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Abstract

The detection and characterization of signals of interest in the presence of (in)coherent

ambient noise is central to the analysis of infrasound array data. Microbaroms have an ex-

tended source region and a dynamical character. From the perspective of an infrasound

array, these coherent noise sources appear as interfering signals which conventional beam-

form methods may not correctly resolve. This limits the ability of an infrasound array to

dissect the incoming wavefield into individual components. In this paper, this problem

will be addressed by proposing a high-resolution beamform technique in combination with

the CLEAN algorithm. CLEAN iteratively selects the maximum of the f/k spectrum (i.e.,

following the Bartlett or Capon method) and removes a percentage of the correspond-

ing signal from the cross-spectral density matrix. In this procedure, the array response

is deconvolved from the f/k spectral density function. The spectral peaks are retained in a

’clean’ spectrum. A data-driven stopping criterion for CLEAN is proposed that relies on

the framework of Fisher statistics. This allows the construction of an automated algorithm

that continuously extracts coherent energy until the point is reached that only incoherent

noise is left in the data. CLEAN is tested on a synthetic data-set and is applied to data

from multiple IMS infrasound arrays. The results show that the proposed method allows

for the identification of multiple microbarom source regions in the Northern Atlantic, that

would have remained unidentified if conventional methods had been applied.

1 Introduction

Sensor arrays are used in various geophysical disciplines for a detailed study of sig-

nals that are part of a complex wavefield. The use of arrays allows for an enhanced de-

tection of signals in the presence of incoherent noise, as the signal-to-noise ratio (SNR)

is improved by summation across the array elements. In addition, arrays can be used to

estimate the directivity of incoming wavefronts, and therefore can be used as spatial fil-

ters by steering the array towards the direction of interest. This has led to applications in

the fields of seismology [Harjes and Henger, 1973; Husebye and Ruud, 1989; Schweitzer

et al., 2002], acoustics [Billingsley and Kinns, 1976; Michel et al., 2006] and astronomy

[Jansky, 1932; Garrett, 2013].

In this article, array detection of inaudible low-frequency sound, or infrasound, is

discussed. The detection of infrasonic sources over long distances depends on the spectral

content of the source, the atmospheric propagation conditions along the source-receiver

path, as well as the local noise conditions near the array. The vertical temperature and

wind structures determine the propagation paths while absorption affects the amplitude
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and frequency contents of the received signal [Waxler and Assink, 2019]. Because attenu-

ation is strongly dependent on the acoustic frequency, lower frequency signals can propa-

gate over significantly longer distances when compared to higher frequencies [Sutherland

and Bass, 2004]. The local noise conditions are determined by the turbulent motions in

the atmospheric boundary layer, near the array [Smink et al., 2018].

The International Monitoring System (IMS) is in place for the verification of the

Comprehensive Nuclear-Test-Ban Treaty (CTBT) and monitors the atmosphere globally

for infrasonic signals from nuclear tests, using microbarometer arrays. Currently, 51 out

of 60 microbarometer arrays provide real-time infrasound recordings from around the

world. The IMS has played a central role in the characterization of the global infrasonic

wavefield and the localization of infrasound sources, which include earthquakes, lightning,

meteors, (nuclear) explosions, colliding ocean wave-wave and surf [Campus and Christie,

2010]. The infrasonic wavefield is complex and often consists of interfering acoustic sig-

nals in overlapping frequency bands, in the presence of incoherent noise. The acoustic

signals take the form of transients, (quasi-)continuous signals or a combination of both.

From the perspective of an array, coherent noise sources appear as interfering signals that

clutter the array detection bulletins and may obscure detections from signals of interest.

Most infrasound processing routines, including those that are used for real-time pro-

cessing of the IMS infrasound arrays, are designed to only detect the dominant acoustic

signal in a given time segment and frequency band. However, various beamform tech-

niques exist in the literature that allow for the detection of signals from multiple spatially

distributed sources [Viberg and Krim, 1997; Rost and Thomas, 2002]. The capability of de-

tecting and classifying interfering sources relies on the beamform resolution as quantified

by the array response, which is determined by the beamform technique and the array lay-

out. A low beamform resolution could lead to the dominant source masking sub-dominant

sources.

In this study, the CLEAN algorithm [Högbom, 1974] is applied for high-resolution

array processing of infrasound data. CLEAN is a post-processing method that iteratively

selects the main contribution in the f/k spectrum and removes a percentage of the corre-

sponding signal from the cross-spectral density matrix. In this procedure, the array re-

sponse is deconvolved from the resolved f/k spectral density function. The spectral peaks

are retained in a ’clean’ spectrum. This iterative process continues until a stopping crite-

rion is reached. The beamform techniques proposed by Bartlett [1948] and Capon [1969]

can be used to compute the f/k spectrum. Previous studies [Clark, 1980; Sijtsma, 2007;

Gal et al., 2016], have shown that the application of CLEAN provides a superior beam-

form resolution. Moreover, it has been shown that the performance critically depends on
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the setting of two parameters: the percentage of removal and the stopping criterion. In this

work, the use of Fisher statistics is proposed and applied as stopping criterion for the iter-

ative CLEAN procedure. This statistical framework has been established for significance

testing of multivariate data [Fisher, 1948], and has applications in geophysical signal pro-

cessing [Melton and Bailey, 1957; Shumway, 1971; Smart and Flinn, 1971].

The remainder of this article is organized as follows. Section 2 introduces the beam-

form techniques, CLEAN as post-processing method and the proposed CLEAN param-

eterization. The performance of CLEAN, as tested using synthetic data, is presented in

Section 3. In Section 4, CLEAN is applied to IMS infrasound array data and it demon-

strates that multiple microbarom source regions can be resolved in the Northern Atlantic.

Finally, the results are discussed and summarized in Section 5.

2 Description of the algorithm

2.1 Frequency-domain beamforming

Consider an array of N omnidirectional receivers, with N ≥ 3 (Figure 1). Each

array element has position rm, ...,N = (xm , ym , zm ), of which the absolute value is the

distance between the element and a reference distance, e.g., the geometrical center of

the array. Often an array exist of elements close to the geometrical center to resolve the

high frequencies of the wavefront, and elements which lie further away to resolve the

low frequencies. In the case of interest, it is assumed that the array is situated in the far-

field. Therefore, the wavefield can be represented as a superposition of three-dimensional

planar wavefronts, propagating with phase speed c. The goal is to estimate the three-

dimensional wavefront parameters as a function of time t and frequency f . For this pur-

pose, it is useful to consider a plane-wave decomposition of the incoming wavefield, in

terms of a frequency-wavenumber (f/k) spectral density G( f ,~k):

G( f ,~k) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

G( f ,~r)ei (~k ·~r )dx dy dz (1)

here, ~k = (kx , ky , kz ) and G( f ,~r) represents the three-dimensional wavenumber vector

and the Fourier transformed array recordings, respectively. Beamforming can be used to

separate the coherent and incoherent parts of G( f ,~k).

Most infrasound arrays are ground-based planar arrays [Edwards and Green, 2012],

in which case the integral in Equation (1) can be reduced to a two-dimensional integral

over x and y. This also implies that only the horizontal component of ~k can be directly

estimated in the beamforming process. The vertical component, kz , is typically inferred
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through the dispersion relation, |~k | =
2π f
c and an estimate of the phase speed c, i.e., the

speed of sound near the array. The wavenumber vector ~k can be expressed in terms of a

slowness vector ~p by scaling with the angular frequency, ω = 2π f . The horizontal compo-

nent of ~p can be related to the apparent velocity capp and back azimuth θ as follows:

capp =
1
|~px,y |

θ = arctan
px

py

.

The apparent velocity corresponds to the horizontal propagation speed of a wavefront, i.e.

as would be measured by the ground-based array. The back azimuth relates to the hori-

zontal incidence angle, with respect to the north.

To beamform the array data, a cross-spectral density matrix C( f ) is to be estimated:

C( f ) =
1
L

L∑
l=1

Gl ( f ,~r)G∗l ( f ,~r) (2)

here, ∗ denotes the conjugate transpose. The off-diagonal elements of matrix C( f ) contain

the phase delays between each sensor pair, while the diagonal elements contain the power

spectral density of each element. It is common to estimate the cross-spectral density ma-

trix C( f ) by averaging over L snapshots within one single time window of waveform

data, Gl ( f ,~r). The averaging using snapshots is crucial for the application of Capon’s

method [Capon, 1969], as the beamform weights rely on the matrix inverse of C( f ). To

ensure that the inverse exists, C( f ) must be full-rank and therefore L needs to be suffi-

ciently large, i.e., L ≥ N [Viberg and Krim, 1997]. Assuming that the mathematical repre-

sentation of the signal of interest and noise are statistically independent, the cross-spectral

density matrix can be factored into a signal and noise co-variance matrix:

C( f ) = E{GG∗} = E{GsG∗s } + E{GnG∗n } (3)

where E{} indicates the statistical expectation, E{GsG∗s } indicates the signal co-variance

matrix and E{GnG∗n } the noise co-variance matrix. Noise has a common variance σ2 and

is assumed to be uncorrelated between all sensors. This decomposition is useful in the

development of the CLEAN stopping criterion as will be discussed in Section 2.3.

With the definition of C( f ), the f/k spectrum P( f ,~k) can be computed by multiply-

ing with beamform weight factor w(~k):
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P( f ,~k) = w∗ (~k)C( f )w(~k) (4)

This formulation allows for the comparison of various beamform weights. In this pa-

per, the Bartlett and Capon weights and corresponding f/k spectra are compared. For the

Bartlett, or ’classical’ f/k spectrum, the signal power in P( f ,~k) is maximized by summing

the phase-aligned spectral values. The Bartlett weight wB (~k) has been derived as:

wB (~k) =
a(~k)√

a∗ (~k)a(~k)
(5)

where a(~k) = e−i (~k ·~r ) represents the steering vector. The calculation of the f/k spectra

occurs over a vector space spanned by those steering vectors, which is dependent on the

used slowness grid. Figure 2 shows the design of the slowness grid, which consists of

a 360◦ ring grid plus a rectangular grid. The ring grid is a linear grid in back azimuth

and apparent velocity, ranging from 0◦ to 360◦ and 285 to 500 m/s with steps of 1◦ and

1 m/s, respectively. This ring grid is, however, non-linear in the slowness domain.The

rectangular grid consists of linearly spaced values between -0.005 s/m and 0.005 s/m.

This grid is added to ensure that energy from outside the ring grid does not clutter on its

boundaries, which would result in biased outcomes.

Capon’s method is derived as a maximum likelihood filter. The filter design is de-

termined by the inverse of cross spectral density matrix C( f ) and steering vector a(~k).

With this design, the noise in the power spectrum is optimally suppressed while keeping a

constant gain in the direction of interest. For Capon’s method, wC (~k) has been derived as:

wC (~k) =
C−1( f )a(~k)

a∗ (~k)C−1( f )a(~k)
(6)

To study the spectral properties of these beamform techniques, it is instructive to

evaluate the array response. It is defined as the f/k spectrum P( f ,~k) for a monochro-

matic wave with unit amplitude or G( f0,~k0) = 1
N · ei~k0 ·~r , for which k0 =

2π f0
c . The

array response function may consist of several maxima. The absolute maximum is found

at ~k = ~k0 and corresponds to the main lobe. Several side lobes may appear that are a

consequence of the spatial sampling of the wavefield with a discrete number of array ele-

ments. A higher resolution array, e.g., better peaked absolute maximum, can be obtained

by modifying the locations of the array elements or by adding elements to the array. [Ev-

ers, 2008].
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Figure 3 shows the Bartlett and Capon array responses for IMS Infrasound array

IS48, for a monochromatic wave with f0 = 0.3 Hz and k0 = 0 m−1. The array lay-

out of IS48 is shown in Figure 1. Capon’s array response has a much sharper main lobe

when compared to Bartlett’s response, which reflects its well-known high spatial resolu-

tion property. Moreover, it can be noted that the side lobes in Capon’s spectrum are sig-

nificantly reduced, when compared to Bartlett’s response. This gain in resolution comes

at a computational cost, because of the matrix inversion of C( f ). In addition, some tem-

poral resolution (e.g., transient signals) is lost because of the necessary averaging pro-

cess, as described by Equation (2). When using Bartlett it is harder to distinguish be-

tween two closely located sources in the f/k spectrum, due to resolution. This favours the

use of Bartlett’s method for the analysis of transient signals, as it merits higher temporal

resolution analyses. Whereas Capon’s method is more suited for the analysis of (quasi-

)continuous signals with longer time windows, such as microbaroms.

2.2 CLEAN

In the processing of real data, the f/k spectrum often consists of multiple maxima

with varying amplitude. In such a convoluted spectrum, it can be difficult to distinguish

interfering sources and identify concurrent, sub-dominant sources from the side lobe of

a dominant source. It is the objective here, to design a method that can unravel the f/k

spectrum in terms of individual contributions to the f/k spectrum, while being able to dis-

tinguish between main lobe and side lobes. For this purpose, the CLEAN method can be

applied.

CLEAN [Högbom, 1974] is a post-processing method that can be applied to con-

ventional beamform methods, e.g., Bartlett and Capon as introduced in the previous sub-

section. CLEAN iteratively removes phase and amplitude information associated with the

strongest contribution in the f/k spectrum, Pmax, from the cross-spectral density matrix

[Sijtsma, 2007; Gal et al., 2016]. A partly cleaned cross-spectral density matrix, Cclean, is

obtained:

C j+1
clean( f ) = C j

clean( f ) − φP j
maxwmaxw

∗
max (7)

with wmax = w(kmax) the beamform weight for which Pmax, with wavenumber kmax ,

was resolved, C j
clean the cross-spectral density matrix at j th iteration and φ the parameter

that determines the fraction of removed power. Note that the subtraction in Equation (7)

involves a convolution of the array response function with Pmax. This ensures that the ar-

ray response pattern is suppressed in the ( j + 1)th beamform iteration, following Equation
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(4). It is precisely this deconvolution operation that allows for the identification of sub-

dominant f/k spectral density peaks. Such peaks could otherwise have been masked due to

spatial aliasing of the dominant source in the beamforming process.

The CLEAN algorithm has a relatively high computational cost because of the po-

tentially large number of beamform iterations in lieu of one single beamforming run. The

number of iterations is controlled by the φ value. A small value will result in resolving

more sub-dominant sources at the cost of a larger number of iterations and therefore a

higher computational load, while a larger value leads to a faster algorithm but may be less

accurate in resolving sub-dominant sources. Gal et al. [2016] stated that the optimal value

for φ depends on the combination of array layout, frequency range of beamforming and

the SNR. In general, a small φ value is recommended when processing data from arrays

with a small number of elements and/or data with low SNR values.

In this study, the number of iterations is not predefined but depends on a stopping

criteria (section 2.3). CLEAN beamforming with φ values between 5 and 15% provided

similar results. Since this study deals with a low number of array elements and a low

SNR, a φ value of 10% has been chosen (following Gal et al. [2016]).

For each processed frequency f , the maximum of the f/k spectral density as well as

the corresponding wavenumber vector ~k j is stored in a CLEAN power spectrum:

Pclean( f ,~k) =

Q∑
j

φP j
max( f ,~k j ) (8)

Q is the total number of CLEAN iterations. The CLEAN process continues until reach-

ing a stopping criterion. Because the array response function is deconvolved, the smear-

ing of energy in the original f/k power spectrum P( f ,~k) has been reduced. As a result,

Pclean( f ,~k) has a sharper and cleaner appearance, which is useful in obtaining an en-

hanced insight in the diversity of acoustic sources around the array.

The individual contributions P j
max( f ,~k j ) in Pclean( f ,~k) are characterized by a new

and clean, Gaussian point spread function (PSF) [Sijtsma, 2007]. Every PSF has a stan-

dard deviation of three times the spatial f/k spectral resolution. Hence, sources are distinct

if the the distance between the maxima of two PSF’s is greater than two standard devia-

tions.

2.3 Fisher Statistics as CLEAN stopping criterion

As CLEAN is an iterative beamforming procedure, a maximum number of itera-

tions is to be defined after which the procedure stops. Hitherto, setting of this parameter
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has been user-defined [Clark, 1980; Sijtsma, 2007; Gal et al., 2016], which is impractical

for application to large datasets, for which the number of iterations may be strongly de-

pendent on the analysis window. Here, the use of Fisher statistics and the F-ratio a test

statistic [Fisher, 1948] is proposed for the definition of a data-driven stopping criterion.

The processing of data from a ground-based infrasound array corresponds to a bi-

variate analysis problem where the pressure fluctuations are modeled as a random process.

Within each analysis window, the variance of the (phase-shifted) pressure signals between

the array elements is compared with the variance of the pressure values at each individ-

ual element [Melton and Bailey, 1957]. The F-ratio compares both measures of variance.

In the associated statistical test, the null hypothesis is tested that these variances are not

significantly different. In other words: the null hypothesis corresponds to the case that no

coherent signal is present. The F-ratio deviates from unity if the variances are not equal,

which corresponds to a probability that a coherent signal is present in the data. Fisher’s

test statistic is evaluated for every steering vector that is considered in the beamforming

procedure. This procedure allows an evaluation of the significance of detection on each

steering vector of interest.

The probability density of the F-ratio is described by a F-distribution. The particu-

lar shape of the distribution is dependent on the statistics of the data samples as well as

the degrees of freedom of the dataset. In the beamform application, the degrees of free-

dom are a function of the number of samples points T and array elements N . If the sam-

ples points follow the statistical distribution of Gaussian white noise, the resulting F-ratio

statistic follows a central F-distribution F (ν1, ν2). The degrees of freedom in the time-

domain Fisher analysis, ν1 and ν2, are given by: ν1 = Tt − 1 and ν2 = Tt (N − 1) [Ev-

ers, 2008]. In the frequency-domain, the degrees of freedom are given by: ν1 = 2Tf and

ν2 = 2Tf (N − 1) [Shumway, 1971]. The mean of the central distribution is F = 1. The

F-ratio statistic follows a non-central F-distribution F (ν1, ν2, λnc ) in the case where a sig-

nal with a certain SNR is present. The non-centrality parameter λnc is determined by the

SNR of the signal as: λnc = ν1 · SNR2 [Shumway, 1971].

The statistical properties of the F-ratio allow for the estimation of the missed event

and false alarm probabilities, given a specified confidence level. Likewise, a probability

of detection can also be quantified. Therefore, the Fisher’s test statistic is a robust and

efficient method for the detection of coherent signals in the presence of incoherent noise.

Besides, representing the spectra in terms of the F-ratio sharpens the main lobes, as can

also be seen in Figure 3.
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The relation between the F-ratio and the SNR has been derived by Melton and Bai-

ley [1957].

F = N · SNR2 + 1 (9)

In the derivation of this relation, it is assumed that the signal is identical over all ar-

ray elements while the noise can be modeled as uncorrelated Gaussian white noise. Smart

and Flinn [1971] have shown that the F-ratio in the frequency domain can be defined us-

ing the following estimates of signal power on the beam Pmax, and total power Pt :

F ( f ,~k) =
Pmax( f ,~k)

Pt ( f ) − Pmax( f ,~k)
(N − 1) (10)

Here, Pt ( f ) represents the total f/k spectral power as a normalized sum of the diagonal

elements of the cross-spectral density matrix:

Pt ( f ) =
1
N

N∑
n=1

Cnn ( f ) (11)

By evaluating the Fisher ratio at every CLEAN iteration, the probability of detection

and the SNR of the detected signal can be estimated. Moreover, this framework allows

to determine a CLEAN stopping criterion from a statistical perspective. Indeed, as the

Fisher ratio approaches unity, the likelihood of a false alarm increases and the iterative

procedure can be stopped, as no coherent signal is likely to be left in the cross-spectral

density matrix. The effectiveness of this method will be demonstrated using synthetic data

in the following section.

3 Synthetic data

Three different synthetic waveform tests are discussed in this section. The tests have

been designed to (1) evaluate the use of Fisher statistics as a CLEAN stopping criterion,

(2) compare the Bartlett and Capon beamform techniques, and (3) evaluate the perfor-

mance of the proposed CLEAN algorithm in the processing of infrasound array data. The

synthetic waveforms are generated given the array element locations of infrasound array

IS48 (Figure 1). The temporal sample rate of the waveforms is 20 Hz, which corresponds

to the actual sample rate of this IMS array.
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3.1 Fisher threshold testing using uncorrelated Gaussian white noise

To demonstrate the use of Fisher statistics in the determination of a CLEAN stop-

ping criterion, a Monte Carlo simulation is performed. The Monte Carlo simulation con-

sists of 500 Capon beamform runs on synthetic waveform data that consists of uniform

Gaussian white noise. The beam forming analysis is carried out in the frequency band

ranging from 0.1 to 0.3 Hz. Smoothing is applied by averaging power estimates for Z ad-

jacent frequencies around a frequency of interest, which is defined by the amount of steps

within the frequency band. To satisfy the degrees of freedom in the time domain and the

frequency domain, smoothing should avoid overlapping frequencies. For each run, each

with a duration of 1000s, data is beamformed. The Fisher ratio is computed for every

beam. Figure 4a shows an example f/k spectrum.

The resulting distribution of calculated Fisher ratios is plotted in Figure 4b as a his-

togram. The histogram distribution follows a central F-distribution, which would be ex-

pected as the data samples follow the statistical distribution of Gaussian white noise. The

F-distribution is characterised by the degrees of freedom which are specified by N = 7

and Tf = Z + L = 10 + 40 = 50, which indicates the number of sample points that are

used, depending on the smoothing and the number of snapshots, L, within one window.

The distribution is plotted with a solid black line in Figure 4b. The 95 percentile is found

at F = 1.28 and is indicated by the dotted line. For this particular choice of processing

parameters, the Fisher threshold should be set to 1.28 in order to have a 95% confidence

for avoiding false-alarms. More generally, this test demonstrates the use of Fisher statistics

in the estimation of a CLEAN stopping criterion.

3.2 Slowness estimates for multiple, interfering sources of coherent noise

Two additional synthetic datasets are constructed in order to test the ability to accu-

rately discriminate between interfering sources within one analysis window. The synthetic

waveforms are generated for each of the array elements, by adding Gaussian white noise

with a specified amplitude as described in Table 1. The synthetic waveforms for each el-

ement are coherent, but shifted in time with respect to one another, according to the array

layout and the imposed directivity of signal m. Each source is continuous, to represent

ambient noise. Table 1 shows the characteristics of dataset A. The applied band-pass fil-

ter has corner frequencies of 0.1 and 0.3 Hz. Note that the three sources are continuously

interfering throughout the record.

The time shift for each array element is computed using the steering vector a(~km )

and wavenumber vector parameters:
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kx,m =
2π f

capp,m
sin(θm ) ky,m =

2π f
capp,m

cos(θm )

The individual signal contributions are added up per element, thereby generating a

complex signal that is composed of several individual signals. Finally, uncorrelated Gaus-

sian white noise with amplitude 0.5 Pa is added to each of the array element waveforms,

individually. As this signal is incoherent between the array elements, it represents the

noise level. Hence, a theoretical signal-to-noise power ratio and Fisher ratio can be esti-

mated from Equation (9).

Input Output Bartlett Output Capon

θm capp,m[m/s] sm[Pa] Exp. F-ratio θm capp[m/s] F-ratio θm capp[m/s] F-ratio

300 340 1.0 29 294 335 28 300 339 27

90 340 0.8 19 93 330 14 90 340 20

280 340 0.6 11 277 324 7 280 338 7
Table 1. Input source parameters for dataset A and its estimated parameters using the CLEAN algorithm,

following Bartlett’s and Capon’s method. The amplitude of the added incoherent white noise is 0.5 Pa. The

expected F-ratio is computed using Equation (9).

Figure 5 shows the initial f/k spectra before and after application of CLEAN. Three

features should be noted. First, CLEAN improves the resolution of both spectra, as can

be seen in the sharpening of the main lobes. This enables to resolve two closely located

sources within the f/k spectrum. The highest resolution is obtained by combining Capon

and CLEAN. Gal et al. [2016] earlier stated that a high-resolution initial f/k spectrum with

a sharp main lobe is beneficial to the performance of CLEAN. Second, with Capon the

sources are better identified than with Bartlett, as can be seen from the coincidence of

the lobes with the circles, which have their center-points at the expected source locations

and a radius of ±1.5◦. This is a consequence of the lower resolution of Bartlett. Last, the

low spatial resolution of Bartlett leads to various spurious peaks in the f/k spectrum, after

application of CLEAN.

The θm and capp parameters that correspond to the maxima of the resolved f/k spec-

tral densities after CLEAN has been applied are tabulated in Table 1. In case of Capon in

combination with CLEAN, a close agreement between the source parameters and the re-

solved values is noted. This is not the case when applying Bartlett’s method, due to the

low resolution of the initial f/k spectra.
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While a particularly good agreement is noted for the back azimuth and the resolved

apparent velocity in case of Capon and CLEAN, the resolved Fisher ratio is biased low

compared to the theoretical Fisher ratio, which will be further explained in the discussion.

Based on the comparative performance of the beamform techniques, the last syn-

thetic test is performed with Capon’s method only.

The parameters used in the construction of dataset B are summarized in Table 2.

Dataset B represents the case of an increasing number of interfering, continuous sources

with time. The synthesis of the signals is otherwise equal to the method described earlier

in this section. Figure 6 shows the f/k spectra and the resulting θm and capp as function of

time. The circles indicate the expected source positions and the color rings indicates the

expected apparent velocity of the signals. Again, a close agreement between the source

parameters and the resolved values is noted. The numerical values are summarized in Ta-

ble 2.

Input Output

θm capp[m/s] sm[Pa] Exp. F-ratio Time [s] θm capp[m/s] F-ratio

300 360 1.0 29 100-4000 300 359 28

90 320 0.8 19 1100-4000 89.8 319 17

280 280 0.6 11 2100-4000 279.6 278 9
Table 2. Similar as Table I, but now for dataset B, which features three different sources that are active

during different time intervals. In this case, the CLEAN method is used with Capon’s method, only.

Since the input and output of both datasets are in good agreement, we conclude that

the proposed Fisher ratio as a stopping criterion and the PSF in combination with the two

standard deviation distribution are robust parameters. Both enable CLEAN to be data-

driven and reliable.

4 Real data example

The proposed CLEAN method is applied to infrasound measurements recorded on

17 January 2011 on the IMS infrasound arrays IS48 (Tunisia), IS42 (Açores), IS26 (Ger-

many), IS43 (Russia) and IS18 (Greenland).

This analysis builds on an earlier study by Assink et al. [2014] in which two simul-

taneous infrasound sources were identified in the microbarom frequency band using a

beamform technique using Bartlett’s method and Fisher statistics. It was hypothesised that
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the detections corresponded to microbarom activity in the Northern Atlantic and Mediter-

ranean Sea.

The two sources had an overlapping frequency content around 0.2 Hz, but the Mediter-

ranean microbaroms were found to be coherent up to 0.6 Hz while the North Atlantic mi-

crobaroms are coherent up to 0.3 Hz.

Figure 7 shows the f/k spectra of the IMS arrays for the first 2000 seconds of data

on 17 January 2011, before and after CLEAN has been applied and by using the 95 per-

centile Fisher threshold (Section 3.1). In these spectra, multiple sources are resolved in the

0.1-0.3 Hz frequency band. It should be noted that sub-dominant sources can be identi-

fied, which would have been obscured in traditional infrasound processing schemes that

only report on the dominant source. Figures 8 shows the processing results of IS48 for the

entire day. Figures 8a and 8b show the dominant source per time-window, using Bartlett’s

and Capon’s method, respectively. Figure 8c list all the resolved sources by using Capon

in combination with CLEAN. The conventional beamforming methods detect two sources

intermittently, while CLEAN continuously resolves three sources.

Furthermore, the frequency band of processing can highlight different sources, which

is illustrated in Figure 9. Figure 9 shows that the microbaroms from the Atlantic Ocean

have a lower center frequency than those of the Mediterranean Sea. The Atlantic Ocean

microbaroms are most coherent to the north-west in the frequency range of 0.1-0.3 Hz,

those from the Mediterranean Sea appear from the east between 0.3-0.6 Hz. This is con-

sistent with the earlier analysis by Assink et al. [2014].

Microbarom source regions are identified by cross-bearing localization, in which the

detections at multiple IMS arrays are combined. In this procedure, it is assumed that there

is an atmospheric duct in all directions, and that the propagation of microbarom signals

is not strongly influenced by cross-winds or other along-path meteorological conditions

[Smets and Evers, 2014]. The source locations are compared with microbarom source re-

gions that have been predicted using the microbarom source model described by [Waxler

et al., 2007], following the implemention described in Smets [2018]. As an input for this

model, the two-dimensional wave spectra (2DFD) obtained from the European Centre

for Medium-Range Weather Forcast (ECMWF) deterministic high-resolution ocean wave

model Cycle 36r1 (HRES-WAM) analysis [ECMWF, 2008, 2016] have been used.

Figure 10a and b show the results of this approach for the frequency ranges of 0.1-

0.3 Hz and 0.3-0.6 Hz. For both frequency bands CLEAN resolved several sub-dominant

sources, which could have been missed when applying conventional beamforming meth-

ods. Because of this, the same microbarom sources are resolved at different IMS stations,
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resulting in better microbarom source localization based on IMS observations. In case of

the lower frequency band more microbarom sources are resolved in the region of the At-

lantic ocean, the higher frequency band highlights two sources towards the Mediterranean

sea. For both ranges of frequency, the resolved microbarom source regions are in a partic-

ularly good agreement with the microbarom prediction model.

5 Discussion and conclusion

In this study, a CLEAN array processing algorithm is presented that has been in-

spired by earlier work [Sijtsma, 2007; Gal et al., 2016]. CLEAN is a post-processing

method that can be applied to conventional beamform techniques, such as Bartlett and

Capon. Because contributions to the total f/k spectrum are iteratively removed in this pro-

cedure, sub-dominant sources can be identified. Moreover, a more peaked f/k spectrum is

obtained because the array response is deconvolved in the process. The performance of

CLEAN is found to be dependent on the beamform resolution, which is in line with ear-

lier work by Gal et al. [2016].

Moreover, the use of Fisher statistics for signal detection and the determination of

a CLEAN stopping criterion is proposed. This stopping criterion has been identified in

earlier work as a critical parameter for the performance of CLEAN [Clark, 1980; Sijtsma,

2007; Gal et al., 2016]. The efficiency of the method is demonstrated using a Monte Carlo

simulation with uniform Gaussian white noise. From this test, it can be concluded that the

central F-distribution can be used as guidance to estimate a CLEAN stopping criterion.

The probability of false alarms can be estimated when it is assumed that the remainder

of the cross-spectral density matrix consists of (incoherent) white noise after beamform

iterations.

Furthermore, synthetic tests have been performed to simulate the detectability of

multiple continuous infrasound sources surrounding an array. The tests show that the back

azimuth and the apparent velocity are accurately resolved. Based on this, it is concluded

that that the PSF in combination with the two standard deviations distribution is adequate

for distinguishing multiple sources. The Capon method has been found to provide more

accurate results when compared to the Bartlett method, which is related to the higher

spectral resolution of the former method.

It has been shown that the properties of Fisher statistics can be used to discrimi-

nate between coherent and incoherent signals. As a result, the Fisher ratio shall be used

as the CLEAN stopping criterion. Nonetheless, in the estimation of SNR levels, it has

been found that the resolved Fisher ratio is not always in agreement with the theoretical
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value that would be expected from the SNR conditions and the degrees of freedom in the

dataset. The bias is attributed to the fact that the noise cannot longer be considered as un-

correlated Gaussian white noise when multiple coherent signals are present in the array

recordings. Further research is needed to understand the noted bias between the theoretical

and the resolved Fisher ratio, in the case of multiple sources. This is further elaborated on

in Appendix S1.

CLEAN has been applied to infrasound data recorded on multiple IMS arrays that

are located around the Northern Atlantic. The results show that multiple microbarom

sources can be resolved, including regions that would would have been obscured if con-

ventional processing methods would have been used. Microbarom source locations are

obtained by cross-bearing localization and are in agreement with simulated microbarom

source regions. It should be noted that the effect of propagation conditions are neglected

in the current approach which, in combination with the dynamic nature of the micro-

baroms, explain some variation in back azimuth with time. Such effects could be ac-

counted for by back projecting using a ray theoretical approach [Smets and Evers, 2014].

Although the use of CLEAN beamforming allows for the detection of concurrent

sources around an infrasound array, the method is computationally expensive compared to

methods in which only the dominant source is to be detected. Moreover, the performance

of CLEAN depends on the setting of various parameters that require careful tuning. This

includes the choice of the beamforming weights and the setting of the φ value, the per-

centage of source removal per iteration. The setting of φ depends on the combination of

array layout, processing frequency and the SNR. Therefore, it is important to analyse the

sensitivity of the beamforming results to the choice of processing parameters.

Conventional beamforming algorithms can only confidently detect the most domi-

nant source in each processing window and cannot confidently distinguish other concur-

rent sources from side lobes. The CLEAN implementation by Gal et al. [2016] iteratively

resolves more sources. However, without a statistical framework, the number of iterations,

which is predefined, is arbitrary and there is no certainty in the process with regard to true

or false sources. In the presented implementation, a Fisher statistics framework is used

to define a stopping criterion so that there is statistical certainty that the resolved sources

are real. In the case of IS42 the initial f/k spectrum is ’smeared’ over almost 360◦. This

is because IS42 is located on an island with sources all around it, including perhaps local

and weaker sources that are not resolved in the microbarom model. The model averages

microbarom source activity over a period of six hours. Therefore sources that are active

for only a small fraction of that period are suppressed. However, a processing window of

2000 seconds with CLEAN can resolve such local, short duration sources. Additionally,
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IS42 is located relatively close to North-Atlantic microbarom source regions highlighted in

the model (Figure 10). Thus, it can separate the source region into more sub-sources that

are two standard deviations apart in the f/k spectrum.

Previous studies have discussed other beamforming algorithms to identify multi-

ple sources within the same frequency band (e.g., MUSIC [Schmidt, 1986]). den Ouden

et al. [2018] compared the CLEAN and MUSIC algorithms, and discussed the benefits of

CLEAN over MUSIC. CLEAN does not require source knowledge while the MUSIC al-

gorithm needs the user to define the number of sources. If this number is incorrect, the

outcome of the algorithm is incorrect. Furthermore, MUSIC can only resolve as many

sources as array elements.

The enhanced beamforming resolution of CLEAN improves the capabilities of in-

frasound as a monitoring technique. This comes to the benefit of infrasonic monitoring

of nuclear tests as well as natural hazards, such as volcanoes, earthquakes and hurricanes.

In addition, high resolution microbarom observations can be useful in the assessment of

microbarom source models [Waxler et al., 2007] as well as in the remote sensing of the

middle and upper atmosphere, for which microbarom signals have been used in previ-

ous research [Donn and Rind, 1972; Smets, 2018]. Besides the application to infrasound

arrays, the algorithm can be applied to improve on the limited f/k spectral resolution of

arrays with a low number of elements, such as the IMS hydro-acoustic triplet arrays that

are deployed in the world’s oceans.
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Figure 1. Array locations and layouts of IS18, IS26, IS42, IS43 and IS48.
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Figure 2. The applied slowness grid, consisting of a 360◦ ring grid (between 275 and 475 m/s with steps of

1 m/s every 1◦), and a 2500 points equidistant squared grid (between 200 and 10000 m/s).
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Figure 3. Array response of infrasound array IS48 at 0.3 Hz, following the Bartlett (a) and Capon (d)

beams. The array response improves after applying the Fisher statistics for Bartlett (b) as well Capon (e). The

side spectra (c, f) show the improvement of the Fisher ratio (red curve) with respect to the array response in

terms of normalized power (black curve) at py = 0.
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the central F-distribution. The dotted line is the 95 percentile,F0.95 = 1.28.
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Figure 5. Beamform results of IS48 between 0.1-0.3 Hz on synthetic dataset A (Table 1). Figures (a) and

(b) show the results of the Bartlett beamformer before and after CLEAN has been applied. (c) and (d) are the

results when Capon has been applied. The circles indicate where sources are expected in the f/k spectrum.

The red ring indicates the apparent velocity, capp = 340m/s. Note that the apparent sources in frame (b)

correspond to side-lobes due to Bartlett’s method.
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Figure 6. Result of Capon beamforming with CLEAN on waveforms of dataset B, Table 1. F/k spectra

of window 1 (a), window 2 (b) and window 3 (c) after CLEAN has been applied. The circles indicate where

sources are expected, and the colored rings indicates the apparent velocity capp (green; capp = 360m/s, blue;

capp = 320m/s, and red; capp = 280m/s. (d-e) are the CLEAN results plotted as a function of time, for the

three windows considered. The lines indicate expected results regarding back azimuth and apparent velocity,

color of the dots indicate the Fisher ratio.
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Figure 7. F/k spectra of IS18 (a-b), IS26(c-d), IS42(e-f) and IS48(g-h) before and after CLEAN, between

0.1-0.3 Hz for the first 2000 sec of data on 17 January 2011. The blue ring indicates the speed of sound at

standard sea level (15◦C and 1.225 kg/m3), capp = 340m/s.–25–
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Figure 8. Infrasound detections on 17 January 2011 in the 0.1-0.3 Hz frequency band. (a) shows the max-

imum contribution of the Bartlett f/k spectrum without CLEAN. (b) the maximum contribution of the Capon

f/k spectrum without CLEAN and (c) reveals the outcome after application of the proposed CLEAN algo-

rithm on the Capon f/k spectra. The dotted lines indicate the mean back azimuths that are associated with the

observed microbaroms throughout the day. The dots are coloured coded by the Fisher ratio.
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Figure 9. CLEAN f/k spectra of IS48 between (a) 0.1-0.3 Hz and (b) 0.3-0.6 Hz for the first 2000 sec of

data on 17 January 2011.
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Figure 10. Microbarom source region predictions for frequencies between 0.1- 0.3 Hz (a) and between 0.3-

0.6 Hz (b) from 17 January 2011 00:00 UTC till 00:30 UTC [Waxler and Gilbert, 2006; Smets, 2018]. IS48,

IS42, IS26, IS43 and IS18 are indicated by blue diamonds. Back azimuth projection of all resolved sources

are indicated by solid arrows(Figure 7), the black solid arrow indicates the dominant source. Transparent

circles indicate possible source location found by cross bearing.
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