. In other words, determining αmin and αmax as above yields all possible nodes
that can be removed resulting into a positive quadrature rule. The details are discussed
in the proof of the following lemma, which also proves Theorem 3.2 (see page 34).

Lemma4.2. Let XN , WN be a quadrature rule integrating all ϕ ∈ΦN exactly. The following
statements are equivalent:

1. αmin ≤αmax.

2. There exists an xk0 ∈ XN such that the quadrature rule with nodes XN \ {xk0 } that
integrates all ϕ ∈ΦN−1 exactly has non-negative weights.

3. Let any xk0 ∈ XN be given such that the quadrature rule with nodes XN \ {xk0 } that
integrates all ϕ ∈ΦN−1 exactly has non-negative weights. Then the weights of this
rule, say WN−1, are formed by

WN−1 = {wk −αck | k 6= k0},

where ck are the elements of a null vector of VN−1(XN ) and either α = αmin or
α=αmax.

Proof. The proof consists of three parts: 1 → 2 → 3 → 1.

(1 → 2) The proof of 1 → 2 follows immediately from the removal step outlined above,
i.e. see (4.11).

(2 → 3) Suppose 2 holds and let xk0 be given. Without loss of generality assume k0 = N .
Let WN−1 be the weights of the quadrature rule nodes XN−1 = XN \ {xN } and
let w (N )

k ∈WN and w (N−1)
k ∈WN−1. It holds that the nodes XN and weights WN

form a quadrature rule that integrates all ϕ ∈ ΦN exactly and that the nodes
XN−1 and weights WN−1 form a quadrature rule that integrates all ϕ ∈ ΦN−1

exactly. Therefore for j = 0, . . . , N −1 the following holds:

N∑

k=0
ϕ j (xk )w (N )

k =
N−1∑

k=0
ϕ j (xk )w (N−1)

k ,

so for these j it follows that

N−1∑

k=0
ϕ j (xk )(w (N )

k −w (N−1)
k )+ϕ j (xN )w (N )

N = 0.

Hence the vector c ∈RN+1 with elements ck = w (N )
k −w (N−1)

k (and cN = w (N )
N ) is

a null vector of VN−1(XN ). Then it follows that α= 1. Without loss of generality,
assume that ck0 6= 0.

The remainder of this part consists of demonstrating that either α = αmin or
α=αmax. Assume ck0 > 0 (with k0 = N ). It holds that w (N )

k0
= ck0 and w (N )

k ≥ ck

for all other k. For all k with ck > 0 (including k0), we therefore obtain

w (N )
k

ck
≥ 1.
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Equality is attained at k = k0, hence 1 = min(w (N )

k /ck | ck > 0) = αmax. In a

similar way it can be demonstrated that if ck0 < 0, we have 1 = max(w (N )
k /ck |

ck < 0) =αmin, concluding this part of the proof.

(3 → 1) Suppose 3 holds and let the weights be given as in the lemma. Let αmin, αmax,
kmin and kmax be given. By definition of αmax, it holds that ckmax > 0 (see (4.11)).
So if α≥ αmax, then wkmax ≤ αckmax . Hence to have positive weights, we must
have α≤αmax.

Similarly we have that ckmin < 0 and therefore if α≤αmin, it holds that wkmin ≤
αckmin . So to have positive weights, we must have α≥αmin.

If there exists an α such that αmin ≤α and α≤αmax, it must hold that αmin ≤
αmax. ■

The lemma demonstrates that αmin and αmax from (4.11) can be used to determine
whether there exists a node that yields a positive quadrature rule after removal (i.e. if
αmin ≤αmax) and if such a node exists, either αmin or αmax can be used to determine it
(by determining k0 as in the proof). If αmax >αmin, no such node exists, which is not an
issue, since the algorithm to construct quadrature rules discussed in this chapter does
by construction not end up in this case.

Removal of multiple nodes
Let XN and WN form a positive quadrature rule. In this section, the goal is to determine
all subsets of M nodes that have one specific property in common: removing those M
nodes results in a positive quadrature rule of N +1−M nodes that exactly integrates
all ϕ ∈ΦN−M . We call a subset with this property an M-removal. Hence in the previous
section a procedure has been presented to determine all 1-removals.

Lemma 4.2 is the main ingredient for deriving all M-removals. The idea boils down to
the following. Let an M-removal be given, say (q1, . . . ,qM ) ⊂ XN . If the first M −1 nodes
from this M-removal are removed, the M-th node qM can be determined straightfor-
wardly using αmin or αmax from (4.11). There are two possible values of α (namely either
αmin or αmax), hence there exists a second node, say q̂M , such that (q1, . . . ,qM−1, q̂M ) is
also an M-removal. The order in which the nodes are removed is irrelevant, so each node
qk can be replaced in this way by a different node q̂k resulting in a valid M-removal, i.e.
a set of M nodes that can be removed while preserving positive weights and obtaining a
quadrature rule that exactly integrates all ϕ ∈ΦN−M .

We denote the procedure of obtaining a different M-removal from an existing one
by the operator F : [XN ]M → [XN ]M , where [XN ]M denotes the set of all M-subsets of
XN . If (q1, . . . ,qM ) is an M-removal, applying F yields the M-removal (q1, . . . ,qM−1, q̂M ).
Such an operator is well defined, since Lemma 4.2 prescribes that there exist exactly two
M-removals whose first M −1 elements equal q1, . . . ,qM−1. Notice that the operator F ,
which depends on the nodes and weights of the quadrature rule, can be computed by
determining αmin and αmax from Lemma 4.2 after removal of q1, . . . ,qM−1.

By permuting the M-removal before applying F , one M-removal yields (up to a
permutation at most) M other M-removals. These M-removals can be considered in a
similar fashion and recursively more M-removals can be determined. This procedure
yields all M-removals, which is demonstrated in the following lemma.
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Figure 4.5: Graphical sketch of the simplex describing the removal of two nodes from a
quadrature rule of three nodes. The gray area describes the simplex where
all values of (α1,α2) yield positive weights. The operator Fk (see proof of
Lemma 4.3) can be used to traverse the boundary of the simplex.

Lemma 4.3. Let (q1, . . . ,qM ) and (s1, . . . ,sM ) be any two different M-removals of the pos-
itive quadrature rule XN , WN . Let the operator F : [XN ]M → [XN ]M , as described in the
text, be such that

F (q1, . . . ,qM−1,qM ) = (q1, . . . ,qM−1, q̂M ),

for a given M-removal (q1, . . . ,qM ), i.e. it replaces qM by q̂M such that (q1, . . . ,qM−1, q̂M )
is an M-removal. Then there exists a finite number of permutations σ1, . . . ,σn such that

(σ1 ◦F ◦σ2 ◦F ◦ · · · ◦F ◦σn−1 ◦F ◦σn)(q1, . . . ,qM ) = (s1, . . . ,sM ).

Proof. Let Fk : [XN ]M → [XN ]M be the operator that firstly permutes qk to the end of
the M-removal and secondly applies F , i.e.

Fk (q1, . . . ,qM ) = F (q1, . . . ,qk−1,qk+1, . . . ,qM ,qk ) = (q1, . . . ,qk−1,qk+1, . . . ,qM , q̂k ).

Notice that Fk = F ◦πk , where πk denotes the permutation that appends qk . Hence if
there exist k1, . . . ,kn such that Fk1 ◦ · · · ◦Fkn (q1, . . . ,qM ) equals (s1, . . . ,sM ) up to a permu-
tation, the proof is done.

Consider WN = {w0, . . . , wN } and let VN−M (XN ) be the Vandermonde matrix with
respect to this quadrature rule. This is an (N −M +1)× (N +1)-matrix, so there exist M
linearly independent null vectors c1, . . . ,cM ∈ RN+1. We use the following notation for
the vector ck :

ck = (ck
0 , . . . ,ck

N )T.

Let α= (α1, . . . ,αM ) be an M-tuple and consider the following set:

S =
{
α= (α1, . . . ,αM )

∣∣∣ for all k = 0, . . . , N with wk −
M∑

j=1
α j c j

k ≥ 0

}
.
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The set S is a closed simplex, as it is formed by a finite number of linear inequalities.

Moreover it is non-empty, as (0, . . . ,0) ∈ S (this follows from the fact that wk ≥ 0 for all k).
The boundary of S, i.e. ∂S, is of special interest. If (α1, . . . ,αM ) ∈ ∂S, it holds that

wk −
∑M

j=1α j c j
k = 0 for at least one k. At vertices of the simplex the highest number of

weights, namely M , is 0. The operator Fk can be used to traverse the vertices of the
simplex. The simplex S for determining a 2-removal for a quadrature rule of three nodes
is sketched in Figure 4.5.

Consider an M-removal (q1, . . . ,qM ). There is exactly one M-tuple α= (α1, . . . ,αM )
resulting into the removal of these nodes. These α’s coincide with a vertex of simplex S.
Applying Fk to (q1, . . . ,qM ) yields a different M-tuple. These two M-tuples are connected
through an edge of the simplex. Due to Lemma 4.2 all M-tuples that are connected to
α through an edge can be found. Therefore, for a given vertex, the operator Fk yields
all connected vertices and can be used to traverse the boundary of the simplex. This
concludes the proof. ■

The lemma is constructive: given a single M-removal, all M-removals can be found.
By repetitively constructing a 1-removal, an initial M-removal can be obtained (which
is a vertex of the simplex S discussed in the proof). Lemma 4.3 ensures that any other
M-removal can be reached from this removal. An outline of this procedure can be found
in Algorithm 4.2. The computational cost of calculating the null vectors can be alleviated
by decomposing VN−M (XN−M ) once (e.g. by using an LU or QR decomposition) and
computing the null vectors of VN−M (XN−M+1) in the loop by reusing this decomposition.

The time complexity of this algorithm is O(Z log Z + Z (N − M)3), where Z is the
number of M-removals. Here, the term Z log Z originates from storing all visited M-
removals efficiently using a binary search tree (which results in Z lookups that scale with
log Z ) and the term Z (N −M)3 is obtained by factorizing VN−M (XN−M ) and repeatedly
computing the null vector of VN−M (XN−M+1) using this factorization. Algorithm 4.2
always terminates, as the number of subsets of M nodes is strictly bounded. Combining
this with the proof of Lemma 4.3 proves the following theorem.

Theorem 4.4. On termination, Algorithm 4.2 returns all M-removals of the positive quad-
rature rule XN , WN .

Theoretically, Algorithm 4.2 can be used to determine all quadrature rules A(K )
N with

A(K )
N ϕ= I (K )ϕ for all ϕ ∈ΦD . All these rules are obtained by computing all M-removals

with M = K −N of the quadrature rule XK = YK with wk = 1/(K +1) for all k = 0, . . . ,K .
However, in practice this is intractable, as the number of M-removals grows rapidly in
M and K −N is typically a large quantity.

The nested implicit quadrature rule
In this section the key algorithm of this chapter (and maybe even of this thesis) is
presented, namely the nested implicit quadrature rule for arbitrary sample sets. It is
constructed by combining the algorithms from the previous sections. Given a quadrature
rule, two different refinements (or a combination of both) are considered. First, the
number of samples K can be increased to obtain a more accurate estimate of µ(K )

j .

Second, D can be increased to obtain a more accurate quadrature rule.
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Algorithm 4.2: Removing multiple nodes

Input: Positive quadrature rule XN , WN , integer M with 1 ≤ M < N +1
Output: All M-removals of XN , WN

1: Construct VN−M (XN )
2: Determine M independent null vectors c j ( j = 1, . . . , M) of VN−M (XN )
3: Construct an M-removal, say Q ← (q1, . . . ,qM ) ⊂ XN (by repeatedly using Lemma 4.2)
4: I ← {Q}, the set containing all queued removals
5: R ←;, the set containing all processed removals
6: while I 6= ; do
7: Get the first removal from I , say Q ← (q1, . . . ,qM ) ⊂ XN

8: Remove Q from I , i.e. I ← I \ {Q}.
9: for i = 1, . . . , M do

10: Construct XN−M+1 and WN−M+1 by removing (q1, . . . ,qi−1,qi+1, . . . ,qM )
11: Determine c such that VN−M (XN−M+1)c = 0
12: Determine αmin, αmax, kmin, kmax from (4.11)
13: if qi = xkmax then
14: q̂i ← xkmin

15: else
16: q̂i ← xkmax

17: end if
18: Q̂ ← (q1, . . . ,qi−1, q̂i ,qi+1, . . . ,qM ), which is an M-removal
19: if Q̂ ∉ I and Q̂ ∉ R then . NB: this means we have not visited vertex Q̂ yet.
20: Add Q̂ to I , i.e. I ← I ∪ {Q̂}
21: end if
22: end for
23: R ← R ∪ {Q}
24: end while
25: Return R

The set-up is similar to the one used so far, i.e. let {yk }∞k=0 be a sequence of samples,

X (K )
N be a set of nodes, and W (K )

N be a set of non-negative weights, and assume that the
following holds for a certain D :

N∑

k=0
ϕ j (xk )wk =µ(K )

j , for j = 0, . . . ,D , xk ∈ X (K )
N , and wk ∈W (K )

N .

Let D+ and K+ be the desired number of basis vectors and (possibly larger) number
of samples, respectively, and assume D+ ≥ D . The goal is to determine X (K+)

N+M and W (K+)
N+M

such that W (K+)
N+M is non-negative, X (K )

N ⊂ X (K+)
N+M , and

N+M∑

k=0
ϕ j (xk )wk =µ(K+)

j , for j = 0, . . . ,D+, xk ∈ X (K+)
N+M , and wk ∈W (K+)

N+M .

In other words, we consider K++1 samples (denoted previously by YK+ ) and want to
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Figure 4.6: Examples of nested nodal sets constructed with 105 samples. The initial
nodes are in all three cases [0,1/2,1]. The colors indicate the weights of the
nodes.

determine a positive quadrature rule that integrates all ϕ ∈ΦD+ exactly by adding M
nodes to XN (with M minimal).

The iterative procedure is similar to Algorithm 4.1 and consists of four steps: firstly
determine or obtain the next sample yK+1, secondly update the nodes and weights
according to (4.9), thirdly determine all possible removals (see Algorithm 4.2), and
finally remove nodes such that the obtained quadrature rule is as small as possible. The
last step consists of finding the M-removal such that X (K+)

N+M \ X (K )
N (i.e. the set of new

nodes) becomes as small as possible. If a node xk ∈ X (K )
N is part of the M-removal, its

weight is simply set to 0 (this is not problematic: the weights change again in subsequent
iterations).

The initialization of the algorithm depends on whether more basis vectors are con-
sidered, a larger number of samples is considered, or the set of samples is changed (e.g.
the sequence of samples is redrawn):

1. If D+ = D and K+ > K , the procedure is a continuation of the original Algorithm 4.1
and no initialization is necessary.

2. If D+ > D, we need to reiterate over all samples to determine µ(K )
j for j > D.

The algorithm can be initialized using X (K )
N as nodes, using all weights equal to

1/(N +1), and using the samples YK+ \ X (K )
D .

3. If the sequence of samples is regenerated from the underlying distribution, then
in general X (K )

N 6⊂ YK+ . Therefore, the algorithm is initialized with X (K+1)
N ∪ {y0} and

W (K+1)
N = {0, . . . ,0,1}.

The outline of this algorithm is provided in Algorithm 4.3, which is a straightforward
extension of Algorithm 4.1 with additional bookkeeping to incorporate the removal of
multiple nodes. Some examples of nested sequences are gathered in Figure 4.6 and 4.7.
In the first figure all three nodal sequences are initialized with the nodes 0, 1/2, and
1. If these nodes are used to construct conventional interpolatory quadrature rules,
then the quadrature rule is positive if the uniform or Beta distribution is used, but has
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Figure 4.7: The implicit quadrature rule of 25 nodes (circles) and 50 nodes (circles and
squares) respectively determined using the uniform distribution restricted to
the gray area, using 105 samples. The colors refer to the weights of the largest
quadrature rule.

negative weights if the normal distribution is considered (the weights are 3, −4, and
2 respectively). However, the proposed algorithm incorporates these nodes without
difficulty in subsequent quadrature rules, resulting into positive weights. Note that the
quadrature rules of polynomial degree 4 have six nodes in case of the Beta and normal
distribution. The subsequent quadrature rules of the normal distribution have a higher
number of nodes than the degree, which is due to the “bad” initial set of nodes.

A two-dimensional example is presented in Figure 4.7. Here, the initial quadrature
rule is depicted with circles and the extension thereof with squares.

Again it holds that different sample sets produce different quadrature rules. Similarly
as in Section 4.3.1, this can be eradicated by using deterministic samplers. An additional
degree of freedom arises when choosing the M-removal, as there might be several M-
removals that remove the largest number of nodes from X (K+)

N+M \ X (K )
N . In the quadrature

rules constructed in this thesis, we select one randomly.
The large advantage of the nested implicit quadrature rule is that it is dimension

agnostic, basis agnostic, space agnostic, and distribution agnostic, which are properties
that carry over from the basic implicit quadrature rule. Virtually any space and any
distribution can be used, as long as the distribution has finite moments and a set of
samples can be generated, can be determined, or is available.

4.4. Numerical examples
Two different types of test cases are employed to demonstrate the discussed properties
of our proposed quadrature rule, in particular the independence from the underlying
distribution.

The first class of cases consists of explicitly known test functions and distributions to
assess the accuracy of the quadrature rule for integration purposes. To this end, the Genz
integration test functions [66] are again employed and a comparison is made with a
Monte Carlo approach. Moreover, it is instructive to see how the convergence compares
with that of a sparse grid, although the comparison is strictly speaking incorrect, as a
Smolyak sparse grid converges to the true integral.
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Algorithm 4.3: The nested implicit quadrature rule

Input: Samples {y0, . . . ,yKmax }, quadrature nodes XN , basis polynomials {ϕ0, . . . ,ϕD }
Output: Positive quadrature rule XN+M , WN+M

1: Initialize X (N )
N and W (N )

N , e.g. X (N )
N ← XN , W (N )

N ← {1/(N +1), . . . ,1/(N +1)}
2: M ← 0
3: for K = N , . . . ,Kmax do

Add node:
4: X (K+1)

N+M+1 ← X (K )
N+M ∪ {yK−N }

5: W (K+1)
N+M+1 ← (K +1)/(K +2)W (K )

N+M ∪ {1/(K +2)}
6: M ← M +1

Update weights:
7: Construct VD (X (K+1)

N+M )
8: Determine null vectors c1, . . . ,cM and determine all M-removals

Choose:
9: Let Q = (q1, . . . ,qM ) be an M-removal

. NB: we choose one that makes X (K+1)
N+M \ XN the smallest.

Remove node:
10: Let (α1, . . . ,αM ) such that wk −

∑M
j=1α j c j

k = 0 for all k with xk ∈Q

11: M̂ ← #
{

xk ∈ X (K+1)
N+M | xk ∉ XN and wk −

∑M
j=1α j c j

k = 0
}

12: X (K+1)
N+M̂

←
{

xk ∈ X (K+1)
N+M | wk −

∑M
j=1α j c j

k > 0 or xk ∈ XN

}

13: W (K+1)
N+M̂

←
{

wk −
∑M

j=1α j c j
k | xk ∈ X (K+1)

N+M̂

}

14: M ← M̂
15: end for
16: Return X (Kmax)

N+M , W (Kmax)
N+M

Secondly, a partial differential equation with random coefficients is considered,
where the goal is to infer statistical moments of the solution of a differential equation
with random boundary conditions. The equations under consideration are the inviscid
Euler equations modeling the flow around an airfoil, where the inflow parameters and
the shape of the airfoil are assumed to be uncertain.

The Genz integration test functions are studied in Section 4.4.1. The Euler equations
are considered in Section 4.4.2.

4.4.1. Genz test functions
The Genz integration test functions [66] are a set of test function to assess the accuracy of
numerical integration routines, which have been used in Chapter 3 to assess the accuracy
of the constructed univariate quadrature rules. In this chapter, the multivariate Genz
test functions are considered and used to test the implicit quadrature rule, see Table 4.1.
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Table 4.1: The multivariate test functions from Genz [66]. All d-variate functions depend
on the d-element vectors a and b. The vector b is an offset parameter to shift
the function. The vector a describes the degree to which the family attribute
is present.

Integrand Family Attribute
u1(x) = cos

(
2πb1 +

∑d
i=1 ai xi

)
Oscillatory

u2(x) =∏d
i=1

(
a−2

i + (xi −bi )2
)−1

Product Peak

u3(x) = (
1+∑d

i=1 ai xi
)−(d+1)

Corner Peak

u4(x) = exp
(−∑d

i=1 a2
i (xi −bi )2

)
Gaussian

u5(x) = exp
(−∑d

i=1 ai |xi −bi |
)

C 0 function

u6(x) =
{

0 if x1 > b1 or x2 > b2

exp
(∑d

i=1 ai xi
)

otherwise
Discontinuous

The characteristics of these functions are similar to the univariate test functions, i.e.
each has a certain attribute that is challenging for most numerical integration routines.
The exact value of the integral of any of these test functions on the unit hypercube can
be determined exactly. The goal is to assess the absolute integration error for increasing
number of nodes in a five-dimensional setting, i.e. to assess

eN =
∣∣∣A(Kmax)

N u −I (Kmax)u
∣∣∣=

∣∣∣∣∣
N∑

k=0
u(xk )wk −

1

Kmax +1

Kmax∑

k=0
u(yk )

∣∣∣∣∣ ,

for samples y0, . . . ,yKmax and various increasing N . The number of samples is chosen
such that the quadrature error dominates and the sampling error |I (Kmax)u−Iu| is small.
We compare the approximation with that of a Monte Carlo approach, where we assess
the following error:

eN =
∣∣∣∣∣

1

N +1

N∑

k=0
u(yk )− 1

Kmax +1

Kmax∑

k=0
u(yk )

∣∣∣∣∣ ,

i.e. it is considered as a quadrature rule with nodes {yk }N
k=0 and weights 1/(N +1). If

the underlying distribution can be decomposed as a product of univariate distributions
(it is “tensorized”), we also study the Smolyak sparse grid, which is constructed using
exponentially growing Clenshaw–Curtis quadrature rules in conjunction with the combi-
nation rule [135], as defined by (2.17) (see Section 2.1.3 and in particular Figure 2.6 on
page 21). The sparse grid converges to the true value of the integral and therefore we
use the true value of the integral to assess its convergence, even though the comparison
is not completely fair in this case.

The numerical experiment is repeated twice for two different input distributions.
First, the uniform distribution is used to be able to compare the methodology with
conventional quadrature rule methods. Second, a highly correlated multivariate distri-
bution (inspired by Rosenbrock function) is used to demonstrate the independence of
the convergence rate from the input distribution.
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To obtain meaningful results, the offset and shape parameters a and b of the Genz

functions are chosen randomly and the numerical experiment is repeated 50 times. The
obtained 50 absolute integration errors are averaged and the average is denoted by eN .
The vector a is obtained by firstly sampling uniformly from [0,1]5 and secondly scaling
a such that ‖a‖2 = 5/2. The vector b is uniformly distributed in [0,1]5 without further
scaling, as it is an offset parameter.

The implicit quadrature rule is generated with Kmax = 104 samples which are drawn
randomly from the two input distributions respectively and the Monte Carlo approxi-
mation is determined using a subset of these samples, such that both the Monte Carlo
approximation and the implicit quadrature rule converge to the same result. The ini-
tial quadrature rule of one single node is determined randomly and the rule is ex-
tended by applying Algorithm 4.3. Each extension is chosen such that D doubles, up
to D = 210 = 1024, but we emphasize that any granularity can be used here. Recall that
ΦD = span{ϕ0, . . . ,ϕD }, where ϕ j are d-variate polynomials sorted using a graded reverse
lexicographical order. Hence each extension integrates a larger number of polynomials
exactly. For sake of completeness, a comparison is made with a non-nested implicit
quadrature rule, which is regenerated for each D by means of Algorithm 4.1.

Uniform distribution
The multivariate uniform distribution in [0,1]d (with d = 5 in this case) can be con-
structed by means of a tensor product of multiple univariate uniform distributions. It
is therefore possible to approximate the integral using the Smolyak sparse grid. The
results of the four integration routines under consideration (Monte Carlo, nested and
non-nested implicit quadrature rules, and Smolyak sparse grid) are depicted in Fig-
ure 4.8. Here, N denotes the number of nodes of the quadrature rules and the Smolyak
sparse grid is refined by increasing the sparse grid level equally in all dimensions.

The accuracy of a quadrature rule is highly dependent on the analyticity and smooth-
ness of the integrand. Globally analytic functions can be approximated well using
polynomials, i.e. infϕ∈ΦD ‖ϕ−u‖∞ decays fast. This property is reflected in the results.

The first four Genz functions (i.e. u1, u2, u3, and u4) are smooth and therefore the
most suitable for integration by means of a quadrature rule. The best convergence is
observed for the oscillatory, corner peak, and Gaussian function, which are analytic.
The corner peak is analytic, but has very slowly decaying derivatives, such that the
quadrature rule approximation only converges exponentially fast for very large numbers
of nodes (which are not considered here).

The continuous (but not differentiable) C 0 function follows a similar reasoning. It
is not globally analytic, hence no exponential convergence is obtained. The Smolyak
quadrature rule has a slightly larger error in this case compared to the implicit quadra-
ture rule (arguably due to its negative weights), even though it seems that the rate of
convergence is similar.

Integrating the discontinuous function by means of a positive quadrature rule does
not yield any improvement over Monte Carlo sampling. The Smolyak sparse grid per-
forms worse in this case due to its negative weights and usage of the Clenshaw–Curtis
quadrature rule (which is not suitable for integration of discontinuous functions).
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Figure 4.8: Convergence of the absolute integration error for Genz test functions using
the nested and non-nested implicit quadrature rules, Monte Carlo sampling,
and the Smolyak sparse grid using the uniform distribution.
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Figure 4.9: The bivariate Rosenbrock distribution.

Rosenbrock distribution
The large advantage of the implicit quadrature rule is that it can be constructed using
any arbitrary set of samples. In order to assess this applicability to general distributions,
the following distribution (which we will call the Rosenbrock distribution) is considered:

ρ : Rd →R, defined by ρ(x) ∝ exp
[− f (x)

]
π(x),

with π the PDF of the multivariate standard Gaussian distribution and f (a variant of)
the multivariate Rosenbrock function:

f (x) = f (x1, . . . , xd ) =
d−1∑

i=1

[
b

(
xi+1 −x2

i

)2 + (
a −xi

)2
]

, with a = 1 and b = 10.

The distribution ρ for d = 2 is depicted in Figure 4.9. This distribution is not optimal
for integration by means of a sparse grid as it cannot be decomposed in a product of
univariate i.i.d. distributions. This means that integration by means of a sparse grid
converges prohibitively slow, even if the quadrature rules used for the construction are
based on the marginals of the distribution. Therefore these results are omitted.

The exact integral over the product peak function u3 diverges in this case, so approx-
imating such an integral will result in a diverging quadrature rule. The results of the
other functions are gathered in Figure 4.10.

Similarly to the uniform case, the properties of the functions are reflected in the
convergence rates of the approximations. The integrals of the smooth functions converge
fast with a high rate, the convergence of the C 0 function is smaller, and the convergence
of the discontinuous function is comparable to that of Monte Carlo. This result is
significant, as it demonstrates that the convergence rate of the quadrature rule estimate
to the sampling-based integral shows no significant dependence on the sample set used
to construct the rules.

4.4.2. Airfoil flow using Euler equations
In this section the flow over an airfoil is considered with uncertain geometry and inflow
conditions. The quantity of interest is the pressure coefficient of the airfoil. The problem
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Figure 4.10: Convergence of the absolute integration error for Genz test function us-
ing the nested and non-nested implicit quadrature rules and Monte Carlo
sampling using the Rosenbrock distribution.
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Table 4.2: Uncertain parameters of the airfoil test case.

Parameter Distribution
α Angle of attack Uniform in [0◦,5◦]

M Mach number Beta(4,4) distributed in [0.4,0.6]

t Maximum thickness of the airfoil Beta(4,4) distributed in [0.11,0.13]

m Maximum camber Beta(2, ·) distributed in [0.02,0.03] with pre-
scribed mean: m = 1/4t 2 +0.02

p Location of maximum camber Uniform in [0.3, pmax] with prescribed max-
imal value: pmax = 1

2 (2t +16m)5 +0.3

is five-dimensional: two parameters model uncertain environmental conditions and
three parameters model the uncertain geometry of the airfoil. The geometry is described
by the 4-digit NACA profile and the equations governing the flow are the inviscid Euler
equations. Problems of this type are well known in the framework of uncertainty prop-
agation [108, 110, 195] and allow us to demonstrate the applicability of the proposed
quadrature rule to a complex uncertainty propagation test case in conjunction with a
complex underlying distribution.

The five uncertain parameters are summarized in Table 4.2. The angle of attack
and Mach number are distributed independently of the other parameters and describe
uncertain inflow conditions. The remaining three parameters define the 4-digit NACA
airfoil [88]. A NACA airfoil can be generated directly from these parameters and the
mean of these parameters is approximately a NACA2312 airfoil. In this chapter the NACA
airfoil with closed tip is considered by correction of the last parameter.

The compressible Euler equations are numerically solved using the finite volume
solver SU2 [50, 139]. The mesh is generated using gmsh [69]. The implicit quadrature
rules are determined by means of Kmax = 106 randomly drawn samples from the distri-
butions described in Table 4.2, that are also being reused for consecutive refinements.

The quantity of interest in this test case is the pressure coefficient on the surface of
the airfoil Cp (x), i.e. the scaled pressure such that zero pressure equals a non-obstructed
flow:

Cp (x) = p(x)−p∞
1
2ρ∞V 2∞

.

Here, p(x) is the pressure at location x, p∞ is the freestream pressure (i.e. the pressure on
the boundary in this case), ρ∞ is the freestream density of air, and V∞ is the freestream
velocity of the fluid. It is common to report the pressure coefficient as function of x,
where x ∈ [0,1] is a spatial parameter that runs from the leading edge to the trailing edge
of the airfoil. For each location x there are two values of the pressure coefficient: one on
the top and one on the bottom of the airfoil. Therefore, usually −Cp as function of x is
plotted, as in that case the line on the top refers to pressure on top of the airfoil (since
the pressure on top of the airfoil is usually smaller) and vice versa.

The quadrature rule is applied piecewise to this quantity, where all pressure realiza-
tions are piecewise linearly interpolated onto the same mesh. Accuracy is measured
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Figure 4.11: Mean µ and standard deviation σ of the pressure coefficient (Cp ) on the
airfoil determined using the finest quadrature rule.

by using the lift coefficient Cl , which is the dimensionless coefficient relating the lift
generated by the airfoil with the farfield fluid density and velocity. It follows naturally
by integrating the pressure coefficient over the airfoil surface. In Figures 4.11, 4.12a,
and 4.13 we used the quadrature rule AN u with u =Cp and in Figure 4.12b we used the
quadrature rule with u =Cl .

The number of nodes of the quadrature rule is doubled until the difference between
two consecutive quadrature rule estimations of the mean of the pressure coefficient
is smaller than 10−2, which is the case at 512 nodes. Here the difference is measured
using the mean square error of the pressure coefficient at all grid locations on the airfoil
(i.e. the 2-norm). The convergence of the pressure coefficient and the lift coefficient is
depicted in Figure 4.12.

High order convergence is clearly visible. Both the mean and standard deviation
show convergence with a larger rate than that of Monte Carlo (i.e. larger than 1/2). We
want to emphasize the importance of positive weights for this engineering test case, as
it ensures that the estimation of the variance is non-negative even in the presence of
high non-linearities. The mean and standard deviation of the pressure coefficient on the
airfoil, as determined using the quadrature rule of 512 nodes, are therefore well defined
(see Figure 4.11).

The first four moments of the pressure coefficient around the airfoil are depicted in
Figure 4.13, where the airfoil geometry that is plotted is the overlap of all airfoils (such
that all depicted flow locations are in the flow for all quadrature rule nodes).

The largest uncertainty of the flow is near the leading edge of the airfoil. This is in
contrast to higher Mach number flows, for which it has been observed that the region
of largest uncertainty occurs near the shock wave [18, 195]. The latter type of flows are
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Figure 4.12: Convergence of the mean µ and standard deviation σ of the pressure coeffi-
cient Cp and lift coefficient Cl .

considered in Chapters 6 and 7. The skewness of the pressure coefficient shows that
its distribution is slightly skewed near the stagnation point on the leading edge of the
airfoil. In the wake of the airfoil the distribution has positive skewness, which means
that outliers of the distribution will more likely be larger than smaller compared to the
average pressure coefficient. The kurtosis demonstrates that in many regions of the flow
the distribution has much less mass in the tails than a Gaussian (and is therefore more
unlikely to produce outliers). However, again near the leading edge and trailing edge the
distribution differs and the tails of the distributions are significantly more influential.
We cannot conclude that these locations are the regions of highest uncertainty, as the
standard deviation (which is the scaling factor of both the skewness and the kurtosis) is
very small in these regions. It is merely a sign that the uncertain behavior of the flow
cannot be fully captured by a Gaussian distribution.

4.5. Conclusion
In this chapter, a novel nested quadrature rule is proposed which is constructed by
solely using samples from a distribution. It is called the implicit quadrature rule. The
rule integrates an arbitrary high number of polynomials and the weights are positive,
so high order convergence is obtained for sufficiently smooth functions. The algorithm
to construct the quadrature rule ensures positive weights, high degree, and nesting
regardless of the sample set. The quadrature rules are very suitable for the purpose
of non-intrusive uncertainty propagation, because positive weights ensure numerical
stability and nesting allows for refinements that reuse computationally expensive model
evaluations.

The results from integrating Genz test functions demonstrate that the convergence
rate of the quadrature rule is similar to that of the Smolyak sparse grid approach, if
the underlying sample distribution is uncorrelated and defined on a hypercube. The
real advantage of the proposed quadrature rule appears when this is not the case: for a
correlated distribution on non-hypercube domains our method still converges at a rate
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similar to the uncorrelated case, while a sparse grid quadrature rule hardly converges at
all. Similar to the existing quadrature rules, the convergence depends on the specific
properties of the integrand, in particular on its smoothness.

To demonstrate the applicability to practical test cases, the implicit quadrature rule
is used to determine the statistical moments of an airfoil flow with both independent
and dependent input distributions. The results demonstrate the advantages of the quad-
rature rule: nesting can be used for easy refinements, positive weights ensure stability
and positive approximations of positive quantities (such as the variance), dependency is
naturally taken into account, and the accuracy of the rule yields high convergence rates.

The proposed algorithms provide a framework for the construction of quadrature
rules that shows much potential for further extensions. For example, the rule as pro-
posed in this chapter does not use any properties of the integrand. Tailoring the basis to
the integrand can yield an adaptive quadrature rule without deteriorating the accuracy of
the rule as a whole. As the rule is solely based on sample sets, no stringent assumptions
are necessary to apply the quadrature rule in such a different setting. Other examples
that are considered in this thesis include using the rule with actual measurement data
as input, which is considered in Chapter 5, or using the rule in a Bayesian framework to
create quadrature rules for posteriors, which is discussed in more detail in Chapter 7.



Fatigue design load cases usingquadrature rule techniques
The implicit quadrature rule, as introduced in Chapter 4, forms a flexible approach to
numerically approximate integrals with a computationally expensive integrand. It can
be applied readily to standardized fatigue load cases, which are specific scenarios that
describe situations a wind turbine has to withstand. Arguably one of the most com-
putationally complex load case is considered in this chapter: the load case describing
fatigue loading over the full life time of the turbine. The goal is to calculate equivalent
loads acting on an offshore wind turbine such that the prescribed variability in the
environmental conditions is incorporated. To facilitate this, the implicit quadrature rule
is constructed using measurement data conducted at the North Sea. It showcases one
of the main advantages of this numerical integration routine: no distributions have to
be fitted to the measurement data, i.e. the quadrature rule directly incorporates the
statistical moments of the measurements.

5.1. Introduction
For the certification of the design of a wind turbine, various load cases have been
formulated in the IEC 61400 standard for both onshore [85] and offshore [86] wind
turbines. These load cases vary from regular power production in commonly observed
environmental conditions, to extreme conditions simulating storm and failure. All cases
have one property in common: the aeroelastic simulation code that models the wind
turbine must be evaluated a large number of times, which is computationally costly. In

This chapter is based on the following article: L. M. M. van den Bos, W. A. A. M. Bierbooms, A. Alexandre, B.
Sanderse, and G. J. W. van Bussel. Fatigue design load calculations of the offshore NREL 5MW benchmark
turbine using quadrature rule techniques. To appear in Wind Energy, 2019. arXiv: 1904.07021 [cs.CE].

The measurement data used in this chapter has been obtained as part of the Dutch Wind Op Zee project
(www.windopzee.net) and has been provided by ECN part of TNO. Lindert Blonk and Menno Kloosterman
from DNV GL are acknowledged for their technical support around BLADED and for providing the model of the
NREL 5MW wind turbine.

http://arxiv.org/abs/1904.07021
http://www.windopzee.net/
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this chapter arguably one of the most costly load cases is considered: Design Load Case
(DLC) 1.2, describing fatigue loading for a power producing offshore wind turbine under
regular environmental conditions. As the time span of this load case is the full lifetime
of the turbine, usually a large number of model runs is necessary to assess the statistics
of the fatigue loading.

The conventional approach to assess the effect of environmental variability on the
turbine lifetime is to firstly split the domain of the variables describing the environ-
mental conditions in bins, secondly run the aeroelastic model several times in each bin
(the so-called seeds), and finally determine the quantity of interest (e.g. the weighted
equivalent load) incorporating the probability of occurrence of each bin. This approach
is suggested in the aforementioned standard [85, 86] and has been successfully applied
in previous research [2, 62, 151].

If applicable, binning is a versatile and effective tool to assess the effect of parameter
variability. However, a major disadvantage of binning is that the number of necessary
evaluations of the aeroelastic model is often prohibitively large, which limits its appli-
cability. Several approaches have been suggested over the years to alleviate the high
computational cost, e.g. lumping as discussed in Kühn [98, Section 8.3]. This often
requires non-trivial pre-processing steps and restrictive assumptions on the aeroelas-
tic model. An approach that is related to lumping is based on specifically selecting
scenarios that accurately represent the full load that acts on the turbine [172]. This
approach performs best if only a small number of components is considered and if the
loads acting on these components are strongly correlated. A different approach is to
reduce the time of individual model runs by adaptively limiting the simulation time and
extrapolating the obtained estimate [171], though this requires explicit insight in the
used model. Many of these approaches can be combined straightforwardly with the
methods discussed in this work, since all methods considered here are non-intrusive.

Since the goal of DLC 1.2 boils down to calculating an integral, various alternative
approaches can be considered as a replacement of binning. Examples include for exam-
ple quasi-Monte Carlo methods [31, 132], surrogate methods [4, 129, 201], or numerical
integration techniques by means of quadrature approaches [15, 24, 46, 68, 116], as
discussed extensively in the previous chapters. These approaches have in common that
regularity in the model (i.e. continuous responses to variability in the input parameters)
is leveraged such that fast convergence can be obtained for sufficiently smooth func-
tions. Moreover, they have been successfully used to assess uncertainties in models in
wind energy [20, 59, 75, 127, 128, 160], but a rigorous approach to model standardized
load cases that directly competes with binning is still lacking. Furthermore, since the
number of bins is fixed, it is difficult to assess the accuracy of the obtained estimation of
the quantity of interest (the loads in the cases studied in this chapter). Contrary to the
quadrature rules discussed in Chapter 4, it is often the case that explicit distributions
of the parameters must be provided a priori. These are typically unavailable, as there
are various distributions that could potentially fit the measurements of the uncertain
environment [126].

The goal of this chapter is to use quadrature rule approaches to assess fatigue loads
described by DLC 1.2, leading to a competitive and attractive alternative approach to
binning. Quadrature rules have the advantage that they are tailored to calculating in-
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tegrals, which is the key goal of the load case. Moreover, they are versatile and robust
by providing fast convergence for smooth functions, while still yielding accurate results
for non-smooth functions. The quadrature rule used in this chapter is the implicit
quadrature rule, as discussed in Chapter 4. It has the additional advantage over conven-
tional quadrature rules [46, 68, 116] that no explicit knowledge about the distribution of
the environmental parameters is required: only measurements of the environmental
conditions are necessary. Furthermore, it provides an error estimate of the estimated
load.

This chapter is structured as follows. In Section 5.2 fatigue load calculation is in-
troduced, consisting of describing DLC 1.2, the on-site conditions considered in this
chapter, and the wind turbine under consideration. The propagation of parametric un-
certainty through an aeroelastic model is discussed in Section 5.3. Here, the benchmark
binning procedure is briefly explained and the quadrature rule algorithm and its most
relevant mathematical properties are discussed in detail. The results obtained by bin-
ning and quadrature rules are compared in Section 5.4, demonstrating the applicability
and prospect of quadrature rules. The chapter is concluded in Section 5.5.

5.2. Fatigue load calculation
The DLCs as specified in the design requirements for offshore wind turbines by IEC [85,
86] can be globally put into two categories: ultimate and fatigue load cases. The ultimate
load cases describe the simulation of failure of a component due to rare events. Often
these cases require non-trivial extrapolation procedures to assess the statistics. On the
other hand, the fatigue load cases describe the simulation of regular environmental
conditions over a long period of time to assess the effect of wear of the turbine. The
last group is the focus of this chapter, as this type of cases requires a large number of
evaluations of an aeroelastic code. In particular, the focus is on DLC 1.2 in combination
with DLC 6.4. DLC 1.2 accounts for environmental conditions that result in power
production and DLC 6.4 describes similar environmental conditions, with the sole
exception that the turbine is idling due to too small or too large wind speeds*. There
are various other fatigue load cases describing specific scenarios, e.g. start up (DLC 3.1),
shutdown (DLC 4.1), and fault occurrence (DLC 2.4), but these are not the primary focus
of this chapter since assessing these cases is significantly less computationally costly.

In this section, the specific details of the load case considered in this chapter are
outlined. In Section 5.2.1 the details of the DLC are discussed, as standardized by IEC [85,
86]. In Section 5.2.2 and 5.2.3 the environmental conditions and the wind turbine under
consideration are discussed. To keep the simulation as realistic and as reproducible
as possible, freely available measurement data [190] and the NREL 5MW reference
turbine [91] are used to describe the environment at the offshore site and model a wind
turbine that should perform well at the location that is considered. In this thesis, the
aeroelastic code BLADED is employed for the load calculations, which is briefly discussed
in Section 5.2.4.

*Strictly speaking, DLC 6.4 only accounts for wind speeds that are significantly smaller than the reference
wind speed of the turbine (Vhub < 0.7Vref). We will also consider wind speeds larger than the cut-out speed,
which also describe an idling wind turbine.
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5.2.1. Design Load Case 1.2: fatigue analysis
The goal of DLC 1.2 and DLC 6.4 is to assess the effect of wear on a wind turbine over a
long period of time under normal design situations. All conditions are equal for both
load cases, except for the wind condition that describes an idling turbine in DLC 6.4.
Basically DLC 6.4 covers the cases where the wind speed at hub height averaged over
10 minutes, denoted as Vhub, is smaller than the cut-in speed or larger than the cut-out
speed and DLC 1.2 covers all other cases. It is convenient to bundle both cases in one
single scenario and make no assumption about Vhub.

Given the mean wind speed, the turbulence intensity is defined by means of the
normal turbulence model (NTM), which implies that the turbulence standard deviation
σ1 is given by the 90% quantile for the given wind speed at hub height, i.e.

σ1 = Iref (0.75Vhub +b), with b = 5.6m/s.

The turbulence intensity, which should be used to generate an inflow wind field using the
methods from Veers [184] or Mann [119], then equals σ1/Vhub. The lateral component of
the turbulence standard deviation, denoted as σ2, and the upward component, denoted
as σ3, are defined as σ2 = 0.8σ1 and σ3 = 0.5σ1 respectively (here, it is assumed that
the Kaimal model is used). Iref denotes the expected value of the turbulence intensity at
15 m/s, with Iref = 0.16 for the case described in this chapter.

The wind direction θwind with respect to the turbine is assumed to be uniformly
distributed between −12° and 12°, as the fatigue load case under consideration does
not model extreme yaw misalignment. Hence the wind direction 0° is equivalent to no
yaw misalignment. The wind direction and wind speed are independently distributed
random variables.

The sea state is incorporated using a joint probability distribution of the significant
wave height Hs, the peak spectral period Tp, and the wind at hub height Vhub. A nor-
mal sea state is considered, so no anomalous events are incorporated and currents are
ignored. The wind and wave directionality (and their dependence) have to be incor-
porated as co-directional or multi-directional (i.e. they are either equal or not). In this
chapter, the latter option is chosen. For this purpose, the wave direction θwave (with
respect to the turbine) is used to determine the wind/wave misalignment:

θwind/wave := θwind −θwave.

The distribution of the wind/wave misalignment can be determined by subtracting the
stochastic wave direction (which should be inferred from the site conditions) from the
uniformly distributed wind direction.

Combining the parameters describing the wind and sea conditions yields a five-
dimensional parameter space, called Ω, consisting of all possible combinations of those
parameters, called x ∈Ω. It consists of the wind speed at hub height denoted by Vhub,
the wind direction denoted by θwind, the significant wave height denoted by Hs, the peak
spectral period denoted by Tp, and the wind/wave misalignment denoted by θwind/wave.
Hence x = (Vhub,θwind, Hs,Tp,θwind/wave)T. The concrete goal of DLC 1.2 and DLC 6.4 is
to assess the effect of regular, long-term variability of these parameters on the forces
acting on the wind turbine.
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Figure 5.1: Left: The meteorological mast IJmuiden. Right: NREL 5MW reference wind
turbine.

5.2.2. Meteorological mast IJmuiden measurements
The environmental conditions used for the load case calculations are based on the
measurements done using meteorological mast IJmuiden [190]. This meteorological
mast is situated approximately 85 km from the Dutch coast (at coordinates 52◦50′53′′N
3◦26′8′′E). At the measurement site the water depth is approximately 28 m, see Fig-
ure 5.1a for an illustration. The measurement campaign started in November 2011
and lasted until March 2016. Up to some interruptions, the wind conditions at various
heights, wave conditions, and ocean current conditions at various depths have been
obtained using a lidar and a buoy throughout that period of time.

For the purpose of this chapter, we are mainly interested in the statistical behavior of
the wind in relation with the sea state. To this end, a straightforward pre-processing step
is performed to combine the hourly measured sea state with the 10-minute averages
of the wind conditions at that specific moment. After removal of all invalid measure-
ments (due to measurement errors or interruptions), 24 650 samples of the wind speed
and wind direction at hub height (which is 90 m, see the next section) and significant
wave height, wave direction, and peak spectral period are obtained. These samples
of the combined wind and wave conditions constitute 88% of all available measured
wave directions (measured hourly) and 10% of all available measured wind directions
(measured every 10 minutes).

The obtained measurements are visualized in Figure 5.2. In these figures the align-
ment of the wind turbine is ignored, i.e. the measured wind and wave direction are
used to determine the wind/wave misalignment, which is consequently used for all
computations. Notice that Figure 5.2a clearly shows that there are no measurements
with Vhub = 0m/s, i.e. the measurement devices have a small tolerance resulting in a
measured wind speed that is unconditionally positive. Figure 5.2b demonstrates that
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Figure 5.2: Measurements of the meteorological mast IJmuiden. Left: All measurements
of the wind speed and significant wave height, demonstrating their mutual
dependence. Right: Wind rose illustrating a histogram of the wind and wave
direction. Both have a dominant south west inflow.

the dominant wind and wave direction is south west. There is also a significant num-
ber of waves from north, possibly due to the open connection with the North Sea at
the offshore site of the meteorological mast. Nonetheless, waves from north rarely oc-
cur in combination with wind from south west, as the wind/wave misalignment has
approximately zero mean.

5.2.3. NREL 5MW reference offshore wind turbine
The NREL 5MW reference wind turbine for offshore system development is a fictional
offshore wind turbine designed to support concept studies aimed at assessing offshore
wind technology [91]. It is a horizontal-axis wind turbine rated at 5 MW with a rotor
diameter of 126 m. Its hub height is 90 m, which allows for the straightforward usage of
the measurement data discussed in the previous section, as measurements at 90 m are
available. The cut-in, rated, and cut-out wind speed of the turbine equal 3 m/s, 11.4 m/s,
and 25 m/s respectively. As the mean wind speed of the meteorological mast at 90 m is
10.13 m/s, simulation of the NREL 5MW wind turbine at the location of the IJmuiden
mast describes a realistic scenario of a power producing wind turbine. The geometry of
the turbine is depicted in Figure 5.1b.

5.2.4. Aeroelastic code BLADED
The simulation of the turbine is performed using the aeroelastic wind turbine modeling
tool BLADED (version 4.6). One run of BLADED to obtain the forces acting on the turbine
over a period of 10 minutes takes approximately 50 minutes on the hardware used for
the numerical experiments, which significantly dominates the total computation time.
All other algorithms discussed in this chapter (such as determining the bins, computing
the quadrature rules, and all post-processing procedures) are negligible in this regard.

BLADED is a simulation tool for modeling various aspects of a wind turbine. The
main component used in this chapter is the module that models a power producing
turbine in a regularly occurring environment. This module yields the time history of
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the forces acting on various components of the turbine, given the time history of the
environmental conditions. The wind turbine is modeled in BLADED using a combination
of blade element momentum theory and mass-spring-damper models. Many advanced
corrections, which might be based on physical insight, are used to ensure that the
obtained results are accurate. It is out of the scope of this chapter to fully discuss
all details. The interested reader is referred to Burton et al. [28] and the references
therein for a general introduction to wind turbine modeling or the Theory Manual of
BLADED [12] for the specific implementation details within BLADED.

Given specific values of the environmental parameters, BLADED is used firstly for
simulating the wind turbine to obtain the forces and secondly for post-processing the
obtained results. Obtaining forces consists of two steps. Firstly, a turbulent wind field
using the average wind speed at hub height and the turbulence intensity is generated.
Then secondly, using this turbulent wind field, the random sea state, and the design of
the NREL 5MW wind turbine, a time history of the forces acting on various components
of the turbine is calculated. By repeatedly doing such calculations for various environ-
mental conditions, and incorporating the frequency of occurrence of each specific set of
environmental parameter values, weighted equivalent loads are calculated for various
representative slopes of the S–N curve. An equivalent load is a representative load of a
specific load time history resulting in the same damage. A weighted equivalent load is
an equivalent load where the frequency of occurrence of several time histories is taken
into account. Determining these loads is the primary goal of this chapter and these
loads form a standardized way of reporting and assessing wind turbine performance.

There exists variability in the output of BLADED due to the random nature of the
turbulent wind field and sea state. To model these, it is common to generate several wind
fields and sea states and average the time histories of the forces over these realizations.
These so-called seeds are also incorporated in the framework in this chapter.

It is important to emphasize that the procedure of determining equivalent loads and
calculating the seeds is similar for both binning, which is the well-known conventional
approach, and numerical integration by means of quadrature methods, which is the
novel approach requiring significantly less BLADED evaluations suggested in this chapter.
No modifications to the code or input files of BLADED are necessary, except for the
frequency of occurrence of each individual simulation. This is a major advantage of the
approach suggested in this chapter, as all existing well-developed frameworks can be
used without significant changes (i.e. the approach is non-intrusive).

5.3. Numerical integration for load calculations
The procedure to determine all equivalent loads that are necessary to obtain weighted
equivalent loads is the most costly part of DLC 1.2, as it requires the calculation of a
large number of time histories of loads. In this section, firstly this effect is quantified and
secondly the load case is embedded in a numerical integration framework to facilitate
the application of quadrature rule techniques.

To introduce equivalent loads using the mathematical nomenclature of this thesis, let
u : Ω→R be the map that yields an equivalent load (the quantity of interest) for specific
values of the environmental conditions x ∈Ω (see Section 5.2.1 and the nomenclature of
Chapter 3 and 4). To incorporate the uncertain nature of the environment, the equivalent
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loads are combined into a single weighted equivalent load, which is ideally calculated
as follows:

Leq = m√
E[u(X)m], with E[u(X)] =

∫

Ω
u(x)ρ(x)dx. (5.1)

Here, ρ(x) is the probability density function of the random variable X, that models the
uncertainty of the environment. The integer m is the slope of the S–N curve, where it is
implicitly assumed that the S–N curve can be represented by a monomial with power m.
The notation Leq is used to represent this (ideal) weighted equivalent load.

In the case studied in this chapter, it is not assumed that there is a known prob-
ability density function of the environmental parameters, but instead measurements
are directly used (see Section 5.2.2). In this case, the random variable X is discrete (as
discussed in Section 4.2) and Leq can be introduced as follows:

Leq = m√
E[u(X)m], with E[u(X)] = 1

K

K−1∑

k=0
u(yk ), (5.2)

where yk ∈ Ω are all measurement points available (as depicted in Figure 5.2) and
K = 24650 depicts the number of measurement points. Each yk is a five-dimensional
vector describing the measured parameters (see Section 5.2.2). In theory, both (5.1) and
(5.2) can be used in the framework proposed here, i.e. either measurement data or a
distribution can be used straightforwardly.

Usually it is not viable to evaluate (5.1) exactly, as u is a map that involves evaluating
a complex aeroelastic model. Also (5.2) cannot be used, as it is intractable to evaluate
the aeroelastic model for each measurement point. Therefore, the integral is replaced
by a quadrature rule, obtaining the following approximation:

Leq
N = m√AN [um], with AN u =

N∑

k=0
u(xk )wk . (5.3)

Here, x0, . . . ,xN are N +1 specific representative values of the environmental parameters,
forming the nodes of a quadrature rule in this chapter, and w0, . . . , wN are the weights
accompanying the nodes. The weights model the frequency of occurrence of the nodes
and therefore it is essential that these weights are positive. The notation Leq

N is used to
represent a weighted equivalent load determined using the quadrature rule AN . Ideally,
we would have that Leq

N → Leq for N →∞ if Leq is according to (5.1) or for N → (K −1) if
Leq is according to (5.2).

The standardized approach to determine the nodes and weights is by means of
binning, which fits naturally in (5.3). In that case, xk are equidistantly spaced and wk

equal the frequency of occurrence of each environmental condition. This approach is
discussed briefly in Section 5.3.1.

One major disadvantage of binning is the large number of nodes (and concomitant
model runs) that are obtained for the five-dimensional parameter space considered
in DLC 1.2. An alternative is to determine the nodes and weights such that they form
an interpolatory quadrature rule. This yields an accurate estimation with relatively
small number of nodes. The challenge is to construct the rule that incorporates the
measurement data without reconstructing a (possibly inaccurate) probability density
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function and without requiring model evaluations at all samples yk . For this purpose,
the implicit quadrature rule is employed, as discussed extensively in Chapter 4. The rule
used for the load calculations, including its embedding in the framework of this chapter
is discussed in Section 5.3.2.

In (5.1), (5.2), and (5.3) it is assumed that the function u can be evaluated exactly.
This is generally not the case, as the obtained equivalent loads still depend on the
generated wind field and random sea. This is often solved by using seeds, which consists
of constructing various wind and sea states with similar environmental parameters and
averaging the obtained equivalent loads. Since the obtained equivalent loads are used
in a weighted sum, it is a natural idea to use more seeds for nodes with high weight and
vice versa. With this idea, seeds can be incorporated in the quadrature rule framework.
Details are discussed in Section 5.3.3.

5.3.1. Binning
Binning is the conventional approach to assess variability in the wind and waves. The
idea is to evaluate the aeroelastic code at equidistantly placed locations and post-process
the results using the probability density function of the variables under consideration.
The bins can be interpreted as quadrature rule nodes, yielding a rule with equidistant
xk . The weights wk describe the frequency of occurrence of xk .

If a distribution ρ(x) is known, the weight of the k-th bin bk is typically determined
as follows [85, Annex G]:

wk =
∫

bk

ρ(x)dx.

If measurements are considered, the weights are the fraction of measurements in the
bin of xk , i.e.

wk = Kk

K
,

where Kk is the number of measurements in the bin of xk and K is the total number of
measurements.

An example of a quadrature rule obtained by applying binning is illustrated in
Figure 5.3a, where the same measurement points as in Figure 5.2a have been used to
determine the bins. The weights are illustrated by means of colors and nodes with zero
weight are not depicted. The mean wind speed at hub height is binned with bin sizes of
2 m/s and the significant wave height is binned with bin sizes of 0.5 m. Notice that many
weights equal zero, requiring no concomitant model runs. Nonetheless, the majority of
the nodes (117 out of 210) has possibly small, but positive weight.

The advantage of this approach is that it is versatile and straightforward to imple-
ment. Moreover it is supported by many software packages for wind turbine simulation.
However, if multiple environmental parameters are considered the number of bins in-
creases exponentially. To see this, notice that if d parameters are considered with B bins
in each direction, the total number of bins is proportional to B d , even if bins with zero
weight are neglected. This severely limits the applicability of binning if a large number
of parameters is considered.
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Figure 5.3: The representative values of the wind speed at hub height and significant
wave height if binned or if determined by means of a quadrature rule. The
color of the nodes indicates their weight.

5.3.2. Interpolatory quadrature rules
As an alternative to binning, we consider interpolatory quadrature rules, or more specifi-
cally, the implicit quadrature rule as introduced in Chapter 4. In this chapter, the fixed
implicit quadrature rule as introduced in Section 4.3.1 is used, which is an interpolatory
quadrature rule with positive weights. Subsequently a sequence of nested quadrature
rules is constructed by iteratively removing nodes from this rule, as discussed in Sec-
tion 3.3. This yields a sequence of interpolatory quadrature rules with positive weights.

Recall that the key property of an interpolatory quadrature rule is that it is construc-
ted such that the number of polynomials it integrates exactly is equal to its number
of nodes. For this purpose, reconsider ΦN = span{ϕ0, . . . ,ϕN }, where {ϕk } are mono-
mials which are sorted graded lexicographically in this chapter. Then if x0, . . . ,xN and
w0, . . . , wN are the nodes and weights of an interpolatory quadrature rule, we have the
following:

ANϕ j =
N∑

k=0
ϕ j (xk )wk =µ j , with j = 0, . . . , N .

The values µ j are the raw moments of the distribution, defined as follows:

µ j = E[ϕ j ] =
∫

Ω
ϕ j (x)ρ(x)dx, for j = 0, . . . , N ,

which uses (5.1). If measurements are used, the raw moments are defined as follows:

µ j =
1

K

K−1∑

k=0
ϕ j (yk ), for j = 0, . . . , N ,

where yk constitute all available measurements. The latter definition, which is consid-
ered in this chapter, uses (5.2).
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Given all available measurements y0, . . . ,yK−1, the implicit quadrature rule prescribes
that there exist nodes XN = {x0, . . . ,xN } with XN ⊂ YK and positive weights w0, . . . , wN

such that
N∑

k=0
ϕ j (xk )wk = 1

K

K−1∑

k=0
ϕ j (yk ), for j = 0, . . . , N .

Such nodes and weights can be computed using Algorithm 4.1 (see page 79).
The accuracy of the quadrature rule can be assessed by using the Lebesgue inequality

(see (2.12) on page 16 and (4.5) on page 72). It yields that if the computational model
can be approximated by means of a polynomial, a quadrature rule is a viable numerical
integration methodology. A model can be approximated by a means of a polynomial
if it is continuous and if its domain is bounded, which is the case for BLADED and the
parameter space Ω considered in this chapter.

A major advantage of binning and quadrature rules is that both methods are non-
intrusive. The nodes of the quadrature rules and the bins obtained after binning are
independent of the model under consideration. This is especially relevant for load
calculations, since it allows to compute the loads acting on all components using the
same set of model evaluations. Usually it is not necessary to recompute the loads for
each component. For instance, BLADED (and many other aeroelastic computer models)
computes the loads on all components in one single run.

As discussed before, there exist various other approaches to construct interpolatory
quadrature rules with positive weights. For example, well-known univariate quadrature
rules include the Gaussian quadrature rules [74] and the Clenshaw–Curtis quadrature
rules [35]. Higher dimensional quadrature rules often have similar limitations as binning:
the number of nodes grows exponentially as the number of parameters grows. To
alleviate this, the Smolyak sparse grid can be used [135, 169], as considered briefly
in Section 2.1.3. However, in general the Smolyak sparse grid does not have positive
weights, which could result in physically impossible estimates. Moreover, the Smolyak
sparse grid requires that all parameters are independently distributed, which is clearly
not the case for DLC 1.2, as described in Section 5.2.1.

An example of the implicit quadrature rule, determined using the measurement
points from Figure 5.2a, is depicted in Figure 5.3b. The rule is chosen to consist of 117
nodes (the number of bins with non-zero weight). It is clearly visible that the nodes have
positive weights and to a certain extent represent the distribution of the measurement
points.

To assess the accuracy of the generated implicit quadrature rule, the removal proce-
dure outlined in Section 3.3 is used. Given a quadrature rule, iteratively a function ϕ j is
removed (the last row of the Vandermonde matrix, this decreases the degree of the rule)
and subsequently a node is removed from the quadrature rule using Carathéodory’s the-
orem (see page 33). Consequently a sequence of quadrature rules with positive weights
of decreasing accuracy and decreasing number of nodes is obtained, such that the
following expression can be used to estimate the accuracy of the rules:

en = |Anu −AN u|.

Here, n denotes the number of nodes of the rule upon removal of (N −n) nodes. Deter-
mining en for several increasing n (with n < N ) gives insight in the decay of the error
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made by the quadrature rule, as described by (4.7) (see page 73):

∣∣∣|Anu −E[u]|− |AN u −E[u]|
∣∣∣≤ en ≤

∣∣∣|Anu −E[u]|+ |AN u −E[u]|
∣∣∣.

The left-hand side of the inequality describes that en is larger than the difference of
the errors made by An and AN . The right-hand side of the inequality describes that en

is smaller than the sum of both errors. If the quadrature rule is applied to a function
u that can be numerically integrated using a quadrature rule, a small en implies that
the error of the quadrature rule is small. An even better estimation of the error can be
obtained by repeatedly determining en for different sequences of quadrature rules, and
taking the average of the obtained values. This is possible as multiple sequences exist
given the freedom in choosing a node that is removed from the quadrature rule (based
on the non-uniqueness of the null vector of the Vandermonde matrix).

5.3.3. Seed balancing
Both binning and quadrature rule approaches yield nodes that describe values of the
environmental parameters that should be evaluated using the aeroelastic code. These
evaluations have been denoted by the function u(x). However, these evaluations still
contain a degree of randomness: for each set of parameters, a certain number of seeds
must be evaluated. This involves three steps: firstly various turbulent wind fields and
sea states are constructed, secondly the loads are determined for each wind field and
sea state, and finally the obtained loads are averaged. Hence, if Sk seeds are used to
determine u(xk ), this can be denoted as follows:

u(xk ) = uSk (xk ) := 1

Sk

Sk∑
s=1

u(s)(xk ),

where u(s)(xk ) is an evaluation of the aeroelastic code using the s-th wind field and s-th
sea state. Ideally, we would like to accurately approximate E[u∞], with

u∞(x) = lim
S→∞

1

S

S∑
s=1

u(s)(x).

The approximation used in this chapter is AN uS for finite N and S. Here, S = ∑
k Sk

denotes the total number of BLADED evaluations used in this quadrature rule estimate.
It yields the following error estimate†:

|E[u∞]−AN uS | ≤ |E[u∞]−AN u∞|︸ ︷︷ ︸
Quadrature error

+|AN u∞−AN uS |︸ ︷︷ ︸
Seed error

.

The focus in this section is on the seed error, since the quadrature error has been
discussed extensively in Section 5.3.2. It is common to use a fixed number of seeds

†Contrary to the separation of error that is conducted in Chapter 4, this expression does not contain
a sampling error. It is assumed in this chapter that the measurements fully represent the environmental
conditions, such that no sampling error is present. Nevertheless, incorporating it is straightforward, since it is
independent of both the number of nodes and the number of seeds.
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Figure 5.4: Number of seeds per node if the seeds are balanced with an accuracy goal
E = 1/

p
5. The color of the nodes indicates the number of seeds (before

rounding up to the nearest integer).

for each node (i.e. all Sk are equal). However, an error of similar order of magnitude
determined with a smaller total number of seeds can be obtained by selecting the
number of seeds per node based on the frequency of occurrence of the node. In this way,
the accuracy in the overall approximation of the integral is preserved with a reduced
cost. In this section this intuition is derived mathematically.

First, notice that the seed error behaves as follows [31]:

|AN u∞−AN uS | ≤
N∑

k=0
|u∞(xk )−uSk (xk )|wk , with |u∞(xk )−uSk (xk )| ∼ 1√

Sk

. (5.4)

Throughout this section we write A ∼ B if the growth or decay of A is asymptotically
the same as B . The constant of proportionality is the variance of the integrand, which
typically depends on xk and m (the inverse S–N slope, recall that the integrand in (5.3)
is um). It is omitted from this estimation, but can straightforwardly be incorporated in
the procedure discussed in this section, provided that its dependence on xk and m is
explicitly known.

Notice that (5.4) is true regardless of the exact model under consideration. The error
behavior described by 1/

√
Sk follows from the usage of seeds and not from the usage of

an inaccurate model. Hence a different model can be used without having to alter the
seeds. As mentioned before, this is especially advantageous for load calculations: usually
the loads on all components of the turbine are computed in one single model run and
the proposed method discussed here can therefore be used to assess all equivalent loads
without requiring extra calculations.

The computational time of BLADED does not depend on the specific wind field or
sea state under consideration, so the total computational time scales linearly with the
number of seeds. Hence given an accuracy goal E , the goal is to determine εS0 , . . . ,εSN

that firstly minimize the total computational time S, denoted as the total number of
seeds used for all calculations, and secondly achieve the accuracy goal, denoted by the
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Table 5.1: Example of reduction in number of seeds when applying seed balancing. The

number of nodes equals 117 for both binning and the implicit quadrature rule.
The accuracy goal E equals 1/

p
5.

Unbalanced Balanced
Binning 585 323 (56 %)Quadrature rule 585 341 (58 %)

seed error:

Minimize S =
N∑

k=0
Sk ∼

N∑

k=0

1

ε2
Sk

, with εSk
:= |u∞(xk )−uSk (xk )|, such that E ≥

N∑

k=0
εSk wk .

(5.5)
Notice that for N →∞, the asymptotic error of this expression decays to 0. Even though
the error estimate is asymptotic, the relation Sk = ε−2

Sk
will be used throughout this

chapter.
The problem sketched in (5.5) is a constrained minimization problem, that can be

solved using the method of Lagrange multipliers [8], which yields the solution

εSk = A
( wk

2

)−1/3
,

where A is a scaling constant such that
∑N

k=0 εSk wk = E . Hence the number of seeds for
the k-th node should ideally equal

Sk = 1

ε2
Sk

= A′w2/3
k , with A′ = 1

2
3p

2 A−2 ≈ 0.630 A−2. (5.6)

The number of seeds Sk is larger if the associated weight wk is larger and no seeds
(hence no BLADED runs) are necessary if wk is zero. The latter is straightforward to
observe: if the weight of a node is zero, it does not contribute to the quadrature rule
approximation. Notice that the relation between Sk and wk is non-linear due to the
non-linear relation between εSk and Sk .

Only in rare cases it holds that all values of Sk as defined by (5.6) are integers. It is
difficult to solve the optimization problem stated here with the restriction that all Sk

are integer, so in this chapter the number of seeds is simply rounded up such that the
accuracy goal is reached in all cases.

The effect of the seeds and their dependence on the weights is illustrated in Fig-
ure 5.4 and summarized in Table 5.1, where the quadrature rules from Figure 5.3 are
reconsidered. Here it is assumed that by default five seeds are used per bin or node,
which is equivalent to an accuracy goal of E = 1/

p
5. If binning is used, the total number

of seeds reduces from 585 (five per bin with non-zero weight) to 323, which is only 56%
of the original cost. If the implicit quadrature rule from Section 5.3.2 is used, the total
number of seeds reduces to 341, which is 58% of the original cost.
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Table 5.2: The test functions from Genz [66]. All d-variate functions depend on the
d-element vectors a and b. The vector b is an offset parameter to shift the
function. The vector a describes the degree to which the family attribute is
present.

Integrand Family Attribute
u1(x) = cos

(
2πb1 +

∑d
i=1 ai xi

)
Oscillatory

u2(x) =∏d
i=1

(
a−2

i + (xi −bi )2
)−1

Product Peak

u3(x) = (
1+∑d

i=1 ai xi
)−(d+1)

Corner Peak

u4(x) = exp
(−∑d

i=1 a2
i (xi −bi )2

)
Gaussian

u5(x) = exp
(−∑d

i=1 ai |xi −bi |
)

C 0 function

u6(x) =
{

0 if x1 > b1 or x2 > b2

exp
(∑d

i=1 ai xi
)

otherwise
Discontinuous

5.4. Numerical examples
In order to demonstrate the benefits of the proposed quadrature rule framework, the five-
dimensional DLC 1.2 is considered and the approach is compared to binning. However,
it is infeasible to assess the complete load case using binning, as it results in an excessive
number of runs of BLADED. Therefore, first two simplified test cases are considered for
the comparison. The first test case, which is discussed in Section 5.4.1, consists of
assessing the accuracy of the quadrature rule with respect to binning if the “model” u is
a known test function. The second test case, which is discussed in Section 5.4.2, consists
of the DLC 1.2 load case, where only the wind conditions are considered uncertain (and
the sea state is fixed at nominal conditions). The full five-dimensional load case is then
assessed purely by means of a quadrature rule and contains the five aforementioned
parameters, modeling both the wind and the sea state. The results of this case (which
follows the IEC standard [85, 86] to a large extent) are discussed in Section 5.4.3.

5.4.1. Test functions
The five-dimensional Genz test functions [66] are reconsidered, which are six functions
u1, . . . ,u6 constructed specifically to assess the accuracy of integration methods (see
Table 4.1 on page 89, reproduced as Table 5.2 in this chapter for sake of completeness).
The goal is to calculate E[u] defined by measurement data (see (5.2)), i.e. the goal is to
use binning and an implicit quadrature rule to estimate

E[ug ] = 1

K

K−1∑

k=0
ug (ŷk ), for g = 1, . . . ,6.

The data under consideration is formed by the measurements from the IJmuiden meteo-
rological mast (see Section 5.2.2), scaled to the domain of definition of the Genz test
functions. Therefore, ŷk denotes yk after scaling of all data to Ω= [0,1]d (with d = 5). As
the functions ug are known exactly, no seeds are employed in this test case.
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Binning (see Section 5.3.1) is performed by fixing a number B = 1, . . . ,7, constructing

B bins in each direction (obtaining B 5 bins), and removing all bins with zero weight.
Then the implicit quadrature rule (see Section 5.3.2) is constructed such that its number
of nodes is equal to the number of obtained bins. The vectors a and b, that define the
Genz test function under consideration, are selected randomly in the unit hypercube
and a is scaled such that ‖a‖2 = 5/2. The experiment is repeated 100 times (i.e. with 100
random vectors a and b) to obtain representative values of the integration error:

eN = 1

100

100∑

k=1
e(k)

N , with e(k)
N =

∣∣∣E[u(k)
g ]−AN u(k)

g

∣∣∣ .

Here, u(k)
g is the g -th Genz test function constructed with the k-th pair of random vectors

a and b and N denotes the number of bins with non-zero weight or, equivalently, the
number of nodes of the quadrature rule. The obtained results are depicted in Figure 5.5.

First, notice that the quadrature rule consistently outperforms binning. The con-
vergence behavior of binning is approximately equal for all functions, as binning does
not leverage smoothness of the function due to its local approximation. Moreover a
large number of bins is necessary to obtain an accurate estimation. On the other hand,
the convergence behavior of the quadrature rule clearly reflects the attributes of the
test functions (see Table 5.2). Similar behavior was observed in Chapters 3 and 4, with
the key difference that here no artificially generated data is being used, but the data
encompasses measurements done at the North Sea (see Section 5.2.2). The functions
u1, u2, u3, and u4 are smooth and can be approximated accurately using a polynomial
of low degree. The integration error of these functions decays fastest. The fifth and
sixth Genz test functions are not smooth and it is not straightforward to approximate
these functions by means of a polynomial. This can also be observed in the conver-
gence behavior of the quadrature rule, as it clearly converges slower than the other test
functions.

5.4.2. Two-dimensional verification load case
The two-dimensional case under consideration is a case in which the wind speed and
wind direction vary, but the sea state is considered to be fixed. The distribution of the
wind speed and wind direction are as described in Section 5.2.1 and 5.2.2, so the wind
speed follows the data and the wind direction is uniformly distributed between −12°
and 12°. The parameters describing the sea state are fixed at their mean values obtained
from the data, which are Hs = 1.46m, Tp = 6.76s, and θwind/wave =−2.11°.

In this case, the conventional approach is to bin the wind speeds using bins of 2 m/s
and to bin the wind direction into three bins of 8°. The wind speed varies between
(approximately) 0 m/s and 30 m/s, yielding 15 bins in this dimension (these are also
depicted in Figure 5.3a), resulting in a total number of 45 bins. The frequency of occur-
rence of each bin is determined using the number of measurements in the bin, which
yields a non-zero weight for any bin. For a fair comparison, the implicit quadrature rule
is constructed such that it contains 45 nodes based on the same two parameters.

For both cases, five seeds per bin (or node) are used and by means of rainflow
cycle counting the weighted equivalent loads are determined. For the quadrature rule,
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Figure 5.5: Mean integration error of the five-dimensional Genz test functions for various
numbers of nodes, determined using binning (with the same number of bins
in each dimension) or a quadrature rule.
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Table 5.3: Equivalent loads of the two-dimensional load case, determined using various

inverse S–N slopes, acting on various components of the turbine, calculated
with three different methods.

Component Inv. S–N slope Binning Quadrature rule Quadrature rule
(five seeds) (five seeds) (balanced seeds)

Rotating hub 2 6.37 ·105 N 6.37 ·105 N 6.32 ·105 N

(In longitudinal direction) 3 4.65 ·105 N 4.62 ·105 N 4.59 ·105 N

5 4.39 ·105 N 4.39 ·105 N 4.35 ·105 N

10 4.92 ·105 N 5.02 ·105 N 4.97 ·105 N

12 5.12 ·105 N 5.23 ·105 N 5.19 ·105 N

Blade root 2 1.85 ·107 Nm 1.85 ·107 Nm 1.85 ·107 Nm

(Flap-wise moment) 3 1.34 ·107 Nm 1.34 ·107 Nm 1.34 ·107 Nm

5 1.16 ·107 Nm 1.15 ·107 Nm 1.15 ·107 Nm

10 1.20 ·107 Nm 1.21 ·107 Nm 1.19 ·107 Nm

12 1.25 ·107 Nm 1.26 ·107 Nm 1.23 ·107 Nm

Yaw bearing 2 8.03 ·105 N 8.01 ·105 N 7.93 ·105 N

(In longitudinal direction) 3 6.00 ·105 N 5.93 ·105 N 5.87 ·105 N

5 5.63 ·105 N 5.57 ·105 N 5.49 ·105 N

10 6.41 ·105 N 6.37 ·105 N 6.22 ·105 N

12 6.76 ·105 N 6.70 ·105 N 6.53 ·105 N

the seeds are balanced using the procedure from Section 5.3.3. Seed balancing is not
applied to binning, as we want to keep binning as close to the conventional approach
as possible. The number of required BLADED runs of the balanced seeds in conjunction
with a quadrature rule decreases from 225 to 173, which is (approximately) 77 % of the
original cost. Some obtained loads for several components calculated using these three
approaches (i.e. binning and quadrature rule with five seeds, and a quadrature rule with
balanced seeds) are tabulated in Table 5.3.

The difference between the loads determined with a quadrature rule (both deter-
mined with five seeds or balanced seeds) and those determined with binning is less than
5%. Strictly speaking, it is not evident whether the quadrature rule or binning yields a
more accurate answer in this case, as no exact values of the expected values of the loads
are known. However, based on the results of Section 5.4.1, we have a strong indication
that the quadrature rules yield more accurate estimates. The largest variation is in
the loads on the yaw bearing, which is likely due to its large sensitivity to the varying
environmental conditions. The contrary is true for the blade root, which is significantly
less sensitive to environmental variations. This will also be observed in the next section,
where the five-dimensional case is considered.

One main advantage of the quadrature rule approach is that its accuracy can be
assessed without any additional costly aeroelastic calculations using the removal pro-
cedure discussed in Section 5.3.2 (and originally introduced in Chapter 3). To this end,
equivalent loads have been determined using N = 1, . . . ,44 nodes, and these are com-
pared with the value from Table 5.3. As discussed in Section 5.3.2 there are multiple
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Figure 5.6: Relative quadrature error for various S–N slopes (top) or various components
(bottom) considering the two-dimensional load case without seed balancing.
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sequences of 45 nested quadrature rules. The errors reported here are averaged over five
sequences of nested quadrature rules, i.e.

eN = 1

5

5∑

k=1

∣∣Leq
N ,k −Leq

45

∣∣

Leq
45

.

Here, Leq
N ,k refers to calculating the equivalent load using N nodes of the k-th quadrature

rule sequence. The error is scaled with the loads from Table 5.3, such that loads of
different order of magnitude and with different characteristics can be compared.

The obtained quadrature errors are depicted in Figure 5.6. Notice that all reported
errors decay approximately three orders of magnitude, to a point where the error is in
the order of 0.1 % of the equivalent load. The errors decay rapidly for small N and the
rate of decay reduces for increasing N . This is likely due to the fact that the error decays
algebraically (as u5 did in Section 5.4.1), i.e. its decay is approximately a straight line
if depicted on a log-log plot. However, significantly more BLADED runs are necessary
to confirm this claim numerically (e.g. see the number of nodes considered in the
construction of Figure 5.5). The top figure depicts the convergence for the equivalent
loads of the rotating hub for various slopes of the S–N curve. It demonstrates that the
behavior of the error is similar for different values of the S–N slope, as all lines decay
rapidly. The bottom figure demonstrates that the behavior of the error is more or less
independent of the specific component under consideration.

5.4.3. Five-dimensional Design Load Case
The five-dimensional load case consists of DLC 1.2 as described in the IEC standard [85,
86]. The random parameters are in this case the five aforementioned parameters, con-
sisting of wind speed, wind direction, wind/wave misalignment, significant wave height,
and peak spectral period.

Applying binning to this case is infeasible, as the number of bins with non-zero
frequency of occurrence equals 6 308, which would result in approximately 30 000 evalu-
ations of the aeroelastic simulation code. Even after optimizing the number of seeds
using seed balancing from Section 5.3.3 the number of evaluations is still 23 219, which
remains intractable.

Instead, an implicit quadrature rule is determined consisting of 100 nodes. This
number of nodes is larger than the number of nodes from the previous section, to
account for the higher dimensionality of the problem. Furthermore, the number of
nodes is sufficient to obtain a small error (which can be assessed during the simulation
using the methods discussed in Section 5.3.2). The seeds are optimized using the method
from Section 5.3.3, resulting in 419 individual aeroelastic simulation code evaluations.
This is a major reduction compared to the number of bins, since the number of BLADED
evaluations is less than 2% of that of binning. The equivalent loads acting on various
components are summarized in Table 5.4.

The loads of the rotating hub and blade root are for the wind turbine and offshore
site under consideration relatively close to the values that were calculated in the two-
dimensional load case. These loads are apparently less sensitive to environmental
variations which could be due to their high position on the turbine. The loads acting
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Figure 5.7: Relative quadrature error for various S–N slopes (top) or various components
(bottom) considering the five-dimensional load case with seed-balancing.
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Table 5.4: Equivalent loads of the five-dimensional load case, determined using various

inverse S–N slopes, acting on various components of the turbine, using the full
five-dimensional DLC 1.2 fatigue load case calculated with the seed-balanced
quadrature rule.

Inv. S–N slope Rotating hub Blade root Yaw bearing
(In longitudinal direction) (Flap-wise moment) (In longitudinal direction)

2 6.36 ·105 N 1.84 ·107 Nm 8.06 ·105 N

3 4.66 ·105 N 1.34 ·107 Nm 6.11 ·105 N

5 4.48 ·105 N 1.15 ·107 Nm 7.65 ·105 N

10 5.50 ·105 N 1.20 ·107 Nm 1.59 ·106 N

12 6.05 ·105 N 1.24 ·107 Nm 1.82 ·106 N

on the yaw bearing are significantly larger if a random sea is considered. As the yaw
bearing is the component that directly links the tower (which is placed directly in the
sea) and the rotating hub (which is connected to the blades), its loads are sensitive to
variations in both the wind and the sea. Contrary to the two-dimensional case, the sea
state is random, so these variations are much larger.

To assess the accuracy of the obtained loads, the convergence is assessed in a similar
way as done in the previous section: by removal of nodes from the quadrature rule with
100 nodes, sequences of quadrature rules are constructed that are used to assess the
accuracy. There is a minor subtlety in this case: the number of seeds is optimized, so
the nodes of the smaller quadrature rules are evaluated using an incorrect number of
seeds. We do not correct for this, so the estimated error might be slightly larger. The
results are gathered in Figure 5.7.

Compared to the two-dimensional test case, the errors of the quadrature rules are
slightly larger, which is either due to the larger dimensionality of the problem or due to
the unbalanced seeds used to construct these figures. Nonetheless, the errors clearly
decay to a relative error smaller than 1%. For larger slopes of the S–N curve, the error is
larger, which is likely due to the higher power used in the expression that is integrated
(this increases the constant of proportionality discussed in Section 5.3.3). Again, the
convergence behavior is possibly algebraic, though significantly more simulations are
necessary to fully quantify the error. This is out of the scope of this chapter.

Concluding, this test case demonstrates that the proposed quadrature rule is capable
of accurately approximating weighted equivalent loads in standardized form using
less than 500 BLADED evaluations, which is a significant reduction compared to the
approximately 30 000 BLADED evaluations that binning requires.

5.5. Conclusion
A novel approach based on quadrature rules has been proposed to calculate wind turbine
fatigue loads as described by Design Load Case 1.2, which is standardized by IEC [85,
86]. The quadrature rule under consideration is the implicit quadrature rule as derived
in Chapter 4, with the key properties that it has positive weights and can be constructed
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using measurement data. It is based on polynomial approximation, which leverages
smoothness in the model to achieve high accuracy. To demonstrate the efficiency of the
new approach, it has been compared to binning, the conventional approach. In both
approaches, the number of seeds per bin or node can be balanced to maximize accuracy
in the available computational time. The environmental parameters are based on real
offshore measurements in the North Sea and the wind turbine under consideration is
the NREL 5MW reference wind turbine.

Both quadrature and binning approaches have been applied to a simplified two-
dimensional load case, for which it has been demonstrated that the accuracy of the
quadrature rule is comparable to that of binning. Moreover, the error of the quadrature
rule converges algebraically upon addition of nodes.

The main advantages of the quadrature rule, i.e. a significant reduction of computa-
tional time with similar accuracy, have been demonstrated by considering the full load
case, which is governed by five random parameters. In this case, binning is infeasible.
The accuracy of the quadrature rule has again been assessed numerically, confirming
that the error of the rule decays rapidly.

Throughout this chapter, all results are generated based on five seeds per node. A
possible improvement is to vary the number of seeds per node, for which a further
study of the significance of the seed error compared to the quadrature error needs to be
performed.

Overall, the results demonstrate that for fatigue load cases our proposed quadrature
rule forms a highly promising alternative to binning with significantly lower computa-
tional cost and similar accuracy. Therefore, a topic for future research is to extend the
numerical integration framework to other load scenarios, e.g. fatigue load cases with
more uncertain parameters (where the benefit of using a quadrature rule is even larger)
or ultimate load cases (where no rainflow cycle counting is applied).





Bayesian model calibration withinterpolating polynomials
The quadrature rules discussed in the previous chapters are efficient approaches to
assess the effect of uncertainty arising in external sources on the output of the model.
In the derivation of these approaches it is assumed that the model and the description
of the probability distribution of its parameters (i.e. by means of a probability density
function or by means of samples) do not contain error. This is not always the case in
practice, since models and parameter values contain inherent assumptions or biases
that could yield overconfident or meaningless predictions if not properly accounted for.

A common approach to systematically estimate the unknown model parameters of
non-linear models such that the model uncertainty is captured to a certain extent is
Bayesian model calibration. The main result of such an approach is the posterior, which
is a distribution over the model parameters. It can be used to infer predictions that
incorporate the uncertainty of the model. However, the approach is computationally
expensive by design, as it requires a large number of model runs to obtain the statistics
on the model parameters. In this chapter, an algorithm is proposed to replace the costly
model with a computationally cheap surrogate. The key component of the algorithm is
formed by weighted Leja nodes, which are used to adaptively ensure that the surrogate
can be used to determine an accurate posterior.

6.1. Introduction
Systematically estimating model parameters from measurements is a problem of fre-
quent occurrence in many fields of engineering and many different approaches exist to
solve this problem. The approach followed in this thesis is of a stochastic nature: the
unknown parameters are modeled using probability distributions and possible values

This chapter is based on the following article: L. M. M. van den Bos, B. Sanderse, W. A. A. M. Bierbooms, and
G. J. W. van Bussel. Bayesian model calibration with interpolating polynomials based on adaptively weighted
Leja nodes. Communications in Computational Physics, 27(1):33–69, 2020. DOI: 10.4208/cicp.oa-2018-
0218. arXiv: 1802.02035 [math.NA].

https://doi.org/10.4208/cicp.oa-2018-0218
https://doi.org/10.4208/cicp.oa-2018-0218
http://arxiv.org/abs/1802.02035
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of these parameters are inferred using Bayesian statistics. This is often called Bayesian
model calibration, and has been introduced briefly in Section 2.2. The mathematical
foundation of these techniques is relatively straightforward, but naively assessing the
obtained statistics requires many model evaluations. The latter challenge is the key
focus of this chapter.

Bayesian model calibration [95, 153, 158] is a systematic way to calibrate the pa-
rameters of a computational model. By means of a statistical model that describes
the relation between the model and the data, the calibrated parameters are modeled
using a probability density function (PDF), called the posterior, which is obtained using
Bayes’ law. This density function can consequently be used to assess the uncertainty
in the model and to infer predictions. The focus of this chapter is mainly on calibra-
tion of the model, whereas the focus of Chapter 7 shifts to Bayesian prediction. The
calibration approach has already been applied many times, for example to calibrate the
closure parameters of turbulence models [34, 52]. A similar example is considered in
this chapter.

Possibly the largest drawback of Bayesian model calibration is the expensive sam-
pling procedure that is necessary. The posterior depends to a large extent on the model,
which is only known implicitly (e.g. a computer code numerically solving a partial differ-
ential equation), so drawing a sample from the posterior is usually done using generally
applicable Markov chain Monte Carlo (MCMC) methods [80, 122], which require many
expensive model evaluations, as outlined in Section 2.2.2 on page 24. Improvements
have been made to accelerate these MCMC methods, e.g. the DREAM algorithm [186] or
adaptive sampling [193]. Replacing the sampling procedure itself is also possible, e.g.
methods based on sparse grids [33, 117] or Approximate Bayesian Computation [6, 40,
111]. However, this encompasses stringent assumptions on the statistical model or still
requires many model runs as the shape of the posterior is unknown.

A different approach is followed in the current chapter. In essence the approach
of Marzouk et al. [120] is followed, which has been used several times in literature [1, 11,
121, 138, 149, 204, 205, 206]. The key idea is to replace the model in the calibration step
with a surrogate (or response surface) that approximates the computationally expensive
model. MCMC can then be used to sample the obtained posterior without a large
computational overhead.

Various approaches to construct this surrogate in a Bayesian context exist, for exam-
ple Gaussian process emulators [173] or non-intrusive polynomial approximations [201]
as discussed in Section 2.1.2. The focus of this thesis is on the latter, because polyno-
mial approximations provide high order (up to exponential) convergence for sufficiently
smooth functions. Contrary to the commonly used pseudo-spectral projection methods,
which are known as generalized Polynomial Chaos Expansions, we choose to use inter-
polation of the computationally expensive model. The reason for this is that the error of
a polynomial interpolant is usually measured using the absolute error (the L∞

ρ -norm),

contrary to the mean squared error (the L2
ρ-norm) that is used for the pseudo-spectral

approaches. As the model is used as input in the Bayesian analysis, having absolute
error bounds on the surrogate significantly simplifies the analysis. Moreover, the conver-
gence of a pseudo-spectral expansion deteriorates significantly if the surrogate is not
constructed using the statistical model [112]. This happens in particular if the expansion
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is constructed with respect to the prior (which is the usual approach) and the likelihood
is very informative (i.e. the relative entropy between the prior and the likelihood is high).

The interpolating polynomial is constructed using weighted Leja nodes [90, 130].
Ideally, Leja nodes weighted using the posterior are used, but these are generally unavail-
able since the posterior is computationally costly. Therefore in this chapter weighted
Leja nodes are extended in a novel way to adaptively refine the interpolating polynomial
using an approximation of the posterior. As extensive theory about interpolation poly-
nomials exists (e.g. [84]), we can prove convergence of the estimated posterior with mild
assumptions on the likelihood, provided that widely used conventional Leja nodes yield
a converging polynomial interpolant. This extends previous work [11, 120], in which the
likelihood is assumed to be Gaussian. The end result is an interpolating polynomial that
can be used in conjunction with the likelihood and the prior to obtain statistics of the
posterior.

To demonstrate the applicability of our methodology, we will employ three different
classes of test problems. The first class consist of functions that are known explicitly and
can be evaluated fast and accurately. We will use these to show the effectiveness of our
nodal set compared to commonly used methods. The second class consists of problems
that are defined implicitly, but do not require significant computational power to solve.
For this, we employ the one-dimensional Burgers’ equation. In this case, it is possible
to compare the estimated posterior with a posterior determined using Monte Carlo
methods. The last class consists of problems of such large complexity that a quantitative
comparison with a true posterior is not possible anymore. As example we consider the
calibration of closure coefficients of the Spalart–Allmaras turbulence model.

This chapter is set up as follows. First, we discuss Bayesian model calibration and
introduce the adaptively weighted Leja nodes. In Section 6.3 the theoretical properties of
the algorithm are studied and its convergence is assessed. Section 6.4 contains numerical
tests that show evidence of the theoretical findings and in Section 6.5 conclusions are
drawn.

6.2. Bayesian model calibration with a surrogate
The focus is on the stochastic calibration of computationally expensive (possibly implic-
itly defined) models. As done throughout this thesis, this model is denoted by u : Ω→R,
with Ω⊂Rd (d = 1,2, . . . ). Without loss of generality, we assume that u is a scalar quan-
tity and that u depends on d parameters, which we will denote as usual using a vector
x = (x1, . . . , xd )T ∈Ω. Contrary to previous chapters, where these parameters were based
on physical quantities, in this chapter one can think of x as parameters inherent to the
model, such as fitting parameters or other closure parameters.

The goal of Bayesian model calibration is to infer statistical quantities of the model
parameters, given observations of the process modeled by u. To this end, we assume
that a vector of observations z = (z1, . . . , zn)T is given, with zk ∈ R. This vector can be
provided by various means, for example by measurements or by the results of a high-
fidelity model. Using parameters x, a statistical model is formulated describing a relation
between the model u(x) and the data z by means of random variables that model among
others discrepancy, error, and uncertainty. For example, these random variables account
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for measurement errors and numerical tolerances. Using Bayesian statistics [65], the
posterior of the parameters is formulated by means of a PDF.

The nomenclature and notation from Chapter 2 is reconsidered here. Hence let
q(x) be the prior, a PDF that models the prior knowledge of x obtained for example
through physical constraints, assumptions, or previous experiments. The likelihood
q(z | x) is obtained through the statistical relation between the model u and the data
z. Possibly the most straightforward example is zk = u(x)+εk , where ε= (ε1, . . . ,εn)T is
assumed to be multivariate Gaussian distributed with mean 0 and covariance matrix Σ.
As illustrated in Chapter 2, this yields the following likelihood:

q(z | x) ∝ exp

[
−1

2
dTΣ−1d

]
, with d a vector such that dk = zk −u(x). (6.1)

The vector d is the so-called misfit. Bayes’ law is applied to obtain the posterior q(x | z),
i.e.

q(x | z) ∝ q(z | x) q(x). (6.2)

The posterior can be used to infer statistical quantities of the parameters of the model,
e.g. by determining the expectation or the maximum a posteriori (MAP) estimate. The
uncertainty of these parameters can be quantified by determining the moments of the
posterior.

Note that the posterior depends on the likelihood, which requires an expensive
evaluation of the model (see (6.1)). Therefore sampling the posterior using MCMC
methods [80, 122] is typically intractable for the computationally expensive models
considered in this thesis.

Vector-valued models u can be incorporated in this framework straightforwardly,
although the likelihood requires minor modifications. Typically an observation operator
is introduced that restricts u to the locations where measurement data is available. We
will discuss an example of this in Section 6.4.3.

Throughout this chapter we assume that the likelihood is a continuously differen-
tiable, Lipschitz continuous function of the misfit d or (more generally speaking) of
the model u. This is true for the multivariate Gaussian likelihood and (more generally
speaking) for any likelihood which has additive errors (see [95] for more examples in
the context of Bayesian model calibration). There are no further constraints on the
structure of the likelihood and the prior in this chapter, but we do not accommodate
the calibration of hyperparameters, i.e. parameters of the distributions introduced in the
statistical model (an example would be the calibration of the standard deviation of ε).
Moreover, we assume the prior is not improper, i.e. it is a well-defined distribution with

∫

Ω
q(x)dx = 1.

Even though this prohibits the usage of a uniform prior on an unbounded interval, in
practice our methods can be applied in such a setting.

The outline of the proposed calibration procedure is as follows. Let uN be an inter-
polating surrogate of u computed using N +1 nodes and concomitant model evalua-
tions. Using uN , an estimated posterior can be determined, which is used to obtain the
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(N +2)-nd node. The steps are repeated until convergence is observed. Finally MCMC
can be applied to the obtained posterior, because the computationally expensive model
is replaced with an explicitly known surrogate.

First, we briefly reintroduce the interpolation polynomial for sake of completeness.
Then the nodal set we will use, the Leja nodes, will be introduced.

6.2.1. Interpolation methods
Polynomial interpolation as introduced in Section 2.1.2 is used in this chapter to con-
struct a surrogate of the computationally expensive model. To this end, let u : Ω→ R

with Ω⊂Rd be a continuous function. Consider a sequence of monomials ϕ0, . . . ,ϕN ,
sorted graded reverse lexicographically in this chapter, and the function space these
polynomials span, denoted as before by ΦN = span{ϕ0, . . . ,ϕN }. Then using a nodal set
XN = {x0, . . . ,xN } and evaluations of u at each node (i.e. u(xk ) for k = 0, . . . , N ) the goal is
to determine a polynomial uN ∈ΦN such that

uN (xk ) = u(xk ), for k = 0, . . . , N .

Univariate interpolation
In the case of d = 1, it is well known that if all nodes are distinct the interpolation poly-
nomial can be stated explicitly using Lagrange interpolating polynomials, as discussed
in Section 2.1.2 and defined by (2.5). In particular, the following expression is obtained:

uN (x) = (LN u)(x) :=
N∑

k=0
`N

k (x)u(xk ), with `N
k (x) =

N∏

j=0
j 6=k

x −x j

xk −x j
. (6.3)

Here LN is a linear operator that yields a polynomial of degree N , which we will denote
as uN as above. Recall that by construction the Lagrange basis polynomials `N

k have

the property `N
k (x j ) = δk, j (i.e. `N

k (x j ) = 1 if j = k and `N
k (x j ) = 0 otherwise). Therefore

uN (xk ) = u(xk ) for all k, such that it is indeed an interpolating polynomial.

The barycentric notation [7] can be used to numerically evaluate the interpolat-
ing polynomial given a nodal set (which is unconditionally stable [82]). It follows by
rewriting (6.3) in the following form:

uN (x) =
(

N∑

k=0

vk

x −xk
u(xk )

)/(
N∑

k=0

vk

x −xk

)
, with vk = 1

/
N∏

j=0
j 6=k

(xk −x j ) . (6.4)

Common factors in the so-called barycentric weights vk cancel. Therefore this formula-
tion can be used to accurately evaluate the interpolating polynomial, provided that the
nodal set has asymptotically constant barycentric weights (such as Chebyshev nodes [7]),
i.e. (maxk |vk |)/(mink |vk |) =O(1).
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Multivariate interpolation
The Lagrange interpolating polynomials can also be formulated explicitly in a multivari-
ate setting, though arguably less intuitively, by defining them in terms of the determinant
of a Vandermonde matrix:

uN (x) = (LN u)(x) :=
N∑

k=0
`N

k (x)u(xk ), with `N
k (x) = detV (x0, . . . ,xk−1,x,xk+1, . . . ,xN )

detV (x0, . . . ,xk−1,xk ,xk+1, . . . ,xN )
,

(6.5)
where V (x0, . . . ,xN ) is the (N +1)×(N +1) Vandermonde matrix with respect to the nodal
set {x0, . . . ,xN }, i.e. as introduced before (e.g. (4.4) on page 71):

V (x0, . . . ,xN ) =




ϕ0(x0) · · · ϕ0(xN )
...

. . .
...

ϕN (x0) · · · ϕN (xN )


 .

Multivariate interpolation by means of this Vandermonde matrix is only well defined if
this matrix is non-singular, in which case XN is called a poised interpolation sequence.
All nodal sequences constructed in this chapter are (by construction) poised.

There exist various other monomial orders, for example for the purpose to con-
struct a sparse grid [134]. Also adaptive choices have been studied [130]. Often these
approaches leverage structure in the underlying distribution by decomposing it in d
univariate distributions. Such efficient approaches cannot be applied to the context
of this chapter, because it is rarely the case that the posterior can be decomposed in
d univariate distributions, due to the asymmetry in the model and the measurement
data. Nonetheless, the framework and algorithms proposed in this chapter can easily
accommodate different monomial orders.

Evaluating a multivariate interpolating polynomial numerically can be done in vari-
ous ways. A commonly used approach is to choose ϕ j (x) to be orthogonal polynomials
(e.g. Chebyshev or Legendre polynomials) and to compute the interpolating polynomial
by solving the linear system from (2.4) (see page 12) for coefficients ak . This constitutes
computing uN by solving

uN (x j ) =
N∑

k=0
ak ϕk (x j ) = u(x j ), for j = 0, . . . , N . (6.6)

Orthogonal polynomials form a linear combination of monomials, so mathematically
speaking the Lagrange interpolating polynomial or the linear system from (6.6) yield
exactly the same result.

The nodal sets used in this chapter are defined using the determinant of the Vander-
monde matrix. Therefore a QR factorization [73] of the Vandermonde matrix is used to
solve (6.6). Consequently the QR factorization is reused to determine the nodal set (see
Section 6.2.2 for details).

6.2.2. Weighted Leja nodes
In Chapter 4 three important properties of quadrature rules have been discussed: ac-
curacy, positivity of the weights, and nesting. A nodal set used for interpolation ideally
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has similar traits. More specifically, for the purpose of Bayesian model calibration we
desire an algorithm to determine a nodal set XN for any N such that it has the following
properties:

1. Accuracy: the nodal sets should yield an accurate posterior. We are mainly inter-
ested in estimating the posterior, i.e. it is strictly speaking not necessary to have
an accurate surrogate model.

2. Nested: we require Xi ⊂ X j for i < j , such that the obtained interpolant can be
refined by reusing existing model evaluations.

3. Weighting: the goal is to determine the next node based on the posterior obtained
so far. Therefore the nodal set should support weighting to incorporate arbitrary
probability distributions.

In this chapter we consider weighted Leja nodes, which form a sequence of nodes and
are therefore by definition nested. We proceed by defining univariate Leja nodes and
generalizing these to multivariate Leja nodes.

The definition of weighted Leja nodes is by induction. Let ρ : R→R be a bounded
PDF and let {x0, . . . , xN } be a sequence of Leja nodes. Then the next node is defined as
follows:

xN+1 := argmax
x∈R

ρ(x)|detV (x0, . . . , xN , x)| = argmax
x∈R

ρ(x)|x −x0||x −x1| · · · |x −xN |. (6.7)

This maximization problem does not necessarily have a unique solution. To ensure that
a solution exists and polynomial approximation is well defined, it is necessary to assume
that the polynomials are dense in the space of continuous functions equipped with the
∞-norm weighted with ρ, i.e. the following norm:

‖ f ‖ρ = ‖ f ρ‖∞ = sup
x∈R

| f (x)ρ(x)|.

This norm is simply called the ρ-norm in this chapter. It is important to emphasize that
this ρ-norm is conceptually different from the L∞

ρ -norm used in Section 2.1.2. If there
are multiple values maximizing (6.7), we pick the one with smallest x to ensure that the
sequence is reproducible. The initial node x0 is defined as the smallest global maximum
of ρ(x).

The requirement that the polynomials must be dense in the space of continuous
functions equipped with the ρ-norm is non-trivial. It is among others the case if Ω is
bounded or if ρ(x) ∝ exp(−|x|α) with α≥ 1 [130], which constitute all cases discussed
in this chapter. It is necessary that ρ has finite moments, but this is not sufficient. An
elaborate discussion is out of the scope of this chapter and the interested reader is
referred to Lubinsky [113].

Notice that definition (6.7) can be rewritten as follows:

xN+1 = argmax
ρ(x)>0

(
logρ(x)+

N∑

k=0
log |x −xk |

)
. (6.8)
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Figure 6.1: Univariate Leja sequences for various numbers of nodes and various well-
known distributions.

If ρ is bounded from below and above, i.e. A ≤ ρ(x) ≤ B for 0 < A < B and ρ(x) has
bounded support, the sum log |x−x0|+· · ·+ log |x−xN | will dominate the maximal value
for large N . Hence for any x the value of the sum will increase (but remains bounded
as ρ(x) has bounded support) and ρ(x) will remain constant (as ρ is independent of
N ). This implies that for ρ that are bounded from below and above, the influence of the
weighting function decreases as N increases.

Unweighted Leja nodes are defined with the uniform weighting function on [−1,1].
We want to emphasize that multiplying the weighting function with a constant yields
an identical sequence. This property is very useful for our purposes, as it allows us to
neglect the constant of proportionality (often called the evidence) in Bayes’ law (see
(6.2)).

Examples of these sequences are depicted in Figure 6.1. Throughout this chapter,
univariate Leja nodes are determined by applying Newton’s method to the derivative
of the logarithm of the maximization problem above, i.e. (6.8) is solved instead of
(6.7). By determining all local maxima between two consecutive nodes in parallel, large
numbers of nodes can be calculated fast and accurately (as the maximization function is
smooth between two nodes). Numerical cancellation is kept minimal by using extended
precision arithmetic (with machine epsilon approximately 10−19).

The definition of univariate Leja nodes from (6.7) can be generalized straightfor-
wardly to a multidimensional setting in a similar way as we did in Section 6.2.1 with
interpolation. To this end, let ρ : Rd → [0,∞) be a multivariate PDF. Let x0 ∈Rd be an
initial node with ρ(x0) > 0, which is selected as the minimal value that maximizes ρ (if
there are multiple, select the smallest considering a lexicographical ordering). Then
given the nodes x0, . . . ,xN , the next node xN+1 is defined as follows:

xN+1 := argmax
x∈Rd

ρ(x) |detV (x0, . . . ,xN ,x)| . (6.9)

Here, V is the Vandermonde matrix defined in Section 6.2.1. The absolute value of the
determinant of V is independent of the set of polynomials that is used to construct
V , so the definition is mathematically the same for both monomials and orthogonal
polynomials.

Determining multivariate Leja nodes is less trivial compared to univariate nodes
and is typically done by randomly (or quasi-randomly) sampling the space of interest
and selecting the node that results in the highest determinant. It is significantly more
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Figure 6.2: Multivariate Leja sequences of 25 nodes using various well-known distribu-
tions.

complicated to reliably apply Newton’s method in this case, as the space cannot be easily
partioned in regions where the local maxima reside. To reach a comparable accuracy,
it is important to be able to use a large number of samples, so it must be possible to
calculate the determinant fast. We suggest to calculate the determinant by an extended
QR factorization of the matrix consisting of the first N +1 rows of V (x0, . . . ,xN ,x). Then
for a different random sample, the (N +2)-nd column containing x can be updated
efficiently by applying a rank-1 update. If a QR factorization has been calculated to
determine the interpolating polynomial (see Section 6.2.1), it can be reused here. As
a rank-1 update is an efficient procedure, a large number of samples can be used and
therefore we assume that the approximation error is negligible in this case. Examples of
Leja sequences defined by (6.9) can be found in Figure 6.2.

6.2.3. Calibration using Leja nodes
In this section a weighting function is derived which is used in the procedure discussed
in the previous section, with the goal to approximate the posterior. Theoretical details
are provided in Section 6.3. First the rationale behind the weighting function is discussed.
Then the weighting function is introduced formally and the mathematical derivation it
is based upon is presented. Finally, the single free parameter of the weighting function
is discussed.

Rationale
If the posterior is known explicitly and samples can be readily drawn from it, it is
possible to determine weighted Leja nodes with weighting function ρ(x) = q(x | z). Such
an interpolant is specifically tailored to computing integrals with respect to the posterior
(this is commonly known as Bayesian prediction and is considered in more detail in
Chapter 7). However, the posterior is generally not explicitly available because it depends
on the model u, which in itself is not known explicitly and can only be determined on
(finitely many) nodes. Therefore the need arises for an interpolation sequence that
approximates u such that the posterior determined with this approximation is accurate.

To this end, let qN (x | z) be the posterior determined using uN (x), i.e. the interpolant
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of u using N +1 nodes. If the likelihood is according to (6.1), qN is as follows:

qN (x | z) ∝ q(x)exp

[
−1

2
dTΣ−1d

]
, with d a vector such that dk = zk −uN (x).

We will use the definition of the weighted Leja nodes from (6.9) to determine the next
node. The natural idea is to construct qN+1(x | z) (i.e. a new approximation of the
posterior) by determining a new weighted Leja node using qN (x | z) (i.e. the existing
approximation of the posterior). Such a sequence can be numerically unstable, because
it solely places nodes in regions where the approximate posterior is high and therefore
yields spurious oscillations in other regions in the domain.

The key idea is to balance the accuracy of the interpolant with the accuracy of the
posterior. There are various methods to do this, but we choose to temper the effect
of the (possibly inaccurate) approximate posterior by adding a constant value ζ to
it. The higher this ζ, the more the posterior tends to the prior. In Section 6.3.2 it is
demonstrated that for any ζ> 0, the interpolant constructed with these weighted Leja
nodes has (at least) the same asymptotic convergence rate as an interpolant determined
with weighted Leja nodes without adaptivity. If ζ is chosen correctly, the approximate
posterior is already accurate for moderately small N .

The adaptive weighting function
To introduce this construction formally, we assume that a function Q : R→ [0,∞) exists
such that

q(z | x) =Q(u(x)), (6.10)

where Q is typically a PDF which follows from the statistical model. In the example
discussed in (6.1) Q is a Gaussian PDF, i.e.

Q : R→ [0,∞), with Q(u) ∝ exp

[
−1

2
dTΣ−1d

]
and dk = zk −u. (6.11)

We assume that the function Q is globally Lipschitz continuous and continuously
differentiable. Many statistical models used in a statistical setting yield Lipschitz contin-
uous Q, because a bounded continuously differentiable function Q(u) with Q′(u) → 0
for u → ±∞ is Lipschitz continuous. The domain of definition of Q is the image of
the model u, so functions Q that are only Lipschitz continuous in the set described by
the image of u also fit in this framework (for example the Gamma distribution on the
positive real axis).

The weighting function proposed in this chapter, called q (ζ)
N , is chosen such that it

balances between qN (x | z) and q(x). It follows from the mean value theorem, which will
be discussed in more detail later. It explicitly depends on N and a free parameter ζ, and
is defined as follows:

q (ζ)
N (x | z) := |Q′(uN (x))|q(x)+ζq(x), where ζ> 0 is a free parameter. (6.12)

So, if x0, . . . ,xN are the first N +1 Leja nodes, xN+1 is determined as follows:

xN+1 = argmax
x

q (ζ)
N (x | z) |detV (x0, . . . ,xN ,x)| . (6.13)
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Here the derivative Q′ is with respect to u, i.e.

Q′(u(x)) = ∂Q
∂u

(u(x)).

We want to emphasize that for the evaluation of Q′(uN (x)) no costly evaluation of the
full model u is necessary, since Q′ is an explicit expression. In the example from (6.1),
Q′ is as follows:

Q′ : R→R, with Q′(u) ∝−1

2

(
1TΣ−1d+dTΣ−11

)
exp

[
−1

2
dTΣ−1d

]
and dk = zk −u,

with 1 = (1,1, . . . ,1)T ∈Rn .

Mean value theorem
The weighting function qN as defined in (6.12) follows naturally by applying the mean
value theorem to the error of the approximate posterior. This introduces the derivative
Q′ in the expression. To this end, let a fixed x be given, and apply the mean value
theorem as follows:

|qN (x | z)−q(x | z)| = |Q(uN (x))−Q(u(x))|q(x)

= |Q′(ξ)||uN (x)−u(x)|q(x)

= |Q′(uN (x))+ζx||uN (x)−u(x)|q(x),

(6.14)

with ξ an (unknown) value between uN (x) and u(x) and ζx =Q′(ξ)−Q′(uN (x)). Essen-
tially ζx is used to represent higher order derivatives of Q in this expression. The value
of ζx depends on x and on the model u, which is not explicitly known. By further ex-
panding Q′, it can be shown that ζx scales with |uN (x)−u(x)|, provided that Q is twice
differentiable with bounded second order derivative:

ζx =Q′(ξ)−Q′(uN (x))

= 1

2
Q′′(ξ̂)(uN (x)−u(x)), for a ξ̂ between uN (x) and u(x).

Hence if uN (x) → u(x) for N → ∞ and if Q′′ is bounded (or if the divided difference
of Q′ is bounded), it holds that ζx → 0 for N →∞. In this chapter, the constant ζx is
used to measure how far the likelihood of the interpolant is from the likelihood of the
true model. The idea is to add a Leja node xN+1 where the error in the posterior is

large, though such that the interpolant remains stable. The weighting function q (ζ)
N as

introduced before follows by taking the ∞-norm in x on both sides of (6.14):

‖qN (x | z)−q(x | z)‖∞ = ‖Q(uN (x))−Q(u(x))‖∞
= ‖|Q′(ξ)|(uN (x)−u(x))q(x)‖∞
≤ ‖(|Q′(uN (x))|+ζ)(uN (x)−u(x)

)
q(x)‖∞

= ‖(uN (x)−u(x))q (ζ)
N (x)‖∞,

with ζ≥ |ζx| = |Q′(ξ)−Q′(uN (x))| for all x.
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Choose q(x), q(z | x),ζ

Calculate x0 = argmaxx q(x)

Evaluate u(xN ); Construct uN (x), qN (z | x)

Convergence?

Construct q (ζ)
N (x) = |Q′(uN (x))|q(x)+ζq(x)

xN+1 = argmaxx q (ζ)
N (x)|detV (x0, . . . ,xN ,x)|

Finish Yes?

No?

Figure 6.3: Schematic overview of the algorithm considered in this chapter.

The algorithm proposed in this chapter is to (iteratively) firstly determine q (ζ)
N , sec-

ondly determine xN+1 using (6.13), and finally determine u(xN+1) and reconstruct the

interpolant (which yields uN+1 and consequently q (ζ)
N+1(x | z)). This algorithm is sketched

in Figure 6.3. Convergence can be assessed in various ways, for example using the
∞-norm or the Kullback–Leibler divergence. We will mainly focus on the ∞-norm, as
determining the Kullback–Leibler divergence in high-dimensional spaces is numerically
challenging.

The exact value of ζx is not known a priori and depends on x. Nonetheless, we will
demonstrate that for any ζ> 0 it holds that ‖u −uN‖∞ → 0 (for N →∞), provided that
“conventional” weighted Leja nodes produce a converging interpolant. If uN → u for
N →∞, the exact value of ζ converges to 0, hence any value of ζ will work for sufficiently
large N . We will further study the convergence of this method in Section 6.3.

Choice of ζ
To illustrate the behavior of the weighting function as defined by (6.12), examples of

interpolants obtained using Leja nodes weighted using q (ζ)
N in conjunction with the exact

posterior are depicted in Figure 6.4. Here the parameter x of the univariate function
u(x) = sinc(x) = sin(x)/x is “calibrated” using the Gaussian likelihood from (6.11) with
σ= 1/10, a uniform prior defined on [−2,2], and a single data point at z1 = 1. Hence the
exact posterior is as follows:

q(x | z1) ∝
{

exp
[
− 1

2σ2 |u(x)− z1|2
]

if |x| ≤ 2,

0 otherwise.

The weighting function under consideration is q (ζ)
N (x) = |Q′(u(x))|+ζ, where u is used

instead of uN to illustrate the effect of ζ.
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Figure 6.4: Interpolation of the sinc function using 5 weighted Leja nodes with respect to
the posterior using a tempering parameter ζ. The model u(x) and (unscaled)
posterior q(x | z1) are depicted in color and in black respectively. The solid
line represents the result constructed by means of interpolation. The “true”
model and posterior are depicted using a dashed line.

If ζ= 0 (no tempering) the interpolant is indeed accurate with respect to the pos-
terior (i.e. the weighted q(x | z1)-norm), but yields an incorrect approximate posterior
because the interpolant intersects the value of the data incorrectly around x = ±1.5.
These spurious oscillations disappear for larger N , but for different test cases this is not
necessarily the case (as it requires global analyticity). For ζ= 100, it is guaranteed that
ζ≥ |Q′(ξ)−Q′(uN (x))| for all x, but the nodes determined with that value are, due to the
large variations in the determinant of the Vandermonde matrix, not sensitive to small
variations in the approximate posterior, and are therefore pointwise close to unweighted
Leja nodes (e.g. compare Figure 6.4c with Figure 6.1a). The best strategy is to take a
small non-zero value of ζ, which balances posterior accuracy with stability. For such a
small non-zero value, the second and third node are basically unweighted Leja nodes
(and end up on the boundary). This does demonstrate the importance of tempering
on the effect of the approximate posterior, which becomes especially important if the
function u is not globally analytic (but “only” continuous).

The key point in obtaining a converging interpolant is that ζ > 0. If ζ = 0, the
inaccuracy of uN can significantly deteriorate the convergence (see Figure 6.4), except
possibly if u is globally analytic. If the goal is to optimize ζ, we suggest an adaptive
approach based on a heuristic. Start with ζ = ζ0 > 0 and for each iteration, multiply
ζ with a constant α > 1 if the error in the posterior increases and divide ζ by α if the
interpolation error decreases. The error can be estimated by comparing two consecutive
approximate posteriors. This procedure is however not necessary to obtain convergence
for the examples in this chapter, for which a fixed value of ζ is sufficient.

6.3. Convergence of the posterior
In this section the convergence of the estimated posterior to the true posterior is studied,
denoted as follows:

‖qN (x | z)−q(x | z)‖∞ → 0, for N →∞.
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It is difficult to theoretically demonstrate this, since the convergence rate of interpolants
constructed with Leja nodes is only known in some specific cases. However, we will
demonstrate that the convergence rate of an interpolant determined with adaptively
weighted Leja nodes is similar to the rate of an interpolant determined with Leja nodes
without adaptivity, such that all results on the convergence of these conventional Leja
nodes carry over.

The analysis is split into two parts. First, in Sections 6.3.1 and 6.3.2 the focus is on
the model, i.e. it is assessed in which cases ‖uN −u‖q(x) → 0 for N →∞ (where q(x)
denotes the prior). In Section 6.3.1 convergence properties of interpolation methods
are briefly reviewed. A more extensive discussion can be found in Section 2.1.2 (see
page 11). In Section 6.3.2 the focus is specifically on Leja nodes, a case that will be
mostly assessed numerically. Moreover, the close relation between adaptively weighted
Leja nodes and Leja nodes without adaptivity is considered.

The second part of the analysis consists of demonstrating that the posterior con-
verges if the interpolant converges. Specifically, in Section 6.3.3 the following is demon-
strated:

‖qN (x | z)−q(x | z)‖∞ ≤ L‖uN −u‖q(x), with L a constant independent of N .

The conventional way of describing the distance between two distributions is by means
of the Kullback–Leibler divergence. In Section 6.3.4 it is proved that if the interpolant
converges to the true model, the Kullback–Leibler divergence between the approximate
posterior and the true posterior converges to zero. Moreover, the rate of convergence
doubles.

6.3.1. Accuracy of interpolation methods
The accuracy of interpolation methods can be assessed in two ways: using pointwise
error bounds which are typically based on Taylor expansions and global error bounds
which are typically based on the Lebesgue inequality, as previously introduced in Chap-
ter 2. In this chapter, the focus is primarily on the latter type.

Let ϕ0, . . . ,ϕN be N +1 monomials sorted graded reverse lexicographically and con-
sider ΦN = span{ϕ0, . . . ,ϕN }. Let u ∈ C (Ω) be a continuous function representing the
computational model with ‖u‖∞ <∞ if not stated otherwise. It is well known that C (Ω)
equipped with the norm ‖ ·‖∞ forms a Banach space, provided that Ω is compact.

The previously discussed Lebesgue inequality follows readily. Let XN = {x0, . . . ,xN }
be a set of interpolation nodes and let LN : C (Ω) →ΦN be the Lagrange interpolation
operator from (6.3) that determines the interpolating polynomial given the nodal set
XN . Then as introduced in Section 2.1.2 (see (2.9) on page 14), the Lebesgue inequality
reads as follows [84]:

‖LN u −u‖∞ ≤ (1+ΛN ) inf
ϕ∈ΦN

‖ϕ−u‖∞. (6.15)

with

ΛN := ‖LN‖∞ = sup
x∈Ω

N∑

k=0
|`N

k (x)|.
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Figure 6.5: The weighted Lebesgue constant of weighted Leja nodes for three different
distributions. The dashed line depicts ΛN = N .

The Lebesgue constant ΛN is the operator norm of LN induced by the norm ‖ · ‖∞
discussed above. The multivariate Lagrange basis polynomials `N

k (x) are as in (6.5).
In the procedure used for calibration, nodes are determined using a weighting

function ρ. To assess the accuracy of nodes that use weighting, we reconsider the ρ-
norm ‖u‖ρ = ‖ρu‖∞. Here, we assume that ρ : Ω→R is a bounded PDF, such that C (Ω)
equipped with the norm ‖ · ‖ρ forms a Banach space. The space Ω is allowed to be
unbounded, in contrast to the unweighted case. The unweighted case is a special case
of the weighted case.

Using this norm we can derive a similar estimate as (6.15) by introducing [90]:

Λ
ρ

N := ‖LN‖ρ = sup
x∈Ω

N∑

k=0

ρ(x)

ρ(xk )
|`N

k (x)|.

Here, ΛρN is called the weighted Lebesgue constant, i.e. the norm of the operator u 7→
ρLN (u/ρ). We call the result the weighted Lebesgue inequality:

‖LN u −u‖ρ ≤ (1+ΛρN ) inf
ϕ∈ΦN

‖ϕ−u‖ρ .

The Lebesgue inequality does not readily provide means to estimate the order of
convergence, as discussed extensively previously in this thesis. Jackson’s inequality [87,
140] can be used for this purpose, but this inequality is in principle only applicable
to the usual ∞-norm. Jackson’s inequality has been extended to the weighted case,
see Lubinsky [113] and the references therein, though the technical details are rather
involved. Important for this chapter is that if u is Lipschitz continuous (or continuous
and bounded on a compact domain) then a sublinearly growing Lebesgue constant
provides a converging interpolant.

6.3.2. Lebesgue constant of Leja nodes
It is both an advantage and a disadvantage that the Lebesgue constant solely depends on
the nodal set: we do not have to take the model into account to estimate the accuracy,
but the resulting estimate does not leverage any properties of the model.

There exist many nodal sets with a logarithmically growing Lebesgue constant, which
is asymptotically the optimal growth. For example, Chebyshev nodes (i.e. the nodes from
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Figure 6.6: The weighted Lebesgue constant of adaptively weighted Leja nodes using
a Gaussian likelihood with σ = 1/10, a uniform prior on [−2,2], a single
data point z1 = 1, and the function u(x) = sinc(x). The dashed line depicts
ΛN = N .

the Clenshaw–Curtis quadrature rule) have ΛN =O(log N ) [84]. Moreover, we already
stated that the Chebyshev nodes are nested such that the nodes for N = 2l +1 (for integer
l ) are contained in the nodes for N = 2l+1 +1. However, the Chebyshev nodes are only
defined in an unweighted setting. Another well-known example is formed by equidistant
nodes, which have an exponentially growing Lebesgue constant. This can be observed
by interpolating Runge’s function.

Although it is known that the Lebesgue constant of both weighted and unweighted
univariate Leja sequences grows sub-exponentially [90, 177, 178], the exact growth (or
a strict upper bound) is not known. We have therefore numerically determined the
Lebesgue constant for N up to 30000 for several distributions and observed ΛρN ≤ N , see
Figure 6.5. For the purpose of these figures, the Leja nodes and the Lebesgue constant
have been determined by applying Newton’s method to the derivative of the function,
as described in Section 6.2.2.

Except for some specific cases (such as the unit disk [32]), not much is known about
the Lebesgue constant in the multivariate case. Unfortunately, as far as the authors know,
it is difficult to determine the Lebesgue constant of multivariate Leja nodes accurately
enough to create a similar plot as Figure 6.5. For small numbers of nodes (N ≤ 100)
and low dimensionality (d ≤ 5) the Lebesgue constants seem to grow similarly, but the
sampling procedure significantly deteriorates the accuracy. Moreover this number is
too small to draw conclusions about general asymptotic behavior. Nonetheless, the
numerically determined growth of the Lebesgue constant is sufficient for the purposes
in the current chapter (since we have N ≤ 100 throughout this chapter). Contrary to
the Lebesgue constant, large numbers of multivariate Leja nodes can be determined
efficiently by means of sampling, as evaluating the maximization function is significantly
more straightforward (see Section 6.2.2).

These results do not carry over straightforwardly to the case of adaptively weighted
Leja nodes where the weighting function depends on the number of nodes. However, for
reasonably small N the Lebesgue constant can be assessed numerically. To this end, we

have determined the Lebesgue constant Λ
q (ζ)

N
N , i.e. the Lebesgue constant weighted with

q (ζ)
N from (6.12), of adaptively weighted Leja nodes using the aforementioned example
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of a Gaussian likelihood in conjunction with the function u(x) = sinc(x) (see Figure 6.6).
Determining Leja nodes in this case is still relatively straightforward, but determining
the Lebesgue constant accurately is significantly less trivial due to the varying weight
function, so we limit ourselves to at most 100 nodes. Even though the weighting function
now depends on the number of nodes, it appears that the Lebesgue constant still grows
sublinearly. This result, in conjunction with the numerical results from Section 6.4, is
a strong indication that weighted Leja nodes as proposed in this chapter indeed yield
an interpolant that can be used to construct an accurate approximate posterior. Notice

that slow growth of Λ
q (ζ)

N
N implies slow growth of Λq

N and vice versa (where q denotes the
prior), which can be seen as follows:

Λ
q
N = sup

x∈Ω

N∑

k=0

q(x)

q(xk )
|`N

k (x)| ≤ sup
x∈Ω

N∑

k=0

‖Q′‖∞+ζ
ζ

q (ζ)
N (x)

q (ζ)
N (xk )

|`N
k (x)| ≤

(
1+ ‖Q′‖∞

ζ

)
Λ

q (ζ)
N

N ,

Λ
q (ζ)

N
N = sup

x∈Ω

N∑

k=0

q (ζ)
N (x)

q (ζ)
N (xk )

|`N
k (x)| ≤ sup

x∈Ω

N∑

k=0

‖Q′‖∞+ζ
ζ

q(x)

q(xk )
|`N

k (x)| ≤
(
1+ ‖Q′‖∞

ζ

)
Λ

q
N .

(6.16)

Furthermore, this expression can be used to demonstrate that results about the growth
of the Lebesgue constant to a certain extent carry over to the setting of adaptively
determined nodes. To see this, notice that if x ∈Ω is given and x0, . . . ,xN are adaptively
weighted Leja nodes, it holds for all k = 0, . . . , N that

ζq(x)|detV (x0, . . . ,xk−1,x)| ≤ q (ζ)
k (x)|detV (x0, . . . ,xk−1,x)|

≤ (ζ+‖Q′‖∞)q(xk )|detV (x0, . . . ,xk−1,xk )|.
Hence let q̂(x) be as follows:

q̂(x) =
{
ζ+‖Q′‖∞ if x = xk for any k = 0, . . . , N ,

ζ otherwise.

Then it holds for all k = 0, . . . , N that

q̂(x)|detV (x0, . . . ,xk−1,x)| ≤ q̂(xk )|detV (x0, . . . ,xk−1,xk )|.
Hence there exists a single weighting function q̂ that defines these nodes. Moreover,
following the same derivation as (6.16), it holds that

Λ
q
N ≤

(
1+ ‖Q′‖∞

ζ

)
Λ

q̂
N and Λq̂

N ≤
(
1+ ‖Q′‖∞

ζ

)
Λ

q
N , (6.17)

where Λq̂
N is used instead of Λ

q (ζ)
N

N (i.e. the weighting function is independent of N ).
Concluding, the Lebesgue constant of adaptively weighted Leja nodes grows asymp-

totically at least as slow as the Lebesgue constant of Leja nodes weighted with q̂ . Fur-
thermore, the growth of the Lebesgue constant weighted with the prior is similar to the
growth of the Lebesgue constant weighted with q̂ . As discussed before, it is difficult to
assess these bounds theoretically, though the Lebesgue constant can often be assessed
numerically. Notice that it is essential that ζ> 0 for this result to hold, since otherwise
the constant in (6.17) can become unbounded.
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6.3.3. Convergence of the posterior
In this section the convergence of the method is studied. In particular, the interest is in
the error of the estimated posterior in the ∞-norm, given convergence of the interpolant.
It is demonstrated that, provided that the interpolant converges, a posterior constructed
with the interpolant converges.

As discussed previously, let q(x), q(z | x), and q(x | z) be the prior, likelihood, and
posterior respectively and let u be the model as usual. We assume an interpolant uN

is given such that ‖uN −u‖q(x) → 0 for N →∞. Such an interpolant can for example
be constructed with adaptively weighted Leja nodes, as discussed extensively in the
previous section, but this is not explicitly assumed here (e.g. Leja nodes weighted with
the prior also suit). Let qN (z | x) and qN (x | z) be the likelihood and the posterior
respectively, both constructed with this interpolant (i.e. qN (z | x) =Q(uN (x))). The main
result, stated in Theorem 6.1 below, is that if the interpolant converges to the model, the
approximate posterior converges to the posterior. We do not need differentiability of Q
in this general case, but require Q to be Lipschitz continuous.

Theorem 6.1. Let u : Ω→R be a continuous function and let uN be the interpolant of u
constructed with N nodes. Suppose

‖uN −u‖q(x) ≤CQN ,

with QN → 0 for N → ∞, and C a positive constant (independent of N). Assume the
likelihood (i.e. the function Q) is Lipschitz continuous.

Then
‖qN (x | z)−q(x | z)‖∞ ≤ KQN ,

where K is a positive constant.

Proof. Recall the definition of Q from (6.10): q(z | x) = Q(u(x)). Let L be the Lipschitz
constant of Q. Convergence readily follows:

‖qN (x | z)−q(x | z)‖∞ = ‖(qN (z | x)−q(z | x))q(x)‖∞
= ‖[Q(uN (x))−Q(u(x))]q(x)‖∞
≤ L‖(uN (x)−u(x))q(x)‖∞
= L‖uN (x)−u(x)‖q(x)

≤ LCQN . ■
If uN converges to u in the q(x)-norm, the estimated posterior converges to the true

posterior with at least the same rate of convergence, e.g. exponential if QN ∝ A−N (for
A > 1) and algebraic if QN ∝ N−α for α> 0. This concludes the proof of Theorem 6.1,
extending previous work [11, 30, 121, 203] to the interpolating framework of this chapter.

6.3.4. The Kullback–Leibler divergence
The Kullback–Leibler divergence is often used in a Bayesian setting to measure distance
between distributions. It is defined as follows, given two probability density functions
p(x) and q(x) defined on a set Ω:

DKL
(
p(x) ‖ q(x)

)=
∫

Ω
p(x) log

p(x)

q(x)
dx.
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The Kullback–Leibler divergence is always positive, vanishes if (and only if) p ≡ q ,
and is finite if p(x) = 0 implies q(x) = 0 (here, it is used that limx→0 x log x = 0). The
interest is in proving bounds on DKL

(
qN (x | z) ‖ q(x | z)

)
or DKL

(
q(x | z) ‖ qN (x | z)

)
. This

is non-trivial due to the logarithm in the integral. The analysis consists of two parts:
first it is studied in which cases the Kullback–Leibler divergence converges to zero and
then the convergence rate is derived.

Convergence of the Kullback–Leibler divergence
To prove convergence, first pointwise convergence of the logarithm is proved, then this is
extended to convergence of the integral using Fatou’s lemma, and finally it is concluded
that the Kullback–Leibler divergence converges. As the Kullback–Leibler divergence
is defined for probability density functions, we have to incorporate the scaling of the
posterior. To this end, let γN and γ be defined as follows:

γ=
∫

Ω
q(z | x) q(x)dx,

γN =
∫

Ω
qN (z | x) q(x)dx.

(6.18)

To start off, the following lemma provides pointwise convergence of log qN (x)
q(x) , i.e.

log qN (x)
q(x) converges for each x ∈Ω. We omit the proof.

Lemma 6.2. Let gn : Ω→R be a series of functions with gn(x) → g (x) for n →∞, for all
x ∈Ω. Assume gn > 0 for all n and g > 0. Then

log
gn(x)

g (x)
→ 0, for n →∞, for all x ∈Ω.

Note that the generalization to uniform convergence is non-trivial, since that would

require that the convergence of log qN (x)
q(x) is independent of x, which is not obviously the

case. However, by definition the Kullback–Leibler divergence does not require uniform
convergence, but only convergence in the integral. As the functions we are using are
probability density functions, Fatou’s lemma is handy. It is well known and we omit the
proof.

Lemma 6.3 (Fatou’s lemma). Let f1, f2, . . . be a sequence of extended real-valued measur-
able functions with respect to a probability density function ρ and let f = limsupn→∞ fn .
If there exists a non-negative integrable function g (i.e. g measurable and

∫
Ω g (x)ρ(x)dx <

∞) such that fn ≤ g for all n, then

limsup
n→∞

∫

Ω
fn(x)ρ(x)dx ≤

∫

Ω
f (x)ρ(x)dx.

We are now in a position to prove convergence of the Kullback–Leibler divergence,
given pointwise convergence of the posterior. As uniform convergence of the posterior
has been studied extensively in Section 6.3.3, assuming pointwise convergence is not a
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restriction. However, we additionally assume positivity of the posterior, as the Kullback–
Leibler divergence becomes undefined otherwise.

Theorem 6.4. Suppose ‖qN (x | z)−q(x | z)‖∞ → 0 for N →∞, qN (x | z) > εq(x) > 0 for a
ε> 0, and q(x | z) > 0 in Ω. Then

DKL
(
q(x | z) ‖ qN (x | z)

)→ 0, for N →∞.

Proof. The proof consists of combining Lemma 6.2 and 6.3. The result follows from
applying Lemma 6.3 with fN = log q

qN
and f = 0, in conjunction with g = supN log q

qN
. A

direct application of this lemma yields DKL
(
q(x | z) ‖ qN (x | z)

)→ 0. However, to apply
Lemma 6.3, pointwise convergence of log q

qN
to 0 is necessary. This can easily be seen

by applying Lemma 6.2, with gN = qN and g = q . ■

In a similar way, convergence of DKL
(
qN (x | z) ‖ q(x | z)

)→ 0 can be proved.

Convergence rate of the Kullback–Leibler divergence
Theorem 6.4 only demonstrates convergence of the Kullback–Leibler divergence. The
exact rate of convergence (or the constant involved in it) has not been deduced. In this
section we will prove that the convergence rate doubles under mild assumptions, which
are:

1. ‖qN (x | z)−q(x | z)‖∞ ≤CQN , with QN → 0 for N →∞,

2. qN (z | x) > 0 and q(z | x) > 0,

3. q(x) has compact support.

The first assumption states that the estimated posterior converges, which can be shown
using Theorem 6.1. For example, QN = N−α if qN converges algebraically to q with rate
α. Many statistical models (such as the model from (6.1) with a uniform prior) fit in
these assumptions. Priors on an unbounded domain (e.g. the improper uniform prior or
Jackson’s prior) cannot be used in the setting of this section due to the last assumption.
The convergence result reads as follows.

Theorem 6.5. Suppose Assumptions 1, 2, and 3 hold.
Then

DKL
(
q(x | z) ‖ qN (x | z)

)≤ KQ2
N .

Proof. The Kullback–Leibler divergence is always positive, hence

DKL
(
q(x | z) ‖ qN (x | z)

)≤ DKL
(
qN (x | z) ‖ q(x | z)

)+DKL
(
q(x | z) ‖ qN (x | z)

)

=
∫

Ω
qN (x | z) log

qN (x | z)

q(x | z)
dx+

∫

Ω
q(x | z) log

q(x | z)

qN (x | z)
dx

=
∫

Ω

(
qN (x | z)−q(x | z)

)
log

(
γ

γN

qN (z | x)

q(z | x)

)
dx,
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with γ and γN according to (6.18). By taking the absolute value of the integral, we can
bound it using the ∞-norm as follows:

DKL
(
q(x | z) ‖ qN (x | z)

)≤
∫

Ω

∣∣qN (x | z)−q(x | z)
∣∣
∣∣∣∣log

(
γ

γN

qN (z | x)

q(z | x)

)∣∣∣∣ dx

≤
∥∥∥∥log

(
γ

γN

qN (z | x)

q(z | x)

)∥∥∥∥
∞

∫

Ω

∣∣qN (x | z)−q(x | z)
∣∣ dx.

Then, by simplifying the first part of this expression the following is obtained:

DKL
(
q(x | z) ‖ qN (x | z)

)≤ ‖ log(γ)− log(γN )+ log(qN (z | x))− log(q(z | x))‖∞
·
∫

Ω

∣∣qN (z | x)−q(z | x)
∣∣q(x)dx.

The first term can be bounded using the triangle inequality and the second term can be
bounded by using that Ω is bounded, obtaining the following:

DKL
(
q(x | z) ‖ qN (x | z)

)≤ (‖ log(γ)− log(γN )‖∞+‖ log(qN (z | x))− log(q(z | x))‖∞
)

· ‖qN (z | x)−q(z | x)‖∞.

As γ> 0, the first term can be bounded using the Lipschitz continuity of the logarithm.
Moreover, Ω is compact, hence there exists an A > 0 such that q(z | x) > A with x ∈Ω.
Therefore the second term can also be bounded using the Lipschitz continuity of the
logarithm. The last term is already in the right format, and we obtain

DKL
(
q(x | z) ‖ qN (x | z)

)≤ 1

| log A|
(‖γ−γN‖∞+‖qN (z | x)−q(z | x)‖∞

)

· ‖qN (z | x)−q(z | x)‖∞.

Finally, the result readily follows:

DKL
(
q(x | z) ‖ qN (x | z)

)≤ (C1QN +C2QN )C2QN = KQ2
N . ■

Note that in a similar manner it can be proved that DKL
(
qN (x | z) ‖ q(x | z)

)≤ KQ2
N . If

QN = N−α, then Q2
N = N−2α, demonstrating that the rate of convergence indeed doubles.

6.4. Numerical examples
Three numerical test cases are employed to demonstrate the performance of our method-
ology. First, in Section 6.4.1 two explicit test cases are studied, which are cases where an
expression for u is known that can be evaluated accurately such that the exact posterior
can be determined explicitly. We use these cases to verify the theoretical properties that
have been derived in Section 6.3. For sake of comparison, these cases are studied using
interpolation based on Clenshaw–Curtis nodes, Leja nodes, and the proposed adaptively
weighted Leja nodes.
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In Section 6.4.2, we study calibration of the one-dimensional Burgers’ equation.

As an explicit solution is not available here, we can show the practical purposes of
the interpolation procedure to problems that are defined implicitly. We determine the
interpolant using Clenshaw–Curtis nodes and weighted Leja nodes.

The third test case consists of the calibration of the closure parameters of the Spalart–
Allmaras turbulence model. Here, a single evaluation of the likelihood is computationally
expensive as it requires the numerical solution of the Navier–Stokes equations. In this
case straightforward methods (such as MCMC) become intractable and therefore we
will only study weighted Leja nodes. This case is considered in Section 6.4.3.

It is important to emphasize that the interest is in obtaining an accurate estimation
of the posterior. Therefore we mainly study the convergence of the posterior and focus
to a lesser extent on the convergence of the model.

6.4.1. Explicit test cases
We consider two analytic functions to demonstrate the applicability of the approach.
Both functions are analytic in their domain of definition, but one of the two functions
cannot be represented globally by means of a power series expansion (which is often
challenging in interpolation problems). The first function, a Gaussian function, has
a large radius of convergence, such that a single power series expansion can be used
to globally approximate the function accurately. The second function, a multivariate
extension of Runge’s function, yields a power series expansion with a small radius
of convergence such that a single power series expansion cannot be used to globally
approximate the function. Both functions are defined for any dimension d .

Gaussian function
A well-known class of analytic functions is formed by Gaussian functions. We will use
the fourth Genz function (see Table 4.1 on page 89) in the following form to represent
the model:

ud : [0,1]d →R, with ud (x) := exp

(
−

d∑

k=1

(
xk −

1

2

)2
)

.

This function is a composition of the exponential function and a polynomial, which are
both globally analytic. Hence also this function is globally analytic and can therefore
be approximated well using polynomials. Consequently, any nodal set can be used to
interpolate this function—even an equidistant set—so we use this test case merely for a
sanity check of the procedure and the theory.

Two statistical models are employed to demonstrate the independence of our pro-
cedure from the likelihood. The first is the statistical model discussed before, i.e.
zk = ud (x)+εk , with εk ∼N (0,σ2) and σ= 1/10. As discussed before, the likelihood of
this statistical model is as follows:

qN (z | x) ∝ exp

[
−1

2

‖z−ud (x)‖2
2

σ2

]
,

where z is the vector containing the data. A data vector of n = 20 elements is generated
by sampling from a Gaussian distribution with mean ud (1/4) and standard deviation



6.4. NUMERICAL EXAMPLES 145

0 0.5 1
0

0.5

1
x 2

0 0.5 1
0

0.5

1

x1

x 3

0 0.5 1
0

0.5

1

x2

(a) True posterior (N )
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(d) Estimated posterior (β)

Figure 6.7: True and estimated posteriors with the analytic Gauss function as model
using the multivariate normal (N ) likelihood and the Beta (β) likelihood with
25 Leja nodes.

σ. The subscript N refers to multivariate normal. For the second model, we do not
write an explicit relation between the data and the model, but simply use the following
likelihood:

qβ(z | x) ∝
{

(1−e)2(1+e)2 if |e| < 1,

0 otherwise,

where e and z are as follows:

e = z −ud (x)

z
and z = 1

n

n∑

k=1
zk .

We call this likelihood the Beta likelihood (denoted with β), which we use because it has
different characteristics than the Gaussian likelihood. As the standard deviation is signif-
icantly larger in the second case, the posteriors differ considerably. Both likelihoods are
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Figure 6.8: Convergence of the interpolant (indicated using open markers) and conver-
gence of the Kullback–Leibler divergence (indicated using filled markers)
when using the Gaussian function as model.

continuously differentiable, so we expect similar accuracy when applying the proposed
algorithm. In both cases the prior is assumed to be uniform in the domain [0,1]d .

Because the model under consideration is analytic, the value of ζ is not very im-
portant for the accuracy of the interpolation procedure (even ζ= 0 works well in this
case). We choose ζ= 10−3, because then convergence of the posterior can be observed
well, which is shown in Figure 6.7 for d = 3. It is clearly visible that for the multivariate
normal case, the nodes are placed more in the center of the domain (see for comparison
Figure 6.2a). This is also true for the second case, but less apparent due to the less
intuitive structure of the posterior. The asymmetry between dimensions occurs due to
the interpolation with Leja nodes, which are asymmetric by construction.

If we restrict ourselves to a one-dimensional case, the convergence of our algorithm
can be assessed with high accuracy as it is possible to determine the Kullback–Leibler
divergence with high accuracy using a quadrature rule. Moreover, a comparison with
an interpolant based on Clenshaw–Curtis nodes can be performed. In multivariate
cases such a comparison is not feasible, as determining the Kullback–Leibler divergence
with high accuracy is intractable either with Monte Carlo (due to the relatively slow
convergence) or with a quadrature rule (due to the deterioration of the high accuracy of
the univariate quadrature rule). Nonetheless, even in univariate cases the decay of the
Kullback–Leibler divergence is relevant for this chapter, as the goal is to construct an
accurate posterior (and not necessary an accurate interpolant, for which various more
efficient multivariate interpolation techniques exist).

The Kullback–Leibler divergence cannot be determined for the Beta likelihood. This
is because two interpolants uN1 and uN2 in general do not have |e| < 1 exactly at the
same x. Therefore the set where one model has e = 0 and the other e > 0 (and vice versa)
is measurable, rendering the Kullback–Leibler divergence unbounded.

The Kullback–Leibler divergence is determined using posteriors constructed with
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Figure 6.9: Convergence of the interpolant (indicated using open markers) and conver-
gence of the Kullback–Leibler divergence (indicated using filled markers)
when using Runge’s function as model.

weighted Leja nodes, unweighted Leja nodes, and the Clenshaw–Curtis nodes (see Fig-
ure 6.8). All nodal sets under consideration yield a model and a posterior that converge
to respectively the true model and true posterior. The doubling of the convergence
rate, according to Theorem 6.5, already becomes apparent for the small number of
nodes used and it is clearly visible that the weighted Leja nodes are mainly constructed
for accuracy of the posterior instead of the model. The weighted Leja nodes with the
smallest value of ζ show the fastest convergence, but the difference of model evaluations
necessary to reach a certain accuracy level is small as the model under consideration is
analytic.

Runge’s function
A well-known test case for interpolation methods is the univariate Runge’s function. We
consider a multivariate extension of it, defined (up to a constant) in the domain [0,1]d

as follows:

ud : [0,1]d →R, with ud (x) = 5

2+50
∑d

k=1 (xk − 1
2 )

2 .

This function is infinitely smooth, i.e. all derivatives exist and are continuous. However,
its Taylor series has small radius of convergence. If a nodal set with exponentially
growing Lebesgue constant is used to interpolate this function, the convergence rate is
significantly deteriorated (if it converges at all). This is well known and typically called
Runge’s phenomenon. The Gaussian statistical model, the uniform prior, and the true
value x ≡ 1

4 are reconsidered for this test case. Results in terms of convergence using the
three different nodal sets discussed previously are shown in Figure 6.9 (again d = 1).

Differences between the nodal sets are more apparent than in the previous test
case. In this case it can be clearly observed that the weighted Leja nodes are mainly
constructed to obtain an accurate posterior and that less emphasis is put on the accuracy
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Figure 6.10: Left: Propagation of the posterior through the Burgers’ equations. Right: The
prior (dashed) and the posterior of the Burgers’ equation calibration test
case.

of the interpolant. The weighted Leja nodes outperform the other nodal sets in the
Kullback–Leibler divergence. The unweighted Leja nodes and Clenshaw–Curtis nodes
perform equally well, which is surprising as the Leja nodes do not have a logarithmically
growing Lebesgue constant (contrary to the Clenshaw–Curtis nodes). Figure 6.9 also
shows that upon increasing the value of ζ from 10−3 to 1, the convergence rate of the
weighted Leja sequence slightly decreases. For small N , the posterior dominates the
weighting function in Leja nodes, while for large N the effect of ζ becomes important.

6.4.2. Burgers’ equation
In this section the Burgers’ equation is considered where the boundary condition is
unknown, extending the example from Marzouk and Xiu [121]. The one-dimensional
steady state Burgers’ equation for a solution field y(s) and diffusion coefficient ν is
stated as follows:

ν
∂2 y

∂s2 − y
∂y

∂s
= 0,

where boundary conditions complete the system. In this section, we will consider
the equation on an interval [−1,1] with ν = 1/10 and use the boundary conditions
y(−1) = 1+δ and y(1) =−1, where δ is unknown.

The inverse problem is as follows. Let s0 be the zero-crossing of the solution y(s), i.e.
y(s0) = 0. Given a vector of noisy observations of s0, we would like to obtain the value of
δ, i.e. reconstruct the boundary conditions. Hence, using the notation of this thesis, we
have a function u : R→R with u(δ) = s0. This function maps a boundary condition δ to
the zero-crossing of the solution y . In the current setting, this function is only defined
implicitly.

Let z be a vector with n = 20 noisy observations of s0. We generate this vector by
sampling δ from a normal distribution with mean 1/20 and standard deviation σ= 1/20
and determining the corresponding values of s0. We use a uniform prior such that
δ∼U [0,1/10]. The likelihood is Gaussian with zero mean and standard deviation σ, i.e.
for each “measurement” zk (for k = 1, . . . ,n) we have

zk −u(δ) ∼N (0,σ2).
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Figure 6.11: Convergence of the posterior of Burgers’ equation using three different
sampling procedures.

A second-order finite volume scheme is employed to numerically solve the Burgers’
equation equipped with a uniform mesh of 105 cells. The zero-crossing is determined
by piecewise interpolation of the solution.

We use Clenshaw–Curtis (scaled to [0,1/10]), Leja, and weighted Leja nodes to com-
pute the posterior. In all three cases, the interpolant was refined until the Kullback–
Leibler divergence of the estimated posterior with respect to the true posterior (com-
puted using a fine quadrature rule) is smaller than 10−7. In Figure 6.10 a sketch of the
distribution of u after propagation of this posterior and the exact posterior is depicted.
The standard deviation of the output variable u is small because we only take measure-
ment errors into account (hence the standard deviation decreases for larger data sets).
The posteriors determined after convergence of the three nodal sequences did not differ
visually from the true posterior, so we do not present them separately.

There are large differences in the number of nodes that are necessary to obtain a
converged posterior, see Figure 6.11. For the posteriors determined using Clenshaw–
Curtis nodes and Leja nodes, approximately 45 nodes are necessary. For the weighted
Leja nodes, just 18 nodes are necessary for ζ = 1 and only 9 nodes are necessary for
ζ= 10−3. This significant improvement is because the initial nodes already provide a
good approximation of the posterior, which is leveraged when ζ is small. Again it is
clearly visible that for small N , the posterior dominates the weighting function, while
for large N the value of ζ dominates. In both cases the weighted Leja nodes clearly
outperform the other nodal sets.

6.4.3. Turbulence model closure parameters
In this section the flow around an airfoil (i.e. the two-dimensional cross section of a
wing) is considered. The airfoil under consideration is the RAE2822, because extensive
publicly available measurements have been performed for this particular airfoil. We
use the wind tunnel measurements of the pressure coefficient from Cook et al. [36]
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Figure 6.12: The pressure coefficient around the RAE2822 airfoil using the canonical
turbulence coefficients.

and study Case 6, i.e. the angle of attack equals 2.92◦, the Mach number equals 0.725,
and the Reynolds number equals 6.5 ·106. These parameters are not corrected for wind
tunnel effects, which is necessary for comparison with numerical simulations. See Slater
et al. [168] for more information about such a correction procedure and Cook et al. [36]
for more information about the measurement data under consideration, as these details
are out of the scope of this chapter.

The key difference between the case studied here and the airfoil flow studied in
Chapter 4 is that the flow is transonic, i.e. there is both a subsonic and supersonic
region. These type of flows usually have shock formation, which is not the case for
the flow studied in Chapter 4. The flow around the airfoil studied in this chapter is
depicted in Figure 6.12, determined numerically using the parameters from Case 6 and
the canonical turbulence coefficients of the Spalart–Allmaras turbulence model. It is
clearly visible that there is shock formation on the upper side of the airfoil.

Problem description
The flow around an airfoil is often modeled using the Navier–Stokes equations. Due
to the large range of scales present in the solution of these equations, typically the
Reynolds-averaged Navier–Stokes (RANS) equations are employed. The details are out
of the scope of this chapter. The interested reader is referred to Wilcox [192]. The RANS
equations do not form a closed system of differential equations and require a closure
model. Typically, the Boussinesq hypothesis is used, which introduces an eddy viscosity.
This viscosity models the effect of turbulence in the flow and requires an additional set of
equations called a turbulence model. Throughout the years, many different turbulence
models have been developed. These models have fitting parameters, chosen such that
the model represents idealized test cases well. Often the coefficients are calibrated in
a non-systematic way (e.g. by hand). A turbulence model that is commonly used for
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flow over airfoils is the Spalart–Allmaras turbulence model, which consists of a single
equation modeling the transport, production, and dissipation of the eddy viscosity [170].

Several forms of this model exist. The original Spalart–Allmaras turbulence model
has 9 constants, defined as follows:

σ 2/3 Cb1 0.1355 Cb2 0.622

κ 0.41 Cw2 0.3 Cw3 2.0

Ct3 1.2 Ct4 0.5 Cv1 7.1

Here we omit Cw1, which is commonly defined as Cw1 =Cb1/κ2 + (1+Cb2)/σ.
Although tested extensively, straightforward physical interpretations do not exist for

many of the parameters above. In this section, we calibrate these parameters systemat-
ically using Bayesian model calibration and apply the weighted Leja nodes proposed
in this chapter. We use ζ= 1, to make sure that we have convergence without spurious
oscillations. This value is probably slightly too large than necessary to obtain a converg-
ing approximate posterior, but due to the large computational expense that is necessary
for these simulations and the inability to run these simulations a large number of times
we choose ζ rather too large than too small. Results on the calibration of turbulence
parameters exist in literature [34, 51], where it is customary to calibrate the parameters
using MCMC methods.

The computer code SU2 is employed to numerically solve the RANS equations, which
is a second-order finite-volume computational fluid dynamics solver with support for
the Spalart-Allmaras turbulence model. We have made a few minor modifications to
allow the turbulence parameters to be configurable. SU2 has been tested extensively
to the airfoil test case (for the canonical turbulence parameters) with these options,
see Palacios et al. [139].

Statistical model
We consider the same parameters for calibration as Edeling et al. [51] and Cheung et
al. [34], namely ϑ= (κ,σ,Cb1,Cb2,Cv1,Cw2,Cw3)T. The remaining parameters are fixed
at their canonical values. The parameters are denoted using ϑ (instead of x) to avoid
confusion with the commonly used nomenclature for the spatial parameters.

We are now in the position to state the statistical model. Let s be the spatial parame-
ter along the contour of the airfoil that runs from the tip of the airfoil in anticlockwise
direction over the airfoil, i.e. s parametrizes the airfoil such that each s has a unique
value for the pressure coefficient. Suppose the data (i.e. a vector of pressure coefficients)
z = (z1, . . . , zn)T is provided at locations s = (s1, . . . , sn)T on the airfoil. Then the statistical
model under consideration is as follows:

v(ϑ; sk ) = u(ϑ; sk )+δ(sk ),

zk = v(ϑ; sk )+εk ,

where δ∼N (0,Cov(s, s′)) is a Gaussian process with mean 0 and squared exponential
covariance function

Cov(s, s′) = A exp

[
− (s − s′)2

2l 2

]
.
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Moreover, we choose all εk to be independently and identically Gaussian distributed
with mean zero and standard deviation σ̃, which is defined explicitly later (we use σ̃
to avoid confusion with one of the turbulence coefficients). The measurement data
from Cook et al. [36] consists of n = 103 measurements obtained on the surface of the
airfoil.

We choose the model such that v is the “true” process that is modeled by u. The
random process δ and random variables εk represent the model and measurement error
respectively. Both require an estimation based on knowledge of the model and the data,
as our calibration framework currently does not include hyperparameters. Bounds for
the measurement error are provided in Cook et al. [36], resulting in σ̃= 0.01. This value
is larger than the error of the measurement data, thus incorporating potential additional
errors. The parameters of the Gaussian process are chosen to be A = 0.6 and l = 0.2,
based on the largest error that we expect (which is approximately 0.5, based on the
strength of the shock on top of the airfoil) and the distance between two measurement
locations.

Prior and likelihood
The prior is assumed to be multivariate uniformly distributed with mean equal to the
canonical values of the parameters and standard deviation that encapsulates a large
number of variants of the Spalart–Allmaras turbulence models. More specifically, we
choose the support of the prior as follows:

κ [0.205,0.615]

σ [1/3,1]

Cb1 [0.0678,0.2033]

Cb2 [0.311,0.933]

Cv1 [3.55,10.65]

Cw2 [0.2,0.4]

Cw3 [1,3]

The likelihood readily follows from the statistical model:

q(z |ϑ) ∝ exp

[
−1

2
dTC−1d

]
,

with d the misfit and C the covariance, i.e.

dk = zk −u(ϑ; sk ),

C = σ̃I +Σ, with Σi , j = Cov(si , s j ).

Finally, the posterior is formed by a multiplication of the likelihood with the prior in the
usual way.

Results
The closure coefficients are calibrated using 100 adaptively weighted Leja nodes. The
convergence is assessed using cross-validation between two consecutive interpolants,
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Figure 6.13: The marginals of the posterior under consideration of the RAE2822 airfoil
case.
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up to the point that visually no difference can be observed in the posterior. The one-
and two-dimensional marginals from the obtained posterior are depicted in Figure 6.13.
We cannot compare the result with the true posterior, as done in the previous two test
cases, so instead a qualitative comparison is made with results obtained in literature.

The results are similar to Cheung et al. [34], who calibrated the same set of param-
eters using MCMC using more than 30 000 samples. In their study, the parameters κ
and Cv1 are informed best, which is also clearly visible in Figure 6.13. In our results, the
parameter Cb1 is also informed in comparison with the other parameters, but this is not
the case in the study from Cheung et al. There can be various reasons for this, among
others the fact that Cheung et al. used a flat plate test case for the calibration and used
the skin friction coefficient as data.

In the study from Edeling et al. [51] a similar test case is performed. Based on a
sensitivity analysis, it follows that the parameters κ and Cv1 have the highest Sobol’
indices and are therefore most influential on the model output. This is consistent with
our study, since these parameters are informed best, and with the study from Cheung
et al. The results for Cb1 again differ, which we attribute to the fact that Edeling et al.
also used the skin friction coefficient and the flat plate test case.

To conclude, the proposed method is capable of constructing a good approximate
posterior using a fraction of the 30 000 model evaluations that were necessary in the
MCMC case. The posterior compares qualitatively very well with both studies. By
applying MCMC to the constructed surrogate, we can propagate the posterior and make
a prediction under uncertainty. To illustrate this, the posterior is propagated through
the surrogate to obtain uncertainty bounds on the pressure coefficient. The results are
depicted in Figure 6.14. It is clearly visible that the largest uncertainty originating from
the posterior is near the shock on top of the airfoil. This is studied more extensively in
Chapter 7.

6.5. Conclusion
Bayesian model calibration is an attractive approach for calibrating model parameters of
complex physical models. It is customary to sample the posterior using MCMC methods,
but these are only tractable if the model under consideration can be evaluated rapidly.
We consider problems where this is not the case, such as the calibration of turbulence
closure coefficients.

Our proposed method consists of replacing the computationally expensive model
with an interpolating surrogate model. The interpolant is determined adaptively using
weighted Leja nodes, where the weighting function directly uses the posterior and is
changed with each iteration. We have proposed a formulation in which the weighting
function consists of two parts: a part incorporating the currently available posterior and
a part incorporating the accuracy of the interpolant. The balance between these two can
be changed adaptively by the parameter ζ and convergence is guaranteed for any ζ> 0.
The “best” value of ζ depends on the specifics of the model, the likelihood, and the
posterior, and can be changed adaptively during the calibration procedure. Compared
to conventional nodal sets (such as Clenshaw–Curtis nodes), we obtain more accurate
results with less nodes.

Theoretically we have proved that if the interpolant converges to the true model
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Figure 6.14: Pressure coefficient along the airfoil determined by propagation of the pos-
terior through the interpolating surrogate. The mean µ is depicted as a solid
line and the standard deviation σ is shaded in green.

in the ∞-norm, then the estimated posterior converges to the true posterior in the
∞-norm with a similar rate. Under mild conditions, the Kullback–Leibler divergence
between the estimated and exact posterior converges with a doubled rate.

The three conducted numerical experiments confirm these theoretical findings: if
the interpolant converges to the model, the Kullback–Leibler divergence converges to
zero with doubled rate. For the explicit numerical test cases, this doubled convergence
in the Kullback–Leibler divergence was clearly visible. The calibration of the Burgers’
equation shows that the approach also works well for models that are defined implicitly.

Finally, calibration of turbulence closure parameters has been discussed, showing
that the approach is truly applicable to computationally expensive models. We have
compared the results from our calibration procedure with results conducted using
Monte Carlo methods and the posteriors show good resemblance, at a highly reduced
computational cost.

There are various approaches to further extend or improve the proposed framework.
There are some limitations about the statistical model that can be used in our approach,
e.g. we require that it can be written as a function of the model and no hyperparameters
are used in the statistical model. Extending the current approach to such a setting is an
important step, as hyperparameters are often employed in Bayesian model calibration.
To this end, an alternative approach that incorporates hyperparameters and is based on
quadrature rules is discussed in Chapter 7.

Secondly, we believe the value of ζ should depend on the specifics of the model
and further research is required to find the optimal value either a priori or dynamically
during the procedure.





Bayesian prediction with theimplicit quadrature rule
Bayesian model calibration is a flexible approach to calibrate computational models
using measurement data of an output of the model. As discussed extensively in Chap-
ter 6, the result of the calibration is a posterior distribution over the parameters of a
computational model. If the posterior is known, it can be used in conjunction with the
statistical model to predict new observations. These predictions incorporate all uncer-
tainties, biases, and errors that are present in the statistical model. Inferring predictions
in this way is often called Bayesian prediction. Similarly to Bayesian model calibration
this is a computationally costly procedure, which is the key focus of this chapter.

As demonstrated in the previous chapter, a viable approach to alleviate the high
computational cost associated with sampling from the posterior is to replace the compu-
tationally complex model with an interpolating polynomial and use the polynomial as
replacement of the model. However, for the purpose of Bayesian prediction the interest
is neither in approximating the posterior nor in approximating the model, but solely
in computing integral quantities weighted with the posterior. For this purpose, it is a
natural idea to employ the quadrature rules as introduced in Chapter 3 and Chapter 4.
All numerical estimations computed using these rules are numerically stable, provided
that the rules accurately integrate polynomials and have positive weights. This is in
contrast to interpolation, where the stability of the interpolant is highly sensitive to the
nodal set.

In this chapter, the implicit quadrature rule as introduced in Chapter 4 is employed
to construct quadrature rules weighted with arbitrary distributions. The posterior is
incorporated by interpolating all available point evaluations using nearest neighbor
interpolation. The obtained iterative approach yields a sequence of nested quadrature
rules with positive weights that converge to a quadrature rule that computes integrals

This chapter is based on the following article: L. M. M. van den Bos, B. Sanderse, and W. A. A. M. Bierbooms.
Adaptive sampling-based quadrature rules for efficient Bayesian prediction. Under review, 2019. arXiv:
1907.08418 [math.NA].

http://arxiv.org/abs/1907.08418
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weighted with the posterior. Again the Spalart–Allmaras turbulence model is considered
to demonstrate the effectiveness of the approach.

7.1. Introduction
Bayesian prediction is essentially equivalent to uncertainty propagation and, as dis-
cussed before, often involves computing quantities in the form of integrals with a com-
putationally expensive integrand. Various approaches exist to numerically estimate such
integrals, for example Monte Carlo approaches [31] or deterministic quadrature rule
approaches [24] as discussed in Chapter 3 and 4. In these approaches it is often assumed
that samples from the probability distribution can be constructed straightforwardly or
are readily available, which is not the case in Bayesian problems [65, 95]. In this case,
computing weighted integrals is commonly known as Bayesian prediction and this is
the main topic of this chapter.

A commonly used approach to calculate weighted integrals with respect to non-
trivial distributions (such as posteriors) is importance sampling [21, 44, 179]. In this
approach samples are drawn from a proposal distribution and by means of weighting
these samples are used to determine integrals with respect to a target distribution, i.e.
the distribution for which it is difficult to construct samples. If the proposal distribution
is chosen well, the constructed samples yield similar convergence rates as samples
constructed directly with the target distribution. A major disadvantage is that construct-
ing the proposal distribution is not trivial and often requires a priori knowledge about
the target distribution. A well-known extension of importance sampling to a Bayesian
framework is formed by Markov chain Monte Carlo methods [80, 122], where the pro-
posal distribution is chosen such that the samples form a Markov chain (as outlined
in Section 2.2.2). In this case the proposal distribution is not constructed beforehand,
though a large number of costly evaluations of the posterior is typically necessary to
construct the sequence of samples. There exist various extensions of Markov chain
Monte Carlo methods to reduce the computational effort that is necessary to obtain a
burned-in sequence [3, 143, 186, 187].

Even if samples can be drawn from the distribution, the error of estimating an inte-
gral by means of random sampling decays as O(1/

p
K ), with K the number of samples

(as discussed in Section 2.1.1). Therefore using importance sampling techniques, or
Monte Carlo techniques in general, in conjunction with a computationally costly model
is often infeasible. In summary, estimating integrals by directly sampling from the
posterior is often difficult or very expensive with existing methods.

The slow convergence of random sampling can be alleviated by means of a surrogate,
as discussed in Chapter 6. Other well-known approaches include Gaussian process
regression [10, 173] and polynomial approximation [11, 121, 159, 161]. If the weighting
distribution is not known explicitly, it is difficult to construct an optimal surrogate
(and moreover it often requires analyticity or smoothness), so often the surrogate is
constructed such that it is globally accurate or the distribution is tempered [107], which
yields a similarly accurate surrogate and which has been used in Chapter 6.

At the same time, in the context of Bayesian prediction the interest is not directly
in accurately approximating the model, but in calculating moments of the model with
respect to the posterior. These moments are integral quantities, which can be com-
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puted more efficiently using a quadrature rule (compared to polynomial interpolation
approaches, see Section 2.1.3). Existing quadrature rule approaches [24] and those
discussed in this thesis provide rapidly converging estimates of the integral for smooth
functions and stable albeit more slowly converging estimates if the integrand is not
smooth, see e.g. Figure 3.9 on page 63, Figure 4.8 on page 91, or Figure 5.5 on page 115.
However, the rules derived so far in this thesis and existing state-of-the-art quadrature
rule approaches such as Gaussian quadrature rules [74], multivariate sparse grids [81,
135, 169], or heuristic optimization approaches [89, 130] require broad knowledge about
the distribution under consideration, so these are not directly applicable to the Bayesian
setting considered in this chapter.

Therefore, the main goal of this chapter is to propose a novel flexible method for
Bayesian prediction that combines the high convergence rates of quadrature rules with
the flexibility of adaptive importance sampling. The idea is to construct a sequence of
quadrature rules and a sequence of proposal distributions, where the proposal distri-
butions are constructed using all available model evaluations. The sequence of nested
quadrature rules converges to a quadrature rule that incorporates the (expensive) prob-
ability distribution (i.e. the posterior). By ensuring that all constructed quadrature
rules have high degree and have positive weights, high convergence rates are obtained
(depending on the smoothness of the integrand). The rules are specifically tailored
to determine moments weighted with a posterior and consequently require a small
number of nodes to obtain an accurate estimation. Moreover it can be demonstrated
rigorously that estimations made with the sequence of quadrature rules converge to the
exact integral for a large class of integrands and distributions.

This chapter is structured as follows. In Section 7.2 the problem of Bayesian predic-
tion with a quadrature rule is briefly introduced, with a main focus on quadrature rule
methods and their relevant properties. In Section 7.3 the main algorithm of this chapter
is discussed: a method to construct a quadrature rule that converges to a quadrature rule
of the posterior. The method is analyzed theoretically in Section 7.4 and to demonstrate
the applicability of the quadrature rule to computational problems, the technique is
applied to some test functions in Section 7.5. Moreover the calibration of the turbulence
closure coefficients of the RAE2822 airfoil is discussed. The chapter is summarized and
concluded in Section 7.6.

7.2. Preliminaries
Bayesian prediction can be embedded straightforwardly in the Bayesian setting using
in this thesis so far. It is introduced in Section 7.2.1, where also the main quantities
that are computed in this chapter are introduced. These quantities are computed
using a quadrature rule, a concept that has been used frequently in this thesis (e.g. see
Section 2.1.3). Since the distribution under consideration is adaptively changed in this
chapter, some additional nomenclature is necessary to extend quadrature rules to this
setting. This is discussed in Section 7.2.2.

7.2.1. Bayesian prediction
The key goal of this chapter is to propose an efficient method to infer Bayesian pre-
dictions involving a computationally expensive model. However, the setting where
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the proposed methods can be applied is slightly more general than that. As usual, let
u : Ω→ Rn be a continuous function with Ω ⊂ Rd (d = 1,2,3, . . . ) that describes the
quantity of interest and let ρ : Ω→R be a continuous and bounded probability density
function (PDF). Then determining Bayesian predictions can be described as determining
the expectation of a random variable f (X), with f : Ω→R a function such that f = F ◦u
for an explicitly known map F (so F is defined on the range of u). Here, X is a d-variate
random variable with PDF ρ. The mean is an integral quantity and will be denoted by
the operator Iρ throughout this chapter, i.e.

Iρ f := E[ f (X)] =
∫

Ω
f (x)ρ(x)dx =

∫

Ω
F (u(x))ρ(x)dx. (7.1)

The main difference in nomenclature with previous chapters is that the distribution of
the integral is explicitly mentioned in I .

Integrals of this type have been studied many times in the framework of uncertainty
propagation and many efficient methods exist to approximate them [105, 174, 201].
The approach taken in this chapter is based on combining the implicit quadrature rule
as introduced in Chapter 4 with a nearest neighbor interpolant of ρ(x). Geometric
approaches based on nearest interpolation are closely related to the Voronoi tessellation,
which have been used successfully to construct estimates of integrals as considered in
this thesis [29, 48, 77, 114]. However, in these cases the distribution ρ is known explicitly
beforehand (possibly up to a constant). In this chapter, the computationally challenging
part is that ρ(x) is obtained by Bayesian analysis, i.e. it is, up to a constant, a posterior
obtained using Bayes’ law:

q(x | z) ∝ q(z | x) q(x) =: ρ(x),

where z, q(x | z), q(z | x), and q(x) are the measurement data, the posterior, the likelihood,
and the prior respectively. See Section 2.2.1 for a more elaborate introduction. Through-
out this chapter we neglect the scaling factor (called the evidence) in this definition of ρ,
as it is not of importance for the proposed method.

Bayesian prediction consists of assessing the posterior predictive distribution, which
describes the probability of observing new data ẑ given the existing data z. It is obtained
by marginalizing over the posterior as follows [52]:

q(ẑ | z) =
∫

Ω
q(ẑ,x | z)dx =

∫

Ω
q(ẑ | x,z) q(x | z)dx =

∫

Ω
q(ẑ | x) q(x | z)dx.

Here, we assume that ẑ and z are conditionally independent given x. Moments of the
posterior predictive distribution can be used among others to obtain predictions of
unmeasured quantities. These moments can often be expressed explicitly as integrals
over the computational model u.

In general we require throughout this chapter that the distribution ρ is such that
an evaluation of ρ(x) requires an evaluation of u(x). Moreover if u has been evaluated
for a specific value of x, the value of ρ(x) can be determined without any significant
computational cost. In other words, there is a function G : R→ R such that ρ = G ◦u.
This is often the case if ρ(x) forms a posterior in a Bayesian framework and this property
is the key observation that will be leveraged to approximate (7.1).
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A well-known example of a prior and a likelihood for a scalar model u are a uniform
prior, defined as q(x) ∝ 1 for x ∈Ω, and a Gaussian likelihood, defined as follows for
given standard deviation σ:

q(z | x) ∝ exp

[
−1

2

∑n
k=1(u(x)− zk )2

σ2

]
, with measurement data z = (z1, . . . , zn)T known.

In this particular case, the expectation of the posterior predictive distribution can be
explicitly expressed as follows:

E[ẑ | z] =
∫

Z
ẑ q(ẑ | z)dẑ =

∫

Ω

∫

Z
ẑ q(ẑ | x) q(x | z)dẑdx

=
∫

Ω
q(x | z)

∫

Z
ẑ q(ẑ | x)dẑdx =

∫

Ω
q(x | z)E[ẑ | x]dx =

∫

Ω
q(x | z)u(x)dx. (7.2)

Here, Z denotes the space that contains all possible values of the data. It is not necessary
to derive this space formally, as it is only used in an intermediate step of the derivation.
Notice that the obtained integral is the expectation of the computational model with
the parameters distributed according to the posterior. Uncertainty propagation with the
posterior as distribution, as presented for example in Figure 6.14, is therefore a basic
example of Bayesian prediction.

Various statistical models that combine measurement error and model error exist for
the purpose of Bayesian model calibration. We refer the interested reader to Kennedy
and O’Hagan [95] and will consider such an extensive model in a numerical example
discussed in Section 7.5. Vector-valued u can be incorporated straightforwardly in
the framework of this chapter, since only the posterior distribution q(x | z) is used to
construct numerical integration techniques.

Throughout this chapter, two assumptions are imposed on the statistical setting.
Firstly, we assume that the statistical moments of the prior are finite, i.e.

∫

Ω
|ϕ(x)|q(x)dx <∞, for all polynomials ϕ.

This implies among others that the prior is not improper. Secondly, it is assumed that
the posterior is continuous and bounded. These two assumptions are not restrictive, e.g.
statistical models with Gaussian random variables fit in this setting.

These assumptions are only necessary for the theoretical analysis of the approach
discussed in this chapter, since the construction of quadrature rules is based on the
approximation by means of polynomials. The approach does not require any major
modifications in order to apply it to cases where an improper prior or a discontinu-
ous posterior is considered. An example of the latter is discussed in more detail in
Section 7.5.1.

7.2.2. Quadrature rules
The integral from (7.1) is approximated by means of a quadrature rule, consisting of
nodes {xk }N

k=0 ⊂Ω and weights {wk }N
k=0 ⊂R:

∫

Ω
f (x)ρ(x)dx ≈

N∑

k=0
f (xk )wk . (7.3)
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For the purposes of this chapter, it is important to emphasize (again) that the distri-
bution ρ(x) does not appear explicitly on the right-hand side of this equation. We will
denote the quadrature rule approximation by means of the linear operator Aρ

N , i.e.

Aρ

N f :=
N∑

k=0
f (xk )wk .

Similarly to the notation of the integral operator, the distribution ρ is explicitly men-
tioned. If ρ(x) = q(z | x) q(x), a quadrature rule with respect to the posterior q(x | z) can
be obtained by rescaling the weights of a quadrature rule of ρ such that

∑N
k=0 wk = 1,

provided that Aρ

N 1 = Iρ1.
As discussed extensively before, three properties are relevant for quadrature rules

that are applied to computationally expensive models: the exactness of the quadrature
rule, positivity of the weights, and nesting. The first two properties ensure numerical
stability of the quadrature rule and make that the quadrature rule converges. A nested
quadrature rule allows for straightforward refinement of quadrature rule estimations, as
computationally costly model evaluations can be reused.

The notation describing these properties is exactly the same as used before in this
thesis. To this end, let ϕ0, . . . ,ϕD be D + 1 d-variate polynomials defined on Ω and
consider the space ΦD = span{ϕ0, . . . ,ϕD }. Then the goal is to construct a quadrature rule
such that it integrates all functions ϕ ∈ΦD exactly. This is, due to linearity, equivalent to

Aρ

Nϕ j = Iρϕ j , for j = 0, . . . ,D . (7.4)

Throughout this chapter the polynomials are sorted graded lexicographically. This
ensures that referring to ϕ j for any j is well defined and that ΦD ⊂ΦD+1 for any D , but
other monomial orders that are a well-order can be used straightforwardly. Moreover
we assume that ϕ0 is the constant polynomial, as that firstly allows to straightforwardly
scale the quadrature rule weights to incorporate the evidence and secondly allows to
apply the implicit quadrature rule from Chapter 4.

The close relation between the nodes and the weights of a quadrature rule is de-
scribed by the (D + 1)× (N + 1) Vandermonde matrix VD (XN ), as introduced by (4.4)
on page 71. This matrix is obtained by explicitly writing (7.4) as a system of linear
equations.

If the weights are non-negative (i.e. wk ≥ 0 for all k), the dimension of ΦD is a
measure for the accuracy of the quadrature rule and increasing D yields a converging
estimate for sufficiently smooth functions. This can be seen by using the Lebesgue
inequality. However, in this chapter it is not obvious that ‖Iρ‖∞ = 1, so the inequality is
used in the following form:

|Iρu −Aρ

N u| ≤ 2‖Iρ‖∞ inf
ϕ∈ΦD

‖u −ϕ‖∞.

As explained before, the weights of the quadrature rule can be scaled such that ρ forms
a probability density function. In that case, it holds that ‖Iρ‖∞ = ‖Aρ

N‖∞ = 1 and the
Lebesgue inequality as introduced in (2.12) (see page 16) can be used:

|Iρu −Aρ

N u| ≤ 2 inf
ϕ∈ΦD

‖u −ϕ‖∞. (7.5)
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Refine XN+M , WN+M given ρN

(nodes are added to quadrature rule)
Refine ρN+M given XN+M , WN+M

(interpolant is reconstructed)

M nodes are added (large circles) M new model evaluations
N ← N +M

Figure 7.1: Schematic overview of the two main steps of the method to construct the
quadrature rules proposed in this chapter. The procedure can be initialized
using a single randomly drawn node from the prior, constituting a quadrature
rule that consists of a single node with weight equal to unity.

7.3. Bayesian prediction with an adaptive quadrature rule
The main problem addressed in this chapter is accurate numerical estimation of integrals
obtained in Bayesian prediction. More specifically, the main interest is the construction
of quadrature rules to approximate integrals weighted with the posterior, a problem that
was summarized in (7.3) as follows:

Iρ f =
∫

Ω
f (x)ρ(x)dx ≈

N∑

k=0
f (xk )wk =Aρ

N f .

Here, both f and ρ are functions of u, denoted by f (x) = F (u(x)) and ρ(x) =G(u(x)) for
suitable F and G . The functions F and G are such that they can be evaluated efficiently
and quickly. For example, in (7.2) we have F (u(x)) = u(x) and G(u(x)) = q(x | z).

The focus of this chapter is mainly on using a quadrature rule to accurately infer
Bayesian predictions, but various other statistical quantities that are not considered
in this chapter can be inferred straightforwardly without additional model evaluations.
For example, moments of the posterior distribution can be determined by integrating
suitably chosen polynomials or an empirical cumulative distribution function can be
constructed by considering the discrete probability density function p(xk ) = wk for all k
(which is well defined because all weights are non-negative).

7.3.1. Constructing an adaptive quadrature rule
The proposed procedure consists of iteratively refining a pair consisting of a quadrature
rule and a distribution. A typical iteration consists of two steps. Firstly, a quadrature
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rule based on the current estimate of the distribution ρ is constructed. Secondly the
estimate of the distribution is refined using all available model evaluations of ρ. The
quadrature rules are constructed such that a sequence of nested rules is obtained. These
steps are illustrated in Figure 7.1.

More specifically, at the start of the i -th iteration a distribution ρN is given, accom-
panied by evaluations of the model u at nodes x0, . . . ,xN . Therefore also evaluations of
ρ(xk ) (for k = 0, . . . , N ) are given, since ρ(x) =G(u(x)) with G explicitly known. The first
step consists of constructing a new quadrature rule with N +M nodes that incorporates
ρN and reuses the available model evaluations, i.e. it is nested. Hence the goal is to
determine xN+1, . . . ,xN+M and w0, . . . , wN+M with M as small as possible such that

N+M∑

k=0
ϕ j (xk )wk =

∫

Ω
ϕ j (x)ρN (x)dx, for all j = 0, . . . ,Di .

Here, Di is a free parameter which defines the exactness of the rule, i.e. the dimension
of ΦDi . The second step of the iteration consists of constructing a refined approximation
of the distribution ρ using all available evaluations of the model u and distribution ρ

(including the M nodes that have been added this iteration). In this thesis, this is done
by nearest neighbor interpolation. Consequently ρN+M is obtained, which is used for
the next iteration. The procedure can be initialized using a quadrature rule consisting of
a single random node and a proposal distribution ρ0(x) ≡ q(x), i.e. by using the prior.
The convergence can be assessed by comparing the current quadrature rule estimate
with that of a previous iteration.

The only free parameter in this construction is Di , which can be chosen heuristically.
For convergence, it is essential to ensure that Di → ∞ for i → ∞. In this chapter,
two variants are considered: linear growth, i.e. Di =O(i ), and exponential growth, i.e.
Di =O(2i ).

The distribution ρN is constructed by interpolation of all available point evaluations
of ρ. It can be interpreted as a proposal distribution, as often used in importance
sampling strategies. The efficiency of the approach can be demonstrated mathematically
by reusing techniques from these sampling strategies.

The construction of a quadrature rule that incorporates the distribution ρN is non-
trivial. We will employ the implicit quadrature rule as introduced in Chapter 4 for this
purpose, though we emphasize that any methodology to construct quadrature rules for
a given distribution can be used in our approach. The construction of this rule has been
discussed extensively in Chapter 4. Therefore only most relevant properties that are
used specifically in this chapter are discussed in Section 7.3.2. Given the quadrature rule
nodes, the distribution that is used to refine the quadrature rule is constructed using
nearest neighbor interpolation, which is explained in Section 7.3.3.

7.3.2. The implicit quadrature rule
The implicit quadrature rule is a quadrature rule constructed using samples from a
distribution. Hence let K +1 samples y0, . . . ,yK be given, denoted as the set YK . In the
iterative procedure considered in this chapter (i.e. Figure 7.1), these are a large number of
samples from ρN . Moreover, some model evaluations have been performed in previous
iterations, so let XN ⊂Ω be N +1 nodes in Ω where the value of u (and therefore ρ) is
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known. These nodes are denoted with x0, . . . ,xN . Notice that ρN is typically obtained by
nearest neighbor interpolation of these nodes, which we will discuss in more detail in
Section 7.3.3.

Then, by applying Algorithm 4.3 for given Di (see page 88), a subset of M samples
from YK is obtained, say xN+1, . . . ,xN+M , such that

AρN
N+Mϕ j =

N+M∑

k=0
ϕ j (xk )wk = 1

K +1

K∑

k=0
ϕ j (yk ) = IρN

K ϕ j , for j = 0, . . . ,Di .

Here, the notation AρN
N+M is used to denote an implicit quadrature rule operator con-

structed with samples from ρN . The number of samples used for the construction of
the quadrature rule is omitted from the notation used in this chapter, since it is not
necessarily the case that this rule is an implicit quadrature rule (though that is the
case in all examples discussed in this chapter). The operator IρN

K denotes the sampling
integral operator (similarly to (4.1) on page 70) using K +1 samples from ρN .

The rule is constructed such that the weights wk are non-negative, i.e. wk ≥ 0 (for
all k). This ensures that the quadrature rule error is bounded, which can be seen by
applying the Lebesgue inequality from (7.5).

Notice that only samples from ρN are necessary to construct this quadrature rule,
from which the approximate moments are computed. This is an advantage, since in
higher dimensional spaces it is often computationally costly to exactly determine the
moments of ρN .

The nodes x0, . . . ,xN do generally not form a subset of the samples YK . Ideally we
would like to have that M = 0, which would imply that no new costly model evaluations
are required, but this is often not possible as Di increases with each iteration i . How-
ever, the following bound holds, which is a straightforward consequence of (4.10) (see
page 78):

0 ≤ M ≤ Di +1,

such that at most Di +1 nodes are added to the quadrature rule, consequently obtaining
a rule of at most N +Di +2 nodes.

7.3.3. Construction of the proposal distribution
By using the quadrature rule constructed using the techniques from the previous section,
a Bayesian prediction can be inferred by evaluating the model at the quadrature rule
nodes and assessing the accuracy using the nesting of the quadrature rules. By using
Bayes’ rule, evaluations of the (unscaled) posterior are readily available, that is ρ(xk ) for
k = 0, . . . , N +M . The goal is to use these evaluations to construct an approximation of
the posterior.

Constructing an approximation of a distribution is non-trivial and there are some
specific requirements on the interpolation algorithm used in this chapter. The goal of
this section is to outline these requirements, which warrant the algorithm used in this
chapter: nearest neighbor interpolation. Various alternative approaches, which have
varying advantages and disadvantages, are also discussed.
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Prerequisites of the interpolant
The goal is to construct an approximate posterior ρN+M such that the available N+M+1
point evaluations of ρ are taken into account. These point evaluations of the posterior
are exact, so in this chapter we construct ρN+M such that it is interpolatory, i.e.

ρN+M (xk ) = ρ(xk ), for all k = 0, . . . , N +M .

Obviously, the interpolant should be constructed such that ρN+M (x) ≈ ρ(x) for all x 6= xk

(for any k). It is not necessary that ρN+M is interpolatory for the construction of the
quadrature rule, but it is assumed to be the case in the analysis discussed in Section 7.4.

It is known that ρ is a probability density function, possibly up to a finite constant
(the evidence). Therefore the interpolant should be such that ρN+M (x) ≥ 0 for all x ∈Ω.
Moreover, since a quadrature rule is constructed using this distribution, all moments
must be finite, i.e.

∫

Ω
ϕ(x)ρN+M (x)dx <∞, for all polynomials ϕ.

These two conditions ensure that ρN+M is again a probability density function (possibly
up to a constant).

In general it is not preferable that the moments of ρN+M are equal to the moments
of the quadrature rule, i.e. in general it should hold that

IρN+Mϕ j =
∫

Ω
ϕ j (x)ρN+M (x)dx

6=
∫

Ω
ϕ j (x)ρN (x)dx

=
N+M∑

k=0
ϕ j (xk )wk

=AρN
N+Mϕ j ,

for j = 0, . . . ,Di . Recall that IρN+M and AρN
N+M are used to denote an integral weighted

with ρN+M and a quadrature rule weighted with ρN respectively, i.e.

IρN+M u =
∫

Ω
u(x)ρN+M (x)dx,

AρN
N+M u =

N+M∑

k=0
wk u(xk ).

The moments estimated by the quadrature rule are generally not equal to the exact
moments of the true distribution ρ. Hence forcing that the moments of ρN+M are equal
to the moments as computed using the (current) quadrature rule does not lead to a
converging sequence of distributions. In such a case all moments would be equal to
the approximation of the quadrature rule that is used to initialize the algorithm (see
Figure 7.1).
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Figure 7.2: Nearest neighbor interpolations of random samples based on two distribu-
tions. In both cases, x1 and x2 are identically and independently distributed.

Nearest neighbor interpolation
In this chapter, ρN+M is constructed by firstly interpolating the likelihood using nearest
neighbor interpolating and secondly multiplying the obtained interpolant with the prior.
Hence for any x ∈Ω the interpolant ρN+M (x) is defined as follows:

ρN+M (x) = q(z | xk ) q(x), with xk = argmin
x j ∈XN+M

‖x−x j ‖2 and XN+M = {x0, . . . ,xN+M }.

The advantages of this approach are among others that the obtained interpolant is
always non-negative and globally bounded, i.e. for all x it holds that

0 ≤ ρN+M (x) ≤
(
sup
x∈Ω

q(z | x)

)(
sup
x∈Ω

q(x)

)
.

Moreover, for the purposes of this chapter it can be implemented very efficiently, as the
number of nodes used for interpolation is relatively small and the exact structure of the
interpolant is not of importance: sampling from ρN+M can simply be done by means of
acceptance rejection sampling using the prior as proposal distribution (which requires a
proper prior).

In particular, for the nearest neighbor interpolant it is not necessary to construct
the Voronoi tessellation of the nodes, but only to implement a routine that can find the
closest node for any given input sample. This can be done very fast and efficiently for
large numbers of samples.

Nearest neighbor interpolation is being used often in statistics [9] (it is mostly applied
to classification problems). It belongs to the broader class of scattered data interpolation
methods [61] and is arguably one of the most straightforward methods to use in this
regard. Moreover, it is a local interpolation method, whereas the quadrature rule is
a global integration method, which naturally balances exploitation of locality with
exploration of the space without any free parameters that have to be tuned.
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As mentioned briefly before, a nearest neighbor interpolant can be used directly to

construct quadrature rules [29, 48, 77, 114]. Many of these approaches focus on explicitly
constructing the nodal set such that these form the centroids (centers of mass) of the
cells of the Voronoi tessellation. Notice that it is non-trivial to extend these approaches
to the setting of this chapter, since it is not viable to assume that the distribution
is computationally tractable. Moreover, it is usually necessary to explicitly construct
the Voronoi tessellation to determine the centroids, which significantly hinders the
applicability to higher dimensional spaces.

The idea of using a nearest neighbor interpolant to construct a surrogate (i.e. not
necessarily a quadrature rule) has also been explored successfully before and the pro-
posed improvements [49, 155] can possibly be considered to enhance the accuracy of
the interpolant as considered in this chapter. Often the advantage of exploiting locality
is carried over. However, existing approaches usually focus on constructing a surrogate
of the computational model, whereas the focus in this chapter is on constructing an in-
terpolant of a distribution. As discussed before, this adds several non-trivial constraints
to the approach, which are typically not incorporated in existing methods.

Nearest neighbor interpolation has been illustrated in Figure 7.1 (see page 163). Two
other examples of interpolated probability density functions are depicted in Figure 7.2.
For sake of illustration, the interpolation nodes of Figure 7.2 are random samples.

Alternative distribution approximation methods
It is not trivial to consider more accurate interpolation methods in this framework, as
ensuring that the obtained interpolant is a PDF is difficult. For example, many global
methods such as Lagrange interpolation and Gaussian process regression do not yield an
interpolant that is non-negative. Extensions to enforce positivity exist, for example for
Lagrange interpolation [63, 76]. Often these approaches are only applicable to univariate
cases. Gaussian process regression can possibly be used by using a strictly positive prior
that is not improper and enforcing finiteness of integrals over the obtained approxi-
mation [152], but this is rather involved and conflicts with the convenient Bayesian
framework that Gaussian processes are based upon.

Another well-known method to construct a suitable approximation is the kernel
density estimate, or more generally, the family of methods based on radial basis func-
tions [27]. However, in the cases in this chapter explicit values of the probability density
function are known, which cannot be incorporated in a straightforward fashion in these
methods: enforcing specific values of a function in a radial basis function setting does
not necessarily yield a positive interpolant.

A promising method that balances the accuracy of polynomial interpolation and
piecewise behavior of nearest neighbor interpolation is the Simplex Stochastic colloca-
tion method [53, 196, 197, 198], where piecewise high order polynomial interpolation
is combined with a Delaunay triangulation of the nodal set. This method converges
exponentially for sufficiently smooth functions and is non-oscillatory (i.e. it is bounded
from below and above by the minimum and maximum of the model), so it is very suit-
able for the interpolation of a PDF. However, it requires the explicit construction of
the interpolant with the underlying Delaunay triangulation, which severely limits its
applicability to multi-dimensional spaces.
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Concluding, it is not trivial to consider a more efficient alternative approach to
nearest neighbor interpolation that yields a positive interpolant with similar efficiency
as nearest neighbor interpolation. It is out of the scope of this thesis to derive such a
new interpolation approach. Moreover, nearest neighbor interpolation is sufficiently
accurate for the purposes of this chapter, as demonstrated by the numerical examples
in Section 7.5.

7.4. Error analysis
The accuracy of the proposed method is studied by assessing the convergence of the
sequence of quadrature rules. The overall error we are interested in is the integration
error, defined for a given continuous function f : Ω→R as follows:

eN ( f ) := |Iρ f −AρN
N f |.

Here the operator AρN
N has been constructed using the methods outlined in Section 7.3,

i.e. for known Di we have

AρN
N ϕ j =

N∑

k=0
ϕ j (xk )wk =

∫

Ω
ϕ j (x)ρN (x)dx = IρNϕ j , for j = 0, . . . ,Di ,

where we neglect the effect of using samples for the construction of the quadrature rule.
It can be demonstrated that eN → 0 if N →∞, provided that f is sufficiently smooth

and Di →∞ for i →∞. The details of this are discussed in Section 7.4.1.
A central question is whether this error decays faster than the integration error of

a conventional quadrature rule constructed using the prior. As constructing such a
quadrature rule does not require interpolation or sampling, there are significantly fewer
sources of error. This topic can be addressed by using principles from importance
sampling, which is outlined in Section 7.4.2.

The error analysis based on importance sampling neglects any error that occurs
due to the usage of samples of ρN+M instead of the full distribution. As discussed
before in this thesis, this is not considered to be a severe limitation, since sampling
from ρN+M does not require costly model evaluations and therefore many samples can
be used to minimize this error. However, in this chapter the implicit quadrature rule
is used repeatedly and computed quadrature rules are used in subsequent iterations.
Therefore the sampling error might be of importance, so it will be briefly considered in
Section 7.4.3.

7.4.1. Decay of the integration error
Notice that the integration error eN ( f ) can be decomposed into three components: an
interpolation error, a sampling error, and a quadrature rule error:

eN ( f ) = |Iρ f −AρN
N f | = |Iρ f −IρN f +IρN f −AρN

N f |
≤ |Iρ f −IρN f |+ |IρN f −AρN

N f |
= |Iρ f −IρN f |+ |IρN f −IρN

K f +IρN
K f −AρN

N f |



170 7. BAYESIAN PREDICTION WITH A QUADRATURE RULE
≤ |Iρ f −IρN f |︸ ︷︷ ︸
Interpolation error IN

+ |IρN f −IρN
K f |

︸ ︷︷ ︸
Sampling error SK

+ |IρN
K f −AρN

N f |
︸ ︷︷ ︸

Quadrature error QN

= IN +SK +QN . (7.6)

Notice that this error decomposition is similar to the decomposition done in Chapter 4
(see (4.6) on page 72), where it was used to illustrate the independence of the quadrature
rule error (which depends on N and the smoothness of u) and the sampling error (which
depends on K and u to a much lesser extent).

The quadrature rule error QN can be bounded using the Lebesgue inequality (see
for example (2.12) on page 16):

QN ≤
(

1+
N∑

k=0
|wk |

)
inf

ϕ∈ΦDi

‖ f −ϕ‖∞.

Since all quadrature rules constructed in this chapter have positive weights, this error
decays if Di →∞ (with i →∞) for sufficiently smooth f .

The interpolation error IN depends on the specific procedure used to construct
the interpolant. It holds that IN → 0 for N →∞ if ‖ρN −ρ‖∞ → 0. The latter can be
demonstrated straightforwardly for nearest neighbor interpolants by demonstrating that
the quadrature rule nodes distribute across the space, i.e. the mutual distance between
two closest nodes decays to zero. A nearest neighbor interpolant yields a converging
interpolant in that case.

To demonstrate that quadrature rule nodes distribute across the space, let x0, . . . ,
xk , . . . be a sequence of nodes such that {x0, . . . ,xN } form the nodes of a quadrature
rule with positive weights with respect to a fixed distribution ρ for all N . Moreover
assume that xk ∈Ω for all k ∈N. Suppose S ⊂Ω is such that there is no k ∈N such that
xk ∈ S. To demonstrate that the nodes distribute across the space, we will show that S as
considered here is a null set, i.e. ∫

S
ρ(x)dx = 0,

which implies that the mutual distance between the quadrature rule nodes vanishes.
The proof is indirect, so let uS ∈C∞(Ω) be a smooth function such that uS (x) = 0 for all
x 6∈ S and such that ∫

Ω
uS (x)ρ(x)dx > 0.

Such a uS only exists if S is not a null set. A univariate example of such a function is the
bump function, e.g. if S = [−1,1] then

uS (x) =
{

exp
(
− 1

1−x2

)
if |x| < 1,

0 otherwise.

Similarly, multivariate bump functions can be constructed by products of univariate
bump functions defined on a hypercube in S. Due to the smoothness of uS , there
exists a sequence of polynomials ϕN such that ‖uS −ϕN‖∞ → 0 for N →∞. Hence any
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quadrature rule operator Aρ

N with positive weights yields a converging estimate of IρuS ,
i.e.

Aρ

N uS =
N∑

k=0
uS (xk )wk →

∫

Ω
uS (x)ρ(x)dx, for N →∞.

The sequence of nodes is such that there is no xk ∈Ω for all k ∈N. Since the quadrature
rule converges, this yields that the integral of uS must vanish:

∫

Ω
uS (x)ρ(x)dx =

∫

S
uS (x)ρ(x)dx = 0.

This holds for any smooth function defined in this way, which is only possible if

∫

S
ρ(x)dx = 0.

Notice that positivity of the weights is essential here, as otherwise it is not guaranteed
that the quadrature rule approximation of any smooth function converges.

A similar derivation can be formulated for the nodes deduced with the methodology
proposed in this chapter, although it is essential that the interpolant of ρ is globally
non-negative. Otherwise the function uS could be constructed such that it is positive if
integrated with respect to ρ, but would yield an integral equal to zero if integrated with
respect to ρN .

The sampling error SK is independent of N , and can therefore be reduced without
any additional costly model evaluations by considering more samples from ρ. The exact
convergence rate depends on the constructed sequence of samples, which will be further
discussed in Section 7.4.3.

Concluding, if Di →∞ and N →∞, it holds that eN ( f ) → SK provided that f can be
approximated using polynomials, which is the case if

inf
ϕ∈ΦDi

‖ϕ− f ‖∞ → 0.

Moreover, if also K →∞, it holds that eN ( f ) → 0. This demonstrates the convergence of
our method for sufficiently smooth functions, but this does not demonstrate that our
method converges faster than constructing a conventional quadrature rule with respect
to the prior, since such a rule does not have an interpolation error. This is the main
topic of Section 7.4.2.

7.4.2. Importance sampling
The proposed quadrature rule of this chapter has three sources of error: an interpolation
error IN , a sampling error SK , and a quadrature rule error QN . A quadrature rule
constructed using the prior (e.g. by means of a sparse grid) only has the quadrature rule
error, i.e. (7.6) simplifies to eN ( f ) =QN .

The main difference is that a rule that only uses the prior requires a different inte-

grand, i.e. Iρ f is approximated by means of Aq(.)
N (q(z | x) f (x)), whereas the quadrature

rule proposed in this chapter uses f (x) as integrand. In this section we derive in which
cases the proposed quadrature rule needs fewer model evaluations than a conventional
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Figure 7.3: A sketch of a possible interpretation of ρ∗
N . In this particular case, ρ(x)/ρN (x)

is unbounded for x → 0. Therefore, a ρ∗
N is introduced that yields a bounded

fraction ρ(x)/ρ∗
N (x) for x ≈ 0. Corrections elsewhere in the domain are neces-

sary to enforce that the raw moments of ρ∗
N are equal to those of ρN .

quadrature rule to reach a similar accuracy. Without loss of generality, we assume that
both ρ and ρN are probability density functions, which yields that ‖Iρ‖∞ = ‖IρN ‖∞ = 1.

The analysis is based on the main principle of importance sampling, a technique
that is used to estimate integrals with respect to a target distribution if samples from
a proposal distribution are known. Even though the main interest is not in drawing
samples from the posterior, the following key idea of importance sampling can be readily
used: let ψ(x), the so-called proposal distribution, be a probability density function with
the same support as ρ. Then

Iρ f =
∫

Ω
f (x)ρ(x)dx =

∫

Ω
f (x)

ρ(x)

ψ(x)
ψ(x)dx = Iψ

(
f
ρ

ψ

)
.

Hence it is not necessary to calculate a possibly expensive integral with respect to the
distribution ρ, but to calculate one with respect to the proposal distribution ψ.

It is a natural idea to use the proposal distribution ψ= ρN for the analysis, but this
can severely limit the applicability of the Lebesgue inequality from (7.5), as ‖ρ/ρN‖∞
can be large even if ‖ρ−ρN‖∞ is small. Nonetheless, in many cases ρ/ρN can be globally
bounded. For example, if a uniform prior and a Gaussian likelihood is considered, ρN

can be used as proposal distribution. However, an example where this is not the case is
if ρ is a Beta distribution and a node is placed on the boundary of Ω. In that case ρ/ρN

is unbounded on the boundary.
To alleviate this, we choose a slightly different approach, and use a proposal distri-

bution ρ∗
N such that it is interpolatory and integrates the same moments as ρN , i.e.

ρ∗
N (xk ) = ρN (xk ) = ρ(xk ), for k = 0, . . . , N , (7.7)

and
Iρ∗Nϕ j = IρNϕ j , for j = 0, . . . ,Di . (7.8)

These two conditions define a set of possible proposal distributions, which we will call
R in this section, i.e. ρ∗

N ∈ R if it solves (7.7) and (7.8). See Figure 7.3 for a sketch how
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such a ρ∗
N can be interpreted. The exact shape of ρ∗

N used in this particular example is
not relevant for the analysis (e.g. ρ∗

N can also be discontinuous). The only conditions on
ρ∗

N are (7.7), (7.8), and ‖ρ/ρ∗
N‖∞ <∞.

It is not necessary to construct a ρ∗
N to use the method proposed in this work,

since only samples from ρN are used. The distribution ρ∗
N is only a tool in the analysis

discussed in this section. Notice that ρN ∈ R, so R is a well-defined non-empty set.
However, as explained above it is not desirable to use ρ∗

N = ρN in the subsequent
analysis as that might lead to a potentially large ‖ρ/ρ∗

N‖∞.
Conditions (7.7) and (7.8) ensure firstly that the moments of ρN are equal to the

moments of ρ∗
N . Secondly, integrating ρN , ρ, or ρ∗

N using a quadrature rule with nodes
x0, . . . ,xN yields the same result. The latter is especially useful in importance sampling,
since this implies that for all k = 0, . . . , N :

1 = ρ(xk )

ρN (xk )
= ρ(xk )

ρ∗
N (xk )

.

This property will be used extensively in the remainder of this section.
To this end, fix an arbitrary ρ∗

N ∈ R, i.e. one that satisfies (7.7) and (7.8), as proposal
distribution. Then

Iρ f = IρN

(
f
ρ

ρN

)
= Iρ∗N

(
f
ρ

ρ∗
N

)
. (7.9)

A similar argument can be applied to rewrite AρN
N :

AρN
N f =

N∑

k=0
f (xk )wk =

N∑

k=0

ρ(xk )

ρN (xk )
f (xk )wk =AρN

N

(
f
ρ

ρN

)
,

where it is being used that ρN (xk ) = ρ(xk ) for all k = 0, . . . , N . Hence the following is
obtained:

AρN
N f =AρN

N

(
f
ρ

ρN

)
=AρN

N

(
f
ρ

ρ∗
N

)
. (7.10)

These expressions, i.e. the defining properties of ρ∗
N as described by (7.7) and (7.8),

and the derived relations for the integral and quadrature rule operator, as described by
(7.9) and (7.10), form sufficient ingredients to bound eN ( f ). The derivation is similar to
the derivation of the Lebesgue inequality (recall (7.5)), but some bookkeeping is required
to keep track of the correct proposal distribution:

eN ( f ) = |Iρ f −AρN
N f |

=
∣∣∣∣Iρ f −AρN

N

(
f
ρ

ρ∗
N

)∣∣∣∣

=
∣∣∣∣Iρ f −Iρ∗Nϕ+Iρ∗Nϕ−AρN

N

(
f
ρ

ρ∗
N

)∣∣∣∣ .

Here, ϕ ∈ΦDi . Hence the quadrature rule exactly integrates ϕ, i.e. AρN
N ϕ= IρNϕ, obtain-

ing the following:

eN ( f ) =
∣∣∣∣Iρ

∗
N

(
f
ρ

ρ∗
N

)
−Iρ∗Nϕ+AρN

N ϕ−AρN
N

(
f
ρ

ρ∗
N

)∣∣∣∣ ,
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where we use that Iρ∗Nϕ= IρNϕ=AρN

N ϕ for ϕ ∈ΦDi , which follows from (7.8). Conclud-
ing, the following inequality is obtained:

eN ( f ) ≤
∣∣∣∣Iρ

∗
N

(
f
ρ

ρ∗
N

)
−Iρ∗Nϕ

∣∣∣∣+
∣∣∣∣A

ρN
N ϕ−AρN

N

(
f
ρ

ρ∗
N

)∣∣∣∣

≤
(
‖Iρ∗N ‖∞+‖AρN

N ‖∞
)∥∥∥∥ f

ρ

ρ∗
N

−ϕ
∥∥∥∥
∞

= 2

∥∥∥∥ f
ρ

ρ∗
N

−ϕ
∥∥∥∥
∞
. (7.11)

Notice that in a Bayesian framework the ratio ρ/ρ∗
N can be expressed independently of

the prior as follows:
ρ(x)

ρ∗
N (x)

= q(z | x) q(x)

q∗
N (z | x) q(x)

= q(z | x)

q∗
N (z | x)

.

Here, with a little abuse of notation, q∗
N (z | x) represents the nearest neighbor interpolant

of the likelihood. Similarly to ρ∗
N , it is not necessary to know any details of q∗

N (z | x),
since it is only used here to demonstrate independence from the prior.

By choosing ρ∗
N ∈ R and ϕ ∈ΦDi such that the obtained norm from (7.11) is minimal,

an inequality similar to the Lebesgue inequality from (7.5) is obtained:

eN ( f ) = |Iρ f −AρN
N f | ≤ 2inf

ρ∗N
inf

ϕ∈ΦDi

∥∥∥∥ f
ρ

ρ∗
N

−ϕ
∥∥∥∥
∞

= 2inf
q∗

N

inf
ϕ∈ΦDi

∥∥∥∥ f
q(z | ·)

q∗
N (z | ·) −ϕ

∥∥∥∥
∞
. (7.12)

Here, ρ∗
N = q∗

N (z | ·) q(·) ∈ R is according to (7.7) and (7.8).
It is instructive to compare the obtained inequality with that of a conventional

quadrature rule constructed with respect to the prior. If such a quadrature rule, say

Aq(·)
N , is given, then by using the Lebesgue inequality its error can be bounded as follows

(notice the difference with (7.11)):

∣∣∣Iρ f −Aq(·)
N

(
f q(z | ·))

∣∣∣=
∣∣∣Iq(·) ( f q(z | ·))−Aq(·)

N

(
f q(z | ·))

∣∣∣≤ 2 inf
ϕ∈ΦDi

‖ f q(z | ·)−ϕ‖∞,

(7.13)
where we use that the prior is not improper (as otherwise ‖Iq(·)‖∞ 6= 1).

It is not generally true that the right-hand side of (7.12), i.e. the error of our proposed
adaptive rule, is smaller than the right-hand side of (7.13), i.e. the error of conventional
rules with respect to the prior. For example, the latter is smaller if both f and q(z | ·) are
polynomials (which is rarely the case in Bayesian model calibration). In general, it is
the case that a quadrature rule constructed using the iterative procedure of this chapter
outperforms a quadrature rule constructed using the prior if f can be approximated
much more efficiently by polynomials than f q(z | ·). To see this, we assume that the
approximation of f converges strictly faster than the approximation of f q(z | ·), so using
little-o notation:

inf
ϕ∈ΦDi

‖ f −ϕ‖∞ = o

(
inf

ϕ∈ΦDi

‖ f q(z | ·)−ϕ‖∞
)

. (7.14)
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To compare both quadrature rules, recall that ρN is constructed such that ρN → ρ. Then
there exists a ρ∗

N ∈ R such that

‖ρ/ρ∗
N‖∞ → 1, for N →∞.

Hence there exist sequences {aN }N and {bN }N such that aN ≤ ‖ρ/ρ∗
N‖∞ ≤ bN for all N

with aN ↑ 1 and bN ↓ 1 for N →∞*. Hence

inf
ϕ∈ΦDi

∥∥∥∥ f
ρ

ρ∗
N

−ϕ
∥∥∥∥
∞

≤ max

(
inf

ϕ∈ΦDi

‖aN f −ϕ‖∞; inf
ϕ∈ΦDi

‖bN f −ϕ‖∞
)

≤ max

(
aN inf

ϕ∈ΦDi

‖ f −ϕ‖∞; bN inf
ϕ∈ΦDi

‖ f −ϕ‖∞
)

.

So for all ε> 0 there exists an N1 such that

inf
ϕ∈ΦDi

∥∥∥∥ f
ρ

ρ∗
N

−ϕ
∥∥∥∥
∞

≤ (1+ε) inf
ϕ∈ΦDi

‖ f −ϕ‖∞, for all N ≥ N1.

Thus, for N ≥ N1 the following bound is obtained:

eN ( f ) ≤ 2(1+ε) inf
ϕ∈ΦDi

‖ f −ϕ‖∞. (7.15)

By combining this bound with (7.14), it follows that (7.12) is sharper than (7.13).
Concluding, if incorporating the likelihood in the integrand (obtaining f q(z | ·))

yields an integrand that is difficult to approximate using polynomials, the proposed
adaptive method has a sharper error bound than conventional rules. This is described
by (7.14) and is often the case if the likelihood is informative (i.e. it has small standard
deviation) or if the model is irregular (which yields an even more irregular likelihood).
For large N the error of the adaptive quadrature rule proposed in this chapter behaves
similar to that of a conventional quadrature rule constructed with respect to the posterior,
as described by (7.15), even though this conventional quadrature rule can usually not
be determined without requiring large numbers of evaluations of the posterior.

7.4.3. Sampling error
As an arbitrarily sized sample set can be easily drawn from the distribution ρN for any
N , the sampling error at least decays with rate

p
K , i.e. for K →∞, the error converges

to a Gaussian distribution as follows:

|IρN f −IρN
K f | ∼N (IρN f ,σ2),

with σ= σ( f )
/p

K . Here, σ( f ) is the standard deviation of f with respect to ρN , i.e.

(
σ( f )

)2 = IρN
(
( f −IρN f )2).

*In other words, aN converges to 1 from below and bN converges to 1 from above for N →∞.
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In this chapter, acceptance rejection sampling is used to draw large numbers of samples
from ρN . Several improvements exist to construct sequences that convergence faster, for
example quasi-Monte Carlo sequences [31, 132]. We emphasize that these approaches
can be used straightforwardly in the framework explained in this chapter.

The number of samples K can be chosen independently of the number of nodes N
under consideration, so the sampling error can be made arbitrarily small without any
costly model evaluations. Choosing a larger sample set does however mean that it takes
more computational effort to determine the implicit quadrature rule. In practice, the
interpolation and quadrature rule error dominate both the error of the quadrature rule
and the cost of the procedure (through model evaluations). Only if the model is analytic
and the likelihood is not informative, the quadrature rule error and interpolation error
decay rapidly enough to make the sampling error dominate.

7.5. Numerical examples
The properties of the method derived in this chapter are illustrated using various nu-
merical examples. Two types of cases are discussed.

Firstly, in Section 7.5.1 three different classes of analytical test cases are discussed to
illustrate the key properties of our method. Secondly, the main motivation for this work
is to apply Bayesian calibration to the closure coefficients of turbulence models, similarly
to the case discussed in Chapter 6. To demonstrate the applicability of our method
to this case, we calibrate the closure coefficients of the Spalart–Allmaras one-equation
model using measurement data of the flow over a transonic airfoil and infer predictions
using the calibrated parameters. This problem is further considered in Section 7.5.2.

7.5.1. Analytical test cases
Firstly, a univariate case is discussed where the sampling and interpolation error as
introduced in (7.6) can be observed well. The quadrature error is studied to a lesser
extent, since it has already been considered extensively in previous chapters. Secondly,
three two-dimensional test functions are calibrated using numerically generated data.
The test functions, based on the Genz test functions [66] that have been used before in
this thesis, are tuned such that the likelihood is very informative. Finally, all six Genz
test functions are calibrated using numerically generated data. The domain of these
functions is five-dimensional and a comparison is made with conventional quadrature
rules such as the tensor grid and the Smolyak sparse grid.

Effect of sampling and interpolation error
Let Ω= [0,1] and consider a uniform prior in conjunction with a Beta(40,60) distributed
likelihood, which yields:

ρ(x) ∝ x40(1−x)60.

To assess the effect of the sampling error, the proposed adaptive quadrature rule is
constructed using K = 10n samples with n = 2,3,4,5. The obtained quadrature rule is
used to approximate the mean of ρ(x):

∫

Ω
ϕ1(x)ρ(x)dx =

∫

Ω
xρ(x)dx ≈

N∑

k=0
xk wk =

N∑

k=0
ϕ1(xk )wk . (7.16)
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Figure 7.4: Integration error as a function of the number of nodes. In the left figure, the
error of an adaptive quadrature rule is depicted for various numbers of sam-
ples. In the right figure, the error of an implicit quadrature rule constructed
using various distributions is depicted, for fixed K = 105.

The obtained estimate is compared to the true mean (which is 2/5). The sampling error
depends on the randomly generated samples, so the experiment is repeated 50 times
and the obtained errors are averaged to illustrate general behavior of the error. The
results are gathered in Figure 7.4a, where the averaged error is denoted by eN .

For small N , it is clear that the errors of all quadrature rules converge geometrically,
which implies that the quadrature error or the interpolation error dominates. For large
N , the error does not decay further due to the limited number of samples. The point
where the error stops decaying depends on the number of samples used, i.e. a larger
number of samples results in a smaller overall error.

To assess the effect of the interpolation error, three different implicit quadrature
rules are constructed. The first rule is constructed using the adaptive method proposed
in this chapter, i.e. using ρN (x) like in Figure 7.4a. This quadrature rule has a sampling
error and interpolation error, but no quadrature error since we are comparing the first
moment (see (7.16)). The second rule is constructed using the exact distribution, i.e.
ρ(x), which results in a rule that only has a sampling error. The third rule is constructed
using the uniform distribution, i.e. using q(x). This rule has a sampling error and
a quadrature error, as the likelihood needs to be incorporated in the integrand. All
three quadrature rules are used to approximate the mean of the posterior. The rules
constructed using ρN (x) and ρ(x) can estimate the mean using (7.16), whereas the
rule that is constructed using q(x) requires integration of f (x) = ρ(x) · x. All rules
are constructed using 105 samples and again the experiment is repeated 50 times to
demonstrate general behavior of the rules. The results are gathered in Figure 7.4b.

The error of the rule constructed using samples from ρ(x) immediately saturates
to a level where the sampling error dominates, as no interpolation is used and the
quadrature rule error vanishes since the error estimate from (7.16) is based on the mean
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(i.e. the first moment). The error of the rule constructed using the prior q(x) converges
geometrically, as the PDF of the Beta(40,60) distribution is a polynomial. A significant
improvement is noticed by using our proposed adaptive proposal distribution ρN (x).
Initially a larger rate of convergence is obtained (up to approximately N = 10), as the
interpolant provides rapid convergence. For large N the rate of convergence equals the
rate of the rule constructed using q(x).

This test case demonstrates that using samples that have been obtained directly from
ρ(x) is obviously preferable, but this is intractable in practice. The adaptive proposal
distribution has a clear advantage over using a rule that only incorporates the prior.

Two-dimensional Genz test functions
The previously considered test case demonstrates the advantages of using an adaptive
quadrature rule. To illustrate the nodal placement of this rule and to further compare this
rule to implicit quadrature rules constructed with respect to the prior, the calibration
of three two-dimensional Genz test functions [66] with artificially generated data is
considered (see Table 4.1 on page 89). Therefore, let d = 2, x∗ = (1/2,1/2)T, and consider
the following functions:

u1(x) =
d∏

i=1

[
1

4
+

(
xi −

1

2

)2]−1

, (Product Peak)

u2(x) = exp

(
−

d∑

i=1

∣∣∣∣xi −
1

2

∣∣∣∣

)
, (C 0 function)

u3(x) =
{

0 if x1 > 3/5 and x2 > 3/5,

exp
(∑d

i=1 xi
)

otherwise.
(Discontinuous function)

These functions are specifically crafted such that they have difficult characteristics
for numerical integration routines at or around x = x∗. The statistical model under
consideration is

zk = ug (x)+ε, with ε∼N (0,σ2) and σ= 1/10, for k = 1, . . . ,20. (7.17)

Here, ug (with g = 1,2,3) denotes one of the functions under consideration and z =
(z1, . . . , z20)T are 20 “measurements” obtained by zk = ug (x∗)+nk with nk a sample from
N (0,σ2). Hence the data is centered around the defining (“difficult”) characteristics of
the test functions.

The goal is to infer x from (7.17), or equivalently, characterize the posterior q(x | z)
with a uniform prior and Gaussian likelihood defined in Ω= [0,1]d , i.e. we use ρ(x) =
q(z | x) q(x) with

q(x) =
{

1 if x ∈Ω,

0 otherwise,

q(z | x) ∝ exp

[
−1

2

∑20
k=1(u(x)− zk )2

σ2

]
.

(7.18)
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Figure 7.5: Convergence of the mean error determined with the new adaptive implicit
quadrature rule or a quadrature rule determined using the prior. Equal colors
refer to the same quadrature rule. Equal symbols refer to the same function.
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Figure 7.6: Examples of quadrature rules with D = 65 (exact for all polynomials up to
degree 10) obtained by the adaptive implicit quadrature rule. The colors
indicate the weights of the quadrature rule nodes. The nodes of a quadrature
rule of the same polynomial degree, but constructed with respect to the prior,
are depicted in gray.
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Table 7.1: The multivariate test functions from Genz [66]. All d-variate functions depend

on the d-element vectors a and b. The vector b is an offset parameter to shift
the function. The vector a describes the degree to which the family attribute
is present.

Integrand Family Attribute
u1(x) = cos

(
2πb1 +

∑d
i=1 ai xi

)
Oscillatory

u2(x) =∏d
i=1

(
a−2

i + (xi −bi )2
)−1

Product Peak

u3(x) = (
1+∑d

i=1 ai xi
)−(d+1)

Corner Peak

u4(x) = exp
(−∑d

i=1 a2
i (xi −bi )2

)
Gaussian

u5(x) = exp
(−∑d

i=1 ai |xi −bi |
)

C 0 function

u6(x) =
{

0 if x1 > b1 or x2 > b2

exp
(∑d

i=1 ai xi
)

otherwise
Discontinuous

The quantity used to measure the error of the quadrature rules is the maximum
error of the mean of the posterior, i.e.

eN =




max
(
|ANϕ1 −Iρϕ1|, |ANϕ2 −Iρϕ2|

)
if AN w.r.t. ρN (x),

max
(∣∣∣AN

(
ϕ1q(z | x1)

)
−Iρϕ1

∣∣∣ ,
∣∣∣AN

(
ϕ2q(z | x2)

)
−Iρϕ2

∣∣∣
)

if AN w.r.t. q(x),

where AN denotes a quadrature rule operator constructed using the adaptive method
proposed in this chapter (i.e. with respect to ρN ) or solely using the prior (i.e. with
respect to q(x)). In both cases the weights are scaled such that

∑
k wk = 1. All quadrature

rules are constructed using a linearly growing Di , i.e. in iteration i it is enforced that
the quadrature rule integrates all ϕ ∈Φi exactly (with Φi as introduced in Section 7.2.2).
Recall that if x = (x1, x2) we have that ϕ1(x) = x1 and ϕ2(x) = x2.

There is randomness both in the generation of the quadrature rules and in the
generation of the measurement data. Therefore, the error eN is determined 25 times and
the obtained errors are averaged. The averaged error is denoted by eN . The convergence
results are summarized in Figure 7.5. Examples of quadrature rules obtained by applying
the proposed procedure are depicted in Figure 7.6. There are still oscillations visible,
regardless of the averaging, though the error decay can clearly be observed.

Notice that the adaptive implicit quadrature rule outperforms the conventional im-
plicit quadrature rule in all three cases. The scatter plots of the nodes illustrate that the
quadrature rules are indeed tailored specifically to the posterior under consideration.
Since all rules have positive weights, estimates determined using these rules are uncon-
ditionally stable. This is an aforementioned advantage of the proposed method: the
quadrature rules exhibit both exploitation (due to the interpolant) and exploration (due
to the spread of the nodes) without suffering from instability.
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Five-dimensional Genz test functions
In this section, the calibration of the five-dimensional Genz test functions is considered.
The setting is similar to the one of the previous section, i.e. let d = 5 and x∗ ∈Rd with
x∗

k = 1/2. Let ug be the g -th Genz test function, as defined by Table 4.1 on page 89 (and

reproduced as Table 7.1 in this chapter). The vectors a = (a1, . . . , ad )T and b = (b1, . . . ,bd )T

are chosen randomly in this test case, as done in previous chapters. Recall that the
elements of a enlarge the defining “difficult” property of the function and b translates
the function in space. The statistical model under consideration is the same model
considered in the previous section, see (7.17) and (7.18). Notice that, due to the random
nature of b, the probability that the difficult property of the functions is around x = x∗ is
small.

Four quadrature rules are considered to determine the mean of the posterior. Firstly,
the proposed quadrature rule with a nearest neighbor interpolant is used. At each
iteration the exactness of the quadrature rule is doubled, starting with D0 = 20 up to
D10 = 210. In other words, subsequent quadrature rules integrate larger numbers of
polynomials (recall that ΦD denotes the space of D +1 polynomials, sorted graded lex-
icographically). Secondly, an implicit quadrature rule without interpolation is used,
generated using solely the prior. Finally, to compare the results with conventional quad-
rature rules, a tensor grid and a Smolyak sparse grid generated with a Clenshaw–Curtis
quadrature rule are used. A linearly growing sequence of Clenshaw–Curtis quadrature
rules is considered, so the tensor grid and the Smolyak sparse grid do not form a se-
quence of nested quadrature rules. This is done to keep the number of nodes of the
multivariate quadrature rules tractable. We do not present the results obtained with
Markov chain Monte Carlo, since the number of model evaluations considered here is
too small to obtain a “burned-in” sequence.

For each quadrature rule, the experiment is repeated 25 times and the reported errors
are averaged. For each experiment, the vectors a and b are drawn randomly from the five-
dimensional unit hypercube and a is subsequently scaled such that ‖a‖2 = 5/2. Moreover,
for each experiment different samples are used to generate the implicit quadrature rules.
To introduce randomness in the tensor grid and Smolyak sparse grid, the “exact” value x∗

is randomized in the domain. This improves the results of calibration with the Clenshaw–
Curtis rules, as it otherwise would have a node at x = x∗ and therefore would significantly
overestimate the moments. The quantity used to measure the error of the quadrature
rules is the same as in the previous test case, i.e. eN is the maximum error of all first-
order raw moments (which are ϕ1, . . . ,ϕ5) and eN denotes the value of eN averaged over
25 experiments. The “exact” mean is determined using a Monte Carlo sample from the
prior. The number of samples used is the same number used to generate the implicit
quadrature rules, such that the sampling error can be observed well (in that case all
errors saturate). The obtained results are depicted in Figure 7.7.

The first four test functions are analytic, so for these test functions the quadrature
rules perform best. The flattening of the error of the third test function occurs due to the
sampling error of the exact mean (and not due to the sampling error of the quadrature
rule). Moreover, the results of the third test function are best, since the corner peak
varies only near a corner (hence the name) and therefore yields an almost uniform
posterior.
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Figure 7.7: Convergence of the mean of the posterior determined using four different
quadrature rules. The six functions under consideration are the Genz test
functions.
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The fifth Genz test function is only continuous (and not smooth), so should theoreti-
cally yield inferior performance. However, it is not differentiable only at a single point
in the five-dimensional domain, so it is very unlikely that that point is of importance for
the accuracy of the quadrature rules.

The sixth Genz test function is discontinuous and all rules do not yield a rapidly
converging estimate. This is expected, since the quadrature rules are based on approxi-
mation using smooth functions. Notice that the convergence of the proposed adaptive
procedure is significantly worse compared to the two-dimensional case considered
previously, since detecting the discontinuity in the posterior using nearest neighbor
interpolation in five dimensions requires significantly more model evaluations than in
two dimensions. Nonetheless, the accuracy remains similar to the other quadrature
rules.

Overall, the adaptive quadrature rule proposed here consistently performs better or
on the same level as the other quadrature rules. This demonstrates that the proposed
procedure works for non-informative posteriors, since it is rarely the case that the
posterior of the Genz test functions in conjunction with the randomized parameters is
informative. Intuitively one would expect that piecewise interpolation is in these cases
not necessarily beneficial, but the results demonstrate that it does not deteriorate the
performance.

The Smolyak sparse grid performs significantly worse than the other quadrature
rules for u1 and u6. This happens due to the negative weights of the sparse grid, or more
specifically, due to the large positive weights present in the Smolyak sparse grid. These
large weights significantly deteriorate the accuracy for a small number of the 25 runs,
which is reflected in the averaged errors presented in Figure 7.7. Notice that this effect
can be significantly alleviated with an adaptive Smolyak sparse grid, as considered by
Schillings and Schwab [159], though negative weights will remain present.

7.5.2. Transonic flow over an airfoil
The applicability of the approach to complex test cases is demonstrated by reconsid-
ering the transonic flow over the RAE2822 airfoil. The problem under consideration is
inferring Bayesian predictions of the pressure coefficient on the airfoil, incorporating
calibrated closure parameters of the Spalart–Allmaras turbulence model using wind tun-
nel measurements. It is computationally expensive to determine an accurate numerical
solution of this problem, so the usage of efficient calibration and prediction approaches
is of importance.

This section is split into three parts. Firstly, the problem of modeling the transonic
flow over an airfoil and the measurement data under consideration is briefly recon-
sidered (a more elaborate introduction can be found in Section 6.4.3). Secondly, the
statistical model under consideration that relates the measurement data to the model
output is discussed. The model incorporates hyperparameters, contrary to the case
discussed in Chapter 6. Finally, Bayesian predictions of the flow around the airfoil are
inferred.

Modeling the flow over an airfoil
The flow over the airfoil under consideration is modeled using the Reynolds-averaged
Navier–Stokes (RANS) equations [192], in combination with the Spalart–Allmaras turbu-
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lence model [170]. In this chapter the same variant as in Chapter 6 is considered, i.e. the
model has the following parameters: σ, Cb1, Cb2, κ, Cw2, Cw3, Ct3, Ct4, Cv1, and Cw1.
Here, Cw1 is defined as follows:

Cw1 =Cb1/κ2 + (1+Cb2)/σ.

A major advantage of the approach discussed in this chapter is that the determined
quadrature rule can directly be used to infer a Bayesian prediction of the flow incorporat-
ing the uncertainty of the closure coefficients. The costly model evaluations have already
been performed during the construction of the rule. No Markov chain Monte Carlo
routines are necessary to obtain the predictions.

Again SU2 [139] is employed to numerically solve the RANS equations and conse-
quently obtain the pressure coefficient on the airfoil. The measurements from Cook
et al. [36] are also being reused. We focus solely on Case 6 (see Cook et al. [36] for the
other cases), with Reynolds number 6.5 ·106, Mach number 0.725, and angle of attack
2.92◦. Recall that the measurements encompass n = 103 point measurements of the
pressure coefficient on the surface of the airfoil.

Statistical model
The quantity of interest used for the calibration is the pressure coefficient on the surface
of the airfoil. Following Edeling et al. [52], the parameters considered for calibration are
ϑ= (κ,σ,Cb1,Cb2,Cv1,Cw2,Cw3)T. The statistical model is the same model as considered
in Chapter 6, with the sole difference that hyperparameters are incorporated in the
calibration.

To this end, let s ∈ [0,2] be the spatial parameter that runs from the trailing edge in
anticlockwise direction over the airfoil. Then u(ϑ; s) denotes the mapping that yields the
pressure coefficient at s using the turbulence parameters ϑ. We denote the calibration
parameters by ϑ (instead of x) to avoid confusion between ϑ and the usual spatial
coordinates x and y . A single evaluation of SU2 yields the pressure coefficient at all
spatial coordinates in the discrete mesh for given ϑ and we use linear interpolation to
obtain the pressure coefficient at the measurement locations.

The statistical model is, following Kennedy and O’Hagan [95], as follows:

zk = u(ϑ; sk )+δ(sk )+εk , with εk ∼N (0, σ̃2) for k = 1, . . . ,n. (7.19)

Here, zk denotes the measured pressure coefficient at location sk . The random process
δ(s) ∼N (0,Cov(s, s′ | A, l )) is a Gaussian process with zero mean and squared exponen-
tial covariance:

Cov(s, s′ | A, l ) = A exp

[
−

(
s − s′

L10l

)2
]

.

The values of A and l are hyperparameters and are being inferred from calibration
whereas L is a fixed parameter whose value is provided later. Measurement error is
modeled by εk , which is Gaussian distributed with known standard deviation σ̃= 0.01.
This value is based on the measurement errors reported by Cook et al. [36].

The model from (7.19) yields the following likelihood:

q(z |ϑ, A, l ) ∝ exp

[
−1

2
dTC−1d

]
, (7.20)
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with d the misfit and C the covariance matrix, i.e.

dk = zk −u(ϑ; sk ),

C = σ̃I +Σ, with Σi , j = Cov(si , s j | A, l ).

The prior of the turbulence closure parameters is the same as the one considered in
the previous chapter, i.e. it is uniformly distributed with the following support:

κ [0.205,0.615]

σ [1/3,1]

Cb1 [0.0678,0.2033]

Cb2 [0.311,0.933]

Cv1 [3.55,10.65]

Cw2 [0.2,0.4]

Cw3 [1,3]

The hyperparameters A and l are also being calibrated and therefore also require
a prior. These are respectively A ∼U (0,0.01) and l ∼U (0,1). We choose L = 0.01, such
that the maximal covariance length is significantly larger than the length of a single
numerical cell on the surface of the airfoil. The computational model does not depend
on A, l , and L, so given ϑ the distribution of these parameters is fully known analytically.

By combining the prior with the likelihood from (7.20), Bayes’ law yields the poste-
rior:

q(ϑ, A, l | z) ∝ q(z |ϑ, A, l ) q(ϑ) q(A) q(l ).

We are not interested in the exact distribution of the hyperparameters and the evidence
can be neglected by rescaling the quadrature rule weights. Hence we apply the adaptive
implicit quadrature rule to the following distribution:

ρ(ϑ) =
Ï

q(z |ϑ, A, l ) q(ϑ) q(A) q(l )dA dl .

Afterwards, the quadrature rule weights are scaled such that
∑N

k=0 wk = 1 and the rule is
used to infer Bayesian predictions, e.g. as derived in (7.2):

E[ẑ | z](s) =
∫

Ω
u(ϑ, s) q(ϑ | z)dϑ≈

N∑

k=0
u(ϑk , s)wk , with q(ϑ | z) ∝ ρ(ϑ).

Results
The quadrature rule constructed in this test case has polynomial degree 3, which con-
stitutes a polynomial space with 120 basis polynomials. This number of polynomials
is a good balance between accuracy in the predictions and overall running time. The
quadrature rules are constructed with linearly increasing exactness, so at the i -th itera-
tion a quadrature rule of degree i is constructed that incorporates all available model
evaluations (up to iteration i −1).

The obtained rule incorporates an approximation of the posterior. There is no exact
solution available, so it is not straightforward to assess the accuracy of the quadrature
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Figure 7.8: Convergence of the consecutive differences of the pressure coefficient on the
RAE2822 airfoil.

rule. For this purpose, each iteration the mean of the pressure coefficient is determined
and these are consecutively compared using the 2-norm, i.e. if Ni is the number of
nodes of the quadrature rule after i iterations, then the error measure is

eNi = ‖ANi u −ANi−1 u‖2.

We will denote this with a little abuse of notation simply as

eN = ‖AN u −AN−1u‖2.

A similar error measure has been used in Section 4.4.2, where the flow over the NACA
airfoil is considered. The obtained errors are depicted in Figure 7.8.

The quadrature rule clearly yields a converging mean and the error converges ap-
proximately linearly to zero. The oscillations are the result of the random sampling
of the proposal distributions in combination with the fact that this test case was run
only once. Obtaining a smoother decay would require repeating the experiment various
times and averaging the obtained error (as done in the previous test cases), but this is
too computationally costly in this case. In practical computations, the error decay can
be assessed by regressing the convergence rate by means of least squares (i.e. by fitting
analytic error decay).

Each iteration SU2 is evaluated for each additional quadrature rule node, so obtain-
ing Bayesian predictions of the pressure coefficient is a straightforward post-processing
step. The obtained predictions of the pressure coefficient are depicted in Figure 7.9.
The measurement data, uncertainty bounds, and the deterministic pressure coefficient
determined using the canonical turbulence coefficients are also depicted. It is clearly
visible that the largest uncertainty occurs near the shock on top of the airfoil, which is in
line with existing results on uncertain transonic flows around the RAE2822 airfoil, either
using uncorrelated prescribed distributions [147, 195] or calibrated parameters in a
Bayesian setting [18]. Notice that the number of evaluations of SU2 needed to infer these
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Figure 7.9: Mean (denoted by µ) and standard deviation (denoted by σ) of the pressure
coefficients determined using Bayesian prediction and the method proposed
in this chapter. The dashed line indicates the pressure coefficient obtained
by using the canonical values of the turbulence closure coefficients.

predictions is of similar order of magnitude as is common for uncertainty propagation
with prescribed distributions. It is a significant reduction compared to commonly used
Markov chain Monte Carlo methods [34, 51, 52].

The inferred prediction is similar to the prediction computed in Chapter 6 (see
Figure 6.14 on page 155). In both cases the largest uncertainty is clearly originating from
the shock on top of the airfoil, even though there are small differences. These differences
are likely due to the calibration of hyperparameters and the usage of a significantly larger
number of simulations.

SU2 yields the full flow field around the airfoil and therefore it is also possible to
predict the statistical moments of the pressure coefficient away from the airfoil surface,
as depicted in Figure 7.10. We want to emphasize the importance of positive weights,
since these ensure that the prediction of the variance is positive. Notice that the pressure
coefficients depicted in these figures (i.e. away from the airfoil) have not been used in
the calibration process, as only measurement data on the airfoil surface is available. So
technically it not evident whether these results are correct or not. It is not straightforward
to make general claims about this, since the specific properties (such as smoothness) of
the model under consideration determine to a large extent whether it is viable to infer
predictions of quantities using parameters that have been calibrated with a different
quantity.

7.6. Conclusion
In this chapter a new methodology is proposed to construct quadrature rules with
positive weights and high degree for the purpose of inferring Bayesian predictions. It
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Figure 7.10: Predictions of pressure coefficients in the vicinity of the airfoil using cali-
brated coefficients.

consists of two steps. Firstly a quadrature rule is constructed using an approximation
of the posterior. For this step the implicit quadrature rule as introduced in Chapter 4
has been used. Secondly the approximation of the posterior is refined using all available
model evaluations. For the second step nearest neighbor interpolation has been used.
It has been demonstrated rigorously that our approach yields a quadrature rule whose
error behaves like a quadrature rule with respect to the exact posterior for increasing
number of nodes.

The performance of the quadrature rule has been demonstrated by calibrating the
Genz test functions in a Bayesian framework. The results demonstrate that the quadra-
ture rules consistently outperform (or perform on a par with) conventional numerical
integration approaches. The performance gains are most significant if the likelihood is
very informative, e.g. if its standard deviation is small. If, on the other hand, the poste-
rior resembles approximately the prior, the performance is comparable to a quadrature
rule determined using solely the prior.

The applicability of the approach to an expensive fluid dynamics model has been
demonstrated by using the quadrature rule to calibrate the transonic flow over the
RAE2822 airfoil. It has been demonstrated numerically that estimates of the rule con-
verge and predictions of the mean and standard deviation of the pressure coefficient
have been inferred. Significantly less model evaluations are necessary compared to
existing Bayesian calibration approaches, while the results are in line with existing
research.

There are various opportunities to further extend the approach. For example, the
nearest neighbor interpolation procedure does not leverage smoothness in either the
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distribution or the posterior. A major opportunity is replacing nearest neighbor in-
terpolation by a more efficient interpolation approach, which could allow for more
rapid convergence. This is however far from trivial, since our method requires that the
obtained interpolant is a distribution.





Conclusions and future work
Many problems in wind energy, computational fluid dynamics, and other fields of en-
gineering contain inherent randomness or uncertainty in the input parameters of the
associated models. Assessing statistical quantities in these problems often involves cal-
culating an integral with a non-trivial integrand. The computational cost of computing
such integrals by random sampling is typically prohibitively large. Moreover, existing
deterministic collocation approaches are usually inapplicable if the input parameters
are correlated, dependent, or only known indirectly through the model. Therefore the
key focus of this thesis has been to construct collocation approaches that are applicable
regardless of the distribution of the input parameters, which makes these approaches
particularly useful in problems related to wind energy.

The proposed collocation methods considered in this thesis, such as the implicit
quadrature rule and its various extensions, are highly efficient methods to determine
accurate statistics of computationally expensive models. The methods have been applied
successfully to compute equivalent loads acting on an offshore wind turbine and it has
been demonstrated both theoretically and numerically that converging estimates are
obtained for sufficiently smooth functions.

The goal of this chapter is to briefly summarize this thesis, discuss the obtained
results, draw conclusions, and provide options for future research.

8.1. Conclusions
The focus of this thesis is on the construction of efficient collocation methods. Based
on the idea that Monte Carlo methods are too expensive to compute statistics of com-
putationally expensive models and that other existing techniques require too stringent
assumptions, novel methodologies and algorithms have been proposed to determine
where to evaluate the computationally expensive model and how to post-process the
obtained evaluations.

The proposed methods can be split into three categories, which follow roughly from
the main objectives outlined in the introduction of this thesis. In Chapter 3 and 4
the focus was on uncertainty propagation, where the distribution of the parameters
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of the model is fully characterized by a probability distribution or by a set of samples.
In Chapter 5 the derived techniques were applied to a standardized load case, which
specifies how to calculate equivalent loads acting on a wind turbine. Finally, in Chapter 6
and 7 the focus shifted to the case where the distribution of the parameters cannot be
fully characterized beforehand, since it directly depends on measurement data and the
model. Such distributions are often obtained in Bayesian calibration and prediction
problems.

8.1.1. Uncertainty propagation
Uncertainty propagation encompasses the problem of assessing the statistics of a com-
putationally expensive model with random parameters. For this purpose, a family of
quadrature rules has been proposed in this thesis. The quadrature rules follow from a
mathematical framework that describes various algorithms that can be used to modify
quadrature rules. All modifications are such that the quadrature rules remain accurate,
or more specifically, such that the quadrature rules keep positive weights and remain
interpolatory. By exploiting this framework, the implicit quadrature rule was derived,
which is a quadrature rule with positive weights obtained as a subset of a large number
of samples.

The proposed numerical integration techniques are very suitable to infer moments
(or other integral quantities) of computationally expensive models with random pa-
rameters. Any set of samples defined on any domain can be used to construct the
quadrature rules. Moreover the computational cost of the algorithms does not scale with
the dimension of the random space. High convergence rates were obtained for smooth
functions and no deterioration of convergence was observed for non-smooth functions.
These properties have been verified both theoretically and numerically.

A limitation of the quadrature rule framework discussed in this thesis is that it must
be initialized with an existing quadrature rule with positive weights. This rule does
not need to be based on polynomials. For example, equally weighted random samples
can be used, which forms the key idea of the implicit quadrature rule. Using random
samples limits the accuracy of the quadrature rules to the accuracy of the set of samples
but allows to compute quadrature rules with respect to distributions that are only known
by samples or measurements.

The integration error of all constructed quadrature rules is heavily influenced by
the usage of such an initial quadrature rule. To illustrate the impact of all sources of
error on the integration error, the absolute integration error has been split in several
components: the quadrature error, the sampling error (Chapter 4 and 7), the seed error
(Chapter 5), and the interpolation error (Chapter 7). This provides insight into the decay
of the integration error, but no techniques have been discussed to balance these errors
and thereby optimizing the computational cost by distributing computational power
equally across all sources of error.

The quadrature rule framework and the implicit quadrature rule are based on a
solid mathematical foundation that describe the accuracy of the constructed rules. The
numerical stability of constructing the rules has not been considered extensively in this
thesis, but is a non-trivial and challenging element, especially if quadrature rules of
large numbers of nodes are considered. For the purposes of this thesis, the algorithms
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proposed in this thesis are sufficient, but for larger scale applications more involved
methods might be necessary.

It remains notoriously difficult to directly construct a sequence of nested quadrature
rules with positive weights given an arbitrary distribution. Although the approaches pro-
posed in this thesis circumvent the direct construction of rules by considering existing
rules, they could be significantly improved if such techniques would be available. Based
among others on the fact that any arbitrary sized interpolatory quadrature rule can be
used to construct a finitely sized sequence of nested quadrature rules, there are strong
theoretical indications that sequences of nested quadrature rules with positive weights
can be constructed given an arbitrary basis, distribution, and domain of definition.
However, an algorithm to construct such rules has not been derived.

8.1.2. Wind turbine load calculation
One of the main objectives of this thesis is to assess the loads acting on a wind turbine
more efficiently. This is non-trivial with existing methods, since the distributions in-
volved in load calculations are often strongly correlated or only known by measurements.
The implicit quadrature rule is tuned specifically to these restrictions and can be used
straightforwardly to assess standardized fatigue load cases.

To demonstrate the applicability of the quadrature rules to load cases, the damage
equivalent loads acting on the NREL 5MW turbine have been assessed. Equivalent loads
are defined as an integral weighted with a correlated probability density function that
should ideally be inferred from measurements. Numerical integration techniques that
can handle such distributions, such as the implicit quadrature rule, form promising
alternatives to existing methods such as binning.

The obtained damage equivalent loads are of the same order of magnitude as ob-
tained by the standardized technique, although a significantly smaller number of model
runs is necessary. The key properties of quadrature rules, such as high convergence rates
for smooth functions, again manifested themselves in this test case. The accuracy of the
methods has been validated by comparing consecutive approximations with different
fidelity of the equivalent loads.

Even though the implicit quadrature rule directly competes with binning, this does
not necessarily imply that the obtained estimations are accurate. A large validation
test case, for example a comparison of the obtained estimations with a high fidelity
Monte Carlo estimation, could not be conducted using the hardware employed for the
simulations done in this thesis. However, such a validation test case is necessary before
applying these methods to “real” wind turbines and offshore wind farms.

As noticed above, the implicit quadrature rule is only applicable if a set of samples
(or measurements) is available. For the computations of the design load case considered
in this thesis a large number of measurements conducted at the North Sea is employed.
Therefore the proposed procedure is very suitable for assessing the life time of an existing
wind turbine design at an offshore site or for designing a wind turbine specifically with
an offshore site in mind (this is standardized as the S-class [85]). However, offshore
measurements are not always available during the design phase of a wind turbine and
are costly to obtain.
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8.1.3. Bayesian calibration and prediction
In many computational methods it is the case that exact values of parameters are
unknown or non-existent and no closed-form distribution is provided describing the
variability in these parameters. For example, the Reynolds-averaged Navier Stokes
equations require a closure model to form a closed system of differential equations
and closure models are often accompanied by closure or fitting parameters that require
calibration. Bayesian model calibration is a systematic way to model the uncertainty of
these parameters by describing the distribution as a posterior of a calibration procedure
in a Bayesian framework. By propagating the posterior through the model, predictions
of the model incorporating uncertainty can be inferred.

The key challenge, compared to “vanilla” uncertainty propagation, is that the poste-
rior explicitly depends on the model. To alleviate the high computational cost associated
with inferring statistics of such a posterior, two approaches have been proposed in this
thesis. The first approach (discussed in Chapter 6) consists of constructing a surrogate of
the model which is tailored specifically to the available knowledge of the posterior. This
procedure shows its true strength for models which are smooth and analytic, yielding
high convergence rates in that case. The second approach (discussed in Chapter 7)
reuses the quadrature rules derived for propagation of uncertainty and consists of it-
eratively constructing a quadrature rule that incorporates the posterior. Since it is a
numerical integration technique, it is especially suitable for inferring Bayesian pre-
dictions. It works for any model that can be integrated well using a quadrature rule,
although it does not immediately reveal the structure of the posterior itself.

The two proposed procedures have been applied to the calibration of the turbu-
lence closure parameters, where the goal was to calibrate a computational fluid dy-
namics model using wind tunnel measurements. In both cases accurate predictions
could be inferred with a small number of model evaluations (compared to conventional
Monte Carlo approaches). It demonstrates that these approaches are viable alternatives
to existing methods for Bayesian inference with computationally expensive models.

Without some basic knowledge of the model, such as its smoothness properties, it is
not straightforward to predict which approach is more suitable for the problem at hand.
If no assumptions can be made about the model under consideration, the approach
based on integration is favorable due to its generality, but this approach converges
significantly slower compared to the adaptive interpolation approach if the model is
smooth and analytic. Moreover a disadvantage of this approach is that only integral
quantities can be accurately computed.

The core of Bayesian model calibration and prediction consists of a statistical model
that describes the relation between the output of the model and the measurement
data. If the statistical model is chosen incorrectly, this has immediate effect on the
results obtained. The computed predictions might be overconfident or be uninformative.
Choosing a correct statistical model is therefore essential for any Bayesian analysis, but
this step has not been discussed extensively in this thesis.

8.2. Future work
A key goal of this thesis is to propose efficient methods to assess the loads acting on an
offshore wind turbine. Various approaches have been proposed and their effectiveness
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has been demonstrated. Based on these approaches, there are numerous opportunities
to apply these methodologies to different scenarios, extent the algorithms, or use alter-
native approaches. The recommendations and suggestions for future research directions
are split into two categories. In Section 8.2.1 the methods to assess uncertainty (both
propagation and calibration) are considered, mostly from a mathematical point of view.
In Section 8.2.2 the wind turbine load case calculations considered in this thesis are
discussed.

8.2.1. Uncertainty quantification
As concluded above, all multivariate numerical integration methodologies proposed in
this thesis are constructed using sample sets. Even though the number of samples can
be chosen independently of the number of nodes of the quadrature rule, the accuracy
of the quadrature rule cannot supersede the accuracy of the set of samples. It follows
from the quadrature rule framework derived in this thesis that it is non-trivial to directly
accommodate the exact moments of the distributions, but if possible, the accuracy of
the quadrature rule can be improved by incorporating these values. Based on the results
of this thesis, it is recommended to search for an algorithm that can construct quadra-
ture rules with positive weights that integrate an arbitrary number of basis functions.
Consequently a nested sequence can be obtained by removing nodes from this rule, as
outlined in Chapter 3.

The quadrature rules have solely been used for non-intrusive uncertainty quantifi-
cation. It is only assumed that general characteristics of the model are known and no
modifications of existing implementations are necessary. This is an advantage, since this
allows to apply the proposed methods to many different problems with varying charac-
teristics. The performance of the approaches can possibly be improved by incorporating
knowledge about the model in the collocation approaches.

In this thesis Leja nodes have been used to construct an interpolating polynomial.
It has been shown numerically that the Lebesgue constant of these nodes, which is an
indicator of their accuracy, grows sublinearly. Proving this result theoretically allows for
broader usage of these nodes and it is a recommended future research direction.

Throughout this thesis, the Genz test functions have been used to demonstrate
the efficiency of the proposed quadrature methods. These functions are commonly
used for this purpose. On the other hand, there does not exist a canonical test case
for Bayesian calibration and prediction. In this thesis the calibration of the turbulence
closure coefficients has been considered as canonical test case, but it would be beneficial
and recommended for the field of uncertainty quantification in general if test cases for
the purpose of Bayesian calibration become standardized and freely available, similarly
to the test functions used to test numerical integration techniques.

Many techniques in uncertainty quantification, including the ones used in this the-
sis, originate from other fields of applied mathematics, such as approximation theory.
Essentially the goal is to approximate a function or a linear operator (such as an inte-
gral) acting on the function. Hoever, the methods used in uncertainty quantification
use different nomenclature, even though they are based on the same techniques. For
instance, a polynomial chaos expansion is equivalent to a pseudo-spectral expansion
and stochastic collocation is equivalent to numerical integration or simply “conven-
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tional” collocation. This inconvenient usage of nomenclature might yield confusion
in the future and could hinder sharing improvements found in both fields. It is not
recommended to change all nomenclature retroactively, but it is certainly beneficial
for the field of uncertainty quantification if new nomenclature would be introduced
carefully.

8.2.2. Load case calculations
In this thesis, a single load case has been used to demonstrate the applicability of quad-
rature rules to load case calculations. The promising results demonstrate the prospect
of the quadrature rule. It should be straightforward to consider other fatigue load cases,
but it is significantly more challenging to consider ultimate load cases. Ultimate load
cases require a non-trivial extrapolation step to account for rare events that can severely
affect the life time of the wind farm. Extending the proposed collocation framework to
ultimate loads is an important research direction to further study the usage of numerical
integration techniques in load case calculations.

The proposed approach to assess load cases has been validated by comparing it to
the conventional approach (“binning”). A major disadvantage of this comparison is
that binning also contains an error, so it is difficult to determine the source of possible
discrepancy between the obtained results. Ideally, the accuracy of the quadrature rule
would be assessed by means of a reference value, but obtaining such a value is computa-
tionally very demanding. Moreover, conducting measurements is usually very expensive.
It would be beneficial for the development of new techniques if the IEC standard would
describe a reference test case (including a description of a wind turbine) and reference
values of the quantities described by the load cases. These values can consequently be
used to quantitatively compare the different methods (such as quadrature rules and
binning, but possibly also others).

Current approaches used to assess loads that act on a wind turbine are relatively
straightforward, compared with the recent approaches that are available in the field
of approximation theory. This is not surprising, since standardized methods should
be thoroughly tested. In recent versions of the IEC standard, methods from the field
of uncertainty quantification are briefly mentioned and discussed. Further enhancing
these methods and standardizing their usage would allow for faster load case assessment,
and therefore ultimately to cheaper development of offshore wind farms.

The Bayesian calibration and prediction approaches discussed in this thesis can be
used straightforwardly to calibrate a wind turbine model and infer predictions of the
equivalent loads that incorporate besides a varying environment also the error in the
model to a certain extent. However, calibration of the model requires measurements of
the forces acting on a turbine, which are currently not available for research purposes.
This is a limitation for all data-driven approaches in wind energy problems. Making such
measurements available facilitates the verification and development of computational
methods tailored to wind energy.
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Summary
Two sources of uncertainty can be distinguished in models for wind turbine load calcula-
tions. Firstly, the environment that the turbine has to withstand is inherently uncertain
and it directly influences the power output and life time of a wind turbine. Secondly, the
models used to predict the forces acting on a wind turbine form a source of uncertainty,
since these models contain possibly unknown assumptions, biases, and simplifications.
Accurately predicting these forces is crucial, since these directly affect the power output
and life time.

Both types of uncertainties can be modeled using probability theory. The environ-
mental conditions are often provided as a distribution (in fact, they are standardized as
such) or as a set of measurements and both can be embedded straightforwardly in prob-
ability theory. The uncertainty arising from assumptions, biases, and simplifications can
be assessed using Bayesian model calibration, yielding a probability distribution of the
model parameters. This requires measurement data of an output of the model. If all
relevant distributions are characterized, predictions that incorporate uncertainty can be
inferred using Monte Carlo methods.

However, these methods often converge prohibitively slow, since doubling the ac-
curacy of the estimate requires quadrupling the number of model evaluations. These
model evaluations are computationally costly, since each evaluation consists of the
complex proces of estimating the forces acting on a turbine.

The goal of this thesis is to numerically assess the effect of both external and model
uncertainty using stochastic collocation techniques and apply these techniques to wind
turbine load calculations. All methods considered in this thesis are by design non-
intrusive, meaning that all methods are based on exploiting only general characteristics
of the model (such as its smoothness properties) and use only a finite number of evalua-
tions of the model.

The methods in this thesis are based on polynomial approximation. In essence the
computationally costly model is replaced by a polynomial, which is cheap to represent
and evaluate using a computer. If the polynomial is constructed well, high convergence
rates are obtained for sufficiently smooth functions. The main focus is on numerical
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integration using quadrature rules, since statistical moments such as the mean and
standard deviation are integral quantities. In addition, polynomial interpolation is
considered, since that yields a computationally cheap approximation that can fully
replace the model.

The problem of numerical integration is cast as constructing an efficient quadrature
rule, which consists of a weighted sum of a finite number of model evaluations. Three
properties are relevant for a quadrature rule:

1. that the rule has positive weights,

2. that the rule integrates all functions from a high-dimensional polynomial space
exactly, and

3. that the rule is nested (i.e. the nodes of smaller rules are reused by larger rules).

If a rule has positive weights and integrates a large number of polynomials, it is numeri-
cally stable and converges under mild assumptions.

To facilitate the construction of quadrature rules, a framework is proposed that
describes the addition, replacement, and removal of nodes in a quadrature rule setting.
All modifications preserve positive weights and keep a quadrature rule interpolatory,
meaning that its number of nodes equals the number of polynomials it integrates exactly.
Therefore the addition and removal of nodes can be used to construct sequences of
interpolatory quadrature rules with positive weights. However, it is demonstrated that it
is not always possible to add nodes to a quadrature rule such that positive weights are
preserved.

By initializing the framework with random samples, a quadrature rule with positive
weights is derived that can accurately compute integrals with respect to distributions
described by sample sets. If these rules are used to compute integrals of polynomials,
the same estimate is obtained as if the polynomials are integrated using the (large) set of
samples. Constructing a quadrature rule using samples does not require any knowledge
about the distribution, domain of definition, or dimension of the space beforehand.
This quadrature rule is called the implicit quadrature rule in this thesis.

The implicit quadrature rule is very suitable for computing the equivalent loads
acting on an offshore wind turbine, since measurements conducted at an offshore site
can be incorporated accurately and efficiently. To demonstrate this, the NREL 5MW
benchmark wind turbine and freely available offshore measurements conducted at the
North Sea are employed. The computed equivalent loads are of the same order of
magnitude as the standardized approach (which is “binning”). However, to use the
proposed procedure significantly less computational effort is necessary.

Based on the approaches proposed for numerically propagating input uncertainty,
two methods are discussed to statistically assess the effect of model uncertainty. This
type of uncertainty is modeled using a Bayesian framework in this thesis. It is challenging
to statistically assess this uncertainty, since the obtained distribution (the posterior)
depends explicitly on the computationally expensive model.

Firstly polynomial interpolation is considered. By replacing the model with a polyno-
mial, it is feasible to assess the posterior distribution straightforwardly using Monte Carlo
methods. For this purpose a new nodal set based on Leja nodes is proposed, which
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adaptively incorporates an existing approximation of the posterior. This approach is very
suitable if the model under consideration is smooth or analytic, which is demonstrated
by calibrating the turbulence closure coefficients of the Spalart–Allmaras turbulence
model.

Secondly the implicit quadrature rule is considered, which is modified to accommo-
date the posterior distribution. Since a quadrature rule is very suitable for computing
integral quantities, this approach can accurately compute integrals weighted with the
posterior, which are often obtained when inferring Bayesian predictions. The posterior
distribution is incorporated by interpolating available point evaluations of the posterior
and using this interpolant to refine the quadrature rule. The obtained rules have positive
weights, so these rules are numerically stable and can be used to accurately compute
integrals of a broad class of integrands. However, if the model is smooth, the conver-
gence rate is smaller than the rate of polynomial interpolation approaches. Again, the
turbulence closure coefficients of the Spalart–Allmaras turbulence model are considered
and Bayesian predictions are inferred using a statistical model incorporating among
others measurement and model error.

Numerical examples are discussed throughout this thesis to demonstrate the applica-
bility of the proposed approaches. A common theme in all results is that the quadrature
rules constructed in this thesis are based on arbitrarily large sample sets. Thanks to
this, the computational time of constructing the quadrature rule is independent of the
number of parameters, the polynomial basis under consideration, or the distribution of
the sample set (if there exists one). This results in a set of highly flexible quadrature rules
that provide rapidly converging estimates for smooth integrands, whereas numerical
stability is guaranteed by ensuring positive weights.





Samenvatting
Bij het modelleren van offshore windenergie kan er onderscheid worden gemaakt tussen
twee soorten onzekerheden. Als eerste is de omgeving van de windturbine veranderlijk
en zit er een inherente onzekerheid in de mate waarin zij de energieproductie en levens-
duur van de turbine beïnvloedt. Ten tweede bevat het model waarmee de krachten op
de turbine worden berekend, onzekerheden als gevolg van de intrinsieke (soms zelfs
onbekende) aannames, afwijkingen en vereenvoudigingen van het model. Het is cruciaal
deze krachten accuraat te berekenen, omdat deze een directe invloed hebben op de
energieopbrengst en levensduur van de turbine.

Deze twee soorten onzekerheden kunnen allebei gemodelleerd worden met behulp
van kansrekening. De onzekerheid in de omgeving wordt gewoonlijk beschreven op een
gestandaardiseerde manier met een kansverdeling of door middel van metingen. Beide
gevallen kunnen eenvoudig beschreven worden met kansrekening. De onzekerheid
als gevolg van de imperfecties van het model wordt geïdentificeerd met behulp van
Bayesiaanse kalibratie, wat ook een kansdichtheid oplevert. Dit vereist wel meetdata
van de gewenste uitvoer van het model. Zodra alle onzekerheden door middel van kans-
dichtheden beschreven zijn, kunnen voorspellingen worden gegenereerd door middel
van Monte-Carlosimulatie.

Monte-Carlosimulatie convergeert echter bijzonder langzaam. Om de nauwkeu-
righeid te verdubbelen zijn vier maal zo veel evaluaties van het model nodig. Deze
evaluaties kosten veel rekenkracht, omdat steeds weer de krachten die op de turbine
werken herberekend moeten worden.

Het doel van deze dissertatie is het effect van zowel de onzekere omgeving als de on-
zekere modelimperfecties numeriek te bestuderen. Hiervoor wordt gebruik gemaakt van
collocatie-technieken, waarmee de krachten op een windturbine worden uitgerekend.
Alle technieken die in deze dissertatie aan de orde komen, benutten alleen de algemene
eigenschappen van het model, waardoor dat niet aangepast hoeft te worden. Oftewel de
methoden zijn “non-intrusive” en vereisen dus alleen een eindig aantal evaluaties van
het model.

Alle besproken methoden zijn gebaseerd op polynomiale benadering. In de kern
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bestaat deze aanpak uit het vervangen van het model door een polynoom, dat goed
gerepresenteerd en snel geëvalueerd kan worden door middel van een computer. Als het
model glad is, kan snelle convergentie verkregen worden, mits het polynoom zorgvuldig
geconstrueerd is. De nadruk ligt voornamelijk op numerieke integratie met behulp van
kwadratuurregels, aangezien de momenten van een kansverdeling (zoals het gemiddelde
en de standaarddeviatie) integralen zijn. Polynomiale interpolatie wordt daarbij ook in
ogenschouw genomen, aangezien dat een benadering oplevert welke het model volledig
kan vervangen.

Numerieke integratie wordt in deze dissertatie omgeschreven als het efficiënt con-
strueren van kwadratuurregels, welke bestaan uit een gewogen som van een eindig
aantal evaluaties van het model. Drie eigenschappen zijn van belang bij een kwadra-
tuurregel:

1. dat de regel positieve gewichten heeft,

2. dat de regel alle functies uit een hoog-dimensionale polynomiale ruimte exact
integreert en

3. dat de regel genest is (oftewel kleinere kwadratuurregels gebruiken een deelverza-
meling van de model evaluaties van een grotere kwadratuurregel).

Als de regel positieve gewichten heeft en bovendien een groot aantal polynomen exact
integreert, dan convergeert deze voor een groot aantal functies en is deze numeriek
stabiel.

Voor het construeren van kwadratuurregels wordt een wiskundig kader gepresen-
teerd waarmee punten kunnen worden toegevoegd aan, vervangen in of verwijderd uit
een kwadratuurregel. Ondanks de modificaties behoudt de regel de positieve gewichten
en de eigenschap dat het aantal punten gelijk is aan het aantal polynomen dat de regel
exact integreert. Gebruik makende van het kader wordt aangetoond dat het niet altijd
mogelijk is punten aan een kwadratuurregel toe te voegen op deze wijze.

Door het kader echter te initialiseren met samples van een kansdichtheid wordt een
verzameling kwadratuurregels verkregen die positieve gewichten hebben en bovendien
accuraat integralen kunnen uitrekenen. Wanneer die regels gebruikt worden om inte-
gralen over polynomen uit te rekenen, wordt eenzelfde schatting verkregen als wanneer
de integralen worden uitgerekend met de aanvankelijke samples. Het op deze manier
construeren van kwadratuurregels vereist nagenoeg geen kennis van de kansdichtheid
van de samples, het domein van de kansdichtheid of de dimensie van het domein.
Deze kwadratuurregel wordt derhalve de impliciete kwadratuurregel genoemd in deze
dissertatie.

De impliciete kwadratuurregel leent zich bijzonder goed voor het berekenen van
equivalente belastingen op een offshore windturbine, omdat metingen accuraat en
efficiënt kunnen worden meegenomen. Dit wordt gedemonstreerd door de NREL 5MW
windturbine te simuleren, gebruik makende van metingen van de weersomstandigheden
op de Noordzee. De berekende equivalente belastingen hebben dezelfde orde van
grootte als de belastingen berekend met de gestandaardiseerde aanpak (dat is “binnen”).
Voor de gepostuleerde technieken zijn echter significant minder model berekeningen
vereist.
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Er worden ook twee methoden besproken om onzekerheid in het model te karakteri-
seren. Beide methoden zijn gebaseerd op aanpakken waarmee onzekerheid gepropa-
geerd kan worden. De onzekerheid van het model wordt in deze dissertatie beschreven
met een Bayesiaanse analyse. Het is verre van eenvoudig om deze onzekerheid statis-
tisch te kwantificeren, aangezien de verkregen distributie (de posterior) expliciet afhangt
van het model en het model evalueren veel rekenkracht vereist.

Als eerste wordt polynomiale interpolatie beschouwd. Door het model te vervangen
door een polynoom wordt het mogelijk om statistische inferentie te doen door mid-
del van Monte-Carlosimulatie. Specifiek hiervoor wordt een nieuwe verzameling van
collocatie-punten afgeleid, welke gebaseerd is op Leja punten en adaptief een bestaande
benadering van de posterior meeneemt. Deze aanpak is in het bijzonder geschikt wan-
neer het model glad of analytisch is, hetgeen gedemonstreerd wordt door de parameters
van het Spalart–Allmaras turbulentie model te kalibreren.

Ten tweede wordt de impliciete kwadratuurregel opnieuw benut, maar nu in een
aangepaste vorm om de posterior te kunnen gebruiken. Aangezien een kwadratuurregel
bijzonder geschikt is voor het berekenen van integralen, is het mogelijk accuraat sta-
tistische momenten van de posterior uit te rekenen, welke vaak verkregen worden bij
inferentie van Bayesiaanse voorspellingen. De posterior wordt meegenomen door be-
schikbare evaluaties van deze kansdichtheid te interpoleren en de verkregen benadering
te gebruiken bij het construeren van de impliciete kwadratuurregel. De verkregen regel
heeft positieve gewichten en is daardoor stabiel en accuraat voor een grote functieklasse.
Als het model glad is, convergeert deze aanpak langzamer wanneer deze vergeleken
wordt met polynomiale interpolatie. Opnieuw worden de parameters van het Spalart–
Allmaras turbulentie model beschouwd en Bayesianse voorspellingen worden verkregen
gebruik makende van een statistisch model dat zowel modelonzekerheid als meetfouten
bevat.

De toepasbaarheid van de nieuwe methoden uit deze dissertatie wordt gedemon-
streerd door middel van vele numerieke voorbeelden. Een regelmatig terugkerend thema
is dat de kwadratuurregels zijn gebaseerd op samples. Dankzij dit is de rekentijd van het
construeren van de kwadratuurregel onafhankelijk van het aantal onzekere parameters,
de polynomiale basis of de distributie van de samples (mits deze bestaat). Het resultaat
bestaat uit zeer flexibele kwadratuurregels, welke numeriek stabiel zijn en waarmee snel
convergerende benaderingen van integralen verkregen kunnen worden.
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