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Abstract

Percutaneous coronary intervention (PCI) is typically performed with image guidance using X-ray an-
giograms in which coronary arteries are opacified with X-ray opaque contrast agents. Interventional cardi-
ologists typically navigate instruments using non-contrast-enhanced fluoroscopic images, since higher use
of contrast agents increases the risk of kidney failure. When using fluoroscopic images, the interventional
cardiologist needs to rely on a mental anatomical reconstruction. This paper reports on the development of
a novel dynamic coronary roadmapping approach for improving visual feedback and reducing contrast use
during PCI. The approach compensates cardiac and respiratory induced vessel motion by ECG alignment
and catheter tip tracking in X-ray fluoroscopy, respectively. In particular, for accurate and robust tracking of
the catheter tip, we proposed a new deep learning based Bayesian filtering method that integrates the detec-
tion outcome of a convolutional neural network and the motion estimation between frames using a particle
filtering framework. The proposed roadmapping and tracking approaches were validated on clinical X-ray
images, achieving accurate performance on both catheter tip tracking and dynamic coronary roadmapping ex-
periments. In addition, our approach runs in real-time on a computer with a single GPU and has the potential
to be integrated into the clinical workflow of PCI procedures, providing cardiologists with visual guidance
during interventions without the need of extra use of contrast agent.

Keywords: dynamic coronary roadmapping, X-ray fluoroscopy, catheter tip tracking, deep learning,
Bayesian filtering, particle filter.

1. Introduction

1.1. Clinical Background
Percutaneous coronary intervention (PCI) is a

minimally invasive procedure for treating patients
with coronary artery disease. During these proce-
dures, medical instruments inserted through a guid-
ing catheter are advanced to treat coronary stenoses.
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refer to DOI: https://doi.org/10.1016/j.media.2020.101634.
†† c©2020. This manuscript version is made available un-
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A guiding catheter is firstly positioned into the os-
tium of the coronary artery. Through the guiding
catheter, a balloon catheter carrying a stent is intro-
duced over a guidewire to the stenosed location. The
balloon is then inflated and the stent is deployed to
prevent the vessel from collapsing and restenosing.

PCI is typically performed with image-guidance
using X-ray angiography (XA). Coronary arteries are
visualized with X-ray opaque contrast agent. During
the procedure, interventional cardiologists may re-
peatedly inject contrast agent to visualize the vessels,
as the opacification of coronary arteries only lasts for
a short period. The amount of periprocedural con-
trast use has been correlated to operator experience,
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procedural complexity, renal function and imaging
setup (Piayda et al. (2018)). Furthermore, the risk
for contrast induced nephropathy has been associated
to contrast volume (Tehrani et al. (2013)). Manoeu-
vring guidewires and material, however, typically
occurs without continuous contrast injections. In
these situations, the navigation of devices is guided
with ”vessel-free” fluoroscopic images. Cardiolo-
gists have to mentally reconstruct the position of ves-
sels and stenosis based on previous angiograms.

1.2. Dynamic Coronary Roadmapping

Dynamic coronary roadmapping (DCR) is a
promising solution towards improving visual feed-
back and reducing usage of contrast medium during
PCI (Elion (1989); Zhu et al. (2010); Manhart et al.
(2011); Kim et al. (2018)). This approach dynam-
ically superimposes images or models of coronary
arteries onto live X-ray fluoroscopic sequences. The
dynamic overlay serves as a roadmap that provides
immediate feedback to cardiologists during the inter-
vention, so as to assist in navigating a guidewire into
the appropriate coronary branch and proper place-
ment of a stent at the stenotic site with reduced ap-
plication of contrast agent. Studies with a phantom
setup using research software (Kim et al. (2018)) or
on first cases of clinical interventions using commer-
cially available systems (Dannenberg et al. (2016);
Yabe et al. (2018); Takimura et al. (2018)) have in-
vestigated the usefulness of DCR in assisting PCI,
reporting that DCR helps to reduce procedure time,
radiation dose and contrast volume.

To develop a DCR system, it is important but yet
a challenge to accurately overlay a roadmap of coro-
nary arteries onto an X-ray fluoroscopic image, as
limited information of vessels is present in the target
fluoroscopic image for inferring the compensation of
the vessel motion resulting from patient respiration
and heartbeat. The methods that have been proposed
on motion compensation for DCR can be generally
grouped into two categories: direct roadmapping and
model-based approaches.

Direct roadmapping methods use information
from X-ray images and ECG signals to directly cor-
rect the motion caused by respiration and heartbeat.
The first DCR system (Elion (1989)) used digital
subtraction of a contrast sequence and a mask se-

quence to create a full cardiac cycle of coronary
roadmaps. The roadmaps were stored and later syn-
chronized with the live fluoroscopic sequence by
aligning the R waves of their corresponding ECG
signals. This system compensates the cardiac mo-
tion of vessels, yet does not correct the respiratory
motion during interventions. Two later studies by
Zhu et al. (2010) and Manhart et al. (2011) intro-
duced image-based respiratory motion compensation
methods for DCR. Their methods assumed an affine
respiratory motion model in ECG-gated fluoroscopic
frames and recovered the respiratory motion from
soft tissues with special handling of static structures.
The limitation of these approaches is that they re-
quire relevant tissue to be sufficiently visible in the
field of view for reliable motion compensation which
is not always the case. In addition, they require
to be run on cardiac-gated frames. In a more re-
cent work by Kim et al. (2018), binary vessel masks
were created as the roadmaps from at least one car-
diac cycle of angiographic images. Temporal align-
ment of the roadmaps and the fluoroscopic sequence,
which compensated the cardiac motion of vessels,
was performed by registering ECG signals using
cross-correlation. Additionally, the respiratory mo-
tion was corrected by aligning the guidewire center-
line in the fluoroscopy to the contour of vessels in the
angiogram where the roadmaps were created. The
system has been shown useful in a phantom-based
study, nevertheless no accuracy evaluation of the spa-
tiotemporal alignment was presented. Furthermore,
the spatial registration relies on robust extraction of
vessels and guidewires which is often challenging for
X-ray images.

Unlike direct roadmapping, the model-based ap-
proaches build a model to predict motion in fluoro-
scopic frames. The motion models are often func-
tions that relate the motion of roadmaps to surro-
gate signals derived from images or ECG, so that
once the surrogates for fluoroscopic frames are ob-
tained, the motion can be computed by the model.
For cardiac interventions including PCI, the organ
motion is mainly affected by respiratory and car-
diac motion. Many previous works often built a mo-
tion model parameterized by a cardiac signal derived
from ECG and a respiratory signal obtained from di-
aphragm tracking (Shechter et al. (2005); Timinger
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et al. (2005); Faranesh et al. (2013)) or automatic
PCA-based surrogate (Fischer et al. (2018)). Some
other works model only the respiratory motion in
cardiac-gated images (Schneider et al. (2010); King
et al. (2009); Peressutti et al. (2013)). For a com-
plete review on respiratory motion modeling, we
refer readers to the survey article by McClelland
et al. (2013). One limitation of the model-based ap-
proaches is that the motion models are often patient-
specific, which requires training the model every
time for a new subject. Additionally, once the sur-
rogate values during inference are out of the surro-
gate range for building the model, e.g. for abnormal
motion, extrapolation is needed, which may hamper
accurate motion compensation.

1.3. Interventional / Surgical Tool Tracking

Tracking interventional tools is relevant for mo-
tion compensation (Schneider et al. (2010); Brost
et al. (2010); Ma et al. (2012); Baka et al. (2015);
Ambrosini et al. (2017b)). In particular for PCI,
the guiding catheter tip typically remains within the
coronary ostium which is in the field of view during
the largest part of the intervention, making it a suit-
able landmark for tracking. Baka et al. (2015) have
shown that catheter tip motion during PCI can be
modeled as a combination of cardiac and respiratory
motion. As using catheter tip displacement can only
correct translational motion, Baka et al. (2015) fur-
ther showed that, compared to a rigid motion model
for the respiratory motion, modeling only the trans-
lational part of the respiratory motion deteriorated
the accuracy marginally, which confirms the observa-
tions by Shechter et al. (2004) that the rotational part
of respiratory motion is small. These findings moti-
vate motion compensation for DCR through tracking
the catheter tip in X-ray fluoroscopic sequences.

Many works have been proposed to address the
problem of tracking interventional or surgical tools
in medical images for various applications. The
tracking methods from these works can be generally
categorized into two kinds of approaches: tracking
by detection, and temporal tracking.

The tracking by detection approaches treat track-
ing as a detection problem, which rely on features
only from the current image without using informa-
tion from previous frames. For example in electro-

physiology procedure, as the catheters present spe-
cific features in shape or intensity, ad hoc methods
were proposed based on, e.g. blob detection, shape
constrained searching and model-/template- based
detection (Ma et al. (2012, 2013)). Chang et al.
(2016) modeled the catheter tracking problem by op-
timizing the posterior in a Bayesian framework, in
which the catheter was represented as a B-spline tube
model and was tracked by fitting the B-spline to mea-
surements based on gray intensity and vesselness im-
age. Baur et al. (2016) proposed a convolutional neu-
ral network (CNN) to detect catheter electrodes in
X-ray images, which treated catheter detection as a
segmentation problem. The method used a weighted
cross-entropy loss to cope with the class imbalanc-
ing problem due to the small size of the target. Laina
et al. (2017) and Du et al. (2018) tracked surgical in-
struments using a deep network having an encoder-
decoder architecture. Their approaches combined in-
strument segmentation and detection in a multi-task
learning problem to make the tool detection in a clut-
tered background more robust.

Different from tracking by detection, which relies
solely on the current image, temporal tracking also
uses information from previous frames. The tempo-
ral information can reduce the search space for de-
tection, or put additional constraints in the model,
making the tracking more robust.

Temporal information has been used in various
ways. Some methods mainly relied on a detec-
tion model, but incorporate temporal information
in the preprocessing (Brost et al. (2010)) or post-
processing (Garcı́a-Peraza-Herrera et al. (2016)) step
or in the input (Rieke et al. (2016); Ambrosini et al.
(2017a)). Approaches based on background estima-
tion have been used for catheter (Yatziv et al. (2012))
or guidewire (Petković and Lončarić (2010)) track-
ing. In these approaches, the background was re-
cursively updated for every frame, and was used for
enhancing the foreground containing instruments.
Apart from those, many works adopted a Bayesian
framework for tracking instruments via a maximum
a posteriori (MAP) formulation. Representations
based on key points (Wu et al. (2015)), B-splines
(Wang et al. (2009); Pauly et al. (2010); Honnorat
et al. (2011); Heibel et al. (2013)), or segment-like
features (Vandini et al. (2017)) have been used to
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model catheters or guidewires. Markov random field
(MRF) was used to model the position or deforma-
tion of the control points in the B-spline (Pauly et al.
(2010); Honnorat et al. (2011); Heibel et al. (2013);
Wu et al. (2015)). In the work by Vandini et al.
(2017), temporal information was incorporated in the
prior term using Kalman filter. Particularly, learning-
based approaches were used in several works to ob-
tain the likelihood for a more robust measurement
using probabilistic boosting tree (Wang et al. (2009);
Wu et al. (2012)) or support vector regression (Pauly
et al. (2010)). In addition, temporal tracking mod-
els based on Bayesian filtering were also a popular
approach for instrument tracking. Ambrosini et al.
(2017b) used a hidden Markov model (HMM) to
track catheter tip in a 3D vessel tree, for which the
likelihood was obtained based on the 3D-2D regis-
tration outcome. Speidel et al. (2006) used parti-
cle filters to track surgical tools in medical images.
They used a likelihood based on the segmentation
of instruments, and a dynamic model that incorpo-
rates samples from two previous time steps. In a later
work, Speidel et al. (2014) used a multi-object parti-
cle filter to track multiple instrument regions simul-
taneously, in which a particle is the concatenation of
the states of several objects.

Despite of many existing works on inverventional
or surgical tool tracking in medical images, an au-
tomatic approach for tracking the tip of guiding
catheter in X-ray fluoroscopy for PCI has not been
investigated yet. The challenges of this task are:
(1) different from the catheters for EP that can be
viewed as blobs or a circle, the guiding catheter for
PCI presents a dark tubular appearance which shows
no prominent features; (2) the shape of the guiding
catheter tip segment varies depending on the orienta-
tion of the C-arm, making feature-/model- based de-
tection challenging; (3) the background may contain
structures that have similar appearance to a catheter
tip, such as vertebral structures or residual contrast
agent, which makes robust tracking difficult.

1.4. Contributions

We propose and evaluate a novel approach for dy-
namic coronary roadmapping. The approach com-
pensates changes in vessel shapes and cardiac motion
by selecting the roadmap of the same cardiac phase

through ECG alignment, and corrects the respiratory
induced motion via tracking the tip of the guiding
catheter. Our contributions are:

1. We develop a new way to perform dynamic
coronary roadmapping on free breathing, non-
cardiac-gated X-ray fluoroscopic sequences.
Particularly, the respiratory-induced vessel mo-
tion is robustly compensated via the displace-
ment of catheter tip.

2. We proposed a deep learning based method
within a Bayesian filtering framework for online
detection and tracking of guiding catheter tip in
X-ray fluoroscopic images. The method models
the likelihood term of Bayesian filtering with a
convolutional neural network, and integrates it
with particle filtering in a comprehensive man-
ner, leading to more robust tracking.

3. We evaluate the proposed approach visually
and quantitatively on clinical X-ray sequences,
achieving low errors on both tracking and
roadmapping tasks.

4. The proposed DCR method runs in real-time
with a modern GPU, thus can potentially be
used during PCI in real clinical settings.

2. Scenario Setup and Method Overview

The proposed method assumes that the scenario of
performing dynamic coronary roadmapping to guide
a PCI procedure consists of an offline phase and an
online phase. An overview of the method is shown
in Figure 1.

2.1. Offline Phase

This phase (Step 0 in Figure 1) is performed off-
line before the actual roadmapping is conducted. In
this stage, roadmaps of coronary arteries contain-
ing multiple cardiac phases are created from an X-
ray angiography sequence acquired with injection of
contrast agent. A roadmap can be a vessel model
in the form of centerlines, contours, masks, etc. It
may also contain information of clinical interest, e.g.
stenosis. Since the main focus of this paper is on ac-
curate overlay of a roadmap, we do not investigate
how to create the most suitable roadmaps, but use
the images containing only vessels and catheters that
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Figure 1: The overview of the proposed dynamic coronary roadmapping method. The colored blocks with a dash line border denote
objects acquired in the online phase; the colored blocks with a solid line border are objects originated from the offline phase.

are created using the layer separation method by Ma
et al. (2015) as the roadmaps to show the concept of
dynamic coronary roadmapping. Along with the XA
sequence, ECG signals are also acquired and stored
for later selecting a roadmap that has similar cardiac
phase to a given X-ray fluoroscopic frame in the on-
line phase (see details in Section 3). Once the image
sequence and ECG signals are acquired, the catheter
tip location in every frame is obtained to serve as a
reference point for roadmap transformation. In this
work we manually annotated the catheter tip in the
offline XA sequence. In real clinical scenarios, the
annotation work can be done by the clinician or a
person who assists the intervention, such as a techni-
cian or a nurse.

2.2. Online Phase
This is when the dynamic roadmapping is actu-

ally performed. In this phase, non-contrast X-ray
fluoroscopic images with the same view angles as
the roadmaps created during the offline phase are ac-
quired sequentially. At the same time, ECG signals
along with the roadmapping frames are also obtained
and are compared with the stored ECG to select the
most matched roadmap (Step 1 in Figure 1; see de-
tails in Section 3). This is to compensate the change
of vessel shape and position between frames due
to cardiac motion. Simultaneously, the catheter tip

location in the acquired X-ray fluoroscopic images
is tracked online using the proposed deep learning
based Bayesian filtering method in Section 4 (Step
2 in Figure 1). The displacement of catheter tip be-
tween the current image and the selected roadmap
image is then obtained and are applied to transform
the roadmap. Finally, the transformed roadmap is
overlaid on the current non-contrast frame to guide
the procedure (Step 3 in Figure 1).

3. ECG matching for Roadmap Selection

Roadmap selection in this work is achieved by
comparing the ECG signal associated with the flu-
oroscopic image and the ECG of the angiographic
sequence, such that the most suitable candidate
roadmap is selected where the best match of the ECG
signals is found. The selected roadmap has the same
(or very similar) cardiac phase with the X-ray flu-
oroscopic image, which compensates the difference
of vessel shape and pose induced by cardiac motoin.
An approach similar to the ECG matching method by
Kim et al. (2018) is used to accomplish this task.

To select roadmaps images based on ECG, a tem-
poral mapping between X-ray images and ECG sig-
nal points needs to be built first. We assume that
ECG signals and X-ray images are well synchronized
during acqusition. In the offline phase, the begin-
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ning and the end of the image sequence are aligned
with the start and end ECG signal points; the XA
frames in between are then evenly distributed on the
timeline of ECG. This way, a mapping between the
stored sequence images and its ECG signal can be
set up: for each image, the closest ECG signal point
to the location of the image on the timeline can be
found; for each ECG point, an image that is closest
to this point on the timeline can be similarly located.
Once the mapping is available, all images with good
vessel contrast filling and the ECG points that are as-
sociated to these images are selected from the XA
sequence for the pool of roadmaps. In this process,
at least one heartbeat of frames should be acquired,
which is generally the case in our data. In the online
phase, similar to the approach of Kim et al. (2018),
for acquisition of each image, a block of NECG latest
ECG signal points is constantly stored and updated
in the history buffer. This is considered as the ECG
signal corresponding to the fluoroscopic frame.

To compare the ECG signals associated with the
angiographic sequence and the online fluoroscopic
image, a temporal registration of the two signals us-
ing cross-correlation is applied (Kim et al. (2018)).
The two ECG signals are first cross-correlated for ev-
ery possible position on the signals, resulting in a 1D
vector of correlation scores. The candidate frame for
dynamic overlay is then selected as the one associ-
ated with the point on the ECG of the angiographic
sequence that is corresponding to the highest corre-
lation score.

4. Bayesian Filtering for Catheter Tip Tracking

Bayesian filtering is a state-space approach aiming
at estimating the true state of a system that changes
over time from a sequence of noisy measurement
made on the system (Arulampalam et al. (2002)).
One popular application area of this approach is
tracking objects in a series of images.

4.1. Theory of Bayesian Filtering

Bayesian filtering typically includes the following
components: hidden system states, a state transition
model, observations and a observation model. Let
xk ∈ R2 (k = {0, 1, 2, ...}) denote the state, the loca-
tion of guiding catheter tip in the k-th frame, a 2D

vector representing the coordinates in the X-ray im-
age space. The transition of the system from one
state to the next state is given by the state transition
model xk = fk(xk−1, vk−1), where vk−1 ∈ R2 is an in-
dependent and identically distributed (i.i.d.) process
noise, fk : R2 × R2 → R2 is a possibly nonlinear
function that maps the previous state xk−1 to the cur-
rent state xk with noise vk−1. The observation zk in
this work is defined as the k-th X-ray image of a se-
quence, so that zk ∈ Rw×h, where w and h are the
width and height of an X-ray image. We further de-
fine the observation model as zk = hk(xk,nk), where
nk ∈ Rnk is an i.i.d measurement noise (nk is the di-
mension of nk), hk : R2×Rnk → Rw×h is a highly non-
linear function that generates the observation zk from
the state xk with noise nk. The state transition model
fk and the observation model hk, respectively, can
also be equivalently represented using probabilistic
forms, i.e. the state transition prior p(xk|xk−1) and
the likelihood p(zk|xk) from which xk and zk can be
obtained by sampling.

With these definitions and p(x0), the inital be-
lief of x0, Bayesian filtering seeks an estimation of
xk (k ≥ 1) based on the set of all available observa-
tions z0:k = {zi, i = 0, ..., k} up to time k via recur-
sively computing the posterior probability p(xk|z0:k)
as Eq.(1) (Arulampalam et al. (2002)):

p(xk|z0:k) ∝ p(zk|xk)
∫

p(xk|xk−1)p(xk−1|z0:k−1)dxk−1︸                                  ︷︷                                  ︸
p(xk |z0:k−1)

.

(1)
Assuming the initial probability p(x0|z0) = p(x0) is
known, based on Eq.(1), Bayesian filtering runs in
cycles of two steps: prediction and update. In the
prediction step, the prior probability p(xk|z0:k−1), the
initial belief of xk given previous observations, is
estimated by computing the integral in Eq.(1). In
the update step, the prior probability is corrected by
the current likelihood p(zk|xk) to obtain the posterior
p(xk|z0:k).

In Section 4.2, we will firstly introduce how to
model the likelihood. Then in Section 4.3, a way
to represent and efficiently approximate the posterior
will be discussed. Finally in Section 4.4, a summary
of the complete catheter tip tracking method will be
given.
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4.2. A Deep Learning based Likelihood
Directly modeling the likelihood p(zk|xk) is chal-

lenging due to (1) the complexity of the generation
process hk and (2) the computational complexity of
p(zk|xk) for every value xk ∈ R2. In this work, we
simplify the problem by only computing the likeli-
hood p(zk|xk) in the image pixel space, i.e. the in-
teger pixel coordinate. For a subpixel xk, the value
of p(zk|xk) can possibly be approximated by inter-
polation. To this end, we propose to use a deep
neural network D to approximate p(zk|xk) for inte-
ger pixel locations. The network takes an image zk

as input and outputs a probability of observing the
input zk for every pixel location xk. Therefore, the
approximated likelihood is a function of xk, denoted
as Dzk(xk). Since xk is defined within the scope of
the image pixel space,Dzk(xk) is essentially a proba-
bility map having the same dimension and size with
the input image zk, in which the entry at each loca-
tion x j

k ( j = 1, 2, . . . ,wh) in the map represents the
probability of observing zk given x j

k. It is worth men-
tioning that the deep neural network is used for ap-
proximation of p(zk|xk), which should be clearly dis-
tinguished from the generation model hk that maps
an xk to zk. The existence of hk is merely for the con-
venience of definition, its explicit form, however, is
not required in the context of this work.

To obtain the training labels, we assume that there
exists a mapping hk, such that the training label can
be defined as a distance-based probability map, i.e.
the farther away xk is from the ground truth tip loca-
tion in the image zk, the less possible it is to observe
zk given xk through the process hk. This definition
matches the intuition that from a location xk that is
far from the ground truth tip location, the probability
of observing a zk with the catheter tip being located
at the ground truth position should be low. For sim-
plicity, a 2D Gaussian probability density function
(PDF) N(xk; x′k, σ

2I) centered at the ground truth tip
location x′k with variance σ2I in the image space is
used as the label to train the network (Figure 2c).
Note that this training label makes the estimation of
p(zk|xk) equivalent to a catheter tip detection problem
such that the deep neural network learns features of
catheter tip and outputs high probability at locations
where the features are present. Due to this reason,
we also call p(zk|xk) “detection output” or “detec-

(a) (b) (c)

Figure 2: Input and ground truth labels for the deep neural net-
work: (a) an input X-ray fluoroscopic image, (b) the binary
catheter mask of (a) for catheter segmentation, (c) a 2D Gaus-
sian PDF (σ = 4 px) for likelihood estimation for (a).

tion probability” and call the estimation of p(zk|xk)
“catheter tip detection” in the context of this paper.

The network that we use follows a encoder-
decoder architecture with skip connections similar to
U-net (Ronneberger et al. (2015)). Additionally, sim-
ilar to the work by Milletari et al. (2016), residual
blocks (He et al. (2016)) are adopted at each resolu-
tion level in the encoder and decoder to ease gradient
propagation in a deep network. The encoder consists
of 4 down blocks in which a residual block followed
by a stride-2 convolution is used for extraction and
down-scaling of feature maps. The number of feature
maps is doubled in each downsampling step. The
decoder has 4 up blocks where a transposed convo-
lution of stride-2 is used for upsampling of the input
feature maps. Dropout is used in the residual unit of
the up block for regularization of the network. Be-
tween the encoder and the decoder, another residual
block is used to process the feature maps extracted
by the encoder. The detailed network architecture is
shown in Figure 3.

Due to similar appearance between a guiding
catheter tip and corners of a background structure,
such as vertebral bones, lung tissue, stitches or
guidewires, ambiguity may exist when the network
is expected to output only one blob in the proba-
bility map. To alleviate the issue, we adopt a sim-
ilar strategy as Laina et al. (2017), using a catheter
mask (Figure 2b) as an additional label to jointly
train the network to output both the catheter segmen-
tation heatmap and the likelihood probability map.
The segmentation heatmap is obtained by applying a
1×1 convolution with ReLU activation on the feature
maps of the last up block. To compute the likelihood
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Figure 3: A joint segmentation and detection network for catheter tip detection. This figure shows an example network with 4
levels of depth (the number of down or up blocks). Meaning of abbreviations: Conv, 2D convolution; Bn, batch normalization;
Relu, ReLU activation; Dp, dropout; Concat, concatenation; Ch, number of channels; S, segmentation output; D, detection output.
The number above an image or feature maps indicates the number of channels; the number of channels in the residual network in a
block is shown above the block; c is the basic number of channels, the channel number in the first down block. The number next to
a rectangle denotes the size of the image or feature maps. Red arrows indicate a change of number of channels.

probability map, a residual block is firstly applied on
the feature maps of the last up block. The output fea-
ture maps are then concatenated with the segmenta-
tion heatmap as one additional channel, followed by
a 1×1 convolution. Finally, to ensure the network de-
tection output fits the definition of a probability map
on image locations, following the 1 × 1 convolution,
a spatial softmax layer is computed as Eq.(2):

Dk,l =
eAk,l∑
i, j eAi, j

, (2)

where A is the output feature map of the 1 × 1 con-
volution, Ai, j denotes the value of A at location (i, j),
D is the final output of the detection network, a 2D
probability map representing p(zk|xk). The details
are shown in Figure 3.

The training loss is defined as a combination of the
segmentation loss and the detection loss. The seg-
mentation loss Ls in this work is a Dice loss defined
by Eq.(3):

Ls = 1 −
2
∑

i, j Mi, jS i, j∑
i, j M2

i, j +
∑

i, j S 2
i, j

(3)

where M denotes the ground truth binary catheter
masks, S is the segmentation heatmap. The loss
function for detection Ld is mean square error (MSE)
given by Eq.(4):

Ld =
1

w × h

∑
i≤w, j≤h

|Ti, j − Di, j|
2 (4)

where T denotes the ground truth PDF, w and h are
the width and height of an image. The total training
loss L is defined as Eq.(5):

L = Ls + λLd (5)

where λ is a weight to balance Ls and Ld.
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4.3. Approximation of the Posterior with Particle
Filter

Once the deep neural network in Section 4.2 is
trained, its weights are fixed during inference for
computing the posterior p(xk|z0:k) for new data. Ide-
aly, the network detection output p(zk|xk) should be a
Gaussian PDF during inference, as it is trained with
labels of Gaussian PDFs. However, due to simi-
lar appearance of background structures or contrast
residual, the detection output is unlikely to be a per-
fect Gaussian (possibly non-Gaussian or having mul-
tiple modes), which prevents the posterior p(xk|z0:k)
in Eq.(1) being solved with an analytical method. In
practice, the posterior can be approximated using a
particle filter method (Arulampalam et al. (2002)).

Particle filter methods approximate the posterior
PDF by a set of Ns random samples with associated
weights {xi

k,w
i
k}

Ns
i=1 (Arulampalam et al. (2002)). As

Ns becomes very large, this discrete representation
approaches the true posterior. According to Arulam-
palam et al. (2002), the approximation of the poste-
rior p(xk|z0:k) is given by Eq.(6):

p(xk|z0:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k) (6)

where δ(·) is the Dirac delta function. The weight
wi

k can be computed in a recursive manner as Eq.(7)
once wi

k−1 is known (Arulampalam et al. (2002)):

wi
k ∝ wi

k−1

p(zk|xi
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
k−1, zk)

(7)

where q(xk|xi
k−1, zk) is an importance density from

which it should be possible to sample xi
k easily.

For simplicity, a good and convenient choice of the
importance density is the prior p(xk|xi

k−1) (Arulam-
palam et al. (2002)), so that the weight update rule
(7) becomes wi

k ∝ wi
k−1 p(zk|xi

k).
A sample can be drawn from p(xk|xi

k−1) in the fol-
lowing way. First, a process noise sample vi

k−1 is
sampled from pv(vk−1), the PDF of vk−1; then xi

k is
generated from xi

k−1 via the state transition model
xi

k = fk(xi
k−1, v

i
k−1). In this work, pv(vk−1) is set to be a

GaussianN(0, σ2
vI). The choice of motion model for

fk is important for an accurate representation of the
true state transition prior p(xk|xk−1). A random mo-
tion cannot characterize well the motion of catheter

tip in XA frames. In this work, we estimated the
motion from adjacent frames using an optical flow
method, as this approach 1) takes into account of the
observation zk, which results in a better guess of the
catheter tip motion, and 2) enables estimation of a
dense motion field where the motion of a sample xi

k
can be efficiently obtained. Therefore, fk is defined
as Eq.(8):

xk = xk−1 + uk−1(xk−1) + vk−1 (8)

where uk−1(·) is the motion from frame k−1 to frame
k estimated with optical flow using the method by
Farnebäck (2003), uk−1(xk−1) is the motion from state
xk−1.

Once samples are drawn and their weights are
updated, the so-called “resampling” of the samples
should be performed to prevent the degenaracy prob-
lem, where all but one sample will have negligible
weight after a few iterations (Arulampalam et al.
(2002)). The resampling step resamples the exist-
ing samples according to their updated weights and
then resets all sample weights to be 1/Ns, so the num-
ber of effective samples which have actual contri-
bution to approximate p(xk|z0:k) is maximized (Aru-
lampalam et al. (2002)). If the resampling is ap-
plied at every time step, the particle filter becomes
a sampling importance resampling (SIR) filter, and
the weight update rule follows Eq.(9).

wi
k ∝ p(zk|xi

k) (9)

The final decision on catheter tip location in frame k
can then be computed as the expectation of xk, x̂k =∫

xk p(xk|z0:k)dxk, which is in this case, the weighted
sum of all samples:

x̂k =

Ns∑
i=1

wi
kx

i
k. (10)

4.4. Summary

The overall catheter tip tracking using a deep
learning based Bayesian filtering method is summa-
rized in Algorithm 1.
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Algorithm 1 Deep learning based Bayesian filtering for online tracking of catheter tip in X-ray fluoroscopy
Require: {z0, . . . , zT } (sequentially observed frames), D (A trained network from Section 4.2), p(x0) (the

initial PDF), σ2
v (the variance of vk−1, k = 1, . . . ,T ), T (number of frames for tracking), Ns (number of

samples)
1: Draw xi

0 ∼ p(x0), set wi
0 = 1/Ns, ∀ i = 1, . . . ,Ns

2: for k = 1 to T do
3: Compute uk−1 from zk−1 to zk using the optical flow method of Farnebäck (2003)
4: for i = 1 to Ns do
5: Draw vi

k−1 ∼ N(0, σ2
vI)

6: Compute the motion of xi
k−1: ui

k−1 = uk−1(xi
k−1)

7: Draw xi
k ∼ p(xk|xi

k−1): xi
k = xi

k−1 + ui
k−1 + vi

k−1
8: Update weight wi

k = p(zk|xi
k) = Dzk(xi

k)
9: end for

10: Normalize wi
k ← wi

k/
∑Ns

i=1 wi
k, ∀ i = 1, . . . ,Ns

11: Prediciton in frame k: x̂k =
∑Ns

i=1 wi
kx

i
k

12: Resample {xi
k,w

i
k}

Ns
i=1 using the method of Arulampalam et al. (2002) (so all wi

k are set to 1/Ns again)
13: end for

5. Experimental Setup

5.1. Data

Anonymized clinical imaging data were used for
our experiments. The data were acquired with stan-
dard clinical protocol using Siemens AXIOM-Artis
system, and are from 55 patients who underwent a
PCI procedure at the Department of Cardiology at
Erasmus MC in Rotterdam, Netherlands. Out of
these data, we selected data from 37 patients which
were acquired since the year 2014 to develop our
method, and used the data from the other 18 patients
acquired before the year 2013 for evaluation. The
detailed information about the data is listed in Table
1.

In order to evaluate the proposed roadmapping
method, for which an off-line angiographic sequence
is required for roadmap preparation and an on-
line fluoroscopic sequence taken from the same C-
arm position is needed for performing the actual
roadmapping (see Section 2), we selected the con-
trast frames from a real clinical sequence to simu-
late the off-line sequence, and chose the non-contrast
frames from the same clinical sequence to simulate
the online sequence. The selected contrast sequence
were ensured sufficiently long to cover at least one
complete cardiac cycle.

Table 1: Basic information of the acquired X-ray image data
for our experiments. The number in the parenthesis next to the
pixel size indicates the possible image size.

Data Development Evaluation

No. patients 37 18
No. sequences 354 34
Frame rate (fps) 15 15
Image size (px) 512 × 512 512 × 512

600 × 600 600 × 600
776 × 776 776 × 776
960 × 960 1024 × 1024
1024 × 1024

Pixel size (mm) 0.108 (1024) 0.139 (1024)
0.139 (1024) 0.184 (600)
0.184 (600) 0.184 (776)
0.184 (776) 0.184 (1024)
0.184 (960) 0.216 (512)
0.184 (1024) 0.279 (512)
0.216 (512)
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5.2. Data Split for Catheter Tip Detection and
Tracking

To develop the catheter tip tracking method, 1086
X-ray fluoroscopic images selected from 260 non-
contrast sequences of 25 patients from the develop-
ment set were used for training the network from Fig-
ure 3; 404 images from 94 non-contrast sequences of
another 12 patients from the development set were
used as validation set for the network model and hy-
perparameter selection. In the training and validation
sets, 4-5 frames were randomly selected from each
sequence, which are not necessarily continuous. To
tune the parameters for tracking, 1583 images from
88 sequences out of the 94 from the same 12 patients
of the validation set were used (6 sequences were
not selected for this task due to very short sequence
length not more than 5 frames). Finally, to evaluate
catheter tip tracking accuracy, 1355 images from 34
non-contrast sequences of 18 patients from the eval-
uation set were used for testing. The frames selected
for tracking from each sequence must be continuous;
the number of selected frames for tracking might
vary, depending on the number of the non-contrast
frames in the sequences. Details of the datasets for
training, validation and test are listed in Table 2.

5.3. Experimental Settings for Training the Deep
Network

This section describes the basic experimental set-
tings for training the deep neural network. Details of
the training setup can be found in Appendix A.

5.3.1. Preprocessing
As the image data have different size ranging from

512 × 512 to 1024 × 1024, all images were resam-
pled to a grid of 256×256 before being processed by
the neural network. In addition, the image intensities
were rescaled to the range from 0 to 1.

5.3.2. Training label
The standard deviation σ of the Gaussian PDF for

the training label of the detection network was set to
4 pixels in the resampled image space (256 × 256).
This choice corresponds to the estimation of the
maximal possible catheter tip radius. An example
of the Gaussian PDF is shown in Figure 2c.

5.3.3. Evaluation Metric
To select hyperparameters and model weights in

training, an evaluation metric is required. As the
deep network is essentially a catheter tip detector, ac-
curate detection of the tip location is desired. There-
fore, we chose the location with the highest value
in the detection output, and computed the Euclidean
distance between the chosen location and the ground
truth tip coordinate as the evaluation metric to tune
the deep network.

5.4. Setup for Evaluating Dynamic Coronary
Roadmapping

It is in general a challenge to evaluate the
roadmapping accuracy, as the structure of interest,
e.g. coronary arteries in our case, is not directly vis-
ible in the target image. One possible choice intro-
duced by Zhu et al. (2010) is to use the guidewire
as a surrogate of the target vessel centerline in non-
contrast images, as guidewire is always inside ves-
sels and commonly present in image sequences dur-
ing interventions. In this work, we follow a similar
strategy to evaluate the accuracy of dynamic coro-
nary roadmapping.

The first step is to select frames for roadmapping
evaluation. From each non-contrast sequence in the
test set for tracking in Section 5.2, we uniformly se-
lect 8-20 frames to annotate guidewire. The num-
ber of the selected frames from each sequence de-
pends on the sequence length, the frame interval size
and guidewire visibility. For some rare cases in our
data where no guidewire is present in the image, we
discarded that non-contrast frame, and chose those
frames with little vessel contrast from the same se-
quence and annotated the vessel centerline. The se-
lection results in 409 frames from 34 sequences in to-
tal. Once the target non-contrast frames for evaluat-
ing roadmapping are chosen, their corresponding an-
giographic frames were found using the ECG match-
ing method in Section 3. We then annotated the cen-
terline of the vessel corresponding to the guidewire
in the non-contrast frames.

The next step is performing the transformation of
the labelled vessel centerline from the angiographic
frame to its corresponding target non-contrast frame
via displacement of catheter tip in the two frames.
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Table 2: Dataset of training, validation and test for detection and tracking of catheter tip in X-ray fluoroscopic frames.

Training Validation Validation Test
(detection) (detection) (tracking) (tracking)

No. patients 25 12 12 18
No. sequences 260 94 88 34
No. frames 1086 404 1583 1355
Continous frames? No No Yes Yes

This step simulates the roadmapping transformation
in the last step in Figure 1.

Finally, the distance between the guidewire anno-
tation in the target frame and the transformed vessel
centerline is reported as the roadmapping accuracy.
In order to compute the distance between two point
sets of annotations (e.g. Figure 4a), point-point cor-
respondence between the two sets is required (Fig-
ure 4b). The point sets were firstly resampled with
the point interval being 1 mm. We then followed
the approach of van Walsum et al. (2008) to find
such correspondences which minimizes the sum of
the Euclidean distance of all valid point-point corre-
spondence paths. This way guarantees no cross-over
connection and each point in one set is connected to
at least one point in the other set. As the annotated
point sets may have different size, the point corre-
spondences to endpoints are excluded such that we
only focused on the distance between corresponding
sections, not the entire centerlines (Figure 4c). Once
the point-point correspondence is available, the dis-
tance between the two points in a pair can be used
for evaluating the accuracy of DCR.

(a) (b) (c)

Figure 4: Correspondence between the labelled guidewire
(green) and the transformed vessel centerline (red). The yellow
lines connecting the two point sets illustrate the correspondence
between red and green points.

5.5. Implementation

The proposed method was developed in Python.
The framework used for developing the deep learn-
ing approach for likelihood approximation is Py-
Torch. The major experiments of dynamic coronary
roadmapping were performed on a computer with an
Intel Xeon E5-2620 v3 2.40 GHz CPU and 16 GB
RAM running Ubuntu 16.04. The deep neural net-
work and the optical flow method were running on
an NVIDIA GeForce GTX 1080 GPU. The approach
for evaluating dynamic coronary roadmapping was
developed and running in MeVisLab on a computer
with an Intel Core i7-4800MQ 2.70 GHz CPU and
16 GB RAM running Windows 7.

6. Experiments and Results

The following experiments are performed to as-
sess the methods. First, In Section 6.1, the training
of the deep neural network is described. Then in Sec-
tion 6.2, the accuracy of catheter tip tracking using
the optimized trained network and the tuned particle
filter is presented. Section 6.3 describes the accuracy
evaluation of dynamic coronary roadmapping via the
proposed catheter tip tracking method. Finally, in
Section 6.4, we measure the processing time of the
proposed DCR approach.

6.1. Training the Deep Neural Network

The purpose of this experiment is to train the deep
neural network to output reasonable likelihood prob-
ability map. The network hyperparameters were
tuned to optimize the detection performance.

The training and validation data for detection men-
tioned in Section 5.2 were used for training the deep
neural network. The evaluation metric mentioned in
Section 5.3, the mean Euclidean distance between
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the ground truth and the predicted tip location av-
eraged over all validation frames, was used as the
validation criteria for selecting the optimal train-
ing epoch and the network hyperparameters. When
we evaluated hyperparameter settings, we firstly se-
lected the training epoch with the lowest mean vali-
dation error for each setting, then the settings were
compared using the model weights (trainable net-
work parameters) of their chosen epochs.

The network hyperparameters we investigated in
the experiments include (1) the basic channel num-
ber, i.e. the number of channels or feature maps in
the first down block, (2) the network depth level, the
number of down or up blocks, and (3) the dropout
probability.

The validation errors for different hyperparameter
settings using the experimental settings in Section
5.3 are shown in Table 3. The table shows that the
hyperparameter setting with the lowest mean error,
which has 4 level in depth and 64 channels in the
first down block, achieves a validation error of about
2 mm. The table also shows other good choices of
network architecture that have a small validation er-
ror (shown in red in Table 3): 32 channels in the first
down block with 4 or 5 levels in depth, or 64 chan-
nels with 3 or 4 depth levels. The dropout regulariza-
tion improves the accuracy of the model, compared
to the ones without dropout.

The learning curves of the training process with
the chosen hyperparameter setting are illustrated in
Figure 5. The curves indicate that both segmentation
and detection reach convergence after training 100
epochs.

We did not investigate a model with more than 64
channels or 5 depth levels, because (1) it will fur-
ther increase the processing time which makes on-
line applications less feasible; (2) the results in Table
3 show that such a setting (64 channels, 5 depth lev-
els) starts increasing the validation error compared to
those less complex models.

The subsequent experiments will be based on the
network trained with the chosen hyperparameter set-
ting indicated in Table 3 (64 channels, 4 depth levels,
dropout 0.2, also see Table 4).
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Figure 5: Learning curves for the chosen hyperparameter set-
ting.

6.2. Catheter Tip Tracking
The purpose of this experiment is to assess the

accuracy of catheter tip tracking with the proposed
method in Section 4. Guiding catheter tip is tracked
in X-ray fluoroscopy using Algorithm 1 based on a
trained network with the optimal hyperparameter set-
ting from Section 6.1. First, the parameters of the
optical flow method used in Algorithm 1 and particle
filter were tuned on the validation data for tracking
in Section 5.2 (see Appendix B for details). Then
in Section 6.2.1, we evaluated the tracking accuracy
with the tuned optimal parameter setting (see Table
4) on the test dataset, and compared the proposed
tracking method with alternative approaches using
only the detection network in Section 4.2 or using
only optical flow. Finally, in Section 6.2.2, we inves-
tigated tracking accuracy with different ways of tip
initialization in the first frame.

6.2.1. Tracking Methods Evaluation
In this experiment, the proposed tracking method

in Algorithm 1 uses the ground truth tip probabil-
ity map of the first frame as the initial PDF p(x0) to
draw samples. This method is referred to as “Track-
ing”. In addition, we compared the proposed method
with three alternatives. The first one tracks catheter
tip using only the detection network in Section 4.2
with the chosen network architecture and trained pa-
rameters in Section 6.1, therefore, no temporal infor-
mation is used. This method is referred to as “De-
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Table 3: Validation errors (mm) for different hyperparameter settings. Red cells show the settings with the 10 smallest validation
errors. bold number indicates the setting with the lowest error.

Basic Number Depth Dropout

of Channels Level none 0.1 0.2 0.3 0.4 0.5

8 3 5.43 4.99 5.02 5.37 4.38 4.24
4 4.17 4.45 4.25 5.04 4.75 4.36
5 3 4.14 3.53 4.28 3.95 4.11

16 3 3.74 4.29 3.57 4.11 3.74 3.4
4 3.36 3.11 3.63 3.33 3.36 3.78
5 3.38 2.89 3.16 2.52 2.71 2.74

32 3 2.99 3.02 3.26 2.82 3.26 2.56
4 2.87 2.34 2.46 2.6 2.65 2.27
5 3.04 2.51 2.21 2.29 2.3 2.25

64 3 2.19 2.54 2.34 2.27 2.26 2.49
4 2.55 2.31 2.04 2.44 2.22 2.27
5 2.42 2.29 2.73 2.77 2.61 2.85

Table 4: The chosen (hyper-)parameters for different building
blocks of the catheter tip tracking algorithm. The parameters of
the optical flow method can be found in Appendix B.1.

Building block (hyper-)parameters value

Deep learning Basic channel number 64
Depth 4
Dropout 0.2

Particle filter σv (px) 5
Ns 1000

tection (Net)”. The other two methods in this ex-
periment use only optical flow to track catheter tip
starting from the ground truth tip position in the first
frame. The motion field towards the current frame,
estimated by the two methods, was based on the de-
formation from the previous frame or the first frame
in the sequence, respectively. The same implemen-
tation setting as in Appendix B.1 was used for these
two methods. They are called “Optical Flow (pre-
vious)” and “Optical Flow (first)”, or in short form,
“OF (pre)” and “OF (1st)”. Additionally, we refer
the interested readers to Appendix C.1 where the in-
fluence of catheter segmentation on the detection and
tracking approaches is reported.

The tracking accuracies of all methods reported in
this section were obtained on the test set from Table

2. The mean, the median and the maximal tracking
error between the predicted and the ground truth tip
position of all test images are reported in Table 5.
In addition, as the sequences in the test set have dif-
ferent lengths, we also computed the mean and the
median error per sequence, and report the the aver-
age of the sequence mean and median errors, so that
each sequence contributes equally in these metrics.
Table 5 shows that the results from the detection net-
work have large average errors which are caused by
some completely failed cases. The proposed tracking
method has median errors of about 1 mm and mean
errors of about 1.3 mm. It achieves the lowest errors
compared to the other 3 methods on all listed evalu-
ation criteria.

Figure 6 illustrates the boxplots of tracking er-
rors made by the 4 methods on all test images. It
shows that the proposed tracking approach outper-
forms the detection method by avoiding making ex-
tremely large errors (Figure 6a); meanwhile, it main-
tains as accurate as the detection method for cases
with small errors, and is more accurate than the
methods based solely on optical flow (Figure 6b).

Figure 7 shows longitudinal views of tracking er-
rors of the 4 methods on 4 example sequences. Al-
though the optical flow methods show high accu-
racy when the target is on the track (row 4), they
present periodic error patterns in two sequences due
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Table 5: Catheter tip tracking errors (mm) of the 4 methods on the test (tracking) dataset. † indicates that the difference between that
method and the “Tracking” method are statistically highly significant with the two-sided Wilcoxon signed-rank test (p < 0.001).

Evaluation Metrics
Optical Flow† Optical Flow† Detection Net† Tracking

(previous) (first) (Section 4.2)

Maximal error of all images 29.16 20.83 108.20 17.72
Median error of all images 1.78 1.22 0.96 0.96
Mean error of all images 3.74 ± 4.93 3.05 ± 4.05 5.62 ± 15.91 1.29 ± 1.76

Average of sequence median error 2.35 ± 2.52 2.64 ± 3.52 6.26 ± 17.11 1.03 ± 0.49
Average of sequence mean error 2.59 ± 2.69 3.31 ± 2.81 6.83 ± 13.88 1.29 ± 0.94
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(b) A zoom-in view of (a)

Figure 6: Tracking errors for the 4 methods on all test images.

to large cardiac motion. The detection method shows
peaks of large errors, this is because temporal rela-
tion between frames is not modeled by the approach,
thus the detection on different frames is independent
of each other. The proposed tracking method over-
comes the problems that other methods have and
presents accurate detection on these 4 sequences.
The tracking results of the 4 methods on example
frames from the 4 sequences are illustrated in Figure
8.

Figure 9 illustrates how the proposed tracking
method works on the same 4 frames in Figure 8.
It shows that the prior hypotheses (samples) assists
to focus on the correct target location and results
in reliable posterior estimation, especially when the
detection produces ambiguity in cases of multiple
catheters or contrast residual presented in images.

6.2.2. Catheter Tip Initialization
In this experiment, the initial PDF p(x0) from

which samples are drawn in the proposed tracking
is investigated (Algorithm 1). In particular, we ex-

plored and evaluated the tracking accuracy with an
automatic initialization using the probability map ob-
tained from the trained detection network in Section
4.2 with the chosen setting in Section 6.1.

Figure 10 shows the boxplot of tracking errors on
all test images with automatic initialization (Auto)
and manual initialization (Manual) for which the
ground truth tip probability map of the first frame
was used. The tracking with automatic initialization
presents an accuracy similar to the one with manual
initialization for small tracking errors, but has more
large tracking errors which influence the mean error
over all test images (Table 6). We, therefore, de-
fined the tracking errors on the right side of the gap
in the boxplot (> 40 mm) as outliers, and explored
the statistics without those outliers.

Table 6 indicates that, the mean and median er-
ror of the tracking with automatic initialization ex-
cluding the outliers are only slightly higher than the
tracking with manual initialization and the detection
method. While the tracking with automatic initial-
ization has 100 outliers in total from 6 sequences,
the detection method that has 10 sequences contain-
ing 106 outliers.

Unlike the detection method for which the outliers
are mainly presented as the peaks in the longitudinal
views (Figure 7), the outliers for the tracking with au-
tomatic initialization are more consistent over time.
Figure 11 shows the temporal change of tracking er-
rors for the 6 sequences with outliers using the track-
ing with automatic initialization. For the 3 sequences
on the top row, the tracking with automatic initial-
ization makes large errors at the beginning, but be-
comes accurate very fast in a few frames; for the 3
sequences on the bottom row, however, the tracking
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Figure 7: Longitudinal view of tracking errors made by the 4 methods on 4 test sequences (one sequence per row). The x-axis
denotes the time steps of a sequence, the y-axis is the tracking error (mm).

errors remain large till the end of the sequences.
Figure 12 shows example frames to give an in-

sight of the tracking with automatic initialization on
the 6 sequences in Figure 11. For the 3 sequences
on the top row (Figure 12a), although the initializa-
tion on the first frame (frame 0) is overall not cor-
rect, the true tip positions are still covered by some
samples; once the detection in subsequent frames is
correct, the tracker can still converge to the right tar-
get. For the 3 sequence on the bottom row (Figure
12b), the initializations of samples are ambiguous in
frame 0; the detection in subsequent frames focuses
on a wrong area also given by the initial samples due
to residual of contrast agent or multiple catheters, the
tracker then tends to find the wrong target.

6.3. Dynamic Coronary Roadmapping

In this experiment, the accuracy of dynamic coro-
nary roadmapping using the proposed method with
manual tip initialization was evaluated. For roadmap

selection with ECG matching (Section 3), the num-
ber of online ECG signal points NECG was manu-
ally determined so that the ECG signal stored in the
buffer corresponding to 12 X-ray frames (0.8 second
in acquisition time). Following the setup in Section
5.4, we used the distance between the two points in
each point pair as the evaluation metric for DCR (the
length of a yellow line segment in Figure 4). As each
frame may have different numbers of point pairs, de-
pending on the length of the target guidewire, the av-
erage point pair distance per frame was also com-
puted for evaluation. These distances were evaluated
on 409 selected frames with manual annotation of
guidewires and vessel centerlines (Section 5.4).

In the experiment, we compared the DCR with the
proposed tracking method to those with manual tip
tracking and without tracking. All three approaches
were based on the same ECG matching method (Sec-
tion 3) for selecting roadmaps. The accuracy of the
DCR without tracking in Table 7 shows that the mean
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Figure 8: Tracking results on example frames from the same 4 sequences in Figure 7. The blue point indicates the predicted catheter
tip location; the red point shows the ground truth location. (Best viewed in color)

distances are reduced to less than 3 mm by com-
pensating only cardiac motion via roadmap selection
with ECG matching. Table 7 also shows that the
DCR with the proposed method achieves median dis-
tances of about 1.4 mm and mean distances of about
2 mm. The boxplots of the distances of all point pairs
and the frame mean point distances of all 409 evalua-
tion frames are illustrated in Figure 13. The compar-
ison of the three DCR approaches from Table 7 and
Figure 13 indicates that the accuracy of the proposed
DCR method has shown improvement over the DCR
without tracking, and is only slightly less than the
DCR with manual tip tracking (although the differ-
ence is statistically significant). Additionally, inter-
ested readers are referred to Appendix C.2 where the
influence of catheter segmentation on the accuracy of
DCR is investigated.

Table 8 shows how the frame mean point distances
of the 409 evaluation frames are distributed. The
DCR with the proposed method has similar error dis-

tribution as the one with manual tip tracking: they
both have about 1/3 of the distances less than 1 mm
and 1/3 of the distances between 1 and 2 mm. The
proposed method has slightly more distances larger
than 5 mm than manual tip tracking. Both methods
are more accurate than the DCR without tracking on
intervals of small errors (< 2 mm).

Figure 14 shows overlays of selected roadmaps on
example frames of 4 sequences with the three DCR
approaches. The DCR without tracking presents mis-
match of catheters, guidewires or residual of contrast
agent in the images, whereas the other methods im-
prove the alignment and show good match between
the structures in the original X-ray image and the
roadmaps. Compared to the DCR with manual tip
tracking, the proposed method show similar visual
alignment of the roadmaps to the original X-ray im-
ages. For a dynamic view of a roadmapping exam-
ple, we refer readers to the supplemental material.

17



S
equence 1

Input Segmentation 
(heatmap)

Detection 
(likelihood)

Particles 
(posterior)

Prediction 
(expectation)

S
equence 2

S
equence 3

S
equence 4

Ground TruthParticles 
(prior)

Figure 9: Workflow of the proposed tracking method on the same 4 frames in Figure 8. The high probability is shown with bright
color in the detection map. Samples or particles are presented as green dots. The blue point indicates the predicted catheter tip
location; the red point shows the ground truth location. (Best viewed in color)
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Figure 10: Catheter tip tracking errors (mm) with manual and
automatic initialization.

6.4. Processing Time

The processing time of all steps in the proposed
DCR method was measured with the hardware and
software setup in Section 5.5. The ECG matching
method for roadmap selection was running in Python
on the CPU of the Linux machine; the deep neural
network and the optical flow component of the track-
ing method were running on the GPU.

In the experiments, the runtimes for roadmap se-
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Figure 11: Longitudinal views of tracking errors (mm) for the
6 sequences with outliers using automatic initialization.

lection (step 1) and roadmap transformation (step 3)
in Figure 1 were negligible (< 1 ms / frame). The
runtime of the proposed catheter tip tracking method
is shown in Table 9 and Figure 15. The average
time to compute the likelihood with the deep learning
setup (DL) is 31.5 ms / frame. The particle filtering
(PF) step, which consists of the optical flow estima-
tion, sample propagation, sample weight update and
normalization, prediction and resampling, takes on
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Table 6: Catheter tip tracking errors (mm) of detection and tracking with manual and automatic initialization

Detection
Tracking

Manual init. Automatic init.

Maximal error 108.20 17.23 98.58
Median error 0.96 0.96 0.96
Mean error 5.62 ± 15.91 1.29 ± 1.76 5.16 ± 13.91

No. of outliers (> 40 mm) 106 0 100
No. of sequences with outliers 10 0 6

Maximal error of inliers 31.06 17.23 28.28
Median error of inliers 0.96 0.96 0.96
Mean error of inliers 1.17 ± 1.78 1.29 ± 1.76 1.34 ± 2.15

Table 7: The statistics of DCR accuracy (mm) with three different tracking scenarios. With the two-sided Wilcoxon signed-rank
test: † denotes that the difference between the DCR without tracking and that with the proposed tracking method is statistically
highly significant (p < 0.001); * indicates a statistically significantly difference between the DCR using manual tip tracking and
that with the proposed tracking approach (p < 0.05).

Without Tracking† Proposed Tracking Method Manual Tip Tracking*

All point pairs
Maximal distance 27.19 20.24 13.12
Median distance 1.97 1.43 1.35
Mean distance 2.94 ± 2.83 2.07 ± 2.08 1.85 ± 1.72

Frame mean distance
Median distance 2.11 1.42 1.38
Average distance 2.76 ± 2.08 1.91 ± 1.52 1.75 ± 1.30

average 23 ms / frame. Therefore, the average track-
ing time in total is 54.5 ms / frame. The total av-
erage time of the proposed DCR including roadmap
selection, catheter tip tracking and roadmap transfor-
mation is still less than the acquisition time of our
data (66.7 ms / frame, 15 fps), indicating that the
proposed DCR method would run in real-time with
our setup.

7. Discussion

We have presented a new approach to perform on-
line dynamic coronary roadmapping on X-ray flu-
oroscopic sequences for PCI procedures. The ap-
proach compensates the cardiac-induced vessel mo-
tion via selecting offline-stored roadmaps with ap-
propriate cardiac phase using ECG matching, and
corrects the respiratory motion of vessels by online

tracking of guiding catheter tip in X-ray fluoroscopy
using a proposed deep learning based Bayesian fil-
tering. The proposed tracking method represents and
tracks the posterior of catheter tip via a particle fil-
ter, for which a likelihood probability map is com-
puted for updating the particle weights using a con-
volutional neural network. In the experiments, the
proposed DCR approach has been trained and eval-
uated on clinical X-ray sequences for both tracking
and roadmapping tasks.

One prerequisite of accurate tracking with the pro-
posed approach is to obtain a reasonably good like-
lihood estimation, which requires to train the deep
neural network to detect catheter tip well. In this
work, we have investigated the influence of three
network hyperparameters on the performance of the
detection network (Section 6.1): the basic channel
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Table 8: Distribution of frame mean point distances of the 409 evaluation frames.

Tracking Methods of DCR
Error Intervals (mm)

< 1 1-2 2-3 3-4 4-5 ≥ 5

Without tracking 81 115 69 47 31 66
Proposed tracking method 131 145 61 32 17 23
Manual tip tracking 139 144 61 35 20 10

Table 9: Statistics of the runtime of catheter tip tracking (ms / frame) on the test (tracking) dataset.

Deep Learning Particle Filtering Total Tracking Time

Mean 31.5 ± 10.3 23.0 ± 8.7 54.5 ± 12.3
Median 35.1 22.8 57.7

number and network depth level are model capac-
ity parameters, the dropout adds regularization to the
model. The experiment showed that the detection ac-
curacy improves when the basic channel number and
the network depth level increase (Table 3). This ob-
servation matches the expectation that a more com-
plex model has higher capacity to model the variation
in the data, hence results in better accuracy. When
the complexity reaches a certain level, e.g. 64 ba-
sic channels and 5 level of depth, the network per-
formance does not increase much compared to those
with simpler settings, implying that the model starts
overfitting on our dataset.

In addition to the deep neural network, the other
important component of the proposed tracking ap-
proach is the sampling in the particle filter that yields
the samples for representing the prior and the poste-
rior of catheter tip position. First, a sufficient number
of samples in the whole sample space are required
to well characterize the probability distributions (see
Appendix B.2). Second, the sample dynamics plays
an important role in tracking, in particular, as indi-
cated by Eq.(8), the process noise and the sample
motion. The process noise influences the tracking
accuracy, according to Table 10 in Appendix B.2.
Additionally, sample motion is another key aspect
of sample dynamics. Motion estimation has previ-
ouly been incorporated in a motion-based particle
filter, such as adaptive block matching (Bouaynaya
and Schonfeld (2009)). In our work, optical flow was
chosen for motion estimation, as its non-parametric

nature allows to characterize the complexity of mo-
tion in X-ray fluoroscopy well. In addition, the ad-
vantage of such approach from a theoretical point of
view is that it takes into account of the current ob-
servation, leading to a more optimal importance den-
sity (Arulampalam et al. (2002)) compared to ran-
dom motion.

The tracking results in Section 6.2.1 show that
the proposed tracking approach is able to track the
catheter tip in X-ray fluoroscopy accurately with an
average tracking error of about 1.3 mm. It also shows
advantages over methods based only on optical flow
or the detection network. The OF (pre) method relies
heavily on tracking in the previous frame, hence the
error could accumulate. The OF (first) method may
suffer from large motion from the first frame to the
current frame. The detection method uses informa-
tion only from the current frame, no temporal rela-
tion between frames is utilized; therefore, it results in
spikes in the longitudinal view, as shown in Figure 7.
The proposed tracking method has a CNN to provide
an accurate observation on the current frame which
improves the accuracy of optical flow tracking within
the framework of Bayesian filtering. In the mean-
time, the optical flow based particle filter maintains
and propagates the prior knowledge from the initial
tip position to provide a constraint on searching for
the potentially correct positions, which is useful es-
pecially when the CNN detector fails to find the cor-
rect target area. The association of knowledge from
two sources together improves the tracking accuracy
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(a) Sequence 1-3 on the top row in Figure 11
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Figure 12: Examples frames from the 6 sequences in Figure 11.
The high probability in the detection heatmap is highlighted as
bright color. Particles are presented as green dots. The red dots
in the last column indicate the ground truth tip location. (Best
viewed in color)

Figure 13: Accuracy (mm) of DCR with three different tracking
scenarios.

Original X-ray 
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Without Catheter 
Tip Tracking

With The Proposed 
Method

With Manual Tip 
Tracking

Figure 14: Examples of superimposition of selected roadmaps
(red) on X-ray fluoroscopic frames. (Best viewed in color)
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Figure 15: Runtime of catheter tip tracking (ms / frame) on all
test frames.

compared to each single source.
The initial state is a also key component of track-

ing approaches. In the context of Bayesian filtering,
the initial state provides the prior knowledge of the
tracking target. Most tracking algorithms assume a
known initial state from which the target is tracked,
e.g. our proposed method with manual initialization
in Section 6.2.2. In this case, the prior knowledge is
provided by human. In Section 6.2.2, we also investi-
gated a scenario where the initial state is given by the
detection network, so that the complete tracking pro-
cess is fully automated. The results indicate that, the
proposed tracking method with automatic initializa-
tion works reasonably well on most sequences even
when the initialization is sometimes incorrect (Fig-
ure 12a). This is because (1) the true position is cov-
ered by a few samples, and (2) the correct detection
in later frames corrects the initial mistake in the first
frame. The automatic initialization fails when (1)
a wrong position is covered by a few samples and
(2) the wrong detection in subsequent frames con-
firms the mistake in the initial frame (Figure 12b).
This happens when there is contrast agent remaining
in the image or there are multiple catheters, which
are the major sources causing ambiguity in detec-
tion. In practice, the automatic initialization would
work well when contrast agent is washed out and
only one catheter is present in the field of view, oth-
erwise manual initialization would be needed which
requires only one click to initiate tracking.

Dynamic coronary roadmapping is the direct ap-
plication of the catheter tip tracking results. In our
experiments, the DCR was performed with manual
tip initialization to show the potential of the proposed
tracking method, and was compared with the DCR
without tracking and with manual tracking. The
results indicate that using catheter tip tracking can

improve DCR accuracy, as the respiratory-induced
vessel motion is corrected by the displacement of
catheter tip in addtion to cardiac motion correction.
The results also show that the proposed DCR reaches
a good accuracy (mean error is about 2 mm) and
performs only slightly worse than its best case, the
DCR with manual tip tracking which is not applica-
ble for intraoperative use. Additionally, according to
a previous study by Dodge et al. (1992), the average
lumen diameters of human coronary arteries are be-
tween 1.9 mm (distal left anterior descending artery)
and 4.5 mm (left main artery). This means that
the accuracy achieved with the proposed approach is
comparable with the size of coronary arteries.

Apart from catheter tip tracking, several other pos-
sible factors in different steps of the experiments may
influence the final DCR accuracy. First, in the offline
phase, the signal of contrast agent may become too
strong and completely cover the catheter tip, com-
plicating the tip visibility in some cases. In this sit-
uation, the uncertainty in the manual tip annotation
may result in errors in roadmap transformation. Sec-
ond, in the roadmap selection step, the offline-stored
roadmaps are only discrete samples of complete car-
diac cycles which might not fully characterize every
possible change in the cardiac motion. This problem
could possibly be addressed in the future by inter-
polating frames between the existing frames in the
data. Additionally, variation exists between differ-
ent cardiac cycles (McClelland et al. (2013)), there-
fore, choosing a roadmap from another cycle may
cause inaccuracy for cardiac motion compensation.
Finally, the way of DCR evaluation in Section 5.4
might also introduce inaccuracies in the error mea-
surement. Since guidewires often attach to the inner
curves of a vessel to take the shortest path, the small
difference between the annotation of guidewire and
vessel centerlines was ignored in the evaluation.

In addition to accuracy, processing speed is also
critical for intraoperative applications. The results in
Section 6.4 indicate that the total processing time of
the proposed DCR approach is less than the image
acquisition time, meaning that it runs in real-time on
our setup. To build a real-time system for PCI in
practice, the overall latency of the complete system
needs to be considered. It is also worth noticing that
the DL and PF steps of the proposed tracking method
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are independent from each other. In practice, in case
more than one GPU are available, the proposed DCR
approach can be further accelerated by paralleling
the DL and PF steps, making them running on dif-
ferent GPUs.

Compared to the previous works on DCR, the pro-
posed approach in this paper shows advancement in
several aspects. First, our systems works on non-
cardiac-gated sequences which does not require ad-
ditional setups for cardiac motion gating that were
needed for some methods (Zhu et al. (2010); Manhart
et al. (2011)). Second, our approach compensates
both respiratory- and cardiac-induced vessel motion,
which is more accurate than systems that correct only
cardiac motion (Elion (1989)). In addition, the pro-
posed DCR approach follows a data-driven paradigm
that learns target feature from sequences acquired
from different patients and various view angles, mak-
ing it more robust than the method that relies on tra-
ditional vesselness filtering (Kim et al. (2018)) or
methods that require specific tissue being present
(Zhu et al. (2010); Manhart et al. (2011)). These
are the major advantages of the proposed DCR over
the existing direct roadmapping systems. Compared
to model-based motion compensation, our approach
does not require the extraction of motion surrogate
signals and train a motion model for each new pa-
tient, but can be directly run with a trained model.

The proposed deep learning based Bayesian fil-
tering method has several advantages over the ex-
isting instrument tracking methods. First, the deep
learning component enables a more general frame-
work to detect instruments in medical images than
methods tailored for specific tools (Ma et al. (2012,
2013)). Compared to the existing detection methods
based on deep learning (Baur et al. (2016); Laina
et al. (2017); Du et al. (2018)), our approach takes
into account of the information between frames; the
Bayesian filtering framework allows interaction be-
tween temporal information and the detection of a
convolutional neural network, making the tracking
more robust. Bayesian frameworks have been used
in many previous temporal instrument tracking meth-
ods. Particularly, the likelihood term in some works
was designed based on registration or segmentation
outcomes (Ambrosini et al. (2017b); Speidel et al.
(2006)) or traditional machine learning approaches

with handcrafted features (Wang et al. (2009); Wu
et al. (2012); Pauly et al. (2010)). In our method, we
approximated the likelihood with a deep neural net-
work learned from the clinical data which exempts
the need of feature engineering but yet possesses
more discriminative power; the network directly out-
puts the probability map, making it more straightfor-
ward to use. Finally, compared to the existing instru-
ment tracking approaches based on Bayesian filter-
ing (Ambrosini et al. (2017b); Speidel et al. (2006,
2014)), the state transition in our method was based
on the motion estimated from two adjacent frames,
which is more reliable than totally random motion or
artificially-designed state transition models.

From a practical point of view, the proposed DCR
approach could potentially fit into the clinical work-
flow of PCI. The offline phase of the method can
be done efficiently by a person who assists the pro-
cedures: selecting and creating roadmaps from an
angiography acquisition, annotating the catheter tip
(one point) in the images. This phase is typically
done before a fluoroscopy acquisition during which
the guidewire advancement and stent placement are
performed. In the online phase, when a fluoroscopic
image is acquired, the proposed system selects the
most suitable roadmap, tracks the catheter tip and
transforms the roadmap to prospectively show a ves-
sel overlay on the fluorosocpic image. The online
updated coronary roadmap can provide real-time vi-
sual guidance to cardiologists to manipulate inter-
ventional tools during the procedure without the need
of administering extra contrast agent.

In the future, it may be worth investigating the
following directions related to this work. As the
data used in this study was acquired from one hos-
pital using a machine from a single vendor, it would
be interesting to evaluate the proposed approach on
multi-center data acquired with machines from dif-
ferent vendors. Next, since the ECG signals of our
data appear to be regular, it may be necessary in a
future study to acquire data with irregular ECG that
could be obtained in practice, and validate the pro-
posed approach on those data. Besides, it would
be also interesting to validate our approach during
PCI procedures in an environment simulating the real
clinical settings. Additionally, from a methodolog-
ical point of view, although the proposed tracking
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method is invariant under different view angles, the
whole DCR approach works only when the offline
and online phase have the same view angle, i.e. it
is a 2D roadmapping system. Therefore, one future
direction would be to develop a 3D DCR system that
would work with various view angles in the online
phase.

8. Conclusion

We have developed and validated a novel approach
to perform dynamic coronary roadmapping for PCI
image guidance. The approach compensates car-
diac motion through ECG alignment and respiratory
motion by guiding catheter tip tracking during fluo-
roscopy with a deep learning based Bayesian filter-
ing method. The proposed tracking and roadmap-
ping approaches were trained and evaluated on clini-
cal X-ray image datasets and were proved to perform
accurately on both catheter tip tracking and dynamic
coronary roadmapping tasks. Our approach also runs
in real-time on a setup with a modern GPU and thus
has the potential to be integrated into routine PCI
procedures, assisting the operator with real-time vi-
sual image guidance.
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Appendix

A. Details of the Training Setup
A.1. Data Augmentation

To increase the number of training samples and
their diversity, data augmentation was used. The aug-
mentation includes geometric transformation such as
flipping (left-right, up-down), rotation of multiple of
90 degrees, random affine transformation (translation
-10 to 10 px, scaling 0.9 to 1.1, rotation -5 to 5 de-
grees, shear -5 to 5 px), random elastic deformation

(deformation range -4 to 4 px, grid size of control
points 64 px). A training sample has 0.5 probability
of being processed with one of the transformations.
The probability for applying each transformation is:
flipping left-right (1/24), flipping up-down (1/24),
rotation of multiple of 90 degrees (1/12), affine trans-
formation (1/6), elastic deformation (1/6), no trans-
formation (1/2). To make the trained model robust to
noise, in addition to the geometric transformations,
we also augmented data by adding Gaussian noise to
the pixel value with a zero mean and a standard de-
viation between 0.01 and 0.03. The probability of
adding the noise is 0.5.

A.2. Training Settings
The λ value in the training loss Eq. (5) was set

to 10 to make the scale of the two terms similar.
Adam optimizer was used to minimize the loss func-
tion with a learning rate 0.0001. The number of train-
ing samples in a batch is 4. The network was trained
with 100 epochs to ensure convergence.

B. Parameter Tuning for Catheter Tip Tracking

This section describes the details of tuning the pa-
rameters of optical flow and particle filter for catheter
tip tracking.

B.1. Tuning Optical Flow Parameters
The approach of Farnebäck (2003) was used as

the optical flow implementation in Algorithm 1. A
grid search to find the optimal parameter setting was
done on the following parameters of the method: (1)
the image scale to build the pyramids, (2) the num-
ber pyramid levels, (3) the averaging window size,
(4) the number of iterations, (5) the size of the pixel
neighborhood used to find polynomial expansion in
each pixel, and finally (6) the standard deviation of
the Gaussian that is used to smooth derivatives used
as a basis for the polynomial expansion.

The above parameters were tuned independently
of the deep neural network, as optical flow di-
rectly estimates the catheter tip motion between two
frames. To tune the parameters, we tracked the
catheter tip in X-ray fluoroscopy starting from the
ground truth tip position in the first frame using the
motion field between two adjacent frames estimated
with optical flow. The average and median distance
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between the tracked tip position and the ground truth
were used as the evaluation criteria for the tuning.

The method of Farnebäck (2003) was im-
plemented by using the OpenCV function
calcOpticalFlowFarneback. With consider-
ation of the suggested parameter values from the
documentation, the parameter setting chosen for op-
tical flow from the grid search is pyr scale = 0.5,
levels = 3, winsize = 10, iterations = 30,
poly n = 5, poly sigma = 1.1. Details of the pa-
rameters can be found on the function documentation
page1.

B.2. Tuning Particle Filter Parameters
The parameters to tune for the particle filter are

the number of samples Ns and the variance of pro-
cess noise σ2

v . When tuning them, we fixed the pa-
rameters of the trained network and the optical flow
method, and used their optimal parameter settings
during this experiment. Following Algorithm 1, we
tracked the catheter tip from the ground truth posi-
tion (probability map) in the first frame, and used the
mean and median distance between the tracked and
the true position as the validation metric.

The tracking results on the validation (tracking)
set are shown in Table 10. The table shows that 100
samples are suboptimal, while 1000 samples seem
sufficient, as 10000 samples result in tracking accu-
racies similar to 1000 samples. It also shows that
the optimal choices of the standard deviation of the
process noise are 4 or 5 px for the downsampled im-
ages. One possible reason for such choices may be
that they are similar to the size of guiding catheters.
In general, good choices for Ns are 1000 and 10000,
for σv are 4 and 5. By considering the mean, the
standard deviation and the median of tracking errors,
the parameter setting σv = 5, Ns = 1000 was chosen.

C. Detection, tracking and roadmapping without
catheter segmentation

Training of the network in Figure 3 requires
catheter labels for detection and segmentation. As
the segmentation labels are often more expensive to
acquire than the detection label in practice, we also

1https://docs.opencv.org/2.4/modules/video/

doc/motion_analysis_and_object_tracking.html?
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Figure 16: Tracking errors on all test images with and without
catheter segmentation.

investigated the performance of catheter tip detec-
tion, tracking and dynamic coronary roadmapping
without segmenting the catheter. To this end, we
used a similar encoder-decoder network architecture
as Figure 3 which computes only the detection output
directly after the last up block of the decoder with a
1×1 convolution followed by a spatial softmax layer,
instead of having two outputs. We then followed
the same way as the approach using the network
with segmentation to search for (hyper-)parameters
for the approach without segmentation. The follow-
ing parameter setting was chosen for the experiments
in this section: for deep learning, the basic channel
number is 64, the depth is 5, the dropout rate is zero;
for particle filtering, σv = 3, Ns = 10000. With this
setup, we compared the performance of the approach
without catheter segmentation to the proposed ap-
proach with segmentation on catheter tip detection
and tracking (Appendix C.1) and dynamic coronary
roadmapping (Appendix C.2) on the test set from Ta-
ble 2.

C.1. Catheter tip detection and tracking

The same metrics in Table 5 are used to report
the accuracy of catheter tip detection and tracking
without catheter segmentation. Table 11 and Fig-
ure 16 both manifest that the segmentation sub-task
improves the accuracy of catheter tip detection and
tracking. Although the improvement on the track-
ing task is marginal and not statistically significant
(p = 0.06), the segmentation helps to reduce the
magnitude and amount of outliers (large errors).
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Table 10: Catheter tip tracking errors (mm) on the validation (tracking) dataset of different parameter settings for particle filter. The
tracked tip point was rounded to the pixel center. The error of all images (mean ± std / median) are presented. Red cells show the
good choices of parameters; bold number indicates the chosen setting.

σv Ns

(px) 100 1000 10000

3 1.52 ± 2.19 / 0.79 1.49 ± 2.18 / 0.79 1.48 ± 2.18 / 0.79
4 1.50 ± 2.17 / 0.79 1.46 ± 2.17 / 0.79 1.47 ± 2.18 / 0.79
5 1.52 ± 2.21 / 0.79 1.47 ± 2.17 / 0.74 1.47 ± 2.19 / 0.74
6 1.53 ± 2.39 / 0.79 1.49 ± 2.33 / 0.79 1.48 ± 2.29 / 0.74
7 1.56 ± 2.42 / 0.79 1.50 ± 2.29 / 0.74 1.50 ± 2.39 / 0.74
8 1.58 ± 2.41 / 0.79 1.51 ± 2.40 / 0.74 1.51 ± 2.42 / 0.74
9 1.56 ± 2.22 / 0.79 1.53 ± 2.43 / 0.79 1.52 ± 2.45 / 0.61

10 2.25 ± 6.18 / 0.79 1.54 ± 2.46 / 0.79 1.53 ± 2.47 / 0.61

Table 11: Catheter tip tracking errors (mm) with and without catheter segmentation on the test (tracking) dataset. † indicates that
the difference between the detection with and without segmentation is statistically highly significant with the two-sided Wilcoxon
signed-rank test (p < 0.001). No statistically significantly difference is observed between the tracking with and without segmenta-
tion using the two-sided Wilcoxon signed-rank test (p = 0.06).

Evaluation Metrics
With Segmentation Without Segmentation

Detection† Tracking Detection Tracking

Maximal error of all images 108.20 17.72 133.94 23.2
Median error of all images 0.96 0.96 0.96 0.96
Mean error of all images 5.62 ± 15.91 1.29 ± 1.76 9.32 ± 19.73 1.75 ± 3.17

Average of sequence median error 6.26 ± 17.11 1.03 ± 0.49 9.34 ± 18.64 1.42 ± 2.14
Average of sequence mean error 6.83 ± 13.88 1.29 ± 0.94 10.41 ± 15.94 1.69 ± 1.97

C.2. Dynamic coronary roadmapping
In this experiment, the same setup in Section

6.3 was used to assess the accuracy of DCR using
catheter tip tracking without segmenting the catheter.
Table 12 indicate that tracking the catheter tip with
catheter segmentation improves the DCR accuracy
compared to that without catheter segmentation. Al-
though the improvement is not statistically signifi-
cant (p = 0.43), the approach with segmentation is
more robust by making less large roadmapping er-
rors (Figure 17).

Figure 17: Accuracy (mm) of DCR via catheter tip tracking
with and without catheter segmentation.
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Table 12: The statistics of DCR accuracy (mm) via catheter tip tracking with and without catheter segmentation. With the two-sided
Wilcoxon signed-rank test, no statistically significantly difference is observed between the DCR with and without segmentation
(p = 0.43).

With Segmentation Without Segmentation

All point pairs
Maximal distance 20.24 25.20
Median distance 1.43 1.43
Mean distance 2.07 ± 2.08 2.44 ± 3.15

Frame mean distance
Median distance 1.42 1.40
Average distance 1.91 ± 1.52 2.23 ± 2.59
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