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Abstract: The use of inertial measurement units (IMUs) has gained popularity for the estimation of
lower limb kinematics. However, implementations in clinical practice are still lacking. The aim of
this review is twofold—to evaluate the methodological requirements for IMU-based joint kinematic
estimation to be applicable in a clinical setting, and to suggest future research directions. Studies
within the PubMed, Web Of Science and EMBASE databases were screened for eligibility, based
on the following inclusion criteria: (1) studies must include a methodological description of how
kinematic variables were obtained for the lower limb, (2) kinematic data must have been acquired
by means of IMUs, (3) studies must have validated the implemented method against a golden
standard reference system. Information on study characteristics, signal processing characteristics
and study results was assessed and discussed. This review shows that methods for lower limb joint
kinematics are inherently application dependent. Sensor restrictions are generally compensated with
biomechanically inspired assumptions and prior information. Awareness of the possible adaptations
in the IMU-based kinematic estimates by incorporating such prior information and assumptions is
necessary, before drawing clinical decisions. Future research should focus on alternative validation
methods, subject-specific IMU-based biomechanical joint models and disturbed movement patterns
in real-world settings.

Keywords: inertial measurement unit; lower quadrant; movement analysis; outside laboratory;
sensor fusion

1. Introduction

Evaluating kinematical characteristics is crucial for a correct clinical understanding of complex
functional movements such as gait [1], a forward lunge and other tasks requiring optimal motor
control [2]. Studying kinematics can help in the assessment of the patients’ functionality and progression
in their rehabilitation period. Different lab-based methods are currently available for researchers to
obtain kinematical parameters.

A 3D optical motion capture system is currently the gold standard and the most commonly used
technique to study lower limb movement [3]. However, optical motion capture systems require a rather
expensive set-up of infrared cameras that track reflective markers attached to the body of a subject.
This type of movement analysis is therefore only applicable in a dedicated laboratory environment
and thus is restricted in physical space. Furthermore, the accuracy in the obtained joint kinematics
directly relates to a correct placement of markers [4,5] and soft tissue artifacts [3].
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To overcome these restrictions, the use of wearable devices to monitor human movements has been
studied extensively [6,7]. Recent reviews concerning kinematic analysis with inertial measurement
units (IMUs) are typically conducted either by engineering experts [7–9] or by clinicians [10–12], who
focus on technical aspects or clinical relevance. Previously conducted reviews highlighted the growing
interest for inertial sensors in clinical practice [13]. Benson et al. [1] reported the need for gait analysis
over longer time periods, with larger number of participants, in natural environments. O’Reilly et
al. [14] pointed towards the use of machine learning techniques for lower limb exercise detection and
classification with IMUs. Moreover, Picerno [12] presented a history of methodologies for IMU-based
joint kinematic estimation of the past 25 years in gait analysis.

However, when applying IMU-based joint kinematics to specific applications in a clinical setting,
a good understanding of the methodological requirements is still lacking. The aim of this review is
twofold—to evaluate the methodological requirements for IMU-based, lower limb joint kinematic
estimation to be applicable in a clinical setting, and to suggest future research directions.

2. Methods

2.1. Eligibility Criteria

This review focused on peer-reviewed articles and conference papers published in English which
included a description of the methodology used to obtain kinematic variables of the lower limb by
means of IMUs. To be included in the review, a validation against a reference system e.g., an optical
motion capture system, should be reported. Also, studies of which the methodology was extended
with measurement modalities other than these available within IMUs, i.e., a pressure sensor, were
included. A journal paper was preferred over a conference paper when similar content was covered.

Review papers and book chapters were excluded. Studies related to upper quadrant movements
were not considered for this review. Studies of which the methodology was not applicable for
outside-laboratory usage were left out. Articles lacking a description of a reproducible algorithm to
obtain joint kinematics were also excluded.

2.2. Search Strategy and Study Selection

The available literature was searched in a systematic way through a personalized four step
PRISMA method (Preferred Reporting Items for Systematic review and Meta-Analyses). These four
steps are summarized in Figure 1. A systematic literature search in three databases (PubMed, Web of
Science, EMBASE) covering a broad range of both medical and engineering studies was conducted.
The literature was updated on a monthly basis until the end of September 2019. The search strategy and
combinations of keywords for the different databases are described in Appendix A. After the removal
of duplicates, the remaining records were screened on title and abstract and assessed for eligibility.
Additionally, references of included articles were screened to ensure inclusion of all relevant studies.

2.3. Data Extraction

Data from all selected articles were extracted and are structured in Tables 1–3. The following
information was extracted: (1) study characteristics (Table 1) covering participant information, the
activity assessed, activity duration and the joints of interest with their investigated degrees of
freedom (DoF). Additionally, sensor placement and the used sensor modalities contribute to the study
characteristics, where sensor modalities refers to the raw sensor data that are used in the algorithm.
Later in the article, IMU will be used for inertial measurement units which can measure specific
force, angular velocity and sometimes magnetic field strength. (2) Signal processing characteristics
(Table 2) describing the process to obtain meaningful kinematic measures from measured sensor data.
This process is divided into pre-processing, the additional assumptions that have been made and
the signal processing techniques that are used to extract the kinematic measures. The pre-processing
is related both to sensor calibration as well as to filtering of the raw sensor signals. Later in the
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article, priors and assumptions will be defined as follows—prior information relates to information
acquired by ether auxiliary apparatus or estimated by IMU measurements, while assumptions relate to
a certain hypothesis made. Signal processing techniques describe how to cope with sensor to segment
calibration, orientation initialization, sensor fusion and drift compensation. (3) The study results
(Table 3) summarize the accuracy of the proposed methods against a reference system.
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the search strategy and study selection procedure, adapted from [15].

3. Results

The results of our systematic literature search initially identified 4290 articles of which thirty-one
articles were ultimately included. Extracted information of included studies on study characteristics
(Table 1), signal processing characteristics (Table 2) and study results (Table 3) are covered in respectively
Sections 3.1–3.3.

3.1. Study Characteristics

The study characteristics summarized in Table 1 cover participant information, protocol of the
conducted study and sensor set-up. Only four out of the thirty-one included studies involved more
than ten participants [16–19]. Furthermore, a predominantly healthy population was recruited, except
for identified populations with ankle osteoarthritis [17], transfemoral amputation [20], incomplete
spinal cord injury [21], children with cerebral palsy (CP) [19] and stroke patients [22].

Among the thirty-one studies included in this review, gait was the most commonly evaluated
activity, which was assessed either on a treadmill [16,17,23,24] or a walkway [20–22,25–38]. Functional
movements (i.e., sit-to-stand, squat) are the next most common activities [18,19,32,39–41]. Furthermore,
seven studies focused on more dynamic types of locomotion such as common daily activities [24] and
sports, including ski racing [42], running [38,43,44], standing long jump [45] and cycling [46]. Only
nine studies reported kinematic analysis beyond 30s of recording [17,21,22,24,29,42–44,46].

Most articles did not study the full 3D kinematics of the entire lower quadrant. Sagittal knee joint
movements were most extensively studied [21,23,36,40,43,44]. Furthermore, three studies extended
such a hinge joint model to three DoF knee joint movements [25,26,29]. Two studies solely assessed
the hip joint in two DoF [28] and three DoF [46]. Two studies solely focused on the ankle complex in
three DoF [17,32]. Studies that incorporated multiple joints, also predominantly restrict movement
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analysis to the sagittal plane. To this end, most commonly assessed was the combination of the full
sagittal lower limb (hip, knee, ankle) [24,30,31,34,38,41,45]. Second most common combination was
the assessment of the sagittal knee and ankle joint movement [16,19,20,27].

Nearly all the studies made use of sensors placed on adjacent segments surrounding the joint of
interest. Four studies opted for a more distal placement on the segments [18,22,35,37]. Only three out
of thirty-one studies were able to provide a reproducible description of sensor placement based on
anatomical landmarks [19,38,42]. Most of the studies only used three-axes gyroscopes and three-axes
accelerometers [17–20,22,25,26,30,31,33,34,37–39,42,44]. Six studies additionally incorporated a
magnetometer [24,29,32,43,45,46]. Moreover, four studies complemented IMU measurements with
other modalities, such as a pressure sensor [21,24,36,45].

3.2. Signal Processing Characteristics

Signal processing characteristics (Table 2) were split up into three components. The first component
covered pre-processing and the use of prior information and assumptions. Sensor readings are
typically corrupted by measurement noise and bias. These noise and bias affected measures require
a compensation in the form of pre-processing steps. The incorporation of prior knowledge and
assumptions will further ease the calculation of kinematics. A second component summarized methods
to combine pre-processed measurements from different sensor modalities with priors and assumptions,
called information fusion. The third component described compensation mechanisms to account for
integration drift, to initialize joint angles, and to cope with a natural misplacement of a sensor with
respect to the boney landmarks.

3.2.1. Pre-Processing, Prior Information and Assumptions

Eight studies compensated for gyroscope bias [18,21,22,32–34,37,42]. Seven studies described a
method for accelerometer calibration [16,18,22,32,33,38,42]. More extensive calibration procedures for
inertial measurement units [47,48] were subsequently used in [18,22,32,38,42]. Raw inertial sensor
measurements were often filtered. Most commonly, a Butterworth filter [19,21,32,34,39,46] was used.
The filter orderwas chosen between 2 and 4. Cut-off frequencies differed between 2Hz and 20Hz, with
the exception of [42], where information above 100 Hz was neglected.

The analysis of human motion yields biomechanically related prior information such as joint
range of motion (RoM) [18,39,41], segment lengths [18,24,33,34,37,38,40,41,45] and spatiotemporal
gait parameters [21,37]. Additionally, the indirect way of measuring kinematics with IMUs placed
on the body segments required prior knowledge about the sensor position with respect to the
joint center [23,24,29,40,46], sensor to segment alignment [17,29,34,37,40,44,46] and an initial sensor
orientation or kinematic estimate [39,44]. Furthermore, three studies described a method to learn a
fully subject-specific model [30,31,43].

Besides prior knowledge, specific assumptions were also exploited to ease the estimation of
joint kinematics. Both a single description of joint acceleration in a common reference frame (up to a
time-variant rotation matrix) and segment rigidity were often used as assumptions [20,23,28,29,33,35,36,
38,42]. Furthermore, human motion was assumed to coincide with kinematic chain conventions [49,50]
that describe how connected segments behave [18,22,37,39]. Seven studies assumed periodicity in the
motion [16,17,22,30,38,39,41,45]. Moreover, three studies assumed symmetry between the right and
left side of the subject [35,41,45].
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Table 1. Study characteristics.

Ref.
Participants Protocol Sensor Set-Up

Number and Sex, Type, Age Activity Duration DoF Joint of Interest Placement Modalities

[23] 5M 3F, healthy, Gait (Treadmill)
30s 1DoF knee thigh, shank 1D GYR,

2D ACCrange: 44-70 mean = 58.7 (2–4 km/h)

[25] 10M, healthy,
Gait 10s 3DoF knee thigh, shank 3D GYR,

3D ACCrange: 23-40 mean = 29

[26] 8M, healthy,
Gait 5s * 3DoF knee thigh, shank 3D GYR,

3D ACCrange 19–28 mean = 26

[16] 27, healthy, Gait (Treadmill)
(0,15 m/s–2 m/s) 6s *

1DoF knee, thigh, shank, foot 2× 2D
ACCmean = 26 SD = 1,5 1DoF ankle

[27] 10, healthy, Gait
3s *

1DoF knee, thigh, shank, foot 2× 2D
ACCmean = 31 SD = 4 (slow, normal, fast) 1DoF ankle

[28] 6M 2F, healthy, Gait
10s * 2DoF hip close to the hip, thigh

2× 3D
ACC,

mean = 25 SD = 3 (slow, normal, fast) 1× 3D
ACC

[42] 6, European cup level alpine ski
racers, ND

Alpine ski racing 90s *
3DoF hip, sternum, sacrum, thigh (lateral mid-distance

between the knee and hip joint center), shank
(tibial plateau)

3D GYR,
3D ACC3DoF knee

[29] ND Gait 35s * 3DoF knee pelvis, thigh, shank, foot
3D GYR,
3D ACC,
3D MAG

[30] 8, healthy, ND
Gait

ND
1DoF hip,

shank, foot 3D GYR,
3D ACC

(slow, normal, fast) 1DoF knee,
1DoF ankle

[31] 8, healthy, ND Gait
12s *

1DoF hip, shank, foot 3D GYR,
3D ACC(self-selected

speed)
1DoF knee, 1DoF

ankle

[43] 8M, healthy experienced runners,
mean = 25.1 SD = 5.2

Running
(Treadmill) 180s 1DoF knee pelvis, shank

3D GYR,
3D ACC,
3D MAG(10 km/h–14 km/h)

[32] 2M, healthy, range: 23–25 Leg exercises, gait 8s * 3DoF ankle 3DoF ankle
3D GYR,
3D ACC,
3D MAG
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Table 1. Cont.

Ref.
Participants Protocol Sensor Set-Up

Number and Sex, Type, Age Activity Duration DoF Joint of Interest Placement Modalities

[40] 1M, ND, 29 Squat 11s * 1DoF knee thigh, shank 1D ACC

[20] 1, transfemoral amputee, 40 Gait 6s * 1DoF knee, 1DoF
ankle thigh, shank, foot 3D GYR,

3D ACC

[33] 3M, healthy, range: 23–28 Gait 10s * 2DoF hip, 1DoF knee thigh, shank 3D GYR,
3D ACC

[34] 5M, healthy, range: 22–27 Gait ND 1DoF hip, 1DoF knee,
1DoF ankle pelvis, thigh, shank, foot 3D GYR,

3D ACC

[24] 5M, healthy, mean = 27.6 SD = 3.4 Gait (Treadmill),
15min 1DoF hip, 1DoF knee,

1DoF ankle
lower back, thigh, shank, foot

3D GYR,
3D ACC,
3D MAG,
pressure
insolesStair walking

[35] 6, healthy, > = 18 Gait
ND 1DoF hip, 1DoF knee center of lumbar, thigh (most distal), shank

(most distal)
1D ACC,
1D GYR(Cadence range:

60-120 step/min)

[36] 1, healthy, ND Gait (self-selected
speed) 2s * 1DoF knee thigh, shank

2 × 3D
ACC,

PSECR
insole

[17]
7F 3M/3F 9M, healthy/unilateral

ankle osteoarthritis, mean = 60 SD =
15/mean = 61 SD = 13

Gait (Treadmill)
5min

3DoF shank-hindfoot,
3DoF

hindfoot-forefoot,
3DoF shank-forefoot,
3DoF forefoot-toes

shank, hindfoot, forefoot, toes

3D GYR,
3D ACC

(2 km/h–5 km/h)

[45] 1M, healthy, 23 Standing
5s * 1DoF hip, 1DoF knee,

1DoF ankle
chest, right thigh, right shank

3D GYR,
3D ACC,
3D MAG,
pressure

insole
long jump

[18] 12M 8F, healthy, mean = 23
Functional

rehabilitation
exercises

ND 3DoF (stationary base),
2DoF knee, 1DoF

hip (height of the anterior superior iliac spine),
thigh (near the knee), calf (near the ankle)

3D GYR,
3D ACC
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Table 1. Cont.

Ref.
Participants Protocol Sensor Set-Up

Number and Sex, Type, Age Activity Duration DoF Joint of Interest Placement Modalities

[41] 5M 3F, healthy, mean = 32.5 SD = 9.9 Squat ND
1DoF hip,

1DoF knee,
1DoF ankle

lower back 1D GYR,
2D ACC

[39] 9M 1F, healthy, mean = 25 SD = 3 Functional
exercise ND 3DoF hip,

1DoF knee shank 1D GYR,
2D ACC

[37] 5, healthy, range: 19–25 Gait ND
3DoF hip,

1DoF knee,
1DoF ankle

waist, hip, knee 3D GYR,
3D ACC

[46] 1, ND, ND Cycling 5min 3DoF hip pelvis, thigh
3D GYR,
3D ACC,
3D MAG

[21] 2, 1 healthy and 1 incomplete SCI subject, ND Gait 50s * 1DoF knee thigh, shank 1D GYR,
FSR

[19]
5 healthy/28 CP, 3M 2F/17M 3M 2F/17M 11F, healthy/CP,
mean = 26 SD = 2.0/(18 subjects mean 7.5 sd = 3.1 and 10

subjects mean 5.5 sd 3.5)

Leg
movements
in supine
position

30s * 1DoF knee,
1DoF ankle thigh, shank, foot 3D GYR,

3D ACC

[22] 3 and 2, healthy and stroke patients, ND and rang: 67:77 Gait 80s 3DoF hip,
1DoF knee pelvis, thigh, shank 3D GYR,

3D ACC

[44] 5M 3F, healthy, mean = 30 SD = 6 Gait,
running 5min 1DoF knee thigh, shank 3D GYR,

3D ACC

[38] 10M, healthy, mean = 27.1 sd = 2.6 Gait,
running ND

1DoF hip,
1DoF knee,
1DoF ankle

lower back, lateral thigh,
lateral shank, and upper

midfoot.

3D GYR,
3D ACC

Abbreviations: ND = not described; N/A = not applicable; M = Men; F = Female; SD = standard deviation; GYR = gyroscope; ACC = accelerometer; MAG = magnetometer; D =
Dimensions (number of sensitive axes); DoF = degree of freedom; * = activity duration not explicitly mentioned, based on time axis of plots incorporating sampling frequencies; PSECR =
pressure sensitive electric conductive rubber; SCI = incomplete spinal cord injured; FSR = force sensitive resistors.
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3.2.2. Information Fusion

A set of common approaches for information fusion were identified in the thirty-one studies
considered in this review. Strap-down integration was used [17,19,25,26,32,34,35,42,45] and
characterized by Sabatini et al. [51] as “The attitude of the rigid body and its non-gravitational
accelerations are sensed by gyroscopes and accelerometers strapped to the body.” Two studies followed
a complementary filtering approach which acts in the frequency domain, to simultaneously filter
high-frequency noise on the accelerometer inclination estimates and low-frequency noise on the
integrated angular velocity relative orientation estimates [20,46]. Estimating sensor orientations is an
inherently nonlinear problem. Five studies made use of nonlinear filtering techniques, such as an
extended Kalman filter, to optimally fuse sensor measurements [18,22,24,37,44] or nonlinear numerical
optimization [29,38,39] which makes use of all data samples to obtain a kinematic estimate.

Different from conventional information fusion methods, other methods were proposed for the
application of joint kinematic estimation. For example, three studies used regression techniques to
map raw sensor data to known kinematic parameters [30,31,43]. Furthermore in [33,40], motions were
modeled as a moving pendulum to implicitly handle the fusion. Inverse kinematics were aided with
accelerometer displacement estimates in [29,41,45]. Furthermore, Dejnabadi et al. [23] described joint
angles at the joint center, based on the assumption of a common joint acceleration for one physical
point. In contrast with information fusion, the use of only one sensor modality was exploited in six
studies to overcome the need for fusion in accelerometer-only [16,27,28,36,40] and gyroscope-only
methods [21].

3.2.3. Drift Compensation, Initialization and Calibration

Integration drift originates as an artifact by integration of noise- and bias-affected gyroscope
measures. In this article, global and relative drift are defined as drift with respect to a global or
an adjacent segment reference frame, respectively. Drift in the vertical plane was compensated by
tilt estimates from accelerometer readings, which are dominated by gravity during characteristic
samples [17,19,20,24–27,32,34,35,42]. Further drift compensation in the horizontal plane was achieved
by utilizing magnetometer readings [32,46]. Two studies reported a resetting approach for azimuth
angles in a cycle-by-cycle manner during mid-stance in gait [17,45]. Regardless of the movement plane,
relative drift between segments is compensated by the incorporation of priors and assumptions. For
example, imposing segments to be connected at all times [29] by imposing joint DoF boundaries [44] or
RoM constraints [18]. Also, the incorporation of time periods when segments were connected to the
ground [18,21,24,37,38] were used to reset to the known absolute inclinations at given time instances.
Furthermore, distinguishing gravity from linear acceleration by modeling motion as a pendulum was
used to prevent drift [46]. One study reported on the reduction of drift solely by means of filtering raw
sensor measurements in a pre-processing step [34]. Furthermore, four studies reported the use of a
periodicity [22,38,39,41] assumption to compensate for drift.

The information fusion techniques from Section 3.2.2 require the kinematics at the first instance to
be initialized. A reasonable initialization can be obtained using prior knowledge. Six studies described
the need for a static upright pose to obtain an initial orientation [16,25–27,29,42,45]. Three studies
extended the latter by means of two different static poses [23,33,34]. Furthermore, magnetometer data
were used to initialize the azimuth angle [29]. The initial difference between segments around the
vertical was identified by means of ab/adduction movement [25,26]. Furthermore, two studies utilized
auxiliary apparatus such as photogrammetric devices to initialize the sensor orientation [39,44].

To overcome misalignment between sensor and segments, different approaches were identified.
Two studies aligned the sensor and segment with active [26] or passive [32] sagittal and frontal shank
movements. One study extended calibration movements to application-dependent movements [42,52].
Five studies exploited prior knowledge to overcome sensor to segment misalignments [29,34,37,40,44,
46]. In contrast to the aforementioned calibration methods, two studies assumed a perfect alignment
between sensor and anatomical axis [21,23].
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Table 2. Signal processing characteristics.

Ref.

Pre-Processing Additional Information Signal Processing

Sensor
Calibration

Filter, Type,
Order, Cut-Off,

Input Data
Prior Knowledge Assumptions

Initialization and
Sensor-Segment

Alignment

Information
Fusion Drift Compensation

[23] ND Savitzky-Golay, LP,
3, ND, GYR ACC

Position sensor
w.r.t. joint center
(Photography)

Same acceleration in
joint center,

Sensor-to-segment
mounting

assumptions

(INI) Static: 5s (knees
extended) and 5s (knees

flexed) (S-S) assumptions

Virtual sensors in
joint center N/A

[25] ND ND ND ND (INI) Static: 10s stand still,
Functional: hip AA.

Strap-down
integration [53]

ACC gravity
compensation, during
characteristic samples

[26] ND ND ND ND

(INI) Static: stand still
Functional: hip AA, (S-S)
Passive shank movements

in frontal and sagittal
plane

Strap-down
integration [53]

ACC gravity
compensation, during
characteristic samples

[16] ACC ND ND

Tangential and
centripetal

acceleration from
redundant ACC

set-up, Periodicity

(INI) Static: 2s stand still
before and after a trial N/A BP filtering

[27] ND ND Position sensor
w.r.t. joint center

Tangential and
centripetal

acceleration from
redundant ACC set-up

(INI) Static: 2s stand still
before and after a trial N/A

ACC gravity
compensation, during
characteristic samples,

Nonlinear optimization

[28] ND ND, LP, ND, 20Hz,
ACC

Position sensor
w.r.t. joint center

Tangential and
centripetal

acceleration from
redundant ACC

set-up, Same
acceleration

in joint center

ND N/A N/A

[42] GYR, ACC [47] ND, LP, ND, 100,
GYR ACC ND Same acceleration

in joint center
(INI) Static: stand still

(S-S)[52]
Strap-down

integration [53]

ACC gravity
compensation, during
characteristic samples,

Multi-sensor drift
correction
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Table 2. Cont.

Ref.

Pre-Processing Additional Information Signal Processing

Sensor
Calibration

Filter, Type,
Order, Cut-Off,

Input Data
Prior Knowledge Assumptions

Initialization and
Sensor-Segment

Alignment

Information
Fusion Drift Compensation

[29] GYR ND

Manual
measuring:

Orientation sensor
on body segment,

Position sensor
w.r.t. joint center

Segments are
connected to each

other at all time and
Sensors can move
slightly w.r.t. body

segment

(INI) Static: stand still
pose (ACC and MAG)
(S-S) prior information

Constraint
optimization,
Strap-down
integration

Exploit assumptions

[30] ND ND Subject specific
trained model Periodicity ND Regression:

GRNN N/A

[31] ND ND Subject specific
trained model ND ND Regression:

GRNN N/A

[43] ND (No inertial data
was filtered)

Subject specific
trained model ND ND

Regression: ANN,
two-layer (250 and

100 neurons)
N/A

[32] GYR, ACC [47] Butterworth, LP, 2,
5Hz, ACC GYR ND

Assume same
discrepancies in
magnetic field

interference for both
segments

(S-S) Functional: two leg
movements.

Strap-down
integration

ACC gravity
compensation, during
characteristic samples,

MAG readings

[40] ND ND

Stereo-photogrammetric:
Segment lengths,

Orientation sensor
on body segment,

Position sensor
w.r.t. joint center

Feet are supposed
rigidly connected to

the ground, Pendulum
motion

(S-S) prior information N/A N/A

[20] ND ND ND Same acceleration in
joint center N/A Complementary

filter Exploit assumptions

[33] GYR, ACC
Moving average,

LP, ND, 15 point at
100Hz, ACC GYR

Segment lengths

Same acceleration in
joint center,

Pendulum motion
thigh around the hip,
constant velocity in

walking speed

(S-S) Static: two poses
(standing upright and

sitting flat with
outstretched legs)

Pendulum model N/A

[34] GYR Butterworth, LP, 4,
12Hz, GYR

Segment lengths,
Orientation sensor
on body segment
(sagittal image)

ND

(INI) Static: two poses
(standing upright and

sitting flat with
outstretched legs) (S-S)

prior knowledge

Strap-down
integration

ACC gravity
compensation, during
characteristic samples
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Table 2. Cont.

Ref.

Pre-Processing Additional Information Signal Processing

Sensor
Calibration

Filter, Type,
Order, Cut-Off,

Input Data
Prior Knowledge Assumptions

Initialization and
Sensor-Segment

Alignment

Information
Fusion Drift Compensation

[24] ND ND

Optical reference:
Segment lengths,
Position sensor

w.r.t. joint center

One foot on the
ground at all time

with zero acceleration
at contact point.

ND Recursive EKF

ACC gravity
compensation, during
characteristic samples,
Exploit assumptions

[35] ND ND Position sensor
w.r.t. joint center

Symmetry, Drift
linearly accumulates
during integration,

ACC measured most
distal at a segment

equals the joint center
acceleration, Same
acceleration in joint

center

ND Strap-down
integration

ACC gravity
compensation, during
characteristic samples,

Modeling and correcting
drift as linear
accumulating

[36] ND

ND, BP, ND,
function of PSECR

skin motion
frequency content,

ACC

Position sensor
w.r.t. joint center,

total pressure, CoP
between sensor

and skin

Same acceleration in
joint center ND N/A N/A

[17] ND ND

Orientation sensor
on body segment
(Optical motion
capture system)

Periodicity (S-S) prior information Strap-down
integration

ACC gravity
compensation, during
characteristic samples,

Azimuth zeroing
cycle-by- cycle.

[45] ND ND Segment lengths Symmetry, Periodicity (INI) Static: stand still
pose.

Strap-down
integration,

displacement from
ACC double
integration

Exploit assumption
Symmetry

[18] GYR, ACC
[47] ND

Segment lengths
(Optical motion
capture system),

RoM,
(anthropometric

data)

DH convention ND EKF Exploit assumptions &
prior information

[41] ND ND Segment lengths,
RoM

Periodicity, perfect
sagittal symmetry ND

Inverse kinematics,
displacement from

ACC double
integration

Exploit assumptions
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Table 2. Cont.

Ref.

Pre-Processing Additional Information Signal Processing

Sensor
Calibration

Filter, Type,
Order, Cut-Off,

Input Data
Prior Knowledge Assumptions

Initialization and
Sensor-Segment

Alignment

Information
Fusion Drift Compensation

[39] ND
Butterworth, LP,

ND, 2Hz, squared
GYR

RoM,
Segment lengths

(manually
measured),

Initial joint angle
(measured by
goniometer)

Periodicity, DH
convention (INI) prior information Constraint

optimization Exploit assumptions

[37] GYR ND

Segment lengths,
Orientation sensor
on body segment,

(Manual
annotation)

Spatio-temporal
data.

One foot on the
ground at all time,

kinematic chain model
[49]

(S-S) prior information EKF Exploit assumptions

[46] ND Butterworth, LP, 4,
15Hz, ACC

Position sensor
w.r.t. joint center,

Orientation sensor
on body segment

Pendulum motion of
thigh segment around

the hip CoR
(S-S) prior information

Adapted
complimentary

filter [54]

Exploit assumptions,
MAG readings

[21] GYR Butterworth, LP, 4,
4Hz, GYR

Spatio-temporal
data (FSR

measurements)

Sensor-to-segment
mounting

assumptions
(S-S) assumptions N/A

HP filtering kinematic
estimates, resetting during
mid-stance in gait cycle.

[19] ND Butterworth, LP, 2,
10Hz, GYR ACC ND

Movements outside
sagittal plane occur

only at full extension
ND Strap-down

integration

ACC measuring gravity
during characteristic

samples. Correction for
movements outside of

sagittal plane.

[22] GYR, ACC [48] ND, LP, ND, 10Hz,
GYR ACC ND Periodicity, kinematic

chain model [49] ND Adapted EKF Exploit assumption
Periodicity

[44] ND ND

Sensor orientation
difference adjacent
segments, Initial

sensor orientation
(Optical motion
capture system)

ND (CAL and S-S) prior
information EKF Exploit Joint DoF

constraint.
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Table 2. Cont.

Ref.

Pre-Processing Additional Information Signal Processing

Sensor
Calibration

Filter, Type,
Order, Cut-Off,

Input Data
Prior Knowledge Assumptions

Initialization and
Sensor-Segment

Alignment

Information
Fusion Drift Compensation

[38] GYR, ACC [47] ND

Segment masses,
measured segment
lengths, center of

mass locations,
moments of inertia

[55]

Periodicity, constrain
translational joint

movement
(S-S) ND (I-I) initial guess Constraint

optimization Exploit assumptions

Abbreviations: ND = not described; N/A = not applicable; GYR = gyroscope; ACC = accelerometer; AA = Abduction Adduction; LP = Low Pass; BP = Band Pass; S-S = Sensor to Segment
alignment; INI = initial orientation; MAG = magnetometer; GRNN = General Regression Neural Network; ANN = Artificial Neural Network; EKF = Extended Kalman filter; PSECR =
pressure sensitive electric conductive rubber; CoP = Center of Pressure; DH = Denavit-Hartenberg; RoM = Range of Motion; DoF = Degrees of Freedom.

Table 3. Study results.

Ref.
Reference Accuracy

Method Joint [Measure, Unit] Sagittal Frontal Transversal

[23] Ultra-sound based motion measurement knee [RMSE, deg] 1.3
[25] Magnetic tracking device knee [RMSE mean (SD), deg] 1.5 (0.4) * 1.7 (0.5) * 1.6 (0.5) *
[26] Magnetic tracking device knee [RMSE mean (SD), deg] 1.3 (0.5) * 2.0 (0.6) * 2.0 (0.9) *

[16] Flexible goniometer knee [RMSE median, deg] 5
ankle [RMSE median, deg] 3.5

[27] Optical motion capture system knee [RMSE median, deg] 3
ankle [RMSE median, deg] 2.8

[28] Optical motion capture system hip [RMSE, deg] 4.1 4.9

[42] High definition camera’s hip [RMSE, deg] 6.0 (1.5) * ND ND
knee [RMSE, deg] 4.8 (1.7) * ND ND

[29] Optical motion capture system knee graph only graph only graph only

[30] Optical motion capture system
hip *,*,*

knee *,*,*
ankle *,*,*
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Table 3. Cont.

Ref.
Reference Accuracy

Method Joint [Measure, Unit] Sagittal Frontal Transversal

[31] Optical motion capture system
hip [correlation] (0.7-0.89) *,*,*

knee [correlation] (0.7-0.89) *,*,*
ankle [correlation] (0.7-0.89) *,*,*

[43] Optical motion capture system knee [mean RMSE, deg] <5 *,*,*
[32] Optical motion capture system ankle [RMSE, deg] [0,1] *,* [1–2.5] *,* [2.5–4.5] *,*

[40] Mechanical pendulum setup and Optical motion
capture system knee [RMSE mean (SD), deg] 1.01 (0.11)

[20] Optical motion capture system knee [RMSE healthy|prosthesis mean (SD), deg] 3.30 (1.20)|0.71 (0.19)
Ankle [RMSE healthy|prosthesis, deg] 1.62 (0.57)|0.81 (0.16)

[33] Optical motion capture system hip [RMSE, deg] 8.72
4.96knee [RMSE, deg] 6.79

[34] Optical motion capture system
hip [RMSE, deg] 10.14

knee [RMSE, deg] 7.88
ankle [RMSE, deg] 9.75

[24] Optical motion capture system
hip (median over all described conditions, deg) <5

knee (median over all described conditions, deg) <5
ankle (median over all described conditions, deg) <5

[35] Optical motion capture system hip [RMSE mean (SD), deg] 5.24 (0.27)
knee [RMSE mean (SD), deg] 11.22 (1.09)

[36] Optical motion capture system knee graph only

[17] Optical motion capture system shank-hindfoot, hindfoot-forefoot, shank-forefoot,
forefoot-toes [RMSE, deg] [1.4; 2] [1.4; 2] [1.4; 2]

[45] Optical motion capture system
hip [RMSE, deg] 3.92

knee [RMSE, deg] 7.87
ankle [RMSE, deg] 3.22

[18] Optical motion capture system
hip [RMSE mean, deg] 4.3 6.5

6.5knee [RMSE mean, deg] 4.3 6.5
ankle [RMSE mean, deg] 4.3

[41] Optical motion capture system
hip [RMSE mean (SD), deg] 3.1 (0.9)

knee [RMSE mean (SD), deg] 2.0 (1.0)
ankle [RMSE mean (SD), deg] 3.2 (1.0)
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Table 3. Cont.

Ref.
Reference Accuracy

Method Joint [Measure, Unit] Sagittal Frontal Transversal

[39] Optical motion capture system hip [RMSE mean (SD), deg] 3.6 (2.4) 2.4 (1.0) 2.7 (1.4)
knee [RMSE mean (SD), deg] 4.0 (3.1)

[37] Optical motion capture system
hip ND

ND NDknee [RMSE mean (SD), deg] 6.20 (1.48)
ankle ND

[46] Optical motion capture system hip [MAE, deg] 0.8 6.7 2.2
[21] Optical motion capture system knee [RMSE, deg] 6.42

[19] Optical motion capture system knee [RMSE, deg] <3
ankle [RMSE, deg] <3

[22] Optical motion capture system hip [RMSE, deg] 2.4
2.4 2.4knee [RMSE, deg] 2.4

[44] Optical motion capture system knee [RMSE, deg]

[38] Optical motion capture system
hip [RMSE mean (SD), deg] 8.7

knee [RMSE mean (SD), deg] 5.3
ankle [RMSE mean (SD), deg] 4.6

Abbreviations: ND = not described; deg = degree; SD = standard deviation; *(precision) after removing an offset; *,* interpreted from box-plot *,*,* Inter and intra-subject dependent.
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3.3. Study Evaluation and Results

Study validity with respect to a reference system is reported in Table 3. For the reader’s
convenience, the least accurate results were considered in all studies that report multiple results
for different activities or methodological parameters. When available, the results for healthy and
pathological subjects were reported separately. Accuracy by means of root mean squared errors, mean
absolute error or correlation coefficients of the estimated angles was reported with respect to a reference
system. References systems other than an optical motion capture system consisted of an ultra-sound
system [23], magnetic tracking device [25,26], flexible goniometer [16] and high definition cameras [42].
Two studies showed a disagreement in degrees of freedom in (Table 1) and the validated degrees of
freedom [37,42]. Inconsistent accuracy results were reported for all joints of the lower limb. Sagittal
plane motions for all studies were reported with mean RMSE values ranging between 1.3–11.22 degrees
while frontal and transversal RMSE values ranged between 1–6.7 and 1.4–6.5 degrees, respectively.

4. Discussion

This review systematically evaluated the methodological requirements for IMU-based lower limb
joint kinematic estimation. Human motion analysis with inertial sensors has the potential to increase
understanding in movement patterns in trusted well-known environments [10]. However, from an
engineering point of view, it is an ambitious goal that is currently the subject of research [1,12]. A
general inconsistency in accuracy of the study results (Table 3) indicates that the signal processing
characteristics summarized in Section 3.2 (Table 2) highly depend on the application (Table 1) of interest.

In summary, lower limb kinematic estimation from inertial sensors requires a well-defined
application and study characteristics. The study characteristics define which sensor modalities will
be measured and processed to compensate for the following sensor restrictions: (1) due to their
microelectromechanical architecture, raw sensor measurements are prone to noise and non-zero biases;
(2) an integration step of measurements is typically necessary to obtain joint kinematics, resulting
in drifting estimates of sensor orientations and joint kinematics; (3) inertial sensors are usually not
aligned with the bone, which implies that misalignment with respect to anatomical coordinate frames
needs to be identified; (4) initial sensor orientations need to be determined.

In order to overcome these sensor restrictions, all of the included articles were required to rely in
some way on application-specific prior information and assumptions. However, by including this
additional information in the methodology, the resulting kinematic estimates need to be interpreted
carefully, taking into consideration a number of factors, before drawing any clinical decision.

First, the biomechanical system yields usable prior information, but this information can be
violated in practical applications. For example, assumptions on the range of motion can restrict the
kinematic solution to be within a given interval of normal physical ability. However, RoM boundaries
are not generalizable across patient populations who might be hypermobile or hypomobile, exceeding
or not reaching normal RoM respectively. Also, segment lengths are relevant priors that can be obtained,
as described by Crabolu et al. [56]. Multiple studies make use of an estimated vector that describes the
position of the center of the joint in the sensor’s coordinate frame [57]. Such joint center position vectors
implicitly assume that segments are rigid and connected at one common fixed point. However, possible
small joint-translational movements and soft tissue artifacts will violate this model [58,59]. In reality,
soft tissue artifacts are present when patients move [60]. Frick et al. [58,59] recently proposed a method
that identifies the time variations of a joint center position vector due to soft skin movement, but lacks
a proper validation. Ideally, prior knowledge is estimated from sensor measurements [20,46,56] rather
than measured in a movement laboratory or obtained from anthropometric tables.

Second, assuming periodicity in motion dates back to Morris et al. [61], to solve for integration
drift by making the beginning and ending of a gait trial equal [62]. Still, a more relaxed assumption
on periodicity, instead of resetting, is more convenient [17]. Two studies compensate for integration
drift in azimuth angles on a cycle-by-cycle manner during mid-stance in gait [17,45]. Nevertheless,
the latter is not a measure of absolute heading and might lead to accumulating errors on the foot
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progression angle [63]. Along the same lines, symmetry assumptions can help to allow for reducing
the number of sensors on the body [35,41], but might over-constrain the system. For example, Bonnet
et al. [41] analyzed the execution of a squat movement with a symmetry assumption on the legs. The
method intends to only use one sensor, placed at the lower back. However, by applying a symmetry
assumption, frontal hip, knee, and pelvis motion are not assessed, while still very relevant in such
transitional movements [64]. Multiple studies utilized a zero-acceleration assumption at the contact
point of the foot with the ground and therefore expected one foot to be on to the ground on a regular
basis. Note that such an assumption might become invalid when applied to movements that lack a
regular mid-stance phase such as running or other arbitrary movements.

Moreover, calibration movements are typically required to obtain a misalignment matrix between
the sensor and anatomical reference frames. However, predefined calibration movement with a fully
extended leg can be difficult within certain patient populations or during post-op periods [25,42].
As a result, the precision of the calibration depends on the accuracy with which the subject or
instructor performs the calibration movements. A trend towards calibration-free methods with
arbitrary placement of sensors and the avoidance of calibration movements is visible [20,65,66].

The incorporation of additional information such as assumptions and prior information can
easily be done in an optimization-based smoothing approach for applications that demand high
accuracy [29,39]. Solving such problem in a smoothing way, implicitly uses all available data [29,38]
instead of a one-way filtering approach with only samples of the past. On the other hand, biofeedback
applications ask for computationally less expensive fusion methods that can provide real-time estimates
such as complementary filters [54,67,68].

5. Future Research

This review highlights the application dependency and inherent connection of methodological
characteristics for lower limb IMU-based kinematic estimation. Assumptions and prior information are
typically used to compensate for sensor limitations and to enhance the quality of kinematic estimates.
Because of this, IMU-based kinematic estimates have to be interpreted carefully, before drawing any
clinical decision. We identified a number of directions and pieces of advice for future research for the
estimation of clinically relevant lower limb kinematics.

5.1. Reporting Joint Kinematics

For the clinical interpretability of the joint kinematics, the general reporting standards from the
International Society of Biomechanics (ISB) [69,70] need to be followed. Only seven out of thirty-one of
the included articles mentioned these standards. Joint kinematics are described as the movement of
a distal segment with respect to its proximal segment, following a joint coordinate system [71]. The
following movements are clinically relevant: (1) flexion/extension movements in the sagittal plane
that occurs around the proximal segment-fixed frontal axis; (2) internal/external movements around
the body-fixed longitudinal axis of the distal joint describing movements in the transversal plane; (3)
abduction and adduction movements around the floating axis perpendicular to the two previously
mentioned axes, describing frontal plane movement.

5.2. Biomechanical Joint Modeling

Gait predominantly occurs in the sagittal plane, and therefore the knee is often modeled as a
hinge joint. A hinge joint axis can be estimated from IMU readings [20,66] to compensate for the
misalignment between sensor and bone, which allows for an arbitrary placement of the sensing units.
However, smaller joint movement in frontal and transversal planes also occurs and plays a critical
role in for example ligament injuries [72–74]. Investigation in more complex and even subject-specific
tibiofemoral joint models with inertial sensors, may provide highly valuable inside in these secondary
joint kinematics for outside laboratory applications [75].
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Furthermore, a recent trend is visible towards the inclusion of multiple joints and segments,
rather than estimating kinematics for separate joints [29,38,42]. When multiple sensors are exploited,
common information can be used to improve kinematic estimates. In this case, an appropriate joint
model needs to be chosen for each individual joint [76].

5.3. Validation with Respect to a Golden Standard Reference

Optical motion capture systems are the most commonly used technique to study lower limb
movement. They are therefore also most often used as a reference to evaluate IMU-based joint
kinematic estimation methods. However, due to manual marker placement errors [77] and soft tissue
artifacts [5,78], a conventional 3D gait analysis system will introduce biases that are predominantly
present in smaller frontal and transversal movements. These secondary joint kinematics yield valuable
insight into ligament loading and ACL injury [72]. Stagni et al. [5] concluded that flexion/extension
at the knee by means of optical external markers can be considered acceptably reliable. However,
internal/external rotations and ab/adduction at the knee are critically affected by soft-tissue artifacts.
In order to validate internal/external rotations and ab/adduction kinematic estimated by means of
IMUs, alternative validation methods (i.e., biplanar radiographic imaging systems [79,80]) that might
be superior in tracking underlying bone movements need to be examined.

5.4. Measurement Duration and Environment

Whilst IMUs are proposed for long term observations, there are still few studies tackling
measurements beyond 30 s. With respect to long, in-the-wild studies, measurement duration must be
increased [81–83]. Resolving this problem could potentially bring the use of IMUs closer to applications
in which subjects can be monitored for hours or days, with bursts of activity in-between long in-activity
periods [81–83]. To meet this requirement, a clear trend is visible towards magnetometer-free methods,
only acquiring accelerometer and gyroscope readings. The authors of this review believe that this idea
is important, specifically for outside-lab applicability (i.e., hospital environment, sports field), without
the need for assumptions on magnetic field homogeneity.

5.5. Disturbed Movement Patterns

Most of the published work recruited young, healthy participants. However, in clinics, most
attention must go to the investigation of different patient populations with disturbed daily functional
movement such as gait, sit-to-stand, stand-to-sit or climbing stairs [64]. One of the crucial aspects
here is the inability of the patient (e.g., patients with neuromotor disorders or people with severe
limb disorders) to perform pre-defined calibration movements, often necessary for the evaluation
of functional movements with IMUs. The eligibility criteria in Section 2.1 demand a reproducible
description of the algorithm. This might have resulted in studies that lack extensive validation on
disturbed movement patterns, which is often done in a later phase, e.g., [84]. Investigating disturbed
movement patterns and calibration-free methods to cope with sensor-to-segment misalignment in
different patient populations will be an important avenue of research.

6. Conclusions

This review systematically evaluated the methodological requirements for IMU-based lower limb
joint kinematic estimation. Where are we now? Despite the ongoing research regarding the computation
of joint kinematics by means of IMUs, there still appear to be difficulties which prevent their use in
daily clinical practice. It is reasonable to assume that the complexity in obtaining meaningful kinematic
measures from noisy and biased measured sensor data and sensor restrictions regarding integration
drift, sensor-to-segment alignment and initial sensor orientation explain these study restrictions. What
can already be measured with sufficient accuracy? Most often, biomechanically inspired assumptions and
prior information are used to compensate for sensor limitations. Both clinicians and engineers have
to be aware of the possible adaptations in the IMU-based kinematic estimates by incorporating such
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prior information and assumptions, before drawing clinical decisions. What needs to be tackled with
high priority? Investigating the appropriate validation methods that might be superior in tracking
underlying bone movement and can overcome the restrictions of optical motion capture systems as
a reference. What might yield novel results? Subject-specific IMU-based biomechanical joint models
applied to populations with disturbed movement patterns in real-world settings. Combined efforts of
engineers and clinical experts can result in application- and patient-specific implementations that will
be valuable to clinicians.
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Appendix A

Combination of keywords:
Web Of Science
TS = (inertial measurement unit OR imu OR accelerometer OR magnetometer OR gyroscope

OR inertial sensor*) AND TS = (kinematic* OR joint angle*OR joint angle velocity OR joint
angle acceleration)

PubMed
‘((kinematic*[tiab] OR joint angle*[tiab] OR “joint angle velocity”[tiab])) AND (“inertial

measurement unit”[tiab] OR imu[tiab] OR accelerometer[tiab] OR magnetometer[tiab] OR
gyroscope[tiab] OR inertial sensor*[tiab])’

Embase
(‘kinematics’/exp OR ‘kinematic*’:ti,ab OR ‘joint angle*’:ti,ab OR ‘joint angle velocity’:ti,ab

OR ‘joint angle acceleration’:ti,ab OR ‘joint angle’/exp) AND (‘inertial measurement unit’/exp OR
‘inertial measurement unit’:ti,ab OR ‘imu’:ti,ab OR ‘accelerometer’:ti,ab OR ‘magnetometer’:ti,ab
OR ‘gyroscope’:ti,ab OR ‘inertial sensor*’:ti,ab OR ‘accelerometer’/exp OR ‘magnetometer’/exp OR
‘gyroscope’/exp)
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