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Abstract: A modified free-wake vortex ring model is proposed to compute the dynamics of a floating
horizontal-axis wind turbine, which is divided into two parts. The near wake model uses a blade
bound vortex model and trailed vortex model, which is developed based on vortex filament method
with straight lifting lines assumption. By contrast, the far wake model is based on the vortex ring
method. The proposed model is a good compromise between accuracy and computational cost,
for example when compared with more complex vortex methods. The present model is used to assess
the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor.
The results are validated on the 5 MW NREL rotor and compared with other aerodynamic models for
the same rotor subjected to different platform motions. The results show that the proposed method is
reliable. In addition, the proposed method is less time consuming and has similar accuracy when
comparing with more advanced vortex based methods.

Keywords: free wake vortex method; horizontal-axis wind turbine; floating wind energy; aerodynamics

1. Introduction

The unsteady aerodynamic loads experienced by floating offshore wind turbines (FOWTs) can
be significantly different from those of bottom-fixed wind turbines [1]. Simulation tools that can
accurately evaluate the relationship between the aerodynamic loads on the rotor and the platform
motion are required especially for off-design conditions or novel concepts. Thus far, the available
aero-hydro coupled analysis tools are almost exclusively based on the blade element momentum (BEM)
theory, which describes the steady state behavior of a wind turbine but is unsuitable when the rotor
interacts with its own wake, as is the case for FOWTs. An alternative is to use computational fluid
dynamics (CFD) models that describe the flow physics around the rotor with higher fidelity. However,
they are computationally expensive when dealing with the fully-coupled dynamics of FOWTs. Another
approach, which is more accurate than momentum theory and less costly than CFD, is the so-called
vortex methods. Vorticity-based methods have a number of different formulations, ranging from
simple analytical models to more advanced numerical methods [2]. In addition, the computational
cost of vortex models depends on the number of vortex elements and the interaction between them,
ranging from relatively computationally less expensive models to more expensive ones [3,4]. Since the
rotating wind turbines generate bounded circulations on the blades and release vorticity into the wake,
the vortex based methods are naturally suitable for the simulation of wind turbine aerodynamics.
The blade vorticity is assumed to be concentrated on lifting lines, with distributed vortex strengths
representing the bound circulation, which convect to the wake as shed and trailed vorticity. The shed
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vorticity is the vorticity emitted in the wake due to time change of the bound circulation, while
the trailed vorticity results from the spanwise change of bound circulation [2]. Within the scope of
simplified vorticity models for rotors, the wake flow can be represented by vortex filaments such as the
free wake vortex filament (FWVF) method of [5], vortex particles such as the nonlinear vortex lattice
method (NVLM) method of [6], or a vortex ring model. As for the vortex ring methods, the wake is
modeled with vortex rings with constant circulations determined by the aerodynamic loads on the
rotor. Each vortex ring induces velocity on both the rotor and the other rings in the wake. The radius
and spacing of the rings are time-varying, which is the so-called free wake vortex ring method. In this
method, the analytical solution of the induced velocity of an axisymmetric vortex ring derived from
Biot–Savart law [7,8] is used to calculate the induced velocities in the wake as well as on the rotor,
which reduces computation cost while retaining the basic physical properties in the wake.

The simplest vortex ring methods available in the literature represent the rotor with an actuator
disc, while the wake is modeled as vortex rings released at the tip of the rotor [9–11]. These models
were used to calculate unsteady aerodynamic loads on both fixed and moving rotors. However,
some aerodynamic features such as angle of attack, and lift and drag forces on the rotor could not be
accurately reproduced due to the limitations associated with the actuator disc concept. A modeling
method that represents the rotor blades with lifting lines, the near wake as a series of straight vortex
lines and the far wake by vortex rings was initially suggested by Miller [12], relating the blade bound
vortex strength with the vortex ring strength in the wake. In that case, the rotor loads were also
dependent on the induced velocities from the vortex rings. Afjeh [13] and de Vaal [14,15] adapted and
improved this method to the modeling of wind turbines, and good agreement was achieved when
comparing the numerical results with measurement data.

The proposed free wake vortex ring method (FWVR) is based on the work of de Vaal [15] which
is an aerodynamic model of a horizontal-axis wind turbine. It combines the Kutta–Joukowski lift
theorem with the blade element theory, which can accurately and effectively predict the blade load
using the time-evolution of the induced velocities. It splits the wake into near wake and far wake,
leading to more realistic velocities on the blade and in the far-field. However, the application of de
Vaal’s original method [15] can be challenging for some working states, for example the case of small
or negative angles of attack at low wind speeds, or blade pitching motions at high wind speeds. In this
paper, we present a few modifications of the original method to overcome these challenges. First,
the propagation process of the vortex rings is modified and different nonlinear iteration methods are
tested to solve the blade bound vortex strengths. Second, the near-wake trailed vortex model uses
finite length of vortex segments instead of semi-infinite vortex lines, which is physically more realistic.

The proposed free wake vortex model was validated by analyzing the aerodynamic parameters
on the NREL 5 MW wind turbine with both fixed-bottom and different types of platforms foundations,
i.e., ITI barge, OC3-Hywind spar-buoy (OHS), and tension leg platform (TLP). The results were
compared with those obtained from BEM theory, RANS method of [16] and two vortex based
aerodynamic models—the FWVF method of [5] and the NVLM method of [6].

The paper is organized as follows. The theory of the modified free wake vortex ring method
is described in Section 2. The numerical modeling method is described and validated in Section 3.
The computational time evaluation is shown in Section 4. The wind turbine aerodynamic analysis is
shown in Section 5. Finally, conclusions are drawn in Section 6.

2. Vortex Ring Theory

The proposed free wake vortex ring method consists of two parts: the near wake model and the
far wake model. The induced velocities of the near wake model are calculated based on Biot–Savart
law, as described in Section 2.1. To keep a low computational cost, the far wake model is represented
by the axisymmetric vortex rings, as introduced in Section 2.2.
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2.1. Velocity Induced by a Vortex Filament

The velocity VP induced by a vortex filament with a constant strength Γ in the field at a point P
can be expressed by Biot–Savart law as [17]

VP = − Γ
4π

∫
C(q)

rP − rq

|rP − rq|3
×

∂rq

∂q
dq, (1)

where C(q) is the parametric curve which describes the path of the vortex filament, rP is the position
vector of the point P, rq is the position vector of a point Q on the filament, r = rP − rq is the vector

pointing from point Q to point P, and ∂rq
∂q is the partial derivative of rq with respect to the filament

parameter. In Equation (1), the kernel of Biot–Savart operator is identified as

K(r) = − 1
4π

r
|r|3 , (2)

which singular when the point P is on the vortex filament C(q). To avoid the singularity, a smoothing
method proposed by Hoydonck et al. [18] is used, which replaces K(r) with Kσ(r), defined as

Kσ(r) = −
g(σ)
|r|3 r, (3)

where σ is the non-dimensionalized length between the point P and a point on the filament, and g(σ) is
a three-dimensional velocity smoothing function [18]. Here, the Rosenhead–Moore velocity smoothing
function is used, i.e.,

g(σ) =
σ3

4π(σ2 + 1)
3
2

. (4)

This leads to the following induction velocity,

VP = Γ
∫

C(q)
Kσ(r)×

∂rq

∂q
dq. (5)

Considering a straight line vortex filament, the parametric curve of the filament is given by
C(q) = x1 + q(x2 − x1), with 0 ≤ q ≤ 1. Thus, the desingularized kernel Kσ(r) can be expressed as

Kσ(r) = −
xP −C(q)

4π(|xP −C(q)|2 + r2
c )

3
2
= − xP − (1− q)x1 + qx2

4π(|xP − (1− q)x1 + qx2|2 + r2
c )

3
2

, (6)

where rc is the vortex core radius. Accordingly, the induced velocity VP can be expressed as

VP = −Γ
∫ 1

0

xP − (1− q)x1 + qx2

4π(|xP − (1− q)x1 + qx2|2 + r2
c )

3
2
× (x2 − x1)dq. (7)

When the point x2 extends to infinity, the straight line vortex filament becomes a semi-infinite
line. In this case, the upper limit of q = q̃ extends to infinity, and the induced velocity VP becomes

VP = −Γ lim
q̃→∞

f (q), (8)

f (q) =
∫ q̃

0

xP − (1− q)x1 + qx2

4π(|xP − (1− q)x1 + qx2|2 + r2
c )

3
2
× (x2 − x1)dq. (9)
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2.2. Velocity Induced by an Axis-Symmetric Vortex Ring

Considering an ideal vortex ring with radius R, as shown in Figure 1, its parametric curve C(χ)
with the angle χ as the parameterization parameter can be expressed as

C(χ) = R(cosχ, sinχ, 0), χ ∈ [ 0, 2π ]. (10)

Figure 1. Coordinate system associated with a vortex ring.

In the local vortex ring coordinate frame x
′
y
′
z
′

of an axis-symmetric vortex ring, the coordinates
of P are (x

′
P, 0, z

′
P) and C(χ) is located in the x

′
y
′
-plane, which centered at the origin of the z

′
-axis.

Thus, Taking the notation x
′
P = ηR and z

′
P = ζR, we have

r(χ) = R(cosχ, sinχ, 0), (11)

rP = R(η, 0, ζ), η ∈ ( 0,+∞ ), ζ ∈ (−∞,+∞ ). (12)

The displacement vector r is thus given by

r = rP − r(χ) = R(η − cosχ,−sinχ, ζ). (13)

The vortex ring induced velocity at P is obtained by substituting the above equations into
Equation (5), which yields:

V = − Γ
4πR

∫ 2π

0

(ζcosχ, ζsinχ, 1− ηcosχ)

(1 + η2 + ζ2 + σ2
c − 2ηcosχ)

3
2

dχ, (14)

where σc = rc/R is the non-dimensional vortex core radius; a constant value of 0.0116 is taken where
the self induced velocity agree with ring-center velocity [15]. An analytical result of this integral has
been derived as [7,8]

Vx =
Γ

2πRC0

[
−K(m) +

1 + η2 + ζ2

C2
1

E(m)

]
ζ

η
, (15)

Vz =
Γ

2πRC0

[
K(m) +

1− η2 − ζ2

C2
1

E(m)

]
, (16)

with
C2

0 = 1 + 2η + η2 + ζ2 + σ2
c , (17)

C2
1 = 1− 2η + η2 + ζ2 + σ2

c , (18)
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and the functions K(m) and E(m) being the first and second types of complete elliptic integrals,
respectively, with m defined as:

m =
4η

C2
0

. (19)

3. Numerical Model

As explained in Section 2, the present free wake vortex ring model consists of two parts: the near
wake model and the far wake model. The near wake model includes the blade bound vortex model
and the trailed vortex model, which are both represented by vortex line segments. The velocities
induced by these vortex lines are calculated based on Biot–Savart law, as described in Section 2.1.
By contrast, the velocity induced by the far wake model is given by Equations (15) and (16). Section 3.1
gives more insights into the discretization of blades using vortex elements, while Section 3.2 discusses
how the far wake model is implemented and how vortex rings propagate in the wake.

3.1. Near Wake Models

3.1.1. Blade Bound Vortex Model

Figure 2 illustrates the blade bound vortex model for a rotor of Nb = 3 blades with straight
lifting lines assumption. Each blade is discretized with a series of vortex line segments. The radial
endpoints on the vortex segments are denoted by rt

j , while the control points are denoted by rn
i , where

rn
i = (rt

j + rt
j+1)/2 (i = 1, ..., N and j = 1, ..., N + 1), N being the number of vortex segments. A local

blade coordinate system xbybzb is defined as right-handed and centered at the rotor root. The xb-axis
is along the pitch axis and pointing towards the tip of the blade; the yb-axis points to the trailing edge
of blade and is parallel to the chord line at the zero-twist blade section; and the zb-axis is orthogonal to
both xb and yb. In the local blade coordinate system of a blade b, the rotor lies in the xbyb-plane, as
shown in Figure 2. The coordinates of a control point ni and an endpoint tj are then expressed as

ni =


0
rn

i
0

 , tj =

cos∆θb −sin∆θb 0
sin∆θb cos∆θb 0

0 0 1




0
rt

j
0

 , (20)

where ∆θb = (bi− b)2π/Nb is the angle between blade bi and blade b. Assuming xP = ni, x1 = t1 and
x2 = t2, and substituting Equation (20) into Equation (7), it can be found that the velocity induced
by the segment x1x2 at the control point ni equals zero in both the xb-direction and the yb-direction,
and in the zb-direction is equal to

Vzb
ij = Γb

j

rn
i sin∆θb

[
r2(rt

j − rn
i cos∆θb)− r1(rt

j+1 − rn
i cos∆θb)

]
4πr1r2

[
r2

c + rn
i

2 − (rn
i cos∆θb)2

] = Ab
ijΓ

b
j , (21)

where Ab
ij is the influence coefficient which only depends on the geometry and discretization of the

rotor, and r1 and r2 are the lengths of the vectors x1 − xP and x2 − xP, respectively, i.e.,

r1 =

√
r2

c + rn
i

2 + rt
j
2 − 2rn

i cos∆θb, (22)

r2 =

√
r2

c + rn
i

2 + rt
j+1

2 − 2rn
i cos∆θb. (23)
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Figure 2. The blade bound vortex model.

The total induced velocity at a control point ni is the sum of the influences of all the bound vortex
segments on all Nb blades, which can be expressed as

Vzb
i =

Nb

∑
b=1

N

∑
j=1

Vzb
ij =

Nb

∑
b=1

N

∑
j=1

Ab
ijΓ

b
j . (24)

Considering that the rotor is axis-symmetric and that all the blades’ geometry and discretization
are identical, the total induced velocity at all N control points on a blade b can be simplified as

{
Vzb
}
=

Nb

∑
b=1

Ab
{

Γb
}

, (25)

where Ab is the matrix of influence coefficients of the blade bound vortex model.

3.1.2. Trailed Vortex Model

In this section, a finite length vortex line model is introduced as opposed to the semi-infinite
vortex line model proposed by de Vaal [14], as shown in Figure 3a. A local blade coordinate system
xbybzb is used, where the rotor lies in the xbyb-plane and the blade b lies along the xb-axis. In the
present model, the trailed vortex line begins from an endpoint rt

j on a blade and extends to a finite

length lt
j as defined in Equation (26) in the direction normal to the blade in the xbyb-plane.

lt
j = rt

jθt, (26)

which equals to the arc length of rt
j times the angle θt swept, where θt is an input parameter.

The induced velocity at the control point ni on blade b can be determined using Equation (7).
The coordinates of xP and x1 are both given by Equation (20), while the coordinates of x2 can be written as

x2 =

cos∆θb −sin∆θb 0
sin∆θb cos∆θb 0

0 0 1




rt
jθ1

rt
j

0

 . (27)

Substituting Equations (20) and (27) into Equation (7), evaluating the integral and simplifying,
the velocity induced by x1x2 at ni is derived as

Vzt
ij = ∆Γt

j

(rt
j − rn

i cos∆θb)
[
r
′
2rn

i sin∆θb − r1(rt
j − rn

i sin∆θb)
]

4πr1r′2
[
r2

c + rt
j
2 − 2rn

i rt
jcos∆θb − (rn

i cos∆θb)2
] = At

ij∆Γt
j, (28)
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where r1 and r
′
2 are the lengths of the vectors x1 − xP and x2 − xP, respectively, where r1 is given in

Equation (22) and r
′
2 can be defined as

r
′
2 =

√
r2

c + rn
i

2 + rt
j
2
(1 + θ2

1)− 2rn
i rt

j(cos∆θb + θ1sin∆θb). (29)

The total trailed model induced velocity at a control point ni is the sum of the induce of all the
N + 1 trailing vortex segments on all Nb blades, which can be expressed as

Vzt
i =

Nb

∑
b=1

N+1

∑
j=1

Vzt
ij =

Nb

∑
b=1

N+1

∑
j=1

At
ij∆Γt

j, (30)

which can be rewritten as {
Vzt} =

Nb

∑
b=1

At {∆Γt} , (31)

where At is the matrix of influence coefficients of the trailed vortex model.

(a) (b)

Figure 3. The trailed vortex models: infinite length (a); and finite length (b).

3.1.3. Total Induced Velocity of the Near Wake

The total near wake induced velocity Vnw is the sum up of the components of the blade bound
vortex model in Equation (25) and the trailed vortex model in Equation (31). With non-zero values
only in the zb-direction, Vnw is given in Equation (32), which only depends on the rotor geometry.

Vnw =
Nb

∑
b=1

(
Ab
{

Γb
}
+ At {∆Γt}) . (32)

3.2. Far Wake Model

The far wake model is formulated based on the assumption that the spiral vortices in the wake
can be represented by a series of vortex rings, as illustrated in Figure 4. When all the blades together
sweep a full revolution, a pair of new vortex rings R1 is shed into the wake, the outer ring being
shed from the outboard of the rotor and the inner ring being shed from the inboard of the rotor disc.
The computation of the far wake induced velocity V f w

P at a point P with NR pairs of vortex rings is
given in Equation (33), with the theory as described in Section 2.2.
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V f w
P =

NR

∑
k=1

Vin,k +
NR

∑
k=1

Vout,k, (33)

where Vin,k is the induced by the kth inner ring and Vout,k is induced by the outer ring.

Figure 4. Schematic representation of a four vortex rings (b) shed by the far wake model (a).

The Propagation of Vortex Ring

The far wake model is time-dependent, where two time scales are considered: (i) the time step
for the vortex shedding is ∆T = TP/Nb, where TP is the period of the rotor rotation; and (ii) the time
step used to compute the vortex rings propagation is defined as ∆t = ∆T/ncst, where ncst is a constant
integer. The calculation of the propagation is a cyclic process which involves three steps per ∆t at
a time t:

1. Identify the control points on the vortex rings and calculate the velocities (induced velocity and
free stream velocity) on all the control points.

2. Calculate the position of the control points both on the rotor and in the wake. The control points
in the wake is given by Euler’s equation assuming an incompressible and inviscid fluid, as

S(t + ∆t) = S(t) + V∆t, (34)

where V is the speed of a control point in the global coordinate system.
3. Update the position of the vortex rings based on the control points determined in step 2.

The geometry parameters that describe a vortex ring k are collected into the variable Sk, as

Sk =



xO,k
yO,k
zO,k
Rk
χk
βk
γk


k = 1, ..., NR, (35)

where Ok is the vortex ring center, Rk is the ring radius, and γk, χk and βk are, respectively, roll, pitch
and yaw angles, all of which being functions of time. Here, we consider a local inertial coordinate
system x̂ŷẑ by translating the origin of the global coordinate coincide with that of a vortex ring k.
At the upright position, when the ring lies in the x̂ŷ-plane, χk and βk are both zero, and when it rotates
anti-clockwise around the corresponding axis according to the right-hand law, the value of the angle is
defined as positive. Due to the rotational invariance property of the ring, the roll angle γk around the
ẑ-axis has no influence on the position of the ring itself but represents the azimuthal angle between the
ring and the control point. In the following, the method to determine these parameters is introduced.
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Let us define a local vortex ring coordinate system x
′
y
′
z
′

by giving the local inertial coordinate
system x̂ŷẑ a pitch angle of χk and then a yaw angle of βk, so that the vortex ring lies in the x

′
y
′
-plane.

A vortex ring in the wake is represented by a series of control points distributed on the ring with
the azimuthal angle ∆θ. With Nc control points on a vortex ring, ∆θ = 2π/Nc. Thus, the coordinate
X
′
i,k = (x

′
i,k, y

′
i,k, z

′
i,k) of a control point i on a ring k in the local vortex ring coordinate system is given as

x
′
i,k = Rksin[∆θ(i− 1)]

y
′
i,k = Rkcos[∆θ(i− 1)]

z
′
i,k = 0

i = 1, ..., Nc, k = 1, ..., NR. (36)

which need to be expressed in the global coordinate frame denoted by Xi,k(t− ∆t). At a time step t,
the position of the control point denoted by Xi,k(t) is determined by Equation (34) as:

Xi,k(t) = Xi,k(t− ∆t) + Vi,k∆t. (37)

Since the control points move independently, the new positions of the control points may no
longer form an exact circle. This discrepancy is however very small if the time step ∆t is small enough.
Nevertheless, a new vortex ring with the geometry parameters as shown in Equation (35) needs to
be determined by the updated position of the azimuthal control points. Firstly, the vortex ring origin
coordinate Ok can be expressed by taking the average of the coordinates of all the control points as

Ok =
1

Nc

Nc

∑
i=1

Xi,k =
1

Nc

Nc

∑
i=1

(xi,k, yi,k, zi,k). (38)

Next, the vortex ring radius Rk are determined by taking the average length of the segments si,O
from each control point i to the center of the ring Ok as

Rk =
1

Nc

Nc

∑
i=1

√
(xi,k − xO,k)2 + (yi,k − yO,k)2 + (zi,k − zO,k)2. (39)

3.3. Characteristics of the First Rings Shed in the Wake

After a certain distance behind the rotor, the trailed vortex segments of the near wake roll up
into two concentrated vortex rings in the far wake. The initial size and vortex strength of the vortex
rings are defined in this section. The algorithms of the roll-up process is based on the momentum
conservation theory [14,19]. The location of the maximum blade bound vortex strength Γmax is used to
define the inner and outer rings. In particular, the near wake trailing vortices from Γmax to the tip of
the blade are roll up into an outer ring and from Γmax to the root of the blade roll up into an inner ring.
The vortex strength of the roll up vortex ring equals to the summation of the vortex strengths of the
trailing vortices from which it is formed. The vortex ring strengths Γ̄b

in and Γ̄b
out as well as the vortex

ring radii r̄b
in and r̄b

out on blade b can be expressed as

Γ̄b
in = −

∫ r2

r1

dΓb

dr
dr =

nmax

∑
n=1

∆Γt
n, (40)

r̄b
in =

1
Γ̄b

in

∫ r2

r1

r
dΓb

dr
dr =

1
Γ̄b

in

nmax

∑
n=1

rn∆Γt
n, (41)

Γ̄b
out = −

∫ r2

r1

dΓb

dr
dr =

N+1

∑
n=nmax+1

∆Γt
n, (42)
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r̄b
out =

1
Γ̄b

out

∫ r2

r1

r
dΓb

dr
dr =

1
Γ̄b

out

N+1

∑
n=nmax+1

rn∆Γt
n. (43)

The concentrated vortex strength and radius of the inner and outer ring are defined as an average
of the vortex strengths and radii calculated from each blade, that is

Γ̄out =
1

Nb

Nb

∑
b=1

r̄b
out , Γ̄in =

1
Nb

Nb

∑
b=1

r̄b
in, (44)

r̄out =
1

Nb

Nb

∑
b=1

r̄b
out , r̄in =

1
Nb

Nb

∑
b=1

r̄b
in. (45)

3.4. Strength of the Blade Bound Vortex

Based on the discussion above, it can be seen that both the trailing vortex strengths and the
far wake vortex ring strengths are determined by the distribution of blade bound vortex strengths.
Once the blade bound vortex strengths are known, the near wake induced velocity at any point of the
rotor can be determined by Equation (32) and the far wake vortex ring strengths are determined at the
roll-up processes and with no change during their convection in the wake. Thus, the blade bound
vortex strengths need to be determined as a prerequisite. A method to calculate the blade bound vortex
strengths based on the Kutta–Joukowski lift theorem and the blade element theory is discussed below.

3.4.1. Kutta–Joukowski Lift Theorem

The Kutta–Joukowski lift theorem as introduced by Phillips [20] is adopted to solve the blade
bound vortex strength. Based on this theory, the lift force dFl acting on a vortex segment dl can be
calculated by the product of the air density ρ, the bound vortex strength Γb on the segment, and the
relative wind velocity V, as

dFl = ρΓbV× dl, (46)

where V includes the contribution from the free stream V∞, the rotor rotation VΩ, the near wake
induced velocity Vnw, and the far wake induced velocity V f w, as well as the motion of the platform
Vp in the case of a floating offshore wind turbine. V has three components in the blade coordinate
system as Vxb in the xb-direction, which is along the pitch axis towards the tip of the blade, and Vyb
and Vzb lie in the blade section and normal to the blade pitch axis, which can be written as

V = V∞ + VΩ + Vnw + V f w + Vp =


Vxb
Vyb
Vzb

 , (47)

Substituting Equation (47) into Equation (46), and given that the xb-axis is parallel to dl, it is found that
only the Vyb and Vzb components contribute to the lifting force acting on the blade. Thus, Equation (46)
can be rewritten as

dFl = ρΓbVn × dl, (48)

where Vn is the velocity vector that has only the Vyb and Vzb components, i.e.,

Vn =


0

Vyb
Vzb

 . (49)
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3.4.2. Blade Element Force

The lift force on a blade segment can also be calculated from the airfoil properties of the segment,
as indicated in Figure 5. The lift force can be expressed as

dFl =
1
2

ρ |Vn|2 Clcdl, (50)

where Vn is defined in Equation (49), c is the chord length, and Cl is the lift coefficient obtained by
means of tabulated aerodynamic parameters (the tabulated data are taken from the NREL certification
cases of FAST: https://nwtc.nrel.gov/FAST8) of the airfoil with a given α, which is calculated as

α = φ− (θt + θp), (51)

where θt is the twist angle, θp is the collective pitch angle, and the angle of relative wind φ is the angle
between the wind velocity Vn and the plane of the rotor disc, which can be expressed as

φ = tan−1 V0(1− a)
Ωr(1 + a′)

. (52)

In Equation (52), Ω is the rotor angular speed, a is the axial induction factor and a′ is the angular
induction factor. Similar to the lift force, the drag force dFd is calculated from the tabulated Cd and α,
leading to

dFd =
1
2

ρ |Vn|2 Cdcdl. (53)

Based on the discussion above, it is found that both Equations (48) and (50) express the lift force
of the blade segment. Thus, by equating them for a blade section i, the following relation is obtained

Γb
i |Vn

i (Γj)× dli| −
1
2
|Vn

i (Γj)|2Cl(αi)cidli = 0. (54)

For each blade section i = 1, ..., Nb · N, an equation similar to Equation (54) can be set up, where j
is the number of the vortex ring. For all Nb · N blade sections, a system of Nb · N non-linear equations
are obtained and solved for Nb ·N unknown values of the bound vortex strength Γb

i . Different methods
can be used to solve the resulting set of non-linear equations. The trust-region methods are used here,
which proved to be more stable and converge more rapidly than Newton–Raphson methods, especially
for small and negative angles of attacks. Accordingly, the rotor thrust FT is expressed as

FT =
Nb

∑
b=1

N

∑
j=1

dFN =
Nb

∑
b=1

N

∑
j=1

dFlcosφ + dFdsinφ. (55)

Figure 5. Forces acting on a blade element.

https://nwtc.nrel.gov/FAST8
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4. Simulation Description

This simplified free wake vortex model aims at finding a compromise between physical accuracy
and low computational cost. In this section, we compare the computational cost of the present method
with other methods available in the literature. Table 1 shows the methods under consideration with
computational cost and modeling capability: blade element momentum theory (BEM), actuator disc
with free wake vortex ring model (AFWRV) of [10,11], the present free wake vortex ring model (FWVR),
and two more advanced vortex methods—the free wake vortex filament (FWVF) method of [5] and
the nonlinear vortex lattice method (NVLM) method of [6].

Table 1. Computational time and function of different models.

Method Computational Time Modeling Capability

BEM Cb Nθ NΩ Rotor aerodynamics without wake

AFWVR
1
3

Ca N2
b N2

θ N3
Ω Rotor aerodynamics, uncoupled wake aerodynamics

FWVR
1
3

Cr N2
b N2

θ N3
Ω + CΓ Nθ NΩ Coupled rotor aerodynamics and wake aerodynamics

FWVF
1
3

C f N2
b N3

θ N3
Ω + CΓ Nθ NΩ Coupled rotor aerodynamics and wake aerodynamics

NVLM
1
3

Cm N2
b N3

θ N3
Ω + CΓ Nθ NΩ Coupled rotor aerodynamics and wake aerodynamics

In Table 1, Nb is the number of rotor blades, Nθ is the number of time steps per rotor rotation and
NΩ is the number of rotor rotation to be simulated. Nθ NΩ represents the total number of time steps. Cb
represents the time cost of evaluating the induced velocity at a point in the field with BEM, Ca, Cr, C f
and Cm represent the time cost of evaluating the induced velocity of a vortex element (vortex rings or
vortex filaments) at a point in the field with AFWVR, FWVR, FWVF and NVLM, respectively. Whether
the blades are modeled or not, all four methods are evaluated with the same number of control points
on the rotor and with the same number of time steps.

For the BEM theory, the number of control points are constant and each point is considered
independently. Thus, the computational time has a linear relationship with the number of time steps,
which is the fastest method for aerodynamic simulations. Cb involves the iterative solution of BEM
equations and some analytical corrections, such as Prandtl tip-loss, Prandtl hub-loss, and Pitt and
Peters skewed-wake corrections when needed.

By contrast, the solution of the other four vortex methods mainly includes two parts: the calculation of
the vortex element strength and the calculation of the induced velocity including self-induced velocities
and mutually induced velocities. The equations need to be solved increases with the increase of vortex
elements (being vortex rings or vortex filaments) in the wake.

The vortex ring strength of AFWVR is directly determined from a prescribed thrust coefficient
Ct [10], where the computational time is negligible. By contrast, the FWVR and FWVF methods
determine the blade bound vortex strength by iteratively solving the equations based on the 3D
vortex lifting law and the blade element theory with tabulated data of lift coefficient Cl , and then the
vortex strengths are distributed to the new generated vortex rings or vortex filaments in the wake.
The computational times to determine the vortex strengths for FWVR, FWVF and NVLM methods at
each time step are identical and denoted by CΓ. Since CΓ and Cb are both iterative processes with the
same number of equations, they are the same order of magnitude.

The computational times for evaluating the induced velocities of FWVR and FWVF are given
in [14,21]. Since the number of vortex filaments is Nθ times the number of vortex rings, the number
of induced velocities that need to be calculated at each time step for FWVR is also Nθ times that of
FWVF. Since AFWVR has the same number of control points and vortex rings as FWVR, the number
of induced velocities that needs to be calculated is the same. Ca involves the analytical solution of
a vortex ring induced velocity, which includes the evaluation of the elliptic integrals of the first and
second kind. Cr involves the same calculation as Ca as well as the analytical solutions of near wake
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induced velocities at the rotor points where the time cost is very small. Thus, Cr is approximately
equal to Ca. C f involves the solving of the trigonometry functions based on Biot–Savart law, and Cm

involves the solving of Biot–Savart kernel functions. Thus, C f and Cm are considered to be the same
order of magnitude and slightly less expensive than Cr [14].

As expected, the above analysis shows that more physically accurate models are also more
computationally expensive. BEM is the fastest model among those considered here. AFWVR and
FWVR differ in solving the blade bound vortex strength equations, which is approximately the
computational time of BEM, while FWVR, FWVF and NVLM differ in a factor Nθ for the computation
of the induced velocities, which can be significant. Regarding the modeling capability, BEM evaluates
the rotor aerodynamics without considering the wake aerodynamics. AFWVR evaluates both rotor and
aerodynamics, but uses a prescribed thrust coefficient to determine the vortex strengths. This prevents
further analysis on the influence of the wake on the rotor. FWVR, FWVF and NVLM evaluate the
coupled rotor aerodynamics and the wake aerodynamics, thus presenting similar capabilities, despite
the fact that FWVR discretizes the wake into vortex rings which partly loss the tangential induction.
Thus, Table 1 shows that the present simplified numerical model has low computational cost and
relatively high performance compared to other reference models.

5. Results

The results are shown for the NREL 5 MW reference turbine, with rotor blades and tower assumed
to be rigid. The basic parameters of the turbine, the airfoils and aerodynamic properties, the rotor
speed and blade pitch data corresponding to wind speeds from cut-in to cut-out and other information
about NREL 5 MW reference turbine that are used in this model can be found in the NREL report [22].
In this section, the results are shown for three cases: bottom-mounted, floating restricted to one degree
of freedom, and floating in three degrees of freedom.

5.1. Bottom-Mounted Wind Turbine

In this section, a bottom-mounted wind turbine with a constant free stream is used to validate
the present model. The rotor thrusts FT for wind speeds varying from the cut-in value of 3 m/s to the
cut-out value of 25 m/s are shown in Figure 6. It is compared to different results from the literature,
including the results from NREL [22], the result calculated with FAST v8, the results from [16] where
the Reynolds-averaged Navier–Stokes (RANS) method was used, and the results from [6] that uses
a nonlinear vortex lattice method (NVLM).

Figure 6 shows good agreement of the thrusts with the literature. Form the cut-in wind speed to
the rated wind speed, the thrusts from the NVLM model, RANS model and the present FWVR model
are higher than the thrusts from FAST v8, while the thrusts at above-rated wind speeds from these
three models are lower than the thrusts from FAST v8. However, it should be noted that the wind
turbine used by the RANS model is not exactly NREL 5 MW reference turbine but a similar one, which
can be a good reference. The thrusts of the NREL 5 MW reference turbine released by NREL [22] are
found to be not pure aerodynamic thrusts, but also include the effects of gravity and inertial loads of
the rotor (https://wind.nrel.gov/forum/wind/viewtopic.php?f=2&t=917), which are significantly
higher than the pure aerodynamic thrusts.

The axial induced velocities of wind speeds 6 m/s, 11.4 m/s and 18 m/s of the bottom-mounted
wind turbine are compared with the results from FAST v8 as shown in Figure 7. It can be seen that the two
results from 20 m to 60 m along the blade match well with each other. Due to the tip- and root-corrections,
the inductions from FAST v8 at the tip and root of the blade are both zero. The induction from the FWVR
at the tip of the blade also show a drop for all the three wind speeds, which are mainly contributed
by the near wake model and the outer ring of the far wake model. At the root of the blade, the inner
ring of the far wake model mainly plays a role of weakening the inductions while the inductions from
the near wake model are still strong. With the increase of the wind speed, the effect of the near wake
model becomes stronger than the far wake model. Thus, it can be seen that at the wind speed 6 m/s

https://wind.nrel.gov/forum/wind/viewtopic.php?f=2&t=917
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the induction dropped at the root but for the other two wind speeds the inductions are even stronger.
The axial induction factors weighted with the swept area of the three wind speeds are 0.300, 0.262 and
0.044 from FWVR and 0.305, 0.242 and 0.035 from FAST v8, respectively.
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Figure 6. The thrust of monopile NREL 5 MW wind turbine as a function of the wind speed.
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Figure 7. The axial induced velocities at wind speeds 6 m/s (a), 11.4 m/s (b) and 18 m/s (c).

5.2. Floating Wind Turbine under Single-DoF Motion

Since the results from the present vortex ring method are shown to be reliable for a bottom-mounted
wind turbine, the method is applied to a floating offshore wind turbine with a platform motion
prescribed in one degree of freedom (DoF).

5.2.1. Thrusts Comparison with Lee

The thrusts are calculated with a wind speed of 8 m/s and a rotor speed of 9.16 rpm. The platform
motions are defined as a sine function in Equation (56) with amplitude (A) and frequency ( f ) given
in Table 2.

X(t) = A1sin(2π f1t). (56)

Figure 8 shows the results of thrusts with translational (surge, sway, and heave, in Figure 8a)
and rotational (yaw, pitch, and roll, in Figure 8b) platform motions. The thrust for a fixed rotor is
also provided for comparison. For a moving rotor, the thrust forces obtained from both methods
have similar amplitude and frequency, which are both consistent with the thrusts shown in Figure 6.
Figure 8 shows that the thrust under translational platform motions is most sensitive to surge, and the
thrust under rotational platform motions is most sensitive to pitch, for the reason that these motions
are in the wind direction, which can significantly influence the relative wind speed normal to the rotor
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disc. When the rotor has a leeward speed, the relative wind speeds are reduced on the blades and
the angle of attacks are smaller, which leads to a lower thrust load than average. When the rotor has
a windward speed, the situation is reverse and the thrust load is larger than average. It is also observed
that the heave and sway motions of the same amplitude and frequency theoretically have equivalent
influence to the rotor thrust. The heave and sway motions can change the relative tangential wind
speed on the airfoils, which either increases or decreases the angle of attack according to the azimuthal
angle of the blade, thus increasing or decreasing the thrust. However, this influence is relatively small
as the change of tangential wind speed is much smaller than the tangential speed coming from the
rotor rotation. Figure 8a shows that, with the present FWVR method, the thrust force under heave and
sway motions almost overlap and slightly fluctuate around the thrust value of the bottom-mounted
turbine, which is deemed to be reasonable.

Table 2. Amplitude and frequency of prescribed single-DoF motions [6].

Motion Amplitude A [m or ◦] Frequency f [Hz]

Translation (surge, sway, heave) 4 0.1
Rotation (roll, pitch, yaw) 4 0.05

surge 4,8,12 0.03
pitch 2,4,6 0.03

The effect of the roll motion on the thrust is similar to that of the heave and sway motions,
which mainly influence the relative tangential wind speed and the wake induced velocity on the rotor.
The yaw motion can reduce the overall wind area of the rotor, hence reducing the thrust load compared
to the bottom-mounted turbine, as obtained for both NVLM and FWVR.
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Figure 8. Thrust with: (a) translational motions (A = 4 m, f = 0.1 Hz); and (b) rotational motions
(A = 4◦, f = 0.05 Hz).

The effect of the surge and pitch motions with different amplitudes are further analyzed and
compared with the results of [6] in Figure 9. Figure 9a compares the thrust with surge motions with
the amplitude of 4 m, 8 m, 12 m and the frequency of 0.03 Hz, while Figure 9b compares the thrust
with pitch motions with the amplitude of 2◦, 4◦, 6◦ and the frequency of 0.03 Hz. Since the amplitudes
of the platform motions are small and the frequency is relatively low, the thrusts change linearly with
platform motions for both surge and pitch.
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Figure 9. Thrust with: (a) surge (A = 4 m, 8 m, 12 m, f = 0.03 Hz); and (b) pitch (A = 2◦, 4◦, 6◦, f = 0.03 Hz).

5.2.2. Angle of Attacks Comparison with Sebastian and de Vaal

Additional comparisons are made with the works of Sebastian [5] and de Vaal [14], for different
floater types, under the following operating and environmental conditions:

1. below-rated: V∞ = 6.0 m/s, λ = 9.63, Hs = 1.83 m, Tp = 12.72 s;
2. rated: V∞ = 11.4 m/s, λ = 7.00, Hs = 2.54 m, Tp = 13.35 s; and
3. above-rated: V∞ = 18.0 m/s, λ = 4.43, Hs = 4.09 m, Tp = 15.33 s, θp = 15◦

In these works, the platform motions in time domain are synthesised as sinusoidal series at the
first two dominant frequencies as

X(t) = X0 + A1sin(2π f1t + φ1) + A2sin(2π f2t + φ2), (57)

where the mean value X0, amplitudes Ai, frequencies fi and phase angles φi are given in Table 3.

Table 3. Parameters of platform motions [5] for the NREL 5 MW turbine with different floater types.

Oper. Platf. Mode X0 A1 f1 φ1 A2 f2 φ2
[m]/[◦] [m]/[◦] [Hz] [rad] [m]/[◦] [m]/[◦] [rad]

1 ITI surge 13.602 0.725 0.007 −1.163 −0.442 0.078 2.609
1 ITI heave −0.130 0.318 0.078 1.303 0.254 0.108 2.702
1 ITI pitch 0.591 1.475 0.078 −0.066 1.630 0.083 1.816
1 OHS pitch 1.580 −0.084 0.066 1.930 −0.116 0.077 3.113
1 OHS yaw −0.021 0.091 0.108 1.983 −0.036 0.120 3.429
1 TLP surge 1.206 0.436 0.016 −0.831 −0.222 0.077 3.018

2 ITI pitch 1.722 −0.637 0.065 −0.381 1.677 0.077 1.835

3 ITI pitch 0.939 1.518 0.066 2.132 2.979 0.078 6.863
3 OHS pitch 3.324 11.961 0.029 0.420 0.000 0.000 0.000
3 OHS yaw −0.222 2.000 0.029 −0.359 3.185 0.058 3.385

The mean µα and standard deviation σα of the angle of attack α on the outboard 2/3 of the blade
are compared in Table 4. The current numerical results are presented in the column entitled “FWVR2,
tilt = 0◦”, without shaft tilt angle. It is shown that µα and σα have the same trend than observed in
the literature. In particular, µα is rather independent of the platform motion, for a given wind speed.
The bottom-mounted monopile presents the smallest value of σα compared with floating support
structures at the same wind speed. This can be explained by the fluctuations of the induced velocities
caused by turbine-wake interactions in the floating case. The value of σα increases with the increase
of platform motion. In addition, the pitch motions of the platform tend to have more effect on the
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value of σα than the surge motions, because the pitch motions generate shear wind velocities on the
rotor. The values of µα are lower than the reference results throughout and the difference are within
1◦, which is considered to be acceptable. The column “FWVR2, tilt = 5◦” shows the α performance in
the design condition of NREL 5 MW with a nonzero tilt angle. It can be seen that the values of µα are
slightly lower than for zero tilt angle, which is mainly because the total wind area is smaller when the
rotor is tilted. Moreover, σα is significantly influenced by the tilt angle in all cases because the latter
can generate fluctuating streams especially on the outboard of the blades.

Table 4. Mean and standard deviation of α at the outboard 2/3 part of the blade.

WInDS [5] FWVR1 [14] FWVR2, tilt = 0◦ FWVR2, tilt = 5◦Operation Platform Mode
µα[◦] σα[◦] µα[◦] σα[◦] µα[◦] σα[◦] µα[◦] σα[◦]

1 Monopile – 3.95 0.23 3.86 0.48 3.82 0.15 3.71 3.23
1 ITI surge 3.95 0.40 3.87 0.53 3.78 0.23 3.64 3.23
1 ITI pitch 3.99 2.21 3.90 1.5 3.89 1.92 3.84 3.85
1 OHS pitch 3.94 0.32 3.84 0.49 3.66 0.25 3.84 3.21
1 TLP surge 3.95 0.27 3.86 0.49 3.64 0.23 3.70 3.23

2 Monopile – 6.76 0.37 6.66 0.69 5.84 0.35 5.76 3.35
2 ITI pitch 6.78 1.67 6.67 1.30 5.82 1.09 5.73 3.47

3 Monopile – −0.10 0.80 −0.31 2.24 −0.59 0.05 −0.61 2.91
3 ITI pitch −0.08 2.26 −0.28 2.88 −0.59 1.87 −0.61 3.39
3 OHS pitch −0.45 3.59 −0.52 3.09 −0.83 2.40 −0.85 3.57

5.2.3. Thrust Analysis in Time Domain and Frequency Domain

The rotor thrust of monopile in rated condition and five floating support structures in below-rated,
rated and above-rated conditions are evaluated in time domain (Figure 10) and frequency domain
(Figure 11). Figure 10 shows that the thrust fluctuate around their mean values, after an initial transient.
The latter is due to the fact that a certain time is needed for the far-wake vortex rings to develop.
Thus, initially, only the near wake mostly contributes to the values of induced velocities. After about
50 s, a steady-state is reached and statistics can be taken. Figure 11 highlights the dominant frequencies
in the rotor thrust. For a bottom-mounted turbine on a monopile in rated conditions, the first dominant
frequency is at about 0.6 Hz, which corresponds to the vortex shedding frequency. Higher frequencies
are multiples of the first one. This is due to a periodic process whereby the thrust force reaches
a minimum value when the induced velocity reaches a peak value, and vice versa. For the FOWTs,
without exception, the frequencies of the platform motions dominate in the frequency of the thrust
force. This is because the velocities induced by the platform motions are larger than the induced
velocities from the vortex rings.
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Figure 10. Time evolution of the thrust force on the rotor for different turbine configurations.
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Figure 11. Frequency content of the thrust force on the rotor for different turbine configurations.

Finally, we evaluate the blade bounded vortex strength Γ and its relationship with other parameters.
As explained above, the value of Γ is obtained by equating the lift forces calculated from the 3D vortex
lifting law and that from the blade element theory (see Equation (54)). This leads to:

Γ =
c
2

Cl(α)Vn, (58)

where c is the chord length, Cl is the lift coefficient and Vn is the normal wind speed. The time
evolutions of Γ, Vn, Cl and α are shown in Figure 12, for the OHS above-rated condition. In each
figure, the continuous line represent the platform pitching motion. The non-dimensional Γ/(πRV∞)

(Figure 12a) fluctuates with the platform pitch motion. In addition, the high-frequency oscillation with
the period of about 4.96 s is due to the rotor tilt angle. On the outboard of the blade, there are negative
values of Γ, which is consistent with the negative values of α and Cl observed in the same conditions
(Figure 12c,d). The normal relative wind speed Vn is less influenced by the platform motion and the
rotor tilt, its main fluctuations coming from the constant rotation of the rotor.
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Figure 12. Time evolution of: (a) Γ/(πRV∞); (b) Vn; (c) Cl ; and (d) α for the OHS above-rated condition.

5.3. Floating Wind Turbine under Multiple-DoF Motion

To conclude this section, three multiple-DOF operating conditions are conducted, combining the
properties listed in Table 3, namely:

1. Below-rated: The ITI Energy barge with platform surge, heave, and pitch.
2. Below-rated: The OC3-Hywind spar-buoy with platform pitch and yaw.
3. Above-rated: The OC3-Hywind spar-buoy with platform pitch and yaw.

5.3.1. The Multiple-DoF Motion Thrusts Comparison with Lee

The multiple-DoF motion thrusts of ITI and OHS with the below-rated operating conditions as
well as the fixed-rotor thrusts are compared with the results of [6] in Figure 13. It should be noted that,
the platform motions start at a zero azimuth angle in the FWVR code while they start approximately
after one rotation of the rotor in the NVLM code. Therefore, to facilitate the comparison, the thrusts
from the present FWVR method is shifted with +360◦ along the azimuth angle-axis. It is found that
the fixed-rotor thrust calculated with the present FWVR method is higher than that calculated with the
NVLM method, which is consistent with the previous observation. Besides, the thrust amplitudes and
frequencies of the two methods for the ITI and the OHS match well.
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Figure 13. Variation in the thrust of 5 MW NREL wind turbine in multiple-DoF motions.

5.3.2. Induced Velocity Comparison with Sebastian

The wake induction at the rotor as a function of the downstream distance of the vortex rings
are computed as the percentage of the total induced velocity at the rotor, and compared with [5] in
Figure 14 for the ITI and in Figure 15 for the OHS with the NREL 5 MW wind turbine. The blue
dashed lines represent the contribution of the induced velocities from each section along the wake
as obtained with the FWVF method, while the red lines are the results of the present FWVR method.
The red circles on the line highlight the position of the vortex rings. The black lines and the green
dotted lines represent the accumulated percentage of the induced velocities along the wake from the
FWVF method and FWVR method, respectively. The induced velocity data output from the present
FWVR method was captured at the operating time of 150 s, when a stable condition was reached by the
wind turbine. Since the convection of the vortex rings downstream is a dynamic process, the induced
velocity captured at different time steps can be slightly different.

In general, the induced velocities are comparable between the two methods. As shown in
Figure 14, the accumulated percentage of the induced velocity at distances 1D and 2D behind the rotor
differ only by 2%, and this difference decreases to maximum 1.0% as the distance behind the rotor
increases. Furthermore, the induced velocities from each section along the wake show similar trend
with both methods, the big fluctuations being mainly influenced by the platform motions, particularly
from the pitch. For the OHS below-rated condition (Figure 15a), a similar discrepancy is observed
between the models, with differences of 2.4% and 2.1% at distances of 1D and 2D behind the rotor
and 0.6% further downstream. In addition, the influence of the pitch and yaw platform motions on
the induced velocity is relatively small. Above rated power (Figure 15b), slightly larger discrepancies
are observed, with differences of 9.8% and 4.8% at distances of 1D and 2D behind the rotor and less
than 1% further downstream. Additionally, the present FWVR method predicts significantly larger
contribution of the induced velocity from the vortex rings within the 1D distance downstream. This is
mainly because the vortex rings convect faster with the increase in wind speed, and the density of
rings is sparser at higher wind speed. Because the induced velocity is very sensitive to the distance
between the control points and the vortex ring (see Equation (21)) the contribution from the front rings
is much more significant than that of the rings further away from the rotor. The small differences in
the results can be explained from the differences in wake induction of these two methods. The first
difference is that the induced velocities of the wake from the FWVF method are output for each vortex
segment in the wake, while the induced velocities from the present FWVR method are output for each
vortex ring. As explained in Section 4, there are fewer vortex rings than vortex segments in the wake,
thus the induced velocities of the wake from the FWVF method are relatively constant compared to
those from the FWVR method. The second difference is that, due to the different modeling properties,
the induced velocities from the FWVF method start from a position very close to the rotor, while the
induced velocities from the present FWVR method start from the position of the first vortex ring,
and the induced velocity at the rotor from the near wake model is not accounted here.



Energies 2019, 12, 3900 21 of 24

0 1 2 3 4 5

Downwind [D]

0

5

10

15

20

25

30

35

%
V

in
du

ce
d

0

20

40

60

80

100

C
um

.%
V

in
du

ce
d%V

induced
 (FWVF)

%V
induced

 (present)

Cum.%V
induced

 (FWVF)

Cum.%V
induced

 (present)

Figure 14. Wake induced velocity at the rotor for the NREL 5 MW turbine + ITI with surge, heave,
and pitch for below-rated conditions.
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Figure 15. Wake induced velocity at the rotor for the NREL 5 MW turbine + OHS under pitch and yaw:
(a) below-rated; and (b) above-rated.

5.3.3. Wake structure discussion

The wake structures of the bottom-fixed wind turbine with the specified below-rated operating
condition as well as the FOWTs with the three multiple-DoF platform motions at 150 s of the operating
time are shown in Figure 16. The inner and outer rings are distinguished with red and blue colors,
respectively, with the vectors indicating the directions where the control points are moving in the next
time step. The wake structures of the below-rated operating conditions, as shown in Figure 16a–c,
are found to be more compact than the above-rated operating conditions, as shown in Figure 16d,
which is due to the different convecting speeds of the vortex rings in the wake in different free stream
environments. The wake structure of the bottom-fixed wind turbine has homogeneous vortex ring
radii since its blade bound vortex strengths are homogeneous. By contrast, the wake structures of
the FOWTs have significant fluctuations because both the blade bound vortex strengths and the
rotor position change with time, thus affecting the roll-up process of the wake model. Additionally,
the vortex rings in the wake with uneven radii and vortex strengths interacting with each other can
cause some fluctuations downstream in the wake, especially below-rated conditions for which the
downstream vortex rings are relatively close to one another, which can be seen clearly in Figure 16b,c.
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Figure 16. Wake structures of the NREL 5 MW turbine: (a) bottom fixed below-rated; (b) ITI barge
below-rated; (c) OHS below-rated; and (d) OHS above-rated.

6. Conclusions

In this paper, a simplified free wake vortex ring method for horizontal-axis wind turbine is
modified and assessed. A new trailed vortex model with finite length vortex lines is proposed.
The NREL 5 MW wind turbine was used to validate the code extensively for the cases of monopile
wind turbine, single-Dof platform motions and mutiple-Dof platform motions, respectively, where the
thrusts, angle of attacks, and induced velocities are found to have good agreement with the literature.
To conclude, the modified free wake vortex ring method proposed here is considered to be effective
when solving the aerodynamic load around horizontal-axis wind turbines, on both fixed and floating
support structures.
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Abbreviations

The following abbreviations are used in this manuscript:

FOWT Floating Offshore Wind Turbines
BEM Blade Element Momentum Theory
CFD Computational Fluid Dynamics
NREL National Renewable Energy Laboratory
FWVF Free Wake Vortex Filament Method
NVLM Nonlinear Vortex Lattice Method
FWVR Free Wake Vortex Ring Method
CO3 Code Comparison Collaboration
OHS OC3-Hywind Spar-Buoy
TLP Tension Leg Platform
RANS Reynolds-averaged Navier–Stokes Method
AFWRV Actuator Disc with Free Wake Vortex Ring Model
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