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ABSTRACT

Anovel adaptive dynamic programmingmethod, called incremental model-based global dual heuristic
programming, is proposed to generate a self-learning adaptive flight controller, in the absence of
sufficient prior knowledge of system dynamics. An incremental technique is employed for online
local dynamics identification, instead of the artificial neural networks commonly used in global dual
heuristic programming, to enable a fast and precise learning. On the basis of the identified model,
two neural networks are adopted to facilitate the implementation of the self-learning controller, by
approximating the cost-to-go and the control policy, respectively. The required derivatives of cost-
to-go are computed by explicit analytical calculations based on differential operations. Both methods
are applied to an online attitude tracking control problem of a nonlinear aerospace system and the
results show that the proposed method outperforms conventional global dual heuristic programming
in tracking precision, online learning speed, robustness to different initial states and adaptability for
fault-tolerant control problems.

1. Introduction
Controller design for aerospace systems, especially air-

planes, is challenging for many reasons. One of the most
challenging parts is the difficulty of modeling the dynamics
of the system. Especially for complex, nonlinear vehicles,
global plant information may be impossible to obtain. The
aircraft can be susceptible to uncertainties, sudden faults and
structural damages, which changes the real plant compared
to the previously obtainedmodel (Lungu and Lungu (2018)).
To deal with these problems, one promising solution is to
create learning or adaptive controllers.

Reinforcement learning (RL), for instance, which links
several bio-inspired artificial intelligence techniques, can
make a system learn desired policies without accurate mod-
els of its dynamics or environment and can adapt to chang-
ing situations (Sutton and Barto (2018)). For these reasons,
there have been a number of RL methods developed to en-
able model-free flight control in various types of aerospace
systems (Hwangbo et al. (2017), Coates et al. (2017), Zhou
et al. (2018b), Zhou et al. (2016a), Sun and van Kampen
(2019)). However, different from ground robots, it is difficult
to employ end-to-end training approaches on aerospace sys-
tems because of their special working environments. Conse-
quently, a combination of RL and traditional control theory
is a promising strategy to improve adaptive flight control.
The combination of an actor-critic structure, dynamic pro-
gramming, and neural networks, results in the adaptive/ ap-
proximate dynamic programming (ADP) algorithm, which
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is regarded as an effective technique to design adaptive opti-
mal controllers and can achieve certain levels of adaptive-
ness and fault-tolerance (Wang (2019a), Valadbeigi et al.
(2019), Wang et al. (2017), Wang (2019b)). According to
optimal control theory, for a nominal system, given a cost
function, the analytical optimal solution can be obtained
by solving the Hamilton-Jacobi-Bellman (HJB) equation.
However, for complex or nonlinear systems, analytical solu-
tions to the HJB equation can be difficult or even impossible
to get, let alone in real time. To conquer the difficulty of di-
rectly solving the HJB equation online for general nonlinear
systems, the adaptive critic framework and artificial neural
networks (ANNs) are often involved in order to approximate
the HJB solution (Wang et al. (2017), Ferreira et al. (2017),
Wang et al. (2019a)).

As a class of ADP methods, adaptive critic designs
(ACDs), which separate policy evaluation (critic) and pol-
icy improvement (actor), have shown great success in opti-
mal adaptive control of nonlinear aerospace systems (Fer-
rari and Stengel (2004), Van Kampen et al. (2006), Zhou
et al. (2016a), Zhou et al. (2018b), Sun and van Kampen
(2019)). ACDs can generally be categorized into several
groups (Prokhorov and Wunsch (1997)): heuristic dynamic
programming (HDP), dual heuristic programming (DHP)
and global dual heuristic programming (GDHP) and their
action-dependent (AD) versions. HDP is the most basic
form and most often used structure, which employs the critic
to approximate the cost-to-go. The critic in DHP approx-
imates the derivatives of the cost-to-go with respect to the
critic inputs, and in many practical applications it outper-
forms HDP in success rate and precision (Venayagamoorthy
et al. (2002)). GDHP, which approximates both the cost-to-
go and its derivatives so as to take advantage of two kinds
of information, has several different forms (Prokhorov and
Wunsch (1997)). Among them, the straightforward form,
where the critic approximates the cost-to-go and its deriva-
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tives simultaneously (Sun and van Kampen (2019), Yi et al.
(2019), Liu et al. (2012)), is most commonly used because
of its simple structure. In this architecture, two kinds of
outputs share the same inputs and hidden layers, making
them strongly coupled. Although these outputs have explicit
mathematical relationships, without analytical calculations,
weight update processes can suffer from this coupling due
to inconsistent errors, and sometimes it even leads to insta-
bility. In this paper, explicit analytical calculations of the
mixed second-order derivatives of the critic network outputs
with respect to its input vector and weight matrices are in-
troduced for adaptive flight control. Prokhorov and Wunsch
(1997) and Fairbank et al. (2012) illustrate how to calculate
these derivatives in an element-wise way. However, Mag-
nus and Neudecker (2019) clarifies that vectors and matrices
more often appear as a whole in practical applications rather
than multi-variable functions, and this holistic view is eas-
ier to obtain the chain rule. Therefore, one contribution of
this paper is deriving a direct method based on differential
operation (Magnus and Neudecker (2019)) to compute these
second-order derivatives in a holistic way so as to tackle the
inconsistent errors between approximated cost-to-go func-
tion and its derivatives.

ACDs can be model-free if the critic is an AD network,
which means the control signals are also introduced as net-
work inputs (Abouheaf et al. (2018), Vamvoudakis and Fer-
raz (2018)). Nevertheless, to achieve model free applica-
tion, an alternative is building a third module to approxi-
mate the plant dynamics and ANNs are often regarded as
the first choice (Van Kampen et al. (2006), Liu et al. (2012),
Bhasin et al. (2013), Lin et al. (2017), Liu et al. (2013)).
Van Kampen et al. (2006) illustrates how this three-network
structure outperforms AD ones if rewards only depend on
system states. Although ANNs can approximate the nonlin-
ear function with arbitrary precision, many samples are re-
quired before the weights converge for online identification
of complex plants dynamics like aerospace systems, which
can be dangerous especially at the start of training because
the critic and actor networks are then trained based on the in-
correct model. For these complex systems, offline training
is normally involved to obtain a primary model and it often
remains constant in applications (Van Kampen et al. (2006),
Liu et al. (2012), Bhasin et al. (2013)), which, however, can-
not achieve adaptive control when facing unforeseen uncer-
tainties and sudden disturbances in realistic application.

The main contribution of this paper is an incremental
model-based GDHP (IGDHP) method that enables online
model-free flight control based on our latest work (Sun and
van Kampen (2019)). Different from conventional GDHP,
an incremental model is involved for adaptive control to
deal with the absence of full system information. Assum-
ing sufficiently high sampling rate for discretization, incre-
mental techniques are able to accurately identify system dy-
namics online, preventing the controllers from initial failure,
and have been successfully applied to design adaptive flight
controllers, such as incremental nonlinear dynamic inver-
sion (INDI)(Wang et al. (2019b)), incremental back-stepping

(IBS)(Wang and van Kampen (2019)), incremental sliding
mode control (ISMC)(Wang et al. (2018), Wang and van
Kampen (2019)) and IADP (Zhou et al. (2016b), Zhou et al.
(2018a) ), IACDs (Zhou et al. (2017), Zhou et al. (2018b),
Sun and van Kampen (2019)). However, these existed incre-
mental methods have some limitations. For instance, INDI,
IBS and ISMC cannot deal with optimal control problems,
and IADP requires linear quadratic reward and offline train-
ing process. Compared to existedmethods, IGDHP develops
current IACDs to achieve online adaptive optimal control. In
summary, the primary advantages lie in that the novel algo-
rithm speeds up the online policy learning without knowing
system dynamics or offline training a model network, and
the analytical calculations make use of the information of
cost-to-go function and its derivatives without introducing
inconsistent errors.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the basic formulation of three-networkGDHP
with explicit analytical calculations. Section 3 introduces
the incremental method for online identification and uses it
to simplify the weight update process of the actor and critic
networks. Then Section 4 provides the necessary informa-
tion for verification, where an F-16 Fighting Falcon model
is built and possible noises, faults and damages during flight
are explained. Section 5 verifies the approaches by applying
both GDHP and IGDHP on a longitudinal attitude tracking
task in various conditions and analyzing their results. Finally
section 6 summarizes the paper and puts up possibilities for
future research.

2. GDHP Implementation
GDHP, which combines the advantages of HDP and

DHP, can be implemented as a model free technique with
three ANNs, namely model, critic and actor. The variables
or pathways corresponding to these ANNs are denoted by
the subscripts m, c and a, respectively. The architecture of
GDHP with explicit analytical calculations is illustrated in
Fig. 1. Based on current states, the actor network gener-
ates an action to control both real system and plant model.
The model network estimates the states at the next time step,
which are connected to the critic network to approximate
cost-to-go, whose derivatives are computed analytically. All
weights of the ANNs are updated in a back-propagation way
according to the gradient-descent algorithm (Prokhorov and
Wunsch (1997)).

2.1. Global Model
For a full-state feedback system, the inputs of the sys-

tem model are the current state vector xt ∈ ℝn and current
control vector ut ∈ ℝm, while the output is the estimated
next state vector x̂t+1 ∈ ℝn. However, because the future
true value of state vector xt+1 is unavailable at time step t,
the update is implemented with current and previous data,
i.e. the network weights are updated by minimizing the dif-
ference between the current measured state vector xt and the
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estimated state vector x̂t:

Em(t) =
1
2
em(t)TQmem(t) (1)

where

em(t) = x̂t − xt (2)

and Qm ∈ ℝn×n is a positive definite matrix. For simplic-
ity, Qm is usually defined as a diagonal matrix, i.e. Qm =
diag{�1, �2,⋯ , �n}, where the elements respectively select
and weigh the approximating errors.

The weights are updated by a gradient-descent algo-
rithm:

wm(t + 1) = wm(t) − �m ⋅
)Em(t)
)wm(t)

(3)

where �m is the learning rate, and

)Em(t)
)wm(t)

=
)Em(t)
)x̂t

⋅
)x̂t

)wm(t)
= eTm(t) ⋅

)x̂t
)wm(t)

(4)

2.2. The Critic
GDHP combines HDP and DHP and requires the infor-

mation of both the cost-to-go J (x̃t) and its derivatives with
respect to the network inputs x̃t, where x̃t = x̂t − xreft stands
for tracking error vector. The critic network only employs
Ĵ (x̃t) to approximate the true cost-to-go J (xt, x

ref
t ), which

is the cumulative sum of future rewards rt from any initial
state x̃t:

J (xt, x
ref
t ) =

∞
∑

l=t
 l−trl (5)

where  ∈ (0, 1) is discount factor, used to control the extent
to which the short-term cost or long-term cost is concerned.
The derivative of the cost-to-go with respect to the input vec-
tor �̂(x̃t) is shown in Appendix A .
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Figure 1: The architecture of GDHP with explicit analytical
calculations, where solid lines represent the feedforward flow of
signals, and dashed lines represent the adaptation pathways.

The goal of the experimental setup is to track the ref-
erence states contained in xreft , so a one-step cost function
with a quadratic form is designed:

rt = r(xt, x
ref
t ) = (xt−x

ref
t )TQc(xt−x

ref
t ) = x̃Tt Qc x̃t (6)

where Qc ∈ ℝn×n is a non-negative definite matrix.
Because future rewards are required, a temporal differ-

ence (TD) method is introduced to iteratively update the
critic network (Sutton and Barto (2018)). The principle is
to minimize the temporal difference error, the error between
the current and successive estimates of the state value. Sim-
ilar to the model network, the weights of the critic network
are updated with current and previous data. The critic errors
are as follows:

ec1(t) = Ĵ (x̃t−1) − r̂t−1 − Ĵ (x̃t) (7)

and

ec2(t) = )[Ĵ (x̃t−1)−r̂t−1−Ĵ (x̃t)]
)x̃t−1

= �̂(x̃t−1) −
)r̂t−1
)x̃t−1

− �̂(x̃t)
)x̃t
)x̃t−1

(8)

where ec1(t) is the TD error of the estimated cost-to-go
Ĵ (x̃t−1) with current network weights, while ec2(t) is the
TD error of the computed derivatives �̂(x̃t−1) with current
network weights. r̂ denotes the estimated reward, because
true states are unavailable to evaluate updated control pol-
icy. GDHP combines both of them in an overall error func-
tion Ec(t):

Ec(t) = �
1
2
e2c1(t) + (1 − �)

1
2
eTc2(t)ec2(t) (9)

where � is a scalar indicating the importance within a range
of [0, 1]. If � = 1, then it becomes pure HDP. If � = 0,
then the tuning of weights merely depends on the TD error
of computed derivatives �̂(x̃t) , and consequently it is equiv-
alent to DHP, which is different from the straight form in
Liu et al. (2012), Yi et al. (2019) and Sun and van Kampen
(2019), where if � = 0, the back-propagation channel of the
actor is cut.

The critic weights are updated using a gradient-descent
algorithm with a learning rate �c to minimize the overall er-
ror Ec(t):

wc(t + 1) = wc(t) − �c ⋅
)Ec(t)
)wc(t)

(10)

where

)Ec (t)
)wc (t)

= )Ec (t)
)Ĵ (x̃t−1)

⋅ )Ĵ (x̃t−1))wc (t)
+ )Ec (t)

)�̂(x̃t−1)
⋅ )�̂(x̃t−1))wc (t)

= �ec1(t) ⋅
)Ĵ (x̃t−1)
)wc (t)

+ (1 − �)eTc2(t) ⋅
)�̂(x̃t−1)
)wc (t)

(11)

where )�̂(x̃t−1)∕)wc(t) represents the second-order mixed
gradient of the estimated cost-to-go Ĵ (x̃t−1). An example
of how to obtain it is illustrated in Appendix A .
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2.3. The Actor
The actor network outputs control action ut, which is an

input of the model network, and thus it will affect the critic
outputs at the next time-step. The goal of the actor network is
to produce an optimal control policy by minimizing the error
between the current approximated cost-to-go Ĵ (x̃t) and the
ideal one J ∗(t), which depends on the given reward function
and is set to be zero in this paper:

u∗t = argminut
Ea(t) (12)

where Ea(t) is the overall actor error function and is defined
as:

Ea(t) =
1
2
e2a(t) (13)

where

ea(t) = Ĵ (x̃t) − J ∗(t) (14)

Different from the straight form in Liu et al. (2012), Yi
et al. (2019) and Sun and vanKampen (2019) where the actor
network can be trained through the pathways either leading
from Ĵ (x̃t) or carried out by �̂(x̃t), there is only one back-
propagation way for GDHP with explicit analytical calcula-
tions to update the actor weights and the information from
both Ĵ (x̃t) and �̂(x̃t) can be utilized. As illustrated in Fig. 1,
the actor weights are updated along the 4th back-propagation
direction with a learning rate �a:

wa(t + 1) = wa(t) − �c ⋅
)Ea(t)
)wa(t)

(15)

where

)Ea(t)
)wa(t)

= )Ea(t)
)Ĵ (x̃t)

⋅ )Ĵ (x̃t))x̂t
⋅ )x̂t
)ut−1

⋅ )ut−1)wa(t)

= Ĵ (x̃t) ⋅
)Ĵ (x̃t)
)x̂t

⋅ )x̂t
)ut−1

⋅ )ut−1)wa(t)

(16)

3. IGDHP Implementation
Aerospace systems have complex nonlinear dynamics

for which ANNs can fail to achieve accurate online identifi-
cation fast enough. In this section, an incremental technique
is introduced to ensure a quick and accurate approximation
using locally linearizedmodels (Fig. 2). In addition to online
learning and quick adaptation, it also reduces computational
burden of the network weight update processes.

3.1. Incremental Model
Although most physical systems are continuous, modern

processors work in a discrete way, leading to discrete mea-
surements and computations. With the assumption of suf-
ficiently high sampling frequency and relatively slow time-
varying dynamics, one can represent a continuous nonlin-
ear plant with a discrete incremental model and retain high
enough precision. The derivation (Zhou et al. (2018b)) can
be generally given as follows:

Consider a nonlinear continuous system described by:

ẋ(t) = f [x(t),u(t)] (17)

where f [x(t),u(t)] ∈ ℝn provides the dynamics of the state
vector over time. The general form can be used to describe
dynamic and kinematic equations of complicated aerospace
systems.

By taking the first order Taylor series expansion of (17)
around time t0 and omitting higher-order terms, the system
is linearized approximately as follows:

ẋ(t) ≈ ẋ(t0) + F[x(t0),u(t0)][x(t) − x(t0)]
+G[x(t0),u(t0)][u(t) − u(t0)]

(18)

where

F[x(t0),u(t0)] =
)f [x(t),u(t)]

)x(t)
|x(t0),u(t0) (19)

G[x(t0),u(t0)] =
)f [x(t),u(t)]

)u(t)
|x(t0),u(t0) (20)

F[x(t0),u(t0)] ∈ ℝn×n is the system matrix and
G[x(t0),u(t0)] ∈ ℝn×m is the control effectiveness matrix.
Assuming the states and state derivatives of the system are
measurable, i.e. Δẋ(t), Δx(t) and Δu(t) are measurable, an
incremental model can be used to describe the above system:

Δẋ(t) ≃ F[x(t0),u(t0)]Δx(t)+G[x(t0),u(t0)]Δu(t) (21)

With a constant, high sampling frequency, i.e. the sam-
pling time Δt is sufficiently small, the plant model can be
written approximately in a discrete form:

xt+1 − xt
Δt

≈ Ft−1 ⋅ (xt − xt−1) +Gt−1 ⋅ (ut − ut−1) (22)

where Ft−1 =
)f (x,u)
)x |xt−1,ut−1 ∈ ℝn×n is the system transi-

tion matrix and Gt−1 =
)f (x,u)
)u |xt−1,ut−1 ∈ ℝn×m is the in-

put distribution matrix at time step t − 1 for the discretized

(3.a)

G F
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Figure 2: The architecture of IGDHP with explicit analytical
calculations, where solid lines represent the feedforward flow of
signals, and dashed lines represent the adaptation pathways.
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systems. From (22), following incremental form of the new
discrete nonlinear system can be obtained:

Δxt+1 ≈ Ft−1Δt ⋅ Δxt +Gt−1 ⋅ Δt ⋅ Δut (23)

In this way, the continuous nonlinear global plant is sim-
plified into a linear incremental dynamic equation. The ob-
tained local plant model can be identified online with recur-
sive least squares (RLS) technique, to take advantage of its
adaptability to copewith time variations in the regression pa-
rameters and fast convergence speed (Ferreira et al. (2017)),
so as to avoid training a complex ANN. Although some in-
formation is omitted, such as state variation related nonlin-
ear terms and higher-order terms in their Taylor series ex-
pansion, with the identified F̂t−1 and Ĝt−1 matrix, the next
system state can be predicted:

x̂t+1 = xt + F̂t−1 ⋅ Δt ⋅ Δxt + Ĝt−1 ⋅ Δt ⋅ Δut (24)

3.2. Online Identification Using RLS
A RLS approach is applied to identify the system transi-

tion matrix Ft−1 and the input distribution matrix Gt−1 on-
line with the assumption of full-state feedback. The incre-
mental form of the states in (23) can be rewritten in a row by
row form as follows:

Δxt+1 ≈
[

ΔxTt ΔuTt
]

⋅
[

FTt−1
GT
t−1

]

⋅ Δt (25)

Since all increments of the states share the same covariance
matrix, the parameters can be identified together as Θt−1 =
[

FTt−1
GT
t−1

]

∈ ℝ(n+m)×n (Zhou et al. (2018b)). Therefore, the

state prediction equation (24) can be rewritten as follows:

Δx̂t+1 = XTt ⋅ Θ̂t−1 ⋅ Δt (26)

where Xt =
[

Δxt
Δut

]

∈ ℝ(n+m)×1 is the input information of

the incremental model, and it is assumed to be measured di-
rectly.

The main procedure of the RLS approach is presented as
follows:

�t = ΔxTt+1 − Δx̂
T
t+1 (27)

Θ̂t = Θ̂t−1 +
Covt−1Xt

RLS + XTt Covt−1Xt

�t
Δt

(28)

Covt =
1

RLS

(

Covt−1 −
Covt−1XtXTt Covt−1
RLS + XTt Covt−1Xt

)

(29)

where �t ∈ ℝ1×n stands for the prediction error, also called
innovation, Covt ∈ ℝ(n+m)×(n+m) is the estimation covari-
ance matrix and it is symmetric and semi-positive definite,
and RLS is the forgetting factor for this RLS approach.

For most ACD designs, sufficient exploration of the state
space guarantees good performance. Although RLS de-
pends less on the global exploration, it is better to satisfy the
persistent excitation (PE) condition (Zhou et al. (2018b)) for
identifying incremental model. A 3211 disturbance signal is
introduced to excite the systemmodes at the start of training.

3.3. Network Update Simplification
Considering (8), the last term −�̂(x̃t)

)x̃t
)̃xt−1

needs to be
dealt with carefully, because there are two pathways for x̃t−1
to affect x̃t. One is through themodel network directly (path-
way 3.a), and another one firstly goes through the actor net-
work and then through the model network (pathway 3.b), as
shown in both Figs. 1 and 2:

)x̃t
)x̃t−1

=
)xt
)xt−1

=
)xt
)xt−1

|m

⏟⏞⏟⏞⏟
patℎway (3.a)

+
)xt
)ut−1

|m ⋅
)ut−1
)xt−1

|a

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
patℎway (3.b)

(30)

In conventional GDHP, the two system model derivative
terms in (30) are calculated back through the global system
model, while IGDHP introduces the identified incremen-
tal model information directly to approximate them, whose
computation burden is decreased compared to GDHP:

)x̃t
)x̃t−1

≈ F̂t−1 ⋅ Δt + Ĝt−1 ⋅ Δt ⋅
)ut−1
)xt−1

|a (31)

Similarly, the actor weight update process can also be sim-
plified by the incremental information. Specifically, the term
)x̂t+1
)ut

in (16) can be approximated by the identified input dis-
tribution matrix Ĝt−1 directly:

)x̂t+1
)ut

= Ĝt−1 ⋅ Δt (32)

Therefore, with the identified system transition matrix
F̂t−1 and input distribution matrix Ĝt−1, one can simplify
the update processes of the critic network and actor network
and thus accelerate the learning.

Wang et al. (2018), Wang et al. (2019b) and Wang and
van Kampen (2019) demonstrate that under the assumption
that the sampling rate is sufficiently high, in other words,
Δt is small enough, the errors due to linearization and dis-
cretization can be ignored. In this paper,Δt is set to be 1ms,
which is realistic and accurate enough. The stability analysis
of the GDHP method is investigated in Liu et al. (2012) and
Yi et al. (2019). However, to the best of our knowledge, the
theoretical assurance for the closed-loop convergence of on-
line model-free control algorithms is still an open problem.
The parameter convergence of control policy requires accu-
rate and stable model information, which in turn depends on
the parameter convergence of the control policy, making a
circular argument.

4. Numerical Experiments Setup
The first part in this section introduces a nonlinear lon-

gitudinal model of F-16 Fighting Falcon for evaluation of
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the proposed algorithms. The second part briefly introduces
some potential uncertainties in practical flight. The third
part discusses some related issues of the network structures
for implementation of the aforementioned algorithms, in-
cluding the activation function, the hierarchical actor net-
work, etc.

4.1. Aerospace System Model
IGDHP can be applied to nonlinear aerospace systems,

whose dynamic and kinematic state equations can be gener-
ally represented as:

ẋ(t) = f [x(t),u(t),d(t)] (33)

where d(t) represents the disturbances and noises.
To verify the proposed method and compare the effect of

these differences for a practical case, a nonlinear longitudi-
nal model of F-16 Fighting Falcon (Abdullah et al. (2004),
Nguyen et al. (1979)) is introduced. The model consists of
the longitudinal force and moment equations, and it is a spe-
cific example of (33):

V̇ = g sin(� − �) + cos �
m T + q̄S cos �

m Cx,v +
q̄S sin �
m Cx,v

�̇ = g
V cos(� − �) −

sin �
mV T + (1 +

q̄Sc̄
2mV 2Cx,�)q +

q̄S
mV Cz,�

q̇ = q̄Sc̄
2IyyV

Cx,qq +
q̄Sc̄
Iyy
Cz,q

�̇ = q
ℎ̇ = V sin(� − �)

(34)

where

Cx,v = Cx(�, �e) +
c̄
2V Cxq(�)q

Cz,v = Cz(�, �e) +
c̄
2V Czq(�)q

Cx,� = Czq(�) cos � − Cxq(�) sin �
Cz,� = Cz(�, �e) cos � − Cx(�, �e) sin �
Cx,q = c̄Cmq(�) + c̄(Xcgr −Xcg)Czq(�)
Cz,q = Cm(�, �e) + (Xcgr −Xcg)Cx(�)
q̄ = 1

2�V
2

(35)

where V denotes the velocity, � and � denote angle of at-
tack and pitch angle, q denotes pitch rate, T denotes en-
gine thrust, �e denotes elevator deflection,m denotes aircraft
mass, q̄ denotes dynamic pressure, � denotes air density, c̄
denotes mean aerodynamic chord, S denotes wing planform
area, Iyy denotes pitch moment of inertia,Xcg andXcgr de-
note center of gravity (CG) location and reference CG lo-
cation, g denotes gravitational constant, Cx, Cz, Cxq , Czq
are aerodynamic force coefficients and Cm, Cmq are aerody-
namic moment coefficients. All parameters are determined
by simulating this model around a steady wings-level flight
condition at an altitude of approximately 15000ft with the
speed of 600ft∕s based on Nguyen et al. (1979).

Although the model has multiple states, two main states
are selected as identified system states, which are angle of at-
tack, that is to be controlled and pitch rate q, the basic inner
state. In this paper, only one control input, elevator deflec-
tion �e, is considered, and engine thrust T is set be constant.

Before elevator deflection is practically adjusted, the control
signal that is generated by the actor u, or �ce in this attitude
tracking problem, has to go through the actuator, which con-
sists of a command saturation and a first-order filter with rate
saturation, as shown in Fig. 3. �ce is bounded in the range of
[−25◦, 25◦] and changing rate of elevator deflection is lim-
ited in the range of [−60◦∕s, 60◦∕s] (Nguyen et al. (1979)).

4.2. Uncertainties
In flight control system design, system uncertainties,

such as measurement uncertainties, unexpected changes of
system dynamics or even sudden failures, need to be taken
into account (Wang et al. (2018), Zhou et al. (2018b)). This
sectionwill introduce the uncertainties the system has to deal
with.

In practice sensors have measurement uncertainties, and
the magnitude of real-world phenomena used in this paper
is illustrated in Table 1 (Van’t Veld et al. (2018)). The bias
acting on the feedback signals is based on the mean of the
disturbances, while the noise acting on the signals is based
on the standard deviation of the disturbances.

Sudden partial damages might be encountered during
flight. The effects of the aircraft structural damages have
been investigated in (Wang et al. (2018)). It has been found
that actuators, as moving components, can be affected by
unforeseen faults. The first actuator fault considered in this
paper is the sudden decrease of elevator bandwidth, which
is initially set to be 20.2 rad/s (Nguyen et al. (1979), Wang
and van Kampen (2019)). The bandwidth, which numeri-
cally equals to the reciprocal of the time constant of the first-
order filter, denotes the maximum frequency of sinusoidal
command that the elevator can follow. A smaller bandwidth
may lead to a high gain control policy, which can results in
oscillation or divergence. Another actuator fault scenario
considered is the reduction of control effectiveness, which
can be caused directly by actuator damages or indirectly by
structural damages that change aerodynamics.

For longitudinal dynamics, damage of the horizontal sta-
bilizer needs to be taken into consideration, which leads to
significant loss in both static and dynamic stability on the
directional axis with an approximately linear relationship
with the scale of tip loss, whose effectiveness is reflected
by the changes of the aerodynamic moment coefficients Cm
and Cmq . Besides, these structural damages are usually ac-
companied with mass loss, instantaneously shifting the CG
to a new location.

Command 

Saturation

Rate

Saturation

Band

width
e

c

e 1

s

Figure 3: The dynamics of actuator, which is a first-order filter
with command and rate saturation.
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Table 1
Sensor uncertainties of F16 aircraft (adapted from Van’t Veld
et al. (2018)).

Bias Noise

q [◦∕s] 1.7 ⋅ 10−3 3 ⋅ 10−2
� [◦] 2.2 ⋅ 10−1 1.8 ⋅ 10−3
�e [◦] 2.6 ⋅ 10−1 4 ⋅ 10−2

4.3. Network Structure
ANNs, or more specifically multilayer perceptions

(MLPs), are utilized to approximate the actor, critic and
global model. For simplicity, the introduced ANNs are fully
connected and consist of only three layers of nodes: an in-
put layer, a hidden layer and an output layer. The activation
function � in the nodes of the hidden layer is a sigmoid func-
tion:

&(o) = 1 − e−o
1 + e−o

(36)

It is anti-symmetric, zero-center and differentiable, with out-
put bounded between −1 and 1. Its derivative is continuous,
differentiable and positive at every point:

)&(o)
)o

= 1
2
(1 − &(o))2 (37)

The actor is implemented as a hierarchical structure, or
specifically a cascaded actor network (Van Kampen et al.
(2006), Zhou et al. (2018b), Sun and van Kampen (2019)),
as shown in Fig. 4. The first sub-network outputs a virtual
reference signal of the pitch rate q, which is one input of
the second sub-network, and the second sub-network pro-
duces the control command. Compared to the “flat” actor
with only one end-to-end network, the virtual reference sig-
nal qref provides a more direct instruction. This hierarchical
structure takes advantage of the physical properties of the
system, by putting some prior knowledge into the design of
the controller, which in theory will reduce the complexity of
the problem. To improve stability, the output layers of the
actor sub-networks adopt a sigmoid function as activation
function, to add restrictions to the pitch rate reference and the
control action, which is different from the global model and
the critic, where linear functions are employed. The pitch
rate and the elevator deflection commands are bounded in
the range of [−20◦∕s, 20◦∕s] and [−25◦, 25◦] respectively.

The critic and actor networks in both GDHP and IGDHP
have the same settings. The DHP technique generally sur-
passes HDP in tracking precision, convergence speed and
success rate because the costate function is employed (Wang
et al. (2019a) and Zhou et al. (2018b)). Therefore, to take ad-
vantage of the information of derivatives, � is set to be 0.01.
More neurons will improve approximation precision, but can
also increase computational burden or even lead to overfit-
ting, which will decrease the robustness of the controller. As
a trade off, the number of hidden layer neurons in the actor
is 15, while in both the critic and the global system it is 25.

Initial weights of the neural networks can have a great influ-
ence on the learning. In this paper, all weights are randomly
initialized within a small range of [−0.01, 0.01] to reduce
the impact of initialization, and bounded within the range
of [−20, 20] to prevent sudden failure in the learning pro-
cess. To guarantee effective learning, learning rates have to
be chosen carefully. A descending method is applied, which
means that the initial learning rates are set to be large num-
bers which gradually decrease as the weights are updated.

5. Results and Discussion
Both the GDHP and the IGDHP algorithms are applied

to a simulation of controlling the F16 aircraft longitudinal
model. First, the flight controller learns to track a chang-
ing reference at different initial conditions. Then, these two
methods are compared in the failure cases where actuator
faults and structural damages take place. All numerical ex-
periments are implemented in the presence of sensor uncer-
tainties.

5.1. Different Initial Conditions
Figures 5-7 compare the performance of the IGDHP and

GDHP approaches, when applied to control the F16 aircraft
to track a given reference signal online at different initial
states. To be more specific, the controllers are required to
control the angle of attack � to track the reference signal �ref,
which is a sinusoidal wave with the amplitude of 10 degrees
and the period of 4� seconds. The sub-figures on the top
present how the angle of attack � tracks the reference sig-
nal �ref using these two approaches respectively, while the
sub-figures on the bottom provide the tracking errors during
these tasks.

Take every two degrees as a scale to examine the in-
fluence of the initial states. When the initial state �0 is
±2◦, both methods perform similarly to the simulation re-
sults with zero initial states, as shown in Fig. 5 and Fig. 6.
When the initial state is 4◦, although tracking precision de-
creases for GDHP method, both methods can successfully
complete the tracking task, as shown in Fig. 7. Nevertheless,
compared to GDHP, IGDHP spends less time to find a fea-
sible actor, leading to a smaller settling time. These results
imply the incremental techniques can accelerate the learn-
ing process of the actor and critic networks. Furthermore,
when the initial state �0 is beyond the range of [−2◦, 4◦],

ANNa,1 ANNa,2


 q tu

ref,t tx x

ref
refq

Figure 4: The architecture of the cascaded actor network (Sun
and van Kampen (2019)), where the physical properties of
aircraft dynamics are utilized.
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the GDHP method cannot track the reference signal without
oscillation. On the other side, the IGDHP method can deal
with a wider range of initial states within [−10◦, 10◦] with-
out the loss of precision. As presented in Fig. 8, the angle
of attack � can follow the given reference signal �ref in less
than 1 second in all initial conditions using the IGDHP ap-
proach, which shows that IGDHP is more robust than GDHP
to various initial states.

However, Fig. 5-8 only present the nominal results when
the task is successfully performed. Random factors, includ-
ing initial weights of the neural networks and sensor noises,
can affect the performance and sometimes can even lead to
failure. To compare how robust the proposed algorithms are
to these random factors, a concept of success ratio is intro-
duced to indicate their performance, which has been widely
used in Zhou et al. (2018b), Van Kampen et al. (2006), Sun
and van Kampen (2019). The success ratio used in this paper
is defined as that the angle of attack � can track the given ref-
erence signal �ref after one period of �ref, 4� seconds, and
the tracking errors will not exceed ±2◦ hereafter. Without
adjustment of parameters, 1000 times of Monte Carlo simu-
lation are implemented to evaluate the performance of algo-
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Figure 5: Online attitude tracking control with the zero initial
state, �0 = 0◦ using GDHP and IGDHP approaches.
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Figure 6: Online attitude tracking control with a negative ini-
tial state, �0 = −2◦ using GDHP and IGDHP approaches.
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Figure 7: Online attitude tracking control with positive initial
state, �0 = 4◦ using GDHP and IGDHP approaches.

rithms.
The results are illustrated in Table 2. The reason why

the highest success ratio is not 100% lies in the difficulty to
achieve optimal PE condition due to the circular argument
between PE condition, accurate system information and sta-
ble control policy. Improving several factors can increase
success ratio and improve robustness, such as the perfor-
mance of sensors, exploration noise, parameter initialization
and learning rates. However, the improvement of these fac-
tors still remain to be open problems and therefore this paper
only concentrates on the comparison of robustness between
different methods. As presented in Table 2, the success ra-
tios of IGDHP are higher than those of GDHP at any initial
state. When applied to non-zero initial states, success ra-
tios decrease dramatically for GDHP, which means that the
global model is not robust enough for various initial con-
ditions. However, the success ratios of both IGDHP and
GDHP degrade heavily due to measurement uncertainties,
and the impacts on IGDHP are even more severe. That is
because, to achieve the quick and high-precision identified
model, the incremental method adapts quickly to locally ac-
quired data. Nevertheless, IGDHP still shows better perfor-
mance.

Table 2
Success ratio comparison for different initial states and
measurement uncertainties situations with 1000 times of
Monte Carlo simulation.

�0∕[◦] −2 0 2 4

Without
uncertainties

GDHP 1.1% 50.3% 1.9% 1.4%
IGDHP 32.4% 91.6% 41.3% 36.6%

With
uncertainties

GDHP 0.7% 43.9% 1.6% 1.0%
IGDHP 19.5% 54.3% 25.1% 19.8%

5.2. Fault-Tolerant Examination
The capability to adapt is one of the most important

advantages for ACDs compared to other traditional control
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Figure 8: Online attitude tracking control with different initial states using the IGDHP approach.

techniques. It allows the controller to learn sound polices
automatically by tuning the weights of the networks and this
merit makes ACDs suitable for fault-tolerant control (FTC).
Fault diagnosis is a significant part in FTC area, but will not
be discussed in this paper. It is assumed that when sud-
den fault occurs, the controller can recognize it immedi-
ately. One challenge of FTC is that the controller is unable
to change its policy quickly enough when faced with sudden
changes in plant dynamics, while in this situation the origi-
nally learned control policy may even increase the instability
of the closed loop plant. Therefore, in this paper, the way the
controller adapt to new situation is to reset the actor weights
to small random numbers within the range of [−0.01, 0.01]
and to increase the corresponding learning rate as long as the
fault is detected.

Figure 9 compares the online adaptability of the GDHP
method and the IGDHP method in the presence of the sud-
den decrease of elevator bandwidth to 18 rad/s. This change
is introduced after the convergence of the policy for origi-
nal system at 4�, 4.5� and 5� seconds, respectively, which
corresponds to different values of the reference signal. As
shown in Fig. 9, GDHP shows poor adaptation performance
and it results in divergence in sub-figure (c). Although the
GDHP method can adapt in sub-figures (a) and (b), its track-
ing performance degrades and the adapted controller leads to
unexpected oscillations due to a higher gain control policy.
On the contrary, IGDHP is able to adapt to elevator faults,
and continues to track the commands precisely. The adap-
tation of the actor weights during this online FTC task is
presented in Fig. 10. There are in total 60 weights belong-
ing to two cascaded networks. Figure 10 demonstrates how
the controller achieves a convergent policy by adapting ac-
tor weights and sub-figures (b) and (c) take a closer look at
the main learning processes at the beginning and after the
elevator fault happens, respectively.

The second fault scenario considered is that the eleva-
tor suddenly loses 30% of its effectiveness during flight at
4�, 4.5� and 5� seconds, respectively. As can be seen
from Fig. 11, only when this sudden fault happens at 4�
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Figure 9: Online fault-tolerant tracking control using GDHP
and IGDHP approaches in the presence of a sudden decrease
of elevator bandwidth at 3 different times.

seconds, GDHP can recover from this situation, but it en-
counters slightly growing oscillations thereafter, making the
tracking errors have larger root mean square value. If the
sudden damage occurs at the points where �ref has non-zero
value, GDHPwill suffer from divergence. On the other hand,
IGDHP is able to rapidly adapt to the elevator fault with
smaller tracking errors.

The last fault scenario considered is that at the three dif-
ferent times mentioned above, the left stabilator is damaged,
while the right stabilator is still working normally. Accom-
panying with the left stabilator damage, the CG shifts for-
wards and to the right, producing both rolling and pitch-
ing moment increments. However, only the effects of pitch-
ing moment increments are considered for this longitudinal
model and rolling effects are omitted. The reduced longitu-
dinal damping and stability margin are also influencing the
closed-loop system responses. The results are illustrated in
Fig. 12, where at all three times, GDHP fails to adapt to the
new dynamics while IGDHP shows satisfying performance.
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Figure 10: Convergence of the actor weights using the IGDHP approach when faced with a sudden decrease of elevator bandwidth
at 4� seconds.
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Figure 11: Online fault-tolerant tracking control using GDHP
and IGDHP approaches in the presence of sudden reduction of
control effectiveness at 3 different times.

6. Conclusion
This paper develops a novel approach, called incre-

mental model based global dual heuristic programming
(IGDHP), to generate an adaptive model-free flight con-
troller. Different from traditional global dual heuristic pro-
gramming (GDHP), which often employs an artificial neural
network to approximate the global system dynamics, IGDHP
adopts incremental approaches instead to identify the local
plant model online and to speed up policy convergence. Be-
sides, this paper derives a direct method from a holistic view-
point based on differential operation, to explicitly analyti-
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Figure 12: Online fault-tolerant tracking control using GDHP
and IGDHP approaches when horizontal stabilizers are partially
damaged at 3 different times.

cally compute derivatives of cost-to-go function with respect
to the critic inputs, rather than utilizes conventional neural
network approximation, so as to eliminate the inconsistent
errors due to coupling.

Both methods are applied to an online longitudinal atti-
tude tracking task of a nonlinear F-16 Fighting Falcon sys-
tem, whose dynamics are unknown to the controller. The nu-
merical experiment results uniformly illustrate that, in com-
parison to conventional GDHP, IGDHP improves tracking
precision, accelerates the online learning process, has ad-
vantages in robustness to different initial states and mea-
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surement uncertainties, and has increased capability to adapt
when faced with unforeseen sudden faults.

This study generalizes the basic form of the IGDHP but
still has limitations for realistic applications. Further re-
search should, therefore, concentrate on the investigation of
various types of function approximators, the improvement
of stability and success ratio, and expansion to other appli-
cation scenarios.
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A. Vector and Matrix Derivation
The following derivation process to calculate derivatives

are based on differential operation (Magnus and Neudecker
(2019)).Consider a critic network with a single hidden layer
architecture the numbers of network inputs, neurons and out-
puts are n, p and 1, respectively. For convenience, define Ir
as an identity matrix with a dimension of r, where r can be
n, p and 1, respectively.

A.1. �̂(x̃t)
The feed-forward process of the three-layer critic net-

work is given as:

Ĵ = wTc2�(w
T
c1x̃) (38)

where wc1 denotes the weight matrix connecting input layer
and hidden layer, wc2 denotes the weight matrix connecting
hidden layer and output layer, and �(∙) is an element-wise
operation applied to the transfer function in the hidden layer.
Compute the differentials of both sides:

dĴ = dwTc2 ⋅ �(w
T
c1x̃) + w

T
c2 ⋅ d�(w

T
c1x̃)

= wTc2(�
′(wTc1x̃)⊙ (w

T
c1 ⋅ dx̃))

(39)

where ⊙ denotes Hadamard product, and �′(∙) denotes the
first order derivative of function �. Perform trace operation
on both sides:

tr(dĴ ) = dĴ = tr(wTc2(�
′(wTc1x̃)⊙ (w

T
c1 ⋅ dx̃)))

= tr((wc2 ⊙ �′(wTc1x̃))
T(wTc1dx̃))

= tr((wc1(wc2 ⊙ �′(wTc1x̃)))
Tdx̃)

(40)

The relationship between derivative of scalar with re-
spect to vector and their differentials, the first order deriva-
tive of critic network output with respect to its inputs, is:

�̂(x̃t) =
)Ĵ
)x̃

= wc1(wc2 ⊙ �′(wTc1x̃)) (41)

A.2. )�̂(x̃t)∕)wc
Since the critic network has two weights matrices, the

second-order derivatives have to be calculated separately.
Perform the differential operation on both sides of ( 41):

d�̂(x̃t) = dwc1(wc2⊙�′(wTc1x̃))+wc1 ⋅d(wc2⊙�
′(wTc1x̃))

(42)

Firstly consider )�̂(x̃t)∕)wc2 and regard wc1 as a con-
stant matrix, then (42) can be modified as:

d�̂(x̃t) = wc1 ⋅ d(wc2 ⊙ �′(wTc1x̃))
= wc1(dwc2 ⊙ �′(wTc1x̃))I1

(43)

Reshape both sides to column vectors:

vec(d�̂(x̃t)) = d�̂(x̃t)
= vec(wc1 ⋅ d(wc2 ⊙ �′(wTc1x̃))I1)
= (I1 ⊗ wc1) ⋅ vec(dwc2 ⊙ �′(wTc1x̃))
= (I1 ⊗ wc1) ⋅ diag(�′(wTc1x̃)) ⋅ vec(dwc2)

(44)

where vec(∙) is vector reshaping function, diag(∙) reshapes
the vector to a diagonal matrix, and ⊗ is Kronecker prod-
uct. )�̂(x̃t)∕)wc2 is the derivative of the vector �̂(x̃t) with
respect to the matrixwc2. Based on the relationship between
)�̂(x̃t)∕)wc2 and the differentials of �̂(x̃t) and wc2 (Magnus
and Neudecker (2019)), )�̂(x̃t)∕)wc2 can be obtained:

)�̂(x̃t)
)wc2

= ((I1 ⊗ wc1) ⋅ diag(�′(wTc1x̃)))
T

= diag(�′(wTc1x̃))(I1 ⊗ wTc1)
(45)

Then consider )�̂(x̃t)∕)wc1 and regard wc2 as a constant
matrix. Perform the differential operation on both sides of
(41):

d�̂(x̃t) = dwc1(w2 ⊙ �′(wTc1x̃))+
wc1(dwc2 ⊙ �′(wTc1x̃) + wc2 ⊙ d�

′(wTc1x̃))
= In ⋅ dwc1 ⋅ (wc2 ⊙ �′(wTc1x̃))+
wc1(wc2 ⊙ d�′(wTc1x̃))I1

(46)

Recall (37) and reshape both sides to column vectors:

vec(d�̂(x̃t)) = d�̂(x̃t)
= ((wc2 ⊙ �′(wTc1x̃))

T ⊗ In) ⋅ vec(dwc1)+
(I1 ⊗ wc1) ⋅ vec(wc2 ⊙ d(

1
2 (1 − �

◦2(wTc1x̃))))
= ((wc2 ⊙ �′(wTc1x̃))

T ⊗ In) ⋅ vec(dwc1)+
(I1 ⊗ wc1) ⋅ vec(wc2 ⊙ (−�(wTc1x̃)⊙
(�′(wTc1x̃)⊙ ((dwc1)

Tx̃))))
= ((wc2 ⊙ �′(wTc1x̃))

T ⊗ In) ⋅ vec(dwc1)−
(I1 ⊗ wc1)diag(vec(wc2))⋅
diag(�(wTc1x̃))diag(�

′(wTc1x̃)))vec(Ip(dwc1)
Tx̃)

= ((wc2 ⊙ �′(wTc1x̃))
T ⊗ In − (I1 ⊗ wc1)⋅

diag(vec(wc2))diag(�(wTc1x̃))diag(�
′(wTc1x̃))⋅

(x̃T ⊗ Ip)K) ⋅ vec(dwc1)

(47)
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where ∙◦2 is an element-wise square operation, and K is a
commutation matrix of wc1. Similar to )�̂(x̃t)∕)wc2, based
on the relationship between the derivative of the vector �̂(x̃t)
with respect to the matrix wc1, and the differentials of �̂(x̃t)
and wc1, )�̂(x̃t)∕)wc1 is obtained as follows:

)�̂(x̃t)
)wc1

= ((wc2 ⊙ �′(wTc1x̃))
T ⊗ In − (I1 ⊗ wc1)⋅

diag(vec(wc2))diag(�(wTc1x̃))⋅
diag(�′(wTc1x̃))(x̃

T ⊗ Ip)K)T
= (wc2 ⊙ �′(wTc1x̃))⊗ In − KT(x̃⊗ Ip)⋅
diag(�′(wTc1x̃))diag(�(w

T
c1x̃))⋅

diag(vec(wc2))(I1 ⊗ wTc1)

(48)

Note that in order to obtain the derivative of a vector
with respect to a matrix, tensor operation is involved, which,
however, reduces the dimensionality of the original matrix.
Therefore, after calculating the gradients of error with re-
spect to weights (referring to (16) by chain rule), dimension-
ality analysis is required to reshape the results.
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