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A Linear Model for Microwave Imaging of
Highly Conductive Scatterers

Shilong Sun , Bert Jan Kooij, and Alexander G. Yarovoy, Fellow, IEEE

Abstract— In this paper, a linear model based on multiple
measurement vectors’ model is proposed to formulate the inverse
scattering problem of highly conductive objects at one single
frequency. Considering the induced currents that are mostly
distributed on the boundaries of the scatterers, joint sparse
structure is enforced by a sum-of-norm regularization. Since no
a priori information is required and no approximation of the
scattering model has been made, the proposed method is versatile.
Imaging results with transverse magnetic and transverse electric
polarized synthetic data and Fresnel data demonstrate its higher
resolving ability than both linear sampling method and its
improved version with higher, but acceptable, computational
complexity.

Index Terms— Inverse scattering problem, joint sparse struc-
ture, multiple measurement vectors (MMVs), sum-of-norm
regularization constraint, transverse electric (TE), transverse
magnetic (TM).

I. INTRODUCTION

INVERSE scattering is a procedure of recovering the char-
acteristics of the objects from the scattered fields. It is of

great importance because of its wide applications in different
areas, such as seismic detection, medical imaging, sonar,
remote sensing, and so forth. Most of the studies on the
inverse scattering problems are focused on the frequencies
of the resonant region, i.e., the wavelength is comparable
with the dimension of the object. Challenges mainly lie in
the nonlinearity and ill-posedness in the Hadamard sense [1].
There is a large variety of possible inverse scattering problems,
for example, find the shape of the scatterer with the boundary
condition already known, or find the space dependent coeffi-
cients of the object without any a priori information at all.
The inverse scattering problem discussed in this paper is to
determine the shape of the highly conductive scatterers with
the scattered electromagnetic (EM) field for one or several
incident fields at one single frequency of the resonant region.

Basically, there are two families of methods for solving
this problem: the volume-based methods and the surface-
based methods. The volume-based methods indicate the shape
with space-dependent coefficients. Kleinman and den Berg [2]
proposed to retrieve the boundary of the highly conductive
scatterer by doing the same with the iterative method of
reconstructing the conductivity of an EM penetrable object.
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This idea was further extended to the mixed dielectric and
highly conductive objects combined with contrast source inver-
sion (CSI) method [3] (see [4], [5]). Classical design of the
cost functional consists of the data error and the state error
without considering the cross-correlated mismatch of both
errors. Recently, a so-called cross-correlated error function and
a novel inversion method, referred to as cross-correlated CSI,
have been proposed to enhance the inversion ability [6]. The
idea of solving the nonlinear inverse scattering problem with
linear algebra can also be found in [7]. An algorithmically
efficient algorithm, the time-reversal multiple signal classifica-
tion (TR-MUSIC) method [8], [9], is also of interest since it is
capable to break through the diffraction limit. Linear sampling
method (LSM) [10]–[12] is another typical volume-based
method, which finds an indicator function for each voxel in the
region of interest by first defining a far-field mapping operator
(or a near-field mapping operator [13]) and then solving a
linear system of equations. The norm of the indicator function
approaches to zero when the position of the corresponding
voxel approaches the highly conductive scatterer. Although
LSM has been proved to be effective for highly conductive
scatterer, and also applicable for dielectric scatterer in some
cases [14], this method needs sufficient amount of measure-
ments to guarantee the inversion performance [15]. Besides, it
is very time consuming to compute the dyadic Green function
for an irregular inhomogeneous background [16], for instance,
in the case of ground penetrating radar [17]. The surface-
based methods first parameterize the shape of the scatterer
mathematically with several parameters, and then optimize the
parameters by minimizing a cost function iteratively [18]. The
drawback of this method is obvious. First, this type of method
requires a priori information on the position and quantity of
the scatterers; more research on this point can be found in [19]
and [20]. Second, it is intractable to deal with the complicated
nonconvex objects. Apart from that, each iteration involves
finding a solution to a forward scattering problem, which is
extremely time consuming for the large-scale inverse problems
with an irregular background. As a matter of fact, this is a
general drawback of the iterative inversion methods. In cases
where the dimension of the solution space is not so huge,
global optimization techniques [21]–[23] are good candidates
to search for the global optimal solution. We also refer to [24]
for a compressive sensing CSI method that solves the contrast
source two-step formulation for detecting the nonradiating part
of the equivalent currents.

Recently, we have proposed a linear model to address
the nonlinear highly conductive inverse scattering problem
with transverse magnetic (TM) polarized incident fields [25].
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The basic idea is to transfer the problem to a set of linear
inverse source problems, formulate the set of problems with
the multiple measurement vector (MMV) model [26], and
finally solve the problem with the sum-of-norm regularization
constraint. We have also considered a cascade of the linear
inverse source model and a linear optimization model for
solving the 3-D inverse scattering problem with half-space
configurations [27]. Although the feasibility of this idea has
been demonstrated numerically, a theoretical framework has
not been established yet. The extension in solving the inverse
scattering problem of vectorial fields is not straightforward
and therefore has to be proved theoretically. Moreover, the
feasibility needs to be further demonstrated with experimental
measurement data. In this paper, we first presented the the-
oretical framework in solving the highly conductive inverse
scattering problem with TM-polarized incident fields. Based
on the convex optimization theory and the spectral projected
gradient (SPG) method (SPGL1 ) [28], [29], we extended
the theoretical framework to solve the transverse elec-
tric (TE) polarized (vectorial field) inverse scattering problems.
Consequently, the extension in 3-D problems can be derived
straightforwardly. Cross-validation (CV) technique [30], [31]
is used to terminate the iteration such that the estimation of
noise level is well circumvented. Both 2-D synthetic data gen-
erated by a MATLAB-based “MaxwellFDFD” package [32]
and the experimental TM- and TE-polarized data sets of the
Institut Fresnel, Marseille, France [33], are processed for
demonstrating the validity of the proposed model. What is
more, we have also presented an analysis on the computational
complexity and the effect of transmitter/receiver number on the
imaging quality of the proposed approach, which sheds a light
on the design of the imaging system.

For the case of penetrable objects, the contrast sources are
distributed everywhere in the interior of the object. Since
the linear model is regularized with sum-of-norm constraint,
the reconstruction algorithm tends to seek for a solution of the
minimum sum of norm. According to the field equivalence
principle [34], for penetrable object, there would more likely
be several sparse solutions that not only generate the same
scattered field pattern (satisfying the data equation) but also
have the same nonzero structure (possessing smaller sum of
norm than the real solutions). Since correct recovery cannot be
guaranteed for penetrable objects, we restricted the discussion
in this paper to highly conductive objects.

In a nutshell, major differences of the proposed approach
in comparison with other existing methods are as follows.

1) In comparison with linear methods with linear model
of weak scattering assumptions (such as Born/Rytov
approximations), the proposed model is more applicable
since no weak scattering approximation has been made.

2) In comparison with linear methods with linear model of
no weak scattering approximations (such as LSM), the
joint sparse structure of the contrast sources is enforced
in the proposed approach by the use of sum-of-norm
regularization constraint, resulting in higher resolving
ability.

3) In comparison with linear iterative algebra of multiple
levels with nonlinear model (such as CSI), calculation of

Fig. 1. Configuration of the inverse scattering problem with respect to highly
conductive scatterers.

the total fields for the proposed approach is not needed,
resulting in higher imaging efficiency.

4) In comparison with super resolution methods based on
pseudospectrum analysis (such as TR-MUSIC), the pro-
posed approach does not need to estimate the scatterer
number nor does it need to care about how the imaging
domain is discretized.

Since the proposed approach is also based on a linear model
of no weak scattering approximation, LSM and an improved
version are selected in this paper for comparison.

The remainder of this paper is organized as follows.
In Section II-A, the problem statement is given.
In Section II-B, the formulation of the linear model is
presented. In Section II-C, the SPGL1 method for solving
the single measurement vector (SMV) model in TM case is
introduced. In Sections II-D and II-E, we derived the sum-
of-norm optimization method for solving the MMV model
of TM case and TE case, respectively. In Section II-F,
a CV-based modified SPGL1 method is introduced.
In Section III, LSM and its improved version are introduced.
The inverted results with synthetic data and experimental
data are given in Sections IV and V, respectively. Finally,
Section VI ends this paper with our conclusions.

II. MMV LINEAR INVERSION MODEL

A. Problem Statement

We consider a scattering configuration as depicted in Fig. 1,
which consists of a bounded simply connected inhomogeneous
background domain D. The domain D contains a highly con-
ductive cylinder �, whose surface is represented by ∂�. The
dielectric properties of the background are known beforehand.
The domain S contains the sources and receivers. The sources
are denoted by the subscript p (where p ∈ {1, 2, 3 . . . , P}),
and the receivers are denoted by the subscript q (where
q ∈ {1, 2, 3, . . . , Q}). Sources and receivers that have equal
subscripts are located at the same position. We use a right-
handed coordinate system in which the unit vector in the
invariant direction points out of this paper.

In our notation for the vectorial quantities, we use a
bold notation that represents a vector with three components.
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The general mathematical representations presented are con-
sistent with any 3-D configuration, in which the 2-D TE
and TM excitations are a special case, resulting in vectors
containing zero elements. In this paper, we consider the time
factor exp(iωt). Here, i represents the imaginary unit, and then
the vectorial Maxwell’s equations in the frequency domain can
be written as�−iωε − σ ∇×

∇× iωμ

� �
E
H

�
=
�

J
−M

�
(1)

where E and H are the electric and magnetic fields,
respectively; J and M are the electric and magnetic current
source densities, respectively; and σ , ε, and μ are the electric
conductivity, electric permittivity, and magnetic permeability,
respectively. For most of the real problems, μ can be rea-
sonably assumed to be the permeability of free space, μ0,
while σ and ε are functions of both the position vector
x = [x1, x2, x3]T and the angular frequency ω.

Since the solution of the E-field is two orders of mag-
nitude larger than the H -field, it is for better numerical
accuracy (see [32]) to eliminate either the E-field or the
H -field from (1). In this paper, we assume the electric field is
measured, so we rewrite our equations in terms of the electric
field E according to

∇ × μ−1∇ × E − ω2� E = −iω J −∇ × μ−1 M (2)

where � is the complex permittivity given by

� = ε − iσ/ω. (3)

The total electric field, Ep , and the incident electric field,
Einc

p , are excited by the pth external source, and the scattered
electric field Esct

p is then found by

Esct
p = Ep − Einc

p , p = 1, 2, . . . , P. (4)

Here, the subscript p corresponds to the pth source. According
to the above relation and the electric field equation (2), it
is easy to obtain the basic equation of the inverse scattering
problem, which is

∇ × μ−1
0 ∇ × Esct

p − ω2�b Esct
p = ω2χ Ep, p = 1, 2, . . . , P

(5)

where the contrast χ is the difference of the complex permit-
tivity of the test domain, �, and that of the background, �b,
i.e., χ = � − �b. The problem we are going to resolve is to
find the shape of the highly conductive scatterer ∂� from the
measurement of the scattered electric fields Esct

p . Since the
total electric field Ep is a function of the contrast χ , this is
obviously a nonlinear problem.

B. Formulation

First, let us formulate the inverse problem following the
vector form of the FDFD scheme in [32], and rewrite (5) as
follows:

Aesct
p = ω2χep, p = 1, 2, 3, . . . , P (6)

where A is the stiffness matrix, and

esct
p =

⎡
⎢⎣

esct
p,x1

esct
p,x2

esct
p,x3

⎤
⎥⎦ ep =

⎡
⎣ep,x1

ep,x2

ep,x3

⎤
⎦ (7)

and χep is the component-wise multiplication of the two
vectors, χ and ep. The scattered fields esct

p = A−1ω2χep

are probed and the measurements are used to estimate the
unknown χ . Now let us use a measurement operator, MS , to
select the field values at the receiver positions, and then we can
formulate the data equations as yp =MS A−1ω2χep, where
yp is the measurement vector of the pth scattered fields. Let
us further define the contrast source as jp := χep, and then
we have

yp = � jp, p = 1, 2, 3, . . . , P (8)

where � is the sensing matrix defined by

� =MS A−1ω2. (9)

In TM case, � ∈ CQ×N , while in TE case, � ∈ C2Q×2N .
Here, N is the grid number of the discretized inversion
domain.

Since the contrast source jp shows sparsity due to the
fact that the induced current exists only on the surface
of the highly conductive objects, the ill-posedness of the
inverse scattering problem can be overcome by exploiting
the sparsity of the contrast sources. Further, although the
contrast sources jp excited by the illumination of the incident
fields einc

p are of different values, the nonzero elements are
located at the same positions—the boundary of the highly
conductive scatterers. This inspired us to improve the inversion
performance by enhancing the joint sparse structure, so the
linear data model (8) is further formulated as an MMV
model. In the following section, a linear model is constructed
and a sum-of-norm optimization problem is derived for
TM and TE cases, respectively. In doing so, the nonlinear
inverse scattering problem can be simplified and addressed
by a linear optimization scheme without considering the state
equations (i.e., the calculation of the total fields is circum-
vented)

ep = esct
p + A−1ω2 jp, p = 1, 2, . . . , P. (10)

Specifically, (8) is rewritten as follows:
Y = �J + U (11)

where � is the joint sensing matrix

J = [ j1, j2, . . . , jP ]
is the contrast source matrix, and

Y = [ y1, y2, . . . , yP ]
is the measurement data matrix, and U represents the additive
complex measurement noise matrix.
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C. Solving the SMV Model: TM Case

First, consider the single source configuration illuminated
by TM-polarized wave. The inverse scattering problem is
formulated as a basis pursuit denoise (BP
σ ) problem [35]

(SMVTM BP
σ ) : min � jp�1 s.t. �� jp − yp�2 ≤
σ (12)

where 
σ represents the noise level, and the contrast source is
regularized with the �1-norm constraint. Solving this problem
means searching for a solution jp that is of the smallest
�1-norm and meanwhile satisfies the inequality condition.
Although the BP
σ problem is straightforward for understand-
ing the inverse problem, it is not easy to solve directly even if
we exactly know the value of
σ . An equivalent problem that is
much simpler to solve is the Lasso (LSτ ) problem [36], which
is formulated as

(SMVTM LSτ ) : min �� jp − yp�2 s.t. � jp�1 ≤ τ. (13)

The LSτ problem can be solved using an SPG method that
is proposed based on convex optimization theory [37]–[39].
Details of the SPG method for solving the (LSτ ) problem (13)
are given in [28, Algorithm 1], in which Pτ [·] is a projection
operator defined as

Pτ [ jp] :=
�

arg min
s
� jp − s�2 s.t. �s�1 ≤ τ

�
. (14)

Pτ [·] gives the projection of a vector jp onto the one-norm
ball with radius τ .

In practice, τ is usually not available. For solving this
problem, a Pareto curve is defined in SPGL1 algorithm [28]
by

φSMVTM(τ ) = �� jp,τ − yp�2 (15)

where jp,τ is the optimal solution to the LSτ problem. It is
easy to find that the (BP
σ ) problem is equivalent to the (LSτ )
problem when φSMVTM(τ ) = 
σ is satisfied. The Pareto curve
is proved to be differentiable under some conditions, and the
root of the nonlinear equation φSMVTM(τ ) =
σ can be reached
by Newton iterations [28]

τh+1 = τh + 
σ − φSMVTM(τh)

φ�SMVTM
(τh)

(16)

where

φ�SMVTM
(τh+1) = −��

H rp,τh�∞
�rp,τ�2 (17)

where �H is the conjugate transpose of matrix � and rp,τh =
� jp,τh − yp is the residual vector. The update of τ by probing
the Pareto curve is illustrated in Fig. 2. This procedure requires
computing successively more accurate solutions of LSτ . The
Newton root-finding framework for solving the (SMVTM BP
σ )
problem is given in [29, Algorithm 1].

D. Solving the MMV Model: TM Case

Let us now first consider the 2-D multisource configuration
with TM-polarized illumination. As all the contrast sources are
focused on the boundary of the scatterers, the contrast source
matrix J shows row sparsity. Therefore, the inverse scattering

Fig. 2. Probing the Pareto curve: the update of parameter τ .

problem with multisource configurations can be formulated
as an (MMVTM BP
σ ) problem regularized by a sum-of-norm
constraint

(MMVTM BP
σ ) min κ(J) s.t. ��J − Y�F ≤
σ (18)

where κ(J) is the mixed (α, β)-norm defined as

�J�α,β :=


N�
i=1

��J T
i,:
��α

β

�1/α

(19)

with Ji,: denoting the i th row of J , and �·�β the conventional
β-norm. � · �F is the Frobenius norm that is equivalent to the
mixed (2, 2)-norm �·�2,2. In this problem, we consider α = 1
and β = 2, which is a sum-of-norm constraint. Accordingly,
the MMVTM LSτ problem is reformulated as

(MMVTM LSτ ) min ��J − Y�F s.t. �J�1,2 ≤ τ (20)

and the Pareto curve for the MMV model is
defined as

φMMVTM(τ ) = ��Jτ − Y�F (21)

where Jτ is the optimal solution to the LSτ problem (20).
According to [29, Th. 2.2] and [40, Ch. 5], φMMVTM(τ ) is

continuously differentiable and

φ�MMVTM
(τh) = −��

H (�Jτh − Y )�∞,2

��Jτh − Y�F
(22)

where � · �∞,2 is the dual norm of � · �1,2 [29, Corollary 6.2].
Similarly, the root of the nonlinear equation φMMVTM(τ ) =
σ
can also be reached by Newton iterations

τh+1 = τh + 
σ − φMMVTM(τh)

φ�MMVTM
(τh)

. (23)

The projection operator Pτ [·] is replaced by an orthogonal
projection onto � · �1,2 balls, Pτ,MMVTM [·], which is defined
as follows:
Pτ,MMVTM [J ] :=

�
arg min

S
�J − S�F s.t. �S�1,2 ≤ τ

�
. (24)

We refer to [29, Th. 6.3] for the implementation of the
projection operator. The (MMVTMBP
σ ) problem is solved by
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Algorithm 1 SPG for (MMVTM LSτ ) Problem
Input : �, Y , J , τ
Output: Jτ , Rτ

1 Set minimum and maximum step lengths
0 < αmin < αmax;

2 Set initial step length α0 ∈ [αmin, αmax] and sufficient
descent parameter γ ∈ (0, 0.5);

3 Set an integer line search history length M ≥ 1;
4 J0 = Pτ,MMVTM [J ], R0 = Y −�J0, G0 = −�H R0,

� = 0;
5 begin

6 δ� ←
�����R��F − Tr

�
Y H R�

�−τ�G��∞,2
�R��F

���� 
 compute

duality gap;
7 If δ� ≤ �, then break;
8 α← α� 
 initial step length;
9 begin

10 J ← Pτ,MMVTM [ J� − αG�] 
 projection;
11 R← Y −�J 
 update the corresponding residual;

12 if
��R
��2

F ≤ max
h∈[0,min{�,M−1}] �R�−h�2F +

γ�
�

Tr
��

J − J�

�H
G p,�

��
then

13 break;
14 else
15 α← α/2;
16 end
17 end
18 J�+1 ← J , R�+1← R, G�+1 ←−�H R�+1 
 update

iterates;
19 �J ← J�+1 − J�, �G← G�+1 − G�;
20 if � �Tr

�
�J H�G

�� ≤ 0 then
21 α�+1← αmax 
 update the Barzilai-Borwein step

length;
22 else

23 α�+1← min

�
αmax, max

�
αmin,

Tr
�
�J H �J

�
�{Tr{�J H �G}}

��
;

24 end
25 �← �+ 1;
26 end
27 return Jτ ← J�, Rτ ← R�;

Algorithms 1 and 2 with the Pareto curve, φMMVTM(τ ), its
derivative with respective to τ , φ�MMVTM

(τ ), and the projec-
tion operator, Pτ,MMVTM [·], defined by (21), (22), and (24),
respectively.

E. Solving the MMV Model: TE Case

For the TE polarization case, the electric field is not a scalar
anymore. Therefore, care must be given to the formulation of
the (MMVTEBP
σ ) problem. Considering the two components
of electric field, Ex and Ey , the inverse scattering problem for
the TE case can be formulated as

(MMVTE BP
σ ) min κTE(J) s.t. ρ(�J − Y ) ≤
σ (25)

Algorithm 2 Newton Root-Finding Framework
Input : �, Y , 
σ
Output: J
σ

1 J0 ← 0, R0 ← Y , τ0 ← 0, h ← 0;
2 begin
3 If |�Rh�F −
σ | ≤ �, then break;
4 Solve the (MMVTM LSτ ) problem for τh using

Algorithm 1;
5 Rh ← �Jh − Y ;

6 τh+1 ← τh + 
σ−φMMVTM (τh )

φ�MMVTM
(τh )


 Newton update;

7 h ← h + 1;
8 end
9 return J
σ ← Jh ;

where

κTE(J) :=
N�

n=1

�[J2n−1,: J2n,:]T �2 (26)

and

ρ(·) := � · �F (27)

are gauge functions [41]. The MMVTE LSτ problem is for-
mulated accordingly as

(MMVTE LSτ ) min ρ(�J − Y ) s.t. κTE(J) ≤ τ. (28)

1) Derivation of the Dual: Let us rewrite (28) in terms of J
and an explicit residual term R

min
J ,R

ρ(R) s.t. �J + R = Y , κTE(J) ≤ τ. (29)

The dual to this equivalent problem is given by [42, Ch. 5]

max
Z,λ

G(Z, λ) s.t. λ ≥ 0 (30)

where Z ∈ C(2M)×P and λ ∈ C are dual variables, and G is
the Lagrange dual function, given by

G(Z, λ) := inf
J ,R
{ρ(R)− Tr{ZH (�J + R − Y )}

+ λ(κTE(J)− τ )} (31)

where Tr represents the trace of a matrix. By separability of
the infimum over J and R, we can rewrite G in terms of two
separate suprema

G(Z, λ) = Tr{Y H Z} − τλ− sup
R
{Tr{ZH R} − ρ(R)}

− sup
J
{Tr{ZH (�J)} − λκTE(J)}. (32)

It is easy to see that the first supremum is the conjugate
function of ρ and the second supremum is the conjugate
function of κTE [42, Ch. 3.3], by noting that

Tr{ZH R} = vec{Z}Hvec{R}
ρ(R) = ρ(vec{R}) (33)

and

Tr{ZH (�J)} = vec{
Z}H vec{J}
κTE(J) = κTE(vec{J}) (34)
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respectively. Here, vec{·} is the vectorization of a matrix, 
Z =
�H Z ∈ C(2N)×P , and κTE(vec{J}) is defined equivalently as
κTE(J) in (26). Therefore, we have

Tr{ZH R} − ρ(R) =
�

0, ρo(Z) ≤ 1

∞, otherwise
(35)

and

Tr{ZH (�J)} − λκTE(J) =
�

0, κo
TE(
Z) ≤ λ

∞, otherwise
(36)

where the polar of ρ and the polar of κTE are defined by

ρo(Z) := sup
R
{Tr{ZH R}|ρ(R) ≤ 1} (37)

and

κo
TE(
Z) := sup

J
{Tr{ZH (�J)}|κTE(J) ≤ λ} (38)

respectively. If the gauge function is a norm, the polar reduces
to the dual norm [42, Sec. 3.3.1], i.e., ρo(Z) = �Z�F and

κo
TE(
Z) =


N�

n=1

��[
Z2n−1,:
Z2n,:]
��∞

2

�1/∞

= max
���[
Z2n−1,:
Z2n,:]

��
2|n = 1, 2, . . . , N

�
(39)

(for more details, see [29, Corollary 6.2]). Substitution of (35)
and (36) into (32) yields

max
Z,λ

Tr{Y H Z} − τλ s.t. ρo(Z) ≤ 1, κo
TE(
Z) ≤ λ. (40)

In the case ρ(·) = � · �F , the dual variable Z can be easily
derived from

sup
R

Tr{ZH R} − �R�F = 0, if �Z�F ≤ 1 (41)

which is Z = (R/�R�F ). To derive the optimal λ, we can
observe from (40) that as long as τ > 0, λ must be at its
lower bound κo

TE(
Z); otherwise, one can increase the objective
Tr{Y H Z} − τλ. Therefore, we obtain

λ = κo
TE(�H R)

�R�F
. (42)

According to [40, Th. 5.2], we know that, on the open interval
τ ∈ (0, τ0), where

τ0 = min {τ ≥ 0|φMMVTE (τ ) = min
J

ρ(R)}

the Pareto curve φMMVTE(τ ) = ρ(R) is strictly decreasing,
and continuously differentiable with

φ�MMVTE
(τ ) = −λ = −κo

TE(�H R)

�R�F
. (43)

The projection operator Pτ,MMVTM [·] is replaced by an orthog-
onal projection onto κTE(·) balls, Pτ,MMVTE [·], which is
defined as follows:
Pτ,MMVTE [J ] :=

�
arg min

S
�J − S�F s.t. κTE(S) ≤ τ

�
. (44)

With a simple matrix transformation of Jn,: = [J2n−1,: J2n,:]
and Xn,: = [X2n−1,:X2n,:], we can rewrite (44) as follows:�

arg min
X
�J−X�F s.t. �X�1,2 ≤ τ

�
= Pτ,MMVTM [J]. (45)

In doing so, the projection operator in TE case satisfies
[29, Th. 6.3]. The (MMVTE BP
σ ) problem is solved by
Algorithms 1 and 2 with the Pareto curve, its derivative
with respect to τ , and the projection operator replaced by
φMMVTE (τ ), φ�MMVTE

(τ ), and Pτ,MMVTE [·], respectively.

F. CV-Based Modified SPGL1

In real applications, the noise level, i.e., the parameter 
σ ,
is generally unknown, which means the termination condition,
φMMV(τ ) =
σ , does not work anymore. In order to deal with
this problem, we modified the SPGL1 method based on the CV
technique [30], [31], in which 
σ is set zero and the iteration
is terminated using CV technique. In doing so, the problem of
estimating the noise level, i.e., the parameter 
σ , can be well
circumvented.

CV is a statistical technique that separates a data set into a
training (estimation) set and a testing (CV) set. The training
set is used to construct the model and the testing set is used
to adjust the model order so that the noise is not overfitted.
The basic idea behind this technique is to sacrifice a small
number of measurements in exchange of prior knowledge.
Specifically, when CV is utilized in the SPGL1 method, we
separate the original scattering matrix to a reconstruction
matrix �p,r ∈ CQr×N and a CV matrix �p,C V ∈ CQCV×N

with Q = Qr + QC V . The measurement vector yp is also
separated accordingly, to a reconstruction measurement vector
yp,r ∈ CQr and a CV measurement vector yp,C V ∈ CQCV .
The reconstruction residual and the CV residual are defined
as

rrec =
⎛
⎝ P�

p=1

�yp,r −�p,r jp�22
⎞
⎠

1/2

(46)

and

rCV =
⎛
⎝ P�

p=1

�yp,C V −�p,C V jp�22
⎞
⎠

1/2

(47)

respectively. In doing so, every iteration can be viewed as
two separate parts: reconstructing the contrast sources by
SPGL1 and evaluating the outcome by the CV technique. The
trend of CV residual in iteration behaves abruptly different
(turns from decreasing to increasing) comparing with that of
reconstruction residual, as soon as the reconstructed signal
starts to overfit the noise. The reconstructed contrast sources
are selected as the output on the criterion that its CV residual
is the smallest one.

In order to find the smallest CV residual, a maximum
number, Nmax, is needed and set a large value to guarantee the
smallest CV residual occurs in the range of the Nmax iterations.
In this case, a large number of iterations are performed in vain,
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which decreases the efficiency of the algorithm. Therefore, we
consider an alternative termination condition given by

NIter > Nopt +�N (48)

where NIter is the current iteration number, Nopt is the iteration
index corresponding to the smallest CV residual—the optimal
solution. The idea behind this criterion is that the CV residual
is identified as the smallest one if the CV residual keeps
monotonously increasing for �N times of iteration. In the
following experimental examples, this termination condition
works well with �N = 30.

Once the normalized contrast sources are obtained, one can
achieve the shape of the scatterers defined as

γMMVTM [n] =
P�

p=1

| jp,n|2 (49)

or

γMMVTE [n] =
P�

p=1

(| jp,2n−1|2 + | jp,2n|2) (50)

with n = 1, 2, . . . , N , where jp,n, γMMVTM [n], and γMMVTE [n]
represent the nth element of vector jp , γMMVTM , and γMMVTE ,
respectively. In the end of this section, we remark that as the
regularized solution corresponds to the least sum of norm,
the nonmeasurable equivalent contrast sources [43] tend to be
ignored.

III. LINEAR SAMPLING METHOD AND

ITS IMPROVED VERSION

In this section, the proposed method is tested with both
synthetic data and experimental data. In the meanwhile, we
have also processed the same data using LSM for comparison.
Since the background of the experiments is free space, the
LSM method consists in solving the integral equation of the
indicator function

�
E3(xr , xt)g3(xs, xt)d xt = E3,3(xs, xr ) (51)

and
� �

E1 0
0 E2

�
(xr , xt)

�
g1,1 g1,2
g2,1 g2,2

�
(xs, xt )d xt

=
�

E1,1 E1,2
E2,1 E2,2

�
(xs, xr ) (52)

for the TM and TE cases, respectively, where E1(xr , xt),
E2(xr , xt ), and E3(xr , xt) represent x1, x2, and x3 compo-
nents of the scattered field probed at xr corresponding to
the transmitter at xt , respectively; xs is the sampling point
in the inversion domain; and Ei, j (xs, xr ) is i th component of
the electric field at xr generated by an ideal electric dipole
located at xs with the polarization vector parallel to the

x j -axis, which are given by

E3,3 = 1

4
ωμ0 H (1)

0 (−k R) (53a)

E1,1 = −k

4ωε0


H (1)

1 (−k R)

R
+ kx2

2

R2 H (1)
2 (−k R)

�
(53b)

E1,2 = k2x1x2

4ωε0 R2 H (1)
2 (−k R) (53c)

E2,1 = k2x1x2

4ωε0 R2 H (1)
2 (−k R) (53d)

E2,2 = −k

4ωε0


H (1)

1 (−k R)

R
+ kx2

1

R2 H (1)
2 (−k R)

�
(53e)

where R = �xs − xr�2. Equations (51) and (52) can be
reformulated as a set of linear systems of equations

Y gxs = fxs (54)

where Y is the measurement data matrix, gxs is the indicator
function of the sampling point xs in the form of a column
vector, and fxs is the right side of (51) in the form of a
column vector. Following the same approach in [44] and [45]
for solving (54), the shape of the scatterers is defined by:

γLSM(xs) = 1

�gxs�2
(55)

where �gxs�2 is given by

�gxs�2 =
D�

d=1


sd

s2
d + a2

�2 ��uH
d fxs

��2 (56)

where sd represents the singular value of matrix Y corre-
sponding to the singular vector ud , D = min{P, Q}, and
a = 0.01×maxd {sd}.

We have also considered, in the TM cases, the improved
LSM proposed in [12] in the comparison of the proposed
method and LSM. The indicator function of improved LSM
is defined as

γLSM,I (xs) =
⎛
⎝ I�

i=1

��gx
i,xs

��2

��gxs

��2

�gy
i,xs
�2

�gxs�2

⎞
⎠

1
2I

, I = ka (57)

where a is the radius of a smallest ball that covers the
targets, the power (1/2I ) is the normalization factor, and gx

i,xs

and gy
i,xs

are obtained by replacing E3,3(xs, xr ) in (51) with
ϕx

i (xs, xr ) and ϕ
y
i (xs, xr ), respectively

ϕx
i =

1

4
ωμ0 H (1)

i (−k R) cos(i(φr − φs)) (58a)

ϕ
y
i =

1

4
ωμ0 H (1)

i (−k R) sin(i(φr − φs)) (58b)

where φr and φs are the angular components of xs and xr

in polar coordinate system, respectively. We refer to [12] for
more details of this indicator function.

It is worth mentioning that both the contrast source jp and
the indicator function gx are proportional to the amplitude of
the electric field. According to the definition in (49), (50),
and (55), γMMV and γLSM are proportional and inversely
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Fig. 3. Measurement configuration of Simulations 1 and 2.

proportional to the power of the electric field, respectively.
Therefore, the decibel scaling shown in the following examples
is defined as:

γdB = 10× log10

 
γ

max{γ }
!

. (59)

IV. SYNTHETIC DATA IMAGING

In this section, the proposed method is tested with synthetic
data. The transmitting antenna is simulated for simplicity
with an ideal electric dipole (TM-polarization case) and an
ideal magnetic dipole (TE-polarization case). Coordinate
system is established such that the dielectric parameters
are variable along the x and y axes, but invariable along
the z-axis. The transmitting antenna rotates on a circular
orbit of 3 m radius centering at the origin (0, 0). The
receiving positions are taken on the same orbit without any
position close than 30° from the transmitting antenna. The
measurement configuration of Simulations 1 and 2 is shown
in Fig. 3, in which the selection of CV measurements and
reconstruction measurements is illustrated. Empirically, an
arc length ≥ λ/3 is a good selection. The number of the
CV receivers on each arc depends on how dense the receiver
positions are, and the total CV receiver number is around
20% of the total measurement number [31]. The operating
frequency is 500 MHz. Two configurations of different
objects are considered. One is combined with two circular
metallic cylinders and the other one is a metallic cylinder
with a “crescent-shaped” cross section. The radius of the
circular cross section is 0.2 m (= λ/3), and the centers of
the two circles are (−0.45, 0.6) and (0.45, 0.6), respectively.
The crescent is the subtraction of two circles of radius
0.6 m (= λ) centering at (0, 0) and (0.4, 0)
[see Figs. 6(a) and 10(a) for their true geometry]. The
forward EM scattering problem is solved by a MATLAB-
based 3-D FDFD package “MaxwellFDFD” [32]. The
technique of nonuniform staggered grids is used to reduce the
computational burden, while for inverting the measurement
data, we consider uniform discretization such that an inverse
crime is circumvented. In the forward solver, we consider
a fine grid size of λ/(45

√
�r ). The data for inversion are

Fig. 4. Correlation coefficient curves in terms of transmitter number in
Simulations 1 and 2. Receiver number is fixed to 151; 10- and 30-dB Gaussian
random additive noises are considered, respectively. (a) TM-polarized data.
(b) TE-polarized data.

obtained by subtracting the incident field from the total field.
Periodic boundary conditions are imposed on the design
of the FDFD stiffness matrix in order to simulate the 2-D
configuration. Perfect matching layer is used to simulate an
anechoic chamber environment.

A. Determine the Measurement Configuration

To determine the measurement configuration, we need to
investigate the relationship between the transceiver numbers
and the imaging quality. Let us first consider 120 transmitters
and 151 receivers, i.e., the transmitter rotates on the circular
orbit with a step of 3°, and the receiver rotates on the
measurement arc of 300° with a step of 2°. The CV receivers
are selected in the same way as shown in Fig. 3, but there
are four continuous CV receiver positions in each CV arc
(equivalent to 8°). Now let us disturb the measurement data
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Fig. 5. Correlation coefficient curves in terms of receiver number in
Simulations 1 and 2. Transmitter number is fixed to 18 and 120, respectively;
10- and 30-dB Gaussian random additive noises are considered, respectively.
(a) TM-polarized data. (b) TE-polarized data.

(the scattered fields) with Gaussian additive random noise of
30 dB signal-to-noise ratio (SNR), and then process the data
by the proposed method. If we use the reconstructed image
as the reference image, denoted by γref, then a correlation
coefficient can be defined as

rcorr :=
"N

n=1(γref[n] − γref)(γ [n] − γ )#"N
n=1(γref[n] − γref)2

"N
n=1(γ [n] − γ )2

(60)

where γ denotes the MMV image with different measurement
configurations and noise levels, and γref and γ are the mean
values of γref and γ , respectively. The correlation coefficient
reflects the similarity degree of two images. The minor neg-
ative correlation coefficients are forced to zeros, as negative
correlation does not make any sense for two amplitude images.

Now we first fix the receiver number to 151, and calcu-
late the correlation coefficients of Simulations 1 and 2 with
different transmitter numbers. Fig. 4(a) and (b) shows the
correlation coefficient curves in terms of transmitter number

Fig. 6. Scatterer geometry and its reconstructed shapes in Simulation
1; 30-dB Gaussian noise is added to the measurement data. (a) Scatterer
geometry. The scatterer shape (the value of the indicator function in decibels)
reconstructed by processing the TM-polarized data with (b) MMV, (c) LSM,
and (d) improved LSM with I = 7, respectively.

by processing the TM-polarized data and TE-polarized data,
respectively. Two SNRs, 10 and 30 dB, are considered. From
Fig. 4, we observe that an obvious decrease in correlation
coefficient occurs at 18 transmitters, indicating that the image
quality gets worse when the transmitter number is less than 18.
The correlation coefficient curves of 10 and 30 dB maintain
the same trend, and the correlation coefficients of 10 dB
maintains above 0.95 when more than 18 transmitters are used,
indicating the proposed method is robust against the Gaussian
additive random noise. Then we fix the transmitter number to
18 and 120, respectively, and image the targets in Simulations
1 and 2 with different receiver numbers. Since CV technique
needs enough amount of measurements, the noise level is
assumed exactly known when the receiver number is less
than or equal to 31. Fig. 5(a) and (b) shows the correlation
coefficient curves in terms of receiver number by processing
the TM-polarized data and TE-polarized data, respectively.
Two SNRs, 10 and 30 dB, are considered. From Fig. 5,
we observe that the smallest receiver number to ensure a
stable imaging quality is 16. The correlation coefficient of 18
transmitters and 10 dB SNR maintains rcorr ≥ 0.90 when the
receiver number ≥16.

Since the reference image in the definition of the correlation
coefficient is not the real shape of the targets, it is actually an
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Fig. 7. Scatterer geometry and its reconstructed shapes in Simulation 1.
10 dB Gaussian noise is added to the measurement data. The scatterer shape
(the value of the indicator function in dB) reconstructed by processing the
TM-polarized data with MMV (a), LSM (b), and improved LSM with I = 7
(c), respectively.

asymptotic measure of the imaging quality. Discussion of the
imaging results is given in the next section in comparison
with the LSM images to further investigate the imaging
performance. In Sections IV-B and V, we select 18 transmitters
(equivalent to an interval of 20°) for two reasons: 1) the
proposed method works well in the numerical simulations
with 18 transmitters and 2) more experiments and targets
are required to demonstrate the good imaging performance
when 18 transmitters are used. Note that the noise level is not
available in real applications; 61 receivers (equivalent to an
interval of 5°) are selected in the numerical experiments for
the use of CV technique.

B. Imaging Results

1) Simulation 1: To reduce the computational cost, we
restrict the inversion domain to [−1.0, 1.0] × [−0.4, 1.6] m2.
The inversion domain is discretized with an equal grid size of
0.01 m (= λ/60). Let us first consider the TM-polarized data
disturbed with Gaussian additive random noise of 30 dB SNR.
The residual curves are shown in Fig. 8(a). The trend of the
residual curves is like staircases, and each step corresponds
to one update of the parameter τ . The CV residual starts to
increase after 80 iterations, and �N = 30 more iterations are

Fig. 8. Reconstruction residual and CV residual curves by processing the
TM-polarized data of Simulation 1. (a) SNR = 30 dB. (b) SNR = 10 dB.

performed before termination. The solution of the minimum
CV residual is selected as the optimal solution. The scatterer
shape reconstructed by MMV, LSM, and improved LSM with
I = 7 is shown in Fig. 6(b)–(d), respectively. By comparison
of Fig. 6(c) and (d), it is observed that the artifacts between
the two circular cylinders are suppressed by improved LSM.
However, the average amplitude of the sidelobes in the region
of no targets increases from −15 to −10 dB. From Fig. 6(b),
we observe that the proposed method shows higher resolution
and lower sidelobes in comparison with Fig. 6(c) and (d),
indicating that the resolving ability of the proposed method is
better than LSM. To study the imaging performance with dif-
ferent SNRs, let us decrease the SNR to 10 dB, and the images
results are shown in Fig. 7. By comparing Figs. 6 and 7,
we can observe obvious degradation in the LSM images,
while there is no obvious degradation in the MMV images.
Fig. 8(b) shows the residual curves, from which we can see the
reconstruction residual of the optimal solution, rrec ≈ 0.105,
is higher than that of Fig. 8(a), rrec ≈ 0.025.

Now let us process the TE-polarized data of different
SNRs, 30 and 10 dB. Fig. 9 shows the scatterer shape recon-
structed by MMV and LSM, respectively. The imaging results
demonstrate again that, in the perspective of resolving ability,
the proposed method outperforms the LSM. In addition, the
proposed method maintains good imaging performance for
different SNRs.
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Fig. 9. Scatterer shape (the value of the indicator function in dB) recon-
structed by processing the TE-polarized data of Simulation 1. (a), (c): MMV
images; (b), (d): LSM images; (a), (b): SNR= 30 dB; (c), (d): SNR= 10 dB.

2) Simulation 2: In the second simulation, we restrict the
inversion domain to [−1.0, 1.0]×[−1.0, 1.0]m2, in which the
target is fully covered. The inversion domain is discretized
with an equal grid size of 0.01 m (= λ/60). First, we
process the TM-polarized data of 30-SNR by MMV and LSM,
respectively. Fig. 10(b)–(d) shows the reconstructed shape by
MMV, LSM, and improved LSM, respectively. We can see
from the results that the boundary at the left side is well
reconstructed by the three methods, while the arch at the right
side shows more artifacts in Fig. 10(b) and (c), because the
arch at the right side is concave and multipath scattering is
more severe than the left side that is convex. Comparison of
Fig. 10(c) and (d) shows minor suppression of artifacts in the
interior of the cylinder by improved LSM. The imaging results
of 10-dB SNR data are shown in Fig. 11. Apart from some
minor artifacts, no obvious degradation occurs in MMV image,
while we can observe severe degradation of image resolution
in LSM images.

The MMV image and LSM image obtained by processing
the TE-polarized data of 30 and 10 dB SNR are shown in
Fig. 12. From the results, we can observe that the proposed
method is able to reconstruct the scatterer’s shape with some
artifacts occurred at the concave side, while LSM fails to give
the basic profile of the target. Considering the length of this
paper, the residual curves in this simulation are not given.

Fig. 10. Scatterer geometry and its reconstructed shapes in Simulation 2;
30-dB Gaussian noise is added to the measurement data. (a) Scatterer
geometry. The scatterer shape (the value of the indicator function in decibels)
reconstructed by processing the TM-polarized data with (b) MMV, (c) LSM,
and (d) improved LSM with I = 6, respectively.

C. Analysis of Computational Complexity

The sensing matrix � can be computed (or analytically
given for the experiments in homogeneous background) and
stored beforehand. It is easy to see from Algorithms 1 and 2
that the computational complexity of the GMMV-based linear
method primarily depends on the number of matrix–vector
multiplications, �J , and �H R. Empirically, each iteration
involves maximally two times of �J and one time of �H R.
In order to study the computational complexity of the proposed
algorithms, we use one complex data multiplication as the
measurement unit. The computational complexity for comput-
ing �J and �H R is QN for the TM case and 4QN for the
TE case. Let us use L to denote the iteration number, then
the computational complexity of the proposed method in the
TM and TE case is

CTM = 3L QN (61a)

CTE = 12L QN (61b)

respectively. When the mesh gets finer or the inversion domain
gets larger, the iteration number, L, almost keeps unchanged,
and the running time therefore linearly increases with the grid
number.

In our experiments, the imaging algorithms are implemented
with MATLAB language. We ran the program on a desktop
with one Intel Core i5-3470 CPU @ 3.20 GHz, and we did
not use parallel computing. Table I lists the running times of
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Fig. 11. Scatterer geometry and its reconstructed shapes in Simulation
2. 10 dB Gaussian noise is added to the measurement data. The scatterer
shape (the value of the indicator function in dB) reconstructed by process-
ing the TM-polarized data with MMV (a), LSM (b), and improved LSM
with I = 7 (c), respectively.

the proposed method, LSM, and improved LSM in the two
simulations. As one can see that the computation time of the
proposed method is hundreds of times longer than that of LSM
and tens of times longer than improved LSM. The most time-
consuming part of the proposed method is the matrix–vector
multiplication in each iteration, while LSM calls only singular
value decomposition to the measurement data matrix for once.
However, the running times of the proposed method are still
acceptable in view of the gain of resolving ability.

V. EXPERIMENTAL DATA IMAGING

In this section, we applied our method to the experimental
data provided by the Remote Sensing and Microwave Exper-
iments Team at the Institut Fresnel, France, using an HP8530
network analyzer [33]. The experimental setup consists of a
large anechoic chamber, 14.50 m long, 6.50 m wide, and
6.50 m high, with a set of three positioners to adjust antennas
or target positions. A 2-D bistatic measurement system is
considered, with an emitter placed at a fixed position on
the circular rail, while a receiver is rotating with the arm
around a vertical cylindrical target. The targets rotated from
0° to 350° in steps of 10° with a radius of 720 ± 3 mm,
and the receiver rotated from 60° to 300° in steps of 5°
with a radius of 760 ± 3 mm. In TE polarization, only

Fig. 12. Scatterer shape (the value of the indicator function in
dB) reconstructed by processing the TE-polarized data of Simulation 2.
(a), (c): MMV images; (b), (d): LSM images; (a), (b): SNR= 30 dB;
(c), (d): SNR= 10 dB.

the component orthogonal to both the invariance axis of
the cylinder and the direction of illumination is measured.
Fig. 13 gives the measurement configuration, in which the
selection of CV measurements and reconstruction measure-
ments is illustrated. The time dependence in this experiment
is exp(iωt). Therefore, after subtracting the incident field from
the total field, the measurement data can be directly used
for inversion. The targets we consider here are a rectangular
metallic cylinder and a “U-shaped” metallic cylinder, which
have been shown in Fig. 14(a) and (b). Three data sets are
processed: rectTM_cent at 16 GHz, uTM_shaped at 8 GHz,
and rectTE_8f at 16 GHz. The selected frequencies correspond
to wavelengths that are comparable with the dimension of the
targets, i.e., the resonance frequency range.

As we have discussed in Section IV-A, 18 transmitters of
20° arc interval are enough for the proposed method to give
good resolution. Therefore, in the following experiments, only
18 transmitter positions (half of the measurement data) are
used for imaging. First, let us process the TM-polarized data
set: rectTM_cent at 16 GHz. The inversion domain for imaging
the rectangular metallic cylinder is restricted to [−50, 50] ×
[−50, 50] mm2, and the inversion domain is discretized with
equal grid size of 0.5 mm (= λ/37.5). Fig. 15(a)–(c) shows the
scatterer shape reconstructed by MMV, LSM, and improved
LSM, respectively. The residual curves are shown in Fig. 18(a).
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TABLE I

RUNNING TIMES OF THE TWO NUMERICAL EXAMPLES

Fig. 13. Measurement configuration of the Fresnel data sets: rectTM_cent,
uTM_shaped, and rectTE_8f.

Fig. 14. Geometry of the scatterers. (a) Rectangular metallic cylinder.
(b) “U-shaped” metallic cylinder.

From the imaging results, we observe that Fig. 15(a) shows
higher resolution and less artifacts than Fig. 15(b) and (c).
And we also observe that there is no big difference between
Fig. 15(b) and (c).

Now let us consider the “U-shaped” metallic cylin-
der. The inversion domain is restricted to [−100, 100] ×
[−100, 100] mm2, and the inversion domain is discretized
with an equal grid size of 1 mm (= λ/37.5). Fig. 16(a)–(c)
gives the scatterer shape reconstructed by MMV, LSM, and
improved LSM, respectively. The residual curves are shown
in Fig. 18(b). Severe artifacts can be observed in LSM image
and improved LSM image. Furthermore, the suppression to
the artifacts is not obvious in the improved LSM image.
In the contrary, the “U-shaped” cylinder is reconstructed by

Fig. 15. Scatterer shape (the value of the indicator function in decibels) recon-
structed by processing the TM-polarized data set: rectTM_cent at 16 GHz with
(a) MMV, (b) LSM, and (c) improved LSM with I = 9, respectively. A total
of 18 transmitter positions and 49 receiver positions for each transmitter are
selected for imaging.

TABLE II

RUNNING TIMES OF THE EXPERIMENTAL EXAMPLES

the proposed method with the boundary well distinguished.
Some artifacts can be observed vertically aligned in the interior
and below the opening, which are caused by the complicated
scattering in the opening area.

Finally, let us process the TE-polarized data set: rectTE_8f
at 16 GHz. The scatterer shape reconstructed by MMV and
LSM is shown in Fig. 17(a) and (b), respectively. The residual
curves are shown in Fig. 18(c). It can be observed that the
boundary of the rectangular metallic cylinder is not distin-
guishable in Fig. 17(b), while in Fig. 17(a), the rectangular
boundary can be clearly distinguished. The data processing is
performed on the same computing platform, and the running
times of all the methods are listed in Table II. In the end, we
summarize this section as follows: 1) the proposed method is
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Fig. 16. Scatterer shape (the value of the indicator function in decibels)
reconstructed by processing the TM-polarized data set: uTM_shaped at 8 GHz
with (a) MMV, (b) LSM, and (c) improved LSM with I = 8, respectively.
A total of 18 transmitter positions and 49 receiver positions for each
transmitter are selected for imaging.

Fig. 17. Scatterer shape (the value of the indicator function in decibels)
reconstructed by processing the TE-polarized data set: rectTE_8f at 16 GHz
with (a) MMV and (b) LSM. A total of 18 transmitter positions and 49 receiver
positions for each transmitter are selected for imaging.

able to obtain higher resolution than LSM and improved LSM;
2) the proposed method is more computationally expensive
than LSM and improved LSM; and 3) the suppression to
the artifacts by improved LSM is not obvious when less
transmitters are used.

Fig. 18. Reconstruction residual curve and CV residual curve of the Fresnel
data sets. (a) rectTM_cent at 16 GHz. (b) uTM_shaped at 8 GHz. (c) rectTE_8f
at 16 GHz.

VI. CONCLUSION

In this paper, we addressed the nonlinear inverse scattering
problem of highly conductive objects with a linear model.
MMV model is exploited and sum-of-norm constraint is used
as a regularization approach. A CV-based modified SPGL1
method is proposed to invert the data without estimating the
noise level. Numerical results and experimental results of both
TM polarization and TE polarization demonstrate that the
proposed method shows higher resolving ability than both
LSM and improved LSM. In some cases where the latter
two methods fail, the proposed method can still successfully
recover the profile of the targets. Numerical experiments also
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demonstrate that the MMV method maintains good imag-
ing performance in the disturbance of 10-dB SNR Gaussian
random noise. The running time of the proposed method is
hundreds of times longer than LSM and tens of times longer
than improved LSM. However, it is still promising in view of
the gain of resolving performance and the linear relationship
between the computational complexity and the size of the
inversion domain. In addition, it might fail in the presence
of not conductive scatterers, which is an obvious limitation of
the proposed method.
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