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Mexico (UNAM), Mexico

Abstract

Adaptive Sliding Mode Control (ASMC) aims to adapt the switching gain in such a way to cope with possibly unknown
uncertainty. In state-of-the-art ASMC methods, a priori boundedness of the uncertainty is crucial to ensure boundedness for
the switching gain and uniformly ultimately boundedness. A priori bounded uncertainty might impose a priori bounds on the
system state before obtaining closed-loop stability. A design removing this assumption is still missing in literature. A positive
answer to this quest is given by this note where a novel ASMC methodology is proposed which does not require a priori
bounded uncertainty. An illustrative example is presented to highlight the main features of the approach, after which a general
class of Euler-Lagrange systems is taken as a case study to show the applicability of the proposed design.

Key words: Adaptive sliding mode; Euler-Lagrange systems; Switching gain; Uncertainty.

1 Introduction

A design challenge in sliding mode control is to tackle
uncertainties in the system to be controlled without
prior knowledge about them. The pursuit of this ob-
jective has led to several adaptive sliding mode control
(ASMC) methods, where the switching gain is adapted
in such a way to cope with possibly unknown uncer-
tainty. One possibility for adaptation is to increase
monotonically the switching gain [1–4]. However, as
this approach might lead to high gain [5], alternative
ASMC methods have been proposed, that can be catego-
rized into two families: (i) increasing-decreasing ASMC
([5–7]); (ii) equivalent control ASMC ([8–10]). Note
that most ASMC designs assume either the uncertainty
([1–5, 7, 10]) or its time-derivative ([6, 8, 9]) to be upper
bounded by a constant a priori. When the uncertainty
has explicit dependency on the system states, such prior
constant upper bound might be very restrictive because
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it requires the states to be upper bounded a priori be-
fore obtaining system stability. An example illustrating
the consequences of such restriction is provided below:

1.1 Illustrative Example

Consider the following scalar system

q̇(t) = −cq(t) + τ(t) + d(q, t), (1)

where c > 0 is possibly unknown, τ is the control in-
put and d denotes combination of state-dependent un-
modelled dynamics and time-dependent bounded distur-
bance. For a choice of sliding variable s(q, t), we have

ṡ =
∂s

∂t
+
∂s

∂q
q̇ =

∂s

∂t
+
∂s

∂q
(−cq + d)︸ ︷︷ ︸

a(q,t)

+
∂s

∂q︸︷︷︸
b(q,t)

τ, (2)

where a(q, t) can be referred to as “uncertainty”, as
it contains unknown dynamics and disturbances stem-
ming from c and d. Let us now consider an increasing-
decreasing ASMC law as proposed in [5]:

τ(t) = −K sgn(s(t)), (3a)

K̇(t) =

{
K̄|s(t)| sgn(|s(t)| − ε) if K(t) ≥ µ
µ if K(t) < µ

, (3b)
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whereK is the switching gain and ε, µ and K̄ are positive
user-defined gains. The following stability result can be
established for (1) and (3):

Lemma 1 (rephrased from [5]) Under the assump-
tions that ∃ā, b̄ ∈ R+ such that a(q, t) ≤ ā, b(q, t) ≤ b̄,
∃K∗ = ā/b̄ such that K(t) ≤ K∗ ∀t > 0 and there exists
finite time tf such that |s(t)| ≤ δ1 for t ≥ tf with

δ1 =

√
ε2 +

ā2

K̄b̄
. (4)

Remark 1 (A priori boundedness) Lemma 1 relies
on a priori boundedness of the uncertainty, which allows
to ensure boundedness of the switching gain and of the
sliding variable. Similar a priori assumptions on the un-
certainty ([1–5,7,10]) or its time-derivative ([6,8,9]) ap-
pear in other ASMC methods. When the assumption of a
priori bound is violated, unboundedness of the switching
gains cannot be excluded, as clarified below.

Let us simulate the closed loop (1) and (3) with c = 1,
ε = 1, µ = 0.1, K̄ = 1, q(0) = 0.5 and s(t) = q(t) giving

ṡ(t) = (−cq(t) + d(q, t))︸ ︷︷ ︸
a(q,t)

+τ(t), (5)

and b(q, t) = 1 from (2). We consider different scenarios,
with state-independent and state-dependent d

(i) d(t) = 0.05 sin(0.05t), K(0)=1,
(ii) d(q, t) = 2.5q + 0.05 sin(0.05t), K(0)=1,
(iii) d(q, t)= 3q + 0.05 sin(0.05t),K(0)=1 & K(0)=1.3.

Fig. 1 shows that as the state-dependent term of d gets
larger, the switching gain gets higher and higher to sta-
bilize the system (cf. scenarios (i)-(ii)). Eventually, if
the initial condition K(0) is not high enough, instability
might arise (cf. scenario (iii)). The value K(0) for which
the system can be stabilized depends on d(q, t), and it is
thus unknown. These problems happen because the as-
sumptions of Lemma 1 are violated, which provides us
with the motivation to look for alternative approaches.

2 A Candidate Solution

For a state-dependent structure of d, let us consider the
state-dependent upper bound

|a(q, t)| ≤ K∗0 +K∗1 |q|, ∀q,∀t ≥ 0 (6)

with unknown K∗0 ,K
∗
1 ∈ R+ (note that (6) does not

impose a priori bounds on the uncertainty and it covers
all scenarios of Section 1.1). Based on the structure of
(6), the following control law is proposed in place of (3)

τ(t) = −Λs(t)− ρ(t) sgn(s(t)) (7)

ρ(t) = K̂0(t) + K̂1(t)|q(t)|, (8)
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Figure 1. Performance and gain evolution of control law (3)
for various scenarios.

with Λ > 0 and where K̂i(t) can be regarded as the
counterpart of K(t) in (3b), adapted by

˙̂
K0(t) = |s(t)| − α0K̂0(t),

˙̂
K1(t) = |s(t)||q(t)| − α1K̂1(t), (9a)

with K̂i(0) > 0, αi > 0, i = 0, 1. (9b)

We simulate system (1) and the controller (7)-(9) with
Λ = 2, αi = 1.1 and with same system parameters and
disturbances as in Section 1.1. To make the initial con-
ditions of (9a) consistent with that of (3b), we initialize

K̂0(0) = K(0) and select a small K̂1(0) = 0.01. Fig. 2
shows that the performance of (3) is better in scenario
(i), but the proposed design provides better performance
as the state-dependency in d gets larger (cf. scenarios (ii)
and (iii)). In addition, no sufficiently high initial gain is
required in the proposed controller to achieve stability.

Remark 2 (Monotonically increasing gains) It is
to be observed that when ε, µ → 0 in (3b) or αi → 0 in
(9a) (implying Λ→ 0 from (9b)) both adaptive laws yield
monotonically increasing gains [1–4]. The crucial dif-
ference is that the law (3b) departs from such high-gain
adaptive laws in a way to handle only a priori bounded
uncertainties, whereas the proposed law in (9a) can han-
dle state-dependent uncertainties without a priori bound.

In the following, the closed-loop stability is analysed via
the notion of Globally Uniformly Ultimately Bounded
(GUUB) solutions [11, Definition 4.6 (Sect. 4.8)]).
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Figure 2. Performance and gain evolution of the proposed
control law for various scenarios.

3 Stability Analysis of the Candidate Solution

Theorem 1 The closed-loop trajectories in (5) employ-
ing the control laws (7) and (8) with adaptive law (9),
are GUUB where an ultimate bound ω on s is given by

ω =
√

2δ̄/(%− κ̄), (10)

with δ̄ , (1/2)
∑1
i=0 αiK

∗
i
2, % , 2mini{Λ, αi/2}, 0 <

κ̄ < %.

Proof. The laws (9a) with initial condition in (9b) give

K̂i(t) = exp(−αit)K̂i(0)︸ ︷︷ ︸
≥0

+

∫ t

0

exp(−αi(t− τ))(|s(τ)||q(τ)|i)dτ︸ ︷︷ ︸
≥0

(11)

⇒ K̂i(t) ≥ 0, i = 0, 1, ∀t ≥ 0. (12)

Stability is analyzed via the Lyapunov function (for com-
pactness, we omit time dependency when unambiguous)

V =
1

2
s2 +

1∑
i=0

1

2
(K̂i −K∗i )2. (13)

Utilizing (5), the upper bound (6) and the control laws
(7)-(8), the time derivative of (13) yields

V̇ = s(−Λs− ρ sgn(s) + a) +

1∑
i=0

(K̂i −K∗i )
˙̂
Ki

≤ −Λs2 −
1∑
i=0

{(K̂i −K∗i )(|q|i|s| − ˙̂
Ki)}, (14)

where we have used the fact that K̂i ≥ 0 from (12) and
thus ρ ≥ 0. The following equality holds

(K̂i −K∗i )
˙̂
Ki = (K̂i −K∗i )(|s||q|i − αiK̂i)

= (K̂i −K∗i )|q|i|s|+ αiK̂iK
∗
i − αiK̂2

i . (15)

Substituting (15) in (14) yields

V̇ ≤− Λs2 +

1∑
i=0

(
αiK̂iK

∗
i − αiK̂2

i

)
≤−Λs2 −

1∑
i=0

(
αi
2

(K̂i −K∗i )2 − αiK
∗
i
2

2

)
(16)

in view of the fact that

K̂iK
∗
i − K̂2

i =−

(
K̂i√

2
− K∗i√

2

)2

− K̂2
i

2
+
K∗i

2

2

≤−

(
K̂i√

2
− K∗i√

2

)2

+
K∗i

2

2
. (17)

Using the definition of Lyapunov function (13), the con-
dition (16) is further simplified to

V̇ ≤ −%V +
1

2

1∑
i=0

αiK
∗
i
2, (18)

where % , 2mini{Λ, αi/2} > 0 by design. Using 0 <

κ̄ < %, V̇ in (18) simplifies to

V̇ ≤− κ̄V − (%− κ̄)V + δ̄, (19)

where δ̄ , (1/2)
∑1
i=0 αiK

∗
i
2. Further, define a scalar

B̄ , δ̄/(%− κ̄). It can be seen that V̇ (t) ≤ −κ̄V (t) when
V (t) ≥ B̄ so that

V ≤ max
{
V (0), B̄

}
, ∀t ≥ 0, (20)

and the Lyapunov function enters in finite time inside
the ball defined by B̄. The definition of the Lyapunov
function (13) yields V ≥ (1/2)|s|2 from which we have
the ultimate bound (10) which is global and uniform as
it is independent of initial conditions. �
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Remark 3 (A posteriori boundedness) Compared
to [1–10], no a priori bounded assumption is imposed
on the system dynamics or states: state boundedness is
obtained a posteriori as a result of stability analysis.

The control laws (7)-(9), proposed for an academic ex-
ample, are now shown to find application in a wide range
of real-life systems modelled by fully-actuated Euler-
Lagrange (EL) dynamics [12]. The following notations
will be used: sgn(s) = [sgn(s1), · · · , sgn(sn)] for s =
[s1, · · · , sn]; ||(·)|| and λmin(·) denote 1-norm and mini-
mum eigenvalue of (·), respectively.

4 Application to Euler-Lagrange Systems

Consider the Euler-Lagrange (EL) dynamics

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t)+

G(q(t)) + F(q̇(t)) + d(t) = τ (t), (21)

where q, q̇ ∈ Rn are the system states; M(q) ∈ Rn×n
is the mass/inertia matrix; C(q, q̇) ∈ Rn×n denotes the
Coriolis, centripetal terms; G(q) ∈ Rn denotes the grav-
ity vector; F(q̇) ∈ Rn represents the vector of damping
and friction forces; d(t) ∈ Rn denotes an external dis-
turbance and τ ∈ Rn is the generalized control input.

For most EL systems of practical interest, (21) presents
a few interesting properties (cf. [12, Sect. 9.5]), which are
later exploited for control design and stability analysis:

Property 1: ∃c, g, f , d ∈ R+ such that ||C(q, q̇)|| ≤
c||q̇||, ||G(q)|| ≤ g, ||F(q̇)|| ≤ f ||q̇|| and ||d(t)|| ≤ d,
∀q, q̇, ∀t ≥ 0.
Property 2: The matrix M(q) is symmetric and uni-
formly positive definite in q, i.e. ∃m,m ∈ R+ such that

0 < mI ≤M(q) ≤ mI. (22)

Property 3: The matrix (Ṁ(q)−2C(q, q̇)) is skew sym-

metric, i.e., for any non-zero vector z, we have zT (Ṁ(q)-
2C(q, q̇))z = 0.

Remark 4 (State-dependent Uncertainty) It is
considered that M,C,F,G,d and their corresponding
bounds m,m, c, g, f , d are unknown, thus resulting in
state-dependent uncertainty in line with Sect. 1.1.

Let us consider the tracking problem for desired trajec-
tories satisfying qd, q̇d, q̈d ∈ L∞. Let e(t) , q(t)−qd(t)
be the tracking error. We define a sliding variable s as

s(t) , ė(t) + Φe(t), (23)

where Φ ∈ Rn×n is positive definite. In the following,
let us omit variable dependency for compactness. Multi-

plying the derivative of (23) by M and using (21) yields

Mṡ = M(q̈− q̈d + Φė) = τ −Cs +ϕ, (24)

where ϕ , −(Cq̇ + G + F + d + Mq̈d −MΦė − Cs)
represents the overall uncertainty. Using (23) and Prop-
erties 1 and 2 we have

||ϕ|| ≤ c||q̇||2 + g + f ||q̇||+ d+m(||q̈d||+ ||Φ||||ė||)
+ c||q̇||(||ė||+ ||Φ||||q||). (25)

Further, let us define ξ = [eT ėT ]T . Then, using inequal-
ities ||ξ|| ≥ ||e||, ||ξ|| ≥ ||ė||, boundedness of the desired
trajectories, and substituting q̇ = ė+ q̇d into (25) yields

||ϕ|| ≤ K∗0 +K∗1 ||ξ||+K∗2 ||ξ||2, (26)

where K∗0 , {c||q̇d||2 +g+f ||q̇d||+d+m||q̈d||}, K∗1 ,
{c||q̇d||(3+||Φ||)+f+m||Φ||},K∗2 , c||q̇d||(2+||Φ||) are
unknown finite scalars. Hence, a state-dependent upper
bound structure naturally occurs for EL systems.

Problem: Design an adaptive sliding mode control
framework for EL system (21) requiring (i) no knowl-
edge of the system dynamics terms in line with Remark
4; (ii) no a priori constant upper bound on the states.

4.1 Controller Design

An answer to the problem is constructed. Based on the
upper bound structure (26), we propose the control law

τ (t) = −Λs(t)− ρ(t) sgn(s(t)), (27)

ρ(t) = K̂0(t) + K̂1(t)||ξ(t)||+ K̂2(t)||ξ(t)||2, (28)

where Λ is a positive definite user-defined matrix. The
gains K̂i are adapted via

˙̂
Ki(t) = ||s(t)||||ξ(t)||i − αiK̂i(t), (29a)

with K̂i(0) > 0, αi > 0 (29b)

where αi, ν ∈ R+, i = 0, 1, 2 are design scalars.

4.2 Stability Analysis

Theorem 2 Under Properties 1-3, the closed-loop tra-
jectories in (24) employing the control laws (27) and (28)
with adaptive law (29), are GUUB with an ultimate bound
ω on s given by 1

ω =

√
n
∑2
i=0 αiK

∗
i
2

m(%− κ)
, (30)

1 For the sake of uniformity, the ultimate bound is expressed
in the 1-norm using the property ||s||2 ≤ ||s||1 ≤

√
n||s||2;

similar analysis, albeit a different bound, can be carried out
in the 2-norm or other norms.
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where % , mini{λmin(Λ)/n, αi/2}
max{m/2, 1/2} and 0 < κ < %.

Proof. Note that the laws (29a) with initial condition
in (29b) give

K̂i(t) = exp(−αit)K̂i(0)︸ ︷︷ ︸
≥0

+

∫ t

0

exp(−αi(t− τ))(||s(τ)||||ξ(τ)||i)dτ︸ ︷︷ ︸
≥0

(31)

⇒ K̂i(t) ≥ 0 ∀t ≥ 0. (32)

Closed-loop stability is analyzed using the Lyapunov
function candidate:

V =
1

2
sTMs +

2∑
i=0

1

2
(K̂i −K∗i )2. (33)

Using (24) and (27), the time derivative of (33) yields

V̇ = sTMṡ +
1

2
sTṀs +

2∑
i=0

(K̂i −K∗i )
˙̂
Ki

= sT (τ −Cs +ϕ) +
1

2
sTṀs +

2∑
i=0

(K̂i −K∗i )
˙̂
Ki

= sT (−Λs− ρ sgn(s) +ϕ)

+
1

2
sT (Ṁ− 2C)s +

2∑
i=0

(K̂i −K∗i )
˙̂
Ki (34)

Property 3 implies sT (Ṁ − 2C)s = 0. Then, utilizing
the upper bound structure (26) and the fact that ρ ≥ 0

from (32), V̇ gets simplified to

V̇ = sT (−Λs− ρ sgn(s) +ϕ) +

2∑
i=0

(K̂i −K∗i )
˙̂
Ki

≤−sTΛs−
2∑
i=0

{(K̂i−K∗i )(||ξ||i||s||− ˙̂
Ki)}. (35)

Using (29a) we have

(K̂i −K∗i )
˙̂
Ki = ||s||(K̂i −K∗i )||ξ||i + αiK̂iK

∗
i − αiK̂2

i .
(36)

Substituting (36) in (35) yields

V̇ ≤ −λmin(Λ)||s||2

n
+

2∑
i=0

(
αiK̂iK

∗
i − αiK̂2

i

)
≤−λmin(Λ)||s||2

n
−

2∑
i=0

(
αi(K̂i −K∗i )2

2
− αiK

∗
i
2

2

)
(37)

where the last inequality arises via using (17). Further,
the definition of Lyapunov function (33) yields

V ≤ m

2
||s||2 +

2∑
i=0

1

2
(K̂i −K∗i )2. (38)

Using (38), the condition (37) is further simplified to

V̇ ≤− %V +
1

2

2∑
i=0

αiK
∗
i
2, (39)

where % , mini{λmin(Λ)/n, αi/2}
max{m/2, 1/2} > 0 by design (cf. (27),

(29b)). Defining a scalar 0 < κ < %, (39) simplifies to

V̇ ≤− κV − (%− κ)V +
1

2

2∑
i=0

αiK
∗
i
2, (40)

Defining a scalar B ,
∑2

i=0
αiK

∗
i
2

2(%−κ) , and following similar

lines of proof in Theorem 1, we have

V ≤ max {V (0),B} , ∀t ≥ 0, (41)

and the Lyapunov function enters in finite time inside
the ball defined by B. The definition of the Lyapunov
function (33) yields V ≥ (m/(2n))||s||2, leading to the
ultimate bound (30) on s which is global and uniform as
it is independent of initial conditions. �
Remark 5 Control laws (27)-(29) reveal that the pro-
posed design does not require any knowledge of the sys-
tems dynamics parameters. This is in contrast with re-
cent approaches for EL systems which require nominal
knowledge of the mass matrix and of its upper bound m
[6, 13].

5 Conclusions and Outlook

This note addresses the long-standing challenge of adap-
tive sliding mode design when system uncertainties can-
not be upper bounded by a constant a priori. An impor-
tant future work, in line with [14], could be to extend
the proposed method via output feedback.
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[4] D. Y. Negrete-Chávez and J. A. Moreno, “Second-order
sliding mode output feedback controller with adaptation,”
International Journal of Adaptive Control and Signal
Processing, vol. 30, no. 8-10, pp. 1523–1543, 2016.

[5] F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak,
“New methodologies for adaptive sliding mode control,”
International Journal of Control, vol. 83, no. 9, pp. 1907–
1919, 2010.

[6] Y. Shtessel, M. Taleb, and F. Plestan, “A novel adaptive-
gain supertwisting sliding mode controller: Methodology and
application,” Automatica, vol. 48, no. 5, pp. 759–769, 2012.

[7] L. Zhang, H. Obeid, and S. Laghrouche, “Adaptive twisting
controller for linear induction motor considering dynamic end
effects,” in 2018 15th International Workshop on Variable
Structure Systems (VSS). IEEE, 2018, pp. 19–24.

[8] C. Edwards and Y. B. Shtessel, “Adaptive continuous higher
order sliding mode control,” Automatica, vol. 65, pp. 183–
190, 2016.

[9] V. I. Utkin and A. S. Poznyak, “Adaptive sliding mode
control with application to super-twist algorithm: Equivalent
control method,” Automatica, vol. 49, no. 1, pp. 39–47, 2013.

[10] T. R. Oliveira, J. P. V. Cunha, and L. Hsu, “Adaptive
sliding mode control for disturbances with unknown bounds,”
in 2016 14th International Workshop on Variable Structure
Systems (VSS). IEEE, 2016, pp. 59–64.

[11] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice hall Upper
Saddle River, NJ, 2002.

[12] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot
dynamics and control. John Wiley & Sons, 2008.

[13] S. Roy, S. B. Roy, and I. N. Kar, “A new design methodology
of adaptive sliding mode control for a class of nonlinear
systems with state dependent uncertainty bound,” in 2018
15th International Workshop on Variable Structure Systems
(VSS). IEEE, 2018, pp. 414–419.

[14] V. H. P. Rodrigues and T. R. Oliveira, “Global adaptive hosm
differentiators via monitoring functions and hybrid state-
norm observers for output feedback,” International Journal
of Control, vol. 91, no. 9, pp. 2060–2072, 2018.

6


