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ARTICLE

Heritability estimates for 361 blood metabolites
across 40 genome-wide association studies
Fiona A. Hagenbeek1,2*, René Pool 1,2, Jenny van Dongen 1,2, Harmen H.M. Draisma1, Jouke Jan Hottenga1,

Gonneke Willemsen1, Abdel Abdellaoui1, Iryna O. Fedko1, Anouk den Braber 1,3,4, Pieter Jelle Visser 3,5,

Eco J.C.N. de Geus 1,2,4, Ko Willems van Dijk 6,7,8, Aswin Verhoeven 9, H. Eka Suchiman 10,

Marian Beekman 10, P. Eline Slagboom 10, Cornelia M. van Duijn11, BBMRI Metabolomics Consortium,

Amy C. Harms 12, Thomas Hankemeier12, Meike Bartels 1,2,4, Michel G. Nivard 1,2,4,51* &

Dorret I. Boomsma 1,2,4,51*

Metabolomics examines the small molecules involved in cellular metabolism. Approximately

50% of total phenotypic differences in metabolite levels is due to genetic variance, but her-

itability estimates differ across metabolite classes. We perform a review of all genome-wide

association and (exome-) sequencing studies published between November 2008 and October

2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a

twin-family cohort (N= 5117), these metabolite loci are leveraged to simultaneously estimate

total heritability (h2total), and the proportion of heritability captured by known metabolite loci

(h2Metabolite-hits) for 309 lipids and 52 organic acids. Our study reveals significant differences in

h2Metabolite-hits among different classes of lipids and organic acids. Furthermore, phosphati-

dylcholines with a high degree of unsaturation have higher h2Metabolite-hits estimates than

phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of

common genetic variants for metabolite levels, and elucidates the genetic architecture of

metabolite classes.
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The metabolome is defined as the collection of metabolites,
i.e., small molecules involved in cellular metabolism, which
are produced in cells1 and can be categorized into many

classes2. The overall aim of the field of metabolomics is to provide
a holistic overview of the metabolome1, and its role in biological
mechanisms and metabolic disturbances in diseases. Elucidating
this role may offer new therapeutic targets or new biomarkers for
disease diagnosis3. Variation in metabolite levels can arise due to
gender4, and age5, as well as physiologic effects, behavior, and
lifestyle factors, such as diet6. Genetic differences may be a source
of direct variation in metabolomics profiles, or an indirect source
of variation through genetic influences on physiology, behavior,
and (or) lifestyle.

Genome- and metabolome-wide analysis of common genetic
variants in human metabolism have successfully identified
genetically influenced metabolites7. In 2008, the first genome-wide
association study (GWAS; N= 284 participants) identified four
genetic variants associated with metabolite levels8. Thereafter,
GWAS with increasing sample sizes, and in diverse populations,
identified hundreds of single nucleotide polymorphism (SNP)
associations with metabolites from a wide range of metabolite
classes7. Additional metabolite loci have been identified by lever-
aging low-frequency and rare-variant analyses using (exome-)
sequencing. We conducted a comprehensive review of all quan-
titative trait loci (QTL) discovery for metabolites and supply the
complete reference list in Supplementary Table 1.

Twin and family studies have established that the heritability
(h2; proportion of phenotypic variance due to genetic factors) of
metabolite levels is 50% on average, with a range from h2= 0% to
h2= 80%6,9–16. Several studies reported differences in heritability
estimates among different classes of lipid species13,15 or lipo-
protein subclasses14. For example, Rhee et al.12 reported higher
heritability estimates for amino acids than for lipids. Essential
amino acids, which cannot be synthesized by an organism de
novo17, had lower heritability than nonessential amino acids12,
that are synthesized within the body17. Several techniques are
available to estimate the contribution of measured SNPs to trait
heritability18, and, given SNP data in family members, to
simultaneously estimate SNP-associated (h2SNP) and pedigree-
associated genetic variance (h2ped)19. Together the SNP- and
pedigree-associated genetic effects account for the narrow-sense
heritability. However, when including data of family members,
the variance explained by genetic effects (h2total) may be biased
upwards by shared environmental factors and/or nonadditive
genetic effects19,20.

An improved understanding of the genetic background of
the metabolome will benefit our understanding of the etiology
of diseases and traits, such as cardiometabolic diseases21,
migraine22, psychiatric disorders23, and cognition24. Here, we aim
to further our understanding of the contribution of genetic factors
to variation in fasting blood metabolic measures (henceforth
referred to as metabolites for brevity) by the analysis of data from
multiple metabolomics platforms in a large cohort of twins and
family members (N= 5117). Specifically, we aim to estimate the
total genetic variance of metabolite levels (h2total), and to elucidate
the contribution to metabolite levels of known metabolite class-
specific and metabolite class-unspecific loci (h2Metabolite-hits), on the
basis of the results of a decade of GWA and (exome-) sequencing
studies. To this end, we characterize all metabolite-SNP associa-
tions published between November 2008 and October 2018 by
metabolite classification, and used linear-mixed models to estimate
the h2total, h2SNP, and h2Metabolite-hits simultaneously for 369 meta-
bolites. In these models, the h2Metabolite-hits consists of two variance
components, a component attributable to metabolite loci associated
with metabolites of a specific superclass (h2Class-hits) and a
component attributable other metabolite loci (h2Notclass-hits).

The median h2total for lipids is 0.47 and for organic acids 0.40, and
the median lipid h2Metabolite-hits is 0.06 and 0.01 for organic acids,
with most of the h2Metabolite-hits attributable to h2Class-hits. We fur-
ther expand on the current knowledge of the genetic etiology of
metabolite classes by employing mixed-effect meta-regression
models to test differences in heritability estimates among meta-
bolite classes and among lipid species. Although estimates of h2total
do not differ significantly among metabolite classes, significant
differences were observed among lipid and organic classes for
h2Metabolite-hits and h2Class-hits.

Intriguingly, phosphatidylcholines11 and triglycerides (TGs)16

show increasing heritability with increasing number of carbon
atoms and/or double bonds in their fatty acyl side chains. Draisma
et al.11 speculated this might be attributable to differences in the
number of metabolic conversion rounds for phosphatidylcholines
or TGs with a variable number of carbon atoms. To distinguish
between the effects of the number of carbon atoms or number of
double bonds in the fatty acyl side chains of phosphatidylcholines
and TGs, we conduct additional univariate follow-up analyses.
Our results indicate higher h2Metabolite-hits estimates for more
complex phosphatidylcholines (i.e., with larger number of carbon
atoms and/or double bonds). Univariate follow-up suggests this
could be attributed to the number of double bonds in phospha-
tidylcholines (e.g., degree of unsaturation).

Results
Metabolite classification. In the period of November 2008 to
October 2018, 40 GWA and (exome-) sequencing studies identified
242,580 metabolite-SNP or metabolite ratio-SNP associations
(see Supplementary Table 1). All 242,580 associations may be
found in Supplementary Data 1, which lists the significant SNP-
metabolite associations by study. These associations, included 1804
unique metabolites or ratios and 49,231 unique SNPs (43,830 after
converting all SNPs to NCBI build 37; Supplementary Data 1). The
human metabolome database (HMDB)2 identifiers of each meta-
bolite were retrieved in order to extract information concerning
the metabolite’s hydrophobicity and chemical classification
(see Methods). Excluding the ratios and unidentified metabolites,
we classified 953 metabolites into 12 super classes (Table 1),
43 classes, or 77 subclasses based on the HMDB classification
(Supplementary Data 1). The majority of the metabolites were
classified into the super classes lipids or organic acids. The lipids

Table 1 Overview of the number of unique metabolites per
super class.

Super class Number of unique
metabolites

Lipids and lipid-like molecules (e.g.,
lipids)

662

Organic acids and derivatives (e.g.,
organic acids)

182

Organoheterocyclic compounds 45
Organic oxygen compounds 19
Nucleosides, nucleotides, and analogues 12
Benzenoids 12
Organic nitrogen compounds 11
Phenylpropanoids and polyketides 4
Proteins 3
Organic compounds 1
Trichlorophenols 1
Organooxygen compounds 1

For each Human Metabolome2 super class the number of unique metabolites, for which
significant SNP-metabolite associations have been published, is provided. See Supplementary
Data 1 for an overview of the exact metabolites classified per super class, class, and subclass, as
well as the SNPs associated with each metabolite
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could be subdivided into 8 classes, with 1 to 95,795 metabolite-SNP
associations per class (mean= 17,589; SD= 32,553), and in
32 subclasses, with the number of subclass metabolites-SNP asso-
ciations ranging from 1 to 40,440 (mean= 4673; SD= 9124). The
organic acids and derivatives were divided in 9 classes, with the
number of metabolite-SNP associations ranging from 1 to 26,832
(mean= 3374; SD= 8832). The organic acids and derivatives were
also divided into 17 organic acid subclasses, with the number of
subclass metabolite-SNP associations ranging from 1 to 26,448
(mean= 1786; SD= 6371; Supplementary Data 1). Across all four
platforms 427 metabolites were assessed. After excluding the ratios
(17) and the metabolites of super classes not included in the
curated metabolite-SNP association list (8), data were available for
402 metabolites. The full list of metabolites, with their classifica-
tions and the quartile values of the untransformed levels, is
included in Supplementary Table 1. The 402 metabolites were
classified as 336 lipids, 53 organic acids, 9 organic oxygen com-
pounds, 3 proteins and one organic nitrogen compound. These
super classes consisted of 12 classes (Supplementary Table 2). In
this paper we mainly focus on the first two super classes. After
quality control (QC), 369 metabolites from these two super classes
were retained for analysis.

Characterization of the heritable influences on metabolites.
Data of 5117 participants were available from the following four
metabolomics platforms: the Nightingale Health proton nuclear
magnetic resonance (1H-NMR) platform, a ultra performance
liquid chromatography mass spectrometry (UPLC-MS) lipidomics
platform, the Leiden 1H-NMR platform, and the Biocrates
Absolute-IDQTM p150 platform. The participants were registered
with the Netherlands Twin Register (NTR)25 and were clustered in
2445 nuclear families. Metabolomics and SNP data were available
for all participants. Background and demographic characteristics
for the sample can be found in Table 2.

We aimed to assess the variance explained by previously
identified metabolite GWA and (exome-) sequencing genetic
variants in our (independent) sample. Clearly, our results are
conditional on the power of past the studies, as the list of metabolite
genetic variants is based on previous GWA and (exome-)
sequencing studies, which vary in power. We present the sample
size of each past study in Supplementary Table 1, and the sample
size per metabolite-SNP association in Supplementary Data 1.

Linear-mixed models including all loci for genetic variants
associated with metabolites in a single genetic relatedness
matrix (GRM) will contain SNPs that are associated with some
metabolites, but not with others, or include many SNPs that are
not associated with a given metabolite. We therefore created
two GRMs for the loci associated with metabolite hits (see
Methods): one class-specific and one nonclass specific (i.e.,
GRMs including metabolite loci for all metabolites, except for
the target metabolite class). We explored models for the 12

class-specific and the corresponding not-class specific GRMs
(Supplementary Note 2). These models displayed high degrees
of non-convergence (37.9% total), with models including small
class-specific GRMs displaying more non-convergence (Sup-
plementary Table 2). Therefore, the results in the remainder of
this paper were based on the metabolite super classes, i.e., lipids
and organic acids.

For the 369 lipids and organic acids, we carried out
unconstrained four-variance component analyses (Fig. 1). In
genome-wide complex trait analysis (GCTA)18 we specified a
model in which we partition the metabolite variation into SNP-
associated (h2SNP), pedigree-associated (h2ped), class-specific
metabolite-loci-associated (h2class-hits), and not-class metabolite-
loci-associated (h2notclass-hits) genetic variation (Fig. 1). We report
the total heritability (h2total), the proportion attributable to
metabolite superclass-specific loci (h2Class-hits), the proportion of
variance attributable to non-superclass metabolite loci (h2Notclass-hits)
and the contribution of known metabolite loci to metabolite levels
(h2Metabolite-hits). The analyses were performed separately for lipids
and organic acids, with class-specific and corresponding nonclass
GRMs (created using the LDAK program26,27) in both sets of
analyses. The lipid analyses employed a class-specific GRM of 479
lipid loci and a corresponding nonclass GRM of 596 loci
(Supplementary Fig. 1). The organic acid analyses included a
class-specific GRM of 397 loci and a nonclass GRM of 683 loci
(Supplementary Fig. 1). Before the analyses, the metabolite data
were normalized (log-normal or inverse rank; see Methods). All
models included age at blood draw, sex, the first ten principal

Table 2 Participant characteristics per metabolomics platform.

Metabolomics platform N N families Agea

(mean ± SD)
Female (%) Twins (%) BMI

(mean ± SD)
Cholesterolb

(mean ± SD)
LDLb

(mean ± SD)
HDLb

(mean ± SD)

All participants 5117 2445 42.1 ± 14.2 62.8 63.4 24.8 ± 4.1 4.9 ± 1.2 3.0 ± 1.0 1.7 ± 1.0
Nightingale Health 1H-NMR 4227 2179 40.7 ± 13.7 67.3 69.7 24.6 ± 4.0 4.9 ± 1.2 3.0 ± 1.0 1.7 ± 1.0
UPLC-MS lipidomics 2324 1251 39.0 ± 12.9 66.6 89.2 24.4 ± 4.1 5.0 ± 1.0 3.0 ± 0.9 1.4 ± 0.4
Leiden 1H-NMR 2324 1323 37.6 ± 12.5 67.0 89.0 24.2 ± 4.1 4.6 ± 1.3 2.7 ± 1.0 2.0 ± 1.4
Biocrates 1448 946 45.7 ± 15.3 43.8 39.6 25.2 ± 3.9 4.6 ± 1.5 2.8 ± 1.1 2.3 ± 1.7

This table gives an overview of the number of individuals (N) per platform, specifies the number of families these individuals belong to and the percentage of females and twins in each dataset. In
addition, for each platform the mean and standard deviation (SD) of the age at blood draw in years, the body mass index (BMI), the cholesterol level in mmol/l, the low-density lipoprotein cholesterol
(LDL) levels in mmol/l, and the high-density lipoprotein cholesterol (HDL) levels in mmol/l are given. All participant characteristics are given after preprocessing, which was done separately for each
metabolomics platform (see Methods)
aAge at blood draw in years
bLevels in mmol/l

Class GRM 

V(G2) = h2
ped V(G4) = h2

Notclass-hits V(G1) = h2
g V(G3) = h2

Class-hits 

total 

= h2
Metabolite-hits 

 SNP 

No metabolite
loci (±50 kb) GRM
(434,216 SNPs) 

Closely-related
(>0.05) GRM

(447,794 SNPs)  
 
 

Not-class GRM 

Σ V(G3) + V(G4)

Σ V(G1) + V(G3) + V(G4) = h2

Σ V(G1) + V(G2) + V(G3) + V(G4)
= h2

Fig. 1 Overview of the four-variance component models. Overview of the
SNP-filtering and GRM construction can be found in Supplementary Fig. 1
and is explained in details in the Methods. This figure describes which
GRMs (black boxes) are used to calculate which variance components
(orange boxes) by drawing black arrows from the GRMs to the variance
components. The variance components give rise to the four different
heritability estimates: h2ped, h2g, h2Class-hits, and h2Notclass-hits (see Methods).
The orange arrows indicate how the various variance components are
summed to obtain estimates for h2metabolite-hits, h2SNP, and h2total (see
Methods).
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components (PCs) from SNP genotype data, genotyping chip,
and metabolomics measurement batch as covariates.

Supplementary Data 3 includes the estimates from the four-
variance genetic component models for all 369 metabolites. The
genomic relatedness matrix residual maximum likelihood
(GREML) algorithm converged for 361 (97.8%) of the 53 organic
acids and 316 lipids (Supplementary Table 3). Non-convergence
of the GREML algorithm was observed for 6 metabolites (1.6%).
The analyses of 2 metabolites (0.5%) were not completed due to
non-invertible variance-covariance matrices. The estimates for
h2total of the 309 lipids ranged from 0.11 to 0.66 (mean= 0.47;
mean s.e.= 0.04). The estimates for h2Metabolite-hits ranged from
−0.05 to 0.16 (mean= 0.06; mean s.e.= 0.03; Table 3). The 52
organic acids had h2total estimates ranging from 0.14 to 0.72
(mean= 0.41; mean s.e.= 0.04). The estimates for h2Metabolite-hits

ranged from −0.08 to 0.11 (mean= 0.01; mean s.e.= 0.02;
Table 3). On average, for both lipids and organic acids the h2class
was higher than the h2Notclass, with h2Class-hits ranging from −0.02
to 0.16 (0.06; mean s.e.= 0.02) for lipids and from −0.04 to 0.14
for organic acids (mean= 0.01; mean s.e.= 0.02). For both lipids
and organic acids h2Notclass-hits was zero (mean s.e.= 0.02),
ranging from −0.06 to 0.12 for lipids and from −0.06 to 0.05 for
organic acids (Table 3).

Including multiple metabolomics platforms allowed for a
comparison of metabolites as measured on multiple platforms.
An earlier study showed that 29 out of 43 metabolites present
on two platforms to exhibit moderate heritability on both
platforms28. In the current study, 61 metabolites were measured
on multiple platforms (phenotypic correlations provided in
Supplementary Data 4), with moderate h2total on each of the
platforms and on average a positive correlation of 0.36 between
the h2total of the same metabolite assessed on different
platforms (Supplementary Data 4).

Differential heritability among metabolite classes. Figure 2
shows variation in median heritability among the following classes
of organic acids: keto acids, hydroxy acids, and carboxylic acids
(see Supplementary Data 2 for metabolites per class). Keto acids,
followed by carboxylic acids, had the highest median h2total, and
h2Class-hits estimates (Fig. 2). While hydroxy acids had the highest
median h2Notclass-hits and h2Metabolite-hits estimates, the lowest median
h2total, and h2Class-hits estimates were observed for these metabolites

(Fig. 2). To investigate whether heritability differs significantly
among classes of organic acids, we applied multivariate mixed-effect
meta-regression, corrected for metabolite platform effects (see
Methods). The multivariate mixed-effect meta-regression models
showed that h2total and h2Class-hits for the organic acid classes did not
differ significantly. However, significant differences among the
organic acid classes were observed with multivariate mixed-effect
meta-regression models with respect to the h2Metabolite-hits estimates
(F(4, 47)= 3.44, false discovery rate (FDR)-adjusted p value=
0.03), and the h2Notclass-hits estimates (F(4, 47)= 19.95, FDR-
adjusted p value= 1.25 × 10−08; Supplementary Data 5).

The multivariate mixed-effect meta-regressions were also
applied to assess the significance of heritability differences
among essential and non-essential amino acids (subdivision of
carboxylic acids; see Supplementary Table 4) and among lipid
classes (see Supplementary Data 2 for metabolites per lipid
class). The meta-regression analyses revealed no significant
mean differences among essential and non-essential amino
acids (Table 4; Supplementary Data 6). Small but significant
mean heritability differences were observed with multivariate
mixed-effect meta-regression models among the different
classes of lipids (Fig. 3). For lipid classes the h2Metabolite-hits

estimates differed significantly (F(8, 300)= 8.47; FDR-adjusted
p value= 0.004; Supplementary Data 5).

Finally, we explored whether heritability of phosphatidylcho-
lines and TGs increases with a larger number of carbon atoms
and/or double bonds in their fatty acyl side chains. To this end we
employed both uni- and multivariate mixed-effect meta-regression
models separately for the TGs, diacyl phosphatidylcholines (PCaa)
and acyl-alkyl phosphatidylcholines (PCae; see Methods). The
platform specific heritability estimates for each of these lipid
species are depicted in Supplementary Fig. 2. Multivariate mixed-
effect meta-regression models showed that variation in the
number of carbon atoms and double bonds was significantly
associated with h2Metabolite-hits estimates for PCaa’s (F(3, 52)=
7.05; FDR-adjusted p value= 0.009) and PCae’s (F(3, 45)= 3.41;
FDR-adjusted p value= 0.05; Supplementary Data 5). Phospha-
tidylcholines with a larger number of carbon atoms showed lower
heritability estimates and phosphatidylcholines with a larger
number of double bonds had higher heritability estimates
(Supplementary Data 5). The differences among the phosphati-
dylcholines with a variable number of carbon atoms and/or double

Table 3 Summary of the heritability estimates of the four-variance component models.

Mean Median Range

Lipids and lipid-like molecules h2total estimate 0.47 0.47 (0.11–0.66)
h2total s.e. 0.04 0.03 (0.02–0.07)
h2Metabolite-hits estimate 0.06 0.06 (−0.05–0.16)
h2Metabolite-hits s.e. 0.03 0.03 (0.01–0.04)
h2Class-hits estimate 0.06 0.06 (−0.02–0.16)
h2Class-hits s.e. 0.02 0.02 (0.01–0.03)
h2Notclass-hits estimate 0.00 0.01 (−0.06–0.12)
h2Notclass-hits s.e. 0.02 0.02 (0.01–0.03)

Organic acids and derivatives h2total estimate 0.41 0.40 (0.14–0.72)
h2total s.e. 0.04 0.03 (0.02–0.07)
h2Metabolite-hits estimate 0.01 0.02 (−0.08–0.11)
h2Metabolite-hits s.e. 0.02 0.02 (0.01–0.04)
h2Class-hits estimate 0.01 0.01 (−0.04–0.14)
h2Class-hits s.e. 0.02 0.02 (0.01–0.03)
h2Notclass-hits estimate 0.00 0.00 (−0.06–0.05)
h2Notclass-hits s.e. 0.02 0.02 (0.01–0.03)

The mean, median, and range of the total heritability (h2total), heritability based on the 479 significant metabolite loci for the 309 lipids or the 397 significant metabolite loci for the 52 organic acids
(h2Class-hits), the 596–683 significant metabolite loci not belonging to these classes (h2Notclass-hits) and the total heritability explained by metabolite loci (e.g., sum of h2Class-hits and h2Notclass-hits:
h2Metabolite-hits), as well as their standard errors (s.e.’s), are depicted for all 361 successfully analyzed metabolites as included on all platforms. Supplementary Data 2 denotes which metabolites belong to
each class and Supplementary Data 3 provides the estimates for each of the individual metabolites
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bonds may have contributed to differential h2Class estimates.
Univariate models confirmed the results for the number of double
bonds in PCaa’s and PCae, though they were not significant after
correction for multiple testing (Supplementary Data 6).

Discussion
We carried out a comprehensive assessment of GWA-
metabolomics studies, and created a repository of all studies
reporting on associations of SNPs and blood metabolites in
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Fig. 2 Heritability of all 52 carboxylic acids by class. Box- and dotplots of the h2total, and h2Metabolite-hits for all 52 successfully analyzed carboxylic acids
and derivatives across all metabolomics platforms by class. The left-hand side of the figure is a close-up of the −0.08 to 0.15 part of the heritability range,
focusing on the h2Class-hits and h2Notclass-hits estimates. The boxes denote the 25th and 75th percentile (bottom and top of box), and median value
(horizontal band inside box). The whiskers indicate the values observed within up to 1.5 times the interquartile range above and below the box. The purple,
orange and green boxes denote the keto acid, hydroxyl acid and carboxylic acid classes, respectively. Supplementary Data 3 provides the estimates for
each of the individual metabolites.

Table 4 Summary of the heritability estimates for the essential and nonessential amino acids.

Mean Median Range

Essential amino acids h2total estimate 0.42 0.40 (0.23–0.64)
h2total s.e. 0.04 0.03 (0.02–0.07)
h2Metabolite-hits estimate 0.00 0.00 (−0.05–0.05)
h2Metabolite-hits s.e. 0.02 0.02 (0.01–0.03)
h2Class-hits estimate 0.01 0.00 (−0.03–0.05)
h2Class-hits s.e. 0.02 0.02 (0.01–0.02)
h2Notclass-hits estimate −0.01 −0.01 (−0.06–0.04)
h2Notclass-hits s.e. 0.02 0.02 (0.01–0.03)

Non-essential amino acids h2total estimate 0.39 0.39 (0.22–0.69)
h2total s.e. 0.04 0.04 (0.03–0.07)
h2Metabolite-hits estimate 0.02 0.01 (−0.07–0.11)
h2Metabolite-hits s.e. 0.03 0.03 (0.01–0.04)
h2Class-hits estimate 0.03 0.01 (−0.03–0.14)
h2Class-hits s.e. 0.02 0.02 (0.01–0.03)
h2Notclass-hits estimate 0.00 0.00 (−0.04–0.03)
h2Notclass-hits s.e. 0.02 0.02 (0.01–0.03)

The mean, median, and range of the total heritability (h2total), and heritability based on the 397 significant metabolite loci for the organic acids (h2Class-hits), the 683 significant metabolite loci not
belonging to this class (h2Notclass-hits) and the total heritability explained by metabolite loci (e.g., sum of h2Class-hits and h2Notclass-hits: h2Metabolite-hits), as well as their standard errors (s.e.’s), are depicted for
all 31 successfully analyzed essential (17) and nonessential (14) amino acids as included on all platforms. Supplementary Data 2 denotes which metabolites belong to each class and Supplementary
Data 3 provides the estimates for each of the individual metabolites
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European ancestry samples. We curated 241,965 genome-wide
metabolite associations and we classified the associated metabo-
lites into super classes, classes and subclasses. The complete
overview of all blood metabolite-SNP associations is provided in
Supplementary Data 1, with the complete list of references in
Supplementary Table 1. The information from the repository was
used to construct GRMs, which served to identify genetic variance
components in the analysis of 369 metabolites. The metabolite
data in our study came from a large cohort of twin-families (N=
5117 clustered in 2445 families) measured on four metabolomics
platforms. We focused on two metabolite super classes. By
mapping all metabolites to the HMDB2 we were able to classify
both the measured metabolites and all previously published
metabolites as either lipids or organic acids. In the current study,
we sought to elucidate the contribution of known metabolite loci,
based on a decade of GWA and (exome-) sequencing studies, to
metabolite levels (h2Metabolite-hits). A unique feature of our study
was the ability to disentangle the role of class-specific (h2Class-hits)
and nonclass (h2Notclass-hits) metabolite loci on heritability dif-
ferences among metabolite classes and lipid species.

To evaluate differences among metabolite classes and lipid
species in the estimates for h2total, we applied multivariate mixed-
effect meta-regression models to the estimates of h2Metabolite-hits,
h2Class-hits, and h2Notclass-hits. We observed no significant differ-
ences in h2total estimates among the metabolite classes. Consistent
with a previous twin-family study10, none of the heritability
estimates differed significantly among essential and nonessential

amino acids. We observed significant h2Metabolite-hits differences
among the different classes of organic acids. Keto acids had sig-
nificantly lower h2Metabolite-hits estimates as compared with car-
boxylic acids. Class-specific metabolite loci heritability estimates
for fatty acyls, lipoproteins and steroids were significantly higher.
Similarly, significant heterogeneity in lipid class heritability, with
lower h2total and h2SNP for phospholipids than for sphingolipids
or glycerolipids has been reported13,15,29. Lastly, we assessed
whether heritability increases with added complexity in lipid
species11,16. We found that this was the case with respect to
h2Metabolite-hits estimates in more complex diacyl and acyl–alkyl
phosphatidylcholines, but not for more complex TGs. Previous
research reported significant higher h2SNP estimates in poly-
unsaturated fatty acid containing lipids15. Furthermore, loci
associated with traditional lipid measures explained 2–21% of the
variance in lipid levels15. Together these results suggest that
higher heritability in phosphatidylcholines is driven by a lower
number of carbon atoms and higher number of double bonds,
e.g., a larger degree of unsaturation.

Evaluating the mean heritability differences among lipids and
organic acids, it appears that lipids have higher h2total, h2Class-hits,
and h2Metabolite-hits estimates than organic acids (Table 3). Pre-
vious twin-family studies indicates that the heritability difference
among lipids and organic acid is rarely investigated9–12. This is
possibly because most metabolomics platforms focus mainly on
either lipids or organic acids. Lipid metabolite classes tend to
be very well represented on metabolomics platforms, whereas
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Fig. 3 Heritability of all 309 lipids by class. Box- and dotplots of the h2total, and h2Metabolite-hits for all 309 successfully analyzed lipids and lipid-like
molecules across all metabolomics platforms by class. The left-hand side of the figure is a close-up of the −0.06 to 0.17 part of the heritability range,
focusing on the h2Class-hits and h2Notclass-hits estimates. The boxes denote the 25th and 75th percentile (bottom and top of box), and median value
(horizontal band inside box). The whiskers indicate the values observed within up to 1.5 times the interquartile range above and below the box. The yellow,
pink, orange, light green, purple, and dark green boxes denote the steroids, lipoprotein, glycerolipid, sphingolipid, glycerophospholipid, and fatty acyl
classes, respectively. Supplementary Data 3 provides the estimates for each of the individual metabolites.
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organic acids are unrepresented, and as a consequence, the ana-
lysis to obtain h2Class-hits and h2Metabolite-hits estimates of the
organic acids will be underpowered due to this imbalance.

The current study has several limitations. First, the extent to
which our findings generalize to populations of non-European
ancestry is unknown. Loci of common human metabolism
pathways are most likely to replicate over ethnicities30. Second,
estimates of the total variance explained may show upward bias
when based on data from closely related individuals (e.g., first
cousins or closer)19,20. This bias is caused by the influence of
shared environmental influences, epistatic interactions, or
dominance19,20. While the results of the current study may suffer
of such biases by the inclusion of twins, siblings, and parents, the
sample also includes many unrelated individuals which will
reduce the possible bias (Supplementary Fig. 3).

Kettunen et al.31 investigated 217 metabolites of the Night-
ingale Health 1H-NMR platform in a classical twin design and
reported dominance effects for 6.45% of the metabolites. Tsep-
silov et al.32 performed GWA study targeting nonadditive genetic
effects and concluded that most genetic effects on metabolite
levels and ratios were in fact additive. Together, these studies
suggested that the bias due to dominance effects on metabolite
levels will be minor.

Relatively few twin-family studies explicitly investigated the
role of shared environmental influences on metabolite levels.
Overall, shared environmental influences are reported for a small
number of metabolites (e.g., 14.3% of all Nightingale Health 1H-
NMR metabolites31) and the influence of the shared environment
is small-to-moderate (platform and metabolite class-dependent
averages range from 0.03 to 0.456,13,33–35 with larger estimates
deriving from small studies). For studies including parents and
offspring, or adult twin and siblings pairs the question arises
which effects are captured by the shared environment. Are these
the lasting influences of the environment offspring shared with
their parents and with each other before they started living
independently? Additional research is necessary to elucidate the
role of the shared environment on metabolite levels19.

Third, standard errors of h2SNP estimates were high. While we
have included all h2SNP estimates in the supplements, we stress
that the primary goal of our paper was to investigate the con-
tribution of known metabolite loci in an independent sample
rather than obtaining the h2SNP estimates for metabolites.

Finally, the estimates for h2metabolite-hits are based on SNPs of 40
different studies from a decade of GWA and (exome-) sequencing
studies. The sample size, and therefore the power, of these studies
vary, with some studies conducted with as few as 211 individuals
while others included over 24,000 individuals (Supplementary
Table 1). For underrepresented metabolites the low power may
result in downward biased heritability estimates. However,
leveraging information from a decade of research in 40 studies
and extracting loci for metabolite classes across multiple studies,
the number of such metabolites is not large. New29,36–38 and
future studies will increase the number of variants identified as
metabolite loci. The investment in UK Biobank39 is expected to
dramatically increase sample sizes for large-scale genomic
investigations of the human metabolome and subsequently the
number of metabolite loci.

Mendelian randomization may benefit from the comprehensive
overview of metabolite loci that we identified. The identified loci
can serve as instruments in metabolome-wide Mendelian ran-
domization studies of complex traits. In addition, our work offers
valuable insights into the role of common genetic variants in class
specific heritability differences among metabolite classes and
lipids species. Further research is required to elucidate the con-
tribution of rare genetic variants to metabolite levels, and dif-
ferences in the contribution of rare genetic variants among

metabolite classes. A reasonable approach would be to carry out a
similar study in a large sample of whole-genome sequencing data.
Such an approach, using minor allele frequency (MAF)- and
linkage disequilibrium (LD)-stratified GREML analysis40, identi-
fied additional variance due to rare variants for height and body
mass index41.

In conclusion, we contributed to our understanding of the
genetic architecture of fasting blood metabolite levels, and of
differences in the genetic architecture among metabolite classes.
Extending the GREML framework with the inclusion of known
metabolite loci allowed us to simultaneously estimate h2total, and
h2metabolite-hits (which consists of h2Class-hits and h2Notclass-hits) for
361 metabolites. Significant differences in h2Metabolite-hits estimates
were observed among different classes of lipids and organic acids
and for more complex diacyl and acyl–alkyl phosphatidylcho-
lines. Future studies should address the proportion of metabolite
variation influenced by heritable and nonheritable lifestyle fac-
tors, as this will facilitate the development of personalized disease
prevention and treatment of complex disorders.

Methods
Participants. At the NTR42 metabolomics data for twins and family members as
measured in blood samples were available for 6011 individuals of whom 5667 were
genotyped. The blood samples for the four metabolomics experiments described in
this study were mainly collected in participants of the NTR biobank project25,43.
Blood samples were collected after a minimum of two hours of fasting (1.3%), with
the majority of the samples collected after overnight fasting (98.7%). Fertile women
were bled in their pill-free week or on day 2–4 of their menstrual cycle. For the
current paper, we excluded participants who were not of European ancestry, who
were on lipid-lowering medication at the time of blood draw, and who failed to
adhere to the fasting protocol. The exact number of exclusions per dataset is listed
in Supplementary Data 7. After completing the preprocessing of the metabolomics
data, the separate subsets (e.g., different collection and measurement waves; see
Supplementary Data 7) of each platform were merged into a single per platform
dataset, retaining a single (randomly chosen) observation per platform when
multiple observations were available. Supplementary Data 8 gives an overview of
the overlap in participants among the different platforms, with the overlap among
each metabolite that survived QC for all four platforms available in Supplementary
Data 9. The final number of participants included in the study was 5117, with
platform specific sample size ranging from 1448 to 4227 individuals clustered in
946–2179 families. Characteristics for the individuals can be found in Table 2.
Supplementary Fig. 3 depicts the distribution of the relatedness in the sample.
Informed consent was obtained from all participants. Projects were approved by
the Central Ethics Committee on Research Involving Human Subjects of the VU
University Medical Centre, Amsterdam, an Institutional Review Board certified by
the U.S. Office of Human Research Protections (IRB number IRB00002991 under
Federal-wide Assurance- FWA00017598; IRB/institute codes, NTR 03–180 and
EMIF-AD 2014.210).

Metabolite profiling. Plasma and serum samples have been profiled on four
metabolomics platforms: two proton nuclear magnetic resonance spectroscopy
(1H-NMR) platforms and two mass spectrometry (MS) platforms. Plasma samples
have been analyzed on the Nightingale Health 1H-NMR platform (Nightingale
Health Ltd., Helsinki, Finland), an MS lipidomics platform, and the Leiden 1H-
NMR platform. Serum samples were analyzed with the Biocrates Absolute-IDQTM

p150 platform (Biocrates Life Sciences AG, Innsbruck, Austria). Details about each
of the metabolomics platforms have been included in Supplementary Note 2.

Metabolomics data preprocessing. Preprocessing of the metabolomics data was
done separately for each of the platforms and each measurement batch. Metabolites
were excluded from analysis when the mean coefficient of variation exceeded 25%
and the missing rate exceeded 5%. Metabolite measurements were set to missing if
they were below the lower limit of detection or quantification or could be classified
as an outlier (five standard deviations greater or smaller than the mean). Metabolite
measurements, which were set to missing because they fell below the limit of
detection/quantification were imputed with half of the value of this limit, or when
this limit was unknown with half of the lowest observed level for this metabolite.
All remaining missing values were imputed using multivariate imputation by
chained equations (mice)44. On average, 9 values were imputed for each metabolite
(SD= 12; range: 1–151). Data for each metabolite on both 1H-NMR platforms
were normalized by inverse normal rank transformation45,46, while the imputed
values of the Biocrates metabolomics platform and the UPLC-MS lipidomics
platform were normalized by natural logarithm transformation11,47, conform
previous normalization strategies applied to the data obtained using these plat-
forms. The complete lists with full names of all detected metabolites that survived
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QC and preprocessing for all platforms can be found in Supplementary Data 2,
these tables also include the quartile values of the untransformed metabolites.

Genotyping, imputation, and ancestry outlier detection. Genotype information
was available for 21,001 NTR participants from 6 different genotyping arrays
(Affymetrix 6.0 [N= 8640], Perlegen-Affymetrix [N= 1238], Illumina Human
Quad Bead 660 [N= 1439], Affymetrix Axiom [N= 3144], Illumnia GSA [N=
5938] and Illumina Omni Express 1M [N= 238]), as well as sequence data from
the Netherlands reference genome project GONL (BGI full sequence at 12 × (N=
364)48. For each genotyping array samples were removed if they had a genotype
call rate above 90%, gender-mismatch occurred or if heterozygosity (Plink F sta-
tistic) fell outside the range of −0.10 to 0.10. SNPs were removed if they were
palindromic AT/GC SNPs with a MAF range between 0.4 and 0.5, if the MAF was
below 0.01, if Hardy Weinberg Equilibrium (HWE) had p < 10−5, and if the
number of Mendelian errors was greater than 20 and the genotype call rate was
<0.95. After QC the six genotyping arrays were aligned to the GONL reference set
(V4) and SNPs were removed if the alleles mismatched with this reference panel or
the allele frequency different more than 0.10 between the genotyping array and this
reference set.

The data from the six genotyping chips were subsequently merged into a single
dataset (1,781,526 SNPs). Identity-by-decent (IBD) was estimated with PLINK49

and KING50 for all individual pairs based on the ~10.6 K SNPs in common across
the arrays. Next IBD was compared to expected family relations and individuals
were removed in the event of a mismatch. Prior to imputation to the GONL
reference data51,52 the duplicate monozygotic pairs (N= 3032) or trios (N= 7) and
NTR GONL samples (N= 364) were removed and the data was cross-array phased
using MACH-ADMIX53. Post-imputation the NTR GONL samples and the
duplicated MZ pairs and trios were returned to the dataset. Filtering of the imputed
dataset included the removal of SNPs that were significantly associated with a
single genotyping chip (p < 10−5), had HWE p < 10−5, the Mendelian error rate >
mean+ 3 SD, or imputation quality (R2) below 0.90. The final cross-platform
imputed dataset included 1,314,639 SNPs, including 20,792 SNPs on the X-
chromosome.

The cross-platform imputed data was aligned with PERL based HRC or 1000G
Imputation preparation and checking tool (version 4.2.5; https://www.well.ox.ac.
uk/~wrayner/tools). The remaining 1,302,481 SNPs were phased with EAGLE54 for
the autosomes, and SHAPEIT55 for chromosome X and then imputed to 1000
Genomes Phase 3 (1000GP3 version 5)56 on the Michigan Imputation server using
Minimac3 following the standard imputation procedures of the server57. PC
analysis (PCA) was used to project the first 10 PCs of the 1000 genomes references
set population on the NTR cross-platform imputed data using SMARTPCA58.
Ancestry outliers (non-Dutch ancestry; N= 1823) were defined as individuals with
PC values outside the European/British population range59. After ancestry outlier
removal the first 10 PCs were recalculated.

Curation of metabolite loci. In October 2018 PubMed and Google Scholar were
searched to identify published GWA and (exome-) sequencing studies on meta-
bolomics or fatty acid metabolism in blood samples using 1H-NMR, mass spec-
trometry or gas chromatography-based methods. In the period of November 2008
to October 2018 40 GWA or (exome-) sequencing studies on blood metabolomics
in European samples were published (Supplementary Table 1). The genome-wide
significant (p < 5 × 10−8) metabolite-SNP associations of all studies were extracted,
including only those observations for autosomal SNPs and reporting SNP effect
sizes and p values based on the summary statistics excluding NTR samples46,47. In
the 40 studies, 242,580 metabolite-SNP or metabolite ratio-SNP associations were
reported. These associations included 1804 unique metabolites or ratios and 49,231
unique SNPs (Supplementary Data 1). For all metabolites their Human Metabo-
lome Database (HMDB)2, PubChem60, Chemical Entities of Biological Interest61

and International Chemical Identifier62 identifiers were retrieved. Information with
regards to the super class, class and subclass of metabolites was extracted from
HMDB. If no HMDB identifier was available and categorization information could
not be extracted, super class, class and subclass were provided based on expert
opinion. Excluding the ratios and unidentified metabolites, 953 metabolites were
classified into 12 super classes, 43 classes or 77 subclasses (Supplementary Data 1).
Based on the metabolite identifiers we also extracted the log(S) value for each
metabolite to assess the hydrophobicity of the metabolites. The log(S) value
represents the log of the partition coefficient between 1-octanol and water, two
fluids that hardly mix. The partition coefficient is the ratio of concentrations in
water and in octanol when a substance is added to an octanol-water mixture and
hence indicates the hydrophobicity of a compound. Thus, we classified a metabolite
as hydrophobic if it is more hydrophobic than 1-octanol, and as hydrophilic
otherwise (Supplementary Data 1).

The rsIDs or chromosome-base pair positions of the 49,231 unique SNPs were
reported by different genome builds or dbSNP maps63, therefore we lifted all SNPs
to HG19 build 3764, after which 43,830 unique SNPs remained (Supplementary
Fig. 1; Supplementary Data 1). All biallelic metabolite SNPs were extracted from
our 1000GP3 data, which excluded 295 triallelic SNPs, and 4256 SNPs that could
not be retrieved from 1000GP3. Next, MAF > 1% (2067 SNPs removed), R2 > 0.70
(2002 SNPs) and HWE p < 10−4 (72 SNPs) filtering was performed, resulting in
35,138 metabolite SNPs for NTR participants (Supplementary Fig. 1). Next, we

created two super class-specific lists of metabolite loci and two not-superclass lists
of metabolite loci. To create a list of loci associated with the 652 unique metabolites
classified as lipids and lipid-like molecules (e.g., lipids), we clumped (PLINK
version 1.9) all 112,760 lipid-SNP associations using an LD-threshold (r2) of 0.10 in
a 500 kb radius in 2500 unrelated individuals (Supplementary Fig. 1). Clumping
identified 482 lead SNPs, or loci for lipids. An additional 12,169 SNPs were
identified as LD-proxies for the lipid-loci (Supplementary Fig. 1). To obtain the
not-superclass list of lipid loci the 12,651 lipid loci and proxies were removed from
the list of all metabolite-SNP associations and the resulting list was clumped to
obtain the 598 non-superclass loci (Supplementary Fig. 1). The same clumping
procedure was applied to the 26,352 organic acid-SNP associations, identifying 398
organic acids loci, 10,781 organic acid LD-proxies, and 687 non-superclass loci
(Supplementary Fig. 1).

Construction of genetic relationship matrices. In total six weighted GRMs were
constructed, which were corrected for uneven and long-range LD between the
SNPs (LDAK version 4.926,27). In Supplementary Note 3, the use of weighted
versus unweighted GRMs is compared using simulations. Two of the GRMs used
the cross-platform imputed dataset as backbone and the other four GRMs were
based on SNPs extracted from the 1000GP3 imputed data. Before calculating the
first GRM, the autosomal SNPs of the cross-platform imputed dataset were filtered
on MAF (<1%) and all lipid and organic acid loci, their LD-proxies and 50 kb
surrounding both types of SNPs were removed (see curation of metabolite loci;
Supplementary Fig. 1). The LDAK GRM was created after removal of the 50 kb
surrounding the lipid and organic acid loci and their LD-proxies (as obtained by
the clumping procedure as described above) and included 434,216 SNPs (Sup-
plementary Fig. 1). The V(G1) variance component in the GREML analyses is
based on this GRM (see heritability analyses; Fig. 1). The V(G2) variance com-
ponent in the GREML analyses is based on the LDAK GRM including all auto-
somal SNPs with a MAF greater than 1% included on the cross-platform imputed
dataset (447,794 SNPs), where ancestry outliers were removed, and genome sharing
was set to zero for all individual pairs sharing less than 0.05 of their genome19

(Fig. 1). Depending on the metabolite the V(G3) variance component in the
GREML analyses was either based on an LDAK GRM of the 1000GP3 extracted
lipid loci (479 SNPs) or the organic acid loci (397 SNPs), as obtained after the
clumping procedure as described above (Supplementary Fig. 1; Fig. 1). Finally,
depending on the metabolite either the not-lipid LDAK GRM (596 SNPs) or the
not-organic acid LDAK GRM (683 SNPs) provided the V(G4) variance component
in the GREML analyses (Supplementary Fig. 1; Fig. 1). The not-class metabolite
loci on which the LDAK GRMs were build were obtained by the clumping pro-
cedure as described above (Supplementary Fig. 1). Supplementary Data 1 indicates
for each listed SNP if it was included in any of the class-specific or not-class
LDAK GRMs.

Heritability analyses. Mixed linear models19, implemented in the GCTA software
package (version 1.91.7)18, were applied to compare three models including a
variable number of covariates. Supplementary Table 5 gives the three different
models, full descriptions of the covariates and model comparison have been given
in Supplementary Note 4. The most parsimonious model was chosen for further
analyses (full results in Supplementary Table 6). This final model included the first
ten genetic PCs for the Dutch population, genotyping chip, sex, and age at blood
draw as covariates. For metabolites of the Nightingale Health 1H-NMR and Bio-
crates platform, measurement batch was included as covariate.

The final four-variance component model, including four GRMs, allows for the
estimation of the proportion of variation explained by superclass-specific
significant metabolite loci and non-superclass significant metabolite loci. The first
two-variance components in the four-variance component model (Fig. 1), V(G1)
and V(G2) allow for the estimation of the additive genetic variance effects captured
by genome-wide SNPs (h2g) and the additive genetic effects associated with
pedigree (h2ped)19,65, and V(G3) and V(G4) capture the additive genetic effect
associated with class-specific (h2Class-hits) and not-class (h2Notclass-hits) metabolite
loci. Based on the four-variance component model, three additional heritability
estimates can be calculated: the total variance explained by significant metabolite

loci (h2Metabolite-hits) consists of the sum of VðG3Þ
Vp and VðG4Þ

Vp , where Vp is the

phenotypic variance, h2SNP is defined as the sum of VðG1Þ
Vp , VðG3ÞVp and VðG4Þ

Vp , and the

total variance explained (h2total) is defined as the sum of VðG1ÞVp ,VðG2ÞVp , VðG3ÞVp , and VðG4Þ
Vp

(Fig. 1). We note that the total variance explained by genetic factors may also
include influences of the shared environment, dominance and epistasis, which may
result in upward bias of the h2total estimates19,20. This bias is expected to arise by
the presence of closely related participants, who may share these effects, in addition
to the additive genetic effects. To calculate the standard errors (s.e.’s) for the
composite variance estimates, we have randomly sampled 10,000 new variances
from the parameter variance-covariance matrices of the V(G1), V(G3), and V(G4)
GRMs for each metabolite. Random sampling was performed in R by creating
10,000 multivariate normal distributions (mvrnorm function in MASS package
version 7.3-5066) based on the original means and variance/covariance matrices.
The s.e.’s of the specific ratio of interest were then based on the standard deviation
of the ratio of interest across 10,000 samples. The four-variance component models
included variance components that were not constrained to be positive, thus
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allowing for negative h2SNP and h2Metabolite-hits estimates. All four-variance
component models applied the --reml-bendV flag where necessary to invert the
variance-covariance matrix V if V was not positive definite, which may occur when
variance components are negative67. Finally, we calculated the log likelihood of a
reduced model with either V(G3), V(G4), or both dropped from the full model and
calculated the LRT and p value (Supplementary Data 3).

Mixed-effect meta-regression analyses. To investigate differences in heritability
estimates among metabolites of different classes we applied mixed-effect meta-
regression models as implemented in the metafor package (version 2.0-0) in R
(version 3.5.1)68. Here, we tested for the moderation of heritability estimates by
metabolite class and metabolomics platform on all 361 successfully analyzed
metabolites. We included a matrix combining the phenotypic correlations (Sup-
plementary Data 10) and the sample overlap (Supplementary Data 9) between the
metabolites as random factor to correct for dependence among the metabolites and
participants. This matrix includes the sample size of the metabolite on the diagonal,

with the off-diagonal computed by
N1;2
ffiffiffiffiffiffiffiffiffi

n1�n2
p � r (Supplementary Data 11), where N1,2

is the sample overlap between the metabolites, n1 is the sample size of metabolite
one, n2 is the sample size of metabolite two and r is the phenotypic (Spearman’s
rho) correlation between the metabolites. In all mixed-effect meta-regression
analyses we obtained the robust estimates based on a sandwich-type estimator,
clustered by the metabolites included in the models to correct for the sample
overlap among the different metabolites69. First, we used multivariate mixed-effect
meta-regression models to simultaneously estimate the effect of metabolite class
and metabolomics platform on the h2total, h2SNP, and the h2Metabolite-hits, as well as
the h2Class-hits and h2Notclass-hits estimates. Subsequently, to separately assess the
effect of the number of carbon atoms or double bonds in the fatty acyls chains of
phosphatidylcholines and TGs univariate models were fitted, as follow-up. To
account for multiple testing the p-values were adjusted with the with the FDR70

using the p.adjust function in R. Multiple testing correction was done separately for
the univariate and the multivariate models.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The curated list of all published metabolite-SNP associations is included in
Supplementary Data 1 and is publicly available through the BBMRI—omics atlas (http://
bbmri.researchlumc.nl/atlas/#data). All information on the metabolites in this study are
in Supplementary Data 2; with full summary statistics for the four-variance component
models included in Supplementary Data 3. The Nightingale Health metabolomics data
may be requested through BBMRI-NL (https://www.bbmri.nl/Omics-metabolomics). All
(other) data may be accessed, upon approval of the data access committee, through the
NTR (ntr.fgb@vu.nl).
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