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Velocity-independent Marchenko focusing in time- and depth-imaging
domains for media with mild lateral heterogeneity

Yanadet Sripanich1, Ivan Vasconcelos2, and Kees Wapenaar3

ABSTRACT

The Marchenko method retrieves Green’s functions between
the acquisition surface and any arbitrary point in the medium.
The process generally involves solving an inversion starting
with an initial focusing function, e.g., a direct-wave Green’s
function from the desired subsurface position, typically ob-
tained using an approximate velocity model. We have formu-
lated the Marchenko method in the time-imaging domain.
In that domain, we recognize that the traveltime of the di-
rect-wave Green’s function is related to the Cheop’s traveltime
pyramid commonly used in time-domain processing, which
in turn can be readily obtained from the local slopes of the
common-midpoint gathers. This observation allows us to

substitute the velocity-model-based initial focusing operator
with that from a data-driven slope estimation process. More-
over, we found that working in the time-imaging domain al-
lows for the specification of the desired subsurface position
in terms of vertical time, which is connected to the Cartesian
depth position via the time-to-depth conversion. Our results
suggest that the prior velocity model is only required when
specifying the position in depth, but this requirement can be
circumvented by making use of the time-imaging domain
within its usual assumptions (e.g., mild lateral heterogeneity).
Provided that those assumptions are satisfied, the estimated
Green’s functions from the proposed method have comparable
quality to those obtained with the knowledge of a prior veloc-
ity model.

INTRODUCTION

Green’s functions between the surface and any subsurface point
are the main ingredient in seismic redatuming and imaging.
The Marchenko method is a framework to obtain such information
using solely the reflection data at the surface and an initial estimate
of the direct-wave Green’s function from the desired subsurface
position (Broggini and Snieder, 2012; Broggini et al., 2012; da
Costa Filho et al., 2014; Slob et al., 2014; Wapenaar et al.,
2014a, 2014b, 2017; Ravasi, 2017; Singh et al., 2017). Given a
prior approximate (smooth) velocity model of the subsurface in
Cartesian coordinates, one can specify a subsurface position
and obtain the direct-wave Green’s function from this position
to the surface using conventional forward extrapolation (Wapenaar

et al., 2014b; Thorbecke et al., 2017). An alternative strategy in-
volves a separate inversion for the direct-wave Green’s function
from the common focal point technology based on the same start-
ing velocity model (Berkhout, 1997; Thorbecke, 1997). Therefore,
much like conventional seismic migration, a caveat to the current
Marchenko imaging implementation is the requirement of a priori
velocity knowledge.
Conventional seismic imaging can be accomplished in either the

time or the depth domain. The former generally performs with
higher computational efficiency but becomes less accurate than
the latter when dealing with geologically complex areas such
as subsalt regions (Yilmaz, 2001). The shortcomings of time-
imaging methods are largely due to the following (Fomel, 2013,
2014):
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1) Approximate direct-wave Green’s functions are used for imag-
ing, which typically depend on hyperbolic or nonhyperbolic
traveltime approximations.

2) Each time-domain image point is associated with its own
approximate effective velocity under the assumption of straight-
ray geometry relative to the surface.

3) When lateral heterogeneity is present, the final images are gen-
erated in distorted coordinates defined by image rays (Hubral,
1977) as shown in Figure 1.

However, in areas with moderately complex geology where such
assumptions are approximately valid, we can turn these limitations
into advantages. In particular, recent research on time-domain im-
aging has led to an alternative data-driven time-imaging workflow
for improved efficiency and accuracy with local event slopes from
common-midpoint (CMP) gathers instead of velocity (Fomel,
2007). This development leads to an opportunity of relying on these
velocity-independent data-driven techniques from time-domain im-
aging to estimate the direct-wave Green’s functions that can be used
in a new form of the Marchenko method.
In this paper, we first study the Marchenko method in the time-

imaging domain and establish relationships between the focusing
functions obtained from the Marchenko methods in the time-
and depth-imaging domains. Making use of the slope-based
time-domain processing workflow, we subsequently propose a
scheme to obtain the direct-wave Green’s function from the desired
subsurface position on a reflector to the surface. We show that the
newly estimated direct-wave Green’s function can be used in the
Marchenko method and leads to comparable results to those that
rely on the prior knowledge of a velocity model. We rely on
two synthetic models with and without lateral heterogeneity and
a field data set from the North Sea to demonstrate the proposed
approach.

MARCHENKO METHOD IN THE TIME-IMAGING
DOMAIN

Reciprocity theorems on curvilinear surfaces

The key components to deriving the single-sided Green’s func-
tion representations for the Marchenko method are the one-way
reciprocity theorems of convolution and correlation type (Wapenaar
and Grimbergen, 1996; Wapenaar et al., 2014a; van der Neut et al.,

2015). Assuming that the image rays are well defined with no caus-
tics, we first recognize that a constant depth level in the Cartesian
coordinates generally corresponds to a curved level in the time-
imaging domain and vice versa (Figure 2). In other words, the cur-
rent Marchenko method has already been implemented with respect
to a curved level in the time-imaging domain. To show that a con-
verse relationship exists, we need to find the single-sided represen-
tations for a curvilinear level in depth that corresponds to a constant
time surface.
Because the time-imaging domain is defined by image rays (Fig-

ure 1), it represents a special curvilinear coordinate system of the
semiorthogonal type (Sava and Fomel, 2005) due to the orthogon-
ality between the ray direction and the wavefront (Figure 2). In such
curvilinear systems, we denote coordinates along the curved
boundary surfaces as ξ ¼ ðξ1; ξ2; ξ3Þ and assume that there exists a
one-to-one reversible map between the ray coordinates ξ and the
physical Cartesian coordinates. We use ξ in our subsequent deriva-
tion to ensure its generality and will specify the meaning to each
time-domain coordinate ξi in a later section.
The one-way reciprocity theorems for semiorthogonal curvilinear

systems in the Fourier ω domain are given by (Frijlink and Wape-
naar, 2010):

Z
Sa

ðpþ
Ap

−
B − p−

Ap
þ
B Þdξa ¼

Z
Sf

ðpþ
Ap

−
B − p−

Ap
þ
B Þdξf; (1)

Z
Sa

ðpþ
Ap

þ�
B − p−

Ap
−�
B Þdξa ¼

Z
Sf

ðpþ
Ap

þ�
B − p−

Ap
−�
B Þdξf; (2)

where equations 1 and 2 represent the one-way reciprocity theorems
of convolution and correlation type, respectively. Here, p denotes
the flux-normalized wavefields in the frequency domain decom-
posed into upgoing ð−Þ and downgoing ðþÞ constituents with re-
spect to ξ3 at the acquisition surface Sa and the focusing surface Sf .
The superscript � denotes the complex conjugation. The integra-
tions are done along the coordinates ξa and ξf at surfaces Sa
and Sf, which no longer need to represent constant-depth surfaces.
Similar to the current derivation of the Marchenko method, the sub-
scripts A and B denote the two acoustic states — the truncated
medium and the true medium, respectively (Figure 3). Moreover,
the considered volume between Sa and Sf is assumed to have equal
medium parameters in both states and is source free.

Depth coordinates Time coordinates

Surface of variable depth Surface of constant time = image wavefront

Figure 2. The relationship between the variable-depth surface in
Cartesian coordinates and the constant time surface in the time-im-
aging (image-ray) coordinates. The solid arrow lines denote image
rays that originate from the acquisition surface Sa at right angles.
The focusing surface of Sf is chosen as the surface of equal image-
ray traveltime (image wavefront) that gets mapped to a flat surface
in the time-imaging domain.

Image ray

Depth coordinates Time coordinates

Figure 1. The relationship between depth- and time-imaging coor-
dinates. An example image ray originating from xa with an orthogo-
nal slowness vector to the surface is shown. Every point along this
ray is mapped to the same lateral distance in the time domain with a
different traveltime ta.

Q58 Sripanich et al.

D
ow

nl
oa

de
d 

10
/2

3/
19

 to
 1

45
.9

4.
40

.1
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Marchenko equations in image-ray coordinates

We can clearly observe that equations 1 and 2 are similar to the
one-way reciprocity theorems for the case of flat datum levels ex-
cept that the integrations are now done over curvilinear surfaces.
Therefore, we can follow a similar procedure as in the previous
works and derive the single-sided Green’s function representations
(Wapenaar et al., 2014a, 2014b; van der Neut et al., 2015). We first
consider two acoustic states shown in Figure 3 and specify the
pertaining parameters in equations 1 and 2 as follows:

1) State A at Sa:

• pþ
A ¼ δðξa − ξAa Þ representing a point source for a down-

going wavefield just above Sa.
• p−

A ¼ RAðξAa ; ξa;ωÞ representing the reflected response in
the truncated medium from ξa to ξAa .

2) State A at Sf:

• pþ
A ¼ Tðξf; ξAa ;ωÞ representing the transmission re-

sponse from the surface Sa to Sf .
• p−

A ¼ 0 indicating no reflection from below Sf.

3) State B at Sa:

• pþ
B ¼ δðξa − ξBa Þ representing a point source for a down-

going wavefield just above Sa.
• p−

B ¼ RðξBa ; ξa;ωÞ representing the total reflected re-
sponse in the true medium from ξa to ξBa .

4) State B at Sf:

• pþ
B ¼ gþðξf; ξBa ;ωÞ representing the downgoing part at

Sf of the Green’s function between Sa and Sf.
• p−

B ¼ g−ðξf; ξBa ;ωÞ representing the upgoing part at Sf of
the Green’s function between Sa and Sf .

The superscripts in ξAa and ξBa are used to distinguish between the
coordinates at Sa of state A and B. The ξa in the argument of R and
RA is used to denote a general position on Sa. From this point on-
ward, we will also omit the argument ω for conciseness. The above
substitution leads to

RðξBa ; ξAa Þ − RAðξAa ; ξBa Þ ¼
Z
Sf

Tðξf; ξAa Þg−ðξf; ξBa Þdξf (3)

and

δðξBa − ξAa Þ −
Z
Sa

RAðξAa ; ξaÞR�ðξBa ; ξaÞdξa

¼
Z
Sf

Tðξf; ξAa Þgþ�ðξf; ξBa Þdξf: (4)

To retrieve the Green’s function from the two above equations,
we define the focusing function fþ1 as the inverse of transmission T
in the truncated medium (state A) as follows:

δðξf − ξAf Þ ¼
Z
Sa

Tðξf; ξAa Þfþ1 ðξAa ; ξAf ÞdξAa ; (5)

where ξAf denotes the desired focusing position on the surface Sf in
the truncated medium (state A). As a result, fþ1 ðξAa ; ξAf Þ represents a
purpose-built downgoing field that travels from ξAa on the surface Sa
to focus at ξAf on Sf in the truncated medium. We apply the focusing
function (equation 5) to equations 3 and 4, and we integrate over Sa,
which leads to the desired one-sided integral representations:

g−ðξAf ;ξBa Þ ¼
Z
Sa

RðξBa ;ξAa Þfþ1 ðξAa ;ξAf ÞdξAa − f−1 ðξBa ;ξAf Þ; (6)

and

−gþ�ðξAf ; ξBa Þ ¼
Z
Sa

R�ðξBa ; ξaÞf−1 ðξa; ξAf Þdξa − fþ1 ðξBa ; ξAf Þ;

(7)

where we define the reflected response f−1 of the truncated medium
to fþ1 as

f−1 ðξa; ξAf Þ ¼
Z
Sa

RAðξAa ; ξaÞfþ1 ðξAa ; ξAf ÞdξAa : (8)

In other words, f−1 ðξa; ξAf Þ represents the upgoing reflected response
of the truncated medium at ξa on the surface Sa to the propagation
of fþ1 ðξAa ; ξAf Þ that is designed to focus at ξAf on Sf.
From equations 6–8, we can see how different ξ variables in the

single-sided Green’s function representations have emerged. For
example, g−ðξAf ; ξBa Þ corresponds to the Green’s function from ξBa
in the true medium (state B) to the focusing position ξAf defined
in state A according to equation 5. For simplicity, we recast equa-
tions 6 and 7 by switching the notation according to ξBa ¼ ξa, ξAf ¼
ξf and changing the dummy integrating variable to ξ 0

a. This leads to
the following final system of equations in the frequency domain:

Reflection-free

State A State B

Figure 3. The two acoustic states A and B used in the derivation of
the system of Marchenko equations (equation 9). The setup is sim-
ilar to that for the conventional Marchenko derivation in the Car-
tesian coordinates, except that the surfaces Sa and Sf are flat in
some choice of semiorthogonal curvilinear coordinates, which
are the image-ray coordinates in our case. State A is identical to
state B above Sf but has a reflection-free region (homogeneous)
below. The reflection and transmission responses (operators) in
state A are denoted by RA and T, respectively. State B is the true
medium, where the region below Sf can be heterogeneous and
cause upward scattering. The term R denotes the total reflection re-
sponse related to the originally recorded data at the surface Sa. The
desired down- and upgoing Green’s functions at Sf are denoted by
gþ and g−, which can be obtained from solving the Marchenko sys-
tem.
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g−ðξf; ξaÞ ¼
Z
Sa

Rðξa; ξ 0
aÞfþ1 ðξ 0

a; ξfÞdξ 0
a − f−1 ðξa; ξfÞ;

−gþ�ðξf; ξaÞ ¼
Z
Sa

R�ðξa; ξ 0
aÞf−1 ðξ 0

a; ξfÞdξ 0
a − fþ1 ðξa; ξfÞ;

(9)

which has the same integral form as the original single-sided
Green’s function representations in Cartesian depth coordinates, ex-
cept for the integration over the curvilinear boundary Sa. The var-
iables ξa and ξ 0

a are defined on the surface Sa, whereas ξf is defined
at the focusing level Sf . In case that the acquisition surface Sa is flat
at depth x 0

3, we have ξ 0
a ¼ x 0

a ¼ ðx 0
1; x

0
2; x

0
3Þ. A similar reflection re-

sponse R to the constant-depth case can be used, and we can recast
the fully curvilinear system in equation 9 as

g−ðξf; xaÞ ¼
Z
Sa

Rðxa; x 0
aÞfþ1 ðx 0

a; ξfÞdx 0
a − f−1 ðxa; ξfÞ;

−gþ�ðξf; xaÞ ¼
Z
Sa

R�ðxa; x 0
aÞf−1 ðx 0

a; ξfÞdx 0
a − fþ1 ðxa; ξfÞ;

(10)

which has a similar form to the Cartesian-space one-sided represen-
tations of the conventional Marchenko approach (e.g., Wapenaar
et al., 2014b; van der Neut et al., 2015). We do, however, point out
two key points that differentiate this system from its original
counterpart:

• In equation 10, the focusing functions and Green’s functions
retain the conventional Cartesian xa as their (data-related)
surface argument, but the focal-point argument is ξf which
here lies on the curvilinear depth datum Sf connected to a
fixed time-domain datum (Figure 2; more on this
point below).

• As a result, the � superscripts in this theoretical construct
correspond to propagation directions normal to the curvilin-
ear surface local to ξf, meaning that the ideal g� differs in
radiation from their conventional Marchenko counterparts at
some fixed ξf ¼ xf . In practice, whether this radiation dis-
tinction expresses itself on the retrieved fields is entirely de-
pendent on how one chooses to solve the focusing problem
numerically.

Though these are notable differences, it is also very convenient
that in the integral kernels of equation 10, we see the conventional
Cartesian reflection response Rðxa; x 0

aÞ. Because of it, this final
system of coupled Marchenko equations allows us to solve for the
time-domain-coordinate focusing functions from the usual, data-
related, reflection response R, by applying causality constraints
to equation 10 as described by Wapenaar et al. (2014b) and van
der Neut et al. (2015).
Because equation 10 is similar to that in the case of a constant-

depth focusing level, we can argue that the form of the correspond-
ing Marchenko equations remains the same as long as there exists a
transformation between the Cartesian coordinates and some semi-
orthogonal curvilinear coordinates, whose level curve matches the
desired curvilinear datum level. In the case of the time-imaging do-
main, the coordinate transformation is defined by the mapping of
image rays for the time-to-depth conversion (Cameron et al., 2007;

Iversen and Tygel, 2008; Sripanich and Fomel, 2018). In this paper,
we define the image-ray coordinates as ξ1 ¼ x0, ξ2 ¼ y0, and
ξ3 ¼ t0 (Figure 1). The first two coordinates x0 and y0 define the
escape location of the image rays at the acquisition surface Sa and t0
is their one-way traveltime. The curved datum level at depth then
corresponds to an image-wavefront surface tied to some constant
time t0 (Figure 2). Given the same focusing functions at the acquis-
ition surface, the focusing position defined in the time-imaging do-
main (x0, y0, and t0) can be translated to its corresponding Cartesian
position through the same mapping. Equipped with these results, we
can proceed with making use of efficient time-domain techniques to
solve the Marchenko equations and obtain focusing functions asso-
ciated with some specified position in the time-imaging domain.

SLOPE-BASED TIME-DOMAIN PROCESSING

The process of time-domain imaging can be conceptually sum-
marized as shown in Figure 4 (Fowler, 1997). The recorded CMP
data, which are dependent on midpoint m, half-offset h, and time t
are first migrated to zero-offset (xn, tn) through a combination of
normal and dip moveout operations. Poststack time migration sub-
sequently maps the result to (x0, t0) to correct subsurface reflection-
point positions. The entire process constitutes the time-imaging
routine, and it is equivalent to the prestack time migration process
— stacking along the Cheops traveltime pyramid (Claerbout,
1996). Fomel (2007) shows that under the regular assumptions
of hyperbolic traveltime and straight-ray geometry of time imaging,
prestack time migration (mapping) can be done with local event
slopes as follows:

t20 ¼
tph½ðt − hphÞ2 − h2p2

m�2
4ðt − hphÞ2½tph þ hðp2

m − p2
hÞ�

; (11)

x0 ¼ m −
htpm

tph þ hðp2
m − p2

hÞ
; (12)

where t is the two-way reflection traveltime. The terms
pm ¼ ∂t∕∂m and ph ¼ ∂t∕∂h are estimated local event slopes from
the CMP gathers in the midpoint and half-offset directions,
respectively.
From Figure 4, we can deduce that the traveltime of direct-wave

Green’s function from the same subsurface position is represented
by the same value of t0 in this mapping (migration) process.
Consequently, the desired traveltime of the direct-wave Green’s
function from that location is a contour of time t0 of the one-way
traveltime map (equation 11). Therefore, we can summarize the
steps to obtain slope-based direct-wave Green’s function and solve
the Marchenko system as follows:

1) Given the CMP gathers, measure the slopes of primaries using
methods such as plane-wave destruction (Fomel, 2002), which
iteratively solves a partial differential equation that governs a
local plane wave.

2) Generate the traveltime t0ðm; h; tÞ and distance x0ðm; h; tÞmaps
according to equations 11 and 12.

3) Remap the t0 data according to the x0 data to correctly position
the traveltime across the midpoint coordinate and obtain
t0ðx0; h; tÞ.

Q60 Sripanich et al.
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4) Specify a desired focusing position in (x0, t0) and obtain the
traveltime of the direct-wave Green’s function from the corre-
sponding contour of t0ðx0; h; tÞ.

5) Run a hyperbolic regression using picked t0 to ensure a smooth
hyperbolic curve on discretized grids and obtain a best-fitted
velocity.

6) Generate the hyperbolic traveltime curve from the obtained
velocity and convolve it with a zero-phase wavelet.

7) Scale the amplitudes with appropriate geometric spreading fac-
tor for straight-ray geometry to obtain an approximate direct-
wave Green’s function.

8) Use the time-reversed direct-wave Green’s function as the ini-
tial focusing function and solve the time-constrained Marche-
nko system that follows from equation 10 (Wapenaar et al.,
2014b; van der Neut et al., 2015).

EXAMPLES

In this section, we first apply the proposed workflow to two cases
of synthetic horizontally layered and laterally heterogeneous media.
The primary-only CMP gathers to be used for slope estimation are
generated with Kirchhoff modeling based on an accurate two-point
ray tracing scheme (Sripanich and Fomel, 2014), whereas the full

data set with all orders of multiples used in the construction of the
reflection operator R in equation 10 is obtained from finite-differ-
ence modeling. We subsequently show a field-data example from
the North Sea previously studied by Szydlik et al. (2007) and Ravasi
et al. (2015, 2016). In practice, we note that the required CMP gath-
ers for slope estimation can be obtained from the results of prior
demultiple processes using, for example, Radon-based filtering
of multiples. These demultipled gathers are the same inputs that
are generally used in prestack time/depth migrations.

Horizontally layered model

We first consider a horizontally layered model shown in Figure 5
and look at the Green’s function from (0 m, 1000 m) on the third
reflector. The input CMP corresponding to this position is shown in
Figure 6a. Its estimated dip and the associated one-way traveltime
map t0ðx0; h; tÞ generated according to the proposed workflow
are shown in Figure 6b and 6c, respectively. The contour of
t0 ¼ 0.4753 s is chosen in association with the specified point
(0 m, 1000 m), and it is shown in Figure 6c as a dotted-dashed black
line. The contour is subsequently convolved with a choice of zero-

rs m
h h

Figure 4. A schematic summarizing the concept behind prestack
time migration after Fowler (1997).

Figure 5. A horizontally layered model with vertical image rays.
The star denotes the specified focusing position at (0 m,
1000 m) on the third reflector. Sources and receivers are placed
at the surface with lateral spacing of 10 m.

a) b) c) d)

Figure 6. Inputs and products from the slope-based workflow in the horizontally layered model: (a) CMP gather from Kirchhoff modeling,
(b) estimated dip with a plane-wave destruction filter, (c) one-way traveltime map t0ðx0; h; tÞ, and (d) the geometric spreading weight calcu-
lated based on the straight-ray assumption in the time-imaging domain.
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phase wavelet and multiplied by the weight to properly account for
geometric spreading. For simplicity, we express this weight along
the desired traveltime contour as a panel (Figure 6d). The weighting
can then be easily accomplished by a point-wise multiplication to
the panel of the convolved traveltime contour. This weight is deter-
mined from the ratio 1∕

ffiffiffi
r

p
in a 2D medium (or 1∕r in 3D), where r

is the distance from the specified point to different positions on the
surface in the time-imaging domain. The use of this ratio is permis-
sible due to the straight-ray and effective velocity assumptions used
in the time-imaging domain.
The true Green’s function from forward modeling is shown in

Figure 7a overlain by the traveltime prediction (the dotted-dashed
magenta line) of the direct wave using the proposed slope-based
workflow. We use this prediction to generate the initial focusing
function and solve the Marchenko system (equation 10). The result
from the usual velocity-based workflow (van der Neut et al., 2015),
with the initial focusing function generated by numerical wave
propagation in a background velocity model, is shown in Figure 7b
in comparison with that from the proposed slope-based method in
Figure 7c. A comparison between the central traces of the true and
estimated Green’s functions from Figure 7 is shown in Figure 8. We
observe that the result from the slope-based workflow is slightly
inferior due to the assumption of zero-phase wavelet, which leads
to small errors in the predicted coda. That aside, the results are com-
parable in quality indicating the validity of the proposed method.
We also investigate another potential choice of wavelet that corre-
sponds to the characteristic phase behavior of 2D far-field Green’s
functions in the “Discussion” section.

Laterally heterogeneous model

Next, we turn to a laterally heterogeneous model with lateral
heterogeneity (Figure 9). In this example, the image rays are no
longer vertical and the focusing positions in the time- and depth-
imaging domains are related through the mapping defined by image
rays. We consider the Green’s function from (−35 m, 1000 m) on
the third reflector because this is the position at which the image ray
originating from (0 m, 0 m) will pass through. Figure 10 shows the
inputs and intermediate products of the proposed slope-based work-
flow. Note that there is a nonzero dip in the midpoint direction (Fig-
ure 10c). In this example, the contour of t0 ¼ 0.4165 s is chosen.
The final comparison of Green’s functions is shown in Figure 11,
and a comparison of central traces is shown in Figure 12. The results

a)

b)

Figure 8. A comparison in the horizontally layered model of the
central trace of the true Green’s function (blue) and estimated ones
using (a) the true velocity to generate initial focusing function and
(b) that from the proposed slope-based workflow.

Figure 9. A laterally heterogeneous model with bending image
rays. The star denotes the specified focusing position at (−35 m,
1000 m) on the third reflector. Sources and receivers are placed
at the surface with a lateral spacing of 10 m.

a) b) c)Figure 7. A comparison in the horizontally lay-
ered model of the true Green’s function (a) and
estimated ones using the true velocity to generate
initial focusing functions (b) and that from the
proposed slope-based workflow (c). The dotted-
dashed magenta line in (a) denotes the estimated
traveltime of the direct wave using local slopes.
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again are comparable in quality, and similar conclusions can be
drawn.
We emphasize that the focusing position is defined in terms of

(x0, t0) as opposed to (x, z) in the usual Marchenko workflow. To
confirm that the specified focusing (x0, t0) translate to the Cartesian
(x, z) according to the image ray mapping, we back propagate the
computed focusing function, and the result is shown in Figure 13.
The dashed line is vertical, whereas the solid line is the image ray
originating from (0 m, 0 m). We can observe that the response is
now positioned along the image ray and is at the reflector that we
chose to compute our slope for the traveltime prediction in the
first place.

Field-data example from the North Sea

For the last example, we test our proposed approach against an
ocean-bottom cable data set from the North Sea. The reference veloc-
ity model in Cartesian coordinates of this data set is shown in Fig-
ure 14. The receiver line placed at the sea bottom of 92 m depth spans
a length of 6 km (from 3147 to 9098 m) and contains 235 sensors
with an approximate interval of 25 m. The shot interval is 50 m along
the 12 km sail line across the extent of the model. We specify two
focusing points at a shallow position (6000 m, 1306 m) and at a deep

position (6000 m, 2167 m), where we will compare the results of our
approach with those from the velocity-based workflow.
To facilitate the comparison between results from our proposed

approach and those from the previous velocity-based workflow, we
first convert the reference velocity model (Figure 14) from depth to
time according to a 1D-medium assumption. This process is ap-
proximately valid in this case due to the nearly lateral homogeneous
characteristic of the model close to the desired focusing positions
around the midpoint 6000 m. A comparison between the velocity
models before and after this process is shown in Figure 15. We will
use the velocity in Figure 15b to obtain a CMP gather for our slope-
based workflow that in principle, should allow a direct comparison
between our results and those from the velocity-based workflow
in depth.
An example raw CMP gather of this data set at the location

6000 m is shown in Figure 16. To obtain an accurate estimation
of slopes that corresponds to primary reflections, we apply a demul-
tiple process with the use of a hyperbolic Radon transform based on
the converted reference velocity in Figure 15b. This process
amounts to transforming the input raw CMP gather using the hyper-
bolic Radon transform with given reference velocity, selective
windowing of nearly flat events, and inverse transforming these se-
lected data. This requirement of primary-only gathers in our pro-

a) b) c) d)

Figure 10. Inputs and products from the slope-based workflow in the laterally heterogeneous model: (a) CMP gather from Kirchhoff model-
ing, (b) estimated dip in the offset direction, (c) estimated dip in the midpoint direction, and (d) one-way traveltime map t0ðx0; h; tÞ. The
geometric spreading weight can be similarly computed based on the straight-ray assumption as before.

a) b) c) Figure 11. A comparison in the laterally hetero-
geneous model of (a) the true Green’s function,
(b) estimated ones using the true velocity to gen-
erate initial focusing functions, and (c) that from
the proposed slope-based workflow. The dotted-
dashed magenta line in (a) denotes the estimated
traveltime of the direct wave using local slopes.
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posed approach substitutes the previous need of a depth velocity
model in the conventional Marchenko workflow. As described in
the previous section, the slope of primary-only gathers is used to
obtain the initial focusing function, but the reflection operator R
in equation 10 still makes use of the full data set containing all or-

ders of multiples. We will discuss more about this point in the next
section. The resulting demultipled gather at a similar location is
shown in Figure 17 together with the estimated slope and chosen
t0 contours at 0.6 and 1.0 s associated with the two focusing posi-
tions. Figure 18 shows the direct-wave Green’s functions obtained
from the conventional workflow with wave extrapolation in the
reference velocity model (Figure 14) overlain by the traveltime pre-
diction (the dotted-dashed magenta line) using the proposed slope-
based workflow. We can observe a good agreement between the
results from both approaches, which corroborates our proposition.
In our experiment, we observe that the processing step on hyper-
bolic regression plays a crucial role in controlling the final quality
of the traveltime predictions. The number of samples of picked trav-
eltime contours used for the regression must be chosen in accor-
dance with the offset range and the quality of measured slopes
at a large offset. Here, we choose to run a regression in the offset
range of −350 to 350 and −600 to 600 for the shallow and deep
focusing positions, respectively.
Using the obtained traveltime predictions, we follow the pro-

posed workflow and obtain the final estimates of fþ1 , f
−
1 , g

þ, g−

a)

b)

Figure 12. A comparison in the laterally heterogeneous model of
the central trace of the true Green’s function (blue) and estimated
ones using (a) the true velocity to generate the initial focusing func-
tion and (b) that from the proposed slope-based workflow.

Figure 13. The focused response in the laterally heterogeneous
model. Due to the specification of focusing position in the time-im-
aging domain (x0, t0), the focused position lies along the image ray
originating from (0 m, 0 m) (solid) as opposed to the vertical line
(dashed).

Figure 14. Volve migration velocity model with the stars denoting
the chosen focusing positions at (6000 m, 1306 m) and (6000 m,
2167 m). The source positions are denoted by a green box and cover
the entire lateral extent of the model, whereas the receivers are de-
noted by white upside-down triangles.

a) b)

Figure 15. (a) The original velocity in depth at 6000 m and (b) its
corresponding effective velocity expressed in two-way time.
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for the shallow focusing position shown in Figure 19. Their counter-
parts from the conventional velocity-based workflow are shown in
Figure 20. The results appear comparable in quality to similar
prominent events present and no apparent artifacts. To further com-
pare the results, we investigate the difference between Figures 19
and 20 as shown in Figure 21. We can observe that the only differ-
ence in estimated fþ1 and gþ corresponds to the estimate of the di-
rect-wave Green’s function. This is not surprising because we
arbitrarily choose a zero-phase wavelet as an approximate wave-
form in our workflow. However, the estimated f−1 and g− appear
quite different between the results from the two methods. We em-
phasize that this observation does not invalidate our slope-based

workflow because in the Marchenko system (equation 10), as dis-
cussed by van der Neut et al. (2015), all of the physical events in the
upgoing Green’s function g− are retrieved with the correct ampli-
tudes at the first iteration by the action of the reflection operator R
on the initial focusing function (the time-reversed direct-wave
Green’s function), whereas later iterations amount to eliminating
artifacts. However, physical events in the downgoing Green’s func-
tion gþ are updated throughout all the iterations. Therefore, the fact
that we do not observe any difference in the gþ panel apart from the
direct-wave Green’s function, but do observe some small difference
throughout the g− panel — while using the same R in both experi-
ments — is due entirely to the difference in our choice of the di-
rect-wave Green’s function (i.e., the zero-phase waveform). The
absence of any prominent artifacts between both results also sug-
gests that our Marchenko solver is functioning properly. This find-

Figure 16. An example raw CMP gather of the Volve data set at
6000 m.

a) b) c) d)

Figure 17. Inputs and products from the slope-based workflow in the Volve example using the known prior reference velocity model: (a) de-
multipled CMP gather, (b) estimated dip with plane-wave destruction filter, (c) one-way traveltime map t0ðx0; h; tÞ with a contour related the
shallow focusing point (6000 m, 1306 m), and (d) one-way traveltime map with a contour related the deep focusing point (6000 m, 2167 m).
Note the different offset range in (c and d).

a) b)

Figure 18. The direct-wave Green’s functions obtain from wave
extrapolation using the reference velocity model (Figure 14) over-
lain by the traveltime prediction (the dotted-dashed magenta line)
using the proposed slope-based workflow with converted reference
velocity (Figure 27a) for the (a) shallow focusing point and the
(b) deep focusing point.
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a) b) c) d)

Figure 19. Estimated results using the proposed workflow for the shallow focusing position: (a) fþ1 , (b) f
−
1 , (c) g

þ, and (d) g−. Clipping is
adjusted to give a better visualization of the coda.

a) b) c) d)

Figure 20. Estimated results using velocity-based workflow for the shallow focusing position: (a) fþ1 , (b) f
−
1 , (c) g

þ, and (d) g−. Clipping is
adjusted to give a better visualization of the coda.

a) b) c) d)

Figure 21. Difference between the estimated results in Figures 19 and 20 for the shallow focusing position: (a) fþ1 , (b) f
−
1 , (c) g

þ, and (d) g−.
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ing is also supported by a comparison of the central traces of the
estimated f−1 and g− as shown in Figure 22. There, we observe that
the coda events captured by the velocity-based and the proposed
workflows are similar, except for minor amplitude differences
and slight shifts due to the use of different direct-wave Green’s
functions. These relatively small mismatches lead to the errors
shown in the difference panels in Figure 21b and 21d. Similar re-
sults for the deep focusing position are shown in Figures 23, 24, 25,
and 26, from which the same conclusions can be drawn.
Finally, it is important to emphasize that in practice, we do not

have access to such a reference velocity model (Figure 14) and its

corresponding velocity in time (Figures 15b and 27a) at the early
stage of processing. Given raw CMP gathers, we would have to
follow the conventional preprocessing procedure (e.g., surface-con-
sistent correction, deghosting, and demultiple) and obtain primary-
only gathers before implementing the proposed workflow. These
processes may also involve a choice of background velocity trend
that requires quality control. Therefore, a more realistic use of this
data set can be achieved by first picking a background velocity trend
from the velocity analysis (Figure 27b). We subsequently use this
picked velocity in our simple demultiple process with the hyper-
bolic Radon transform. Figure 28 shows the resulting gather
together with the estimated slope and chosen t0 contours associated
with the two focusing positions. The final traveltime predictions
after hyperbolic regression are shown in Figure 29 indicating a good
performance. In this example, these predictions lead to almost sim-
ilar results to those in Figures 19 and 23.

DISCUSSION

We emphasize first that using the proposed method, a prior
knowledge on a smooth velocity model is not required and a for-
ward wavefield extrapolation is no longer needed to generate the
direct-wave Green’s function (the time-reversed initial focusing
function). By using the knowledge of local slopes, we show how
to obtain the direct-wave Green’s function directly from the pri-
mary-only CMP gathers under the usual assumptions of time-do-
main imaging. The original recorded gathers are still required to
construct the reflection operator R used in the Marchenko system.
In view of time-imaging assumptions, we emphasize that in the

presence of strong lateral heterogeneity, image rays that define the
time-imaging map may cross-cut each other and lead to caustics. In
this study, we restrict ourselves to cases in which the lateral hetero-
geneity is mild, and the image rays are uniquely defined, with no
complications from caustics. Future investigations are required to
properly formulate the Marchenko equations appropriate for
time-domain imaging under such circumstances. Moreover, we rely
on the hyperbolic traveltime approximation, which is exact for
plane reflectors in a constant-velocity (homogeneous isotropic)
or elliptically anisotropic overburden and approximately valid
for small-offset data in other cases. For example, we can already

a)

b)

Figure 22. A comparison of the central traces of estimated (a) f−1
and (b) g− for the shallow focusing position from the velocity-based
workflow (the solid blue lines) in Figure 20 and from the proposed
workflow (the dashed red lines) in Figure 19. We can observe that
similar codas (events) are captured by both workflows despite mi-
nor amplitude differences and slight shifts in some areas.

a) b) c) d)

Figure 23. Estimated results using the proposed workflow for the deep focusing position: (a) fþ1 , (b) f
−
1 , (c) g

þ, and (d) g−. The clipping is
adjusted to give a better visualization of the coda.
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observe the decrease in accuracy in Figure 11a, where the estimated
traveltime denoted by the dotted-dashed magenta line deviates
slightly at larger distances. In such cases, other (more accurate) trav-
eltime approximations can, in principle, be used and additional
measurements (more parameters) in addition to local slopes may
be needed (Khoshnavaz et al., 2016; Stovas and Fomel, 2016).
The topic of traveltime approximation is one of the primary research
subjects in time-domain imaging, and there are many choices of
traveltime approximation with different ranges of accuracy and
applicability (Tsvankin and Thomsen, 1994; Alkhalifah and Tsvan-
kin, 1995; Gelchinsky et al., 1999; Jäger et al., 2001; Fomel and
Stovas, 2010; Santos et al., 2011; Blias, 2013; Dell et al., 2013;
Farra et al., 2016; Ravve and Koren, 2017; Sripanich et al., 2017).
Apart from the limitations that come with those time-imaging as-

sumptions, we observe that the choice of wavelet also plays a
notable role in controlling the final quality of the results from
the Marchenko method and in ensuring consistent results from both
setups in the time- and depth-imaging domains. In the current ap-
proach, the amplitude information is only partially handled by
weighting according to the geometric spreading factor correspond-
ing to the straight-ray assumption from the focusing position.

An alternative is to also consider the behavior of the far-field
Green’s function in a 2D constant-velocity medium. This involves
an additional 45° phase shift and a division by

ffiffiffiffi
ω

p
. The results from

our proposed slope-based workflow with this choice of wavelet in
the two synthetic models are shown in Figure 30. Similar to the case
of a zero-phase wavelet, we can still observe minor differences be-
tween the exact Green’s functions and the estimated ones. Finding a
dynamically appropriate waveform with nonzero phase from slopes
using, for example, wavelet estimation methods and far-field signa-
tures is the subject of future research. In a recent notable example,
the augmented Marchenko approach by Dukalski et al. (2019) relies
on energy conservation for the focusing fields to yield amplitude
and phase corrections to the initial focusing functions — the ap-
proach currently applies only to laterally invariant media, but the
framework could probably be extended to more complex scenarios.
In our case, we note that our current choice of a zero-phase wavelet
will still lead to a focus at the desired position, but the focused re-
sponse will contain a slightly different amplitude signature than that
computed from the velocity-based workflow, which intrinsically
involves a nonzero-phase wavelet. Nonetheless, as shown by our
experiments, the Marchenko method can still provide appropriate

a) b) c) d)

Figure 25. The difference between estimated results in Figures 23 and 24 for the deep focusing position: (a) fþ1 , (b) f
−
1 , (c) g

þ, and (d) g−.

a) b) c) d)

Figure 24. Estimated results using a velocity-based workflow for the deep focusing position: (a) fþ1 , (b) f
−
1 , (c) g

þ, and (d) g−. Clipping is
adjusted to give a better visualization of the coda.
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coda waveforms for focusing functions and Green’s functions while
accommodating various wavelet choices for the initial focusing
functions used as an input to the system. In a companion paper (Sri-
panich and Vasconcelos, 2019), we discuss additional insights on
Marchenko focusing, by considering the method in the time-imag-
ing domain and analyzing the amplitude and directionality of the
focused responses with respect to the surface data aperture.
Accurate knowledge of local slopes also plays a crucial role in the

traveltime approximation of the direct-wave Green’s functions. In
this study, we use the dip estimator based on the plane-wave

destruction filter described by Fomel (2002), which requires the
computational cost of OðNdNfNiÞ, where Nd is the number of data
points, Nf is the length of the filter, and Ni is the total number of

a)

b)

Figure 26. A comparison of the central traces of estimated (a) f1−
and (b) g− for the deep focusing position from the velocity-based
workflow (the solid blue lines) in Figure 24 and from the proposed
workflow (the dashed red lines) in Figure 23. Again, we can observe
that similar codas (events) are captured by both workflows despite
minor amplitude differences and slight shifts in some areas.

a) b) c) d)

Figure 28. Inputs and products from the slope-based workflow in the Volve example as should be implemented in the conventional processing
procedure: (a) demultipled CMP gather, (b) estimated dip with plane-wave destruction filter, (c) one-way traveltime map t0ðx0; h; tÞ with a
contour related the shallow focusing point (6000 m, 1306 m), and (d) one-way traveltime map with a contour related the deep focusing point
(6000 m, 2167 m). Note the different offset range in (c and d).

a)

b)

Figure 27. A comparison of (a) the effective velocity at approxi-
mately 6000 m obtained from the depth velocity model (Figure 14)
that is approximately laterally homogeneous (1D) and (b) picked
velocity from velocity analysis, which is done following the con-
ventional processing procedure.
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iterations. Several other methods exist for this purpose (Harlan et al.,
1984; Marfurt, 2006; Hale, 2007; Schleicher et al., 2009; Chen et al.,
2013) and should be chosen on a case-by-case basis depending on
the desired level of accuracy and efficiency.
Moreover, in our scheme, it is crucial that only the slopes of tar-

get primary reflection events are used for traveltime prediction. This
particular requirement is similar to most processing/imaging tech-
niques that work with primary reflections. In view of the Marchenko
method, this replaces the need of an approximate depth velocity

model, which is relatively much harder to obtain and requires costly
tomographic or full-waveform inversion. Provided the primary-only
gathers, our method can readily provide estimates of the initial fo-
cusing functions based on data-driven slope measurements without
directly computing for subsurface velocity. However, if the gathers
still contain residual multiples, the traveltime predictions in equa-
tions 11 and 12 are expected to be erroneous because both equations
were derived using the geometry of primary reflections (Fomel,
2007). For example, in our horizontally layered model, if the
raw gather with primaries and multiples is used in the slope esti-
mation process, the results would look like those shown in Fig-
ure 31. In comparison to those in Figure 6, we observe that the
local slopes of primaries and multiples are estimated, leading to in-
accurate traveltime estimates. One should expect that such errors
will be higher in more complex models, in which primaries and
multiples may overlap and lead to conflicting dips. An expeditious
multiple removal based on local slopes (Figure 31b) using simple
velocity filtering exists (Cooke et al., 2009) and may be incorpo-
rated in the workflow.
We note that the recent development of the plane-wave Marche-

nko method (Meles et al., 2018) can also potentially benefit from a
consideration based on the time-imaging domain. In this scheme, a
different focusing condition is proposed to solve for

Fþ
1 ðxa; zfÞ ¼

Z
Sf

fþ1 ðxa; xfÞdxf; (13)

which represents a summation of conventional focusing functions
along some focusing surface Sf at depth zf . Using the one-way reci-
procity theorem for curvilinear coordinates (equations 1 and 2) and
considering the time-imaging domain, one can follow a similar pro-
cedure and formulate a system of equations to solve for

a)

b)

d)

c)

Figure 30. (a) Estimated Green’s function and
(b) its middle trace from the slope-based workflow
with modified waveform according to the behavior
of the 2D far-field Green’s function in the horizon-
tally layered model. The trace of the true Green’s
function is plotted in the solid blue. (c and d) Sim-
ilar plots for the laterally heterogeneous model.
Similar to the results with zero-phase wavelet, we
observe minor differences between the estimated
results and the true values due to an approximate
choice of waveform used in our slope-based work-
flow.

a) b)

Figure 29. The direct-wave Green’s functions obtain from wave
extrapolation using the reference velocity model (Figure 14) over-
lain by the traveltime prediction (the dotted-dashed magenta line)
using the proposed slope-based workflow with picked velocity
(Figure 27b) for the (a) shallow focusing point and the (b) deep
focusing point.
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Fþ
1 ðξa; tfÞ ¼

Z
Sf

fþ1 ðξa; ξfÞdξf; (14)

which represents a summation of focusing functions along some
focusing surface Sf (image wavefront) at vertical time tf. The
use of time-imaging tools (such as local slopes) in this context re-
quires further investigation, but we note that the focusing position
defined by tf in this case, again, does not require the knowledge of
velocity as tf is directly related to the coordinates of the recorded
CMP data.
Finally, we highlight that this work can also be deemed comple-

mentary to that of van der Neut andWapenaar (2016). In their study,
it was shown that the single-sided Green’s function representations
in the Cartesian coordinates could be modified by redatuming with
a choice of direct-wave Green’s function related to some fictitious
reflector. By doing so, revised single-sided representations can be
developed, and the initial focusing function (strictly the inverse of
the direct-wave Green’s function) for the corresponding Marchenko
method becomes a band-limited delta function. The direct-wave
Green’s function that was used to write these revised representa-
tions in the first place does not need to be specified explicitly, con-
veniently obviating the requirement for a smooth velocity model.
Van der Neut and Wapenaar (2016) subsequently show that in this
redatumed domain, it is possible to separate and eliminate the ef-
fects of primary and multiple reflections from the overburden above
the chosen fictitious reflector, and an effective internal multiple
elimination technique can be developed. However, this regime is
not applicable to Green’s function retrieval because the knowledge
of the direct-wave Green’s function is never explicitly computed.
On the other hand, in this study, we approach the Marchenko
method from the perspective of time-domain imaging and show that
it is possible to obtain an approximate direct-wave Green’s function
straightforwardly from primary-only CMP gathers using local
slopes without needing any velocity model. Therefore, it is concep-
tually possible to adopt the method of van der Neut and Wapenaar
(2016) or its variant (Zhang and Staring, 2018) to obtain primary-
only gathers needed by our proposed approach, which then leads

directly into our velocity-independent Marchenko-based focusing
and redatuming workflow.

CONCLUSION

In this paper, we formulate a new form of the Marchenko system
in the time-imaging domain defined by image rays. We show that
the resulting Marchenko equations have the same form as in the
previous case of a constant-depth datum level, except that the fo-
cal-point coordinates and radiation directions are now determined
along curved space boundaries of constant time (image-wavefront
surfaces) that define the time-imaging domain. A priori knowledge
of subsurface velocity is no longer needed to generate the initial
focusing function and the Marchenko scheme can be carried out
by making use of local event slopes measured directly from re-
corded CMP gathers. The focusing positions are now defined in
terms of image-ray coordinates related to the surface location
and vertical traveltime, easily obtained from the data without
any prior knowledge of the subsurface model. The resulting focus-
ing functions and Green’s functions obtained using the proposed
method are of comparable quality to those conventionally obtained
with prior knowledge of the subsurface velocity.
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a) b) c) d)

Figure 31. Inputs and products from the slope-based workflow in the horizontally layered model: (a) raw CMP gather that contains both the
primaries and multiples, (b) estimated dip with a plane-wave destruction filter, (c) one-way traveltime map t0ðx0; h; tÞ, and (d) the difference
between the estimated one-way time in the presence of multiple (c) and that from the primary-only gather in Figure 6c. We can observe an error
in traveltime predictions when the gather does not contain only primary reflections.
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